Sample records for paramagnetic lanthanide complex

  1. Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis.

    PubMed

    Chen, Jia-Liang; Zhao, Yu; Gong, Yan-Jun; Pan, Bin-Bin; Wang, Xiao; Su, Xun-Cheng

    2018-02-01

    Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.

  2. Calix[4]arenes as selective extracting agents. An NMR dynamic and conformational investigation of the lanthanide(III) and thorium(IV) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, B.; Jacques, V.; Shivanyuk, A.

    The lanthanide and Th{sup 4+} complexes with calix[4]arene ligands substituted either on the narrow or at the wide rim by four coordinating groups behave totally differently as shown by an NMR investigation of the dia- and paramagnetic complexes. Solutions of complexes were prepared by reacting anhydrous metal perchlorate salts with the ligands in dry acetonitrile (CAUTION). Relaxation time T{sub 1} titrations of acetonitrile solutions of Gd{sup 3+} by calixarenes indicate that ligands substituted on the narrow rim form stable 1:1 complexes whether they feature four amide groups (1) or four phosphine oxide functions. In contrast, a ligand substituted by fourmore » (carbamoylmethyl)-diphenylphosphine oxide moieties on the wide rim (3) and its derivatives form polymeric species even at a 1:1 ligand/metal concentration ratio. Nuclear magnetic relaxation dispersion (NMRD) curves (relaxation rates 1/T{sub 1} vs magnetic field strength) of Gd{sup 3+}, Gd{sup 3+}{center_dot}1 and Gd{sup 3+}{center_dot}3 perchlorates in acetonitrile are analyzed by an extended version of the Solomon-Bloembergen-Morgan equations. A comparison of the calculated rotational correlation times {tau}{sub r} shows that ligand 3 forms oligomeric Gd{sup 3+} species. The chelates of ligand 1 are axially symmetric (C{sub 4} symmetry), and the paramagnetic shifts induced by the Yb{sup 3+} ion are accounted for quantitatively. The addition of water or of nitrate ions does not modify the geometry of the complex. The metal chelates of 3 and its derivatives adopt a C{sub 2} symmetry, and the paramagnetic shifts are interpreted on a semiquantitative basis only. Water and NO{sub 3}{sup {minus}} ions completely labilize the complexes of the heavy lanthanides. The very high selectivity of ligand 3 through the lanthanide series stems from a complex interplay of factors.« less

  3. Lanthanide binding and IgG affinity construct: Potential applications in solution NMR, MRI, and luminescence microscopy

    PubMed Central

    Barb, Adam W; Ho, Tienhuei Grace; Flanagan-Steet, Heather; Prestegard, James H

    2012-01-01

    Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb3+ with 130 nM affinity. Ions such as Dy3+, Yb3+, and Ce3+ produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd3+ complex) and luminescence microscopy (Z-L2LBT: Tb3+ complex). PMID:22851279

  4. The solution structure of Ln (DOTP) 5- complexxes. A comparison of lanthanide-induced paramagnetic shifts with the MMX energy-minimized structure

    NASA Astrophysics Data System (ADS)

    Geraldes, Carlos F. G. C.; Sherry, A. Dean; Kiefer, Garry E.

    Complexes between the trivalent lanthanide ions and the macrocyclic chelate 1,4,7,10-tetraazacyclododecane- N,N',N″,N‴-tetra(methylene phosphonate) (DOTP) have been examined by high-resolution NMR spectroscopy. The proton spectra of the diamagnetic La(DOTP) 5- and Lu(DOTP) 5- complexes provide evidence for very rigid chelate structures with the ethylenediamine-containing chelate rings essentially locked into a single conformation at room temperature. The activation energy for ethylenediamine chelate ring interconversions in these complexes is approximately 100 kJ mol -1, considerably higher than that reported previously for the corresponding Ln(DOTA) - complexes (DOTA is the tetraacetate analog of DOTP). Lanthanide-induced shifts are reported for all 1H, 13C, and 31P nuclei in 11 Ln(DOTP) 5- complexes. The proton spectra of these complexes display unusually large lanthanide-induced shifts, one showing a spectrum in which the 1H resonances span 900 ppm. The contact and pseudocontact contributions to these shifts were separated using Reilley's temperature-independent method and the resulting pseudocontact lanthanide-induced NMR shifts were in excellent agreement with those calculated for a structure derived using MMX molecular modeling methods. The pseudocontact shifts provide evidence for Ln (DOTP) 5- chelates which have virtually identical structures along the lanthanide series, with the possible exception of Tm(DOTP) 5-.

  5. Lanthanide paramagnetic probes for NMR spectroscopic studies of fast molecular conformational dynamics and temperature control. Effective six-site proton exchange in 18-crown-6 by exchange spectroscopy.

    PubMed

    Babailov, Sergey P

    2012-02-06

    (1)H and (13)C NMR measurements are reported for the CDCl(3) and CD(2)Cl(2) solutions of [La(18-crown-6)(NO(3))(3)] (I), [Pr(18-crown-6) (NO(3))(3)] (II), [Ce(18-crown-6)(NO(3))(3)] (III), and [Nd(18-crown-6)(NO(3))(3)] (IV) complexes. Temperature dependencies of the (1)H NMR spectra of paramagnetic II-IV have been analyzed using the dynamic NMR (DNMR) methods for six-site exchange. Two types of conformational dynamic processes were identified (the first one is conditioned by interconversion of complex enantiomeric forms and pseudorotation of a macrocycle molecule upon the C(2) symmetry axis; the second one is conditioned by macrocycle molecule inversion). Application of exchange spectroscopy (2D-EXSY) of DNMR for investigation of this dynamic system (II-IV) simplifies the assignment of the NMR signals and represents the first experimental study of multisite exchange. In the present work, the methodology of paramagnetic 4f (Ce, Pr, and Nd) probe applications for the study of free-energy, enthalpy, and entropy changes in chemical exchange processes, as well as the advantages of this method in a comparison with DNMR studies of diamagnetic substances, is discussed. In particular, as a result of paramagnetic chemical shifts in 4f complexes, the range of measurable rate constants expands considerably compared to the analogous range in diamagnetic compounds. Coordination compounds investigated in the paper represent new types of thermometric NMR sensors and lanthanide paramagnetic probes for in situ temperature control in solution.

  6. Model-free nuclear magnetic resonance study of intermolecular free energy landscapes in liquids with paramagnetic Ln3+ spotlights: theory and application to Arg-Gly-Asp.

    PubMed

    Fries, Pascal H

    2012-01-28

    We propose an easily applicable method for investigating the pair distribution function of a lanthanide Ln(3+) complex LnL (L = ligand) with respect to any solvent or solute molecule A carrying observable nuclear spins. Let r be the distance of Ln(3+) to the observed nuclear spin I. We derive a simple expression of the experimental value of the configurational average of 1/r(6) in terms of longitudinal paramagnetic relaxation (rate) enhancements (PREs) of the spin I measured on a standard high-resolution NMR spectrometer and due to well-chosen concentrations of LnL complexes in which Ln(3+) is a fast-relaxing paramagnetic lanthanide or the slowly-relaxing gadolinium Gd(3+). The derivation is justified in the general case of a molecule A which is by turns in a bound state where it follows the complex and a free state where it moves independently. It rests on the expression of the underlying PRE theory in terms of the angle-dependent pair distribution function of LnL and A. The simplifications of this theory in the high-field regime and under the condition of fast exchange between bound and free states are carefully discussed. We also show that original information on the angle dependence of the molecular pair distribution function can be gained from the measured paramagnetic dipolar shifts induced by complexed fast-relaxing Ln(3+) ions. The method is illustrated by the case study of the anionic Lnttha(3-) = [Ln(3+)(ttha)](3-) (ttha(6-) = triethylene tetraamine hexacetate) complex interacting with the biologically important tripeptide Arg-Gly-Asp (RGD) which carries peripheral ionic groups. The usefulness of an auxiliary reference outer sphere probe solute is emphasized. © 2012 American Institute of Physics

  7. Relaxation-based distance measurements between a nitroxide and a lanthanide spin label

    NASA Astrophysics Data System (ADS)

    Jäger, H.; Koch, A.; Maus, V.; Spiess, H. W.; Jeschke, G.

    2008-10-01

    Distance measurements by electron paramagnetic resonance techniques between labels attached to biomacromolecules provide structural information on systems that cannot be crystallized or are too large to be characterized by NMR methods. However, existing techniques are limited in their distance range and sensitivity. It is anticipated by theoretical considerations that these limits could be extended by measuring the enhancement of longitudinal relaxation of a nitroxide label due to a lanthanide complex label at cryogenic temperatures. The relaxivity of the dysprosium complex with the macrocyclic ligand DOTA can be determined without direct measurements of longitudinal relaxation rates of the lanthanide and without recourse to model compounds with well defined distance by analyzing the dependence of relaxation enhancement on either temperature or concentration in homogeneous glassy frozen solutions. Relaxivities determined by the two calibration techniques are in satisfying agreement with each other. Error sources for both techniques are examined. A distance of about 2.7 nm is measured in a model compound of the type nitroxide-spacer-lanthanide complex and is found in good agreement with the distance in a modeled structure. Theoretical considerations suggest that an increase of the upper distance limit requires measurements at lower fields and temperatures.

  8. In vivo three-dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution.

    PubMed

    Coman, Daniel; de Graaf, Robin A; Rothman, Douglas L; Hyder, Fahmeed

    2013-11-01

    Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm(3+)) and macrocyclic chelates (e.g. 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, or DOTMA(4-)) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide-based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two-dimensional CSI experiments with such lanthanide-based macrocyclics allowed acquisition from ~12-μL voxels in rat brain within 5 min using rectangular encoding of k space. Because cubical encoding of k space in three dimensions for whole-brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three-dimensional molecular imaging capabilities with lanthanide-based macrocyclics. Using TmDOTMA(-), we show datasets from a 20 × 20 × 20-mm(3) field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k space, a significant increase in CSI signal is obtained. In vitro and in vivo three-dimensional CSI data with TmDOTMA(-), and presumably similar lanthanide-based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Physical characteristics of lanthanide complexes that act as magnetization transfer (MT) contrast agents

    NASA Astrophysics Data System (ADS)

    Zhang, Shanrong; Sherry, A. Dean

    2003-02-01

    Rapid water exchange is normally considered a prerequisite for efficient Gd3+-based MRI contrast agents. Yet recent measures of exchange rates in some Gd3+ complexes have shown that water exchange can become limiting when such complexes are attached to larger macromolecular structures. A new class of lanthanide complexes that display unusually slow water exchange (bound water lifetimes (τM298) > 10 μs) has recently been reported. This apparent disadvantage may be taken advantage of by switching the metal ion from gadolinium(III) to a lanthanide that shifts the bound water resonance substantially away from bulk water. Given appropriate water exchange kinetics, one can then alter the intensity of the bulk water signal by selective presaturation of this highly shifted, Ln3+-bound water resonance. This provides the basis of a new method to alter MR image contrast in tissue. We have synthesized a variety of DOTA-tetra(amide) ligands to evaluate as potential magnetization transfer (MT) contrast agents and found that the bound water lifetimes in these complexes are sensitive to both ligand structure (a series of Eu3+ complexes have τM298 values that range from 1 to 1300 μs) and the identity of the paramagnetic Ln3+ cation (from 3 to 800 μs for a single ligand). This demonstrates that it may be possible either to fine-tune the ligand structure or to select proper lanthanide cation to create an optimal MT agent for any clinical imaging field.

  10. Paramagnetic Gd IIIFe III heterobimetallic complexes of DTPA-bis-salicylamide

    NASA Astrophysics Data System (ADS)

    Aime, S.; Botta, M.; Fasano, M.; Terreno, E.

    1993-08-01

    The reaction between DTPA (diethylenetriaminepenta-acetic acid)-anhydride and p-aminosalicylic acid (PAS) affords a novel ligand, [DTPA(PAS) 2], able to form stable heterobimetallic complexes with Gd 3+ and Fe 3+ ions. The lanthanide ion occupies an internal coordination cage formed by three nitrogen atoms, two carboxylate and two carboxoamido groups of the ligand, whereas the outer salicylic moieties form stable chelate rings with Fe III ions. The stoichiometry of the resulting heterobimetallic complexes, established by measurements of water proton relaxation enhancement, is [(H 2O)-Gd-DTPA(PAS) 2] 2-Fe(H 2O) 2 or [(H 2O)-Gd-DTPA(PAS) 2] 3-Fe depending on the pH of the aqueous solution. The individual contributions to the observed relaxation enhancement from Gd 3+ and Fe 3+ paramagnetic ions have been clearly distinguished and analysed.

  11. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes.

    PubMed

    Adam, Christian; Beele, Björn B; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J

    2015-02-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15 N labeling and characterized by NMR and LIFDI-MS methods. 15 N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15 N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal-ligand bonding in Am(C5-BPP) 3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP) 3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species.

  12. Paramagnetic liposomes as innovative contrast agents for magnetic resonance (MR) molecular imaging applications.

    PubMed

    Terreno, Enzo; Delli Castelli, Daniela; Cabella, Claudia; Dastrù, Walter; Sanino, Alberto; Stancanello, Joseph; Tei, Lorenzo; Aime, Silvio

    2008-10-01

    This article illustrates some innovative applications of liposomes loaded with paramagnetic lanthanide-based complexes in MR molecular imaging field. When a relatively high amount of a Gd(III) chelate is encapsulated in the vesicle, the nanosystem can simultaneously affect both the longitudinal (R(1)) and the transverse (R(2)) relaxation rate of the bulk H2O H-atoms, and this finding can be exploited to design improved thermosensitive liposomes whose MRI response is not longer dependent on the concentration of the probe. The observation that the liposome compartmentalization of a paramagnetic Ln(III) complex induce a significant R(2) enhancement, primarily caused by magnetic susceptibility effects, prompted us to test the potential of such agents in cell-targeting MR experiments. The results obtained indicated that these nanoprobes may have a great potential for the MR visualization of cellular targets (like the glutamine membrane transporters) overexpressing in tumor cells. Liposomes loaded with paramagnetic complexes acting as NMR shift reagents have been recently proposed as highly sensitive CEST MRI agents. The main peculiarity of CEST probes is to allow the MR visualization of different agents present in the same region of interest, and this article provides an illustrative example of the in vivo potential of liposome-based CEST agents.

  13. Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging

    NASA Astrophysics Data System (ADS)

    Biju, Vasudevanpillai; Hamada, Morihiko; Ono, Kenji; Sugino, Sakiko; Ohnishi, Takashi; Shibu, Edakkattuparambil Sidharth; Yamamura, Shohei; Sawada, Makoto; Nakanishi, Shunsuke; Shigeri, Yasushi; Wakida, Shin-Ichi

    2015-09-01

    Multimodal and multifunctional contrast agents receive enormous attention in the biomedical imaging field. Such contrast agents are routinely prepared by the incorporation of organic molecules and inorganic nanoparticles (NPs) into host materials such as gold NPs, silica NPs, polymer NPs, and liposomes. Despite their non-cytotoxic nature, the large size of these NPs limits the in vivo distribution and clearance and inflames complex pharmacokinetics, which hinder the regulatory approval for clinical applications. Herein, we report a unique method that combines magnetic resonance imaging (MRI) and fluorescence imaging modalities together in nanoscale entities by the simple, direct and stable conjugation of novel biotinylated coordination complexes of gadolinium(iii) to CdSe/ZnS quantum dots (QD) and terbium(iii) to super paramagnetic iron oxide NPs (SPION) but without any host material. Subsequently, we evaluate the potentials of such lanthanide-speckled fluorescent-magnetic NPs for bioimaging at single-molecule, cell and in vivo levels. The simple preparation and small size make such fluorescent-magnetic NPs promising contrast agents for biomedical imaging.

  14. Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Ji, Lei; Zhang, Bingbo; Yin, Peihao; Qiu, Yanyan; Song, Daqian; Zhou, Juying; Li, Qi

    2013-05-01

    Multi-modal imaging based on multifunctional nanoparticles is a promising alternative approach to improve the sensitivity of early cancer diagnosis. In this study, highly upconverting fluorescence and strong relaxivity rare-earth nanoparticles coated with paramagnetic lanthanide complex shells and polyethylene glycol (PEGylated UCNPs@DTPA-Gd3+) are synthesized as dual-modality imaging contrast agents (CAs) for upconverting fluorescent and magnetic resonance dual-modality imaging. PEGylated UCNPs@DTPA-Gd3+ with sizes in the range of 32-86 nm are colloidally stable. They exhibit higher longitudinal relaxivity and transverse relaxivity in water (r1 and r2 values are 7.4 and 27.8 s-1 per mM Gd3+, respectively) than does commercial Gd-DTPA (r1 and r2 values of 3.7 and 4.6 s-1 per mM Gd3+, respectively). They are found to be biocompatible. In vitro cancer cell imaging shows good imaging contrast of PEGylated UCNPs@DTPA-Gd3+. In vivo upconversion fluorescent imaging and T1-weighted MRI show excellent enhancement of both fluorescent and MR signals in the livers of mice administered PEGylated UCNPs@DTPA-Gd3+. All the experimental results indicate that the synthesized PEGylated UCNPs@DTPA-Gd3+ present great potential for biomedical upconversion of fluorescent and magnetic resonance dual-modality imaging applications.

  15. Lanthanide Oleates: Chelation, Self-assembly, and Exemplification of Ordered Nanostructured Colloidal Contrast Agents for Medical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guozhen; Conn, Charlotte E.; Drummond, Calum J.

    2010-01-12

    Eight lanthanide(III) oleates have been prepared and characterized. The chelation and self-assembly structures of these rare-earth oleates have been studied by elemental analysis, Fourier transfer infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD) analysis. Elemental analysis and FTIR results indicate that three oleate anions are complexed with one lanthanide cation and, with the exception of anhydrous cerium(III) oleate, form either a mono- or a hemihydrate. The X-ray analysis showed that the neat lanthanide soaps have a lamellar bilayer structure at room temperature. The thermal behavior has been investigated by cross-polarized optical microscopy (POM), differential scanning calorimetry (DSC), and thermogravimetric analysismore » (TGA). POM scans showed that all the lanthanide oleates form a lamellar phase in the presence of excess water. Small-angle X-ray scattering (SAXS) and XRD were used to investigate the internal structure of the bulk lanthanide oleates in excess water, and these X-ray results confirmed that the lanthanide oleates do not swell in water. Select lanthanide oleates were dispersed in water to form nonswelling lamellar submicrometer particles, confirmed by dynamic light scattering (DLS) and synchrotron SAXS measurements. NMR results indicated that colloidal dispersions of lanthanide oleates containing paramagnetic ions, such as gadolinium(III), terbium(III), and dysprosium(III), have a significant effect on the longitudinal (T{sub 1}) and transverse (T{sub 2}) relaxation times of protons in water. Time-resolved fluorescence measurements have demonstrated that colloidal dispersions of europium(III) oleate exhibit strong luminescence. The rare earth metal soaps exemplify the potential of self-assembled chelating amphiphiles as contrast agents in medical imaging modalities such as magnetic resonance imaging (MRI) and fluorescence imaging.« less

  16. Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for (19)F magnetic resonance: a proof-of-concept study.

    PubMed

    Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M

    2010-01-04

    The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.

  17. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes† †Electronic supplementary information (ESI) available: LIFDI-MS spectra and additional NMR spectra. See DOI: 10.1039/c4sc03103b

    PubMed Central

    Beele, Björn B.; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J.

    2015-01-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15N labeling and characterized by NMR and LIFDI-MS methods. 15N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal–ligand bonding in Am(C5-BPP)3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP)3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species. PMID:29560242

  18. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate.

    PubMed

    Coman, Daniel; Kiefer, Garry E; Rothman, Douglas L; Sherry, A Dean; Hyder, Fahmeed

    2011-12-01

    Responsive contrast agents (RCAs) composed of lanthanide(III) ion (Ln3R) complexes with a variety of1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4S) derivatives have shown great potential as molecular imaging agents for MR. A variety of LnDOTA–tetraamide complexes have been demonstrated as RCAs for molecular imaging using chemical exchange saturation transfer (CEST). The CEST method detects proton exchange between bulk water and any exchangeable sites on the ligand itself or an inner sphere of bound water that is shifted by a paramagnetic Ln3R ion bound in the core of the macrocycle. It has also been shown that molecular imaging is possible when the RCA itself is observed (i.e. not its effect on bulk water) using a method called biosensor imaging of redundant deviation in shifts (BIRDS). The BIRDS method utilizes redundant information stored in the nonexchangeable proton resonances emanating from the paramagnetic RCA for ambient factors such as temperature and/or pH.Thus, CEST and BIRDS rely on exchangeable and nonexchangeable protons, respectively, for biosensing. We posited that it would be feasible to combine these two biosensing features into the same RCA (i.e. dual CEST and BIRDS properties). A complex between europium(III) ion (Eu3R) and DOTA–tetraglycinate [DOTA–(gly)S4] was used to demonstrate that its CEST characteristics are preserved, while its BIRDS properties are also detectable. The in vitro temperature sensitivity of EuDOTA–(gly)S4 was used to show that qualitative MR contrast with CEST can be calibrated using quantitative MR mapping with BIRDS, thereby enabling quantitative molecular imaging at high spatial resolution.

  19. Paramagnetic Nanocrystals: Remarkable Lanthanide-Doped Nanoparticles with Varied Shape, Size, and Composition.

    PubMed

    Holmberg, Rebecca J; Aharen, Tomoko; Murugesu, Muralee

    2012-12-20

    Magnetic nanoparticles have been developed in recent years with applications in unique and crucial areas such as biomedicine, data storage, environmental remediation, catalysis, and so forth. NaYF4 nanoparticles were synthesized and isolated with lanthanide dopant percentages, confirmed by ICP-OES measurements, of Er, Yb, Tb, Gd, and Dy that were in agreement with the targeted ratios. SEM images showed a distinct variation in particle size and shape with dopant type and percentage. HRTEM and XRD studies confirmed the particles to be crystalline, possessing both α and β phases. Magnetic measurements determined that all of the nanoparticles were paramagnetic and did not exhibit a blocking temperature from 2 to 300 K. The multifunctional properties of these nanoparticles make them suitable for many applications, such as multimodal imaging probes, up-conversion fluorescent markers, as well as MRI contrast agents.

  20. Lanthanide co-doped paramagnetic spindle-like mesocrystals for imaging and autophagy induction

    NASA Astrophysics Data System (ADS)

    Xu, Yun-Jun; Lin, Jun; Lu, Yang; Zhong, Sheng-Liang; Wang, Lei; Dong, Liang; Wu, Ya-Dong; Peng, Jun; Zhang, Li; Pan, Xiao-Feng; Zhou, Wei; Zhao, Yang; Wen, Long-Ping; Yu, Shu-Hong

    2016-07-01

    We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy.We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy. Electronic supplementary information (ESI) available: Size distribution, HRTEM image and additional cellular data. See DOI: 10.1039/c6nr03171d

  1. Radical-lanthanide ferromagnetic interaction in a T bIII bis-phthalocyaninato complex

    NASA Astrophysics Data System (ADS)

    Komijani, Dorsa; Ghirri, Alberto; Bonizzoni, Claudio; Klyatskaya, Svetlana; Moreno-Pineda, Eufemio; Ruben, Mario; Soncini, Alessandro; Affronte, Marco; Hill, Stephen

    2018-02-01

    Recent studies have highlighted the importance of organic ligands in the field of molecular spintronics, via which delocalized electron-spin density can mediate magnetic coupling to otherwise localized 4 f moments of lanthanide ions, which show tremendous potential for single-molecule device applications. To this end, high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is employed to study a neutral terbium bis-phthalocyaninato metalorganic complex, [TbPc2 ] 0, with the aim of understanding the magnetic interaction between the Ising-like moment of the lanthanide ion and the unpaired spin density on the coordinating organic radical ligand. The measurements were performed on a previously unknown [TbPc2 ] 0 structural phase crystallizing in the Pnma space group. EPR measurements on powder samples of [TbPc2 ] 0 reveal an anisotropic spectrum, which is attributed to the spin-1/2 radical coupled weakly to the EPR-silent T bIII ion. Extensive double-axis rotation studies on a single crystal reveal two independent spin-1/2 signals with differently oriented (albeit identical) uniaxial g -tensors, in complete agreement with x-ray structural studies that indicate two molecular orientations within the unit cell. The easy-axis nature of the radical EPR spectra thus reflects the coupling to the Ising-like T bIII moment. This is corroborated by studies of the isostructural [YPc2 ] 0 analog (where Y is nonmagnetic yttrium), which gives a completely isotropic radical EPR signal. The experimental results for the terbium complex are well explained on the basis of an effective model that introduces a weak ferromagnetic Heisenberg coupling between an isotropic spin-1/2 and an anisotropic spin-orbital moment, J =6 , that mimics the known, strong easy-axis Tb ⋯P c2 crystal-field interaction.

  2. Insight into substrate binding in Shibasaki's Li3(THF)n(BINOLate)3Ln complexes and implications in catalysis.

    PubMed

    Wooten, Alfred J; Carroll, Patrick J; Walsh, Patrick J

    2008-06-11

    Heterobimetallic Lewis acids M 3(THF) n (BINOLate) 3Ln [M = Li, Na, K; Ln = lanthanide(III)] are exceptionally useful asymmetric catalysts that exhibit high levels of enantioselectivity across a wide range of reactions. Despite their prominence, important questions remain regarding the nature of the catalyst-substrate interactions and, therefore, the mechanism of catalyst operation. Reported herein are the isolation and structural characterization of 7- and 8-coordinate heterobimetallic complexes Li 3(THF) 4(BINOLate) 3Ln(THF) [Ln = La, Pr, and Eu], Li 3(py) 5(BINOLate) 3Ln(py) [Ln = Eu and Yb], and Li 3(py) 5(BINOLate) 3La(py) 2 [py = pyridine]. Solution binding studies of cyclohexenone, DMF, and pyridine with Li 3(THF) n (BINOLate) 3Ln [Ln = Eu, Pr, and Yb] and Li 3(DMEDA) 3(BINOLate) 3Ln [Ln = La and Eu; DMEDA = N, N'-dimethylethylene diamine] demonstrate binding of these Lewis basic substrate analogues to the lanthanide center. The paramagnetic europium, ytterbium, and praseodymium complexes Li 3(THF) n (BINOLate) 3Ln induce relatively large lanthanide-induced shifts on substrate analogues that ranged from 0.5 to 4.3 ppm in the (1)H NMR spectrum. X-ray structure analysis and NMR studies of Li 3(DMEDA) 3(BINOLate) 3Ln [Ln = Lu, Eu, La, and the transition metal analogue Y] reveal selective binding of DMEDA to the lithium centers. Upon coordination of DMEDA, six new stereogenic nitrogen centers are formed with perfect diastereoselectivity in the solid state, and only a single diastereomer is observed in solution. The lithium-bound DMEDA ligands are not displaced by cyclohexenone, DMF, or THF on the NMR time scale. Use of the DMEDA adduct Li 3(DMEDA) 3(BINOLate) 3La in three catalytic asymmetric reactions led to enantioselectivities similar to those obtained with Shibasaki's Li 3(THF) n (BINOLate) 3La complex. Also reported is a unique dimeric [Li 6(en) 7(BINOLate) 6Eu 2][mu-eta (1),eta (1)-en] structure [en = ethylenediamine]. On the basis of these studies, it is hypothesized that the lanthanide in Shibasaki's Li 3(THF) n (BINOLate) 3Ln complexes cannot bind bidentate substrates in a chelating fashion. A hypothesis is also presented to explain why the lanthanide catalyst, Li 3(THF) n (BINOLate) 3La, is often the most enantioselective of the Li 3(THF) n (BINOLate) 3Ln derivatives.

  3. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) for dual biosensing of pH with CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts)

    PubMed Central

    Huang, Yuegao; Coman, Daniel; Ali, Meser M.; Hyder, Fahmeed

    2014-01-01

    Relaxivity based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd3+) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the non-exchangeable or the exchangeable protons on the lanthanide complexes themselves. The non-exchangeable protons (e.g., –CHx, where 3≥x≥1) are detected using a three-dimensional chemical shift imaging method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), whereas the exchangeable protons (e.g., –OH or –NHy, where 2≥y≥1) are measured with Chemical Exchange Saturation Transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) chelated with thulium (Tm3+) and ytterbium (Yb3+). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs. using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e., 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP5− than with TmDOTA-4AmP5−. In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging. PMID:24801742

  4. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

    PubMed

    Huang, Yuegao; Coman, Daniel; Ali, Meser M; Hyder, Fahmeed

    2015-01-01

    Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Advantages of paramagnetic CEST complexes having slow-to-intermediate water exchange properties as responsive MRI agents

    PubMed Central

    Soesbe, Todd C.; Wu, Yunkou; Sherry, A. Dean

    2012-01-01

    Paramagnetic saturation transfer chemical exchange (PARACEST) complexes are exogenous contrast agents that have great potential to further extend the functional and molecular imaging capabilities of magnetic resonance. Due to the presence of a central paramagnetic lanthanide ion (Ln3+ ≠ La3+, Gd3+, Lu3+) within the chelate, the resonance frequencies of protons and water molecules bound to the PARACEST agent are shifted far away from the bulk water frequency. This large chemical shift combined with an extreme sensitivity to the chemical exchange rate make PARACEST agents ideally suited for reporting significant biological metrics such as temperature, pH, and the presence of metabolites. Also, the ability to turn PARACEST agents “off” and “on” using a frequency selective saturation pulse gives them a distinct advantage over Gd3+-based contrast agents. A current challenge for PARACEST research is translating the promising in vitro results into in vivo systems. This short review article first describes the basic theory behind PARACEST contrast agents, their benefits over other contrast agents, and their applications to magnetic resonance imaging. It then describes some of the recent PARACEST research results. Specifically, pH measurements using water molecule exchange rate modulation, T2-exchange contrast due to water molecule exchange, the use of ultra-short echo times (TE<10 μs) to overcome T2-exchange line-broadening, and the potential application of T2-exchange as a new contrast mechanism for magnetic resonance imaging. PMID:23055299

  6. Semiempirical Quantum Chemistry Model for the Lanthanides: RM1 (Recife Model 1) Parameters for Dysprosium, Holmium and Erbium

    PubMed Central

    Filho, Manoel A. M.; Dutra, José Diogo L.; Rocha, Gerd B.; Simas, Alfredo M.; Freire, Ricardo O.

    2014-01-01

    Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-oxygen and lanthanide-nitrogen distances, is extended to other types of bonds in the trication complexes’ coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models. PMID:24497945

  7. Smart Contrast Agents for Magnetic Resonance Imaging.

    PubMed

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  8. Advantages of paramagnetic chemical exchange saturation transfer (CEST) complexes having slow to intermediate water exchange properties as responsive MRI agents.

    PubMed

    Soesbe, Todd C; Wu, Yunkou; Dean Sherry, A

    2013-07-01

    Paramagnetic chemical exchange saturation transfer (PARACEST) complexes are exogenous contrast agents that have great potential to further extend the functional and molecular imaging capabilities of magnetic resonance. As a result of the presence of a central paramagnetic lanthanide ion (Ln(3+) ≠ La(3+) , Gd(3+) , Lu(3+) ) within the chelate, the resonance frequencies of exchangeable protons bound to the PARACEST agent are shifted far away from the bulk water frequency. This large chemical shift, combined with an extreme sensitivity to the chemical exchange rate, make PARACEST agents ideally suited for the reporting of significant biological metrics, such as temperature, pH and the presence of metabolites. In addition, the ability to turn PARACEST agents 'off' and 'on' using a frequency-selective saturation pulse gives them a distinct advantage over Gd(3+) -based contrast agents. A current challenge for PARACEST research is the translation of the promising in vitro results into in vivo systems. This short review article first describes the basic theory behind PARACEST contrast agents, their benefits over other contrast agents and their applications to MRI. It then describes some of the recent PARACEST research results: specifically, pH measurements using water molecule exchange rate modulation, T2 exchange contrast caused by water molecule exchange, the use of ultrashort TEs (TE < 10 µs) to overcome T2 exchange line broadening and the potential application of T2 exchange as a new contrast mechanism for MRI. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Biological and Clinical Aspects of Lanthanide Coordination Compounds

    PubMed Central

    Misra, Sudhindra N.; M., Indira Devi; Shukla, Ram S.

    2004-01-01

    The coordinating chemistry of lanthanides, relevant to the biological, biochemical and medical aspects, makes a significant contribution to understanding the basis of application of lanthanides, particularly in biological and medical systems. The importance of the applications of lanthanides, as an excellent diagnostic and prognostic probe in clinical diagnostics, and an anticancer material, is remarkably increasing. Lanthanide complexes based X-ray contrast imaging and lanthanide chelates based contrast enhancing agents for magnetic resonance imaging (MRI) are being excessively used in radiological analysis in our body systems. The most important property of the chelating agents, in lanthanide chelate complex, is its ability to alter the behaviour of lanthanide ion with which it binds in biological systems, and the chelation markedly modifies the biodistribution and excretion profile of the lanthanide ions. The chelating agents, especially aminopoly carboxylic acids, being hydrophilic, increase the proportion of their complex excreted from complexed lanthanide ion form biological systems. Lanthanide polyamino carboxylate-chelate complexes are used as contrast enhancing agents for Magnetic Resonance Imaging. Conjugation of antibodies and other tissue specific molecules to lanthanide chelates has led to a new type of specific MRI contrast agents and their conjugated MRI contrast agents with improved relaxivity, functioning in the body similar to drugs. Many specific features of contrast agent assisted MRI make it particularly effective for musculoskeletal and cerebrospinal imaging. Lanthanide-chelate contrast agents are effectively used in clinical diagnostic investigations involving cerebrospinal diseases and in evaluation of central nervous system. Chelated lanthanide complexes shift reagent aided 23Na NMR spectroscopic analysis is used in cellular, tissue and whole organ systems. PMID:18365075

  10. Lanthanide complexes of azidophenacyl-DO3A as new synthons for click chemistry and the synthesis of heterometallic lanthanide arrays.

    PubMed

    Tropiano, Manuel; Kenwright, Alan M; Faulkner, Stephen

    2015-04-07

    Lanthanide complexes of azidophenacyl DO3A are effective substrates for click reactions with ethyne derivatives, giving rise to aryl triazole appended lanthanide complexes, in which the aryl triazole acts as an effective sensitising chromophore for lanthanide luminescence. They also undergo click chemistry with propargylDO3A derivatives, giving rise to heterometallic complexes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Zero-field splitting in the isoelectronic aqueous Gd(III) and Eu(II) complexes from a first principles analysis

    NASA Astrophysics Data System (ADS)

    Khan, S.; Peters, V.; Kowalewski, J.; Odelius, M.

    2018-03-01

    The zero-field splitting (ZFS) of the ground state octet in aqueous Eu(II) and Gd(III) solutions was investigated through multi- configurational quantum chemical calculations and ab initio molecular dynamics (AIMD) simulations. Investigation of the ZFS of the lanthanide ions is essential to understand the electron spin dynamics and nuclear spin relaxation around paramagnetic ions and consequently the mechanisms underlying applications like magnetic resonance imaging. We found by comparing clusters at identical geometries but different metallic centres that there is not a simple relationship for their ZFS, in spite of the complexes being isoelectronic - each containing 7 unpaired f electrons. Through sampling it was established that inclusion of the first hydration shell has a dominant (over 90 %) influence on the ZFS. Extended sampling of aqueous Gd(III) showed that the 2 nd order spin Hamiltonian formalism is valid and that the rhombic ZFS component is decisive.

  12. Paramagnetic decoration of DNA origami nanostructures by Eu³⁺ coordination.

    PubMed

    Opherden, Lars; Oertel, Jana; Barkleit, Astrid; Fahmy, Karim; Keller, Adrian

    2014-07-15

    The folding of DNA into arbitrary two- and three-dimensional shapes, called DNA origami, represents a powerful tool for the synthesis of functional nanostructures. Here, we present the first approach toward the paramagnetic functionalization of DNA origami nanostructures by utilizing postassembly coordination with Eu(3+) ions. In contrast to the usual formation of toroidal dsDNA condensates in the presence of trivalent cations, planar as well as rod-like DNA origami maintain their shape and monomeric state even under high loading with the trivalent lanthanide. Europium coordination was demonstrated by the change in Eu(3+) luminescence upon binding to the two DNA origami. Their natural circular dichroism in the Mg(2+)- and Eu(3+)-bound state was found to be very similar to that of genomic DNA, evidencing little influence of the DNA origami superstructure on the local chirality of the stacked base pairs. In contrast, the magnetic circular dichroism of the Mg(2+)-bound DNA origami deviates from that of genomic DNA. Furthermore, the lanthanide affects the magnetic properties of DNA in a superstructure-dependent fashion, indicative of the existence of superstructure-specific geometry of Eu(3+) binding sites in the DNA origami that are not formed in genomic DNA. This simple approach lays the foundation for the generation of magneto-responsive DNA origami nanostructures. Such systems do not require covalent modifications and can be used for the magnetic manipulation of DNA nanostructures or for the paramagnetic alignment of molecules in NMR spectroscopy.

  13. EXAFS characterisation of metal bonding in highly luminescent, UV stable, water-soluble and biocompatible lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Kalyakina, A.; Utochnikova, V.; Trigub, A.; Zubavichus, Y.; Kuzmina, N.; Bräse, S.

    2016-05-01

    The combination of X-ray diffraction with EXAFS was employed to assess the coordination environment of lanthanide complexes in solutions. This method is based on the assumption that the local structure of lanthanide complexes in solution combines elements of the crystal structure of the complex in the solid state (single- or polycrystalline) and the elements of the local structure of a lanthanide salt, completely dissociated in the solvent (usually chlorides). The success of this approach is demonstrated with the lanthanide (III) 2,3,4,5,6-pentafluorobenzoate complexes, where the local structure in aqueous and methanol solutions were estimated. Moreover, the dissociation degree of the complexes in aqueous and methanol solutions was evaluated.

  14. The kinetics of lanthanide complexation by EDTA and DTPA in lactate media.

    PubMed

    Nash, K L; Brigham, D; Shehee, T C; Martin, A

    2012-12-28

    The interaction of trivalent lanthanide and actinide cations with polyaminopolycarboxylic acid complexing agents in lactic acid buffer systems is an important feature of the chemistry of the TALSPEAK process for the separation of trivalent actinides from lanthanides. To improve understanding of metal ion coordination chemistry in this process, the results of an investigation of the kinetics of lanthanide complexation by ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) and diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) in 0.3 M lactic acid/0.3 M ionic strength solution are reported. Progress of the reaction was monitored using the distinctive visible spectral changes attendant to lanthanide complexation by the colorimetric indicator ligand Arsenazo III, which enables the experiment but plays no mechanistic role. Under the conditions of these experiments, the reactions occur in a time regime suitable for study by stopped-flow spectrophotometric techniques. Experiments have been conducted as a function of EDTA/DTPA ligand concentration, total lactic acid concentration, and pH. The equilibrium perturbation reaction proceeds as a first order approach to equilibrium over a wide range of conditions, allowing the simultaneous determination of complex formation and dissociation rate constants. The rate of the complexation reaction has been determined for the entire lanthanide series (except Pm(3+)). The predominant pathway for lanthanide-EDTA and lanthanide-DTPA dissociation is inversely dependent on the total lactate concentration; the complex formation reaction demonstrates a direct dependence on [H(+)]. Unexpectedly, the rate of the complex formation reaction is seen in both ligand systems to be fastest for Gd(3+). Correlation of these results indicates that in 0.3 M lactate solutions the exchange of lanthanide ions between lactate complexes and the polyaminopolycarboxylate govern the process.

  15. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    NASA Astrophysics Data System (ADS)

    Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T.; Eliseeva, Svetlana V.; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina

    2018-01-01

    Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analogue substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analogue demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behaviour. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  16. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes.

    PubMed

    Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T; Eliseeva, Svetlana V; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina

    2018-01-01

    Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic Gd III -ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of Tb III -DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analog substituted with a phthalimide chromophore (Tb III -DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analog demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behavior. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  17. Preparation of Lanthanide-Polymer Composite Material via Click Chemistry.

    PubMed

    Chen, Bin; Wen, Guian; Wu, Jiajie; Feng, Jiachun

    2015-10-01

    Covalently attaching lanthanide complexes to the polymer backbone can effectively reduce the clustering of lanthanides and thus become an important strategy to fully unleash their potential. In this Communication, a metal-free click reaction is used for the first time to link a lanthanide complex to the polymer matrix. A diene-bearing copolymer with anthracenylmethyl methacrylate as a monomer and a dienophile-bearing lanthanide complex with 5-maleimido-1,10-phenanthroline as the second ligand are synthesized and coupled together through a Diels-Alder cycloaddition (DA). A comparative investigation demonstrates that the composite material prepared by DA click reaction shows the highest quantum yields in the same lanthanide concentration as compared to materials prepared by widely used "directly doping" and "in situ coordinating lanthanide ions with macromolecular ligand" approaches. This work suggests that the "metal-free" DA click reaction can be a promising tool in the synthesis of high efficient lanthanide functionalized polymeric materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The roles of 4f- and 5f-orbitals in bonding: A magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study

    DOE PAGES

    Lukens, Wayne W.; Speldrich, Manfred; Yang, Ping; ...

    2016-05-31

    The electronic structures of 4f 3/5f 3 Cp" 3M and Cp" 3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(III) and uranium(III) tris-cyclopentadienylmore » complexes and their isocyanide adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. As a result, while interaction with the isocyanide π*-orbitals lowers the energies of the 5f xz2 and 5f yz2-orbitals, spin–orbit coupling greatly reduces the population of 5f xz2 and 5f yz2 in the ground state.« less

  19. Engineering Encodable Lanthanide-Binding Tags (LBTs) into Loop Regions of Proteins

    PubMed Central

    Barthelmes, Katja; Reynolds, Anne M.; Peisach, Ezra; Jonker, Hendrik R. A.; DeNunzio, Nicholas J.; Allen, Karen N.; Imperiali, Barbara; Schwalbe, Harald

    2011-01-01

    Lanthanide-binding-tags (LBTs) are valuable tools for investigation of protein structure, function, and dynamics by NMR spectroscopy, X-ray crystallography and luminescence studies. We have inserted LBTs into three different loop positions (denoted L, R, and S) of the model protein interleukin-1β and varied the length of the spacer between the LBT and the protein (denoted 1-3). Luminescence studies demonstrate that all nine constructs bind Tb3+ tightly in the low nanomolar range. No significant change in the fusion protein occurs from insertion of the LBT, as shown by two X-ray crystallographic structures of the IL1β-S1 and IL1β-L3 constructs and for the remaining constructs by comparing 1H-15N-HSQC NMR spectra with wild-type IL1β. Additionally, binding of LBT-loop IL1β proteins to their native binding partner in vitro remains unaltered. X-ray crystallographic phasing was successful using only the signal from the bound lanthanide. Large residual dipolar couplings (RDCs) could be determined by NMR spectroscopy for all LBT-loop-constructs and revealed that the LBT-2 series were rigidly incorporated into the interleukin-1β structure. The paramagnetic NMR spectra of loop-LBT mutant IL1β-R2 were assigned and the Δχ tensor components were calculated based on RDCs and pseudocontact shifts (PCSs). A structural model of the IL1β-R2 construct was calculated using the paramagnetic restraints. The current data provide support that encodable LBTs serve as versatile biophysical tags when inserted into loop regions of proteins of known structure or predicted via homology modelling. PMID:21182275

  20. Unexpected magnetism, and transport properties in mixed lanthanide compound

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun; Gschneidner, Karl, Jr.; Pecharsky, Vitalij; Ames Laboratory Team

    For intelligent materials design it is desirable to have compounds which have multiple functionalities such as a large magnetoresistance, ferromagnetic and ferrimagnetic states, and field-induced first-order metamagnetic transitions. Here, we discuss one such example where we have combined two lanthanide elements Pr and Er in Pr0.6Er0.4Al2. This compound exhibits multiple functionalities in magnetic fields between 1 and 40 kOe. It undergoes only a trivial ferrimagnetism to paramagnetism transition in a zero magnetic field, but Pr0.6Er0.4Al2 exhibits a large positive magnetoresistance (MR) for H >=40 kOe, a small but non negligible negative MR for H <=30 kOe, and a clear Griffiths-like phase behavior at <1 kOe. The compound also exhibits an asymmetry of hysteresis loop, or exchange bias (EB) effect after field cooling from the paramagnetic state. These phenomena are attributed to the competition between single-ion anisotropies of Pr and Er ions coupled with the opposite nearest-neighbor and next-nearest-neighbor exchange interactions. This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Material Sciences and Engineering. The research was performed at the Ames Laboratory. The Ames Laboratory is operated by Iowa State University for the US D.

  1. Ligand-directed nanobialys as theranostic agent for drug delivery and manganese-based magnetic resonance imaging of vascular targets.

    PubMed

    Pan, Dipanjan; Caruthers, Shelton D; Hu, Grace; Senpan, Angana; Scott, Mike J; Gaffney, Patrick J; Wickline, Samuel A; Lanza, Gregory M

    2008-07-23

    Although gadolinium has been the dominant paramagnetic metal for MR paramagnetic contrast agents, the recent association of this lanthanide with nephrogenic systemic fibrosis, an untreatable disease, has spawned renewed interest in alternative metals for MR molecular imaging. We have developed a self-assembled, manganese(III)-labeled nanobialys (1), a toroidal-shaped MR theranostic nanoparticle. In this report, Mn(III) nanobialys are characterized as MR molecular imaging agents for targeted detection of fibrin, a major biochemical feature of thrombus. A complementary ability of nanobialys to incorporate chemotherapeutic compounds with greater than 98% efficiency and to retain more than 80% of these drugs after infinite sink dissolution, point to the theranostic potential of this platform technology.

  2. Method bacterial endospore quantification using lanthanide dipicolinate luminescence

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J. (Inventor); Kirby, James Patrick (Inventor); Ponce, Adrian (Inventor)

    2007-01-01

    A lanthanide is combined with a medium to be tested for endospores. The dipicolinic acid released from the endospores binds the lanthanides, which have distinctive emission (i.e., luminescence) spectra, and are detected using photoluminescence. The concentration of spores is determined by preparing a calibration curve generated from photoluminescence spectra of lanthanide complex mixed with spores of a known concentration. A lanthanide complex is used as the analysis reagent, and is comprised of lanthanide ions bound to multidentate ligands that increase the dipicolinic acid binding constant through a cooperative binding effect with respect to lanthanide chloride. The resulting combined effect of increasing the binding constant and eliminating coordinated water and multiple equilibria increase the sensitivity of the endospore assay by an estimated three to four orders of magnitude over prior art of endospore detection based on lanthanide luminescence.

  3. A Bridge to Coordination Isomer Selection in Lanthanide(III) DOTA-tetraamide Complexes

    PubMed Central

    Vipond, Jeff; Woods, Mark; Zhao, Piyu; Tircso, Gyula; Ren, Jimin; Bott, Simon G.; Ogrin, Doug; Kiefer, Garry E.; Kovacs, Zoltan; Sherry, A.Dean

    2008-01-01

    Interest in macrocyclic lanthanide complexes such as DOTA is driven largely through interest in their use as contrast agents for MRI. The lanthanide tetraamide derivatives of DOTA have shown considerable promise as PARACEST agents, taking advantage of the slow water exchange kinetics of this class of complex. We postulated that water exchange in these tetraamide complexes could be slowed even further by introducing a group to sterically encumber the space above the water coordination site, thereby hindering the departure and approach of water molecules to the complex. The ligand 8O2-bridged-DOTAM was synthesized in a 34% yield from cyclen. It was found that the lanthanide complexes of this ligand did not possess a water molecule in the inner coordination sphere of the bound lanthanide. The crystal structure of the ytterbium complex revealed that distortions to the coordination sphere were induced by the steric constraints imposed on the complex by the bridging unit. The extent of the distortion was found to increase with increasing ionic radius of the lanthanide ion, eventually resulting in a complete loss of symmetry in the complex. Because this ligand system is bicyclic, the conformation of each ring in the system is constrained by that of the other, in consequence inclusion of the bridging unit in the complexes means only a twisted square antiprismatic coordination geometry is observed for complexes of 8O2-bridged-DOTAM. PMID:17295475

  4. Low temperature synthesis of LnOF rare-earth oxyfluorides through reaction of the oxides with PTFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, S.E., E-mail: sdutton@princeton.edu; Hirai, D.; Cava, R.J.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Low temperature synthesis of LnOF rare-earth oxyfluorides from Ln{sub 2}O{sub 3} and PTFE (CF{sub 2}). Black-Right-Pointing-Pointer Rhombohedral LnOF is the major phase and forms as nanocrystals, 29-103 nm. Black-Right-Pointing-Pointer Expected lanthanide contraction observed in lattice parameters and bond lengths. Black-Right-Pointing-Pointer TbOF orders antiferromagnetically at 10 K and has a metamagnetic transition at 1.8 T. Black-Right-Pointing-Pointer GdOF orders antiferromagnetically at 5 K, other LnOF are paramagnetic. -- Abstract: A low temperature solid-state synthesis route, employing polytetrafluoroethylene (PTFE) and the rare-earth oxides, for the formation of the LnOF rare-earth oxyfluorides (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb,more » Dy, Ho, Er), is reported. With the exception of LaOF, which forms in a tetragonal variant, rhomobohedral LnOF is found to be the major product of the reaction. In the case of PrOF, a transition from the rhombohedral to the cubic fluorite phase is observed on heating in air to 500 Degree-Sign C. X-ray diffraction shows the expected lanthanide contraction in the lattice parameters and bond lengths. Magnetic susceptibility measurements show antiferromagnetic-like ordering in TbOF, T{sub m} = 10 K, with a metamagnetic transition at a field {mu}{sub 0}H{sub t} = 1.8 T at 2 K. An antiferromagnetic transition, T{sub N} = 4 K, is observed in GdOF. Paramagnetic behavior is observed above 2 K in PrOF, NdOF, DyOF, HoOF and ErOF. The magnetic susceptibility of EuOF is characteristic of Van Vleck paramagnetism.« less

  5. Core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses: Preparation and their effects on photoluminescence of lanthanide complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jie; Li, Yuan; Chen, Yingnan

    Highlights: • Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses were prepared via the Stöber process. • Sm and Dy complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. • The complex-doped Ag@SiO{sub 2} composites show stronger luminescent intensities than pure complexes. • The luminescent intensities of the composites strongly depend on the SiO{sub 2} shell thickness. - Abstract: Three kinds of almost spherical core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses (10, 25 and 80 nm) were prepared via the Stöber process. The Ag core nanoparticles were prepared by reducing silver nitrate with sodium citrate. The size, morphology andmore » structure of core–shell Ag@SiO{sub 2} nanoparticles were characterized by transmission electron microscopy. Subsequently, eight kinds of lanthanide complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. The composition of the lanthanide complexes was characterized by elemental analysis, IR and UV spectra. Finally, lanthanide complexes were attached to the surface of Ag@SiO{sub 2} nanoparticles to form lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites. The results show that the complex-doped Ag@SiO{sub 2} nanocomposites display much stronger luminescence intensities than the lanthanide complexes. Furthermore, the luminescence intensities of the lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites with SiO{sub 2} shell thickness of 25 nm are stronger than those of the nanocomposites with SiO{sub 2} shell thickness of 10 and 80 nm.« less

  6. Construction of Polynuclear Lanthanide (Ln = Dy(III), Tb(III), and Nd(III)) Cage Complexes Using Pyridine-Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior.

    PubMed

    Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju

    2015-09-08

    Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.

  7. Aromatic triamide-lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Petoud, Stephane; Xu, Jide

    2013-10-08

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  8. Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xue-Qin, E-mail: songxq@mail.lzjtu.cn; Lei, Yao-Kun; Wang, Xiao-Run

    2014-10-15

    The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversitiesmore » indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.« less

  9. Salicylamide-lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth; Xu, Jide

    2002-01-01

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one salicylamidyl moiety. Also provided are probes incorporating the salicylamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  10. Salicylamide-lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N [Berkeley, CA; Petoud, Stephane [Berkeley, CA; Cohen, Seth [Boston, MA; Xu, Jide [Berkeley, CA

    2008-07-29

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one salicylamidyl moiety. Also provided are probes incorporating the salicylamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  11. Lanthanide complexes of macrocyclic polyoxovanadates by VO4 units: synthesis, characterization, and structure elucidation by X-ray crystallography and EXAFS spectroscopy.

    PubMed

    Nishio, Masaki; Inami, Shinnosuke; Katayama, Misaki; Ozutsumi, Kazuhiko; Hayashi, Yoshihito

    2012-01-16

    Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.

  12. Redox-activated MRI contrast agents based on lanthanide and transition metal ions.

    PubMed

    Tsitovich, Pavel B; Burns, Patrick J; McKay, Adam M; Morrow, Janet R

    2014-04-01

    The reduction/oxidation (redox) potential of tissue is tightly regulated in order to maintain normal physiological processes, but is disrupted in disease states. Thus, the development of new tools to map tissue redox potential may be clinically important for the diagnosis of diseases that lead to redox imbalances. One promising area of chemical research is the development of redox-activated probes for mapping tissue through magnetic resonance imaging (MRI). In this review, we summarize several strategies for the design of redox-responsive MRI contrast agents. Our emphasis is on both lanthanide(III) and transition metal(II/III) ion complexes that provide contrast either as T1 relaxivity MRI contrast agents or as paramagnetic chemical exchange saturation transfer (PARACEST) contrast agents. These agents are redox-triggered by a variety of chemical reactions or switches including redox-activated thiol groups, and heterocyclic groups that interact with the metal ion or influence properties of other ancillary ligands. Metal ion centered redox is an approach which is ripe for development by coordination chemists. Redox-triggered metal ion approaches have great potential for creating large differences in magnetic properties that lead to changes in contrast. An attractive feature of these agents is the ease of fine-tuning the metal ion redox potential over a biologically relevant range. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A series of binuclear lanthanide(III) complexes: Crystallography, antimicrobial activity and thermochemistry properties studies

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Ren, Ning; Xu, Su-Ling; Zhang, Jian-Jun; Zhang, Da-Hai

    2015-02-01

    A series of novel lanthanide complexes with the general formula [Ln(3,4-DClBA)3phen]2 (Ln = Ho(1), Nd(2), Sm(3), Dy(4), Eu(5), Tb(6), Yb(7) and Er(8), 3,4-DClBA = 3,4-dichlorobenzoate, phen = 1,10-phenanthroline) were prepared at room temperature and characterized. The crystal structures of complexes 1-8 have been determined by single crystal X-ray diffraction. These complexes are isomorphous and lanthanide ions are all eight-coordinated to oxygen atoms and nitrogen atoms with distorted square-antiprism geometry. The thermal decomposition mechanism and TG-FTIR spectra of gaseous products of thermal decomposition processes for complexes 1-8 were acquired through TG/DSC-FTIR system. The heat capacities of complexes 1-8 were measured using DSC technology and fitted to a polynomial equation by the least-squares method. Complexes 3-6 display characteristic lanthanide emission bands in the visible region. Meanwhile, these complexes exhibit in good antimicrobial activity against Candida albicans, Escherichia coli, and Staphylococcus aureu.

  14. Lanthanide anilido complexes: synthesis, characterization, and use as highly efficient catalysts for hydrophosphonylation of aldehydes and unactivated ketones.

    PubMed

    Liu, Chengwei; Qian, Qinqin; Nie, Kun; Wang, Yaorong; Shen, Qi; Yuan, Dan; Yao, Yingming

    2014-06-14

    Lanthanide anilido complexes stabilized by the 2,6-diisopropylanilido ligand have been synthesized and characterized, and their catalytic activity for hydrophosphonylation reaction was explored. A reaction of anhydrous LnCl3 with 5 equivalents of LiNHPh-(I)Pr2-2,6 in THF generated the heterobimetallic lanthanide-lithium anilido complexes (2,6-(I)Pr2PhNH)5LnLi2(THF)2 [Ln = Sm(1), Nd(2), Y(3)] in good isolated yields. These complexes are well characterized by elemental analysis, IR, NMR (for complex ) and single-crystal structure determination. Complexes 1 - 3 are isostructural. In these complexes, the lanthanide metal ion is five-coordinated by five nitrogen atoms from five 2,6-diisopropylanilido ligands to form a distorted trigonal bipyramidal geometry. The lithium ion is coordinated by two nitrogen atoms from two 2,6-diisopropylanilido ligands, and one oxygen atom from a THF molecule. It was found that these simple lanthanide anilido complexes are highly efficient for catalyzing hydrophosphonylation reactions of various aldehydes and unactivated ketones to generate α-hydroxyphosphonates in good to excellent yields (up to 99%) within a short time (5 min for aldehydes, 20 min for ketones). Furthermore, the mechanism of hydrophosphonylation reactions has also been elucidated via(1)H NMR monitoring of reaction.

  15. Ligand-Sensitized Lanthanide Nanocrystals: Merging Solid-State Photophysics and Molecular Solution Chemistry

    DOE PAGES

    Agbo, Peter; Abergel, Rebecca J.

    2016-06-30

    To date, the breadth of scientific research that has been devoted to investigating the photochemical and photophysical behavior of the lanthanide elements has generally fallen into one of two camps: solution studies of luminescent lanthanide metal-ligand complexes or investigations of solid-state nanoparticles, composed primarily of, or doped with, lanthan ide lumiphores. In the latter case, most research of lanthanide nanocolloids has precluded any investigations regarding the use of organic ligands to overcome the difficulties associated with f-f excitation of lanthanides. Instead, most work on condensed-phase lanthanide luminescence has centered on strategies such as d-f charge separation in divalent lanthanides andmore » the sensitization of lanthanide excited states using quantum dots. Current work now aims at bridging the camps of condensed-phase lanthanide photophysics and the solution chemistry of ligand-lanthanide molecular complexes. Some recent efforts have partly focused on the fundamental characterization of NaGd 1-x Ln x F 4 nanoparticles featuring surface display of the sensitizer ligand 3,4,3-LI(1,2-HOPO), showing these structures to be capable of converting absorbed UV light into luminescence from Eu 3+ and Tb 3+ ions. Our results suggest such a use of the ligand sensitization as a tool of choice to overcome the constraints of UV solar spectrum/semiconductor band-gap mismatch and low absorption cross sections in solid-state lanthanide systems.« less

  16. Nonaqueous method for dissolving lanthanide and actinide metals

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol.

  17. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.

    PubMed

    Miyake, Hiroyuki; Terada, Keiko; Tsukube, Hiroshi

    2014-06-01

    A series of lanthanide tris(β-diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β-diketonates). The VCD signals observed around 1500 cm(-1) (β-diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high-coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates. © 2014 Wiley Periodicals, Inc.

  18. Calibration beads containing luminescent lanthanide ion complexes

    EPA Science Inventory

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  19. Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight

    NASA Astrophysics Data System (ADS)

    Burek, Katja; Eidner, Sascha; Kuke, Stefanie; Kumke, Michael U.

    2018-02-01

    The luminescence of Lanthanide(III) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(III) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K ≤ T ≤ 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M ≤ I ≤ 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.

  20. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Corneillie, Todd M; Xu, Jide

    2014-05-20

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  1. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    NASA Astrophysics Data System (ADS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  2. “Straining” to Separate the Rare Earths: How the Lanthanide Contraction Impacts Chelation by Diglycolamide Ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Ross J.; Brigham, Derek M.; Delmau, Laetitia

    The subtle energetic differences underpinning adjacent lanthanide discrimination are explored with diglycolamide ligands. Our approach converges liquid–liquid extraction experiments with solution-phase X-ray absorption spectroscopy (XAS) and density functional theory (DFT) simulations, spanning the lanthanide series. The homoleptic [(DGA)3Ln]3+ complex was confirmed in the organic extractive solution by XAS, and this was modeled using DFT. An interplay between steric strain and coordination energies apparently gives rise to a nonlinear trend in discriminatory lanthanide ion complexation across the series. Our results highlight the importance of optimizing chelate molecular geometry to account for both coordination interactions and strain energies when designing new ligandsmore » for efficient adjacent lanthanide separation for rare-earth refining.« less

  3. “Straining” to Separate the Rare Earths: How the Lanthanide Contraction Impacts Chelation by Diglycolamide Ligands

    DOE PAGES

    Ellis, Ross J.; Brigham, Derek M.; Delmau, Laetitia; ...

    2016-11-23

    The subtle energetic differences underpinning adjacent lanthanide discrimination are explored with diglycolamide ligands. Our approach converges liquid–liquid extraction experiments with solution-phase X-ray absorption spectroscopy (XAS) and density functional theory (DFT) simulations, spanning the lanthanide series. The homoleptic [(DGA)3Ln]3+ complex was confirmed in the organic extractive solution by XAS, and this was modeled using DFT. An interplay between steric strain and coordination energies apparently gives rise to a nonlinear trend in discriminatory lanthanide ion complexation across the series. Our results highlight the importance of optimizing chelate molecular geometry to account for both coordination interactions and strain energies when designing new ligandsmore » for efficient adjacent lanthanide separation for rare-earth refining.« less

  4. Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I).

    PubMed

    Hanna, Jill R; Allan, Christopher; Lawrence, Charlotte; Meyer, Odile; Wilson, Neil D; Hulme, Alison N

    2017-05-14

    The CuAAC 'click' reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III)-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I). This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible 'turn-on' catalytic sensors for the detection of ligand-bound copper(I).

  5. A computational approach to predicting ligand selectivity for the size-based separation of trivalent lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.

  6. A computational approach to predicting ligand selectivity for the size-based separation of trivalent lanthanides

    DOE PAGES

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    2016-06-20

    An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.

  7. Method and Apparatus for Detecting and Quantifying Bacterial Spores on a Surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2017-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: a matrix including lanthanide ions is provided on the surface containing the bacterial spores; functionalized aromatic molecules are released from the bacterial spores on the surface; a complex of the lanthanide ion and the aromatic molecule is formed on the surface; the complex of the lanthanide ion and the aromatic molecule is excited to generate a characteristic luminescence of the complex on the surface; and the bacterial spores exhibiting the luminescence of the complex on the surface are detected and quantified.

  8. Method and apparatus for detecting and quantifying bacterial spores on a surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: a matrix including lanthanide ions is provided on the surface containing the bacterial spores; functionalized aromatic molecules are released from the bacterial spores on the surface; a complex of the lanthanide ion and the aromatic molecule is formed on the surface; the complex of the lanthanide ion and the aromatic molecule is excited to generate a characteristic luminescence of the complex on the surface; and the bacterial spores exhibiting the luminescence of the complex on the surface are detected and quantified.

  9. Ultrasmall biomolecule-anchored hybrid GdVO4 nanophosphors as a metabolizable multimodal bioimaging contrast agent.

    PubMed

    Dong, Kai; Ju, Enguo; Liu, Jianhua; Han, Xueli; Ren, Jinsong; Qu, Xiaogang

    2014-10-21

    Multimodal molecular imaging has recently attracted much attention on disease diagnostics by taking advantage of individual imaging modalities. Herein, we have demonstrated a new paradigm for multimodal bioimaging based on amino acids-anchored ultrasmall lanthanide-doped GdVO4 nanoprobes. On the merit of special metal-cation complexation and abundant functional groups, these amino acids-anchored nanoprobes showed high colloidal stability and excellent dispersibility. Additionally, due to typical paramagnetic behaviour, high X-ray mass absorption coefficient and strong fluorescence, these nanoprobes would provide a unique opportunity to develop multifunctional probes for MRI, CT and luminescence imaging. More importantly, the small size and biomolecular coatings endow the nanoprobes with effective metabolisability and high biocompatibility. With the superior stability, high biocompatibility, effective metabolisability and excellent contrast performance, amino acids-capped GdVO4:Eu(3+) nanocastings are a promising candidate as multimodal contrast agents and would bring more opportunities for biological and medical applications with further modifications.

  10. The interactions between the sterically demanding trimesitylphosphine oxide and trimesityphosphine with scandium and selected lanthanide ions

    NASA Astrophysics Data System (ADS)

    Platt, Andrew W. G.; Singh, Kuldip

    2016-05-01

    The reactions between lanthanide nitrates, Ln(NO3)3 and scandium and lanthanide trifluoromethane sulfonates, Ln(Tf)3 with trimesitylphosphine oxide, Mes3PO show that coordination to the metal ions does not lead to crystalline complexes. Investigation of the reactions by 31-P NMR spectroscopy shows that weak complexes are formed in solution. The crystal structures of Mes3PO·0.5CH3CN (1) and [Mes3PO]3H3O·2CH3CN·Tf (2), formed in the reaction between ScTf3 and Mes3PO, are reported. Trimesitylphosphine, Mes3P, is protonated by scandium and lanthanide trifluoromethane sulfonates and lanthanide nitrates in CD3CN and the structure of [Mes3PH]Cl·HCl·2H2O (3) is reported.

  11. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in- situ formed lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Wang, Yige; Wang, Li; Li, Huanrong; Liu, Peng; Qin, Dashan; Liu, Binyuan; Zhang, Wenjun; Deng, Ruiping; Zhang, Hongjie

    2008-03-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Ross J.; Brigham, Derek M.; Delmau, Laetitia

    The subtle energetic differences underpinning adjacent lanthanide discrimination are explored with diglycolamide ligands. Our approach converges liquid–liquid extraction experiments with solution-phase X-ray absorption spectroscopy (XAS) and density functional theory (DFT) simulations, spanning the lanthanide series. The homoleptic [(DGA)3Ln]3+ complex was confirmed in the organic extractive solution by XAS, and this was modeled using DFT. An interplay between steric strain and coordination energies apparently gives rise to a nonlinear trend in discriminatory lanthanide ion complexation across the series. Our results highlight the importance of optimizing chelate molecular geometry to account for both coordination interactions and strain energies when designing new ligandsmore » for efficient adjacent lanthanide separation for rare-earth refining.« less

  13. Complications in complexation kinetics for lanthanides with DTPA using dye probe molecules in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, K.; Cullen, T. D.; Mezyk, S. P.

    The complexation kinetics for the polyaminopolycarboxylic ligand DTPA to lanthanides in acidic aqueous solution were investigated using the dye ligand displacement technique and stopped-flow spectroscopy. Significant rate differences were obtained for different dye probes used, indicating that the kinetics of the dissociation of the dye molecule significantly impacts the overall measured kinetics when using this common methodology. The conditions of the solution also influenced the dye-lanthanide-DTPA interactions, which reconciled previously disparate data in the literature.

  14. Complications in complexation kinetics for lanthanides with DTPA using dye probe molecules in aqueous solution

    DOE PAGES

    Larsson, K.; Cullen, T. D.; Mezyk, S. P.; ...

    2017-05-17

    The complexation kinetics for the polyaminopolycarboxylic ligand DTPA to lanthanides in acidic aqueous solution were investigated using the dye ligand displacement technique and stopped-flow spectroscopy. Significant rate differences were obtained for different dye probes used, indicating that the kinetics of the dissociation of the dye molecule significantly impacts the overall measured kinetics when using this common methodology. The conditions of the solution also influenced the dye-lanthanide-DTPA interactions, which reconciled previously disparate data in the literature.

  15. Lanthanide complex coordination polyhedron geometry prediction accuracies of ab initio effective core potential calculations.

    PubMed

    Freire, Ricardo O; Rocha, Gerd B; Simas, Alfredo M

    2006-03-01

    lanthanide coordination compounds efficiently and accurately is central for the design of new ligands capable of forming stable and highly luminescent complexes. Accordingly, we present in this paper a report on the capability of various ab initio effective core potential calculations in reproducing the coordination polyhedron geometries of lanthanide complexes. Starting with all combinations of HF, B3LYP and MP2(Full) with STO-3G, 3-21G, 6-31G, 6-31G* and 6-31+G basis sets for [Eu(H2O)9]3+ and closing with more manageable calculations for the larger complexes, we computed the fully predicted ab initio geometries for a total of 80 calculations on 52 complexes of Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III) and Tm(III), the largest containing 164 atoms. Our results indicate that RHF/STO-3G/ECP appears to be the most efficient model chemistry in terms of coordination polyhedron crystallographic geometry predictions from isolated lanthanide complex ion calculations. Moreover, both augmenting the basis set and/or including electron correlation generally enlarged the deviations and aggravated the quality of the predicted coordination polyhedron crystallographic geometry. Our results further indicate that Cosentino et al.'s suggestion of using RHF/3-21G/ECP geometries appears to be indeed a more robust, but not necessarily, more accurate recommendation to be adopted for the general lanthanide complex case. [Figure: see text].

  16. Luminescent lanthanide chelates and methods of use

    DOEpatents

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  17. Luminescent 1-hydroxy-2-pyridinone chelates of lanthanides

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide; Moore, Evan G.; Werner, Eric J.

    2013-10-15

    The present invention provides luminescent complexes between a lanthanide ion and an organic ligand which contains 1,2-hydroxypyridinone units. The complexes of the invention are stable in aqueous solutions and are useful as molecular probes, for example in medical diagnostics and bioanalytical assay systems. The invention also provides methods of using the complexes of the invention.

  18. Luminescent 1-hydroxy-2-pyridinone chelates of lanthanides

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide; Moore, Evan G.; Werner, Eric J.

    2017-01-31

    The present invention provides luminescent complexes between a lanthanide ion and an organic ligand which contains 1,2-hydroxypyridinone units. The complexes of the invention are stable in aqueous solutions and are useful as molecular probes, for example in medical diagnostics and bioanalytical assay systems. The invention also provides methods of using the complexes of the invention.

  19. First examples of ternary lanthanide 5-aminoisophthalate complexes: Hydrothermal syntheses and structures of lanthanide coordination polymers with 5-aminoisophthalate and oxalate

    NASA Astrophysics Data System (ADS)

    Liu, Chong-Bo; Wen, Hui-Liang; Tan, Sheng-Shui; Yi, Xiu-Guang

    2008-05-01

    Two new lanthanide coordination polymers with mixed-carboxylates, [Ln(OX)(HAPA)(H 2O)] n[Ln = Eu ( 1), Ho ( 2); H 2APA = 5-aminoisophthalic acid; OX = oxalate] were obtained by hydrothermal reactions, and characterized by single crystal X-ray diffraction, elemental analysis and IR spectra. Complexes 1 and 2 are both 3-D supramolecular structure, in which lanthanide ions are bridged by oxalate and 5-aminoisophthalate ligands forming 2-D metal-organic framework, and 2-D networks are further architectured to form 3-D supramolecular structures by hydrogen bonds. The two carboxylate groups of H 2APA ligand are all deprotonated and exhibit chelating and bridging bidentate coordination modes, respectively, and the amino group in HAPA presents - NH3+ in the titled complexes. The thermogravimetric analysis was carried out to examine the thermal stability of the titled complexes. And the photoluminescence property of 1 was investigated.

  20. Prediction of trivalent actinide amino(poly)carboxylate complex stability constants using linear free energy relationships with the lanthanide series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhnak, Nic E.

    Prediction of Trivalent Actinide Amino(poly)carboxylate Complex Stability Constants Using Linear Free Energy Relationships with the Lanthanide Series Alternative title: LFER Based Prediction of An(III) APC Stability Constants There is a gap in the literature regarding the complexation of amino(poly)carboxylate (APC) ligands with trivalent actinides (An(III))). The chemistry of the An(III) is nearly identical to that of the trivalent lanthanides Lns, but the An(III) express a slight enhancement when binding APC ligands. Presented in this report is a simple method of predicting the stability constants of the An(III), Pu, Am, Cm, Bk and Cf by using linear free energy relationships (LFER)more » of the An and the lanthanide (Ln) series for 91 APCs. This method produced An stability constants within uncertainty to available literature values for most ligands.« less

  1. Solvothermal syntheses, and characterization of [Ln(en){sub 4}(SbSe{sub 4})] (Ln=Ce, Pr) and [Ln(en){sub 4}]SbSe{sub 4}.0.5en (Ln=Eu, Gd, Er, Tm, Yb): The effect of lanthanide contraction on the crystal structures of lanthanide selenidoantimonates(V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia Dingxian; Zhu Aimei; Jin Qinyan

    Two types of lanthanide selenidoantimonates [Ln(en){sub 4}(SbSe{sub 4})] (Ln=Ce(1a), Pr(1b)) and [Ln(en){sub 4}]SbSe{sub 4}.0.5en (Ln=Eu(2a), Gd(2b), Er(2c), Tm(2d), Yb(2e); en=ethylenediamine) were solvothermally synthesized by reactions of LnCl{sub 3}, Sb and Se with the stoichiometric ratio in en solvent at 140 deg. C. The four-en coordinated lanthanide complex cation [Ln(en){sub 4}]{sup 3+} formed in situ balances the charge of SbSe{sub 4}{sup 3-} anion. In compounds 1a and 1b, the SbSe{sub 4}{sup 3-} anion act as a monodentate ligand to coordinate complex [Ln(en){sub 4}]{sup 3+} and the neutral compound [Ln(en){sub 4}(SbSe{sub 4})] is formed. The Ln{sup 3+} ion has a nine-coordinated environmentmore » involving eight N atoms and one Se atom forming a distorted monocapped square antiprism. In 2a-2e the lanthanide(III) ion exists as isolated complex [Ln(en){sub 4}]{sup 3+}, in which the Ln{sup 3+} ion is in a bicapped trigonal prism geometry. A systematic investigation of the crystal structures reveals that two types of structural features of these lanthanide selenidoantimonates are related with lanthanides contraction across the lanthanide series. TG curves show that compounds 1a-1b and 2a-2e remove their organic components in one and two steps, respectively. - Graphical abstract: Two types of lanthanide selenidoantimonates [Ln(en){sub 4}(SbSe{sub 4})] (Ln=Ce, Pr) and [Ln(en){sub 4}]SbSe{sub 4}.0.5en (Ln=Eu, Gd, Er, Tm, Yb; en=ethylenediamine) have been synthesized under the mild solvothermal conditions, and a systematic investigation of the crystal structures reveals that two types of structural features of these lanthanide selenidoantimonates are related with lanthanides contraction across the lanthanide series.« less

  2. Features of proteolytic properties of tetraphenylporphyrin complex with lanthanide group metals

    NASA Astrophysics Data System (ADS)

    Tobolkina, Elena A.; Skripnikova, Tatiana A.; Starikova, Anna A.; Shumilova, Galina I.; Pendin, Andrey A.

    2018-01-01

    Demetallation of metalloporphyrin molecules is one of the essential degradation reactions in photosynthesis. The effect of metalloporphyrin nature on removal of central metals from tetraphenylporphyrin complexes based on lanthanide group metals (Dy, Er, Lu, Ho) has been studied. pH values, at which the metal ions leave the metalloporphyrin complex were established using two-phase spectrophotometric titration with potentiometric pH-control. The pH values decrease with the increase of atomic numbers of lanthanide groups, as well as with increase of 4f-electrons. The reaction of an extra ligand exchange for the hydroxide ion was studied. For Dy-, Er- and Ho-tetraphenylporphyrin complexes one particle of extra ligand coordinates with one porphyrin complex. A complex with dimeric particles can be formed for the system of Lu-tetraphenylporphyrin. Constants of the ion exchange reactions were calculated.

  3. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Jie-Cen; Wan, Fang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybridmore » lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)« less

  4. Effect of lanthanide contraction on the mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien): Syntheses and characterizations of lanthanide complexes with a tetraelenidoantimonate ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Jing; Liang Jingjing; Pan Yingli

    Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en){sub 2}(dien)({eta}{sup 2}-SbSe{sub 4})] (Ln=Ce(1a), Nd(1b)), [Ln(en){sub 2}(dien)(SbSe{sub 4})] (Ln=Sm(2a), Gd(2b), Dy(2c)), [Ln(en)(trien)({mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4})]{sub {infinity}} (Ln=Ce(3a), Nd(3b)) and [Sm(en)(trien)({eta}{sup 2}-SbSe{sub 4})] (4a) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe{sub 4}]{sup 3-} acts as a monodentate ligand mono-SbSe{sub 4}, a bidentate chelating ligand {eta}{sup 2}-SbSe{sub 4} or a tridentate bridging ligand {mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4} to the lanthanide(III) center depending on themore » Ln{sup 3+} ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with E{sub g} between 2.08 and 2.51 eV. - Graphical Abstract: Two structural types of lanthanide(III) selenidoantimonates are formed in both en-dien and en-trien mixed polyamines across lanthanide series, indicating the lanthanide contraction effect on the structures of the lanthanide(III) selenidoantimonates. Highlights: > Two structural types of lanthanide selenidoantimonates are prepared across the lanthanide series in both Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) systems. > The [SbSe{sub 4}]{sup 3-} anion acts as a mono-SbSe{sub 4}, a {eta}{sup 2}-SbSe{sub 4} or a {mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4} ligand to the Ln{sup 3+} ions. > The soft base ligand [SbSe{sub 4}]{sup 3-} can be controlled to coordinate to the Ln{sup 3+} ions with en+dien and en+trien as co-ligands.« less

  5. Lanthanide-based NMR: a tool to investigate component distribution in mixed-monolayer-protected nanoparticles.

    PubMed

    Guarino, Gaetano; Rastrelli, Federico; Scrimin, Paolo; Mancin, Fabrizio

    2012-05-02

    Gd(3+) ions, once bound to the monolayer of organic molecules coating the surface of gold nanoparticles, produce a paramagnetic relaxation enhancement (PRE) that broadens and eventually cancels the signals of the nuclear spins located nearby (within 1.6 nm distance). In the case of nanoparticles coated with mixed monolayers, the signals arising from the different coating molecules experience different PRE, depending on their distance from the binding site. As a consequence, observation of the signal broadening patterns provides direct information on the monolayer organization. © 2012 American Chemical Society

  6. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  7. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  8. Comparing the 2,2'-Biphenylenedithiophosphinate Binding of Americium with Neodymium and Europium

    DOE PAGES

    Cross, Justin N.; Macor, Joseph A.; Bertke, Jeffery A.; ...

    2016-09-15

    Advancing our understanding of the minor actinides (Am, Cm) versus lanthanides is key for developing advanced nuclear-fuel cycles. Here in this paper, we describe the preparation of (NBu 4)Am[S 2P( tBu 2C 12H 6)] 4 and two isomorphous lanthanide complexes, namely one with a similar ionic radius (i.e., Nd III) and an isoelectronic one (Eu III). The results include the first measurement of an Am-S bond length, with a mean value of 2.921(9) Å, by single-crystal X-ray diffraction. Comparison with the Eu III and Nd III complexes revealed subtle electronic differences between the complexes of Am III and the lanthanides.

  9. Heterobimetallic dinuclear lanthanide alkoxide complexes as acid-base difunctional catalysts for transesterification.

    PubMed

    Zeng, Ruijie; Sheng, Hongting; Zhang, Yongcang; Feng, Yan; Chen, Zhi; Wang, Junfeng; Chen, Man; Zhu, Manzhou; Guo, Qingxiang

    2014-10-03

    A practical lanthanide(III)-catalyzed transesterification of carboxylic esters, weakly reactive carbonates, and much less-reactive ethyl silicate with primary and secondary alcohols was developed. Heterobimetallic dinuclear lanthanide alkoxide complexes [Ln2Na8{(OCH2CH2NMe2)}12(OH)2] (Ln = Nd (I), Sm (II), and Yb (III)) were used as highly active catalysts for this reaction. The mild reaction conditions enabled the transesterification of various substrates to proceed in good to high yield. Efficient activation of transesterification may be endowed by the above complexes as cooperative acid-base difunctional catalysts, which is proposed to be responsible for the higher reactivity in comparison with simple acid/base catalysts.

  10. Near-infrared emissive lanthanide hybridized nanofibrillated cellulose nanopaper as ultraviolet filter.

    PubMed

    Xue, Bailiang; Zhang, Zhao; Sun, Yongchang; Wang, Junjie; Jiang, Huie; Du, Min; Chi, Congcong; Li, Xinping

    2018-04-15

    The lanthanide complexes [Yb(fac) 3 (H 2 O) 2 , Yb(tta) 3 (H 2 O) 2 , Nd(tta) 3 (H 2 O) 2 ] functionalized nanofibrillated cellulose (Ln-NFC) nanopapers with near-infrared (NIR) luminescence and high transparency are rapidly fabricated after solvent exchange using a simple suction filtration film-making method. The effects of NFC and lanthanide complexes content on their photophysical properties of Ln-NFC nanopapers and their mechanism of UV filters are fully investigated. With increasing lanthanide complexes content in the Ln-NFC nanopaper, their transmittances are gradually decreased while their NIR luminescences are obviously increased. Yb-fac NFC nanopaper has high UVB block rate at 298 nm, whereas the high UVA block ratio of Ln-tta NFC nanopaper is observed at 345 nm. Ln-NFC nanopapers show a much higher photostability without decomposition under UV irradiation at 365 nm over 5 h. The emission spectra of the Ln-NFC nanopaper process the NIR luminescence of the corresponding lanthanide ions through the efficient triplet-triplet energy transfer process. Ln-NFC nanopapers can bring a brilliant future for UV filters, labeling fields and marking soft materials application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Effect of lanthanides on the aromatic system of benzoic acid

    NASA Astrophysics Data System (ADS)

    Lewandowski, Włlodzimierz

    1983-08-01

    The stucture of lanthanide complexes with benzoic acid was investigated by IR and UV absorption spectra. To determine the effect of metal coordination on the aromatic system of benzoic acid, IR spectra of Ln(OBz) 3 (Ln is a lanthanide except promethium; BzO is benzoic acid radical) were compared with ligand and sodium benzoate spectra. Also, changes in frequency and relative intensity of the ? bands in the 1600-1400 cm -1 region, were analyzed in terms of the atomic number of lanthanides. It is shown that lanthanides disturb the aromatic system of the benzoate ligand less than sodium. This effect is discussed in terms of the bonds formed.

  12. Shining light on the antenna chromophore in lanthanide based dyes.

    PubMed

    Junker, Anne Kathrine R; Hill, Leila R; Thompson, Amber L; Faulkner, Stephen; Sørensen, Thomas Just

    2018-04-03

    Lanthanide based dyes and assays exploit the antenna effect, where a sensitiser-chromophore is used as a light harvesting antenna and subsequent excited state energy transfer populates the emitting lanthanide centred excited state. A rudimentary understanding of the design criteria for designing efficient dyes and assays based on the antenna effect is in place. By preparing kinetically inert lanthanide complexes based on the DO3A scaffold, we are able to study the excited state energy transfer from a 7-methoxy-coumarin antenna chromophore to europium(iii) and terbium(iii) centred excited states. By contrasting the photophysical properties of complexes of metal centres with and without accessible excited states, we are able to separate the contributions from the heavy atom effect, photoinduced electron transfer quenching, excited state energy transfer and molecular conformations. Furthermore, by studying the photophysical properties of the antenna chromophore, we can directly monitor the solution structure and are able to conclude that excited state energy transfer from the chromophore singlet state to the lanthanide centre does occur.

  13. Complexation of lanthanides and actinides by acetohydroxamic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, R.J.; Sinkov, S.I.; Choppin, G.R.

    2008-07-01

    Acetohydroxamic acid (AHA) has been proposed as a suitable reagent for the complexant-based, as opposed to reductive, stripping of plutonium and neptunium ions from the tributylphosphate solvent phase in advanced PUREX or UREX processes designed for future nuclear-fuel reprocessing. Stripping is achieved by the formation of strong hydrophilic complexes with the tetravalent actinides in nitric acid solutions. To underpin such applications, knowledge of the complexation constants of AHA with all relevant actinide (5f) and lanthanide (4f) ions is therefore important. This paper reports the determination of stability constants of AHA with the heavier lanthanide ions (Dy-Yb) and also U(IV) andmore » Th(IV) ions. Comparisons with our previously published AHA stability-constant data for 4f and 5f ions are made. (authors)« less

  14. Synthesis and luminescent properties of the novel poly(ethylene-co-acrylic acid) films based on surface modification with lanthanide (Eu3+, Tb3+) complexes

    NASA Astrophysics Data System (ADS)

    Wu, Yuewen; Chu, Yang; Yu, Zhenjiang; Hao, Haixia; Wu, Qingyao; Xie, Hongde

    2017-10-01

    Two kinds of novel fluorescent films have been successfully synthesized by surface modification on the poly(ethylene-co-acrylic acid) films using the lanthanide (Eu3+, Tb3+) complexes. The process consists of three steps: conversion of carboxylic acid groups on the surface of the poly(ethylene-co-acrylic acid) films to acid chloride groups, synthesis of the lanthanide complexes bearing amino groups, and amidation to form the modified films. To characterize the modified films, Fourier transform infrared, thermogravimetric analysis, static water contact angle measurements and photoluminescence tests have been employed. Fourier transform infrared verifies the successful preparation of the lanthanide complexes and the modified poly(ethylene-co-acrylic acid) films. These films can emit strong characteristic red and green light under UV light excitation. In addition, the films both have short lifetime (1.14 ms and 1.21 ms), high thermal stability (Td = 408 °C and 411 °C) and, compared with unmodified ones, increased hydrophilicity. All these results suggest that the modified films have potential application as luminescent materials under high temperature.

  15. Optical, Structural and Paramagnetic Properties of Eu-Doped Ternary Sulfides ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y)

    PubMed Central

    Jarý, Vítězslav; Havlák, Lubomír; Bárta, Jan; Buryi, Maksym; Mihóková, Eva; Rejman, Martin; Laguta, Valentin; Nikl, Martin

    2015-01-01

    Eu-doped ternary sulfides of general formula ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y) are presented as a novel interesting material family which may find usage as X-ray phosphors or solid state white light emitting diode (LED) lighting. Samples were synthesized in the form of transparent crystalline hexagonal platelets by chemical reaction under the flow of hydrogen sulfide. Their physical properties were investigated by means of X-ray diffraction, time-resolved photoluminescence spectroscopy, electron paramagnetic resonance, and X-ray excited fluorescence. Corresponding characteristics, including absorption, radioluminescence, photoluminescence excitation and emission spectra, and decay kinetics curves, were measured and evaluated in a broad temperature range (8–800 K). Calculations including quantum local crystal field potential and spin-Hamiltonian for a paramagnetic particle in D3d local symmetry and phenomenological model dealing with excited state dynamics were performed to explain the experimentally observed features. Based on the results, an energy diagram of lanthanide energy levels in KLuS2 is proposed. Color model xy-coordinates are used to compare effects of dopants on the resulting spectrum. The application potential of the mentioned compounds in the field of white LED solid state lighting or X-ray phosphors is thoroughly discussed. PMID:28793612

  16. Challenges in the Search for Magnetic Coupling in 3d/4f Materials: Syntheses, Structures, and Magnetic Properties of the Lanthanide Copper Heterobimetallic Compounds, RE 2 Cu(TeO 3 ) 2 (SO 4 ) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jian; Chai, Ping; Diefenbach, Kariem

    2014-03-03

    Twelve new lanthanide copper heterobimetallic compounds, RE2Cu(TeO3)2(SO4)2 (RE = Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), with two different structural topologies, have been prepared by hydrothermal treatment. Both structure types crystallize in the triclinic space group, Pmore » $$\\bar{1}$$, but the unit cell parameters and structures are quite different. The earlier RE2Cu(TeO3)2(SO4)2 (RE = Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm) share a common structural motif consisting of edge-sharing LnO8 chains and [Cu(TeO3)2(SO4)2]6– units. The later lanthanide version (Yb and Lu) is composed of edge-sharing LnO7 dimers bridged by similar [Cu(TeO3)2(SO4)2]6– units. The change in the structure type can be attributed to the decreasing ionic radii of the lanthanides. The compounds containing RE3+ ions with diamagnetic ground states (Y3+ and Eu3+) exhibit antiferromagnetic ordering at 12.5 K and 15 K, respectively, owing to the magnetic exchange between Cu2+ moments. No magnetic phase transition was observed in all the other phases. The lack of magnetic ordering is attributed to the competing magnetic interactions caused by the presence of paramagnetic RE3+ ions. The magnetism data suggests that substantial 3d–4f coupling only occurs in the Yb analogue.« less

  17. PARACEST Properties of a Dinuclear Neodymium(III) Complex Bound to DNA or Carbonate

    PubMed Central

    Nwe, Kido; Andolina, Christopher M.; Huang, Ching-Hui; Morrow, Janet R.

    2009-01-01

    A dinuclear Nd(III) macrocyclic complex of 1 (1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene) and mononuclear complexes of 1,4,7-tris-1,4,7,10-tetraazacyclododecane 2, and 1,4,7-tris[(N-N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane, 3, are prepared. Complexes of 1 and 2 give rise to a PARACEST (paramagnetic chemical exchange saturation transfer) peak from exchangeable amide protons that resonate approximately 12 ppm downfield from the bulk water proton resonance. The dinuclear Nd(III) complex is promising as a PARACEST contrast agent for MRI applications because it has an optimal pH of 7.5 and the rate constant for amide proton exchange (2700 s−1) is nearly as large as it can be within slow exchange conditions with bulk water. Dinuclear Ln2(1) complexes (Ln(III) = Nd(III), Eu(III)) bind tightly to anionic ligands including carbonate, diethylphosphate and DNA. The CEST amide peak of Nd2(1) is enhanced by certain DNA sequences that contain hairpin loops, but decreases in the presence of diethyl phosphate or carbonate. Direct excitation luminescence studies of Eu2(1) show that double-stranded and hairpin loop DNA sequences displace one water ligand on each Eu(III) center. DNA displaces carbonate ion despite the low dissociation constant for the Eu2(1) carbonate complex (Kd = 15 µM). Enhancement of the CEST effect of a lanthanide complex by binding to DNA is a promising step toward the preparation of PARACEST agents containing DNA scaffolds. PMID:19555071

  18. PARACEST properties of a dinuclear neodymium(III) complex bound to DNA or carbonate.

    PubMed

    Nwe, Kido; Andolina, Christopher M; Huang, Ching-Hui; Morrow, Janet R

    2009-07-01

    A dinuclear Nd(III) macrocyclic complex of 1 (1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene) and mononuclear complexes of 1,4,7-tris-1,4,7,10-tetraazacyclododecane, 2, and 1,4,7-tris[(N-N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane, 3, are prepared. Complexes of 1 and 2 give rise to a PARACEST (paramagnetic chemical exchange saturation transfer) peak from exchangeable amide protons that resonate approximately 12 ppm downfield from the bulk water proton resonance. The dinuclear Nd(III) complex is promising as a PARACEST contrast agent for MRI applications, because it has an optimal pH of 7.5 and the rate constant for amide proton exchange (2700 s(-1)) is nearly as large as it can be within slow exchange conditions with bulk water. Dinuclear Ln(2)(1) complexes (Ln(III) = Nd(III), Eu(III)) bind tightly to anionic ligands including carbonate, diethyl phosphate, and DNA. The CEST amide peak of Nd(2)(1) is enhanced by certain DNA sequences that contain hairpin loops, but decreases in the presence of diethyl phosphate or carbonate. Direct excitation luminescence studies of Eu(2)(1) show that double-stranded and hairpin-loop DNA sequences displace one water ligand on each Eu(III) center. DNA displaces carbonate ion despite the low dissociation constant for the Eu(2)(1) carbonate complex (K(d) = 15 microM). Enhancement of the CEST effect of a lanthanide complex by binding to DNA is a promising step toward the preparation of PARACEST agents containing DNA scaffolds.

  19. 1,2-Hydroxypyridonates as Contrast Agents for Magnetic ResonanceImaging: TREN-1,2-HOPO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jocher, Christoph J.; Moore, Evan G.; Xu, Jide

    2007-05-08

    1,2-Hydroxypyridinones (1,2-HOPO) form very stable lanthanide complexes that may be useful as contrast agents for Magnetic Resonance Imaging (MRI). X-ray diffraction of single crystals established that the solid state structures of the Eu(III) and the previously reported [Inorg. Chem. 2004, 43, 5452] Gd(III) complex are identical. The recently discovered sensitizing properties of 1,2-HOPO chelates for Eu(III) luminescence allow direct measurement of the number if water molecules in the metal complex. Fluorescence measurements of the Eu(III) complex corroborate that in solution two water molecules coordinate the lanthanide (q = 2) as proposed from the analysis of NMRD profiles. In addition, fluorescencemore » measurements have verified the anion binding interactions of lanthanide TREN-1,2-HOPO complexes in solution, studied by relaxivity, revealing only very weak oxalate binding (K{sub A} = 82.7 {+-} 6.5 M{sup -1}). Solution thermodynamic studies of the metal complex and free ligand have been carried out using potentiometry, spectrophotometry and fluorescence spectroscopy. The metal ion selectivity of TREN-1,2-HOPO supports the feasibility of using 1,2-HOPO ligands for selective lanthanide binding [pGd = 19.3 (2); pZn = 15.2 (2), pCa = 8.8 (3)].« less

  20. Synthesis and Characterization of Europium(III) and Terbium(III) Complexes: An Advanced Undergraduate Inorganic Chemistry Experiment

    ERIC Educational Resources Information Center

    Swavey, Shawn

    2010-01-01

    Undergraduate laboratories rarely involve lanthanide coordination chemistry. This is unfortunate in light of the ease with which many of these complexes are made and the interesting and instructive photophysical properties they entail. The forbidden nature of the 4f transitions associated with the lanthanides is overcome by incorporation of…

  1. Lanthanide complexes with aromatic o-phosphorylated ligands: synthesis, structure elucidation and photophysical properties.

    PubMed

    Shuvaev, Sergey; Utochnikova, Valentina; Marciniak, Łukasz; Freidzon, Alexandra; Sinev, Ilya; Van Deun, Rik; Freire, Ricardo O; Zubavichus, Yan; Grünert, Wolfgang; Kuzmina, Natalia

    2014-02-28

    Lanthanide complexes LnL3 (Ln = Sm, Eu, Tb, Dy, Tm, Yb, Lu) with aromatic o-phosphorylated ligands (HL(1) and HL(2)) have been synthesized and identified. Their molecular structure was proposed on the basis of a new complex approach, including DFT calculations, Sparkle/PM3 modelling, EXAFS spectroscopy and luminescent probing. The photophysical properties of all of the complexes were investigated in detail to obtain a deeper insight into the energy transfer processes.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Che, Guang-Bo, E-mail: guangboche@jlnu.edu.cn; Liu, Shu-Yu; Zhang, Qing

    Four new lanthanide complexes [Ln(O–NCP){sub 2}(NO{sub 3})]{sub n} based on multifunctional N,O-donor ligand 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (O–HNCP) and Ln(NO{sub 3}){sub 3}·6H{sub 2}O (Ln=Nd(1), La(2), Sm(3), Eu(4)) have been achieved under hydrothermal conditions and characterized by elemental analyses, infrared spectra and single crystal X-ray diffraction. Structural analyses revealed that all of these four complexes possess similar two-dimensional layer structures. In addition, thermal stability and luminescent properties of these complexes were also investigated. - Graphical abstract: A series of lanthanide(III) coordination polymers with intriguing structures based on 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline ligand have been hydrothermally synthesized. The thermal stabilities and photoluminescence properties of these complexes have beenmore » investigated. - Highlights: • Four lanthanide(III) complexes have been hydrothermally synthesized. • The N,O-donor O–HNCP was used as the ligand. • TGA and PL properties of complexes 1–4 have been investigated.« less

  3. Electrochemistry and Spectroelectrochemistry of Luminescent Europium Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Wang, Zheming; Clark, Sue B.

    Fast, cost effective, and robust means of detecting and quantifying lanthanides are needed for supporting more efficient tracking within the nuclear, medicinal, and industrial fields. Spectroelectrochemistry (SEC) is a powerful technique combining electrochemistry and spectroscopy that can meet those needs. The primary limitation of SEC as a detection method for lanthanides is their low molar absorptivity in absorbance based measurements and low emission intensities in fluorescence based measurements; both lead to high limits of detection. These limitations can be circumvented by complexing the lanthanides with sensitizing ligands that enhance fluorescence, thereby dropping the limits of detection. Complexation may also stabilizemore » the metal ions in solution and improve the electrochemical reversibility, or Nernstian behavior, of the redox couples. To demonstrate this concept, studies were completed using europium in complexes with four different sensitizing ligands. Initial work indicates Eu in the four complexes studied does display the necessary characteristics for SEC analysis, which was successfully and reproducibly applied to all Eu complexes.« less

  4. Eu(III) and Tb(III) complexes with the nonsteroidal anti-inflammatory drug carprofen: synthesis, crystal structure, and photophysical properties.

    PubMed

    Zhou, Xianju; Zhao, Xiaoqi; Wang, Yongjie; Wu, Bing; Shen, Jun; Li, Li; Li, Qingxu

    2014-12-01

    Two new lanthanide complexes with general formula [Ln2(carprofen)6(DMF)2] (Ln = Eu (1), Tb (2), DMF = N,N-dimethylformamide, carprofen = 6-chloro-α-methylcarbazole-2-acetic acid) have been synthesized by a hydrothermal method. Complex 1 was characterized by single-crystal X-ray diffraction (XRD), and it was found to crystallize in the monoclinic space group C2/c. The coordination of the ligand to the lanthanide ion has been investigated by Fourier-transform infrared (FTIR) spectra and ultraviolet-visible (UV-vis) absorption spectra. Complex 1 emits red light, but the antenna effect of the ligand is not effective, whereas complex 2 presents intense green emission with effective energy transfer from the ligand. The different performance of the two complexes is related to the energy matching between the excited states of the lanthanide ion and the triplet state of the ligand. The intramolecular energy transfer mechanisms are also discussed.

  5. Characterization and thermogravimetric analysis of lanthanide hexafluoroacetylacetone chelates

    DOE PAGES

    Shahbazi, Shayan; Stratz, S. Adam; Auxier, John D.; ...

    2016-08-30

    This work reports the thermodynamic characterizations of organometallic species as a vehicle for the rapid separation of volatile nuclear fission products via gas chromatography due to differences in adsorption enthalpy. Because adsorption and sublimation thermodynamics are linearly correlated, there is considerable motivation to determine sublimation enthalpies. A method of isothermal thermogravimetric analysis, TGA-MS and melting point analysis are employed on thirteen lanthanide 1,1,1,5,5,5-hexafluoroacetylacetone complexes to determine sublimation enthalpies. An empirical correlation is used to estimate adsorption enthalpies of lanthanide complexes on a quartz column from the sublimation data. Additionally, four chelates are characterized by SC-XRD, elemental analysis, FTIR and NMR.

  6. Heterobimetallic lanthanide/sodium phenoxides: efficient catalysts for amidation of aldehydes with amines.

    PubMed

    Li, Junmei; Xu, Fan; Zhang, Yong; Shen, Qi

    2009-03-20

    Heterobimetallic lanthanide/sodium phenoxides were found to be efficient catalysts for amidation of aldehydes with amines under mild conditions. The reactivity follows the order Nd < Y < Sm for metals and 2,6-(Me)2C6H3O < 2,6-(iPr)2C6H3O < 2,6-(tBu)2C6H3O for phenoxide groups. In comparison with the corresponding monometallic complexes, heterobimetallic complexes show higher activity and a wider range of scope of amines. A cooperation of lanthanide and sodium in this process is proposed to contribute to the high activity of the present catalyst.

  7. Detection of phosphorylation states by intermolecular sensitization of lanthanide-peptide conjugates.

    PubMed

    Pazos, Elena; Goličnik, Marko; Mascareñas, José L; Vázquez, M Eugenio

    2012-10-04

    The luminescence of a designed peptide equipped with a coordinatively-unsaturated lanthanide complex is modulated by the phosphorylation state of a serine residue in the sequence. While the phosphorylated state is weakly emissive, even in the presence of an external antenna, removal of the phosphate allows coordination of the sensitizer to the metal, yielding a highly emissive supramolecular complex.

  8. Thermodynamic, Spectroscopic, and Computational Studies of f -Element Complexation by N -Hydroxyethyl-diethylenetriamine- N,N ', N ", N"-tetraacetic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Travis S.; Heathman, Colt R.; Jansone-Popova, Santa

    Potentiometric and spectroscopic techniques were combined with DFT calculations to probe the coordination environment and determine thermodynamic features of trivalent f-element complexation by N-hydroxyethyl-diethylenetriamine-N,N',N",N"-tetraacetic acid, HEDTTA. Ligand protonation constants and lanthanide stability constants were determined using potentiometry. Five protonation constants were accessible in I = 2.0 M (H +/Na +)ClO 4. UV–vis spectroscopy was used to determine stability constants for Nd 3+ and Am 3+ complexation with HEDTTA. Luminescence spectroscopy indicates two water molecules in the inner coordination sphere of the Eu/HEDTTA complex, suggesting HEDTTA is heptadentate. Luminescence data was supported by DFT calculations, which demonstrate that substitution of themore » acetate pendant arm by a N-hydroxyethyl group weakens the metal–nitrogen bond. This bond elongation is reflected in HEDTTA’s ability to differentiate trivalent actinides from trivalent lanthanides. The trans-lanthanide Ln/HEDTTA complex stability trend is analogous to Ln/DTPA complexation; however, the loss of one chelate ring resulting from structural substitution weakens the complexation by ~3 orders of magnitude. Successful separation of trivalent americium from trivalent lanthanides was demonstrated when HEDTTA was utilized as aqueous holdback complexant in a liquid–liquid system. Time-dependent extraction studies for HEDTTA were compared to diethylenetriamine-N,N,N',N",N"-pentaacetic acid (DTPA) and N-hydroxyethyl-ethylenediamine-N,N',N'-triacetic acid (HEDTA). The results presented here indicate substantially enhanced phase-transfer kinetic rates for mixtures containing HEDTTA.« less

  9. Thermodynamic, Spectroscopic, and Computational Studies of f -Element Complexation by N -Hydroxyethyl-diethylenetriamine- N,N ', N ", N"-tetraacetic Acid

    DOE PAGES

    Grimes, Travis S.; Heathman, Colt R.; Jansone-Popova, Santa; ...

    2017-01-24

    Potentiometric and spectroscopic techniques were combined with DFT calculations to probe the coordination environment and determine thermodynamic features of trivalent f-element complexation by N-hydroxyethyl-diethylenetriamine-N,N',N",N"-tetraacetic acid, HEDTTA. Ligand protonation constants and lanthanide stability constants were determined using potentiometry. Five protonation constants were accessible in I = 2.0 M (H +/Na +)ClO 4. UV–vis spectroscopy was used to determine stability constants for Nd 3+ and Am 3+ complexation with HEDTTA. Luminescence spectroscopy indicates two water molecules in the inner coordination sphere of the Eu/HEDTTA complex, suggesting HEDTTA is heptadentate. Luminescence data was supported by DFT calculations, which demonstrate that substitution of themore » acetate pendant arm by a N-hydroxyethyl group weakens the metal–nitrogen bond. This bond elongation is reflected in HEDTTA’s ability to differentiate trivalent actinides from trivalent lanthanides. The trans-lanthanide Ln/HEDTTA complex stability trend is analogous to Ln/DTPA complexation; however, the loss of one chelate ring resulting from structural substitution weakens the complexation by ~3 orders of magnitude. Successful separation of trivalent americium from trivalent lanthanides was demonstrated when HEDTTA was utilized as aqueous holdback complexant in a liquid–liquid system. Time-dependent extraction studies for HEDTTA were compared to diethylenetriamine-N,N,N',N",N"-pentaacetic acid (DTPA) and N-hydroxyethyl-ethylenediamine-N,N',N'-triacetic acid (HEDTA). The results presented here indicate substantially enhanced phase-transfer kinetic rates for mixtures containing HEDTTA.« less

  10. Fourier transform infrared characterization of the acidic phosphoric extractant system containing lanthanide

    NASA Astrophysics Data System (ADS)

    Shen, Y.-H.; Yao, S.-K.; Wang, D.-J.; Zhou, Weijin; Li, Ying Xue; Peng, Q.; Wu, JinGuang; Xu, Guang-Xian

    1994-01-01

    The aggregation states and FTIR spectra of the extractive organic phases of saponified HDEHP [di(2-ethylhexyl) phosphoric acid] (1). DMHPA [di(1-methylheptyl) phosphoric acid] (2) and (HDEHP + DMHPA) (3) containing lanthanides were studied, respectively. Transparent solution formed in system (1) while transparent gel formed in system (2) when the loading of lanthanides was more than 50%. The aggregation state of system (3) depends on the molar ratio of HDEHP:DMHPA and the loading percentage of lanthanide. From their FTIR spectra, it can be seen that the P equals O band of gel split into 1164, 1199, and 1232 cm-1, and the P-O-C band split into 1015, 1076, and 1083 cm-1 as well. The results suggested that the aggregation state of lanthanide complex changes considerably in the three systems, and multiple coordination states of p equals o with lanthanide result in the band split. Multiple interactions between P equals O, P-O-C and lanthanide ions form 3-D network in the gel.

  11. Dinuclear lanthanide complexes based on amino alcoholate ligands: Structure, magnetic and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Sun, Gui-Fang; Zhang, Cong-Ming; Guo, Jian-Ni; Yang, Meng; Li, Li-Cun

    2017-05-01

    Two binuclear lanthanide complexes [Ln2(hfac)6(HL)2] (LnIII = Dy(1), Tb(2); hfac = hexafluoroacetylacetonate, HL = (R)-2-amino-2-phenylethanol) have been successfully obtained by using amino alcoholate ligand. In two complexes, the Ln(III) ions are bridged by two alkoxido groups from HL ligands, resulting in binuclear complexes. The variable-temperature magnetic susceptibility studies indicate that there exists ferromagnetic interaction between two Ln(III) ions. Frequency dependent out-of-phase signals are observed for complex 1, suggesting SMM type behavior. Complexes 1 and 2 display intensely characteristic luminescent properties.

  12. Trispyrazolylborate Complexes: An Advanced Synthesis Experiment Using Paramagnetic NMR, Variable-Temperature NMR, and EPR Spectroscopies

    ERIC Educational Resources Information Center

    Abell, Timothy N.; McCarrick, Robert M.; Bretz, Stacey Lowery; Tierney, David L.

    2017-01-01

    A structured inquiry experiment for inorganic synthesis has been developed to introduce undergraduate students to advanced spectroscopic techniques including paramagnetic nuclear magnetic resonance and electron paramagnetic resonance. Students synthesize multiple complexes with unknown first row transition metals and identify the unknown metals by…

  13. Lanthanide-binding peptides with two pendant aminodiacetate arms: impact of the sequence on chelation.

    PubMed

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Gateau, Christelle; Delangle, Pascale

    2012-03-21

    Lanthanide complexes with a series of hexapeptides-incorporating two unnatural chelating amino acids with aminodiacetate groups, Ada(1) and Ada(2)-have been examined in terms of their speciation, structure, stability and luminescence properties. Whereas Ada(2) acts as a tridentate donor in all cases, Ada(1) may act as a tetradentate donor thanks to the coordination of the amide carbonyl function assisted by the formation of a six-membered chelate ring. The position of the Ada(1) residue in the sequence is demonstrated to be critical for the lanthanide complex speciation and structure. Ada(1) promotes the coordination of the backbone amide function to afford a highly dehydrated Ln complex and an S-shape structure of the peptide backbone, only when found in position 2.

  14. Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides.

    PubMed

    Zhang, Qingnan; Hu, Shu-Xian; Qu, Hui; Su, Jing; Wang, Guanjun; Lu, Jun-Bo; Chen, Mohua; Zhou, Mingfei; Li, Jun

    2016-06-06

    The chemistry of lanthanides (Ln=La-Lu) is dominated by the low-valent +3 or +2 oxidation state because of the chemical inertness of the valence 4f electrons. The highest known oxidation state of the whole lanthanide series is +4 for Ce, Pr, Nd, Tb, and Dy. We report the formation of the lanthanide oxide species PrO4 and PrO2 (+) complexes in the gas phase and in a solid noble-gas matrix. Combined infrared spectroscopic and advanced quantum chemistry studies show that these species have the unprecedented Pr(V) oxidation state, thus demonstrating that the pentavalent state is viable for lanthanide elements in a suitable coordination environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Preparation and Quality Control of the [153Sm]-Samarium Maltolate Complex as a Lanthanide Mobilization Product in Rats

    PubMed Central

    Naseri, Zohreh; Hakimi, Amir; Jalilian, Amir R.; Nemati Kharat, Ali; Bahrami-Samani, Ali; Ghannadi-Maragheh, Mohammad

    2011-01-01

    Development of lanthanide detoxification agents and protocols is of great importance in management of overdoses. Due to safety of maltol as a detoxifying agent in metal overloads, it can be used as a lanthanide detoxifying agent. In order to demonstrate the biodistribution of final complex, [153Sm]-samarium maltolate was prepared using Sm-153 chloride (radiochemical purity >99.9%; ITLC and specific activity). The stability of the labeled compound was determined in the final solution up to 24h as well as the partition coefficient. Biodistribution studies of Sm-153 chloride, [153Sm]-samarium maltolate were carried out in wild-type rats comparing the critical organ uptakes. Comparative study for Sm3+ cation and the labeled compound was conducted up to 48 h, demonstrating a more rapid wash out for the labeled compound. The effective and biological half lives of 2.3 h and 2.46h were calculated for the complex. The data suggest the detoxification property of maltol formulation for lanthanide overdoses. PMID:21773065

  16. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  17. A general way of analyzing EPR spectroscopy for a pair of magnetically equivalent lanthanide ions in crystal: A case study of BaY2F8:Yb3+ crystal

    NASA Astrophysics Data System (ADS)

    Liu, Honggang; Zheng, Wenchen

    2018-01-01

    Electron paramagnetic resonance (EPR) is an important tool to study the complex interactions (e.g., exchange and magnetic dipole-dipole interactions) for a pair of lanthanide (Ln) ions in crystals. How to analyze these EPR spectra and obtain the strength of each interaction is a challenge for experimentalists. In this work, a general way of calculating the EPR lines for two magnetically equivalent Ln ions is given by us to solve this problem. In order to explain their EPR spectra and obtain exchange interaction parameters Ji (i = x, y, z) between them, we deduce the analytic formulas for computing the angular dependent EPR lines for such Ln pairs under the condition of weak coupling (|Ji| ≪ hv, where v is the microwave frequency in the EPR experiment) and set up the spin-Hamiltonian energy matrix that should be diagonalized to obtain these lines if intermediate (|Ji| ˜ hv) and strong (|Ji| > hv) couplings are encountered. To verify our method, the experimental EPR spectra for the Yb3+ doped BaY2F8 crystal are considered by us and the EPR lines from the isolated Yb3+ ion and Yb3+-Yb3+ pair with distance R equal to 0.371 nm are identified clearly. Moreover, exchange interaction parameters (Jx ≈ -0.04 cm-1, Jy ≈ -0.24 cm-1, and Jz ≈ -0.1 cm-1) for such a pair are also determined by our calculations. This case study demonstrates that the theoretical method given in this work would be useful and could be applied to understand interactions between Ln ions in crystals.

  18. Method of loading organic materials with group III plus lanthanide and actinide elements

    DOEpatents

    Bell, Zane W [Oak Ridge, TN; Huei-Ho, Chuen [Oak Ridge, TN; Brown, Gilbert M [Knoxville, TN; Hurlbut, Charles [Sweetwater, TX

    2003-04-08

    Disclosed is a composition of matter comprising a tributyl phosphate complex of a group 3, lanthanide, actinide, or group 13 salt in an organic carrier and a method of making the complex. These materials are suitable for use in solid or liquid organic scintillators, as in x-ray absorption standards, x-ray fluorescence standards, and neutron detector calibration standards.

  19. Lanthanide complexes with 2-(tosylamino)benzylidene-N-benzoylhydrazone, which exhibit high NIR emission.

    PubMed

    Utochnikova, V V; Kovalenko, A D; Burlov, A S; Marciniak, L; Ananyev, I V; Kalyakina, A S; Kurchavov, N A; Kuzmina, N P

    2015-07-28

    New NIR emitting materials were found among the lanthanide complexes with 2-(tosylamino)benzylidene-N-benzoylhydrazone. Complexes of Nd(3+), Er(3+) and Yb(3+), as well as Eu(3+), Gd(3+) and Lu(3+), were synthesized for the first time. Owing to the absence of vibration quenching the ytterbium complex was found to exhibit a photoluminescence quantum yield of 1.4%. Since the sensitization efficiency was calculated to be 55%, the losses in the quantum yield are probably due to Yb-Yb resonant energy transfer.

  20. Disequilibrium, complexity, the Schottky effect, and q-entropies, in paramagnetism

    NASA Astrophysics Data System (ADS)

    Pennini, F.; Plastino, A.

    2017-12-01

    We investigate connections between statistical quantifiers and paramagnetism. More concretely, we apply the notions of (i) disequilibrium and (ii) statistical complexity, to a paramagnetic system of non-coupled dipoles. Interesting insights are thereby obtained. In particular, we encounter a kind of criticality, not associated to the temperature but to the disequilibrium.

  1. EPR Characterization of Dinitrosyl Iron Complexes with Thiol-Containing Ligands as an Approach to Their Identification in Biological Objects: An Overview.

    PubMed

    Vanin, Anatoly F

    2018-06-01

    The overview demonstrates how the use of only one physico-chemical approach, viz., the electron paramagnetic resonance method, allowed detection and identification of dinitrosyl iron complexes with thiol-containing ligands in various animal and bacterial cells. These complexes are formed in biological objects in the paramagnetic (electron paramagnetic resonance-active) mononuclear and diamagnetic (electron paramagnetic resonance-silent) binuclear forms and control the activity of nitrogen monoxide, one of the most universal regulators of metabolic processes in the organism. The analysis of electronic and spatial structures of dinitrosyl iron complex sheds additional light on the mechanism whereby dinitrosyl iron complex with thiol-containing ligands function in human and animal cells as donors of nitrogen monoxide and its ionized form, viz., nitrosonium ions (NO + ).

  2. Highly Luminescent, Water-Soluble Lanthanide Fluorobenzoates: Syntheses, Structures and Photophysics, Part I: Lanthanide Pentafluorobenzoates.

    PubMed

    Kalyakina, Alena S; Utochnikova, Valentina V; Bushmarinov, Ivan S; Ananyev, Ivan V; Eremenko, Igor L; Volz, Daniel; Rönicke, Franziska; Schepers, Ute; Van Deun, Rik; Trigub, Alexander L; Zubavichus, Yan V; Kuzmina, Natalia P; Bräse, Stefan

    2015-12-01

    Highly luminescent, photostable, and soluble lanthanide pentafluorobenzoates have been synthesized and thoroughly characterized, with a focus on Eu(III) and Tb(III) complexes as visible emitters and Nd(III) , Er(III) , and Yb(III) complexes as infrared emitters. Investigation of the crystal structures of the complexes in powder form and as single crystals by using X-ray diffraction revealed five different structural types, including monomeric, dimeric, and polymeric. The local structure in different solutions was studied by using X-ray absorption spectroscopy. The photoluminescence quantum yields (PLQYs) of terbium and europium complexes were 39 and 15 %, respectively; the latter value was increased almost twice by using the heterometallic complex [Tb0.5 Eu0.5 (pfb)3 (H2 O)] (Hpfb=pentafluorobenzoic acid). Due to the effectively utilized sensitization strategy (pfb)(-) →Tb→Eu, a pure europium luminescence with a PLQY of 29 % was achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The separation of lanthanides and actinides in supercritical fluid carbon dioxide

    DOE PAGES

    Mincher, Bruce J.; Wai, Chien M.; Fox, Robert V.; ...

    2015-10-28

    Supercritical fluid carbon dioxide presents an attractive alternative to conventional solvents for recovery of the actinides and lanthanides. Carbon dioxide is a good solvent for fluorine and phosphate-containing ligands, including the traditional tributylphosphate ligand used in process-scale uranium separations. Actinide and lanthanide oxides may even be directly dissolved in carbon dioxide containing the complexes formed between these ligands and mineral acids, obviating the need for large volumes of acids for leaching and dissolution, and the corresponding organic liquid–liquid solvent extraction solutions. As a result, examples of the application of this novel technology for actinide and lanthanide separations are presented.

  4. Features of the reaction of heterocyclic analogs of chalcone with lanthanide shift reagents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turov, A.V.; Khilya, V.P.

    1994-10-01

    The PMR spectra of heterocyclic analogs of 2-hydroxychalcone containing thiazole, benzofuran, triazole, imidazole, benzodioxane, or pyridine rings in the presence of lanthanide shift reagents are studied. It is found that the most effective reagent for modifying the spectra of these compounds is Yb(fod)3. The broadening of the spectra of 2-hydroxy chalcones in the presence of lanthanide shift reagents is explained by the dynamic effects of complex formation. An example is given of the determination of the conformation of molecules of 2-hydroxychalcone by the simultaneous use of lanthanide shift reagents and the homonuclear Overhauser effect. 9 refs., 1 fig., 1 tab.

  5. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples.

    PubMed

    Thorson, Megan K; Ung, Phuc; Leaver, Franklin M; Corbin, Teresa S; Tuck, Kellie L; Graham, Bim; Barrios, Amy M

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Coumarin Derivative Directly Coordinated to Lanthanides Acts as an Excellent Antenna for UV-Vis and Near-IR Emission.

    PubMed

    Guzmán-Méndez, Óscar; González, Federico; Bernès, Sylvain; Flores-Álamo, Marcos; Ordóñez-Hernández, Javier; García-Ortega, Héctor; Guerrero, Joselin; Qian, Wenjie; Aliaga-Alcalde, Nuria; Gasque, Laura

    2018-02-05

    A chelating coumarin-derived ligand sensitizes all emitting lanthanide ions in the solid state and gives high absolute quantum yields for ethanol solutions of complexes of Sm, Eu, Tb, and Dy, above 20% for the last two. Crystal structures of these four complexes are [Ln(Cum) 3 (H 2 O)(X)]·X where X = MeOH or EtOH.

  7. Extraction of lanthanides using 1-hydroxy-6- N-octylcarboxamido-2(1 H)-pyridinone as an extractant via competitive ligand complexations between aqueous and organic phases

    DOE PAGES

    Williams, Neil J.; Do-Thanh, Chi -Linh; Stankovich, Joseph J.; ...

    2015-12-10

    Here, the ability to selectively extract lanthanides is crucial in hydrometallurgy and the nuclear fuel cycle. The capabilities of 1-hydroxy-6- N-octylcarboxamido-2(1 H)-pyridinone (octyl-HOPO) as an extractant for the separation of lanthanides and actinides were studied for the first time. Octyl-HOPO greatly outperformed the traditional ligand di-2-ethylhexyl phosphoric acid (DEHPA).

  8. Paramagnetic Europium Salen Complex and Sickle-Cell Anemia

    NASA Astrophysics Data System (ADS)

    Wynter, Clive I.; Ryan, D. H.; May, Leopold; Oliver, F. W.; Brown, Eugene; Hoffman, Eugene J.; Bernstein, David

    2005-04-01

    A new europium salen complex, Eu(salen)2NH4, was synthesized, and its composition was confirmed by chemical analysis and infrared spectroscopy. Further characterization was carried out by 151 Eu Mössbauer spectroscopy and magnetic susceptibility measurements. Mössbauer spectroscopic measurements were made at varying temperatures between 9 K and room temperature and a value of Debye temperature of 133 ±5 K was computed. Both Mössbauer and magnetic susceptibility measurements confirmed the paramagnetic behavior of this complex and the trivalent state of the europium ion. In view of the fact that the "odd" paramagnetic molecule NO has been shown to reverse sickling of red blood cells in sickle cell anemia, the interaction between the paramagnetic europium salen complex and sickle cells was examined after incubation with this europium complex and shown to have similar effects.

  9. Sparkle model for the calculation of lanthanide complexes: AM1 parameters for Eu(III), Gd(III), and Tb(III).

    PubMed

    Freire, Ricardo O; Rocha, Gerd B; Simas, Alfredo M

    2005-05-02

    Our previously defined Sparkle model (Inorg. Chem. 2004, 43, 2346) has been reparameterized for Eu(III) as well as newly parameterized for Gd(III) and Tb(III). The parameterizations have been carried out in a much more extensive manner, aimed at producing a new, more accurate model called Sparkle/AM1, mainly for the vast majority of all Eu(III), Gd(III), and Tb(III) complexes, which possess oxygen or nitrogen as coordinating atoms. All such complexes, which comprise 80% of all geometries present in the Cambridge Structural Database for each of the three ions, were classified into seven groups. These were regarded as a "basis" of chemical ambiance around a lanthanide, which could span the various types of ligand environments the lanthanide ion could be subjected to in any arbitrary complex where the lanthanide ion is coordinated to nitrogen or oxygen atoms. From these seven groups, 15 complexes were selected, which were defined as the parameterization set and then were used with a numerical multidimensional nonlinear optimization to find the best parameter set for reproducing chemical properties. The new parameterizations yielded an unsigned mean error for all interatomic distances between the Eu(III) ion and the ligand atoms of the first sphere of coordination (for the 96 complexes considered in the present paper) of 0.09 A, an improvement over the value of 0.28 A for the previous model and the value of 0.68 A for the first model (Chem. Phys. Lett. 1994, 227, 349). Similar accuracies have been achieved for Gd(III) (0.07 A, 70 complexes) and Tb(III) (0.07 A, 42 complexes). Qualitative improvements have been obtained as well; nitrates now coordinate correctly as bidentate ligands. The results, therefore, indicate that Eu(III), Gd(III), and Tb(III) Sparkle/AM1 calculations possess geometry prediction accuracies for lanthanide complexes with oxygen or nitrogen atoms in the coordination polyhedron that are competitive with present day ab initio/effective core potential calculations, while being hundreds of times faster.

  10. A series of novel lanthanide complexes with 2-bromine-5-methoxybenzoic acid and 2,2‧-bipyridine: Syntheses, crystal structures, and luminescent properties

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Qing; Zhu, Min-Min; Ren, Ning; Zhang, Jian-Jun

    2017-12-01

    Six new lanthanide complexes [Ln(2-Br-5-MOBA)3(2,2‧-DIPY)]2 (Ln = Nd(1), Eu(2), Gd(3), Tb(4), Ho(5), Er(6); 2-Br-5-MOBA = 2-bromine-5-methoxybenzoate; 2,2‧-DIPY = 2,2‧-bipyridine) have been successfully synthesized and characterized. The complexes 1-5 are isostructural and nine-coordinated by the single-crystal X-ray diffraction analyses, while the complex 6 is eight-coordinated. The difference of crystal structure may be the result of the lanthanide contraction effect. The binuclear units were further assembled into 1D, 2D, 3D supramolecular structures by the π-π stacking and Csbnd H⋯O hydrogen bonding interactions. The thermal decomposition mechanism of complexes 1-6 was studied by TG analysis and further authenticated by TG/DSC-FTIR techniques. The solid-state luminescence properties of complexes 2 and 4 were investigated at room temperature. The results indicate that complexes 2 and 4 show characteristic emission of Eu3+ ion and Tb3+ ion, respectively. What's more, the title complexes have good antibacterial activities against Candida albicans.

  11. Two sodium and lanthanide(III) MOFs based on oxalate and V-shaped 4,4‧-oxybis(benzoate) ligands: Hydrothermal synthesis, crystal structure, and luminescence properties

    NASA Astrophysics Data System (ADS)

    Wang, Chongchen; Guo, Guangliang; Wang, Peng

    2013-01-01

    Two lanthanide based metal-organic frameworks, [NaLn(oba)(ox)(H2O)] (Lndbnd6 Eu(1) and Sm(2)) were obtained from 4,4'-oxybisbenzoic acid, sodium oxalate and corresponding lanthanide salts by hydrothermal synthesis. They were characterized by single-crystal X-ray diffraction, IR spectra, and photoluminescent spectra. The crystallographic data reveals that complexes 1 and 2 are isomorphous and isostructural, composed of three-dimensional framework built up of distorted tricapped trigonal EuO9 units, distorted octahedron NaO6 units, 4,4'-oxybis(benzoate) and oxalate. The carboxylate oxygen atoms of the 4,4'-oxybis(benzoate) and oxalate ligand are coordinated to lanthanide ions and sodium ions, resulting into two-dimensional inorganic sheets, which are further linked into three-dimensional network by organic ligands. Thermogravimetric analyses of 1-2 display a considerable thermal stability. Photoluminescent measurements indicated that europium complex 1 displayed strong red emission.

  12. Tri- and tetra-substituted cyclen based lanthanide(III) ion complexes as ribonuclease mimics: a study into the effect of log Ka, hydration and hydrophobicity on phosphodiester hydrolysis of the RNA-model 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP).

    PubMed

    Fanning, Ann-Marie; Plush, Sally E; Gunnlaugsson, Thorfinnur

    2015-05-28

    A series of tetra-substituted 'pseudo' dipeptide ligands of cyclen (1,4,7,10,-tetraazacyclododecane) and a tri-substituted 3'-pyridine ligand of cyclen, and the corresponding lanthanide(III) complexes were synthesised and characterised as metallo-ribonuclease mimics. All complexes were shown to promote hydrolysis of the phosphodiester bond of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP, τ1/2 = 5.87 × 10(3) h), a well known RNA mimic. The La(III) and Eu(III) tri-substituted 3'-pyridine lanthanide(III) complexes being the most efficient in promoting such hydrolysis at pH 7.4 and at 37 °C; with τ1/2 = 1.67 h for La(III) and 1.74 h for Eu(III). The series was developed to provide the opportunity to investigate the consequences of altering the lanthanide(III) ion, coordination ability and hydrophobicity of a metallo-cavity on the rate of hydrolysis using the model phosphodiester, HPNP, at 37 °C. To further provide information on the role that the log Ka of the metal bound water plays in phosphodiester hydrolysis the protonation constants and the metal ion stability constants of both a tri and tetra-substituted 3'pyridine complex were determined. Our results highlighted several key features for the design of lanthanide(III) ribonucelase mimics; the presence of two metal bound water molecules are vital for pH dependent rate constants for Eu(III) complexes, optimal pH activity approximating physiological pH (∼7.4) may be achieved if the log Ka values for both MLOH and ML(OH)2 species occur in this region, small changes to hydrophobicity within the metallo cavity influence the rate of hydrolysis greatly and an amide adjacent to the metal ion capable of forming hydrogen bonds with the substrate is required for achieving fast hydrolysis.

  13. Parameters for the RM1 Quantum Chemical Calculation of Complexes of the Trications of Thulium, Ytterbium and Lutetium

    PubMed Central

    Filho, Manoel A. M.; Dutra, José Diogo L.; Rocha, Gerd B.; Simas, Alfredo M.

    2016-01-01

    The RM1 quantum chemical model for the calculation of complexes of Tm(III), Yb(III) and Lu(III) is advanced. Subsequently, we tested the models by fully optimizing the geometries of 126 complexes. We then compared the optimized structures with known crystallographic ones from the Cambridge Structural Database. Results indicate that, for thulium complexes, the accuracy in terms of the distances between the lanthanide ion and its directly coordinated atoms is about 2%. Corresponding results for ytterbium and lutetium are both 3%, levels of accuracy useful for the design of lanthanide complexes, targeting their countless applications. PMID:27223475

  14. Magnetic relaxation pathways in lanthanide single-molecule magnets.

    PubMed

    Blagg, Robin J; Ungur, Liviu; Tuna, Floriana; Speak, James; Comar, Priyanka; Collison, David; Wernsdorfer, Wolfgang; McInnes, Eric J L; Chibotaru, Liviu F; Winpenny, Richard E P

    2013-08-01

    Single-molecule magnets are compounds that exhibit magnetic bistability caused by an energy barrier for the reversal of magnetization (relaxation). Lanthanide compounds are proving promising as single-molecule magnets: recent studies show that terbium phthalocyanine complexes possess large energy barriers, and dysprosium and terbium complexes bridged by an N2(3-) radical ligand exhibit magnetic hysteresis up to 13 K. Magnetic relaxation is typically controlled by single-ion factors rather than magnetic exchange (whether one or more 4f ions are present) and proceeds through thermal relaxation of the lowest excited states. Here we report polylanthanide alkoxide cage complexes, and their doped diamagnetic yttrium analogues, in which competing relaxation pathways are observed and relaxation through the first excited state can be quenched. This leads to energy barriers for relaxation of magnetization that exceed 800 K. We investigated the factors at the lanthanide sites that govern this behaviour.

  15. Coherent manipulation of mononuclear lanthanide-based single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Datta, Saiti; Ghosh, Sanhita; Krzystek, Jurek; Hill, Stephen; Del Barco, Enrique; Cardona-Serra, Salvador; Coronado, Eugenio

    2010-03-01

    Using electron spin echo (ESE) spectroscopy, we report measurements of the longitudinal (T1) and transverse (T2) relaxation times of diluted single-crystals containing recently discovered mononuclear lanthanide-based single-molecule magnets (SMMs) encapsulated in polyoxometallate cages [AlDamen et al. J. Am. Chem. Soc. 130, 8874 -- 8875 (2008)]. This encapsulation offers the potential for preserving bulk SMM properties outside of a crystal, e.g. in molecular spintronic devices. The magnetic anisotropy in these complexes arises from the spin-orbit splitting of the ground state J multiplet of the lanthanide ion in the presence of a ligand field. At low frequencies only hyperfine-split transitions within the lowest ground state ±mJ doublet are observed. Spin relaxation times were measured for a holmium complex, and the results were compared for different hyperfine transitions and crystal dilutions. Clear Rabi oscillations were also observed, indicating that one can manipulate the spin coherently in these complexes.

  16. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers.

    PubMed

    Du, H S; Wood, D J; Elshani, S; Wai, C M

    1993-02-01

    Thorium and the lanthanides are extracted by alpha-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed.

  17. Potentiometric study of binary complexes of 3-[(1 R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride with some lanthanide ions in aqueous and mixed solutions

    NASA Astrophysics Data System (ADS)

    Sharma, S. S.; Kadia, M. V.

    2014-12-01

    The complexation of lanthanide ions (Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Tb3+, and Dy3+) with 3-[(1 R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride was studied at different temperatures and different ionic strengths in aqueous solutions by Irving-Rossotti pH titration technique. Stepwise calculation, PKAS and BEST Fortran IV computer programs were used for determination of proton-ligand and metal-ligand stability constants. The formation of species like MA, MA2, and MA(OH) is considered in SPEPLOT. Thermodynamic parameters of complex formation (Δ G, Δ H, and Δ S) are also evaluated. Negative Δ G and Δ H values indicate that complex formation is favourable in these experimental conditions. The stability of complexes is also studied at in different solvent-aqueous (vol/vol). The stability series of lanthanide complexes has shown to have the "gadolinium break." Stability of complexes decreases with increase in ionic strength and temperature. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained.

  18. Energetic lanthanide complexes: coordination chemistry and explosives applications

    NASA Astrophysics Data System (ADS)

    Manner, V. W.; Barker, B. J.; Sanders, V. E.; Laintz, K. E.; Scott, B. L.; Preston, D. N.; Sandstrom, M.; Reardon, B. L.

    2014-05-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  19. Energetic Lanthanide Complexes: Coordination Chemistry and Explosives Applications

    NASA Astrophysics Data System (ADS)

    Manner, Virginia; Barker, Beau; Sanders, Eric; Laintz, Kenneth; Scott, Brian; Preston, Daniel; Sandstrom, Mary; Reardon, Bettina

    2013-06-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with ``tailor made'' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  20. Theoretical Determination of Energy Transfer Processes and Influence of Symmetry in Lanthanide(III) Complexes: Methodological Considerations.

    PubMed

    Beltrán-Leiva, María J; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2018-05-07

    This work presents a theoretical protocol to analyze the symmetry effect on the allowed character of the transitions and to estimate the probability of energy transfer in lanthanide(III) complexes. For this purpose, a complete study was performed based on the multireference CASSCF/PT2 technique along with TDDFT, to build the energy level diagrams and determine the spectral overlap integrals, respectively. This approach was applied on a series of LnIII complexes, viz. [LnCl 3 (DMF) 2 (Dpq)]/[Ln(NO 3 ) 3 (DMF) 2 (Dpq)], where Ln = Sm III , Tb III , Er III /Eu III , Nd III and dpq = dipyridoquinoxaline, synthesized and characterized by Patra et al. ( Dalton Trans. 2015 , 44 ( 46 ), 19844 - 19855 ; CrystEngComm 2016 , 18 ( 23 ), 4313 - 4322 ; Inorg. Chim. Acta 2016 , 451 , 73 - 81 ). A fragmentation scheme was applied where both the ligand and the lanthanide fragments were treated separately but at the same level of theory. The symmetry analysis only partially reproduced the expected results, and a more detailed analysis of the crystal field became necessary. On the other hand, the most probable energy transfer pathways that take place in the complexes were elucidated from the energy gaps between the ligand-localized triplet state and the emitting levels of the lanthanide fragments. These gaps, which are related to the energy transfer rate, properly reproduced the trend reported experimentally for the best and worst yields. Finally, the spectral overlap integral was calculated from the emission spectra of the dpq ligand and the absorption spectra of the lanthanide fragment. The obtained values are in good agreement with the quantum yields calculated for the systems. The most remarkable aspect of this protocol was its ability to explain the emission and nonemission of the studied compounds.

  1. Relaxation dynamics of dysprosium(III) single molecule magnets.

    PubMed

    Guo, Yun-Nan; Xu, Gong-Feng; Guo, Yang; Tang, Jinkui

    2011-10-21

    Over the past decade, lanthanide compounds have become of increasing interest in the field of Single Molecule Magnets (SMMs) due to the large inherent anisotropy of the metal ions. Heavy lanthanide metal systems, in particular those containing the dysprosium(III) ion, have been extensively employed to direct the formation of a series of SMMs. Although remarkable progress is being made regarding the synthesis and characterization of lanthanide-based SMMs, the understanding and control of the relaxation dynamics of strongly anisotropic systems represents a formidable challenge, since the dynamic behaviour of lanthanide-based SMMs is significantly more complex than that of transition metal systems. This perspective paper describes illustrative examples of pure dysprosium(III)-based SMMs, published during the past three years, showing new and fascinating phenomena in terms of magnetic relaxation, aiming at shedding light on the features relevant to modulating relaxation dynamics of polynuclear lanthanide SMMs. This journal is © The Royal Society of Chemistry 2011

  2. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    PubMed

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  3. Robust lanthanide emitters in polyelectrolyte thin films for photonic applications

    NASA Astrophysics Data System (ADS)

    Greenspon, Andrew S.; Marceaux, Brandt L.; Hu, Evelyn L.

    2018-02-01

    Trivalent lanthanides provide stable emission sources at wavelengths spanning the ultraviolet through the near infrared with uses in telecommunications, lighting, and biological sensing and imaging. We describe a method for incorporating an organometallic lanthanide complex within polyelectrolyte multilayers, producing uniform, optically active thin films on a variety of substrates. These films demonstrate excellent emission with narrow linewidths, stable over a period of months, even when bound to metal substrates. Utilizing different lanthanides such as europium and terbium, we are able to easily tune the resulting wavelength of emission of the thin film. These results demonstrate the suitability of this platform as a thin film emitter source for a variety of photonic applications such as waveguides, optical cavities, and sensors.

  4. CERES: An ab initio code dedicated to the calculation of the electronic structure and magnetic properties of lanthanide complexes.

    PubMed

    Calvello, Simone; Piccardo, Matteo; Rao, Shashank Vittal; Soncini, Alessandro

    2018-03-05

    We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin-orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree-Fock (CAHF) algorithm for the determination of 4f quasi-atomic active orbitals common to all multi-electron spin manifolds contributing to the ground spin-orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi-Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem-specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state-of-the-art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time-efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non-perturbative spin-orbit coupling effects. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. The behavior and importance of lactic acid complexation in Talspeak extraction systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Travis S.; Nilsson, Mikael; Nash, Kenneth L.

    2008-07-01

    Advanced partitioning of spent nuclear fuel in the UREX +la process relies on the TALSPEAK process for separation of fission-product lanthanides from trivalent actinides. The classic TALSPEAK utilizes an aqueous medium of both lactic acid and diethylenetriaminepentaacetic acid and the extraction reagent di(2-ethylhexyl)phosphoric acid in an aromatic diluent. In this study, the specific role of lactic acid and the complexes involved in the extraction of the trivalent actinides and lanthanides have been investigated using {sup 14}C-labeled lactic acid. Our results show that lactic acid partitions between the phases in a complex fashion. (authors)

  6. Orientational Order in Liquid Crystal Complexes Based on Lanthanides

    NASA Astrophysics Data System (ADS)

    Dobrun, L. A.; Kovshik, A. P.; Ryumtsev, E. I.; Kalinkin, A. A.

    2018-04-01

    In this study, we have for the first time determined the degree of an orientational order S for a series of liquid-crystal complexes based on lanthanides (Eu+3, Gd+3, Tb+3, Dy+3) with the same ligand composition in the temperature range of existence of the nematic phase by using experimental refractometry results. We have also found an even-odd alternative S as number of protons in the ions complexing agent has consecutively increased. The obtained values of S have been compared with the corresponding degrees of order of the calamite organic liquid crystals.

  7. TmDOTA -: A Sensitive Probe for MR Thermometry in Vivo

    NASA Astrophysics Data System (ADS)

    Zuo, Chun S.; Mahmood, Ashfaq; Sherry, A. Dean

    2001-07-01

    The lanthanide complex, thulium 1,4,7,10-tetraazacyclodo- decane-1,4,7,10-tetraacetic acid (TmDOTA-), has been investigated as an agent for MR thermometry in vivo. The chemical shifts of the TmDOTA- protons were highly sensitive to temperature at a clinically relevant field strength, yet insensitive to pH and the presence of Ca2+. Given the excellent stability of lanthanide-DOTA complexes and high thermal sensitivity, TmDOTA- is expected to be a good candidate for MR thermometry in vivo.

  8. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    NASA Astrophysics Data System (ADS)

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi

    2015-05-01

    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1-3 contain four types of 21 helical chains. While the Nd(III) ions are bridged through μ2-HIDC2- and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.

  9. Advances in lanthanide-based luminescent peptide probes for monitoring the activity of kinase and phosphatase.

    PubMed

    Pazos, Elena; Vázquez, M Eugenio

    2014-02-01

    Signaling pathways based on protein phosphorylation and dephosphorylation play critical roles in the orchestration of complex biochemical events and form the core of most signaling pathways in cells (i.e. cell cycle regulation, cell motility, apoptosis, etc.). The understanding of these complex signaling networks is based largely on the biochemical study of their components, i.e. kinases and phosphatases. The development of luminescent sensors for monitoring kinase and phosphatase activity is therefore an active field of research. Examples in the literature usually rely on the modulation of the fluorescence emission of organic fluorophores. However, given the exceptional photophysical properties of lanthanide ions, there is an increased interest in their application as emissive species for monitoring kinase and phosphatase activity. This review summarizes the advances in the development of lanthanide-based luminescent peptide sensors as tools for the study of kinases and phosphatases and provides a critical description of current examples and synthetic approaches to understand these lanthanide-based luminescent peptide sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multi-component lanthanide hybrids based on zeolite A/L and zeolite A/L-polymers for tunable luminescence.

    PubMed

    Chen, Lei; Yan, Bing

    2015-02-01

    Some multi-component hybrids based on zeolite L/A are prepared. Firstly, zeolite A/L is loaded with lanthanide complexes (Eu-DBM or Tb-AA (acetylacetone = AA, dibenzoylmethane = DBM)) into its channels. Secondly, 3-methacryloyloxypropyltrimethoxysilane (γ-MPS) is used to covalently graft onto the surface of functionalized zeolite A/L (Si-[ZA/L⊃Eu-DBM(Tb-AA)]). Thirdly, lanthanide ions (Eu(3+)/Tb(3+)) are coordinated to the functionalized zeolite A/L and ligands (phen(1,10-phenanthroline) or bipy (2,2'-bipyridyl)) are introduced by a ship-in-bottle method. The inside-outside double modifications of ZA/L with lanthanide complexes afford the final hybrids and these are characterized by means of XRD, FT-IR, UV-vis DRS, SEM and luminescence spectroscopy, some of which display white or near-white light emission. Furthermore, selected above-mentioned hybrids are incorporated into PEMA/PMMA (poly ethyl methylacryate/poly methyl methacrylate) hosts to prepare luminescent polymer films. These results provide abundant data that these hybrid materials can be expected to have potential application in various practical fields.

  11. Cloud point extraction: an alternative to traditional liquid-liquid extraction for lanthanides(III) separation.

    PubMed

    Favre-Réguillon, Alain; Draye, Micheline; Lebuzit, Gérard; Thomas, Sylvie; Foos, Jacques; Cote, Gérard; Guy, Alain

    2004-06-17

    Cloud point extraction (CPE) was used to extract and separate lanthanum(III) and gadolinium(III) nitrate from an aqueous solution. The methodology used is based on the formation of lanthanide(III)-8-hydroxyquinoline (8-HQ) complexes soluble in a micellar phase of non-ionic surfactant. The lanthanide(III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud point temperature (CPT). The structure of the non-ionic surfactant, and the chelating agent-metal molar ratio are identified as factors determining the extraction efficiency and selectivity. In an aqueous solution containing equimolar concentrations of La(III) and Gd(III), extraction efficiency for Gd(III) can reach 96% with a Gd(III)/La(III) selectivity higher than 30 using Triton X-114. Under those conditions, a Gd(III) decontamination factor of 50 is obtained.

  12. A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Pei-Yao; Liao, Sheng-Yun; Gu, Wen, E-mail: guwen68@nankai.edu.cn

    2016-12-15

    A 3D lanthanide MOF with formula [Sm{sub 2}(abtc){sub 1.5}(H{sub 2}O){sub 3}(DMA)]·H{sub 2}O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol. - Highlights: • A three-dimensional lanthanide metal-organic framework has been synthesized. • Complex 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. • Complex 1 displays amore » turn-on luminescence sensing with respect to ethanol among different alcohol molecules.« less

  13. Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(III) complexes with 2,3-quinoxalinediolate ligands.

    PubMed

    Vallejo, Julia; Cano, Joan; Castro, Isabel; Julve, Miguel; Lloret, Francesc; Fabelo, Oscar; Cañadillas-Delgado, Laura; Pardo, Emilio

    2012-08-11

    The coordination chemistry of the 2,3-quinoxalinediolate ligand with different lanthanide(III) ions in basic media in air affords a new family of carbonato-bridged M(2)(III) compounds (M = Pr, Gd and Dy), the Dy(2)(III) analogue exhibiting slow magnetic relaxation behaviour typical of single-molecule magnets.

  14. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.

    PubMed

    Gao, Nan; Zhang, Yunfang; Huang, Pengcheng; Xiang, Zhehao; Wu, Fang-Ying; Mao, Lanqun

    2018-06-05

    Lanthanide-based luminescent sensors have been widely used for the detection of the anthrax biomarker dipicolinic acid (DPA). However, mainly based on DPA sensitization to the lanthanide core, most of them failed to realize robust detection of DPA in bacterial spores. We proposed a new strategy for reliable detection of DPA by perturbing a tandem energy transfer in heterobinuclear lanthanide coordination polymer nanoparticles simply constructed by two kinds of lanthanide ions, Tb 3+ and Eu 3+ , and guanosine 5'-monophosphate. This smart luminescent probe was demonstrated to exhibit highly sensitive and selective visual luminescence color change upon exposure to DPA, enabling accurate detection of DPA in complex biosystems such as bacterial spores. DPA release from bacterial spores on physiological germination was also successfully monitored in real time by confocal imaging. This probe is thus expected to be a powerful tool for efficient detection of bacterial spores in responding to anthrax threats.

  15. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.

    PubMed

    Aime, Silvio; Castelli, Daniela Delli; Crich, Simonetta Geninatti; Gianolio, Eliana; Terreno, Enzo

    2009-07-21

    Contrast in magnetic resonance imaging (MRI) arises from changes in the intensity of the proton signal of water between voxels (essentially, the 3D counterpart of pixels). Differences in intervoxel intensity can be significantly enhanced with chemicals that alter the nuclear magnetic resonance (NMR) intensity of the imaged spins; this alteration can occur by various mechanisms. Paramagnetic lanthanide(III) complexes are used in two major classes of MRI contrast agent: the well-established class of Gd-based agents and the emerging class of chemical exchange saturation transfer (CEST) agents. A Gd-based complex increases water signal by enhancing the longitudinal relaxation rate of water protons, whereas CEST agents decrease water signal as a consequence of the transfer of saturated magnetization from the exchangeable protons of the agent. In this Account, we survey recent progress in both areas, focusing on how MRI is becoming a more competitive choice among the various molecular imaging methods. Compared with other imaging modalities, MRI is set apart by its superb anatomical resolution; however, its success in molecular imaging suffers because of its intrinsic insensitivity. A relatively high concentration of molecular agents (0.01-0.1 mM) is necessary to produce a local alteration in the water signal intensity. Unfortunately, the most desirable molecules for visualization in molecular imaging are present at much lower concentrations, in the nano- or picomolar range. Therefore, augmenting the sensitivity of MRI agents is key to the development of MR-based molecular imaging applications. In principle, this task can be tackled either by increasing the sensitivity of the reporting units, through the optimization of their structural and dynamic properties, or by setting up proper amplification strategies that allow the accumulation of a huge number of imaging reporters at the site of interest. For Gd-based agents, high sensitivities can be attained by exploiting a range of nanosized carriers (micelles, liposomes, microemulsions, and the like, as well as biological structures such as apoferritin and lipoproteins) properly loaded with Gd-based chelates. Furthermore, the sensitivity of Gd-based agents can be markedly affected either by their interactions with biological structures or by their cellular localization. For CEST agents, a huge sensitivity enhancement has been obtained by using the water molecules contained in the inner cavity of liposomes as the exchangeable source of protons for magnetization transfer. Several "tricks" (for example, the use of multimeric lanthanide(III) shift reagents, changes in the shape of the liposome container, and so forth) have been devised to improve the chemical shift separation between the intraliposomal water and the "bulk" water resonances. Overall, excellent sensitivity enhancements have been obtained for both classes of agents, enabling their use in MR molecular imaging applications.

  16. Method and apparatus for detecting and quantifying bacterial spores on a surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.

  17. Method and Apparatus for Detecting and Quantifying Bacterial Spores on a Surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2016-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.

  18. Mechanistic insights into the luminescent sensing of organophosphorus chemical warfare agents and simulants using trivalent lanthanide complexes.

    PubMed

    Dennison, Genevieve H; Johnston, Martin R

    2015-04-20

    Organophosphorus chemical warfare agents (OP CWAs) are potent acetylcholinesterase inhibitors that can cause incapacitation and death within minutes of exposure, and furthermore are largely undetectable by the human senses. Fast, efficient, sensitive and selective detection of these compounds is therefore critical to minimise exposure. Traditional molecular-based sensing approaches have exploited the chemical reactivity of the OP CWAs, whereas more recently supramolecular-based approaches using non-covalent interactions have gained momentum. This is due, in part, to the potential development of sensors with second-generation properties, such as reversibility and multifunction capabilities. Supramolecular sensors also offer opportunities for incorporation of metal ions allowing for the exploitation of their unique properties. In particular, trivalent lanthanide ions are being increasingly used in the OP CWA sensing event and their use in supramolecular sensors is discussed in this Minireview. We focus on the fundamental interactions of simple lanthanide systems with OP CWAs and simulants, along with the development of more elaborate and complex systems including those containing nanotubes, polymers and gold nanoparticles. Whilst literature investigations into lanthanide-based OP CWA detection systems are relatively scarce, their unique and versatile properties provide a promising platform for the development of more efficient and complex sensing systems into the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4 nanocrystals.

    PubMed

    Yang, L W; Zhang, Y Y; Li, J J; Li, Y; Zhong, J X; Chu, Paul K

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln=Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X=0.352, CIE-Y=0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4 nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4 nanocrystals. The multifunctional Ln3+ doped KGdF4 nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.

  20. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, L. W.; Zhang, Y. Y.; Li, J. J.; Li, Y.; Zhong, J. X.; Chu, Paul K.

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln = Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X = 0.352, CIE-Y = 0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4nanocrystals. The multifunctional Ln3+ doped KGdF4nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.

  1. Giant exchange interaction in mixed lanthanides

    PubMed Central

    Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.

    2016-01-01

    Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction. PMID:27087470

  2. Lanthanide-cyclodextrin complexes as probes for elucidating optical purity by NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, T.J.; Bogyo, M.S.; Lebeau, E.L.

    1994-06-01

    A multidentate ligand is bonded to cyclodextrins by the reaction of diethylenetriaminepentaacetic dianhydride with 6-mono- and 2-mono(ethylenediamine) derivatives of cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives enhances the enantiomeric resolution in the [sup 1]H NMR spectra of carbionoxamine maleate, doxylamine succinate, pheniramine maleate, propranolol hydrochloride, and tryptophan. The enhancement is more pronounced with the secondary derivative. The Dy(III)-induced shifts can be used to elucidate the geometry of cyclodextrin-substrate inclusion complexes. Lanthanide-induced shifts are reported for complexes of aspartame, tryptophan, propranolol, and 1-anilino-8-naphthalenesulfonate with cyclodextrins, and the relative magnitudes of the shifts agree with previously reported structures of the complexes. 37more » refs., 9 figs., 5 tabs.« less

  3. Hafnium radioisotope recovery from irradiated tantalum

    DOEpatents

    Taylor, Wayne A.; Jamriska, David J.

    2001-01-01

    Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively adsorbing the iron from the acid solution of hafnium and iron by anionic exchange; (i) drying the ion exchanged hafnium solution to obtain hafnium isotopes. Additionally, if needed to remove residue remaining after the product is dried, dissolution in acid followed by cation exchange, then anion exchange, is performed.

  4. Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units.

    PubMed

    Hasegawa, Yasuchika; Sato, Nao; Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Kobayashi, Atsushi; Kato, Masako; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji

    2015-05-21

    Enhanced luminescence of a lanthanide complex with dynamic polarization of the excited state and molecular motion is introduced. The luminescent lanthanide complex is composed of one Eu(hfa)3 (hfa, hexafluoroacetylacetonate) and two phosphine oxide ligands with ruthenocenyl units Rc, [Eu(hfa)3(RcPO)2] (RcPO = diphenylphosphorylruthenocene). The ruthenocenyl units in the phosphine oxide ligands play an important role of switching for dynamic molecular polarization and motion in liquid media. The oxidation states of the ruthenocenyl unit (Rc(1+)/Rc(1+)) are controlled by potentiostatic polarization. Eu(III) complexes attached with bidentate phosphine oxide ligands containing ruthenocenyl units, [Eu(hfa)3(RcBPO)] (RcBPO = 1,1'-bis(diphenylphosphoryl)ruthenocene), and with bidentate phosphine oxide ligands, [Eu(hfa)3(BIPHEPO)] (BIPHEPO =1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide), were also prepared as references. The coordination structures and electrochemical properties were analyzed using single crystal X-ray analysis, cyclic voltammetry, and absorption spectroscopy measurements. The luminescence properties were estimated using an optoelectrochemical cell. Under potentiostatic polarization, a significant enhancement of luminescence was successfully observed for [Eu(hfa)3(RcPO)2], while no spectral change was observed for [Eu(hfa)3(RcBPO)]. In this study, the remarkable enhanced luminescence phenomena of Eu(III) complex based on the dynamic molecular motion under potentiostatic polarization have been performed.

  5. The New Element Americium (Atomic Number 95)

    DOE R&D Accomplishments Database

    Seaborg, G.T.; James, R.A.; Morgan, L.O.

    1948-01-01

    Several isotopes of the new element 95 have been produced and their radiations characterized. The chemical properties of this tripositive element are similar to those of the typical tripositive lanthanide rare-earth elements. Element 95 is different from the latter in the degree and rate of formation of certain compounds of the complex ion type, which makes possible the separation of element 95 from the lanthanide rare-earths. The name americium (after the Americas) and the symbol Am are suggested for the element on the basis of its position as the sixth member of the actinide rare-earth series, analogous to europium, Eu, of the lanthanide series.

  6. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state

    NASA Astrophysics Data System (ADS)

    Hanuza, J.; Godlewska, P.; Lisiecki, R.; Ryba-Romanowski, W.; Kadłubański, P.; Lorenc, J.; Łukowiak, A.; Macalik, L.; Gerasymchuk, Yu.; Legendziewicz, J.

    2018-05-01

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln = Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass.

  7. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state.

    PubMed

    Hanuza, J; Godlewska, P; Lisiecki, R; Ryba-Romanowski, W; Kadłubański, P; Lorenc, J; Łukowiak, A; Macalik, L; Gerasymchuk, Yu; Legendziewicz, J

    2018-05-05

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln=Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass. Copyright © 2018. Published by Elsevier B.V.

  8. Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants

    DOE PAGES

    McCann, Billy W.; Silva, Nuwan De; Windus, Theresa L.; ...

    2016-02-17

    Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R 2(O)P-link-P(O)R 2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theorymore » and the performance of known bis-phosphine oxide extractants. For the case where link is -CH 2-, evaluation of the ligand geometry provides the first characterization of a steric origin for the ‘anomalous aryl strengthening’ effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples.« less

  9. Brilliant Sm, Eu, Tb, and Dy Chiral Lanthanide Complexes with Strong Circularly Polarized Luminescence

    PubMed Central

    Petoud, Stéphane; Muller, Gilles; Moore, Evan G.; Xu, Jide; Sokolnicki, Jurek; Riehl, James P.; Le, Uyen N.; Cohen, Seth M.; Raymond, Kenneth N.

    2009-01-01

    The synthesis, characterization, and luminescent behavior of trivalent Sm, Eu, Dy, and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, glum, recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments. PMID:17199285

  10. Novel Flourescent Sensors for the Detection of Organic Molecules in Extraterrestrial Samples

    NASA Astrophysics Data System (ADS)

    Adkin, Roy C.; Bruce, James I.; Pearson, Victoria K.

    2015-04-01

    Organic compounds in extraterrestrial samples have mostly been elucidated by destructive analytical techniques therefore information regarding spatial relationships between minerals and organic species is lost. Minerals form under specific chemical and physical conditions so organic compounds associated with these minerals are likely to have formed under the same conditions. It is therefore possible to infer in which cosmological provinces their chemical evolution took place. We will describe progress towards developing fluorescent sensors that may resolve spatial discrimination. Lanthanide elements such as europium and terbium produce well defined line-like, high intensity and long lived fluorescent emissions. Interactions with organic molecules may alter the luminescent emission characteristics. The lanthanide atom needs to be rendered chemically inert but must remain susceptible to these organic molecule interactions. An organic ligand must be employed to attain this. DOTA (1,4,7,10-tetraazacyclododecanetetracetic acid) was chosen as a plausible organic ligand because its structure, a tetra-substituted cyclen ring, and ability to chelate are well characterized. It is also commercially available. Fluorescent lanthanide-DOTA complexes are used in many biological and analytical imaging applications so it is logical to investigate their applicability to fluorimetric analysis of extraterrestrial organics. Lanthanide-DOTA complexes are very stable because the lanthanide metal atom is enveloped within the DOTA structure. Experimental procedures were designed to investigate lanthanide/analyte interactions and their effect upon fluorescent emissions. A range of compounds were chosen giving a good representation of the organics identified in extraterrestrial samples and whether they may to interact with the lanthanide metal ion. An Europium-DOTA baseline fluorescent spectrum was obtained and compared against Europium-DOTA/analyte mixtures of a range of concentrations resembling those present in extraterrestrial samples. Upon collation and analysis of results a much reduced set of analytes were chosen for experimentation with Terbium-DOTA. Results showed no change in fluorescent intensity or emission spectrum for any of the analytes at the concentrations found in extraterrestrial samples (μM to nM). This could be due to no interaction at any concentration of analyte or there is an intrinsic limit of detection. Experiments were carried out at equimolar concentration with fewer analytes. It was found that here was an increase in fluorescent intensity for some analytes and decrease for others (e.g. adenine and ornithine, respectively). There was no discernible trend in behaviour according to analyte structure or how they might interact as a result. Attention has now turned to the tris-substituted cyclen ring, DO3A, which could afford improved scope for interaction. DOTA is an unsuitable ligand to use for the sensor. Experimentation has shown that neither lanthanide-DOTA complexes exhibited a change in fluorescent spectrum; the ligand requires modification not the choice of lanthanide. We will present results from the development and preliminary testing of the DO3A sensor.

  11. Would the solvent effect be the main cause of band shift in the theoretical absorption spectrum of large lanthanide complexes?

    NASA Astrophysics Data System (ADS)

    Freire, Ricardo O.; Rodrigues, Nailton M.; Rocha, Gerd B.; Gimenez, Iara F.; da Costa Junior, Nivan B.

    2011-06-01

    As most reactions take place in solution, the study of solvent effects on relevant molecular properties - either by experimental or theoretical methods - is crucial for the design of new processes and prediction of technological properties. In spite of this, only few works focusing the influence of the solvent nature specifically on the spectroscopic properties of lanthanide complexes can be found in the literature. The present work describes a theoretical study of the solvent effect on the prediction of the absorption spectra for lanthanide complexes, but other possible relevant factors have been also considered such as the molecular geometry and the excitation window used for interaction configuration (CI) calculations. The [Eu(ETA) 2· nH 2O] +1 complex has been chosen as an ideal candidate for this type of study due to its small number of atoms (only 49) and also because the absorption spectrum exhibits a single band. Two Monte Carlo simulations were performed, the first one considering the [Eu(ETA) 2] +1 complex in 400 water molecules, evidencing that the complex presents four coordinated water molecules. The second simulation considered the [Eu(ETA) 2·4H 2O] +1 complex in 400 ethanol molecules, in order to evaluate the solvent effect on the shift of the maximum absorption in calculated spectra, compared to the experimental one. Quantum chemical studies were also performed in order to evaluate the effect of the accuracy of calculated ground state geometry on the prediction of absorption spectra. The influence of the excitation window used for CI calculations on the spectral shift was also evaluated. No significant solvent effect was found on the prediction of the absorption spectrum for [Eu(ETA) 2·4H 2O] +1 complex. A small but significant effect of the ground state geometry on the transition energy and oscillator strength was also observed. Finally it must be emphasized that the absorption spectra of lanthanide complexes can be predicted with great accuracy by the combined use of semiempirical Sparkle/AM1 and INDO/S-CIS as long as the largest possible excitation window is used in the configuration interaction calculation.

  12. Functionalisation of lanthanide complexes via microwave-enhanced Cu(I)-catalysed azide-alkyne cycloaddition.

    PubMed

    Szíjjártó, Csongor; Pershagen, Elias; Borbas, K Eszter

    2012-07-07

    Cu(I)-catalysed azide-alkyne cycloaddition reactions were used to functionalise lanthanide(III)-complexes (Ln; La, Eu and Tb) incorporating alkyne or azide reactive groups. Microwave irradiation significantly accelerated the reactions, enabling full conversion to the triazole products in some cases in 5 min. Alkyl and aryl azides and alkyl and aryl alkynes could all serve as coupling partners. These reaction conditions proved efficient for cyclen-tricarboxylates and previously unreactive cyclen-tris-primary amide chelates. The synthesis of heterobimetallic (Eu/Tb, EuTb17 and Eu/La, EuLa17) and heterotrimetallic (Eu/La/Eu) complexes was achieved in up to 60% isolated yield starting from coumarin 2-appended alkynyl complexes Tb16 or La16 and an azido-Eu complex Eu4, and bis-alkynyl La-complex La5 and Eu4, respectively. EuTb17 displayed dual Eu(III) and Tb(III)-emission upon antenna-centred excitation.

  13. Fluorescent studies on the interaction of DNA and ternary lanthanide complexes with cinnamic acid-phenanthroline and antibacterial activities testing.

    PubMed

    Sun, Hui-Juan; Wang, Ai-Ling; Chu, Hai-Bin; Zhao, Yong-Liang

    2015-03-01

    Twelve lanthanide complexes with cinnamate (cin(-) ) and 1,10-phenanthroline (phen) were synthesized and characterized. Their compositions were assumed to be RE(cin)3 phen (RE(3+)  = La(3+) , Pr(3+) , Nd(3+) , Sm(3+) , Eu(3+) , Gd(3+) , Tb(3+) , Dy(3+) , Ho(3+) , Tm(3+) , Yb(3+) , Lu(3+) ). The interaction mode between the complexes and DNA was investigated by fluorescence quenching experiment. The results indicated the complexes could bind to DNA and the main binding mode is intercalative binding. The fluorescence quenching constants of the complexes increased from La(cin)3 phen to Lu(cin)3 phen. Additionally, the antibacterial activity testing showed that the complexes exhibited excellent antibacterial ability against Escherichia coli, and the changes of antibacterial ability are in agreement with that of the fluorescence quenching constants. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Synthesis, characterization and anticancer activities of two lanthanide(III) complexes with a nicotinohydrazone ligand

    NASA Astrophysics Data System (ADS)

    Xu, Zhou-Qin; Mao, Xian-Jie; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Cai, Hong-Xin; Bie, Hong-Yan; Chen, Ru-Hua; Ma, Tie-liang

    2015-12-01

    Two isostructural acylhydrazone based complexes, namely [Ce(penh)2(H2O)4](NO3)3·4H2O (1) and [Sm(penh)2(NO3)2](NO3)·C2H5OH (2) (penh = 2-acetylpyridine nicotinohydrazone), have been obtained and characterized by physico-chemical and spectroscopic methods. The ten-coordinated lanthanide metal ion in each complex is surrounded by two independent tridentate neutral acylhydrazones with two ON2 donor sets. The other four coordination oxygen atoms are from four water molecules and two bidentate nitrate anions for complexes 1 and 2, respectively, thus giving distorted bicapped square antiprism geometry. Both complexes have excellent antitumor activity towards human pancreatic cancer (PATU8988), human colorectal cancer (lovo) and human gastric cancer(SGC7901) cell line. Furthermore, the cell apoptosis of complex 1 is detected by AnnexinV/PI flow cytometry.

  15. Lanthanide-organic complexes based on polyoxometalates: Solvent effect on the luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Qun; Liu Shuxia, E-mail: liusx@nenu.edu.cn; Liang Dadong

    2012-06-15

    A series of lanthanide-organic complexes based on polyoxometalates (POMs) [Ln{sub 2}(DNBA){sub 4}(DMF){sub 8}][W{sub 6}O{sub 19}] (Ln=La(1), Ce(2), Sm(3), Eu(4), Gd(5); DNBA=3,5-dinitrobenzoate; DMF=N,N-dimethylformamide) has been synthesized. These complexes consist of [W{sub 6}O{sub 19}]{sup 2-} and dimeric [Ln{sub 2}(DNBA){sub 4}(DMF){sub 8}]{sup 2+} cations. The luminescence properties of 4 are measured in solid state and different solutions, respectively. Notably, the emission intensity increases gradually with the increase of solvent permittivity, and this solvent effect can be directly observed by electrospray mass spectrometry (ESI-MS). The analyses of ESI-MS show that the eight coordinated solvent DMF units of dimeric cation are active. They can movemore » away from dimeric cations and exchange with solvent molecules. Although the POM anions escape from 3D supramolecular network, the dimeric state structure of [Ln{sub 2}(DNBA){sub 4}]{sup 2+} remains unchanged in solution. The conservation of red luminescence is attributed to the maintenance of the aggregated state structures of dimeric cations. - Graphical abstract: 3D POMs-based lanthanide-organic complexes performed the solvent effect on the luminescence property. The origin of such solvent effect can be understood and explained on the basis of the existence of coordinated active sites by the studies of ESI-MS. Highlights: Black-Right-Pointing-Pointer The solvent effect on the luminescence property of POMs-based lanthanide-organic complexes. Black-Right-Pointing-Pointer ESI-MS analyses illuminate the correlation between the structure and luminescence property. Black-Right-Pointing-Pointer The dimeric cations have eight active sites of solvent coordination. Black-Right-Pointing-Pointer The aggregated state structure of dimer cation remains unchanged in solution. Black-Right-Pointing-Pointer Luminescence associating with ESI-MS is a new method for investigating the interaction of complex and solvent.« less

  16. Analysis of the isomer ratios of polymethylated-DOTA complexes and the implications on protein structural studies

    PubMed Central

    Opina, Ana Christina L.; Strickland, Madeleine; Lee, Yong-Sok; Tjandra, Nico; Byrd, R. Andrew; Swenson, Rolf E.; Vasalatiy, Olga

    2016-01-01

    A rigidified and symmetrical polymethylated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) ligand bearing four SSSS methyl groups in both the tetraaza ring and the acetate arms (SSSS-SSSS-M4DOTMA) was prepared. The isomer ratio of SSSS-SSSS-M4DOTMA complexed with a series of lanthanide ions was carefully investigated using RP-HPLC and NMR. A square antiprismatic (SAP) configuration was exclusively observed for the early lanthanides, while the twisted square antiprismatic (TSAP) geometry was preferred as the lanthanide ion size decreases. The late lanthanides preferentially adopted the TSAP geometry. One of the pendant arms was modified with a pyridyl disulfide group (SSSS-SSSS-M8SPy) for cysteine attachment and displayed a similar isomer trend as the parent compound, Ln-SSSS-SSSS-M4DOTMA. Covalent attachment to the ubiquitin S57C mutant showed resonances whose intensities are in agreement with the isomeric population observed by HPLC. Furthermore, the NOE experiments combined with quantum chemical calculations have unequivocally demonstrated that the SAP of Pr-SSSS-SSSS-M4DOTMA and Pr-SSSS-SSSS-M8SPy, as well as the TSAP of Yb-SSSS-SSSS-M8SPy are more stable than their corresponding isomers. PMID:26857249

  17. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles.

    PubMed

    Uzun, Lokman; Uzek, Recep; Senel, Serap; Say, Ridvan; Denizli, Adil

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xun; Liu, Lang; College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this casemore » results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.« less

  19. Nonlinear optical properties and excited state dynamics of sandwich-type mixed (phthalocyaninato)(Schiff-base) triple-decker complexes: Effect of rare earth atom

    NASA Astrophysics Data System (ADS)

    Li, Zhongguo; Gao, Feng; Xiao, Zhengguo; Wu, Xingzhi; Zuo, Jinglin; Song, Yinglin

    2018-07-01

    The third-order nonlinear optical properties of two di-lanthanide (Ln = Tb and Dy) sandwich complexes with mixed phthalocyanine and Schiff-base ligands were studied using Z-scan technique at 532 nm with 20 ps and 4 ns pulses. Both complexes exhibit reverse saturable absorption and self-focusing effect in ps regime, while the second-order hyperpolarizability decreases from Dy to Tb. Interestingly, the Tb triple-decker complexes show larger nonlinear absorption than Dy complexes on ns timescale. The time-resolved pump-probe measurements demonstrate that the nonlinear optical response was caused by excited-state mechanism related to the five-level model, while the singlet state lifetime of Dy complexes is 3 times shorter than that of Tb complexes. Our results indicate the lanthanide ions play a critical role in the photo-physical properties of triple-decker phthalocyanine complexes for their application as optical limiting materials.

  20. Acidic 1,3-propanediaminetetraacetato lanthanides with luminescent and catalytic ester hydrolysis properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mao-Long; Shi, Yan-Ru; Yang, Yu-Chen

    2014-11-15

    In acidic solution, a serials of water-soluble coordination polymers (CPs) were isolated as zonal 1D-CPs 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]{sub n}·2Cl{sub n}·3nH{sub 2}O [Ln=La, 1; Ce, 2; Pr, 3; Nd, 4; Sm, 5] (1,3-H{sub 4}pdta=1,3-propanediaminetetraacetic acid, C{sub 11}H{sub 18}N{sub 2}O{sub 8}) in high yields. When 1 eq. mol potassium hydroxide was added to the solutions of 1D-CPs, respectively, two 1D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 3}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=Sm, 6; Gd, 7] were isolated at room temperature and seven 2D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 2}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=La, 8; Ce, 9; Pr, 10; Nd, 11; Sm, 12; Eu, 13; Gd,more » 14] were isolated at 70 °C. When the crystals of 1–4 were hydrothermally heated at 180 °C with 1–2 eq. mol potassium hydroxide, four 3D-CPs [Ln(1,3-Hpdta)]{sub n}·nH{sub 2}O [Ln=La, 15; Ce, 16; Pr, 17; Nd, 18] were obtained. The two 2D-CPs [Ln(1,3-Hpdta)(H{sub 2}O)]{sub n}·4nH{sub 2}O (Sm, 19; Eu, 20) were isolated in similar reaction conditions. With the increments of pH value in the solution and reaction temperature, the structure becomes more complicated. 1–5 are soluble in water and 1 was traced by solution {sup 13}C({sup 1}H) NMR technique, the water-soluble lanthanides 1 and 5 show catalytic activity to ester hydrolysis reaction respectively, which indicate their important roles in the hydrolytic reaction. The europium complexes 13 and 20 show visible fluorescence at an excitation of 394 nm. The structure diversity is mainly caused by the variation of coordinated ligand in different pH values and lanthanide contraction effect. Acidic conditions are favorable for the isolations of lanthanide complexes in different structures and this may helpful to separate different lanthanides. The thermal stability investigations reveal that acidic condition is favorable to obtain the oxides at a lower temperature. - Graphical abstract: A series of water-soluble acidic 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]n·2Cl{sub n}·3nH{sub 2}O have been converted to their 2D and 3D lanthanides, which are active for the catalytic conversion of ester hydrolysis. - Highlights: • Novel acidic propanediaminetetraacetato lanthanides. • Water-soluble 1D coordination polymers. • Acidic conditions are suitable for the isolations of lanthanide complexes in different structures. • 1 and 5 show good catalytic activity to ester hydrolysis. • Europium coordination polymers 13 and 20 give visible fluorescence.« less

  1. Photoluminescent and Slow Magnetic Relaxation Studies on Lanthanide(III)-2,5-pyrazinedicarboxylate Frameworks.

    PubMed

    Marinho, Maria Vanda; Reis, Daniella O; Oliveira, Willian X C; Marques, Lippy F; Stumpf, Humberto O; Déniz, Mariadel; Pasán, Jorge; Ruiz-Pérez, Catalina; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2017-02-20

    In the series described in this work, the hydrothermal synthesis led to oxidation of the 5-methyl-pyrazinecarboxylate anion to the 2,5-pyrazinedicarboxylate dianion (2,5-pzdc) allowing the preparation of three-dimensional (3D) lanthanide(III) organic frameworks of formula {[Ln 2 (2,5-pzdc) 3 (H 2 O) 4 ]·6H 2 O} n [Ln = Ce (1), Pr (2), Nd (3), and Eu (4)] and {[Er 2 (2,5-pzdc) 3 (H 2 O) 4 ]·5H 2 O} n (5). Single-crystal X-ray diffraction on 1-5 reveals that they crystallize in the triclinic system, P1̅ space group with the series 1-4 being isostructural. The crystal structure of the five compounds are 3D with the lanthanide(III) ions linked through 2,5-pzdc 2- dianions acting as two- and fourfold connectors, building a binodal 4,4-connected (4·6 4 8)(4 2 6 2 8 2 )-mog network. The photophysical properties of the Nd(III) (3) and Eu(III) (4) complexes exhibit sensitized photoluminescence in the near-infrared and visible regions, respectively. The photoluminescence intensity and lifetime of 4 were very sensitive due to the luminescence quenching of the 5 D 0 level by O-H oscillators of four water molecules in the first coordination sphere leading to a quantum efficiency of 11%. Variable-temperature magnetic susceptibility measurements for 1-5 reveal behaviors as expected for the ground terms of the magnetically isolated rare-earth ions [ 2 F 5/2 , 2 H 4 , 4 I 9/2 , 7 F 0 , and 4 I 15/2 for Ce(III), Pr(III), Nd(III), Eu(III), and Er(III), respectively] with M J = 0 (2 and 4) and ±1/2 (1, 3, and 5). Q-band electron paramagnetic resonance measurements at low temperature corroborate these facts. Frequency-dependent alternating-current magnetic susceptibility signals under external direct-current fields in the range of 100-2500 G were observed for the Kramers ions of 1, 3, and 5, indicating slow magnetic relaxation (single-ion magnet) behavior. In these compounds, τ -1 decreases with decreasing temperature at any magnetic field, but no Arrhenius law can simulate such a dependence in all the temperature range. This dependence can be reproduced by the contributions of direct and Raman processes, the Raman exponent (n) reaching the expected value (n = 9) for a Kramers system.

  2. Modeling the magnetic properties of lanthanide complexes: relationship of the REC parameters with Pauling electronegativity and coordination number.

    PubMed

    Baldoví, José J; Gaita-Ariño, Alejandro; Coronado, Eugenio

    2015-07-28

    In a previous study, we introduced the Radial Effective Charge (REC) model to study the magnetic properties of lanthanide single ion magnets. Now, we perform an empirical determination of the effective charges (Zi) and radial displacements (Dr) of this model using spectroscopic data. This systematic study allows us to relate Dr and Zi with chemical factors such as the coordination number and the electronegativities of the metal and the donor atoms. This strategy is being used to drastically reduce the number of free parameters in the modeling of the magnetic and spectroscopic properties of f-element complexes.

  3. Determination of the Stoichiometry between α- and γ1 Subunits of the BK Channel Using LRET.

    PubMed

    Carrasquel-Ursulaez, Willy; Alvarez, Osvaldo; Bezanilla, Francisco; Latorre, Ramon

    2018-06-05

    Two families of accessory proteins, β and γ, modulate BK channel gating and pharmacology. Notably, in the absence of internal Ca 2+ , the γ1 subunit promotes a large shift of the BK conductance-voltage curve to more negative potentials. However, very little is known about how α- and γ1 subunits interact. In particular, the association stoichiometry between both subunits is unknown. Here, we propose a method to answer this question using lanthanide resonance energy transfer. The method assumes that the kinetics of lanthanide resonance energy transfer-sensitized emission of the donor double-labeled α/γ1 complex is the linear combination of the kinetics of the sensitized emission in single-labeled complexes. We used a lanthanide binding tag engineered either into the α- or the γ1 subunits to bind Tb +3 as the donor. The acceptor (BODIPY) was attached to the BK pore-blocker iberiotoxin. We determined that γ1 associates with the α-subunit with a maximal 1:1 stoichiometry. This method could be applied to determine the stoichiometry of association between proteins within heteromultimeric complexes. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, Barry L.; Raymond, Kenneth N.; Huberty, John P.; White, David L.

    1991-01-01

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided.

  5. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voort, D. D. van der, E-mail: d.d.v.d.voort@tue.nl; Water, W. van de; Kunnen, R. P. J.

    2016-03-15

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383more » K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.« less

  6. Nuclear Magnetic Resonance Shift Reagents: Abnormal 13C Shifts Produced by Complexation of Lanthanide Chelates with Saturated Amines and n-Butyl Isocyanide

    PubMed Central

    Marzin, Claude; Leibfritz, Dieter; Hawkes, Geoffrey E.; Roberts, John D.

    1973-01-01

    Lanthanide-induced shfits of 13C nuclear magnetic resonances are reported for several amines and n-butyl isocyanide. Contact contributions to such shifts, especially of β carbons, are clearly important for the chelates of Eu+3 and Pr+3. The importance of contact terms is shown to change in a rather predictable manner with the structure of the amine. PMID:16592062

  7. Sparkle/AM1 Parameters for the Modeling of Samarium(III) and Promethium(III) Complexes.

    PubMed

    Freire, Ricardo O; da Costa, Nivan B; Rocha, Gerd B; Simas, Alfredo M

    2006-01-01

    The Sparkle/AM1 model is extended to samarium(III) and promethium(III) complexes. A set of 15 structures of high crystallographic quality (R factor < 0.05 Å), with ligands chosen to be representative of all samarium complexes in the Cambridge Crystallographic Database 2004, CSD, with nitrogen or oxygen directly bonded to the samarium ion, was used as a training set. In the validation procedure, we used a set of 42 other complexes, also of high crystallographic quality. The results show that this parametrization for the Sm(III) ion is similar in accuracy to the previous parametrizations for Eu(III), Gd(III), and Tb(III). On the other hand, promethium is an artificial radioactive element with no stable isotope. So far, there are no promethium complex crystallographic structures in CSD. To circumvent this, we confirmed our previous result that RHF/STO-3G/ECP, with the MWB effective core potential (ECP), appears to be the most efficient ab initio model chemistry in terms of coordination polyhedron crystallographic geometry predictions from isolated lanthanide complex ion calculations. We thus generated a set of 15 RHF/STO-3G/ECP promethium complex structures with ligands chosen to be representative of complexes available in the CSD for all other trivalent lanthanide cations, with nitrogen or oxygen directly bonded to the lanthanide ion. For the 42 samarium(III) complexes and 15 promethium(III) complexes considered, the Sparkle/AM1 unsigned mean error, for all interatomic distances between the Ln(III) ion and the ligand atoms of the first sphere of coordination, is 0.07 and 0.06 Å, respectively, a level of accuracy comparable to present day ab initio/ECP geometries, while being hundreds of times faster.

  8. Solvent Extraction Separation of Trivalent Americium from Curium and the Lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Mark P.; Chiarizia, Renato; Ulicki, Joseph S.

    2015-02-27

    The sterically constrained, macrocyclic, aqueous soluble ligand N,N'-bis[(6-carboxy-2-pyridyl)methyl]-1,10-diaza-18-crown-6 (H2BP18C6) was investigated for separating americium from curium and all the lanthanides by solvent extraction. Pairing H2BP18C6, which favors complexation of larger f-element cations, with acidic organophosphorus extractants that favor extraction of smaller f-element cations, such as bis-(2-ethylhexyl)phosphoric acid (HDEHP) or (2-ethylhexyl)phosphonic acid mono(2-ethylhexyl) ester (HEH[EHP]), created solvent extraction systems with good Cm/Am selectivity, excellent trans-lanthanide selectivity (Kex,Lu/Kex,La = 108), but poor selectivity for Am against the lightest lanthanides. However, using an organic phase containing both a neutral extractant, N,N,N’,N’-tetra(2-ethylhexyl)diglycolamide (TEHDGA), and HEH[EHP] enabled rejection of the lightest lanthanides during loading ofmore » the organic phase from aqueous nitric acid, eliminating their interference in the americium stripping stages. In addition, although it is a macrocyclic ligand, H2BP18C6 does not significantly impede the mass transfer kinetics of the HDEHP solvent extraction system« less

  9. Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.

    2016-01-01

    Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…

  10. Five novel lanthanide complexes with 2-chloroquinoline-4-carboxylic acid and 1,10-phenanthroline: Crystal structures, molecular spectra, thermal properties and bacteriostatic activities

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Jin, Cheng-Wei; He, Shu-Mei; Ren, Ning; Zhang, Jian-Jun

    2016-12-01

    Five novel lanthanide complexes [Ln2(2-ClQL)6(phen)2(H2O)2]·2H2O (Ln = Pr(1), Sm(2), Eu(3), Ho(4), Er(5)); 2-ClQL: 2-chloroquinoline-4-carboxylate; phen: 1,10-phenanthroline; were synthesized by conventional solution method at room temperature and characterized via elemental analysis, powder x-ray diffraction, Infrared spectroscopy and Raman spectrometry. The results indicate that complexes 1-5 are isostructural, and each Ln3+ ion is eight-coordinated adopting a distorted square antiprismatic molecular geometry. Binuclear complex 1 are stitched together via hydrogen bonding interactions to form 1D chains, and further to form 2D sheets by the π-π interactions. Luminescence investigation reveals that complex 3 displays strong red emission. TG/DTG-FTIR, reveal the thermal decomposition processes and products of title complexes. The bacteriostatic activities of the complexes were evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus.

  11. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  12. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successfulmore » separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.« less

  13. Physiological Effect of XoxG(4) on Lanthanide-Dependent Methanotrophy

    DOE PAGES

    Zheng, Yue; Huang, Jing; Zhao, Feng; ...

    2018-03-27

    ABSTRACT A recent surprising discovery of the activity of rare earth metals (lanthanides) as enzyme cofactors as well as transcriptional regulators has overturned the traditional assumption of biological inertia of these metals. However, so far, examples of such activities have been limited to alcohol dehydrogenases. Here we describe the physiological effects of a mutation in xoxG , a gene encoding a novel cytochrome, XoxG(4), and compare these to the effects of mutation in XoxF, a lanthanide-dependent methanol dehydrogenase, at the enzyme activity level and also at the community function level, using Methylomonas sp. strain LW13 as a model organism. Throughmore » comparative phenotypic characterization, we establish XoxG as the second protein directly involved in lanthanide-dependent metabolism, likely as a dedicated electron acceptor from XoxF. However, mutation in XoxG caused a phenotype that was dramatically different from the phenotype of the mutant in XoxF, suggesting a secondary function for this cytochrome, in metabolism of methane. We also purify XoxG(4) and demonstrate that this protein is a true cytochrome c , based on the typical absorption spectra, and we demonstrate that XoxG can be directly reduced by a purified XoxF, supporting one of its proposed physiological functions. Overall, our data continue to suggest the complex nature of the interplay between the calcium-dependent and lanthanide-dependent alcohol oxidation systems, while they also suggest that addressing the roles of these alternative systems is essential at the enzyme and community function level, in addition to the gene transcription level. IMPORTANCE The lanthanide-dependent biochemistry of living organisms remains a barely tapped area of knowledge. So far, only a handful of lanthanide-dependent alcohol dehydrogenases have been described, and their regulation by lanthanides has been demonstrated at the transcription level. Little information is available regarding the concentrations of lanthanides that could support sufficient enzymatic activities to support specific metabolisms, and so far, no other redox proteins involved in lanthanide-dependent methanotrophy have been demonstrated. The research presented here provides enzyme activity-level data on lanthanide-dependent methanotrophy in a model methanotroph. Additionally, we identify a second protein important for lanthanide-dependent metabolism in this organism, XoxG(4), a novel cytochrome. XoxG(4) appears to have multiple functions in methanotrophy, one function as an electron acceptor from XoxF and another function remaining unknown. On the basis of the dramatic phenotype of the XoxG(4) mutant, this function must be crucial for methanotrophy.« less

  14. Physiological Effect of XoxG(4) on Lanthanide-Dependent Methanotrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yue; Huang, Jing; Zhao, Feng

    ABSTRACT A recent surprising discovery of the activity of rare earth metals (lanthanides) as enzyme cofactors as well as transcriptional regulators has overturned the traditional assumption of biological inertia of these metals. However, so far, examples of such activities have been limited to alcohol dehydrogenases. Here we describe the physiological effects of a mutation in xoxG , a gene encoding a novel cytochrome, XoxG(4), and compare these to the effects of mutation in XoxF, a lanthanide-dependent methanol dehydrogenase, at the enzyme activity level and also at the community function level, using Methylomonas sp. strain LW13 as a model organism. Throughmore » comparative phenotypic characterization, we establish XoxG as the second protein directly involved in lanthanide-dependent metabolism, likely as a dedicated electron acceptor from XoxF. However, mutation in XoxG caused a phenotype that was dramatically different from the phenotype of the mutant in XoxF, suggesting a secondary function for this cytochrome, in metabolism of methane. We also purify XoxG(4) and demonstrate that this protein is a true cytochrome c , based on the typical absorption spectra, and we demonstrate that XoxG can be directly reduced by a purified XoxF, supporting one of its proposed physiological functions. Overall, our data continue to suggest the complex nature of the interplay between the calcium-dependent and lanthanide-dependent alcohol oxidation systems, while they also suggest that addressing the roles of these alternative systems is essential at the enzyme and community function level, in addition to the gene transcription level. IMPORTANCE The lanthanide-dependent biochemistry of living organisms remains a barely tapped area of knowledge. So far, only a handful of lanthanide-dependent alcohol dehydrogenases have been described, and their regulation by lanthanides has been demonstrated at the transcription level. Little information is available regarding the concentrations of lanthanides that could support sufficient enzymatic activities to support specific metabolisms, and so far, no other redox proteins involved in lanthanide-dependent methanotrophy have been demonstrated. The research presented here provides enzyme activity-level data on lanthanide-dependent methanotrophy in a model methanotroph. Additionally, we identify a second protein important for lanthanide-dependent metabolism in this organism, XoxG(4), a novel cytochrome. XoxG(4) appears to have multiple functions in methanotrophy, one function as an electron acceptor from XoxF and another function remaining unknown. On the basis of the dramatic phenotype of the XoxG(4) mutant, this function must be crucial for methanotrophy.« less

  15. Brilliant Sm, Eu, Tb and Dy chiral lanthanide complexes withstrong circularly polarized luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petoud, Stephane; Muller, Gilles; Moore, Evan G.

    The synthesis, characterization and luminescent behavior of trivalent Sm, Eu, Dy and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g{sub lum}, recorded for the Eu(III) complexmore » is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.« less

  16. Lipophilic ternary complexes in liquid-liquid extraction of trivalent lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Levitskaia, Tatiana G.; Latesky, Stanley

    2012-03-01

    The formation of ternary complexes between lanthanide ions [Nd(III) or Eu(III)], octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO), and bis-(2-ethylhexyl)phosphoric acid (HDEHP) was probed by liquid-liquid extraction and spectroscopic techniques. Equilibrium modeling of data for the extraction of Nd(III) or Eu(III) from lactic acid media into n-dodecane solutions of CMPO and HDEHP indicates the predominant extracted species are of the type [Ln(AHA){sub 2}(A)] and [Ln(CMPO)(AHA){sub 2}(A)], where Ln = Nd or Eu and A represents the DEHP{sup -} anion. FTIR (for both Eu and Nd) and visible spectrophotometry (in the case of Nd) indicate the formation of the [Ln(CMPO)(A){sup 3}] complexes when CMPO ismore » added to n-dodecane solutions of the LnA{sub 3} compounds. Both techniques indicate a stronger propensity of CMPO to complex Nd(III) versus Eu(III).« less

  17. A series of Ln-p-chlorobenzoic acid–terpyridine complexes: lanthanide contraction effects, supramolecular interactions and luminescent behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Korey P.; Pope, Simon J. A.; Cahill, Christopher L.

    Fifteen new lanthanide p-chlorobenzoic acid complexes, [PrL3(terpy)(H2O)]2 (1), [LnL3(terpy)(H2O)]2 (Ln = Nd (2), Sm (3), and Eu (4)), and [LnL3(terpy)(H2O)] (Ln = Sm (3'), Eu (4'), Gd (5), Tb (6), Dy (7), Ho (8), Er (9), Tm (10), Yb (11), Lu (12), and Y (13); HL: p-chlorobenzoic acid; terpy: 2,2':6',2''-terpyridine), have been synthesized hydrothermally at varying temperatures and structurally characterized by single crystal and powder X-ray diffraction. The series is comprised of binuclear molecular units (Pr–Eu) that give way to mononuclear molecular complexes (Sm–Y) as the lanthanide contraction takes effect. All fifteen complexes feature a tridentate terpyridine ligand, p-chlorobenzoic acidmore » ligands exhibiting multiple binding modes, bidentate, bridging bidentate, and monodentate, and a bound water molecule. Binuclear complexes 1–4 are stitched together via intermolecular interactions: aromatic–aromatic interactions for 1, halogen•••halogen interactions for 2–4, to form 1D chains. Mononuclear complexes 3', 4', and 5–13 utilize supramolecular hydrogen and halogen bonding to form 2D sheets. Visible and near-IR solid state luminescence studies were performed on complexes 2, 3, 3', 4, 4', 6, 7 and 11 and the characteristic visible luminescence of Sm(III), Eu(III), Tb(III), and Dy(III) was exhibited. The near-IR spectra of the Nd(III) and Yb(III) complexes exhibit weak characteristic luminescence, showing that terpy can act as a sensitizing chromophore in these systems.« less

  18. Impact of Na- and K-C pi-interactions on the structure and binding of M3(sol)n(BINOLate)3Ln catalysts.

    PubMed

    Wooten, Alfred J; Carroll, Patrick J; Walsh, Patrick J

    2007-08-16

    Shibasaki's heterobimetallic complexes M3(THF)n(BINOLate)3Ln [M = Li, Na, K; Ln = lanthanide(III)] are among the most successful asymmetric Lewis acid catalysts. Why does M3(THF)n(BINOLate)3Ln readily bind substrates when M = Li but not when M = Na or K? Structural studies herein indicate Na- and K-C cation-pi interactions and alkali metal radius may be more important than even lanthanide radius. Also reported is a novel polymeric [K3(THF)2(BINOLate)3Yb]n structure that provides the first evidence of interactions between M3(THF)n(BINOLate)3Ln complexes.

  19. Impact of Na- and K-C π-Interactions on the Structure and Binding of M3(sol)n(BINOLate)3Ln Catalysts

    PubMed Central

    Wooten, Alfred J.; Carroll, Patrick J.; Walsh, Patrick J.

    2008-01-01

    Shibasaki’s heterobimetallic complexes M3(THF)n(BINOLate)3Ln [M = Li, Na, K, Ln = lanthanide(III)] are among the most successful asymmetric Lewis acid catalysts. Why does M3(THF)n(BINOLate)3Ln readily bind substrates when M = Li but not when M = Na or K? Structural studies herein indicate Na- and K-C cation-π interactions and alkali metal radius may be more important than even lanthanide radius. Also reported is a novel polymeric [K3(THF)2(BINOLate)3Yb]n structure that provides the first evidence of interactions between M3(THF)n(BINOLate)3Ln complexes. PMID:17658838

  20. How to polymerize ethylene in a highly controlled fashion?

    PubMed

    Kempe, Rhett

    2007-01-01

    Very fast, reversible, polyethylene (PE) chain transfer or complex-catalysed "Aufbaureaktion" describes a "living" chain-growing process on a main-group metal or zinc atom; this process is catalysed by an organo-transition-metal or lanthanide complex. PE chains are transferred very fast between the two metal sites and chain growth takes place through ethylene insertion into the transition-metal- or lanthanide-carbon bond-coordinative chain-transfer polymerisation (CCTP). The transferred chains "rest" at the main-group or zinc centre, at which chain-termination processes like beta-H transfer/elimination are of low significance. Such protocols can be used to synthesise very narrowly distributed PE materials (M(w)/M(n)<1.1 up to a molecular weight of about 4000 g mol(-1)) with differently functionalised end groups. Higher molecular-weight polymers can be obtained with a slightly increased M(w)/M(n), since diffusion control and precipitation of the polymers influences the chain-transfer process. Recently, a few transition-metal- or lanthanide-based catalyst systems that catalyse such a highly reversible chain-growing process have been described. They are summarised and compared within this contribution.

  1. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  2. Lanthanide-halide based humidity indicators

    DOEpatents

    Beitz, James V [Hinsdale, IL; Williams, Clayton W [Chicago, IL

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  3. An Advanced TALSPEAK Concept for Separating Minor Actinides. Part 1. Process Optimization and Flowsheet Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Levitskaia, Tatiana G.; Wilden, Andreas

    A system is being developed to separate trivalent actinides from lanthanide fission product elements that uses 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester to extract the lanthanide ions into an organic phase, while the actinide ions are held in the citrate-buffered aqueous phase by complexation to N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA). Earlier investigations of this system using a 2-cm centrifugal contactor revealed that the relatively slow extraction of Sm3+, Eu3+, and Gd3+ resulted in low separation factors from Am3+. In the work reported here, adjustments to the aqueous phase chemistry were made to improve the extraction rates. The results suggest that increasing the concentration ofmore » the citric acid buffer from 0.2 to 0.6 mol/L, and lowering the pH from 3.1 to 2.6, significantly improved lanthanide extraction rates resulting in an actinide/lanthanide separation system suitable for deployment in centrifugal contactors. Experiments performed to evaluate whether the lanthanide extraction rates can be improved by replacing aqueous HEDTA with nitrilotriacetic acid (NTA) exhibited promising results. However, NTA exhibited an unsatisfactorily high distribution value for Am3+ under the extraction conditions examined.« less

  4. Ab Initio Crystal Field for Lanthanides.

    PubMed

    Ungur, Liviu; Chibotaru, Liviu F

    2017-03-13

    An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc) 2 ] - (Pc=phthalocyanine) and Dy 4 K 2 ([Dy 4 K 2 O(OtBu) 12 ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H 3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Yb3+ can be much better than Dy3+: SMM properties and controllable self-assembly of novel lanthanide 3,5-dinitrobenzoate-acetylacetonate complexes.

    PubMed

    Gavrikov, Andrey V; Efimov, Nikolay N; Ilyukhin, Andrey B; Dobrokhotova, Zhanna V; Novotortsev, Vladimir M

    2018-05-01

    The first representatives of the binuclear lanthanide 3,5-dinitrobenzoate-acetylacetonate complexes, namely isostructural compounds [Ln(dnbz)(acac)2(H2O)(EtOH)]2 (Ln = Eu (1), Gd (2), Tb (3), Dy (4), Ho (5), Er (6), Tm (7), and Yb (8); dnbz - 3,5-dinitrobenzoate anion; acac - acetylacetonate (pentane-2,4-dionate) anion) were prepared and characterized. The SMM behavior of the Yb compound 8 was shown to be surprisingly less sensitive to the composition of the Yb3+ coordination environment in comparison with that of the Dy derivative. For Yb compound 8, the anisotropy barrier is Δeff/kB = 26 K under the dc field of 2000 Oe. This value is the highest one currently known for binuclear Yb complexes.

  6. Investigations into the synthesis and fluorescence properties of Eu(III), Tb(III), Sm(III) and Gd(III) complexes of a novel bis- β-diketone-type ligand

    NASA Astrophysics Data System (ADS)

    Luo, Yi-Ming; Chen, Zhe; Tang, Rui-Ren; Xiao, Lin-Xiang; Peng, Hong-Jian

    2008-02-01

    A novel bis- β-diketon ligand, 1,1'-(2,6-bispyridyl)bis-3-phenyl-1,3-propane-dione (L), was designed and synthesized and its complexes with Eu(III), Tb(III), Sm(III) and Gd(III) ions were successfully prepared. The ligand and the corresponding metal complexes were characterized by elemental analysis, and infrared, mass and proton nuclear magnetic resonance spectroscopy. Analysis of the IR spectra suggested that each of the lanthanide metal ions coordinated to the ligand via the carbonyl oxygen atoms and the nitrogen atom of the pyridine ring. The fluorescence properties of these complexes in solid state were investigated and it was discovered that all of the lanthanide ions could be sensitized by the ligand (L) to some extent. In particular, the Tb(III) complex was an excellent green-emitter and would be a potential candidate material for applications in organic light-emitting devices (OLEDs) and medical diagnosis.

  7. Sparkle model for AM1 calculation of lanthanide complexes: improved parameters for europium.

    PubMed

    Rocha, Gerd B; Freire, Ricardo O; Da Costa, Nivan B; De Sá, Gilberto F; Simas, Alfredo M

    2004-04-05

    In the present work, we sought to improve our sparkle model for the calculation of lanthanide complexes, SMLC,in various ways: (i) inclusion of the europium atomic mass, (ii) reparametrization of the model within AM1 from a new response function including all distances of the coordination polyhedron for tris(acetylacetonate)(1,10-phenanthroline) europium(III), (iii) implementation of the model in the software package MOPAC93r2, and (iv) inclusion of spherical Gaussian functions in the expression which computes the core-core repulsion energy. The parametrization results indicate that SMLC II is superior to the previous version of the model because Gaussian functions proved essential if one requires a better description of the geometries of the complexes. In order to validate our parametrization, we carried out calculations on 96 europium(III) complexes, selected from Cambridge Structural Database 2003, and compared our predicted ground state geometries with the experimental ones. Our results show that this new parametrization of the SMLC model, with the inclusion of spherical Gaussian functions in the core-core repulsion energy, is better capable of predicting the Eu-ligand distances than the previous version. The unsigned mean error for all interatomic distances Eu-L, in all 96 complexes, which, for the original SMLC is 0.3564 A, is lowered to 0.1993 A when the model was parametrized with the inclusion of two Gaussian functions. Our results also indicate that this model is more applicable to europium complexes with beta-diketone ligands. As such, we conclude that this improved model can be considered a powerful tool for the study of lanthanide complexes and their applications, such as the modeling of light conversion molecular devices.

  8. Optical detection of paramagnetic centres: From crystals to glass-ceramics

    NASA Astrophysics Data System (ADS)

    Rogulis, Uldis

    2016-07-01

    An unambiguous attribution of the absorption spectra to definite paramagnetic centres identified by the EPR techniques in the most cases is problematic. This problem may be solved by applying of a direct measurement techniques—the EPR detected via the magnetic circular dichroism, or briefly MCD-EPR. The present survey reports on the advantages and disadvantages applying the MCD-EPR techniques to simple and complex paramagnetic centres in crystals as well as glasses and glass-ceramics.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilden, Andreas; Lumetta, Gregg J.; Sadowski, Fabian

    A solvent extraction system has been developed for separating trivalent actinides from lanthanides. This “Advanced TALSPEAK” system uses 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester to extract the lanthanides into a n-dodecane-based solvent phase, while the actinides are retained in a citrate-buffered aqueous phase by complexation to N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid. Batch distribution measurements indicate that the separation of americium from the light lanthanides decreases as the pH decreases. For example, the separation factor between La and Am increases from 2.5 at pH 2.0 to 19.3 at pH 3.0. However, previous investigations indicated that the extraction rates for the heavier lanthanides decrease with increasing pH.more » So, a balance between these two competing effects is required. An aqueous phase in which the pH was set at 2.6 was chosen for further process development because this offered optimal separation, with a minimum separation factor of ~8.4, based on the separation between La and Am. Centrifugal contactor single-stage efficiencies were measured to characterize the performance of the system under flow conditions.« less

  10. Studying the Structure and Dynamics of Biomolecules by Using Soluble Paramagnetic Probes

    PubMed Central

    Hocking, Henry G; Zangger, Klaus; Madl, Tobias

    2013-01-01

    Characterisation of the structure and dynamics of large biomolecules and biomolecular complexes by NMR spectroscopy is hampered by increasing overlap and severe broadening of NMR signals. As a consequence, the number of available NMR spectroscopy data is often sparse and new approaches to provide complementary NMR spectroscopy data are needed. Paramagnetic relaxation enhancements (PREs) obtained from inert and soluble paramagnetic probes (solvent PREs) provide detailed quantitative information about the solvent accessibility of NMR-active nuclei. Solvent PREs can be easily measured without modification of the biomolecule; are sensitive to molecular structure and dynamics; and are therefore becoming increasingly powerful for the study of biomolecules, such as proteins, nucleic acids, ligands and their complexes in solution. In this Minireview, we give an overview of the available solvent PRE probes and discuss their applications for structural and dynamic characterisation of biomolecules and biomolecular complexes. PMID:23836693

  11. Complexation of Sn{sub 2}Se{sub 6} with lanthanide(III) centers influenced by ethylene polyamines: Solvothermal syntheses, crystal structures, and optical properties of lanthanide selenidostannates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chunying; Wang, Fang; Chen, Ruihong

    Lanthanide selenidostannates (H{sub 3}O){sub n}[Ce(tepa)(μ-1κ{sup 2}:2κ{sup 2}-Sn{sub 2}Se{sub 6})]{sub n} (1), [(Yb(tepa)(μ-OH)){sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})]{sub n}·nH{sub 2}O (2), [Htrien]{sub 2}[(Ln(trien)(tren)){sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})][Sn{sub 2}Se{sub 6}] (Ln=Ce(3), Nd(4)) and [(Yb(dien){sub 2}){sub 2}(μ-OH){sub 2}]Sn{sub 2}Se{sub 6} (5) were solvothermally prepared in different ethylene polyamines. The Sn{sub 2}Se{sub 6} unit connects [Ce(tepa)]{sup 3+} and [(Yb(tepa)(μ-OH)){sub 2}]{sup 4+} fragments with tetradentate μ-1κ{sup 2}Se{sup 1},Se{sup 2}:2κ{sup 2}Se{sup 5},Se{sup 6} and bidentate μ-1κSe{sup 1}:2κSe{sup 5} bridging coordination modes in tepa, to form polymers 1 and 2, respectively. It joins two [Ln(trien)(tren)]{sup 3+} fragments as a μ-1κSe{sup 1}:2κSe{sup 5} ligand to form binuclear complexes 3 and 4more » in trien. Unlike the Sn{sub 2}Se{sub 6} units in 1–4 that bind with Ln(III) centers as Se-donor ligands, the Sn{sub 2}Se{sub 6} unit in 5 exists as a discrete ion. The syntheses of 1–5 show that the ethylene polyamines play an important role in the complexation of Sn{sub 2}Se{sub 6} ligand with Ln(III) centers. Compounds 1–5 exhibit optical band gaps in the range of 2.09–2.42 eV, which are influenced by the complexation of Sn{sub 2}Se{sub 6} with Ln(III) centers. - Graphical abstract: New lanthanide complexes concerning the Sn{sub 2}Se{sub 6} ligand were solvothermally prepared, and the effect of ethylene polyamines on the complexation of Sn{sub 2}Se{sub 6} with Ln(III) centers are observed. Highlights: • Lanthanide complexes concerning the selenidostannates have been solvothermally prepared in different ethylene polyamines. • A tetradentate μ-1κ{sup 2}Se{sup 1},Se{sup 2}:2κ{sup 2}Se{sup 5},Se{sup 6} and a bidentate μ-1κSe{sup 1}:2κSe{sup 5} bridging coordination modes for the Sn{sub 2}Se{sub 6} ligand is obtained. • The complexation of the Sn{sub 2}Se{sub 6} ligand with Ln(III) centers are influenced by the ethylene polyamines.« less

  12. Selective liquid chromatographic separation of yttrium from heavier rare earth elements using acetic acid as a novel eluent.

    PubMed

    Kifle, Dejene; Wibetoe, Grethe

    2013-09-13

    One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Neutron studies of paramagnetic fullerenols’ assembly in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lebedev, V. T.; Szhogina, A. A.; Suyasova, M. V.

    2018-03-01

    Recent results on structural studies of aqueous solutions of water-soluble derivatives of endofullerenes encapsulating 4f- and 3d-elements have been presented. Neutron small angle scattering experiments allowed recognize subtle features of fullerenols assembly as dependent on chemical nature (atomic number) of interior atom, pH-factor and temperature of solutions. It was observed a fractal-type fullerenols’ ordering at the scale of correlation radii ∼ 10-20 nm when molecules with iron atoms are integrated into branched structures at low concentrations (C ≤ 1 % wt.) and organized into globular aggregates at higher amounts (C > 1 % wt.). On the other hand, for Lanthanides captured in carbon cages the supramolecular structures are mostly globular and have larger gyration radii ∼ 30 nm. They demonstrated a good stability in acidic (pH ∼ 3) and neutral (pH ∼ 7) media that is important for forthcoming medical applications.

  14. Rare earth ions doped ZnO: Synthesis, characterization and preliminary photoactivity assessment

    NASA Astrophysics Data System (ADS)

    Cerrato, Erik; Gionco, Chiara; Berruti, Ilaria; Sordello, Fabrizio; Calza, Paola; Paganini, Maria Cristina

    2018-08-01

    This work reports the effect of doping zinc oxide with lanthanide ions on structural, EPR and UV visible properties. Bare and doped samples were synthesized using the simple and green hydrothermal process. Different rare earth ions (RE = La, Ce, Pr, Er and Yb) with 1% molar ratio RE/Zn were used. The samples have been studied using X Ray Diffraction, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV visible diffuse reflectance spectroscopy. Finally, electron paramagnetic resonance (EPR) spectroscopy, was used to assess the materials photoactivity under UV irradiation, both in solid state, to see the charge carriers' generation and in solution, evaluating the OH• radical formation using the DMPO (5,5-Dimethyl-1-Pyrroline-N-Oxide) spin trapping technique. The results suggest that the synthesized materials could be interesting systems for the photocatalytic abatement of emerging organic persistent pollutants in wastewater treatment plants.

  15. Small angle neutron and X-ray studies of carbon structures with metal atoms

    NASA Astrophysics Data System (ADS)

    Lebedev, V. T.; Szhogina, A. A.; Bairamukov, V. Yu

    2017-05-01

    Encapsulation of metal atoms inside carbon single-wall cages or within multi-layer cells has been realized using molecular precursors and high temperature processes transforming them into desirable structures. Endohedral fullerenols Fe@C60(OH)X with 3d-metal (iron) have been studied by SANS in aqueous solutions where they form stable globular clusters with radii R C ∼ 10-12 nm and aggregation numbers N C ∼ 104. This self-assembly is a crucial feature of paramagnetic fullerenols as perspective contrast agents for Magneto-Resonance Imaging in medicine. Cellular carbon-metal structures have been created by the pyrolysis of diphthalocyanines of lanthanides and actinides. It was established that these ultra porous matrices consist of globular cells of molecular precursor size (∼ 1 nm) which are aggregated into superstructures. This provides retain of metal atoms inside matrices which may serve for safety storage of spent fuel of nuclear power plants.

  16. Direct two-photon excitation of Sm3+, Eu3+, Tb3+, Tb.DOTA-, and Tb.propargylDO3A in solution

    NASA Astrophysics Data System (ADS)

    Sørensen, Thomas Just; Blackburn, Octavia A.; Tropiano, Manuel; Faulkner, Stephen

    2012-07-01

    We have observed direct two-photon excitation of samarium, europium and terbium ions in solution upon near IR excitation using a tuneable pulsed light source, and have also studied two-photon processes in a pair of related terbium complexes, namely [Tb.DOTA]- and Tb.propargylDO3A. Direct two-photon excitation of lanthanides is observed in simple systems in the absence of sensitizing chromophores. Where even simple chromophores such as a triple bond are present in the complex, then single and two-photon excitation of chromophore excited states competes with direct two-photon excitation of the ions and is the dominant pathway for sensitizing formation of the lanthanide excited state.

  17. The Effects of Trivalent Lanthanide Cationization on the Electron Transfer Dissociation of Acidic Fibrinopeptide B and its Analogs

    NASA Astrophysics Data System (ADS)

    Commodore, Juliette J.; Cassady, Carolyn J.

    2016-09-01

    Electrospray ionization (ESI) on mixtures of acidic fibrinopeptide B and two peptide analogs with trivalent lanthanide salts generates [M + Met + H]4+, [M + Met]3+, and [M + Met -H]2+, where M = peptide and Met = metal (except radioactive promethium). These ions undergo extensive and highly efficient electron transfer dissociation (ETD) to form metallated and non-metallated c- and z-ions. All metal adducted product ions contain at least two acidic sites, which suggest attachment of the lanthanide cation at the side chains of one or more acidic residues. The three peptides undergo similar fragmentation. ETD on [M + Met + H]4+ leads to cleavage at every residue; the presence of both a metal ion and an extra proton is very effective in promoting sequence-informative fragmentation. Backbone dissociation of [M + Met]3+ is also extensive, although cleavage does not always occur between adjacent glutamic acid residues. For [M + Met - H ]2+, a more limited range of product ions form. All lanthanide metal peptide complexes display similar fragmentation except for europium (Eu). ETD on [M + Eu - H]2+ and [M + Eu]3+ yields a limited amount of peptide backbone cleavage; however, [M + Eu + H]4+ dissociates extensively with cleavage at every residue. With the exception of the results for Eu(III), metallated peptide ion formation by ESI, ETD fragmentation efficiencies, and product ion formation are unaffected by the identity of the lanthanide cation. Adduction with trivalent lanthanide metal ions is a promising tool for sequence analysis of acidic peptides by ETD.

  18. Bright Photon Upconversion on Composite Organic Lanthanide Molecules through Localized Thermal Radiation.

    PubMed

    Ye, Huanqing; Bogdanov, Viktor; Liu, Sheng; Vajandar, Saumitra; Osipowicz, Thomas; Hernández, Ignacio; Xiong, Qihua

    2017-12-07

    Converting low-energy photons via thermal radiation can be a potential approach for utilizing infrared (IR) photons to improve photovoltaic efficiency. Lanthanide-containing materials have achieved great progress in IR-to-visible photon upconversion (UC). Herein, we first report bright photon, tunable wavelength UC through localized thermal radiation at the molecular scale with low excitation power density (<10 W/cm 2 ) realized on lanthanide complexes of perfluorinated organic ligands. This is enabled by engineering the pathways of nonradiative de-excitation and energy transfer in a composite of ytterbium and terbium perfluoroimidodiphosphinates. The IR-excited thermal UC and wavelength control is realized through the terbium activators sensitized by the ytterbium sensitizers having high luminescence efficiency. The metallic molecular composite thus can be a potential energy material in the use of the IR solar spectrum for thermal photovoltaic applications.

  19. Coordinating properties of uridine 5'-monophosphate with selected Ln(3+) ions in ionic micellar media.

    PubMed

    Sudhiranjan Singh, M; Homendra, Naorem; Lonibala, R K

    2012-12-01

    Coordinating properties of uridine 5'-monophosphate (UMP) towards trivalent La, Pr, Nd, Sm, Eu and Gd ions in presence of cationic and anionic micelles have been investigated by potentiometric pH-titration and spectroscopic methods. Stability constants of the 2:1 complexes have been determined and the change in free energy, enthalpy and entropy associated with the complexation are also calculated. Nd(III) complexes isolated from aqueous and aqueous-micellar media do not show any significant structural difference. Formation of Ln(III) complexes in all cases completes below pH 7.5 showing that UMP best interacts with Ln(3+) ions at the physiological pH range 7.3-7.5. The nucleobase is not involved in the complexation and the metal ion coordination of UMP is through the phosphate moiety only. Coordinating tendency of UMP with lanthanides, Nd(III) ion in particular, at different pH is also discussed. Luminescent properties of Eu(III) complex and its decay lifetime are also presented. This information may prove helpful regarding the use of lanthanides as biological probes for calcium/magnesium ions.

  20. Synthesis, spectroscopic, thermal and antimicrobial studies of neodymium(III) and samarium(III) complexes derived from tetradentate ligands containing N and S donor atoms

    NASA Astrophysics Data System (ADS)

    Ain, Qurratul; Pandey, S. K.; Pandey, O. P.; Sengupta, S. K.

    2015-04-01

    Trivalent lanthanide complexes of the type [Ln(L)Cl(H2O)2] (where Ln = Nd(III) or Sm(III) and LH2 = Schiff bases derived by the condensation of 3-(phenyl/substitutedphenyl)-4-amino-5-mercapto-1,2,4-triazole with diacetyl/benzil) have been synthesized by the reactions of anhydrous lanthanide(III) chloride with Schiff bases in methanol. The structures of the complexes have been proposed on the basis of elemental analysis, electrical conductance, magnetic moment, spectroscopic measurements (IR, 1H, 13C NMR and UV-vis spectra) and X-ray diffraction studies. The spectral data reveal that the Schiff base ligands behave as dibasic tetradentate chelating agents having coordination sites at two thiol sulfur atoms and two azomethine nitrogen atoms. The presence of coordinated water in metal complexes was confirmed by thermal and IR data of the complexes. All the Schiff bases and their metal complexes have also been screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus and antifungal activities against Aspergillus niger, Curvularia pallescens and Colletotrichum capsici.

  1. Luminescent properties and structure of new CAPh-based lanthanide complexes [LnL3Q], containing additional bis-heterocyclic aromatic ligand-antenna 2-(1,3,4-oxadiazole-2-yl) pyridine

    NASA Astrophysics Data System (ADS)

    Yakovlev, Oleksii O.; Kariaka, Nataliia S.; Trush, Victor A.; Smola, Sergii S.; Siczek, Milosz; Amirkhanov, Vladimir M.

    2018-01-01

    The new lanthanide coordination compounds of general formula [LnL3Q], where Ln = Eu, Gd, Tb; L = dimethyl-N-trichloroacetylamidophosphate and Q = 2-(1,3,4-oxadiazole-2-yl)pyridine, have been synthesized and isolated in crystalline state with the purpose of finding new interesting optical materials. X-ray data reveal that complexes have molecular structure with numerous Van-der-Vaals contacts between molecules. All the ligands are coordinated in bidentate chelate manner, coordination polyhedron was interpreted as distored square antiprism (CN 8). The obtained complexes were investigated by means of IR, absorption and luminescence spectroscopy as well and thermal gravimetric analysis. It was found that complex [TbL3Q] is resistant to temperature of 200 °C. The Eu3+ and Tb3+ complexes exhibit bright metal-centered emission with decay time 1.65 and 1.74 ms respectively. Intrinsic quantum yield for [EuL3Q] equals 85% that is one of the highest values, known to date for CAPh based europium complexes.

  2. Me-3,2-HOPO Complexes of Near Infra-Red (NIR) Emitting Lanthanides: Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Evan G.; Xu, Jide; Dodani, Sheel

    2009-11-10

    The synthesis, X-ray structure, solution stability, and photophysical properties of several trivalent lanthanide complexes of Yb(III) and Nd(III) using both tetradentate and octadentate ligand design strategies and incorporating the 1-methyl-3-hydroxy-pyridin-2-one (Me-3,2-HOPO) chelate group are reported. Both the Yb(III) and Nd(III) complexes have emission bands in the Near Infra-Red (NIR) region, and this luminescence is retained in aqueous solution ({Phi}{sub tot}{sup Yb} {approx} 0.09-0.22%). Furthermore, the complexes demonstrate very high stability (pYb {approx} 18.8-21.9) in aqueous solution, making them good candidates for further development as probes for NIR imaging. Analysis of the low temperature (77 K) photophysical measurements for a modelmore » Gd(III) complex were used to gain an insight into the electronic structure, and were found to agree well with corresponding TD-DFT calculations at the B3LYP/6-311G{sup ++}(d,p) level of theory for a simplified model monovalent sodium complex.« less

  3. Gas chemical adsorption characterization of lanthanide hexafluoroacetylacetonates

    DOE PAGES

    Stratz, S. Adam; Jones, Steven J.; Mullen, Austin D.; ...

    2017-03-21

    Newly-established adsorption enthalpy and entropy values of 12 lanthanide hexafluoroacetylacetonates, denoted Ln[hfac] 4, along with the experimental and theoretical methodology used to obtain these values, are presented for the first time. The results of this work can be used in conjunction with theoretical modeling techniques to optimize a large-scale gas-phase separation experiment using isothermal chromatography. The results to date indicate average adsorption enthalpy and entropy values of the 12 Ln[hfac] 4 complexes ranging from -33 to -139 kJ/mol K and -299 to -557 J/mol, respectively.

  4. Extending lifetimes of lanthanide-based near-infrared emitters (Nd, Yb) in the millisecond range through Cr(III) sensitization in discrete bimetallic edifices.

    PubMed

    Imbert, Daniel; Cantuel, Martine; Bünzli, Jean-Claude G; Bernardinelli, Gérald; Piguet, Claude

    2003-12-24

    A [Cr(alpha,alpha'-diimine)3]3+ chromophore is used as a donor for sensitizing NdIII and YbIII near-infrared (NIR) emitters in the heterobimetallic helicates [LnCrIIIL3]6+. The intramolecular CrIII --> LnIII energy transfer process controls the population of the lanthanide-centered emitting levels, thus leading to unprecedented extension of the NIR luminescence decay times in the millisecond range for Nd and Yb ions incorporated in coordination complexes.

  5. Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes.

    PubMed

    Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R

    2011-05-22

    Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N(2)(3-) radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s(-1).

  6. Role of 4 f electrons in crystallographic and magnetic complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Arjun K.; Paudyal, Durga; Mudryk, Yaroslav

    2017-08-09

    Here, the functionality of many magnetic materials critically depends on first manipulating and then taking advantage of highly nonlinear changes of properties that occur during phase transformations. Unique to lanthanides, property-defining 4f electrons are highly localized and, as commonly accepted, play little to no role in chemical bonding. Yet here we demonstrate that the competition between 4f-electron energy landscapes of Dy (4f 9) and Er (4f 11) is the key element of the puzzle required to explain complex interplay of magnetic and structural features observed in Er 1–xDy xCo 2, and likely many other mixed lanthanide systems. Unlike the parentmore » binaries—DyCo 2 and ErCo 2—Er 1–xDy xCo 2 exhibits two successive magnetostructural transitions: a first order at TC, followed by a second order in the ferrimagnetically ordered state. Supported by first-principles calculations, our results offer new opportunities for targeted design of magnetic materials with multiple functionalities, and also provide a critical insight into the role of 4f electrons in controlling the magnetism and structure of lanthanide intermetallics.« less

  7. Synthesis, structure, and luminescent properties of microporous lanthanide metal-organic frameworks with inorganic rod-shaped building units.

    PubMed

    Guo, Xiaodan; Zhu, Guangshan; Sun, Fuxing; Li, Zhongyue; Zhao, Xiaojun; Li, Xiaotian; Wang, Hanchang; Qiu, Shilun

    2006-03-20

    A series of microporous lanthanide metal-organic frameworks, Tb3(BDC)(4.5)(DMF)2(H2O)3.(DMF)(H2O) (1) and Ln3(BDC)(4.5)(DMF)2(H2O)3.(DMF)(C2H5OH)(0.5)(H2O)(0.5) [Ln = Dy (2), Ho (3), Er (4)], have been synthesized by the reaction of the lanthanide metal ion (Ln3+) with 1,4-benzenedicarboxylic acid and triethylenetetramine in a mixed solution of N,N'-dimethylformamide (DMF), water, and C(2)H(5)OH. X-ray diffraction analyses reveal that they are extremely similar in structure and crystallized in triclinic space group P. An edge-sharing metallic dimer and 4 metallic monomers assemble with 18 carboxylate groups to form discrete inorganic rod-shaped building units [Ln6(CO2)18], which link to each other through phenyl groups to lead to three-dimensional open frameworks with approximately 4 x 6 A rhombic channels along the [0,-1,1] direction. A water sorption isotherm proves that guest molecules in the framework of complex 1 can be removed to create permanent microporosity and about four water molecules per formula unit can be adsorbed into the micropores. These complexes exhibit blue fluorescence, and complex 1 shows a Tb3+ characteristic emission in the range of 450-650 nm.

  8. One-pot synthesis and optical properties of Eu3+-doped nanocrystalline TiO2 and ZrO2

    NASA Astrophysics Data System (ADS)

    Julián, Beatriz; Corberán, Rosa; Cordoncillo, Eloisa; Escribano, Purificación; Viana, Bruno; Sanchez, Clément

    2005-11-01

    A simple and versatile one-pot sol-gel synthesis of Eu3+-doped nanocrystalline TiO2 and ZrO2 nanomaterials is reported in this paper. It consists of the controlled crystallization of Eu3+-doped TiO2 or ZrO2 nanoparticles from an initial solution containing the metal alkoxide, the lanthanide precursor, a complexing agent and a non-complexing acid. The main interest is that it could be extended to different lanthanide ions and inorganic metal oxides to prepare other multifunctional nanomaterials. The characterization by XRD, HRTEM and SAED techniques showed that the TiO2 and ZrO2 crystallization takes place at very low temperatures (60 °C) and that the crystallite size can be tailored by modifying the synthetic conditions. The optical properties of the resulting materials were studied by emission spectra and decay measurements. Both Eu3+:TiO2 and Eu3+:ZrO2 samples exhibited long lifetime values after removing organic components (τ = 0.7 and 1.3 ms, respectively), but the Eu3+:ZrO2 system is specially promising for photonic applications since its τ value is longer than some reported for other inorganic or hybrid matrices in which Eu3+ ions are complexed. This behaviour has been explained through an effective dispersion of the lanthanide ions within the ZrO2 nanocrystals.

  9. Spectroscopic and quantum chemical study of the structure of a new paramagnetic dimeric palladium(II,III) complex with creatine

    NASA Astrophysics Data System (ADS)

    Mitewa, Mariana; Enchev, Venelin; Bakalova, Tatyana

    2002-05-01

    The structure and coordination mode of the newly synthesized dimeric paramagnetic Pd(II,III) complex are studied using magneto-chemical, EPR and IR spectroscopic methods. In order to perform reliable assignment of the IR bands, the structure and IR spectrum of the free creatine were calculated using ab initio method. For calculation of the configuration of its deprotonated and doubly deprotonated forms the semiempirical AM1 method was used.

  10. Bimetallic lanthanide amido complexes as highly active initiators for the ring-opening polymerization of lactides.

    PubMed

    Sun, Song; Nie, Kun; Tan, Yufang; Zhao, Bei; Zhang, Yong; Shen, Qi; Yao, Yingming

    2013-02-28

    A series of neutral bimetallic lanthanide amido complexes supported by rigid phenylene bridged bis(β-diketiminate) ligands were synthesized, and their catalytic behavior for the polymerization of L-lactide and rac-lactide was explored. The amine elimination reaction of Ln[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with PARA-H(2), [PARA-H(2) = 2[2,6-(i)Pr(2)C(6)H(3)NHC(Me)C(H)C(Me)N]-(para-phenylene)] in a 2:1 molar ratio in THF at 25 °C afforded the corresponding bimetallic lanthanide amido complexes PARA-{Ln[N(SiMe(3))(2)](2)}(2) [Ln = Nd(1), Sm(2), Y(3)] in high isolated yields. Similar reaction of Nd[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with META-H(2), [META-H(2) = 2[2,6-(i)Pr(2)C(6)H(3)NHC(Me)C(H)C(Me)N]-(meta-phenylene)] at 90 °C in toluene for about 48 h gave META-{Nd[N(SiMe(3))(2)](2)}(2) (4). Complexes 1-4 were well characterized by elemental analysis, IR spectroscopy, and their definitive structures were confirmed by an X-ray crystal structure analysis. The coordination environment and coordination geometry around the metal atoms are similar in these complexes. Each of the metal atoms is four-coordinated with two nitrogen atoms from the N,N-chelating β-diketiminate unit, and two nitrogen atoms from two (Me(3)Si)(2)N- groups to form a distorted tetrahedron. These complexes can serve as highly active initiators for L-lactide polymerization in toluene. In addition, they also showed high activity towards rac-lactide polymerization in THF at room temperature, giving heterotactic-enriched polymers (P(r) ≈ 0.70), and complex 4 displays obviously higher activity in comparison with complex 1.

  11. Uranium extraction by complexation with siderophores

    NASA Astrophysics Data System (ADS)

    Bahamonde Castro, Cristina

    One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this fundamental research enhances our current understanding of heavy metal complexation to naturally occurring complexants, which may enhance the metals mobility in the environment or potentially be used as a greener alternative in uranium extraction or remediation.

  12. Actinide extraction methods

    DOEpatents

    Peterman, Dean R [Idaho Falls, ID; Klaehn, John R [Idaho Falls, ID; Harrup, Mason K [Idaho Falls, ID; Tillotson, Richard D [Moore, ID; Law, Jack D [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  13. Advancing the scientific basis of trivalent actinide-lanthanide separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, K.L.

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl{sup -}). These 'soft-donor' atoms have exhibited usable selectivity in theirmore » bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)« less

  14. Protonation at the aromatic ring vs at the carbonyl group of lanthanide-diaryl ketone dianion species by aryl alcohols. Formation, structural characterization, and reactivity of lanthanide aryloxide, mixed aryloxide/alkoxide, and aryloxide/enolate complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimura, Takashi; Hou, Z.; Wakatsuki, Yasua

    1995-11-01

    Reaction of the ytterbium-benzophenone dianion complex (1), which was formed by reaction of Yb metal with benzophenone in THF/HMPA, with 2,6-di-tert-butyl-4-methylphenol, yielded the ytterbium(II) aryloxide complex Yb(OAr){sub 2}(HMPA){sub 2} (2, Ar= C{sub 6}H{sub 2} -{sup t}Bu{sub 2}-2,6-Me-4) as a major product (80%) and the ytterbium(III) enolate complex (3) as a minor one (ca. 5% yield). The mechanisms of these reactions are discussed. X-ray crystallographic studies reveal that 3, 4a, and 7b are isostructural, and so are 5a and 6. The central metal ions in these complexes are all five-coordinated in a trigonal bipyramid form (highly distorted in the case ofmore » 5a and 6) with two HMPA ligands at the apical and three anionic oxygen ligands at the equatorial positions. 25 refs., 7 figs., 7 tabs.« less

  15. Highly Luminescent Lanthanide Complexes of 1 Hydroxy-2-pyridinones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    University of California, Berkeley; Lawrence National Laboratory; Raymond, Kenneth

    2007-11-01

    The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III) and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission ({Phi}{sub tot}{sup Eu} {approx} 21.5%) with high stability (pEu {approx} 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysicalmore » properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure, and were found to agree with corresponding TD-DFT calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure.« less

  16. Gas-phase reactivity of lanthanide cations with fluorocarbons: C-F versus C-H and C-C bond activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornehl, H.H.; Hornung, G.; Schwarz, H.

    1996-10-16

    The gas-phase reactivity of the fluorinated hydrocarbons CF{sub 4}, CHF{sub 3}, CH{sub 3}F, C{sub 2}F{sub 6}, 1,1-C{sub 2}H{sub 4}F{sub 2}, and C{sub 6}F{sub 6} with the lanthanide cations Ce{sup +}, Pr{sup +}, Sm{sup +}, Ho{sup +}, Tm{sup +}, and Yb{sup +} and the reactivity of C{sub 6}H{sub 5}F with all lanthanide cations Ln{sup +} (Ln = La-Lu, with the exception of Pm{sup +}) have been examined by Fourier-transform ion cyclotron resonance mass spectrometry. The perfluorinated compounds tetrafluoromethane and hexafluoroethane as well as trifluoromethane do not react with any lanthanide cation. Selective activation of the strong C-F bonds in fluoromethane, 1,1-difluoroethane,more » hexafluorobenzene, and fluorobenzene appears as a general reaction scheme along the 4f row. Experimental evidence is given for a `harpoon`-like mechanism for the F atom abstraction process which operates via an initial electron transfer from the lanthanide cation to the fluorinated substrate in the encounter complex Ln{sup +}RF. The most reactive lanthanides La{sup +}, Ce{sup +}, Gd{sup +}, and Tb{sup +} and also the formal closed-shell species Lu{sup +} exhibit additional C-H and C-C bond activation pathways in the reaction with fluorobenzene, namely dehydrohalogenation as well as loss of a neutral acetylene molecule. In the case of Tm{sup +} and Yb{sup +} the formation of neutral LnF{sub 3} is observed in a multistep process via C-C coupling and charge transfer. 17 refs., 2 figs., 2 tabs.« less

  17. Investigation of aggregation in solvent extraction of lanthanides by acidic extractants (organophosphorus and naphthenic acid)

    USGS Publications Warehouse

    Zhou, N.; Wu, J.; Yu, Z.; Neuman, R.D.; Wang, D.; Xu, G.

    1997-01-01

    Three acidic extractants (I) di(2-ethylhexyl) phosphoric acid (HDEHP), (II) 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEHPEHE) and (III) naphthenic acid were employed in preparing the samples for the characterization of the coordination structure of lanthanide-extractant complexes and the physicochemical nature of aggregates formed in the organic diluent of the solvent extraction systems. Photo correlation spectroscopy (PCS) results on the aggregates formed by the partially saponified HDEHP in n-heptane showed that the hydrodynamic radius of the aggregates was comparable to the molecular dimensions of HDEHP. The addition of 2-octanol into the diluent, by which the mixed solvent was formed, increased the dimensions of the corresponding aggregates. Aggregates formed from the lanthanide ions and HDEHP in the organic phase of the extraction systems were found very unstable. In the case of naphthenic acid, PCS data showed the formation of w/o microemulsion from the saponified naphthenic acid in the mixed solvent. The extraction of lanthanides by the saponified naphthenic acid in the mixed solvent under the given experimental conditions was a process of destruction of the w/o microemulsion. A possible mechanism of the breakdown of the w/o microemulsion droplets is discussed.

  18. Study of the chemical chelates and anti-microbial effect of some metal ions in nanostructural form on the efficiency of antibiotic therapy "norfloxacin drug"

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Hawary, W. F.; Mohamed, Mahmoud A.

    2012-04-01

    This paper has reviewed the chemical and biological impact resulting from the interaction between norfloxacin (norH) antibiotic drug and two lanthanide (lanthanum(III) and cerium(III)) metal ions, which prepared in normal and nano-features. La(III) and Ce(III) complexes were synthesized with chemical formulas [La(nor)3]·3H2O and [Ce(nor)3]·2H2O. Lanthanum and cerium(III) ions coordinated toward norH with a hexadentate geometry. The norH acts as deprotonated bidentate ligand through the oxygen atom of carbonyl group and the oxygen atom of carboxylic group. Elemental analysis, FT-IR spectral, electrical conductivity, thermal analysis (TG/DTA), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurements have been used to characterize the mentioned isolated complexes. The Coats-Redfern and Horowitz-Metzger integral methods are used to estimate the kinetic parameters for the major successive steps detectable in the TG curve. The brightness side in this study is to take advantage for the preparation and characterization of single phases of La2O3 and CeO2 nanoparticles using urea as precursors via a solid-state decomposition procedure. The norH ligand in comparison with both cases (normal and nano-particles) of lanthanide complexes were screened against for antibacterial (Escherichia Coli, Staphylococcus Aureus, Bacillus subtilis and Pseudomonas aeruginosa) and antifungal (Aspergillus Flavus and Candida Albicans) activities. The highest antibacterial and antifungal activities data of the nano-particles complexes were observed with more potent than the free norH and normal lanthanide complexes.

  19. Photoluminescence and Coordination Behaviour of Lanthanide Complexes of Tris (Aminomethyl)Ethane-5-Oxine in Aqueous Solution.

    PubMed

    Akbar, Rifat; Baral, Minati; Kanungo, B K

    2017-01-01

    Photophysical properties of a multidentate tripodal ligand, 5,5'-(2-(((8-hydroxyquinolin-5-yl) methylamino)methyl)-2-methylpropane-1,3-diyl) bis (azanediyl)bis (methylene)diquinolin-8-ol, (TAME5OX), with La 3+ and Er 3+ ions have been examined for photonics applications. The change in behavior in electronic spectra of these complexes reveals the use of TAME5OX as a sensitive optical pH based sensor to detect Ln 3+ ions whereas indication of strong green fluorescence allows simultaneous sensing within the visible region in competitive medium. The intense fluorescence intermittently gets quenched under acidic and basic conditions due to photoinduced intramolecular electron transfer from the excited 8-hydroxyquinoline (8-HQ) moiety to the metal ion. This renders these compounds the OFF-ON-OFF type of pH-dependent fluorescent sensor. The thermodynamic stability and coordination behaviour of the chelator with the said lanthanide ions have also been probed by potentiometric, UV - visible and fluorescence spectrophotometric method. TAME5OX forms protonated complex [Ln (H 4 L)] 4+ below pH ~4.0 which sequentially deprotonates through one proton process with increase of pH. The stability constants of neutral complexes have been determined to be in the range log β 110  = 32-34 and pLn in the range of 14-20, indicating TAME5OX is a good synthetic lanthanide chelator. Theoretical spectra were also calculated by ZINDO/s methodology at single excitations (CIS) level on PM7 as sparkle energy-minimized geometries.

  20. Increasing lanthanide luminescence by use of the RETEL effect.

    PubMed

    Leif, Robert C; Vallarino, Lidia M; Becker, Margie C; Yang, Sean

    2006-08-01

    Luminescent lanthanide complexes produce emissions with the narrowest-known width at half maximum; however, their significant use in cytometry required an increase in luminescence intensity. The companion review, Leif et al., Cytometry 2006;69A:767-778, described a new technique for the enhancement of lanthanide luminescence, the Resonance Energy Transfer Enhanced Luminescence (RETEL) effect, which increases luminescence and is compatible with standard slide microscopy. The luminescence of the europium ion macrocyclic complex, EuMac, was increased by employing the RETEL effect. After adding the nonluminescent gadolinium ion complex of the thenoyltrifluoroacetonate (TTFA) ligand or the sodium salt of TTFA in ethanol solution, the EuMac-labeled sample was allowed to dry. Both a conventional arc lamp and a time-gated UV LED served as light sources for microscopic imaging. The emission intensity was measured with a CCD camera. Multiple time-gated images were summed with special software to permit analysis and effective presentation of the final image. With the RETEL effect, the luminescence of the EuMac-streptavidin conjugate increased at least six-fold upon drying. Nuclei of apoptotic cells were stained with DAPI and tailed with 5BrdUrd to which a EuMac-anti-5BrdU conjugate was subsequently attached. Time-gated images showed the long-lived EuMac luminescence but did not show the short-lived DAPI fluorescence. Imaging of DNA-synthesizing cells with an arc lamp showed that both S phase and apoptotic cells were labeled, and that their labeling patterns were different. The images of the luminescent EuMac and fluorescent DAPI were combined to produce a color image on a white background. This combination of simple chemistry, instrumentation, and presentation should make possible the inexpensive use of the lanthanide macrocycles, Quantum Dyes, as molecular diagnostics for cytological and histopathological microscopic imaging. (c) 2006 International Society for Analytical Cytology.

  1. Solution 1H NMR characterization of the axial bonding of the two His in oxidized human cytoglobin

    PubMed Central

    Bondarenko, Vasyl; Dewilde, Sylvia; Moens, Luc; La Mar, Gerd N.

    2008-01-01

    Solution 1H NMR spectroscopy has been used to determine the relative strengths (covalency) of the two axial His-Fe bonds in paramagnetic, S = 1/2, human met-cytoglobin. The sequence specific assignments of crucial portions of the proximal and distal helices, together with the magnitude of hyperfine shifts and paramagnetic relaxation, establish that His81 and His113, at the canonical positions E7 and F8 in the myoglobin fold, respectively, are ligated to the iron. The characterized complex (~90%) in solution has protohemin oriented as in crystals, with the remaining ~10% exhibiting the hemin orientation rotated 180° about the α-, γ-meso axis. No evidence could be obtained for any five-coordinate complex (<1%) in equilibrium with the six-coordinate complexes. Extensive sequence-specific assignments on other dipolar shifted helical fragments and loops, together with available alternate crystal coordinates for the complex, allowed the robust determination of the orientation and anisotropies of the paramagnetic susceptibility tensor. The tilt of the major axis is controlled by the His-Fe-His vector, and the rhombic axes by the mean of the imidazole orientations for the two His. The anisotropy of the paramagnetic susceptibility tensor allowed the quantitative factoring of the hyperfine shifts for the two axial His to reveal indistinguishable pattern and magnitudes of the contact shifts or π spin densities, and hence, indistinguishable Fe-imidazole covalency for both Fe-His bonds. PMID:17002396

  2. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    PubMed

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  3. Lanthanide Fluorobenzoates as Bio-Probes: a Quest for the Optimal Ligand Fluorination Degree.

    PubMed

    Kalyakina, Alena S; Utochnikova, Valentina V; Bushmarinov, Ivan S; Le-Deygen, Irina M; Volz, Daniel; Weis, Patrick; Schepers, Ute; Kuzmina, Natalia P; Bräse, Stefan

    2017-10-20

    The thorough study of fluorinated benzoates of lanthanides (Eu, Tb, Nd, Er, Yb, Gd, La, Lu) is reported. Their composition in single crystal and powder state revealed two predominant structural motifs. An in-depth luminescence study has been performed on the reported fluorobenzoates, showing, that terbium and europium complexes in solid state possess high luminescence intensity with the quantum yield of up to 69 %. High solubility in most organic solvents, as well as in water, combined with the high luminescence intensity in water solution and non-toxicity allowed the testing of europium complexes as bioprobes in cellulo. Among all tested fluorobenzoates, europium 2-fluorobenzoate dihydrate combined the best luminescent properties, thermodynamic stability, aqueous solubility, and non-toxicity, and was shown to be a viable bio-marker. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rationally designed mineralization for selective recovery of the rare earth elements

    NASA Astrophysics Data System (ADS)

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-05-01

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ~6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

  5. Rationally designed mineralization for selective recovery of the rare earth elements

    PubMed Central

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-01-01

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input. PMID:28548098

  6. Rationally designed mineralization for selective recovery of the rare earth elements.

    PubMed

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-05-26

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

  7. Deciphering three beneficial effects of 2,2'-bipyridine-N,N'-dioxide on the luminescence sensitization of lanthanide(III) hexafluoroacetylacetonate ternary complexes.

    PubMed

    Eliseeva, Svetlana V; Pleshkov, Dmitry N; Lyssenko, Konstantin A; Lepnev, Leonid S; Bünzli, Jean-Claude G; Kuzmina, Natalia P

    2011-06-06

    Lanthanide hexafluoroacetylacetonate ternary complexes with 2,2'-bipyridine-N,N'-dioxide, [Ln(hfa)(3)(bpyO2)], were synthesized for Ln = Eu, Gd, Tb, and Lu and fully characterized by elemental, thermal, and mass-spectrometric analyses. The X-ray crystal structure of [Eu(hfa)(3)(bpyO2)]·0.5C(6)H(6) reveals an octa-coordinate metal ion lying in a severely distorted trigonal dodecahedron geometry; the Eu-O distances lie in the range 2.36-2.44 Å with no significant difference between hfa(-) and bpyO2. A detailed comparative photophysical investigation has been carried out to determine the exact influence of the introduction of bpyO2 in the inner coordination sphere of the metal ion in replacement of the two water molecules in [Ln(hfa)(3)(H(2)O)(2)]. While this replacement is detrimental for Tb, it leads to a 15-fold increase in the overall quantum yield for Eu. This large improvement originates from (i) a better sensitization efficiency, the ancillary ligand being responsible for 3/4 of the energy transfer, (ii) elimination of nonradiative deactivation pathways through harmonics of O-H vibrations, and (iii) reduction in the radiative lifetime. The latter influence is rarely documented, but it accounts here for a ≈25% increase in the intrinsic quantum yield, so that more attention should be given to this parameter when designing highly luminescent lanthanide complexes. © 2011 American Chemical Society

  8. Thermodynamic, spectroscopic, and computational studies of lanthanide complexation with Diethylenetriaminepentaacetic acide: temperature effect and coordination modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guoxin Tian; Leigh R. Martin; Zhiyong Zhang

    2011-04-01

    Stability constants of two DTPA (diethylenetriaminepentaacetic acid) complexes with lanthanides (ML2- and MHL-, where M stands for Nd and Eu and L stands for diethylenetriaminepentaacetate) at 10, 25, 40, 55, and 70 degrees C were determined by potentiometry, absorption spectrophotometry, and luminescence spectroscopy. The enthalpies of complexation at 25 degrees C were determined by microcalorimetry. Thermodynamic data show that the complexation of Nd3þ and Eu3þ with DTPA is weakened at higher temperatures, a 10-fold decrease in the stability constants of ML2- and MHL- as the temperature is increased from 10 to 70 degrees C. The effect of temperature is consistentmore » with the exothermic enthalpy of complexation directly measured by microcalorimetry. Results by luminescence spectroscopy and density functional theory (DFT) calculations suggest that DTPA is octa-dentate in both the EuL2- and EuHL- complexes and, for the first time, the coordination mode in the EuHL- complex was clarified by integration of the experimental data and DFT calculations. In the EuHL- complex, the Eu is coordinated by an octa-dentate H(DTPA) ligand and a water molecule, and the protonation occurs on the oxygen of a carboxylate group.« less

  9. Lanthanide chelates of (bis)-hydroxymethyl-substituted DTTA with potential application as contrast agents in magnetic resonance imaging.

    PubMed

    Silvério, Sara; Torres, Susana; Martins, André F; Martins, José A; André, João P; Helm, Lothar; Prata, M Isabel M; Santos, Ana C; Geraldes, Carlos F G C

    2009-06-28

    A novel bis-hydroxymethyl-substituted DTTA chelator N'-Bz-C(4,4')-(CH(2)OH)(2)-DTTA () and its DTPA analogue C(4,4')-(CH(2)OH)(2)-DTPA () were synthesized and characterized. A variable-temperature (1)H NMR spectroscopy study of the solution dynamics of their diamagnetic (La) and paramagnetic (Sm, Eu) Ln(3+) complexes showed them to be rigid when compared with analogous Ln(3+)-DTTA and Ln(3+)-DTPA complexes, as a result of their C(4,4')-(CH(2)OH)(2) ligand backbone substitution. The parameters that govern the water (1)H relaxivity of the [Gd()(H(2)O)(2)](-) and [Gd()(H(2)O)](2-) complexes were obtained by (17)O and (1)H NMR relaxometry. While the relaxometric behaviour of the [Gd()(H(2)O)](2-) complex is very similar to the parent [Gd(DTPA)(H(2)O)](2-) system, the [Gd()(H(2)O)(2)](-) complex displays higher relaxivity, due to the presence of two inner sphere water molecules and an accelerated, near optimal water exchange rate. The [Gd()(H(2)O)(2)](-) complex interacts weakly with human serum albumin (HSA), and its fully bound relaxivity is limited by slow water exchange, as monitored by (1)H NMR relaxometry. This complex interacts weakly with phosphate, but does not form ternary complexes with bidentate bicarbonate and l-lactate anions, indicating that the two inner-sphere water molecules of the [Gd()(H(2)O)(2)](-) complex are not located in adjacent positions in the coordination sphere of the Gd(3+) ion. The transmetallation reaction rate of [Gd()(H(2)O)(2)](-) with Zn(2+) in phosphate buffer solution (pH 7.0) was measured to be similar to that of the backbone unsubstituted [Gd(DTTA-Me)(H(2)O)(2)](-), but twice faster than for [Gd(DTPA-BMA)(H(2)O)]. The in vivo biodistribution studies of the (153)Sm(3+)-labelled ligand () in Wistar rats reveal slow blood elimination and short term fixation in various organs, indicating some dissociation. The bis-hydroxymethyl-substituted DTTA skeleton can be seen as a new lead for the synthesis of high relaxivity contrast agents, although its low thermodynamic and kinetic stability will limit its use to in vitro and animal studies.

  10. Two New Families of Lanthanide Mixed-Ligand Complexes, Oxalate-Carbonate and Oxalate-Formate: Synthesis and Structure of [Ce(H 2O)] 2(C 2O 4) 2(CO 3)·2.5 H 2O and Ce(C 2O 4)(HCO 2)

    NASA Astrophysics Data System (ADS)

    Romero, S.; Mosset, A.; Trombe, J. C.

    1996-12-01

    Two new families of lanthanide complexes associating the ligands oxalate and carbonate or oxalate and formate have been prepared under autogenous pressure at 200°C using a pseudo-hydrothermal method. The two families have been extended to some lanthanides ( Ln): oxalate-carbonate Ln= Ce, Pr, Nd, and Eu; oxalate-formate Ln= La, Ce, and Sm. The starting suspension contains either oxalate or a mixture of oxalate and oxalic acid. The structures have been solved for the element cerium. In both cases, the structure is built up from cerium atoms sharing all their oxygen atoms with oxalate and carbonate or oxalate and formate ligands, thus forming a three-dimensional network. The cerium polyhedra share either faces or edges or corners. The coordination scheme of the oxalate ligands is variable: bischelating, bischelating and monodentate, or bischelating and bismonodentate. The carbonate group acts as a bischelating and bismonodentate ligand while the formate group is chelating and monodentate. The characterization of these two original families by infrared spectra and thermal behavior is presented for some pure phases. A tentative explanation of the synthesis of these two phases will be emphasized.

  11. Organometallic neptunium(III) complexes.

    PubMed

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  12. Organometallic neptunium(III) complexes

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  13. A Coordination Chemistry Approach to Fine-Tune the Physicochemical Parameters of Lanthanide Complexes Relevant to Medical Applications.

    PubMed

    Le Fur, Mariane; Molnár, Enikő; Beyler, Maryline; Kálmán, Ferenc K; Fougère, Olivier; Esteban-Gómez, David; Rousseaux, Olivier; Tripier, Raphaël; Tircsó, Gyula; Platas-Iglesias, Carlos

    2018-03-02

    The geometric features of two pyclen-based ligands possessing identical donor atoms but different site organization have a profound impact in their complexation properties toward lanthanide ions. The ligand containing two acetate groups and a picolinate arm arranged in a symmetrical fashion (L1) forms a Gd 3+ complex being two orders of magnitude less stable than its dissymmetric analogue GdL2. Besides, GdL1 experiences a much faster dissociation following the acid-catalyzed mechanism than GdL2. On the contrary, GdL1 exhibits a lower exchange rate of the coordinated water molecule compared to GdL2. These very different properties are related to different strengths of the Gd-ligand bonds associated to steric effects, which hinder the coordination of a water molecule in GdL2 and the binding of acetate groups in GdL1. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, Billy W.; Silva, Nuwan De; Windus, Theresa L.

    Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R 2(O)P-link-P(O)R 2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theorymore » and the performance of known bis-phosphine oxide extractants. For the case where link is -CH 2-, evaluation of the ligand geometry provides the first characterization of a steric origin for the ‘anomalous aryl strengthening’ effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples.« less

  15. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes

    NASA Astrophysics Data System (ADS)

    Gregson, Matthew; Lu, Erli; Mills, David P.; Tuna, Floriana; McInnes, Eric J. L.; Hennig, Christoph; Scheinost, Andreas C.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Kerridge, Andrew; Liddle, Stephen T.

    2017-02-01

    Across the periodic table the trans-influence operates, whereby tightly bonded ligands selectively lengthen mutually trans metal-ligand bonds. Conversely, in high oxidation state actinide complexes the inverse-trans-influence operates, where normally cis strongly donating ligands instead reside trans and actually reinforce each other. However, because the inverse-trans-influence is restricted to high-valent actinyls and a few uranium(V/VI) complexes, it has had limited scope in an area with few unifying rules. Here we report tetravalent cerium, uranium and thorium bis(carbene) complexes with trans C=M=C cores where experimental and theoretical data suggest the presence of an inverse-trans-influence. Studies of hypothetical praseodymium(IV) and terbium(IV) analogues suggest the inverse-trans-influence may extend to these ions but it also diminishes significantly as the 4f orbitals are populated. This work suggests that the inverse-trans-influence may occur beyond high oxidation state 5f metals and hence could encompass mid-range oxidation state actinides and lanthanides. Thus, the inverse-trans-influence might be a more general f-block principle.

  16. In situ hydrothermal syntheses, structures and photoluminescent properties of four novel metal-organic frameworks constructed by lanthanide (Ln=Ce(III), Pr(III), Eu(III)) and Cu(I) metals with flexible dicarboxylate acids and piperazine-based ligands

    NASA Astrophysics Data System (ADS)

    Ay, Burak; Karaca, Serkan; Yildiz, Emel; Lopez, Valerie; Nanao, Max H.; Zubieta, Jon

    2016-01-01

    Four novel metal-organic frameworks,[Cu2Cl2(pyrz)]n (1) and (H2pip)n[Ln2(pydc)4(H2O)2]n (Ln=Ce (2), Pr (3) and Eu (4), H2pzdc=2,3-pyrazinedicarboxylic acid, pyrz=pyrazine, H2pydc=2,6-pyridinedicarboxylic acid, H2pip=piperazine) have been synthesized under hydrothermal conditions and characterized by the elemental analysis, ICP, Far IR (FIR), FT-IR spectra, TGA, single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). Compound 1 is two-dimensional containing Cl-Cu-Cl sites, while the lanthanide complexes contain one-dimensional infinite Ln-O-Ln chains. All the complexes show high thermal stability. The complexes 1-3 exhibit luminescence emission bands at 584, 598 and 614 nm at room temperature when excited at 300 nm. Complex 4 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.

  17. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes.

    PubMed

    Gregson, Matthew; Lu, Erli; Mills, David P; Tuna, Floriana; McInnes, Eric J L; Hennig, Christoph; Scheinost, Andreas C; McMaster, Jonathan; Lewis, William; Blake, Alexander J; Kerridge, Andrew; Liddle, Stephen T

    2017-02-03

    Across the periodic table the trans-influence operates, whereby tightly bonded ligands selectively lengthen mutually trans metal-ligand bonds. Conversely, in high oxidation state actinide complexes the inverse-trans-influence operates, where normally cis strongly donating ligands instead reside trans and actually reinforce each other. However, because the inverse-trans-influence is restricted to high-valent actinyls and a few uranium(V/VI) complexes, it has had limited scope in an area with few unifying rules. Here we report tetravalent cerium, uranium and thorium bis(carbene) complexes with trans C=M=C cores where experimental and theoretical data suggest the presence of an inverse-trans-influence. Studies of hypothetical praseodymium(IV) and terbium(IV) analogues suggest the inverse-trans-influence may extend to these ions but it also diminishes significantly as the 4f orbitals are populated. This work suggests that the inverse-trans-influence may occur beyond high oxidation state 5f metals and hence could encompass mid-range oxidation state actinides and lanthanides. Thus, the inverse-trans-influence might be a more general f-block principle.

  18. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes

    PubMed Central

    Gregson, Matthew; Lu, Erli; Mills, David P.; Tuna, Floriana; McInnes, Eric J. L.; Hennig, Christoph; Scheinost, Andreas C.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Kerridge, Andrew; Liddle, Stephen T.

    2017-01-01

    Across the periodic table the trans-influence operates, whereby tightly bonded ligands selectively lengthen mutually trans metal–ligand bonds. Conversely, in high oxidation state actinide complexes the inverse-trans-influence operates, where normally cis strongly donating ligands instead reside trans and actually reinforce each other. However, because the inverse-trans-influence is restricted to high-valent actinyls and a few uranium(V/VI) complexes, it has had limited scope in an area with few unifying rules. Here we report tetravalent cerium, uranium and thorium bis(carbene) complexes with trans C=M=C cores where experimental and theoretical data suggest the presence of an inverse-trans-influence. Studies of hypothetical praseodymium(IV) and terbium(IV) analogues suggest the inverse-trans-influence may extend to these ions but it also diminishes significantly as the 4f orbitals are populated. This work suggests that the inverse-trans-influence may occur beyond high oxidation state 5f metals and hence could encompass mid-range oxidation state actinides and lanthanides. Thus, the inverse-trans-influence might be a more general f-block principle. PMID:28155857

  19. Molecular modeling of biomolecules by paramagnetic NMR and computational hybrid methods.

    PubMed

    Pilla, Kala Bharath; Gaalswyk, Kari; MacCallum, Justin L

    2017-11-01

    The 3D atomic structures of biomolecules and their complexes are key to our understanding of biomolecular function, recognition, and mechanism. However, it is often difficult to obtain structures, particularly for systems that are complex, dynamic, disordered, or exist in environments like cell membranes. In such cases sparse data from a variety of paramagnetic NMR experiments offers one possible source of structural information. These restraints can be incorporated in computer modeling algorithms that can accurately translate the sparse experimental data into full 3D atomic structures. In this review, we discuss various types of paramagnetic NMR/computational hybrid modeling techniques that can be applied to successful modeling of not only the atomic structure of proteins but also their interacting partners. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spectroscopic studies on the lanthanide sensitized luminescence and chemiluminescence properties of fluoroquinolone with different structure.

    PubMed

    Sun, Chunyan; Ping, Hong; Zhang, Minwei; Li, Hongkun; Guan, Fengrui

    2011-11-01

    Lanthanide sensitized luminescence and chemiluminescence (CL) are of great importance because of the unique spectral properties, such as long lifetime, large Stokes shifts, and narrow emission bands characteristic to lanthanide ions (Ln(3+)). With the fluoroquinolone (FQ) compounds including enoxacin (ENX), norfloxacin (NFLX), lomefloxacin (LMFX), fleroxacin (FLRX), ofloxacin (OFLX), rufloxacin (RFX), gatifloxacin (GFLX) and sparfloxacin (SPFX), the luminescence and CL properties of Tb(3+)-FQ and Eu(3+)-FQ complexes have been investigated in this contribution. Ce(4+)-SO(3)(2-) in acidic conditions was taken as the CL system and sensitized CL intensities of Tb(3+)-FQ and Eu(3+)-FQ complexes were determined by flow-injection analysis. The luminescence and CL spectra of Tb(3+)-FQ complexes show characteristic peaks of Tb(3+) at 490 nm, 545 nm, 585 nm and 620 nm. Complexes of Tb(3+)-ENX, Tb(3+)-NFLX, Tb(3+)-LMFX and Tb(3+)-FLRX display relatively strong emission intensity compared with Tb(3+)-OFLX, Tb(3+)-RFX, Tb(3+)-GFLX and Tb(3+)-SPFX. Quite weak peaks with unique characters of Eu(3+) at 590 nm and 617 nm appear in the luminescence and CL spectra of Eu(3+)-ENX, but no notable sensitized luminescence and CL of Eu(3+) could be observed when Eu(3+) is added into other FQ. The distinct differences on emission intensity of Tb(3+)-FQ and Eu(3+)-FQ might originate from the different energy gap between the triplet levels of FQ and the excited levels of the Ln(3+). The different sensitized luminescence and CL signals among Tb(3+)-FQ complexes could be attributed to different optical properties and substituents of these FQ compounds. The detailed mechanism involved in the luminescence and CL properties of Tb(3+)-FQ and Eu(3+)-FQ complexes has been investigated by analyzing the luminescence and CL spectra, quantum yields, and theoretical calculation results. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Early-lanthanide(III) acetonitrile–solvento adducts with iodide and noncoordinating anions

    DOE PAGES

    Brown, Jessie L.; Davis, Benjamin L.; Scott, Brian L.; ...

    2015-12-25

    Dissolution of LnI 3 (Ln = La, Ce) in acetonitrile (MeCN) results in the highly soluble solvates LnI 3(MeCN) 5 [Ln = La (1), Ce (2)] in good yield. The ionic complex [La(MeCN) 9][LaI 6] (4), containing a rare homoleptic La 3+ cation and anion, was also isolated as a minor product. Extending this chemistry to NdI 3 results in the consistent formation of the complex ionic structure [Nd(MeCN) 9] 2[NdI 5(MeCN)][NdI 6][I] (3), which contains an unprecedented pentaiodide lanthanoid anion. Also described is the synthesis, isolation, and structural characterization of several homoleptic early-lanthanide MeCN solvates with noncoordinating anions, namely,more » [Ln(MeCN) 9][AlCl 4] 3 [Ln = La (5), Ce (6), Nd (7)]. Notably, complex 6 is the first homoleptic cerium MeCN solvate reported to date. All reported complexes were structurally characterized by X-ray crystallography, as well as by IR spectroscopy and CHN elemental analysis. Furthermore, complexes 1–3 were also characterized by thermogravimetric analysis coupled with mass spectrometry to further elucidate their bulk composition in the solid-state.« less

  2. Demetalation of Fe, Mn, and Cu chelates and complexes: application to the NMR analysis of micronutrient fertilizers.

    PubMed

    López-Rayo, Sandra; Lucena, Juan J; Laghi, Luca; Cremonini, Mauro A

    2011-12-28

    The application of nuclear magnetic resonance (NMR) for the quality control of fertilizers based on Fe(3+), Mn(2+), and Cu(2+) chelates and complexes is precluded by the strong paramagnetism of metals. Recently, a method based on the use of ferrocyanide has been described to remove iron from commercial iron chelates based on the o,o-EDDHA [ethylenediamine-N,N'bis(2-hydroxyphenylacetic)acid] chelating agent for their analysis and quantification by NMR. The present work extended that procedure to other paramagnetic ions, manganese and copper, and other chelating, EDTA (ethylenediaminetetraacetic acid), IDHA [N-(1,2-dicarboxyethyl)-d,l-aspartic acid], and complexing agents, gluconate and heptagluconate. Results showed that the removal of the paramagnetic ions was complete, allowing us to obtain (1)H NMR spectra characterized by narrow peaks. The quantification of the ligands by NMR and high-performance liquid chromatography showed that their complete recovery was granted. The NMR analysis enabled detection and quantification of unknown impurities without the need of pure compounds as internal standards.

  3. A new series of lanthanide coordination polymers with 2,2‧-bipyridine and glutaric acid: Synthesis, crystal structures and properties of [Ln(bipy)(glut)(NO3)

    NASA Astrophysics Data System (ADS)

    Wang, Chunguang; Xing, Yongheng; Li, Zhangpeng; Li, Jing; Zeng, Xiaoqing; Ge, Maofa; Niu, Shuyun

    2009-08-01

    A series of new lanthanide coordination polymers, with the formula [Ln(bipy)(glut)(NO 3)] (Ln = Eu ( 1), Tb ( 2), Sm ( 3), Pr ( 4); bipy = 2,2'-bipyridine; H 2glut = glutaric acid), have been synthesized under the hydrothermal condition and characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction, and single-crystal X-ray diffraction. Structural analyses reveal that all four complexes are isostructural and crystallized in monoclinic system, P2 1/ c space group. For these complexes, the Ln 3+ are all linked through glutaric acid ligands to form 1D chain-like polymeric structures, and bipy and NO3- are coordinated on two sides of the chains. The thermogravimetric analysis of 1 and photoluminescent properties of 1 and 2 are discussed in detail.

  4. Structural properties of scandium inorganic salts

    DOE PAGES

    Sears, Jeremiah M.; Boyle, Timothy J.

    2016-12-16

    Here, the structural properties of reported inorganic scandium (Sc) salts were reviewed, including the halide (Cl, Br, and I), nitrate, sulfate, and phosphate salts. Additional analytical techniques used for characterization of these complexes (metrical data, FTIR and 45Sc NMR spectroscopy) were tabulated. A structural comparison of Sc to select lanthanide (La, Gd, Lu) salt complexes was briefly evaluated.

  5. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  6. Biological toxicity of lanthanide elements on algae.

    PubMed

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. CoAs: The line of 3 d demarcation

    NASA Astrophysics Data System (ADS)

    Campbell, Daniel J.; Wang, Limin; Eckberg, Chris; Graf, Dave; Hodovanets, Halyna; Paglione, Johnpierre

    2018-05-01

    Transition metal-pnictide compounds have received attention for their tendency to combine magnetism and unconventional superconductivity. Binary CoAs lies on the border of paramagnetism and the more complex behavior seen in isostructural CrAs, MnP, FeAs, and FeP. Here we report the properties of CoAs single crystals grown with two distinct techniques along with density functional theory calculations of its electronic structure and magnetic ground state. While all indications are that CoAs is paramagnetic, both experiment and theory suggest proximity to a ferromagnetic instability. Quantum oscillations are seen in torque measurements up to 31.5 T and support the calculated paramagnetic Fermiology.

  8. Modelos estereoquimicos na quimica de coordenacao e organometalica de lantanideos e actinideos: aplicacoes a complexos de torio (iv) com boratos de polipirazolilo (Stereochemical models in lanthanide and actinide coordination and organometallic chemistry: Applications to thorium (IV) complexes with polypyrazolylborates). Doctoral thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Almeida, J.C.M.

    1990-01-01

    A detailed analysis is made of two stereochemical models commonly used in lanthanide and actinide coordination and organometallic chemistry. Li Xing-fu's Cone Packing Model and K. N. Raymond's Ionic Model. Corrections are introduced in the first model as a basis to discuss the stability and structure of known complexes. A Steric Coordination Number is defined for the second model, based on the solid angle to correlate metal-ligand distances in complexes with the ionic radii of the elements and to assign effective radii to the ligands, related to the donating power of the coordinating atoms. As an application of the models,more » the syntheses and characterizations of thorium(IV) complexes with polypyrazolylborates. (HBPz3) {sup -1} and (HB(3.5-Me2Pz)3) {sup -1}, and alkoxides, aryloxides, carboxylates, amides, thiolates, alkyls and cyclopentadienyl are described and their stabilities discussed. The geometries of the complexes in the solid and in solution are discussed and a mechanism is proposed to explain the fluxionality in solution of the complexes with (HBPz3) {sup -1}.« less

  9. Thermodynamic and Spectroscopic Studies of Trivalent f -element Complexation with Ethylenediamine- N,N '-di(acetylglycine)- N,N '-diacetic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heathman, Colt R.; Grimes, Travis S.; Zalupski, Peter R.

    In this study, the coordination behavior and thermodynamic features of complexation of trivalent lanthanides and americium by ethylenediamine- N,N'-di(acetylglycine)- N,N'-diacetic acid (EDDAG-DA) (bisamide-substituted-EDTA) were investigated by potentiometric and spectroscopic techniques. Acid dissociation constants (K a) and complexation constants (β) of lanthanides (except Pm) were determined by potentiometric analysis. Absorption spectroscopy was used to determine stability constants for the binding of trivalent americium and neodymium by EDDAG-DA under similar conditions. The potentiometry revealed 5 discernible protonation constants and 3 distinct metal–ligand complexes (identified as ML –, MHL, and MH 2L +). Time-resolved fluorescence studies of Eu-(EDDAG-DA) solutions (at varying pH) identifiedmore » a constant inner-sphere hydration number of 3, suggesting that glycine functionalities contained in the amide pendant arms are not involved in metal complexation and are protonated under more acidic conditions. The thermodynamic studies identified that f-element coordination by EDDAG-DA is similar to that observed for ethylenediamine- N,N,N',N'-tetraacetic acid (EDTA). However, coordination via two amidic oxygens of EDDAG-DA lowers its trivalent f-element complex stability by roughly 3 orders of magnitude relative to EDTA.« less

  10. Thermodynamic and Spectroscopic Studies of Trivalent f -element Complexation with Ethylenediamine- N,N '-di(acetylglycine)- N,N '-diacetic Acid

    DOE PAGES

    Heathman, Colt R.; Grimes, Travis S.; Zalupski, Peter R.

    2016-03-21

    In this study, the coordination behavior and thermodynamic features of complexation of trivalent lanthanides and americium by ethylenediamine- N,N'-di(acetylglycine)- N,N'-diacetic acid (EDDAG-DA) (bisamide-substituted-EDTA) were investigated by potentiometric and spectroscopic techniques. Acid dissociation constants (K a) and complexation constants (β) of lanthanides (except Pm) were determined by potentiometric analysis. Absorption spectroscopy was used to determine stability constants for the binding of trivalent americium and neodymium by EDDAG-DA under similar conditions. The potentiometry revealed 5 discernible protonation constants and 3 distinct metal–ligand complexes (identified as ML –, MHL, and MH 2L +). Time-resolved fluorescence studies of Eu-(EDDAG-DA) solutions (at varying pH) identifiedmore » a constant inner-sphere hydration number of 3, suggesting that glycine functionalities contained in the amide pendant arms are not involved in metal complexation and are protonated under more acidic conditions. The thermodynamic studies identified that f-element coordination by EDDAG-DA is similar to that observed for ethylenediamine- N,N,N',N'-tetraacetic acid (EDTA). However, coordination via two amidic oxygens of EDDAG-DA lowers its trivalent f-element complex stability by roughly 3 orders of magnitude relative to EDTA.« less

  11. Rare-earth organic frameworks involving three types of architecture tuned by the lanthanide contraction effect: hydrothermal syntheses, structures and luminescence.

    PubMed

    Deng, Zhao-Peng; Kang, Wei; Huo, Li-Hua; Zhao, Hui; Gao, Shan

    2010-07-21

    The first example of rare-earth organic frameworks with 3-aminopyrazine-2-carboxylic acid (Hapca) was synthesized under hydrothermal conditions and characterized by elemental analysis, IR, PL, TG, powder and single-crystal X-ray diffraction. These ten complexes exhibit three different structure types with decreasing lanthanide radii: [La(apca)(3)](n) () for type I, {[Ln(apca)(ox)(H(2)O)(2)].H(2)O}(n) (Ln = Pr (2), Nd (3), ox = oxalate) for type II, and [Ln(2)(apca)(4)(OH)(2)(H(2)O)(2)](n) (Ln = Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9), Y (10)) for type III. The structure of type I consists of 1D "snowflake" chains along a-axis, which are further interconnected by hydrogen bonds to produce a 3D sra net topology containing infinite (-C-O-La-)(n) rod-shaped SBU. Type II has 2D Ln-apca-ox 4(4)-net, in which a planar udud water tetramers (H(2)O)(4) are formed by coordinated and free water molecules. Type III also comprises of 2D 4(4)-layer network constructed from Ln-apca-OH. The structure diversity is mainly caused by the variation of coordinated ligand and lanthanide contraction effect. Remarkably, the oxalate in type II was in situ synthesized from 3-aminopyrazine-2-carboxylic acid through an oxidation-hydrolysis reaction. The luminescent investigations reveal that complex exhibits strong blue emission and complex exhibits characteristic luminescence of Eu(3+).

  12. Mixed (phthalocyaninato)(Schiff-base) di-dysprosium sandwich complexes. Effect of magnetic coupling on the SMM behavior.

    PubMed

    Wang, Hailong; Liu, Chenxi; Liu, Tao; Zeng, Suyuan; Cao, Wei; Ma, Qi; Duan, Chunying; Dou, Jianmin; Jiang, Jianzhuang

    2013-11-21

    Reaction between Schiff-base ligand and half-sandwich complex M(Pc)(acac) led to the isolation of new sandwich-type mixed (phthalocyaninato)(Schiff-base) di-lanthanide compounds M2(Pc)2(L)H2O (M = Dy, Gd) (1, 2) [H2Pc = metal free phthalocyanine, Hacac = acetylacetone, H2L = N,N'-bis(3-methyloxysalicylidene)benzene-1,2-diamine] with the triple-decker molecular structure clearly revealed by single crystal X-ray diffraction analysis. For the comparative studies, sandwich triple-decker analogues with pure Schiff-base ligand M2(L)3H2O (M = Dy, Gd) (3, 4) were also prepared. Dynamic magnetic measurement result reveals the single-molecule magnet (SMM) nature of the di-dysprosium derivative 1, while the static magnetic investigation over both pure and the diamagnetic diluted samples of this compound discloses the interionic ferromagnetic coupling between the two dysprosium ions, which in turn effectively suppresses the QTM and enhances the energy barrier of this SMM. Nevertheless, comparative studies over the static magnetic properties of the di-dysprosium triple-decker complexes 1 and 3 indicate the stronger magnetic coupling between the two lanthanide ions in mixed (phthalocyaninato)(Schiff-base) species than in the pure Schiff-base triple-decker analogue, suggesting the special coordination sphere around the dysprosium ions in the former compound over the latter one on the more intense inter-ionic ferromagnetic coupling. As a very small step towards understanding the structure-property relationship, the present result will be surely helpful for the design and synthesis of the multinuclear lanthanide-based SMMs with good properties.

  13. Method to synthesize lanthanide fluoride materials from lanthanide fluorinated alkoxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, Timothy J.

    Lanthanide fluorinated alkoxide derivatives can be synthesized from the alcoholysis reaction of the lanthanide bis-trimethylsilyl amide and an excess amount of hexafluoro iso-propanol. Nanoparticles can be formed from the lanthanide fluorinated alkoxide derivatives by a solvothermal or solution precipitation process.

  14. Carbon-related platinum defects in silicon: An electron paramagnetic resonance study of high spin states

    NASA Astrophysics Data System (ADS)

    Scheerer, O.; Höhne, M.; Juda, U.; Riemann, H.

    1997-10-01

    In this article, we report about complexes in silicon investigated by electron paramagnetic resonance (EPR). In silicon doped with C and Pt we detected two different complexes: cr-1Pt (cr: carbon-related, 1Pt: one Pt atom) and cr-3Pt. The complexes have similar EPR properties. They show a trigonal symmetry with effective g-values geff,⊥=2g⊥≈4 and geff,‖=g‖≈2 (g⊥, g‖ true g-values). The g-values can be explained by a spin Hamiltonian with large fine-structure energy (electron spin S=3/2) and smaller Zeeman interaction. The participation of platinum in the complexes is proved by the hyperfine interaction. From experiments with varying carbon concentration we conclude that the complexes contain carbon. Atomistic models based on the Watkins vacancy-model for substitutional Pt were developed.

  15. Facilitated Protein Association via Engineered Target Search Pathways Visualized by Paramagnetic NMR Spectroscopy.

    PubMed

    An, So Young; Kim, Eun-Hee; Suh, Jeong-Yong

    2018-06-05

    Proteins assemble to form functional complexes via the progressive evolution of nonspecific complexes formed by transient encounters. This target search process generally involves multiple routes that lead the initial encounters to the final complex. In this study, we have employed NMR paramagnetic relaxation enhancement to visualize the encounter complexes between histidine-containing phosphocarrier protein and the N-terminal domain of enzyme I and demonstrate that protein association can be significantly enhanced by engineering on-pathways. Specifically, mutations in surface charges away from the binding interface can elicit new on-pathway encounter complexes, increasing their binding affinity by an order of magnitude. The structure of these encounter complexes indicates that such on-pathways extend the built-in target search process of the native protein complex. Furthermore, blocking on-pathways by countering mutations reverts their binding affinity. Our study thus illustrates that protein interactions can be engineered by rewiring the target search process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Two Series of Homodinuclear Lanthanide Complexes: Greatly Enhancing Energy Barriers through Tuning Terminal Solvent Ligands in Dy2 Single-Molecule Magnets.

    PubMed

    Qin, Yaru; Zhang, Haifeng; Sun, Hao; Pan, Yangdan; Ge, Yu; Li, Yahong; Zhang, Yi-Quan

    2017-11-02

    The utilization of 2-ethoxy-6-{[(2-hydroxy-3-methoxybenzyl)imino]methyl}phenol (H 2 L) as a chelating ligand, in combination with the employment of alcohols (EtOH and MeOH) as auxiliary ligands, in 4 f-metal chemistry afforded two series of dinuclear lanthanide complexes of compositions [Ln 2 L 2 (NO 3 ) 2 (EtOH) 2 ] (Ln=Sm (1), Eu (2), Gd (3), Tb (4), Dy (5), Ho (6), Er (7)) and [Ln 2 L 2 (NO 3 ) 2 (MeOH) 2 ] (Ln=Sm (8), Eu (9), Gd (10), Tb (11), Dy (12), Ho (13), Er (14)). The structures of 1-14 were determined by single-crystal X-ray crystallography. Complexes 1-7 are isomorphous. The two lanthanide(III) ions in 1-7 are doubly bridged by two deprotonated aminophenoxide oxygen atoms of two μ 2 :η 0 :η 1 :η 2 :η 1 :η 1 :η 0 -L 2- ligands. One nitrogen atom, two oxygen atoms of the NO 3 - anion, two methoxide oxygen atoms of two ligand sets, and one oxygen atom of the terminally coordinated EtOH molecule complete the distorted dodecahedron geometry of each lanthanide(III) ion. Compounds 8-14 are isomorphous and their structures are similar to those of 1-7. The slight difference between 1-7 and 8-14 stems from purposefully replacing the EtOH ligands in 1-7 with MeOH in 8-14. Direct-current magnetic susceptibility studies in the 2-300 K range reveal weak antiferromagnetic interactions for 3, 4, 7, 10, 11, and 14, and ferromagnetic interactions at low temperature for 5, 6, 12, and 13. Complexes 5 and 12 exhibit single-molecule magnet (SMM) behavior with energy barriers of 131.3 K for 5 and 198.8 K for 12. The energy barrier is significantly enhanced by dexterously regulating the terminal ligands. To rationalize the observed difference in the magnetic behavior, complete-active-space self-consistent field (CASSCF) calculations were performed on two Dy 2 complexes. Subtle variation in the angle between the magnetic axes and the vector connecting two dysprosium(III) ions results in a weaker influence on the tunneling gap of individual dysprosium(III) ions by the dipolar field in 12. This work proposes an efficient strategy for synthesizing Dy 2 SMMs with high energy barriers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bimetallic complexes and polymerization catalysts therefrom

    DOEpatents

    Patton, Jasson T.; Marks, Tobin J.; Li, Liting

    2000-11-28

    Group 3-6 or Lanthanide metal complexes possessing two metal centers, catalysts derived therefrom by combining the same with strong Lewis acids, Bronsted acid salts, salts containing a cationic oxidizing agent or subjected to bulk electrolysis in the presence of compatible, inert non-coordinating anions and the use of such catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers are disclosed.

  18. Photofragmentation of Gas-Phase Lanthanide Cyclopentadienyl Complexes: Experimental and Time-Dependent Excited-State Molecular Dynamics

    PubMed Central

    2015-01-01

    Unimolecular gas-phase laser-photodissociation reaction mechanisms of open-shell lanthanide cyclopentadienyl complexes, Ln(Cp)3 and Ln(TMCp)3, are analyzed from experimental and computational perspectives. The most probable pathways for the photoreactions are inferred from photoionization time-of-flight mass spectrometry (PI-TOF-MS), which provides the sequence of reaction intermediates and the distribution of final products. Time-dependent excited-state molecular dynamics (TDESMD) calculations provide insight into the electronic mechanisms for the individual steps of the laser-driven photoreactions for Ln(Cp)3. Computational analysis correctly predicts several key reaction products as well as the observed branching between two reaction pathways: (1) ligand ejection and (2) ligand cracking. Simulations support our previous assertion that both reaction pathways are initiated via a ligand-to-metal charge-transfer (LMCT) process. For the more complex chemistry of the tetramethylcyclopentadienyl complexes Ln(TMCp)3, TMESMD is less tractable, but computational geometry optimization reveals the structures of intermediates deduced from PI-TOF-MS, including several classic “tuck-in” structures and products of Cp ring expansion. The results have important implications for metal–organic catalysis and laser-assisted metal–organic chemical vapor deposition (LCVD) of insulators with high dielectric constants. PMID:24910492

  19. Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons.

    PubMed

    Paratala, Bhavna S; Jacobson, Barry D; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn(2+) ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents.

  20. Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons

    PubMed Central

    Paratala, Bhavna S.; Jacobson, Barry D.; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn2+ ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents. PMID:22685555

  1. Utility of Lithium in Rare-Earth Metal Reduction Reactions to Form Nontraditional Ln2+ Complexes and Unusual [Li(2.2.2-cryptand)]1+ Cations.

    PubMed

    Huh, Daniel N; Darago, Lucy E; Ziller, Joseph W; Evans, William J

    2018-02-19

    The utility of lithium compared to other alkali metals in generating Ln 2+ rare-earth metal complexes via reduction of Ln 3+ precursors in reactions abbreviated as LnA 3 /M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp' 3 Ln (Cp' = C 5 H 4 SiMe 3 ; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln 2+ complexes of these metals, [Li(crypt)][Cp' 3 Ln]. In each complex, lithium is found in an N 2 O 4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4f n 5d 1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 μ B , respectively. Lithium reduction of Cp' 3 Y under N 2 at -35 °C forms the Y 2+ complex (Cp' 3 Y) 1- , which reduces dinitrogen upon warming to room temperature to generate the (N 2 ) 2- complex [Cp' 2 Y(THF)] 2 (μ-η 2 :η 2 -N 2 ). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.

  2. Self-assembly of 2-aldehyde-8-hydroxyquinolinate-based lanthanide complexes and NIR luminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Meiqi; Li, Hongfeng; Chen, Peng; Sun, Wenbin; Zhang, Lei; Yan, Pengfei

    2015-02-01

    Self-assembly reaction of 2-aldehyde-8-hydroxyquinoline, tris(hydroxymethyl)aminomethane and LnCl3ṡ6H2O affords a series of mononuclear lanthanide complexes Ce(baho)2·Et2O (1) (H2baho = 2,8-bis(2-(8-hydroxylquinolinyl))-1-aza-5-hydroxymethyl-3,7-dioxabicyclo[3.3.0]octane), Dy(nhm)2Cl·0.5H2O (2) and Ln(nhm)2Cl·0.5C6H14 (Ln = Ho (3), Er (4), Yb (5) and Hnhm = N-(2-(8-hydroxylquinolinyl)methylene)(trishydroxymethyl)methylamine. The crystal structures have been determined by X-ray crystallographic analysis, and the tetravalence of Ce in 1 has been proven by XPS. Interestingly, the positive charge of Ce4+ ion in 1 is neutralized by two deprotonated baho2- ligands, while two deprotonated nhm- ligands and one Cl- compensate the positive charge of Ln3+ ions in 2-5. Complex 5 exhibit essential NIR luminescence of Yb3+ ion with lifetime of 17.64 μs in solid and 9.96 μs in CH3OH solution.

  3. [Na5(THF)10Ce(mnt)4]infinity: a honeycomb network polymer that yields homoleptic cerium(III) tetrakis(dithiolene) complexes in donor solvents.

    PubMed

    Weis, Eric M; Barnes, Charles L; Duval, Paul B

    2006-12-11

    The first example of a lanthanide tetrakis(dithiolene) complex, [Na5(THF)10Ce(mnt)4] (1) (mnt = 1,2-maleonitrile-1,2-dithiolate), has been synthesized and characterized by X-ray crystallography and spectroscopic methods. In the solid state, 1 exists as a 2-D corrugated honeycomb network polymer in which the monomeric units comprising the trigonal nodes are knitted together by interlocking dative Na-N bonds extended from nitrile groups of bifunctional mnt ligands coordinated through the sulfur atoms to adjacent cerium centers. Individual honeycomb sheets are separated by 14.8 A. Compound 1 dissolves in donor solvents such as THF and acetonitrile to give soluble [Ce(mnt)4]5- units that exhibit spectroscopic features (i.e., NMR, luminescence, UV-vis) that are consistent with the 4f1 Ce(III) ion. In the first examination of the redox chemistry of a lanthanide dithiolene complex, cyclic voltammetry measurements conducted on 1 reveal a single irreversible oxidation wave that is likely attributable to ligand-centered oxidation.

  4. Lanthanide and transition metal complexes of bioactive coumarins: molecular modeling and spectroscopic studies.

    PubMed

    Georgieva, I; Mihaylov, Tz; Trendafilova, N

    2014-06-01

    The present paper summarizes theoretical and spectroscopic investigations on a series of active coumarins and their lanthanide and transition metal complexes with application in medicine and pharmacy. Molecular modeling as well as IR, Raman, NMR and electronic spectral simulations at different levels of theory were performed to obtain important molecular descriptors: total energy, formation energy, binding energy, stability, conformations, structural parameters, electron density distribution, molecular electrostatic potential, Fukui functions, atomic charges, and reactive indexes. The computations are performed both in gas phase and in solution with consideration of the solvent effect on the molecular structural and energetic parameters. The investigations have shown that the advanced computational methods are reliable for prediction of the metal-coumarin binding mode, electron density distribution, thermodynamic properties as well as the strength and nature of the metal-coumarin interaction (not experimentally accessible) and correctly interpret the experimental spectroscopic data. Known results from biological tests for cytotoxic, antimicrobial, anti-fungal, spasmolytic and anti-HIV activities on the studied metal complexes are reported and discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Optimization of Time-Resolved Fluorescence Assay for Detection of Eu-DOTA-labeled Ligand-Receptor Interactions

    PubMed Central

    De Silva, Channa R.; Vagner, Josef; Lynch, Ronald; Gillies, Robert J.; Hruby, Victor J.

    2010-01-01

    Lanthanide-based luminescent ligand binding assays are superior to traditional radiolabel assays due to improved sensitivity and affordability in high throughput screening while eliminating the use of radioactivity. Despite significant progress using lanthanide(III)-coordinated chelators such as DTPA derivatives, dissociation-enhanced lanthanide fluoroimmunoassays (DELFIA) have not yet been successfully used with more stable chelators, e.g. DOTA derivatives, due to the incomplete release of lanthanide(III) ions from the complex. Here, a modified and an optimized DELFIA procedure incorporating an acid treatment protocol is introduced for use with Eu(III)-DOTA labeled peptides. Complete release of Eu(III) ions from DOTA labeled ligands was observed using hydrochloric acid (2.0 M) prior to the luminescent enhancement step. NDP-α-MSH labeled with Eu(III)-DOTA was synthesized and the binding affinity to cells overexpressing the human melanocortin-4 receptors (hMC4R) was evaluated using the modified protocol. Binding data indicate that the Eu(III)-DOTA linked peptide bound to these cells with an affinity similar to its DTPA analogue. The modified DELFIA procedure was further used to monitor the binding of an Eu(III)-DOTA labeled heterobivalent peptide to the cells expressing both hMC4R and CCK-2 (Cholecystokinin) receptors. The modified assay provides superior results and is appropriate for high-throughput screening of ligand libraries. PMID:19852924

  6. Cooperative loading of multisite receptors with lanthanide containers: an approach for organized luminescent metallopolymers.

    PubMed

    Babel, Lucille; Guénée, Laure; Besnard, Céline; Eliseeva, Svetlana V; Petoud, Stéphane; Piguet, Claude

    2018-01-14

    Metal-containing (bio)organic polymers are materials of continuously increasing importance for applications in energy storage and conversion, drug delivery, shape-memory items, supported catalysts, organic conductors and smart photonic devices. The embodiment of luminescent components provides a revolution in lighting and signaling with the ever-increasing development of polymeric light-emitting devices. Despite the unique properties expected from the introduction of optically and magnetically active lanthanides into organic polymers, the deficient control of the metal loading currently limits their design to empirical and poorly reproducible materials. We show here that the synthetic efforts required for producing soluble multi-site host systems L k are largely overcome by the virtue of reversible thermodynamics for mastering the metal loading with the help of only two parameters: (1) the affinity of the luminescent lanthanide container for a single binding site and (2) the cooperative effect which modulates the successive fixation of metallic units to adjacent sites. When unsymmetrical perfluorobenzene-trifluoroacetylacetonate co-ligands (pbta - ) are selected for balancing the charge of the trivalent lanthanide cations, Ln 3+ , in six-coordinate [Ln(pbta) 3 ] containers, the explored anti-cooperative complexation processes induce nearest-neighbor intermetallic interactions twice as large as thermal energy at room temperature ( RT = 2.5 kJ mol -1 ). These values have no precedent when using standard symmetrical containers and they pave the way for programming metal alternation in luminescent lanthanidopolymers.

  7. Porphyrin framework solids. Synthesis and structure of hybrid coordination polymers of tetra(carboxyphenyl)porphyrins and lanthanide-bridging ions.

    PubMed

    Muniappan, Sankar; Lipstman, Sophia; George, Sumod; Goldberg, Israel

    2007-07-09

    New types of porphyrin-based framework solids were constructed by reacting meso-tetra(3-carboxyphenyl)porphyrin and meso-tetra(4-carboxyphenyl)metalloporphyrins with common salts of lanthanide metal ions. The large size, high coordination numbers and strong affinity for oxo ligands of the latter, combined with favorable hydrothermal reaction conditions, allowed the formation of open three-dimensional single-framework architectures by coordination polymerization, in which the tetradentate porphyrin units are intercoordinated by multinuclear assemblies of the bridging metal ions. The latter serve as construction pillars of the supramolecular arrays, affording stable structures. Several modes of coordination polymerization were revealed by single-crystal X-ray diffraction. They differ by the spatial functionality of the porphyrin building blocks, the coordination patterns of the lanthanide-carboxylate assemblies, and the topology of the resulting frameworks. The seven new reported structures exhibit periodically spaced 0.4-0.6 nm wide channel voids that perforate the respective crystalline polymeric architectures and are accessible to solvent components. Materials based on the m-carboxyphenyl derivative reveal smaller channels than those based on the p-carboxyphenyl analogues. An additional complex of the former with a smaller third-row transition metal (Co) is characterized by coordination connectivity in two dimensions only. Thermal and powder-diffraction analyses confirm the stability of the lanthanide-TmCPP (TmCPP=tetra(m-carboxyphenyl)porphyrin) frameworks.

  8. Synthesis, characterization, and binding assessment with human serum albumin of three bipyridine lanthanide(III) complexes.

    PubMed

    Aramesh-Boroujeni, Zahra; Bordbar, Abdol-Khalegh; Khorasani-Motlagh, Mozhgan; Sattarinezhad, Elham; Fani, Najme; Noroozifar, Meissam

    2018-05-18

    In this work, the terbium(III), dysprosium(III), and ytterbium(III) complexes containing 2, 2'-bipyridine (bpy) ligand have been synthesized and characterized using CHN elemental analysis, FT-IR, UV-Vis and 1 H-NMR techniques and their binding behavior with human serum albumin (HSA) was studied by UV-Vis, fluorescence and molecular docking examinations. The experimental data indicated that all three lanthanide complexes have high binding affinity to HSA with effective quenching of HSA fluorescence via static mechanism. The binding parameters, the type of interaction, the value of resonance energy transfer, and the binding distance between complexes and HSA were estimated from the analysis of fluorescence measurements and Förster theory. The thermodynamic parameters suggested that van der Waals interactions and hydrogen bonds play an important role in the binding mechanism. While, the energy transfer from HSA molecules to all these complexes occurs with high probability, the order of binding constants (BpyTb > BpyDy > BpyYb) represents the importance of radius of Ln 3+ ion in the complex-HSA interaction. The results of molecular docking calculation and competitive experiments assessed site 3 of HSA, located in subdomain IB, as the most probable binding site for these ligands and also indicated the microenvironment residues around the bound mentioned complexes. The computational results kept in good agreement with experimental data.

  9. Improving the SMM and luminescence properties of lanthanide complexes with LnO9 cores in the presence of ZnII: an emissive Zn2Dy single ion magnet.

    PubMed

    Fondo, Matilde; Corredoira-Vázquez, Julio; Herrera-Lanzós, Antía; García-Deibe, Ana M; Sanmartín-Matalobos, Jesús; Herrera, Juan Manuel; Colacio, Enrique; Nuñez, Cristina

    2017-12-12

    Mononuclear complexes of stoichiometry [Ln(H 3 L)(H 2 O)(NO 3 )](NO 3 ) 2 (Ln = Tb, 1; Dy, 2, Er, 3), which crystallise with different solvates, and the heterotrinuclear compound [Zn 2 Dy(L)(NO 3 ) 3 (OH)] (4) can be obtained with the same H 3 L compartmental ligand. The single X-ray crystal structure of the mononuclear complexes shows a LnO 9 core with a muffin-like disposition while the geometry of the DyO 9 core in 4 seems to be closer to spherical capped square antiprism. The analysis of the magnetic properties of all the complexes demonstrates that the mononuclear lanthanide compounds do not show slow relaxation of the magnetization, even when the samples are diluted with a diamagnetic matrix and subjected to a dc applied field of 1000 Oe. Nevertheless, the heterotrinuclear dysprosium complex 4·3H 2 O is a field-induced single ion magnet, with an estimated U eff barrier of 59 K. The luminescence characterisation of all the metal complexes in methanol solution at 298 K also shows a notable increase in the fluorescence emission of the heterotrinuclear complex with respect to the mononuclear ones, in such a way that 4 can be defined as a fluorescent single ion magnet.

  10. Dual roles of f electrons in mixing Al 3 p character into d -orbital conduction bands for lanthanide and actinide dialuminides

    DOE PAGES

    Altman, Alison B.; Pemmaraju, C. D.; Alayoglu, Selim; ...

    2018-01-15

    Correlated electron phenomena in lanthanide and actinide materials are driven by a complex interplay between the f and d orbitals. Here in this study, aluminum K-edge x-ray absorption spectroscopy and density functional theory calculations are used to evaluate the electronic structure of the dialuminides, MAl 2 (M = Ce, Sm, Eu, Yb, Lu, U, and Pu). The results show how the energy and occupancy of the 4f or 5f orbitals impacts mixing of Al 3p character into the 5d or 6d conduction bands, which has implications for understanding the magnetic and structural properties of correlated electron systems.

  11. How paramagnetic and diamagnetic LMOCs detect picric acid from surface water and the intracellular environment: a combined experimental and DFT-D3 study.

    PubMed

    Ghosh, Pritam; Banerjee, Priyabrata

    2016-08-17

    Diamagnetic and Paramagnetic Luminescent Metal Organic Complexes (LMOCs) have been reported for Explosive and Pollutant Nitro Aromatic (epNAC) recognition. The diamagnetic complex shows a highly intense AIE induced by NEt3H(+), which disappears after picric acid recognition and subsequently RET will quench the emission intensity. Radical stabilized paramagnetic LMOCs seem to be active but show lower sensing efficiency in comparison with diamagnetic LMOCs. Solution and solid state spectroscopy studies along with DFT-D3 have been executed to enlighten the host guest interaction. Limit of PA detection is ∼250 ppb with a binding constant of 1.2 × 10(5) M(-1). Time-stepping, i.e. intervening in the problem of picric acid recognition from surface water collected from several places of West Bengal, India, has been performed. Mutagenic picric acid has been successfully detected in an aqueous medium inside both prokaryotic and eukaryotic cells at a ppm level using fluorescence microscopy.

  12. Synthesis, crystal structure and study of magnetocaloric effect and single molecular magnetic behaviour in discrete lanthanide complexes.

    PubMed

    Adhikary, Amit; Sheikh, Javeed Ahmad; Biswas, Soumava; Konar, Sanjit

    2014-06-28

    The synthesis, crystal structure and magnetic properties of four polynuclear lanthanide coordination complexes having molecular formulae, [Gd3(2)(1)L(H2O)8(Cl)](Cl)4·10H2O (1), [Dy3L(2)(1)(H2O)9](Cl)5·6H2O (2) [Gd6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (3) and [Dy6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (4) (where H2L(1) = bis[(2-pyridyl)methylene]pyridine-2,6-dicarbohydrazide and H4L(2) = bis[2-hydroxy-benzylidene]pyridine-2,6-dicarbohydrazide) are reported. Structural investigation by X-ray crystallography reveals similar structural features for complexes 1 and 2 and they exhibit butterfly like shapes of the molecules. Non-covalent interactions between the molecules create double helical arrangements for both molecules. Complexes 3 and 4 are isostructural and the core structures feature four distorted hemi-cubanes connected by vertex sharing. Magnetic studies unveil significant magnetic entropy changes for complexes 1, 3 and slow relaxation of magnetization for both dysprosium analogues 2 and 4.

  13. Lanthanides in soils of the Cherepovets steel mill impact zone

    NASA Astrophysics Data System (ADS)

    Ladonin, D. V.

    2017-06-01

    Contents of different lanthanide forms in soddy-calcareous soils at different distances from the Cherepovets steel mill (Vologda oblast) have been studied. Increased contents of Pr and Tb are found in soils near the pollution source. Less manifested increases in the contents of other lanthanides (from La to Gd) are also observed. Along with the increase in total content, technogenic pollution increases the content of acid-soluble lanthanides and affects their degree of extraction. The residual fraction strongly bound to aluminosilicates contains 80 to 95% of lanthanides. Soil processes result in the partial binding of lanthanides with organic matter (5-18% of their total content) and Fe and Mn (hydr)oxides (0.1-5% of the total content). The individual properties of lanthanides are clearly manifested in their interaction with these soil components. The highest share of the fraction bound to organic matter contains medium lanthanides, and the highest share of the fraction bound to Fe and Mn (hydr)oxides contains heavy lanthanides.

  14. Electron Spectroscopy: Ultraviolet and X-Ray Excitation.

    ERIC Educational Resources Information Center

    Baker, A. D.; And Others

    1980-01-01

    Reviews recent growth in electron spectroscopy (54 papers cited). Emphasizes advances in instrumentation and interpretation (52); photoionization, cross-sections and angular distributions (22); studies of atoms and small molecules (35); transition, lanthanide and actinide metal complexes (50); organometallic (12) and inorganic compounds (2);…

  15. Unique (3,8)-connected lanthanide arenedisulfonate metal-organic frameworks containing benzimidazole-5,6-dicarboxylic acid co-ligand: Syntheses, structures and luminescence

    NASA Astrophysics Data System (ADS)

    Sun, Yan-Qiong; Liu, Qi; Zhong, Jie-Cen; Pan, Qun-Feng; Chen, Yi-Ping

    2013-10-01

    Two isostructural 3D lanthanide arenedisulfonate metal-organic frameworks (MOFs) [Ln(Hbidc)(nds)0.5(H2O)]n(Ln=Eu(1), La(2)) have been successfully synthesized by the hydrothermal reaction of lanthanide oxide with 2,6-naphthalenedisulfonate sodium (Na2nds) and an auxiliary ligand, 1H-benzimidazole-5,6-dicarboxylic acid (H3bidc). The two complexes are both constructed from 2D [Ln(Hbidc)]+ double layers pillared by nds2- ligands to generate 3D (3, 8)-connected open-framework structures with 1D long narrow channels running along the a axis. From topological point of view, the 3D framework is a (3, 8)-connected tfz-d net. The weak interactions including N-H⋯O, O-H⋯O hydrogen bonds and π-π stacking are observed in 1. The 2D IR correlation spectroscopy was applied to study the molecular interactions induced by thermal perturbation. The emission spectra of 1 exhibit the characteristic transition of 5D0→7FJ(J=0-4) of Eu(III).

  16. Design of magnetic coordination complexes for quantum computing.

    PubMed

    Aromí, Guillem; Aguilà, David; Gamez, Patrick; Luis, Fernando; Roubeau, Olivier

    2012-01-21

    A very exciting prospect in coordination chemistry is to manipulate spins within magnetic complexes for the realization of quantum logic operations. An introduction to the requirements for a paramagnetic molecule to act as a 2-qubit quantum gate is provided in this tutorial review. We propose synthetic methods aimed at accessing such type of functional molecules, based on ligand design and inorganic synthesis. Two strategies are presented: (i) the first consists in targeting molecules containing a pair of well-defined and weakly coupled paramagnetic metal aggregates, each acting as a carrier of one potential qubit, (ii) the second is the design of dinuclear complexes of anisotropic metal ions, exhibiting dissimilar environments and feeble magnetic coupling. The first systems obtained from this synthetic program are presented here and their properties are discussed.

  17. Series of mixed uranyl-lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers.

    PubMed

    Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2012-09-17

    Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.

  18. Near infrared light-mediated photoactivation of cytotoxic Re(i) complexes by using lanthanide-doped upconversion nanoparticles.

    PubMed

    Hu, Ming; Zhao, Jixian; Ai, Xiangzhao; Budanovic, Maja; Mu, Jing; Webster, Richard D; Cao, Qian; Mao, Zongwan; Xing, Bengang

    2016-09-13

    Platinum-based chemotherapy, although it has been well proven to be effective in the battle against cancer, suffers from limited specificity, severe side effects and drug resistance. The development of new alternatives with potent anticancer effects and improved specificity is therefore urgently needed. Recently, there are some new chemotherapy reagents based on photoactive Re(i) complexes which have been reported as promising alternatives to improve specificity mainly attributed to the spatial and temporal activation process by light irradiation. However, most of them respond to short-wavelength light (e.g. UV, blue or green light), which may cause unwanted photo damage to cells. Herein, we demonstrate a system for near-infrared (NIR) light controlled activation of Re(i) complex cytotoxicity by integration of photoactivatable Re(i) complexes and lanthanide-doped upconversion nanoparticles (UCNPs). Upon NIR irradiation at 980 nm, the Re(i) complex can be locally activated by upconverted UV light emitted from UCNPs and subsequently leads to enhanced cell lethality. Cytotoxicity studies showed effective inactivation of both drug susceptible human ovarian carcinoma A2780 cells and cisplatin resistant subline A2780cis cells by our UCNP based system with NIR irradiation, and there was minimum light toxicity observed in the whole process, suggesting that such a system could provide a promising strategy to control localized activation of Re(i) complexes and therefore minimize potential side effects.

  19. Complexation studies with lanthanides and humic acid analyzed by ultrafiltration and capillary electrophoresis-inductively coupled plasma mass spectrometry.

    PubMed

    Kautenburger, Ralf; Beck, Horst Philipp

    2007-08-03

    For the long-term storage of radioactive waste, detailed information about geo-chemical behavior of radioactive and toxic metal ions under environmental conditions is necessary. Humic acid (HA) can play an important role in the immobilisation or mobilisation of metal ions due to complexation and colloid formation. Therefore, we investigate the complexation behavior of HA and its influence on the migration or retardation of selected lanthanides (europium and gadolinium as homologues of the actinides americium and curium). Two independent speciation techniques, ultrafiltration and capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) have been compared for the study of Eu and Gd interaction with (purified Aldrich) HA. The degree of complexation of Eu and Gd in 25 mg l(-1) Aldrich HA solutions was determined with a broad range of metal loading (Eu and Gd total concentration between 10(-6) and 10(-4) mol l(-1)), ionic strength of 10 mM (NaClO4) and different pH-values. From the CE-ICP-MS electropherograms, additional information on the charge of the Eu species was obtained by the use of 1-bromopropane as neutral marker. To detect HA in the ICP-MS and separate between HA complexed and non complexed metal ions in the CE-ICP-MS, we have halogenated the HA with iodine as ICP-MS marker.

  20. W-band EPR of vanadyl complexes aggregates on the surface of Al2O3

    NASA Astrophysics Data System (ADS)

    Mamin, G.; Gafurov, M.; Galukhin, A.; Gracheva, I.; Murzakhanov, F.; Rodionov, A.; Orlinskii, S.

    2018-05-01

    Structural characterization of metalloporphyrins, asphaltenes and their aggregates in complex systems such as native hydrocarbons is in the focus of scientific and industrial interests since many years. We present W-band (95 GHz) electron paramagnetic resonance (EPR) study in the magnetic field of about 3.4 T and temperature of 100 K for Karmalinskoe oil, asphaltens and asphaltenes deposited on the surface of Al2O3. Features of the obtained spectra are described. Shift to the higher frequencies allows to separate spectrally the contributions from paramagnetic complexes of different origin and define the EPR parameters more accurately comparing to the conventional X-band (9 GHz). Changes of the EPR parameters are tracked. We suggest that the proposed approach can be used for the investigation of structure of vanadyl complexes aggregates in crude oil and their fractions.

  1. Four one-dimensional lanthanide-phenylacetate polymers exhibiting luminescence and magnetic cooling/spin-glass behavior.

    PubMed

    Li, Zhong-Yi; Xu, Ya-Lan; Zhang, Xiang-Fei; Zhai, Bin; Zhang, Fu-Li; Zhang, Jian-Jun; Zhang, Chi; Li, Su-Zhi; Cao, Guang-Xiu

    2017-12-21

    Four isostructural lanthanide coordination polymers with a phenylacetate (PAA - ) ligand, [Ln(PAA) 3 (H 2 O)] n (Ln = Eu (1); Gd (2); Tb (3); Dy (4)), were synthesized under hydrothermal conditions. Complexes 1-4 display a one-dimensional (1D) wave chain structure bridged by the carboxylate of the PAA - ligand, which was generated via the in situ decarboxylation of phenylmalonic acid. Magnetic studies suggest the presence of ferromagnetic LnLn coupling in the 1D chain of 1-4. Meanwhile, 2 has a significant cryogenic magnetocaloric effect with the maximum -ΔS m of 26.73 at 3 K and 7 T, and 3 and 4 show interesting spin-glass behavior, which is rarely reported for Ln-containing complexes. Additionally, the solid-state photophysical properties of 1 and 3 display strong characteristic Eu 3+ and Tb 3+ photoluminescence emission in the visible region, indicating that Eu- and Tb-based luminescence are sensitized by the effective energy transfer from the ligand to the metal centers.

  2. The lanthanide contraction beyond coordination chemistry

    DOE PAGES

    Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K.; ...

    2016-04-06

    Lanthanide chemistry is dominated by the ‘lanthanide contraction’, which is conceptualized traditionally through coordination chemistry. Here we break this mold, presenting evidence that the lanthanide contraction manifests outside of the coordination sphere, influencing weak interactions between groups of molecules that drive mesoscale-assembly and emergent behavior in an amphiphile solution. Furthermore, changes in these weak interactions correlate with differences in lanthanide ion transport properties, suggesting new forces to leverage rare earth separation and refining. Our results show that the lanthanide contraction paradigm extends beyond the coordination sphere, influencing structure and properties usually associated with soft matter science.

  3. The lanthanide contraction beyond coordination chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K.

    Lanthanide chemistry is dominated by the ‘lanthanide contraction’, which is conceptualized traditionally through coordination chemistry. Here we break this mold, presenting evidence that the lanthanide contraction manifests outside of the coordination sphere, influencing weak interactions between groups of molecules that drive mesoscale-assembly and emergent behavior in an amphiphile solution. Furthermore, changes in these weak interactions correlate with differences in lanthanide ion transport properties, suggesting new forces to leverage rare earth separation and refining. Our results show that the lanthanide contraction paradigm extends beyond the coordination sphere, influencing structure and properties usually associated with soft matter science.

  4. Features of the Thermodynamics of Trivalent Lanthanide/Actinide Distribution Reactions by Tri-n-Octylphosphine Oxide and Bis(2-EthylHexyl) Phosphoric Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis S. Grimes; Peter R. Zalupski

    2014-11-01

    A new methodology has been developed to study the thermochemical features of the biphasic transfer reactions of trisnitrato complexes of lanthanides and americium by a mono-functional solvating ligand (tri-n-octyl phosphine oxide - TOPO). Stability constants for successive nitrato complexes (M(NO3)x3-x (aq) where M is Eu3+, Am3+ or Cm3+) were determined to assist in the calculation of the extraction constant, Kex, for the metal ions under study. Enthalpies of extraction (?Hextr) for the lanthanide series (excluding Pm3+) and Am3+ by TOPO have been measured using isothermal titration calorimetry. The observed ?Hextr were found to be constant at ~29 kJ mol-1across themore » series from La3+-Er3+, with a slight decrease observed from Tm3+-Lu3+. These heats were found to be consistent with enthalpies determined using van ’t Hoff analysis of temperature dependent extraction studies. A complete set of thermodynamic parameters (?G, ?H, ?S) was calculated for Eu(NO3)3, Am(NO3)3 and Cm(NO3)3 extraction by TOPO and Am3+ and Cm3+ extraction by bis(2-ethylhexyl) phosphoric acid (HDEHP). A discussion comparing the energetics of these systems is offered. The measured biphasic extraction heats for the transplutonium elements, ?Hextr, presented in these studies are the first ever direct measurements offered using two-phase calorimetric techniques.« less

  5. Optical response measurements of a new class of upconverting luminescent reporters

    NASA Astrophysics Data System (ADS)

    Xiao, Xudong; Haushalter, Jeanne P.; Weiss, Michael; Faris, Gregory W.

    2004-06-01

    We have prepared and characterized several lanthanide ion complexes of multidentate ligands or chelates in an effort to develop new luminescent reporters that will be immune to autofluorescence and photobleaching. Our study has involved the characterization of various chelates of Eu, Er, and Tm with respect to relative luminescent efficiency and excited state lifetimes. Included in the list of chelates studied are TTFA, EDTA, DPA, DOTA and DTPA as well as mixed and double chelates. In addition to determining the relative efficiencies and luminescence lifetimes of the lanthanide chelates, we have explored various excitation mechanisms and determined optimum excitation wavelengths. This paper will address the various hurdles encountered in the development of this new class of reporters.

  6. A Paramagnetic Copper(III) Complex Containing an Octahedral CuIII S6 Coordination Polyhedron.

    PubMed

    Krebs, Carsten; Glaser, Thorsten; Bill, Eckhard; Weyhermüller, Thomas; Meyer-Klaucke, Wolfram; Wieghardt, Karl

    1999-02-01

    Only the second octahedral, paramagnetic copper(III) complex (S=1) has now been synthesized and characterized. Six thiolato bridging ligands in the heterotrinuclear species [LCo III Cu III Co III L](ClO 4 ) 3 ⋅2 Me 2 CO (L=1,4,7-tris(4-tert-butyl-2-sulfidobenzyl)-1,4,7-triazacyclononane) stabilize this rare electron configuration. A section of the structure of the reduced form (Cu II , S=½) is shown. XAS, EXAFS, and EPR spectroscopy prove unambiguously that the one-electron oxidation to the copper(III) is metal- rather than ligand-centered. © 1999 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  7. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    PubMed

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  8. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda.

    PubMed

    Řezanka, Tomáš; Kaineder, Katrin; Mezricky, Dana; Řezanka, Michal; Bišová, Kateřina; Zachleder, Vilém; Vítová, Milada

    2016-12-01

    Lanthanides (La, Gd, Nd, Ce) accumulated in the green alga Desmodesmus quadricauda but their intracellular localizations were distinctly different: lanthanum and gadolinium were localized in cytoplasm, while neodymium and cerium were in the chloroplast. The effect of lanthanum and neodymium, as representatives of these two groups, on growth, chlorophyll content and photosynthetic rate at different light intensities was studied. At the lowest light intensity used (50 µmol photons m -2  s -1 ), in the presence of lanthanides (Nd), growth was enhanced by as much as 36 % over lanthanide free control, and the photosynthetic rate increased by up to 300 %. At high light intensities (238, 460, and 750 µmol photons m -2 s -1 ), photosynthetic rate increased markedly, but there was no significant difference between rates in the presence or absence of lanthanides. However, growth, measured as a percentage of dry weight, if compared with lanthanide free control, increased at all light intensities (31, 39, and 20 %, respectively). The total amount of chlorophyll after lanthanide treatment increased by up to 21 % relative to the control culture, mainly due to an increase in the level of chlorophyll b. Addition of lanthanides caused a change in the chlorophyll a/b ratio from 4.583 in control cultivation, to 1.05. Possible mechanisms of lanthanide-induced photosynthetic change, alterations in photosynthetic structures, and increases in growth are discussed and compared with findings in higher plants. The hypothesis that the lanthanide effect could be due to formation of lanthanide-pheophytins was not confirmed as lanthanide pheophytins were not found in D. quadricauda. Furthermore, we have shown that the preferential incorporation of heavy isotopes of magnesium, namely 25 Mg and 26 Mg, into chlorophyll during photosynthesis that occurred in controls was diminished in the presence of lanthanides.

  9. Complexation of β-cyclodextrin with dual molecular probes bearing fluorescent and paramagnetic moieties linked by short polyether chains.

    PubMed

    Mocanu, S; Matei, I; Ionescu, S; Tecuceanu, V; Marinescu, G; Ionita, P; Culita, D; Leonties, A; Ionita, Gabriela

    2017-10-18

    Electron paramagnetic resonance (EPR) and fluorescence spectroscopies provide molecular-level insights on the interaction of paramagnetic and fluorescent species with the microenvironment. A series of dual molecular probes bearing fluorescent and paramagnetic moieties linked by flexible short polyether chains have been synthesized. These new molecular probes open the possibility to investigate various multi-component systems such as host-guest systems, polymeric micelles, gels and protein solutions by using EPR and fluorescence spectroscopies concertedly. The EPR and fluorescence spectra of these compounds show that the dependence of the rotational correlation time and fluorescence quantum yield on the chain length of the linker is not linear, due to the flexibility of the polyether linker. The quenching effect of the nitroxide moiety on the fluorescence intensity of the pyrene group varies with the linker length and flexibility. The interaction of these dual molecular probes with β-cyclodextrin, in solution and in polymeric gels, was evaluated and demonstrated by analysis of EPR and fluorescence spectra.

  10. Thermodynamic Studies to Support Actinide/Lanthanide Separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Linfeng

    2016-09-04

    Thermodynamic data on the complexation of Np(V) with HEDTA in a wide pH region were re-modeled by including a dimeric complex species, (NpO 2) 2(OH) 2L 2 6- where L 3- stands for the fully deprotonated HEDTA ligand and better fits were achieved for the spectrophotometric data. The presence of the dimeric complex species in high pH region was verified for the first time by the EXAFS experiments at Stanford Synchrotron Radiation Laboratory (SSRL).

  11. Selective separation of trivalent f-ions using 1,10-phenanthroline-2,9-dicarboxamide ligands in ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehaudt, Jeremy; Williams, Neil J.; Shkrob, Ilya A.

    1,10-Phenanthroline-2,9-dicarboxamide complexants decorated with alkyl chains and imidazolium cations have been studied for extraction of trivalent f-ions into imidazolium ionic liquids. The dicationic complexants are shown to extract Am over Eu with separation factors > 50 and high extraction efficiencies. Lastly, the different size selectivities for lanthanide ions were observed for these two types of the complexants, highlighting the importance of the positive charge in controlling both extraction efficiencies and extraction selectivities.

  12. Selective separation of trivalent f-ions using 1,10-phenanthroline-2,9-dicarboxamide ligands in ionic liquids

    DOE PAGES

    Dehaudt, Jeremy; Williams, Neil J.; Shkrob, Ilya A.; ...

    2016-06-13

    1,10-Phenanthroline-2,9-dicarboxamide complexants decorated with alkyl chains and imidazolium cations have been studied for extraction of trivalent f-ions into imidazolium ionic liquids. The dicationic complexants are shown to extract Am over Eu with separation factors > 50 and high extraction efficiencies. Lastly, the different size selectivities for lanthanide ions were observed for these two types of the complexants, highlighting the importance of the positive charge in controlling both extraction efficiencies and extraction selectivities.

  13. Coordination characteristics of uranyl BBP complexes: Insights from an electronic structure analysis

    DOE PAGES

    Pemmaraju, Chaitanya Das; Copping, Roy; Smiles, Danil E.; ...

    2017-03-21

    Here, organic ligand complexes of lanthanide/actinide ions have been studied extensively for applications in nuclear fuel storage and recycling. Several complexes of 2,6-bis(2-benzimidazyl)pyridine (H2BBP) featuring the uranyl moiety have been reported recently, and the present study investigates the coordination characteristics of these complexes using density functional theory-based electronic structure analysis. In particular, with the aid of several computational models, the nonplanar equatorial coordination about uranyl, observed in some of the compounds, is studied and its origin traced to steric effects.

  14. Demonstrating Hund's Rule in Action by Exploring the Magnetic Properties of Metal Complexes with 3D[superscript n] and 4F[superscript n] Configurations

    ERIC Educational Resources Information Center

    Natoli, Sean N.; McMillin, David R.

    2018-01-01

    Students collect magnetic susceptibility data to verify that Hund's rule correctly predicts electronic configurations. Systems examined include three commercially available lanthanide(III)-containing complexes of the form M(acac)[subscript 3](H[subscript 2]O)[subscript 2] (where M = La(III), Nd(III), and Gd(III), and acac denotes the [CH[subscript…

  15. In situ hydrothermal syntheses, structures and photoluminescent properties of four novel metal-organic frameworks constructed by lanthanide (Ln=Ce(III), Pr(III), Eu(III)) and Cu(I) metals with flexible dicarboxylate acids and piperazine-based ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ay, Burak; Karaca, Serkan; Yildiz, Emel, E-mail: eeyildiz@cu.edu.tr

    2016-01-15

    Four novel metal-organic frameworks,[Cu{sub 2}Cl{sub 2}(pyrz)]{sub n} (1) and (H{sub 2}pip){sub n}[Ln{sub 2}(pydc){sub 4}(H{sub 2}O){sub 2}]{sub n} (Ln=Ce (2), Pr (3) and Eu (4), H{sub 2}pzdc=2,3-pyrazinedicarboxylic acid, pyrz=pyrazine, H{sub 2}pydc=2,6-pyridinedicarboxylic acid, H{sub 2}pip=piperazine) have been synthesized under hydrothermal conditions and characterized by the elemental analysis, ICP, Far IR (FIR), FT-IR spectra, TGA, single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). Compound 1 is two-dimensional containing Cl-Cu-Cl sites, while the lanthanide complexes contain one-dimensional infinite Ln–O-Ln chains. All the complexes show high thermal stability. The complexes 1–3 exhibit luminescence emission bands at 584, 598 and 614 nm at roommore » temperature when excited at 300 nm. Complex 4 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four novel metal-organic frameworks have been synthesized under hydrothermal conditions. Thermal and luminescent properties of the compounds have been investigated.« less

  16. Photo-reactive charge trapping memory based on lanthanide complex.

    PubMed

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V A L

    2015-10-09

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 10(4) s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

  17. Photo-reactive charge trapping memory based on lanthanide complex

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.

    2015-10-01

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

  18. Nonequivalent lanthanide defects: Energy level modeling

    NASA Astrophysics Data System (ADS)

    Joos, Jonas J.; Poelman, Dirk; Smet, Philippe F.

    2016-11-01

    Empirical charge-state transition level schemes are popular tools to model the properties of lanthanide-doped materials and their construction has become standard practice. Typically, it is implicitly assumed that all lanthanide ions form isostructural defects. However, in practice, multiple nonequivalent defects related to the same lanthanide can occur or different lanthanides can even incorporate in different ways. The consequences of these complications on the impurity energy levels are discussed in this article. It seems that small structural differences around the lanthanide dopant can give rise to important spectral differences in its emission. These are not always clearly reproduced by the charge-state transition level schemes. Improvements to the existing procedure are suggested and applied to the lanthanide ions in the well-studied host crystals SrAl2O4, Sr2Si5N8 and SrGa2S4.

  19. LANTHANIDE ENHANCE LUMINESCENCE (LEL) WITH ONE AND TWO PHOTON EXCITATION OF QUANTUM DYES LANTHANIDE (III) - MACROCYCLES

    EPA Science Inventory

    Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles
    Principal Author:
    Robert C. Leif, Newport Instruments
    Secondary Authors:
    Margie C. Becker, Phoenix Flow Systems
    Al Bromm, Virginia Commonw...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beales, T.P.; Parberry, J.M.

    (Bi{sub 0.33}Cd{sub 0.67})Sr{sub 2}YCu{sub 2}O{sub 7{minus}{delta}} can be synthesized single phase by XRD, between 800 and 950 C. It has a tetragonal structure, space group P4/mmm, and lattice parameters a = 3.802 {angstrom} and c = 11.96 {angstrom}. The Cd site can be fully replaced with an appropriate M{sup 11} ion and the Y site can be chemically substituted up to 100% by lanthanide ions with ionic radii falling between those of Nd and Gd, with a measurable shift in a and c axis lattice parameters. As synthesized, (Bi{sub 0.33}Cd{sub 0.67})Sr{sub 2}YCu{sub 2}O{sub 7{minus}{delta}} is semiconducting and paramagnetic down tomore » 4 K. Superconductivity can be induced by a post-synthesis annealing in high pressure oxygen to give {Tc} = 40 K. Thermopower measurements show that the material is underdoped with S{sub 290K} = 50 {mu}VK{sup {minus}1}. Introduction of extra charge carriers to raise {Tc} by doping Ca on the Y site is not chemically possible with the synthesis techniques used.« less

  1. Theory of Magnetic Ordering in the Heavy Rare Earths: Ab Initio Electronic Origin of Pair- and Four-Spin Interactions

    NASA Astrophysics Data System (ADS)

    Mendive-Tapia, Eduardo; Staunton, Julie B.

    2017-05-01

    We describe a disordered local moment theory for long-period magnetic phases and investigate the temperature and magnetic field dependence of the magnetic states in the heavy rare earth elements (HREs), namely, paramagnetic, conical and helical antiferromagnetic (HAFM), fan, and ferromagnetic (FM) states. We obtain a generic HRE magnetic phase diagram which is consequent on the response of the common HRE valence electronic structure to f -electron magnetic moment ordering. The theory directly links the first-order HAFM-FM transition to the loss of Fermi surface nesting, induced by this magnetic ordering, as well as provides a template for analyzing the other phases and exposing where f -electron correlation effects are particularly intricate. Gadolinium, for a range of hexagonal, close-packed lattice constants c and a , is the prototype, described ab initio, and applications to other HREs are made straightforwardly by scaling the effective pair and quartic local moment interactions that emerge naturally from the theory with de Gennes factors and choosing appropriate lanthanide-contracted c and a values.

  2. Extraction of Dysprosium Ions with DTPA Functionalized Superparamagnetic Nanoparticles Probed by Energy Dispersive X-ray Fluorescence and TEM/High-Angle Annular Dark Field Imaging.

    PubMed

    Melo, Fernando Menegatti de; Almeida, Sabrina da Nobrega; Uezu, Noemi Saori; Ramirez, Carlos Alberto Ospina; Santos, Antonio Domingues Dos; Toma, Henrique Eisi

    2018-06-01

    The extraction of dysprosium (Dy3+) ions from aqueous solution was carried out successfully, using magnetite (Fe3O4) nanoparticles functionalized with diethylenetriaminepentaacetic acid (MagNP@DTPA). The process was monitored by energy dispersive X-ray fluorescence spectroscopy, as a function of concentration, proceeding according to a Langmuir isotherm with an equilibrium constant of 2.57 × 10-3 g(MagNP) L-1 and a saturation limit of 63.2 mgDy/gMagNP. The presence of paramagnetic Dy3+ ions attached to the superparamagnetic nanoparticles led to an overall decrease of magnetization. By imaging the nanoparticles surface using scanning transmission electron microscopy equipped with high resolution elemental analysis, it was possible to probe the binding of the Dy3+ ions to DTPA, and to show their distribution in a region of negative magnetic field gradients. This finding is coherent with the observed decrease of magnetization, associated with the antiferromagnetic coupling between the lanthanide ions and the Fe3O4 core.

  3. Cr3+-Doped Yb3Ga5O12 Nanophosphor: Synthesis, Optical, EPR, Studies

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Sivaramaiah, G.; Rao, J. L.; Singh, N.; Pathak, M. S.; Jirimali, H. D.; Singh, Pramod K.; Srivastava, Anoop K.; Dhoble, S. J.; Mohapatra, M.

    2016-08-01

    Gallium garnets of lanthanides are multifunctional materials especially known for their complicated structure and magnetic properties. In addition, with a suitable transition metal dopant ion, these matrices have been proved to be excellent materials for lasers. In particular, gallium garnet of ytterbium (Yb3Ga5O12) is known to possess excellent properties with regards to these applications. In this connection, Yb3Ga5O12 doped with Cr3+ nanophosphors were synthesized by a solution combustion route. The synthesized material was characterized by powder x-ray diffraction and scanning electron microscopy for phase purity and homogenous morphology. In order to ascertain the oxidation state of the doped ion, diffuse reflectance (DRF), photoluminescence (PL) and electron paramagnetic resonance (EPR) experiments were performed on the sample. The DRF and PL data suggested the stabilisation of the trivalent Cr ion in the matrix. The EPR spectra exhibited two resonance signals with effective g values at g ≈ 7.6 and 4. The EPR data corroborated the DRF and PL results, suggesting the stabilisation of Cr3+ in the matrix at octahedral-type geometries.

  4. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging

    PubMed Central

    Kislukhin, Alexander A.; Xu, Hongyan; Adams, Stephen R.; Narsinh, Kazim H.; Tsien, Roger Y.; Ahrens, Eric T.

    2016-01-01

    Fluorine-19 magnetic resonance imaging (19F MRI) probes enable quantitative in vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the 19F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metalated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate ('FETRIS') nanoemulsions with PFPE have low cytotoxicity (<20%) and superior MRI properties. Moreover, the 19F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting 19F MRI detection sensitivity is enhanced by 3-to-5 fold over previously used tracers at 11.7 T, and is predicted to increase by at least 8-fold at clinical field strength of 3 T. PMID:26974409

  5. Osmotically shrunken LIPOCEST agents: an innovative class of magnetic resonance imaging contrast media based on chemical exchange saturation transfer.

    PubMed

    Terreno, Enzo; Delli Castelli, Daniela; Violante, Elisabetta; Sanders, Honorius M H F; Sommerdijk, Nico A J M; Aime, Silvio

    2009-01-01

    The peculiar properties of osmotically shrunken liposomes acting as magnetic resonance imaging-chemical exchange saturation transfer (MRI-CEST) contrast agents have been investigated. Attention has been primarily devoted to assessing the contribution arising from encapsulated and incorporated paramagnetic lanthanide(III)-based shift reagents in determining the chemical shift of the intraliposomal water protons, which is a relevant factor for generating the CEST contrast. It is demonstrated that a highly shifted resonance for the encapsulated water can be attained by increasing the percentage of the amphiphilic shift reagent incorporated in the liposome bilayer. It is also demonstrated that the shift contribution arising from the bulk magnetic susceptibility can be optimized through the modulation of the osmotic shrinkage. In terms of sensitivity, it is shown that the saturation transfer efficiency can be significantly improved by increasing the size of the vesicle, thus allowing a high number of exchangeable protons to be saturated. In addition, the role played by the intensity of the saturating radiofrequency field has also been highlighted.

  6. A pyrophosphate-responsive gadolinium(III) MRI contrast agent.

    PubMed

    Surman, Andrew J; Bonnet, Célia S; Lowe, Mark P; Kenny, Gavin D; Bell, Jimmy D; Tóth, Eva; Vilar, Ramon

    2011-01-03

    This study shows that the relaxivity and optical properties of functionalised lanthanide-DTPA-bis-amide complexes (lanthanide=Gd(3+) and Eu(3+) , DTPA=diethylene triamine pentaacetic acid) can be successfully modulated by addition of specific anions, without direct Ln(3+) /anion coordination. Zinc(II)-dipicolylamine moieties, which are known to bind strongly to phosphates, were introduced in the amide "arms" of these ligands, and the interaction of the resulting Gd-Zn(2) complexes with a range of anions was screened by using indicator displacement assays (IDAs). Considerable selectivity for polyphosphorylated species (such as pyrophosphate and adenosine-5'-triphosphate (ATP)) over a range of other anions (including monophosphorylated anions) was apparent. In addition, we show that pyrophosphate modulates the relaxivity of the gadolinium(III) complex, this modulation being sufficiently large to be observed in imaging experiments. To establish the binding mode of the pyrophosphate and gain insight into the origin of the relaxometric modulation, a series of studies including UV/Vis and emission spectroscopy, luminescence lifetime measurements in H(2) O and D(2) O, (17) O and (31) P NMR spectroscopy and nuclear magnetic resonance dispersion (NMRD) studies were carried out. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides.

    PubMed

    Allred, Benjamin E; Rupert, Peter B; Gauny, Stacey S; An, Dahlia D; Ralston, Corie Y; Sturzbecher-Hoehne, Manuel; Strong, Roland K; Abergel, Rebecca J

    2015-08-18

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.

  8. Rapid onsite detection of bacterial spores of biothreat importance by paper-based colorimetric method using erbium-pyrocatechol violet complex.

    PubMed

    Shivakiran, M S; Venkataramana, M; Lakshmana Rao, P V

    2016-01-01

    Dipicolinic acid (DPA) is an important chemical marker for the detection of bacterial spores. In this study, complexes of lanthanide series elements such as erbium, europium, neodymium, and terbium were prepared with pyrocatechol violet and effectively immobilized the pyrocatechol violet (PV)-metal complex on a filter paper using polyvinyl alcohol. These filter paper strips were employed for the onsite detection of bacterial spores. The test filter papers were evaluated quantitatively with different concentrations of DPA and spores of various bacteria. Among the four lanthanide ions, erbium displayed better sensitivity than the other ions. The limit of detection of this test for DPA was 60 μM and 5 × 10(6) spores. The effect of other non-spore-forming bacteria and interfering chemicals on the test strips was also evaluated. The non-spore-forming bacteria did not have considerable effect on the test strip whereas chemicals such as EDTA had significant effects on the test results. The present test is rapid and robust, capable of providing timely results for better judgement to save resources on unnecessary decontamination procedures during false alarms.

  9. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides

    PubMed Central

    Allred, Benjamin E.; Rupert, Peter B.; Gauny, Stacey S.; An, Dahlia D.; Ralston, Corie Y.; Sturzbecher-Hoehne, Manuel; Strong, Roland K.; Abergel, Rebecca J.

    2015-01-01

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin–transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein–ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications. PMID:26240330

  10. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes.

    PubMed

    Liu, Mingjing; Ye, Zhiqiang; Xin, Chenglong; Yuan, Jingli

    2013-01-25

    Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4'-hydroxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu(3+) and Tb(3+) complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu(3+) is strongly dependent on the pH values in weakly acidic to neutral media (pK(a) = 5.8, pH 4.8-7.5), while that of HTTA-Tb(3+) is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu(3+) and HTTA-Tb(3+) (the HTTA-Eu(3+)/Tb(3+) mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540 nm)/I(610 nm), as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu(3+)/Tb(3+) mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A(290 nm)/A(325 nm), as a signal. This feature enables the HTTA-Eu(3+)/Tb(3+) mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu(3+) and HTTA-Tb(3+) into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. PSMA-Targeted Polygadolinium Clusters: A Novel Agent for Imaging Prostate Cancer

    DTIC Science & Technology

    2007-01-01

    Los Alamos, NM, February 23, 2006 “A Smorgasbord of Half-Sandwiches and Meatballs of the Early Transition Metals, Lanthanides, and Bismuth” 62. Mark...Twain Section Meeting, American Chemical Society, April 1, 2005, Culver-Stockton College, MO. “New Vistas in Half-Sandwich and Meatball Complexes

  12. Standard Materials for Microbeam Analysis of Lanthanides and Actinides

    NASA Astrophysics Data System (ADS)

    Ellis, I.; Gorton, M.; Rucklidge, J. C.

    2010-12-01

    Traces of Th and U in naturally-occuring minerals monazite, xenotime and zircon are used for dating host rocks. Natural variations of actinide concentrations in some rock formations are well documented. Microbeam techniques perform dating in-situ where grains of indicator minerals are left intact in thin sections. Separated individual grains of these minerals are also routinely dated by Pb-isotope mass spectrometry. Ideal calibration materials will be compatible with multiple techniques. Quantitative analysis of low levels of lanthanides (REE), U, Th and Pb found in natural minerals requires standards containing similar concentrations of these elements. The ideal low-level standard suite will have materials with each REE cation present below 5%, similar to natural rare-earth phosphate minerals. In contrast, REE orthophosphates LnPO4 have cation concentrations from 59 to 64%, and ultraphosphates LnP5O14 from 27% to 32%. The concentrations of U and Pb must also be in the 1% range in the host REE phosphate. There are two competing limits to the synthesis of crystals with multiple cations in the REE sites. The crystal structure limits potential cation mixtures to selections within groups (La,Ce, Pr, Nd, Sm, Eu), (Gd, Tb, Dy, Ho), and (Er, Tm,Yb, Lu, Y). Complex L X-ray spectra limit the use of contiguous REE in a single material. There are two general synthetic routes for the preparation of lanthanide/actinide standard materials for beam analysis and dating. Lanthanide orthophosphates (LnPO4) are crystallized from lead-free heterogeneous fluxes; oligomers (metaphosphates LnP3O9 and ultraphosphates LnP5O14) are formed by condensation of phosphoric acid in the presence of cations. All of these trivalent lanthanide phosphate crystal structures are hosts for Th+4 and U+4, and in synthetic materals, Ca+2 is used for charge compensation. Our work focuses on the preparation of mixed-cation lanthanide metaphosphates and ultraphosphates. The solvent (essentially P2O5) provides redox conditions that favour Ce+3, Th+4, and U+4 instead of higher oxidation states. The absence of any cations other than those deliberately added permits positive control of cation mixtures in starting materials. The synthetic pathway—condensation of POx units--provides ideal conditions for the homogeneous distribution of cations including those with different charges. We present the results of synthesis, elemental analysis and imaging by XRF and SEM-EDX for mixed lanthanide-actinide phosphate materials.

  13. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  14. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.

    1997-01-01

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  15. Selective Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yantasee, Wassana; Fryxell, Glen E.; Addleman, Raymond S.

    2009-09-15

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, increasing public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd, Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS®) that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (ProPhos), and 1-hydroxy-2-pyridinone (1,2-HOPO) from natural waters (river, ground, and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate and compares their performance to a high surface area activated carbon.more » The properties include sorption affinity, capacity, and sorption kinetics. Stability and regenerability of SAMMS materials were also investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. While the activated carbon is as effective as 1,2-HOPO-SAMMS for capturing lanthanides in natural (alkaline) waters, it has no affinity in acid solutions (pH 2.4) and low affinity in carbonate-rich dialysate. Over 99% of 100 ug/L of Gd in dialysate was removed by the ProPhos-SAMMS after ten minutes. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties, for a number of regeneration cycles. In acid solutions, PhoPhos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their potential for chromatographic lanthanide separations. Thus, SAMMS materials have a great potential to be used as sorbents in large scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and sorbent dialyzers for lanthanide clearances.« less

  16. Development of a novel europium complex-based luminescent probe for time-gated luminescence imaging of hypochlorous acid in living samples

    NASA Astrophysics Data System (ADS)

    Liu, Xiangli; Guo, Lianying; Song, Bo; Tang, Zhixin; Yuan, Jingli

    2017-03-01

    Luminescent lanthanide complexes are key reagents used in the time-gated luminescence bioassay technique, but functional lanthanide complexes that can act as luminescent probes for specifically responding to analytes are very limited. In this work, we designed and synthesized a novel Eu3+ complex-based luminescence probe for hypochlorous acid (HOCl), NPPTTA-Eu3+, by using terpyridine polyacid-Eu3+, dinitrophenyl, and hydrazine as luminophore, quencher and HOCl-recognizer moieties, respectively. In the absence of HOCl, the probe is non-luminescent due to the strong luminescence quenching of the dinitrophenyl group in the complex. However, upon reaction with HOCl, the dinitrophenyl moiety is rapidly cleaved from the probe, which affords a strongly luminescent Eu3+ complex CPTTA-Eu3+, accompanied by a ˜900-fold luminescence enhancement with a long luminescence lifetime of 1.41 ms. This unique luminescence response of NPPTTA-Eu3+ to HOCl allowed NPPTTA-Eu3+ to be conveniently used as a probe for highly selective and sensitive detection of HOCl under the time-gated luminescence mode. In addition, by loading NPPTTA-Eu3+ into RAW 264.7 macrophage cells and Daphnia magna, the generation of endogenous HOCl in RAW 264.7 cells and the uptake of exogenous HOCl by Daphnia magna were successfully imaged on a true-color time-gated luminescence microscope. The results demonstrated the practical applicability of NPPTTA-Eu3+ as an efficient probe for time-gated luminescence imaging of HOCl in living cells and organisms.

  17. Lanthanide-IMAC enrichment of carbohydrates and polyols.

    PubMed

    Schemeth, Dieter; Rainer, Matthias; Messner, Christoph B; Rode, Bernd M; Bonn, Günther K

    2014-03-01

    In this study a new type of immobilized metal ion affinity chromatography resin for the enrichment of carbohydrates and polyols was synthesized by radical polymerization reaction of vinyl phosphonic acid and 1,4-butandiole dimethacrylate using azo-bis-isobutyronitrile as radical initiator. Interaction between the chelated trivalent lanthanide ions and negatively charged hydroxyl groups of carbohydrates and polyols was observed by applying high pH values. The new method was evaluated by single standard solutions, mixtures of standards, honey and a more complex extract of Cynara scolymus. The washing step was accomplished by acetonitrile in excess volumes. Elution of enriched carbohydrates was successfully performed with deionized water. The subsequent analysis was carried out with matrix-free laser desorption/ionization-time of flight mass spectrometry involving a TiO2 -coated steel target, especially suitable for the measurement of low-molecular-weight substances. Quantitative analysis of the sugar alcohol xylitol as well as the determination of the maximal loading capacity was performed by gas chromatography in conjunction with mass spectrometric detection after chemical derivatization. In a parallel approach quantum mechanical geometry optimizations were performed in order to compare the coordination behavior of various trivalent lanthanide ions. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange.

    PubMed

    Shen, Xiang; Yan, Bing

    2016-04-15

    A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Preparation and luminescent properties of lanthanide (Eu3+ and Tb3+) complexes grafted to 3-aminopropyltriethoxysilane by covalent bonds

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Wang, Haiyan

    2015-12-01

    A novel precursor PMA-Si was synthesized by modifying 1,2,4,5-benzene-tetracarboxylic acid (PMA) with 3-aminopropyltriethoxysilane (APTES). Then the hybrids were prepared by PMA-Si coordinating to lanthanide ions (Eu3+ and Tb3+) in sol-gel process. In order to improve luminescent efficiency, 1,10-Phenanthroline (Phen) was introduced to the system as the second ligand. As-prepared compounds in sol condition were coated on quartz plates to form a layer of thin film, which was different from other similar hybrids. The properties of the hybrids were characterized by FT-IR, fluorescence spectra, TG and SEM. The results showed that the obtained materials enhanced thermal stability, mechanical resistances, waterproofness as well as machining properties.

  20. Rydberg series in the lanthanides and actinides observed by stepwise laser excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worden, E.F.; Solarz, R.W.; Paisner, J.A.

    1977-05-18

    The techniques of stepwise laser excitation were applied to obtain Ryberg series in the lanthanides and in uranium. The methods employed circumvent many of the experimental difficulties inherent in conventional absorption spectrosopy of these heavy atoms with very complex spectra. The Rydberg series observed have allowed the determination of accurate ionization limits. The values in eV are: Ce, 5.5387(4);Nd, 5.5250(6); Sm, 5.6437(10); Eu, 5.6704(3); Gd, 6.1502(6); Tb, 5.8639(6); Dy, 5.9390(6); Ho, 6.0216(6); Er 6.1077(6); U, 6.1941(5). A comparison of the f/sup n/s/sup 2/-f/sup n/s ionization limits as a function of n with theoretical calculations is made.

  1. Physicochemical characterization of modified clay based composites obtained by a novel method

    NASA Astrophysics Data System (ADS)

    Kalra, Swati; Dudi, D.; Singh, G. P.; Verma, S. K.; Bhojak, N.

    2018-05-01

    Material science is one of the important fields where, absorption spectra of lanthanide ions have been a subject of several investigations because of their possible use as laser materials, diagnostic tools and sensors. Study of absorption spectra in visible and near infrared regions yields useful information regarding energy and intensity parameters, and nature and probabilities of transitions. Chemical physics provides fundamental tool to develop lanthanide chemistry, which has been increasingly significant in the last few years due to the wide variety of potential applications of their complexes in many important areas of biology and medicines. The present work describes the development of a novel method of composite preparation based on clay and its physiochemical characterization. Simultaneous measurement of some thermal properties has made study more useful. Results match with accepted models.

  2. Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity

    NASA Astrophysics Data System (ADS)

    Chelebaeva, Elena; Larionova, Joulia; Guari, Yannick; Ferreira, Rute A. S.; Carlos, Luis D.; Trifonov, Alexander A.; Kalaivani, Thangavel; Lascialfari, Alessandro; Guérin, Christian; Molvinger, Karine; Datas, Lucien; Maynadier, Marie; Gary-Bobo, Magali; Garcia, Marcel

    2011-03-01

    This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells.This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells. Electronic supplementary information (ESI) available: TEM images and size distribution histograms, IR and emission spectra, diffraction pattern and HRTEM coupled EDX analysis. See DOI: 10.1039/c0nr00709a

  3. Polarized Neutron Diffraction to Probe Local Magnetic Anisotropy of a Low-Spin Fe(III) Complex.

    PubMed

    Ridier, Karl; Mondal, Abhishake; Boilleau, Corentin; Cador, Olivier; Gillon, Béatrice; Chaboussant, Grégory; Le Guennic, Boris; Costuas, Karine; Lescouëzec, Rodrigue

    2016-03-14

    We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3]⋅H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electron paramagnetic resonance spectral study of [Mn(acs){sub 2}(2–pic){sub 2}(H{sub 2}O){sub 2}] single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr; Tapramaz, Recep, E-mail: recept@omu.edu.tr

    Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn{sup +2} ion complex with mixed ligand, [Mn(acs){sub 2}(2-pic){sub 2}(H{sub 2}O){sub 2}], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that themore » complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.« less

  5. Dynamical arrest with zero complexity: The unusual behavior of the spherical Blume-Emery-Griffiths disordered model

    NASA Astrophysics Data System (ADS)

    Rainone, Corrado; Ferrari, Ulisse; Paoluzzi, Matteo; Leuzzi, Luca

    2015-12-01

    The short- and long-time dynamics of model systems undergoing a glass transition with apparent inversion of Kauzmann and dynamical arrest glass transition lines is investigated. These models belong to the class of the spherical mean-field approximation of a spin-1 model with p -body quenched disordered interaction, with p >2 , termed spherical Blume-Emery-Griffiths models. Depending on temperature and chemical potential the system is found in a paramagnetic or in a glassy phase and the transition between these phases can be of a different nature. In specific regions of the phase diagram coexistence of low-density and high-density paramagnets can occur, as well as the coexistence of spin-glass and paramagnetic phases. The exact static solution for the glassy phase is known to be obtained by the one-step replica symmetry breaking ansatz. Different scenarios arise for both the dynamic and the thermodynamic transitions. These include: (i) the usual random first-order transition (Kauzmann-like) for mean-field glasses preceded by a dynamic transition, (ii) a thermodynamic first-order transition with phase coexistence and latent heat, and (iii) a regime of apparent inversion of static transition line and dynamic transition lines, the latter defined as a nonzero complexity line. The latter inversion, though, turns out to be preceded by a dynamical arrest line at higher temperature. Crossover between different regimes is analyzed by solving mode-coupling-theory equations near the boundaries of paramagnetic solutions and the relationship with the underlying statics is discussed.

  6. Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes

    DOE PAGES

    Bucinsky, Lukas; Breza, Martin; Lee, Wei-Tsung; ...

    2017-04-05

    High-oxidation state metal complexes with multiply bonded ligands are of great interest for both their reactivity as well as their fundamental bonding properties. This paper reports a combined spectroscopic and theoretical investigation into the effect of the apical multiply bonded ligand on the spin state preferences of three-fold symmetric iron(IV) complexes with tris(carbene) donor ligands. Specifically, singlet (S = 0) nitrido [{PhB(Im R) 3}FeN], R = tBu (1), Mes (mesityl, 2) and the related triplet (S = 1) imido complexes, [{PhB(Im R) 3}Fe(NR')] +, R = Mes, R' = Ad (1- adamantyl, 3), tBu (4), have been investigated by electronicmore » absorption and Mössbauer effect spectroscopies. For comparison, two other Fe(IV) nitrido complexes, [(TIMEN Ar)FeN] +, (TIMEN Ar = tris[2-(3-aryl-imidazol-2-ylidene)ethyl]amine; Ar = Xyl (xylyl), Mes), have been investigated by 57Fe Mössbauer spectroscopy, including applied-field measurements. The paramagnetic imido complexes 3 and 4 were also studied by magnetic susceptibility measurements (for 3) and paramagnetic resonance spectroscopy: high-frequency and -field electron paramagnetic resonance (HFEPR) (for 3 and 4) and frequency-domain Fouriertransform (FD-FT) THz EPR (for 3), which reveal their zero-field splitting (zfs) parameters. Experimentally correlated theoretical studies comprising ligand-field theory (LFT) and quantum chemical theory (QCT), the latter including both density functional theory (DFT) and ab initio methods reveal the key role played by the Fe3 d z2 (a1) orbital in these systems: the nature of its interaction with the nitrido or imido ligand dictates the spin state preference of the complex. Lastly, the ability to tune the spin state through the energy and nature of a single orbital has general relevance to the factors controlling spin states in complexes with applicability as single molecule devices.« less

  7. Hafnium-Based Contrast Agents for X-ray Computed Tomography.

    PubMed

    Berger, Markus; Bauser, Marcus; Frenzel, Thomas; Hilger, Christoph Stephan; Jost, Gregor; Lauria, Silvia; Morgenstern, Bernd; Neis, Christian; Pietsch, Hubertus; Sülzle, Detlev; Hegetschweiler, Kaspar

    2017-05-15

    Heavy-metal-based contrast agents (CAs) offer enhanced X-ray absorption for X-ray computed tomography (CT) compared to the currently used iodinated CAs. We report the discovery of new lanthanide and hafnium azainositol complexes and their optimization with respect to high water solubility and stability. Our efforts culminated in the synthesis of BAY-576, an uncharged hafnium complex with 3:2 stoichiometry and broken complex symmetry. The superior properties of this asymmetrically substituted hafnium CA were demonstrated by a CT angiography study in rabbits that revealed excellent signal contrast enhancement.

  8. Locations of radical species in black pepper seeds investigated by CW EPR and 9 GHz EPR imaging

    NASA Astrophysics Data System (ADS)

    Nakagawa, Kouichi; Epel, Boris

    2014-10-01

    In this study, noninvasive 9 GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9 GHz EPR imaging capabilities. The 9 GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2 mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe3+, and Mn2+ complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1 h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9 GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds.

  9. Locations of radical species in black pepper seeds investigated by CW EPR and 9GHz EPR imaging.

    PubMed

    Nakagawa, Kouichi; Epel, Boris

    2014-10-15

    In this study, noninvasive 9GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9GHz EPR imaging capabilities. The 9GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe(3+), and Mn(2+) complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Enhancement of magnetic anisotropy in a Mn-Bi heterobimetallic complex.

    PubMed

    Pearson, Tyler J; Fataftah, Majed S; Freedman, Danna E

    2016-09-15

    A novel Mn 2+ Bi 3+ heterobimetallic complex, featuring the closest MnBi interaction for a paramagnetic molecular species, exhibits unusually large axial zero-field splitting. We attribute this enhancement to the proximity of Mn 2+ to a heavy main group element, namely, bismuth.

  11. Synthesis, structures and fluorescent properties of two novel lanthanide [Ln = Ce(III), Pr(III)] coordination polymers based on 1,3-benzenedicarboxylate and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline ligands

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ni, Liang; yao, Jia

    2012-09-01

    Two structurally diverse coordination polymers [Ce2(m-BDC)2(m-HBDC)2(MOPIP)2·3/2H2O]n (1) and [Pr2(m-BDC)3(MOPIP)2·H2O]n(2) have been synthesized by hydrothermal reaction of lanthanide chloride with mixed ligands benzene-1,3-dicarboxylic acid and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (MOPIP). The crystal structures of the complexes are zipper-like chains of octacoordinate Ln3+ ions, in which Ln3+ ions are bridged in different coordination modes by m-BDC2+ and decorated by MOPIP ligands. These chains are further assembled into three-dimensional supramolecular framework by π⋯π stacking and hydrogen bonding interactions. The fluorescent property and thermal stability were also investigated. Additionally, Natural bond orbital (NBO) analysis of complex 2 shows a weak covalent interaction between the coordinated atoms and Pr3+ ions.

  12. Chemical Properties of Elements 99 and 100 [Einsteinium and Fermium

    DOE R&D Accomplishments Database

    Seaborg, G. T.; Thompson, S. G.; Harvey, B. G.; Choppin, G. R.

    1954-07-23

    A description of some of the chemical properties and of the methods used in the separations of elements 99 [Einsteinium] and 100 [Fermium] are given. The new elements exhibit the properties expected for the tenth and eleventh actinide elements. Attempts to produce an oxidation state greater than III of element 99 have been unsuccessful. In normal aqueous media only the III state of element 100 appears to exist. The relative spacings of the elution peaks of the new elements in some separations with ion exchange resin columns are the same as the relative spacings of the homologous lanthanide elements. The results of experiments involving cation exchange resins with very concentrated hydrochloric acid eluant show that the new elements, like the earlier actinides, are more strongly complexed than the lanthanides. The new elements also exist partially as anions in concentrated hydrochloric acid, as do earlier actinide elements, and they may be partially separated from each other by means of ion exchange resins. With some eluants interesting reversals of elution positions are observed in the region Bk-Cf-99-100, indicating complex ion formation involving unusual factors.

  13. Paramagnetic resonance studies of bistrispyrazolylborate cobalt(II) and related derivatives

    NASA Astrophysics Data System (ADS)

    Myers, William K.

    Herein, a systematic frozen solution electron-nuclear double resonance (ENDOR) study of high-spin Co(II) complexes is reported to demonstrate the efficacy of methyl substitutions as a means of separating dipolar and contact coupling, and further, to increase the utility of high-spin Co(II) as a spectroscopic probe for the ubiquitous, but spectroscopically-silent Zn(II) metalloenzymes. High-spin (hs) Co(II) has been subject of paramagnetic resonance studies for over 50 years and has been used as a spectroscopic probe for Zn metalloenzymes for over 35 years. However, as will be seen, the inherent complexity of the electronic properties of the cobaltous ion remains to be exploited to offer a wealth of information on Zn(II) enzymatic environments. Specifically, ENDOR measurements on bistrispyrazolylborate cobalt(II) confirm the utility of the novel method of methyl substitution to differentiate dipolar and Fermi contact couplings. An extensive set of electron paramagnetic resonance (EPR) simulations were performed. Software was developed to implement an ENDOR control interface. Finally, proton relaxation measurements were made in the range of 12-42 MHz, which were accounted for with the large g-value anisotropy of the Co(II) compounds. Taken as a whole, these studies point to the rich complexity of the electronic structure of high-spin cobalt(II) and, when sufficiently well-characterized, the great utility it has as a surrogate of biological Zn(II).

  14. METAL PHTHALOCYANINES

    DOEpatents

    Frigerio, N.A.

    1962-03-27

    A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)

  15. Visible and NIR photoluminescence properties of a series of novel lanthanide-organic coordination polymers based on hydroxyquinoline-carboxylate ligands.

    PubMed

    Gai, Yan-Li; Xiong, Ke-Cai; Chen, Lian; Bu, Yang; Li, Xing-Jun; Jiang, Fei-Long; Hong, Mao-Chun

    2012-12-17

    A series of novel two-dimensional (2D) lanthanide coordination polymers with 4-hydroxyquinoline-2-carboxylate (H(2)hqc) ligands, [Ln(Hhqc)(3)(H(2)O)](n)·3nH(2)O (Ln = Eu (1), Tb (2), Sm (3), Nd (4), and Gd (5)) and [Ln(Hhqc)(ox)(H(2)O)(2)](n) (Ln = Eu (6), Tb (7), Sm (8), Tm (9), Dy (10), Nd (11), Yb (12), and Gd (13); H(2)ox = oxalic acid), have been synthesized under hydrothermal conditions. Complexes 1-5 are isomorphous, which can be described as a two-dimensional (2D) hxl/Shubnikov network based on Ln(2)(CO(2))(4) paddle-wheel units, and the isomorphous complexes 6-13 feature a 2D decker layer architecture constructed by Ln-ox infinite chains cross-linked alternatively by bridging Hhqc(-) ligands. The room-temperature photoluminescence spectra of complexes Eu(III) (1 and 6), Tb(III) (2 and 7), and Sm(III) (3 and 8) exhibit strong characteristic emissions in the visible region, whereas Nd(III) (4 and 11) and Yb(III) (12) complexes display NIR luminescence upon irradiation at the ligand band. Moreover, the triplet state of H(2)hqc matches well with the emission level of Eu(III), Tb(III), and Sm(III) ions, which allows the preparation of new optical materials with enhanced luminescence properties.

  16. Low-temperature thermal decomposition of heavy petroleum distillates: interconnection between the electrical properties and concentration of paramagnetic centres

    NASA Astrophysics Data System (ADS)

    Dolomatov, M.; Gafurov, M.; Rodionov, A.; Mamin, G.; González, L. Miquel; Vakhin, A.; Petrov, A.; Bakhtizin, R.; Khairudinov, I.; Orlinskii, S.

    2018-05-01

    Changes of paramagnetic centers (PC) concentration in petroleum dispersed systems (PDS) are studied in the process of low-temperature thermolysis. Complex investigation of physicochemical, rheological and electrophysical properties of high-boiling oil fractions is performed. Based on the analysis of the experimental results it can be concluded that the PDS under investigation can be regarded as amorphous broadband organic semiconductors for which PC plays a role of dopant. It shows the perspectives of the asphaltenes usage as a basis for the photovoltaic devices.

  17. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta)

    PubMed Central

    Goecke, Franz; Jerez, Celia G.; Zachleder, Vilém; Figueroa, Félix L.; Bišová, Kateřina; Řezanka, Tomáš; Vítová, Milada

    2015-01-01

    Lanthanides are biologically non-essential elements with wide applications in technology and industry. Their concentration as environmental contaminants is, therefore, increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants, even though their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements. We tested the effect of low concentrations of lanthanides on the common freshwater microalga Desmodesmus quadricauda, grown under conditions of metal ion-deficiency (lower calcium or manganese concentrations). Our goal was to test if lanthanides can replace essential metals in their functions. Physiological stress was recorded by studying growth and photosynthetic activity using a pulse amplitude modulation (PAM) fluorimeter. We found that nutrient stress reduced parameters of growth and photosynthesis, such as maximal quantum yield, relative electron transport rate, photon capturing efficiency and light saturation irradiance. After adding low concentrations of five lanthanides, we confirmed that they can produce a stimulatory effect on microalgae, depending on the nutrient (metal) deprivation. In the case of a calcium deficit, the addition of lanthanides partly alleviated the adverse effects, probably by a partial substitution of the element. In contrast, with manganese deprivation (and at even lower concentrations), lanthanides enhanced the deleterious effect on cellular growth and photosynthetic competence. These results show that lanthanides can replace essential elements, but their effects on microalgae depend on stress and the nutritional state of the microalgae, raising the possibility of environmental impacts at even low concentrations. PMID:25674079

  18. Coordination ability determined transition metal ions substitution of Tb in Tb-Asp fluorescent nanocrystals and a facile ions-detection approach.

    PubMed

    Duan, Jiazhi; Ma, Baojin; Liu, Feng; Zhang, Shan; Wang, Shicai; Kong, Ying; Du, Min; Han, Lin; Wang, Jianjun; Sang, Yuanhua; Liu, Hong

    2018-04-26

    Although the synthesis and fluorescent properties of lanthanide-amino acid complex nanostructures have been investigated extensively, limited studies have been reported on metal ions' substitution ability for the lanthanide ions in the complex and their effect on the fluorescent property. In this study, taking biocompatible Tb-aspartic acid (Tb-Asp) complex nanocrystals as a model, the substitution mechanism of metal ions, particularly transition metals, for Tb ions in Tb-Asp nanocrystals and the change in the fluorescent property of the Tb-Asp nanocrystals after substitution were systematically investigated. The experimental results illustrated that metal ions with higher electronegativity, higher valence, and smaller radius possess stronger ability for Tb ions' substitution in Tb-Asp nanocrystals. Based on the effect of substituting ions' concentration on the fluorescent property of Tb-Asp, a facile method for copper ions detection with high sensitivity was proposed by measuring the fluorescent intensity of Tb-Asp nanocrystals' suspensions containing different concentrations of copper ions. The good biocompatibility, great convenience of synthesis and sensitive detection ability make Tb-Asp nanocrystals a very low cost and effective material for metal ions detection, which also opens a new door for practical applications of metal-Asp coordinated nanocrystals.

  19. Oil-soluble and water-soluble BTPhens and their europium complexes in octanol/water solutions: interface crossing studied by MD and PMF simulations.

    PubMed

    Benay, G; Wipff, G

    2013-01-31

    Bistriazinyl-phenantroline "BTPhen" ligands L display the remarkable feature to complex trivalent lanthanide and actinide ions, with a marked selectivity for the latter. We report on molecular dynamics studies of tetrasubstituted X(4)BTPhens: L(4+) (X = (+)Et(3)NCH(2)-), L(4-) (X = (-)SO(3)Ph-), and L(0) (X = CyMe(4)) and their complexes with Eu(III) in binary octanol/water solutions. Changes in free energies upon interface crossing are also calculated for typical solutes by potential of mean force PMF simulations. The ligands and their complexes partition, as expected, to either the aqueous or the oil phase, depending on the "solubilizing" group X. Furthermore, most of them are found to be surface active. The water-soluble L(4+) and L(4-) ligands and their (L)Eu(NO(3))(3) complexes adsorb at the aqueous side of the interface, more with L(4-) than with L(4+). The oil soluble ligand L(0) is not surface active in its endo-endo form but adsorbs on the oil side of the interface in its most polar endo-exo form, as well as in its protonated L(0)H(+) and complexed (L(0))Eu(NO(3))(3) states. Furthermore, comparing PMFs of the Eu(III) complexes with and without nitric acid shows that acidifying the aqueous phase has different effects, depending on the ligand charge. In particular, acid promotes the Eu(III) extraction by L(0) via the (L(0))(2)Eu(NO(3))(2+) complex, as observed experimentally. Overall, the results point to the importance of interfacial adsorption for the liquid-liquid extraction of trivalent lanthanide and actinide cations by BTPhens and analogues.

  20. Equilibrium Speciation of Select Lanthanides in the Presence of Acidic Ligands in Homo- and Heterogeneous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Troy A

    2011-08-01

    This dissertation explores lanthanide speciation in liquid solution systems related to separation schemes involving the acidic ligands: bis(2-ethylhexyl) phosphoric acid (HDEHP), lactate, and 8-hydroxyquinoline. Equilibrium speciation of neodymium (Nd 3+), sodium (Na+), HDEHP, water, and lactate in the TALSPEAK liquid-liquid extraction system was explored under varied Nd 3+ loading of HDEHP in the organic phase and through extraction from aqueous HCl and lactate media. System speciation was probed through vapor pressure osmometry, visible and Fourier Transform Infrared (FTIR) spectroscopy, 22Na and 13C labeled lactate radiotracer distribution measurements, Karl Fischer titrations, and equilibrium pH measurements. Distribution of Nd 3+, Na +,more » lactate, and equilibrium pH were modeled using the SXLSQI software to obtain logKNd and logKNa extraction constants under selected conditions. Results showed that high Nd 3+ loading of the HDEHP led to Nd 3+ speciation that departs from the ion exchange mechanism and includes formation of highly aggregated, polynuclear [NdLactate(DEHP) 2] x; (with x > 1). By substituting lanthanum (La 3+) for Nd 3+ in this system, NMR scoping experiments using 23Na, 31P nuclei and 13C labeled lactate were performed. Results indicated that this technique is sensitive to changes in system speciation, and that further experiments are warranted. In a homogeneous system representing the TALSPEAK aqueous phase, Lactate protonation behavior at various temperatures was characterized using a combination of potentiometric titration and modeling with the Hyperquad computer program. The temperature dependent deprotonation behavior of lactate showed little change with temperature at 2.0 M NaCl ionic strength. Cloud point extraction is a non-traditional separation technique that starts with a homogeneous phase that becomes heterogeneous by the micellization of surfactants through the increase of temperature. To better understand the behavior of europium (Eu 3+) and 8-hydroxyquinoline under cloud point extraction conditions, potentiometric and spectrophotometric titrations coupled with modeling with Hyperquad and SQUAD computer programs were performed to assess europium (Eu 3+) and 8-hydroxyquinoline speciation. Experiments in both water and a 1wt% Triton X-114/water mixed solvent were compared to understand the effect of Triton X-114 on the system speciation. Results indicated that increased solvation of 8-hydroxyquinoline by the mixed solvent lead to more stable complexes involving 8-hydroxyquinoline than in water, whereas competition between hydroxide and Triton X-114 for Eu 3+ led to lower stability hydrolysis complexes in the mixed solvent than in water. Lanthanide speciation is challenging due to the trivalent oxidation state that leads to multiple ligand complexes, including some mixed complexes. The complexity of the system demands well-designed and precise experiments that capture the nuances of the chemistry. This work increased the understanding of lanthanide speciation in the explored systems, but more work is required to produce a comprehensive understanding of the speciation involved.« less

  1. Lanthanides in molecular magnetism: old tools in a new field.

    PubMed

    Sorace, Lorenzo; Benelli, Cristiano; Gatteschi, Dante

    2011-06-01

    In this tutorial review we discuss some basic aspects concerning the magnetic properties of rare-earth ions, which are currently the subject of a renovated interest in the field of molecular magnetism, after the discovery that slow relaxation of the magnetization at liquid nitrogen temperature can occur in mononuclear complexes of these ions. Focusing on Dy(III) derivatives a tutorial discussion is given of the relation of the crystal field parameters, which determine the anisotropy of these systems and consequently their interesting magnetic properties, with the geometry of the coordination sphere around the lanthanide centre and with the pattern of f orbitals. The problem of systems of low point symmetry is also addressed by showing how detailed single crystal investigation, coupled to more sophisticated calculation procedures, is an absolute necessity to obtain meaningful structure-property relationships in these systems.

  2. Strategies for Optimizing Water-Exchange Rates of Lanthanide-Based Contrast Agents for Magnetic Resonance Imaging

    PubMed Central

    Siriwardena-Mahanama, Buddhima N.; Allen, Matthew J.

    2013-01-01

    This review describes recent advances in strategies for tuning the water-exchange rates of contrast agents for magnetic resonance imaging (MRI). Water-exchange rates play a critical role in determining the efficiency of contrast agents; consequently, optimization of water-exchange rates, among other parameters, is necessary to achieve high efficiencies. This need has resulted in extensive research efforts to modulate water-exchange rates by chemically altering the coordination environments of the metal complexes that function as contrast agents. The focus of this review is coordination-chemistry-based strategies used to tune the water-exchange rates of lanthanide(III)-based contrast agents for MRI. Emphasis will be given to results published in the 21st century, as well as implications of these strategies on the design of contrast agents. PMID:23921796

  3. Lanthanide Complexes with Multidentate Oxime Ligands as Single-Molecule Magnets and Atmospheric Carbon Dioxide Fixation Systems.

    PubMed

    Hołyńska, Małgorzata; Clérac, Rodolphe; Rouzières, Mathieu

    2015-09-14

    The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 (1: [La2 (pop)2 (acac)4 (CH3 OH)], 2: [Dy2 (pop)(acac)5 ]) are synthesized from the 2-hydroxyimino-N-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3, 4, and 5 (3: [Dy2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.85 CH3 CN⋅1.58 H2 O; 4: [Tb2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.52 CH3 CN⋅1.71 H2 O; 5: [La6 (CO3 )2 (naphthsao)5 (naphthsaoH)0.5 (acac)8 (CO3 )0.5 (CH3 OH)2.76 H5.5 (H2 O)1.24 ]⋅2.39 CH3 CN⋅0.12 H2 O) contain 1-(1-hydroxynaphthalen-2-yl)-ethanone oxime (naphthsaoH2 ). In 1-4, dinuclear [Ln2 ] complexes crystallize, whereas hexanuclear La(III) complex 5 is formed after fixation of atmospheric carbon dioxide. Dy(III) -based complexes 2 and 3 display single-molecule-magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy(3+) ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Influence of the Ligand Field on the Slow Relaxation of Magnetization of Unsymmetrical Monomeric Lanthanide Complexes: Synthesis and Theoretical Studies.

    PubMed

    Upadhyay, Apoorva; Vignesh, Kuduva R; Das, Chinmoy; Singh, Saurabh Kumar; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2017-11-20

    A series of monomeric lanthanide Schiff base complexes with the molecular formulas [Ce(HL) 3 (NO 3 ) 3 ] (1) and [Ln(HL) 2 (NO 3 ) 3 ], where Ln III = Tb (2), Ho (3), Er (4), and Lu (5), were isolated and characterized by single-crystal X-ray diffraction (XRD). Single-crystal XRD reveals that, except for 1, all complexes possess two crystallographically distinct molecules within the unit cell. Both of these crystallographically distinct molecules possess the same molecular formula, but the orientation of the coordinating ligand distinctly differs from those in complexes 2-5. Alternating-current magnetic susceptibility measurement reveals that complexes 1-3 exhibit slow relaxation of magnetization in the presence of an optimum external magnetic field. In contrast to 1-3, complex 4 shows a blockade of magnetization in the absence of an external magnetic field, a signature characteristic of a single-ion magnet (SIM). The distinct magnetic behavior observed in 4 compared to other complexes is correlated to the suitable ligand field around a prolate Er III ion. Although the ligand field stabilizes an easy axis of anisotropy, quantum tunnelling of magnetization (QTM) is still predominant in 4 because of the low symmetry of the complex. The combination of low symmetry and an unsuitable ligand-field environment in complexes 1-3 triggers faster magnetization relaxation; hence, these complexes exhibit field-induced SIM behavior. In order to understand the electronic structures of complexes 1-4 and the distinct magnetic behavior observed, ab initio calculations were performed. Using the crystal structure of the complexes, magnetic susceptibility data were computed for all of the complexes. The computed susceptibility and magnetization are in good agreement with the experimental magnetic data [χ M T(T) and M(H)] and this offers confidence on the reliability of the extracted parameters. A tentative mechanism of magnetization relaxation observed in these complexes is also discussed in detail.

  5. Secret lanthanides.

    PubMed

    Sturza, C M

    2014-09-15

    Lanthanides are a group of 15 chemical elements which, together with their salts, have come to be used in the last decade as homoeopathic remedies. The effective introduction of lanthanides and their salts into the clinical use, as homoeopathic remedies was based on the idea of Jan Scholten, MD to relate their physicochemical properties shown in the periodic table of elements to their homoeopathic potential. The lanthanides and their salts were prepared as homoeopathic remedies by Pharmacist Robert Münz.

  6. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeon Soo; Wiencek, T.; O'Hare, E.

    Advanced fast reactor concepts to achieve ultra-high burnup (~50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys wasmore » performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.« less

  7. Study of 3-Ethylamino-but-2-enoic acid phenylamide as a new ligand for preconcentration of lanthanides from aqueous media by liquid-liquid extraction prior to ICP-MS analysis.

    PubMed

    Varbanova, Evelina K; Angelov, Plamen A; Stefanova, Violeta M

    2016-11-01

    In the present work the potential of a new ligand 3-Ethylamino-but-2-enoic acid phenylamide (representing the class of enaminones) for selective preconcentration of lanthanides (La, Ce, Eu, Gd and Er) from aqueous medium is examined. Liquid-liquid extraction parameters, such as pH of the water phase, type and volume of organic solvent, quantity of ligand and reaction time are optimized on model solutions. Recovery of lanthanides by re-extraction with nitric acid makes the LLE procedure compatible with Inductively Coupled Plasma Mass Spectrometry. Spectral and non-spectral interferences are studied. Two isotopes per element are measured (with exception of La) for dynamic evaluation of the potential risk of spectral interference in variable real samples. The selectivity of complex formation reaction towards concomitant alkali and alkali-earth elements eliminates the interferences from sample matrix. Subjecting the standards to the optimized extraction procedure in combination with Re as internal standard is recommended as calibration strategy. The accuracy of developed method is approved by analysis of CRM Bush branches and leaves (NCS DC 73348) and recovery of spiked water and plant samples. The method's limits of detection for both studied objects are in the ranges from 0.2 ((158)Gd) to 3.7 ((139)La) ngl(-1) and 0.02 ((158)Gd) to 0.37((139)La) ngg(-1) for waters and plants respectively. The studied compound is an effective new ligand for preconcentration/separation of lanthanides from aqueous medium by LLE and subsequent determination by ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Secret Lanthanides

    PubMed Central

    Sturza, CM

    2014-01-01

    Abstract Lanthanides are a group of 15 chemical elements which, together with their salts, have come to be used in the last decade as homoeopathic remedies. The effective introduction of lanthanides and their salts into the clinical use, as homoeopathic remedies was based on the idea of Jan Scholten, MD to relate their physicochemical properties shown in the periodic table of elements to their homoeopathic potential. The lanthanides and their salts were prepared as homoeopathic remedies by Pharmacist Robert Münz. PMID:25408760

  9. Time-dependent broken-symmetry density functional theory simulation of the optical response of entangled paramagnetic defects: Color centers in lithium fluoride

    NASA Astrophysics Data System (ADS)

    Janesko, Benjamin G.

    2018-02-01

    Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.

  10. Preparation, structure, and luminescence of dinuclear lanthanide complexes of a novel imine-amine phenolate macrocycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, K.D.; Kahwa, I.A.; Williams, D.J.

    1994-03-30

    Metal-free condensation of 2,6-diformyl-p-cresol with 3,6-dioxa-1,8-octanediamine followed by reduction with sodium tetrahydroborate and addition of lanthanide(III) nitrate salts, in that order, yield (slowly) crystalline dinuclear complexes of a novel imine-amine phenolate macrocycle 2. The decacoordination geometry of the identical Pr[sup 3+] ions in a C[sub 2v] 4A,6B-extended dodecahedron made up of two bidentate NO[sub 3]-ions, two phenolate and two either oxygens, and one imine and one amine nitrogens. Dinuclear lanthanide complexes of 2 appear to be more stable than those of the totally reduced chelate 2 in alcoholic media. The Tb[sub 2]2(NO[sub 3])[sub 4][center dot]1.2CH[sub 3]-OH and (La[sub 0.97]Tb[sub 0.03])[submore » 2]2(NO[sub 3])[sub 4][center dot]1.2CH[sub 3]OH compounds exhibit strong Tb[sup 3+] ([sup 5]D[sub 4] [yields] [sup 7]F[sub J]) emission sensitized by the single state of 2 at both 77 and 295 K. No Tb[sup 3+]-Tb[sup 3+] self-quenching or N-H trapping effects are observed at 77 K (decay rate is 598 s[sup [minus]1]); the coordination cavities of 2 are therefore potentially good hosts for Tb[sup 3+] in luminescent diagnostic agents. At room temperature the complex decay kinetics of Tb[sup 3+] in Tb[sub 2]2(NO[sub 3])[sub 4][center dot]1.2CH[sub 3]OH are similar to those of Tb[sub 2]1(NO[sub 3])[sub 4][center dot]H[sub 2]O. But for the dilute complex, (La[sub 0.97]-Tb[sub 0.03])[sub 2]2(NO[sub 3])[sub 4][center dot]1.35CH[sub 3]OH, unusual thermal equilibration of the ligand triplet and Tb[sup 3+] [sup 5]D[sub 4] states occurs at room temperature; the ligand-to-Tb[sup 3+] energy-transfer rate is [approx]4.36 x 10[sup 4] s[sup [minus]1], while Tb[sup 3+]-to-ligand back-energy-transfer is [approx]7.1 x 10[sup 4] s[sup [minus]1].« less

  11. Europium, uranyl, and thorium-phenanthroline amide complexes in acetonitrile solution: an ESI-MS and DFT combined investigation.

    PubMed

    Xiao, Cheng-Liang; Wang, Cong-Zhi; Mei, Lei; Zhang, Xin-Rui; Wall, Nathalie; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun

    2015-08-28

    The tetradentate N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen) ligand with hard-soft donor atoms has been demonstrated to be promising for the group separation of actinides from highly acidic nuclear wastes. To identify the formed complexes of this ligand with actinides and lanthanides, electrospray ionization mass spectrometry (ESI-MS) combined with density functional theory (DFT) calculations was used to probe the possible complexation processes. The 1 : 2 Eu-L species ([EuL2(NO3)](2+)) can be observed in ESI-MS at low metal-to-ligand ([M]/[L]) ratios, whereas the 1 : 1 Eu-L species ([EuL(NO3)2](+)) can be observed when the [M]/[L] ratio is higher than 1.0. However, ([UO2L(NO3)](+)) is the only detected species for the uranyl complexes. The [ThL2(NO3)2](2+) species can be observed at low [M]/[L] ratios; the 1 : 2 species ([ThL2(NO3)](3+)) and a new 1 : 1 species ([ThL(NO3)3](+)) can be detected at high [M]/[L] ratios. Collision-induced dissociation (CID) results showed that Et-Tol-DAPhen ligands can coordinate strongly with metal ions, and the coordination moieties remain intact under CID conditions. Natural bond orbital (NBO), molecular electrostatic potential (MEP), electron localization function (ELF), atoms in molecules (AIM) and molecular orbital (MO) analyses indicated that the metal-ligand bonds of the actinide complexes exhibited more covalent character than those of the lanthanide complexes. In addition, according to thermodynamic analysis, the stable cationic M-L complexes in acetonitrile are found to be in good agreement with the ESI-MS results.

  12. Assessing the exchange coupling in binuclear lanthanide(iii) complexes and the slow relaxation of the magnetization in the antiferromagnetically coupled Dy2 derivative.

    PubMed

    Chow, Chun Y; Bolvin, Hélène; Campbell, Victoria E; Guillot, Régis; Kampf, Jeff W; Wernsdorfer, Wolfgang; Gendron, Frédéric; Autschbach, Jochen; Pecoraro, Vincent L; Mallah, Talal

    2015-07-01

    We report here the synthesis and the investigation of the magnetic properties of a series of binuclear lanthanide complexes belonging to the metallacrown family. The isostructural complexes have a core structure with the general formula [Ga 4 Ln 2 (shi 3- ) 4 (Hshi 2- ) 2 (H 2 shi - ) 2 (C 5 H 5 N) 4 (CH 3 OH) x (H 2 O) x ]· x C 5 H 5 N· x CH 3 OH· x H 2 O (where H 3 shi = salicylhydroxamic acid and Ln = Gd III 1 ; Tb III 2 ; Dy III 3 ; Er III 4 ; Y III 5 ; Y III 0.9 Dy III 0.1 6 ). Apart from the Er-containing complex, all complexes exhibit an antiferromagnetic exchange coupling leading to a diamagnetic ground state. Magnetic studies, below 2 K, on a single crystal of 3 using a micro-squid array reveal an opening of the magnetic hysteresis cycle at zero field. The dynamic susceptibility studies of 3 and of the diluted DyY 6 complexes reveal the presence of two relaxation processes for 3 that are due to the excited ferromagnetic state and to the uncoupled Dy III ions. The antiferromagnetic coupling in 3 was shown to be mainly due to an exchange mechanism, which accounts for about 2/3 of the energy gap between the antiferro- and the ferromagnetic states. The overlap integrals between the Natural Spin Orbitals (NSOs) of the mononuclear fragments, which are related to the magnitude of the antiferromagnetic exchange, are one order of magnitude larger for the Dy 2 than for the Er 2 complex.

  13. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes. Use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-01-01

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and the authors have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, butmore » proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. They suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  14. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes: use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-09-28

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and we have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but protonmore » release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All (i.e., 13% + 54% + 32% = 99%) of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. We suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  15. Lewis acid properties of alumina based catalysts: study by paramagnetic complexes of probe molecules

    NASA Astrophysics Data System (ADS)

    Fionov, Alexander V.

    2002-06-01

    Lewis acid properties of LiAl 5O 8/Al 2O 3 (2 wt.% Li) and MgAl 2O 4/Al 2O 3 (3 wt.% Mg) catalysts were studied by EPR of adsorbed probe molecules--anthraquinone and 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO). The lesser (in comparison with γ-Al 2O 3) concentration and the strength of Lewis acid sites (LAS) formed on the surface of aluminate layer has been shown. The stability of this layer plays important role in the change of Lewis acid properties during the calcination of modified alumina. The lithium aluminate layer was stable at used calcination temperature, 773 K, meanwhile magnesium aluminate layer observed only at calcination temperature below 723 K. The increase of the calcination temperature to 773 K caused the segregation of MgAl 2O 4 on the surface resulted in the release of alumina surface and recovery of the Lewis acid properties. The differences in the LAS manifestations towards TEMPO and anthraquinone was discussed. The mechanism of the formation of anthraquinone paramagnetic complexes with LAS--three-coordinated aluminum ions--was proposed. This mechanism includes the formation of anthrasemiquinone, and then--anthrasemiquinone ion pair or triple ion. Fragments like -O-Al +-O- play the role of cations in these ion pairs and triple ions. Proposed mechanism can also be applied for the consideration of similar anthraquinone paramagnetic complexes on the surface of gallium oxide containing systems.

  16. Probing the Dipolar Coupling in a Heterospin Endohedral Fullerene-Phthalocyanine Dyad.

    PubMed

    Zhou, Shen; Yamamoto, Masanori; Briggs, G Andrew D; Imahori, Hiroshi; Porfyrakis, Kyriakos

    2016-02-03

    Paramagnetic endohedral fullerenes and phthalocyanine (Pc) complexes are promising building blocks for molecular quantum information processing, for which tunable dipolar coupling is required. We have linked these two spin qubit candidates together and characterized the resulting electron paramagnetic resonance properties, including the spin dipolar coupling between the fullerene spin and the copper spin. Having interpreted the distance-dependent coupling strength quantitatively and further discussed the antiferromagnetic aggregation effect of the CuPc moieties, we demonstrate two ways of tuning the dipolar coupling in such dyad systems: changing the spacer group and adjusting the solution concentration.

  17. Selective photoswitching of the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpm)} into two distinct macroscopic phases.

    PubMed

    Moussa, N Ould; Molnár, G; Bonhommeau, S; Zwick, A; Mouri, S; Tanaka, K; Real, J A; Bousseksou, A

    2005-03-18

    The low-spin (LS-LS, S = 0) diamagnetic form of the binuclear spin crossover complex {[Fe(bt)(NCS)(2)](2)(bpm)} was selectively photoconverted into two distinct macroscopic phases at different excitation wavelengths (1342 or 647.1 nm). These long-lived metastable phases have been identified, respectively, as the symmetry-broken paramagnetic form (HS-LS, S = 2) and the antiferromagnetically coupled (HS-HS, S = 0) high-spin form of the compound. The selectivity may be explained by the strong coupling of the primary excited states to the paramagnetic state.

  18. Separation of actinides from lanthanides utilizing molten salt electrorefining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.

    1996-10-01

    TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separationmore » ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.« less

  19. The 3-(bromoacetamido)-propylamine hydrochloride: A novel sulfhydryl reagent and its future potential in the configurational study of S1-myosin

    NASA Technical Reports Server (NTRS)

    Sharma, Prasanta; Cheung, Herbert C.

    1989-01-01

    Configurational study of S1-Myosin is an important step towards understanding force generation in muscle contraction. Previously reported NMR studies were corroborated. A new compound was synthesized, 3-(Bromoacetamido)-propylamine hydrochloride. Its potential as a sulfhydryl reagent provides an indirect but elegant approach towards future structural elucidation of S1-Myosin. The preliminary investigation has shown that this compound, BAAP, reacted with S1 in the absence of MgADP. The modified enzyme had a 2-fold increase in CaATPase activity and no detectable K-EDTA ATPase activity. Reaction of BAAP with S1 in the presence of MgADP resulted in a modified enzyme which retained a Ca-ATPase activity that was about 60 percent of the unmodified S1 and had essentially zero K-EDTA ATPase activity. Sulfhydryl titration indicated that about 1.5 and 3.5 SH groups per S1 molecule were blocked by BAAP in the absence and presence of MgADP, respectively. When coupled to a carboxyl group of EDTA, the resulting reagent could become a useful SH reagent in which chelated paramagnetic or luminescent lanthanide ions can be exploited to probe S1 conformation.

  20. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A., E-mail: nelambert@gru.edu

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domainsmore » in real time in living cells. - Highlights: • Diffusion enhances TR-FRET from membrane proteins labeled with lanthanide donors. • Diffusion-dependent FRET can overshadow FRET due to oligomerization or clustering. • FRET studies using lanthanide-tagged membrane proteins should consider diffusion. • FRET from lanthanide donors can be used to monitor membrane protein diffusion.« less

  1. Lanthanide/Actinide Opacities

    NASA Astrophysics Data System (ADS)

    Hungerford, Aimee; Fontes, Christopher J.

    2018-06-01

    Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.

  2. Thermally Stable White Emitting Eu3+ Complex@Nanozeolite@Luminescent Glass Composite with High CRI for Organic-Resin-Free Warm White LEDs.

    PubMed

    Zhang, Jinhui; Gong, Shuming; Yu, Jinbo; Li, Peng; Zhang, Xuejie; He, Yuwei; Zhou, Jianbang; Shi, Rui; Li, Huanrong; Peng, Aiyun; Wang, Jing

    2017-03-01

    Nowadays, it is still a great challenge for lanthanide complexes to be applied in solid state lighting, especially for high-power LEDs because they will suffer severe thermal-induced luminescence quenching and transmittance loss when LEDs are operated at high current. In this paper, we have not only obtained high efficient and thermally chemical stable red emitting hybrid material by introducing europium complex into nanozeolite (NZ) functionalized with the imidazolium-based stopper but also abated its thermal-induced transmittance loss and luminescence quenching behavior via coating it onto a heat-resistant luminescent glass (LG) with high thermal conductivity (1.07 W/mK). The results show that the intensity at 400 K for Eu(PPO) n -C 4 Si@NZ@LG remains 21.48% of the initial intensity at 300 K, which is virtually 153 and 13 times the intensity of Eu(PPO) 3 ·2H 2 O and Eu(PPO) n -C 4 Si@NZ, respectively. Moreover, an organic-resin-free warm white LEDs device with a low CCT of 3994K, a high Ra of 90.2 and R9 of 57.9 was successfully fabricated simply by combining NUV-Chip-On-Board with a warm white emitting glass-film composite (i.e., yellowish-green emitting luminescent glass coated with red emitting hybrid film). Our method and results provide a feasible and promising way for lanthanide complexes to be used for general illumination in the future.

  3. Transition metal redox switches for reversible "on/off" and "slow/fast" single-molecule magnet behaviour in dysprosium and erbium bis-diamidoferrocene complexes.

    PubMed

    Dickie, Courtney M; Laughlin, Alexander L; Wofford, Joshua D; Bhuvanesh, Nattamai S; Nippe, Michael

    2017-12-01

    Single-molecule magnets (SMMs) are considered viable candidates for next-generation data storage and quantum computing. Systems featuring switchability of their magnetization dynamics are particularly interesting with respect to accessing more complex logic gates and device architectures. Here we show that transition metal based redox events can be exploited to enable reversible switchability of slow magnetic relaxation of magnetically anisotropic lanthanide ions. Specifically, we report anionic homoleptic bis-diamidoferrocene complexes of Dy 3+ (oblate) and Er 3+ (prolate) which can be reversibly oxidized by one electron to yield their respective charge neutral redox partners (Dy: [1] - , 1 ; Er: [2] - , 2 ). Importantly, compounds 1 and 2 are thermally stable which allowed for detailed studies of their magnetization dynamics. We show that the Dy 3+ [1] - / 1 system can function as an "on"/"off" or a "slow"/"fast" redox switchable SMM system in the absence or presence of applied dc fields, respectively. The Er 3+ based [2] - / 2 system features "on"/"off" switchability of SMM properties in the presence of applied fields. Results from electrochemical investigations, UV-vis-NIR spectroscopy, and 57 Fe Mössbauer spectroscopy indicate the presence of significant electronic communication between the mixed-valent Fe ions in 1 and 2 in both solution and solid state. This comparative evaluation of redox-switchable magnetization dynamics in low coordinate lanthanide complexes may be used as a potential blueprint toward the development of future switchable magnetic materials.

  4. Theoretical Study on the Photoelectron Spectra of Ln(COT)2-: Lanthanide Dependence of the Metal-Ligand Interaction.

    PubMed

    Nakajo, Erika; Masuda, Tomohide; Yabushita, Satoshi

    2016-12-08

    We have performed a theoretical analysis of the recently reported photoelectron (PE) spectra of the series of sandwich complex anions Ln(COT) 2 - (Ln = La-Lu, COT = 1,3,5,7-cyclooctatetraene), focusing on the Ln dependence of the vertical detachment energies. For most Ln, the π molecular orbitals, largely localized on the COT ligands, have the energy order of e 1g < e 1u < e 2g < e 2u as in the actinide analogues, reflecting the substantial orbital interaction with the Ln 5d and 5p orbitals. Thus, it would be expected that the lanthanide contraction would increase the orbital interaction so that the overlaps between the COT π and Ln atomic orbitals tend to increase across the series. However, the PE spectra and theoretical calculations were not consistent with this expectation, and the details have been clarified in this study. Furthermore, the energy level splitting patterns of the anion and neutral complexes have been studied by multireference ab initio methods, and the X peak splittings observed in the PE spectra only for the middle-range Ln complexes were found to be due to the specific interaction between the Ln 4f and ligand π orbitals of the neutral complexes in e 2u symmetry. Because the magnitude of this 4f-ligand interaction depends critically on the final state 4f electron configuration and the spin state, a significant Ln dependence in the PE spectra is explained.

  5. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  6. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy.

    PubMed

    Lindfors, Hanna E; Drijfhout, Jan Wouter; Ubbink, Marcellus

    2012-06-01

    The interaction between the tyrosine kinases Src and focal adhesion kinase (FAK) is a key step in signaling processes from focal adhesions. The phosphorylated tyrosine residue 397 in FAK is able to bind the Src SH2 domain. To establish the extent of the FAK binding motif, the binding affinity of the SH2 domain for phosphorylated and unphosphorylated FAK-derived peptides of increasing length was determined and compared with that of the internal Src SH2 binding site. It is shown that the FAK peptides have higher affinity than the internal binding site and that seven negative residues adjacent to the core SH2 binding motif increase the binding constant 30-fold. A rigid spin-label incorporated in the FAK peptides was used to establish on the basis of paramagnetic relaxation enhancement whether the peptide-protein complex is well defined. A large spread of the paramagnetic effects on the surface of the SH2 domain suggests that the peptide-protein complex exhibits dynamics, despite the high affinity of the peptide. The strong electrostatic interaction between the positive side of the SH2 domain and the negative peptide results in a high affinity but may also favor a dynamic interaction. Copyright © 2012 Wiley Periodicals, Inc.

  7. Multifunctional nanocomposites of lanthanide (Eu3+, Tb3+) complexes functionalized magnetic mesoporous silica nanospheres covalently bonded with polymer modified ZnO.

    PubMed

    Yan, Bing; Shao, Yan-Fei

    2013-07-14

    Methacrylic-group-modified ZnO nanoparticles (designated ZnO-MAA) prepared through the sol-gel process are copolymerized with 2-hydroxyethyl methacrylate (HEMA) to form ZnO-MAA-PHEMA hybrid system. ZnO-MAA-PHEMA unit is functionalized with 3-(triethoxysilyl)-propyl isocyanate (TEPIC) to form ZnO-MAA-PHEMA-Si hybrids, and then is incorporated with oleic acid-modified Fe3O4 nanoparticles by co-condensation of tetraethoxysilane (TEOS) and ZnO-MAA-PHEMA-Si. Subsequently, ZnO-polymer covalently bonded mesoporous silica nanospheres are assembled using cetyltrimethylammonium bromide (CTAB) surfactant as template. Furthermore, lanthanide (Eu(3+), Tb(3+)) complexes with nicotinic acid (NTA), isonicotinic acid (INTA) and 2-chloronicotinic (CNTA) are introduced by coordination bonds, resulting in the final multifunctional nanocomposites. The detailed physical characterization of these hybrids is discussed in detail. It reveals that they possess both magnetic and luminescent properties. Especially Eu(ZnO-MMS)(CNTA)3 and Tb(ZnO-MMS)(NTA)3 present high quantum yield values of 32.2% and 68.5%, respectively. The results will lay the foundation for further application in biomedical and biopharmaceutical fields.

  8. Molecular dynamics investigation of water-exchange reactions on lanthanide ions in water/1-ethyl-3-methylimidazolium trifluoromethylsufate ([EMIm][OTf])

    NASA Astrophysics Data System (ADS)

    Tu, Yi-Jung; Lin, Zhijin; Allen, Matthew J.; Cisneros, G. Andrés

    2018-01-01

    We report a kinetic study of the water exchange on lanthanide ions in water/[1-ethyl-3-methylimidazolium][trifluoromethylsufate] (water/[EMIm][OTf]). The results from 17O-NMR measurements show that the water-exchange rates in water/[EMIm][OTf] increase with decreasing size of the lanthanide ions. This trend for water-exchange is similar to the previously reported trend in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO4]) but opposite to that in water. To gain atomic-level insight into these water-exchange reactions, molecular dynamics simulations for lanthanide ions in water/[EMIm][OTf] have been performed using the atomic-multipole-optimized-energetics-for-biomolecular-application polarizable force field. Our molecular dynamics simulations reproduce the experimental water-exchange rates in terms of the trend and provide possible explanations for the observed experimental behavior. The smaller lanthanide ions in water/[EMIm][OTf] undergo faster water exchange because the smaller lanthanide ions coordinate to the first shell [OTf]- anions more tightly, resulting in a stronger screening effect for the second-shell water. The screening effect weakens the interaction of the lanthanide ions with the second-shell water molecules, facilitating the dissociation of water from the second-shell and subsequent association of water molecules from the outer solvation shells.

  9. Molecular dynamics investigation of water-exchange reactions on lanthanide ions in water/1-ethyl-3-methylimidazolium trifluoromethylsufate ([EMIm][OTf]).

    PubMed

    Tu, Yi-Jung; Lin, Zhijin; Allen, Matthew J; Cisneros, G Andrés

    2018-01-14

    We report a kinetic study of the water exchange on lanthanide ions in water/[1-ethyl-3-methylimidazolium][trifluoromethylsufate] (water/[EMIm][OTf]). The results from 17 O-NMR measurements show that the water-exchange rates in water/[EMIm][OTf] increase with decreasing size of the lanthanide ions. This trend for water-exchange is similar to the previously reported trend in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO 4 ]) but opposite to that in water. To gain atomic-level insight into these water-exchange reactions, molecular dynamics simulations for lanthanide ions in water/[EMIm][OTf] have been performed using the atomic-multipole-optimized-energetics-for-biomolecular-application polarizable force field. Our molecular dynamics simulations reproduce the experimental water-exchange rates in terms of the trend and provide possible explanations for the observed experimental behavior. The smaller lanthanide ions in water/[EMIm][OTf] undergo faster water exchange because the smaller lanthanide ions coordinate to the first shell [OTf] - anions more tightly, resulting in a stronger screening effect for the second-shell water. The screening effect weakens the interaction of the lanthanide ions with the second-shell water molecules, facilitating the dissociation of water from the second-shell and subsequent association of water molecules from the outer solvation shells.

  10. Lanthanide-Dependent Regulation of Methylotrophy in Methylobacterium aquaticum Strain 22A

    PubMed Central

    Masuda, Sachiko; Suzuki, Yutaka; Fujitani, Yoshiko; Mitsui, Ryoji; Nakagawa, Tomoyuki

    2018-01-01

    ABSTRACT Methylobacterium species are representative of methylotrophic bacteria. Their genomes usually encode two types of methanol dehydrogenases (MDHs): MxaF and XoxF. The former is a Ca2+-dependent enzyme, and the latter was recently determined to be a lanthanide-dependent enzyme that is necessary for the expression of mxaF. This finding revealed the unexpected and important roles of lanthanides in bacterial methylotrophy. In this study, we performed transcriptome sequencing (RNA-seq) analysis using M. aquaticum strain 22A grown in the presence of different lanthanides. Expression of mxaF and xoxF1 genes showed a clear inverse correlation in response to La3+. We observed downregulation of formaldehyde oxidation pathways, high formaldehyde dehydrogenase activity, and low accumulation of formaldehyde in the reaction with cells grown in the presence of La3+; this might be due to the direct oxidation of methanol to formate by XoxF1. Lanthanides induced the transcription of AT-rich genes, the function of most of which was unknown, and genes possibly related to cellular survival, as well as other MDH homologues. These results revealed not only the metabolic response toward altered primary methanol oxidation, but also the possible targets to be investigated further in order to better understand methylotrophy in the presence of lanthanides. IMPORTANCE Lanthanides have been considered unimportant for biological processes. In methylotrophic bacteria, however, a methanol dehydrogenase (MDH) encoded by xoxF was recently found to be lanthanide dependent, while the classic-type mxaFI is calcium dependent. XoxF-type MDHs are more widespread in diverse bacterial genera, suggesting their importance for methylotrophy. Methylobacterium species, representative methylotrophic and predominating alphaproteobacteria in the phyllosphere, contain both types and regulate their expression depending on the availability of lanthanides. RNA-seq analysis showed that the regulation takes place not only for MDH genes but also the subsequent formaldehyde oxidation pathways and respiratory chain, which might be due to the direct oxidation of methanol to formate by XoxF. In addition, a considerable number of genes of unknown function, including AT-rich genes, were found to be upregulated in the presence of lanthanides. This study provides first insights into the specific reaction of methylotrophic bacteria to the presence of lanthanides, emphasizing the biological relevance of this trace metal. PMID:29404411

  11. Lanthanide-Dependent Regulation of Methylotrophy in Methylobacteriumaquaticum Strain 22A.

    PubMed

    Masuda, Sachiko; Suzuki, Yutaka; Fujitani, Yoshiko; Mitsui, Ryoji; Nakagawa, Tomoyuki; Shintani, Masaki; Tani, Akio

    2018-01-01

    Methylobacterium species are representative of methylotrophic bacteria. Their genomes usually encode two types of methanol dehydrogenases (MDHs): MxaF and XoxF. The former is a Ca 2+ -dependent enzyme, and the latter was recently determined to be a lanthanide-dependent enzyme that is necessary for the expression of mxaF . This finding revealed the unexpected and important roles of lanthanides in bacterial methylotrophy. In this study, we performed transcriptome sequencing (RNA-seq) analysis using M. aquaticum strain 22A grown in the presence of different lanthanides. Expression of mxaF and xoxF1 genes showed a clear inverse correlation in response to La 3+ . We observed downregulation of formaldehyde oxidation pathways, high formaldehyde dehydrogenase activity, and low accumulation of formaldehyde in the reaction with cells grown in the presence of La 3+ ; this might be due to the direct oxidation of methanol to formate by XoxF1. Lanthanides induced the transcription of AT-rich genes, the function of most of which was unknown, and genes possibly related to cellular survival, as well as other MDH homologues. These results revealed not only the metabolic response toward altered primary methanol oxidation, but also the possible targets to be investigated further in order to better understand methylotrophy in the presence of lanthanides. IMPORTANCE Lanthanides have been considered unimportant for biological processes. In methylotrophic bacteria, however, a methanol dehydrogenase (MDH) encoded by xoxF was recently found to be lanthanide dependent, while the classic-type mxaFI is calcium dependent. XoxF-type MDHs are more widespread in diverse bacterial genera, suggesting their importance for methylotrophy. Methylobacterium species, representative methylotrophic and predominating alphaproteobacteria in the phyllosphere, contain both types and regulate their expression depending on the availability of lanthanides. RNA-seq analysis showed that the regulation takes place not only for MDH genes but also the subsequent formaldehyde oxidation pathways and respiratory chain, which might be due to the direct oxidation of methanol to formate by XoxF. In addition, a considerable number of genes of unknown function, including AT-rich genes, were found to be upregulated in the presence of lanthanides. This study provides first insights into the specific reaction of methylotrophic bacteria to the presence of lanthanides, emphasizing the biological relevance of this trace metal.

  12. Synthesis, characterization, and luminescent properties of Eu3+ dipyridophenazine functionalized complexes for potential bioimaging applications

    NASA Astrophysics Data System (ADS)

    Beasley, Jeremy

    Luminescent properties of lanthanide complexes possess unique characteristics that make them good candidates for possible bioimaging agents and have inspired research initiatives to further explore these materials. However, the toxicity of these metals limits their applications as in-vivo bioimaging agents. One solution that eliminates the toxic effects is to encase these lanthanide complexes in silica. This project was designed to probe the variation in the fluorescence properties of a highly luminescent europium (III) complex, utilizing a fluorinated â-diketonate ligand (thenoyltrifluoroacetone (tta)), upon the substitution of the solvent molecules by various functionalized dipyrido[3,2-a:2',3'-c]phenazine (DPPZ) ligands. A method for covalently attaching, or occluding complexes in silica nanoparticles were also included in the project design. The structure and properties of the functionalized DPPZ ligands and their respective complexes were determined by FT-IR, 1H-NMR, UV-Vis, and fluorescence spectroscopy techniques. UV excitation of the complexes resulted in red luminescence (~ 614 nm) characteristic of trivalent europium ions. The differences in luminescence properties of the complexes are rationalized in terms of the electronic features of the different functionalized DPPZ ligands. The higher overall quantum yield of the un-functionalized DPPZ complex, Eu(tta)3DPPZ (Q.Y.= 7.68 +/- 0.06 %), and the low overall quantum yield observed for Eu(tta)3DPPZ-COOEt (Q.Y.= 1.08 +/- 0.05%), Eu(tta) 3DPPZ-Si (Q.Y.= 0.65+/- 0.04%), Eu(tta)3DPPZ-COOH (Q.Y.= 0.61+/- 0.07 %), Eu(tta)3DPPZ-CH3 (Q.Y.= 0.59+/-0.02 %) are rationalized in terms of how electron donating or withdrawing groups affect their respective ligand-to-metal energy transfer efficiencies. Eu(tta) 3DPPZ was the only complex to show enhanced luminescent properties capable of potential applications in biomedical imaging.

  13. Thermodynamic stability, kinetic inertness and relaxometric properties of monoamide derivatives of lanthanide(III) DOTA complexes.

    PubMed

    Tei, Lorenzo; Baranyai, Zsolt; Gaino, Luca; Forgács, Attila; Vágner, Adrienn; Botta, Mauro

    2015-03-28

    A complete thermodynamic and kinetic solution study on lanthanide(III) complexes with monoacetamide (DOTAMA, L1) and monopropionamide (DOTAMAP, L2) derivatives of DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) was undertaken with the aim to elucidate their stability and inertness in aqueous media. The stability constants of GdL1 and GdL2 are comparable, whereas a more marked difference is found in the kinetic inertness of the two complexes. The formation of the Eu(III) and Ce(III) complexes takes place via the formation of the protonated intermediates which can deprotonate and transform into the final complex through a OH(-) assisted pathway. GdL2 shows faster rates of acid catalysed decomplexation with respect to GdL1, which has a kinetic inertness comparable to GdDOTA. Nevertheless, GdL2 is one order of magnitude more inert than GdDO3A. A novel DOTAMAP-based bifunctional chelating ligand and its deoxycholic acid derivative (L5) were also synthesized. Since the coordinated water molecule in GdL2 is characterized by an exchange rate ca. two orders of magnitude greater than in GdL1, the relaxivity of the macromolecular derivatives of L5 should not be limited by the slow water exchange process. The relaxometric properties of the supramolecular adduct of GdL5 with human serum albumin (HSA) were investigated in aqueous solution by measuring the magnetic field dependence of the (1)H relaxivity which, at 20 MHz and 298 K, shows a 430% increase over that of the unbound GdL5 chelate. Thus, Gd(III) complexes with DOTAMAP macrocyclic ligands can represent good candidates for the development of stable and highly effective bioconjugate systems for molecular imaging applications.

  14. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth L. Nash

    2009-09-22

    Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am andmore » Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their academic experience. New information has been developed to qualify the extraction potential of a class of pyridine-functionalized tetraaza complexants indicating potential single contact Am-Nd separation factors of about 40. The methodology developed for characterization will find further application in our continuing efforts to synthesize and characterize new reagents for this separation. Significant new insights into the performance envelope and supporting information on the TALSPEAK process has also been developed.« less

  15. Synthesis of Inorganic-Organic Hybrid Materials Designed for Radiation Detection, Luminescence, and Gas Storage

    NASA Astrophysics Data System (ADS)

    Vaughn, Shae Anne

    Materials discovery is the driving force behind the research presented herein. Basic research has been conducted in order to obtain a better understanding of coordination chemistry and structural outcomes, particularly within the area of trivalent lanthanides. Discovering new materials is one route to further advancement of technology; another one is the focus on incremental changes to already existing materials. Often the building blocks of a compound are chosen in an effort to synthesize a material that makes use of the properties of each individual component and may result in a better, more robust, applicable material. The combination of organic and inorganic components for the synthesis of novel materials with potential applications such as scintillation photoluminescence, catalysis, and gas storage are the focus of the research presented herein. The first part focuses on lanthanide organic hybrid materials, where the synthesis of a new family of potential scintillating materials was undertaken and yielded improved understanding of the control that can be achieved over the topological structure of these materials by controlling the coordinating crystallization solvents. This research has led to the synthesis of an array of unique motifs, ranging from dimeric complexes, tetrameric complexes, to 1-D chains, and most intriguing of all, catenated tetradecanuclear rings. These rings represent the largest lanthanide rings synthesized to date, the next largest multinuclear rings, until now, were dodecanuclear complexes of alkoxides. From a basic research standpoint this is an exciting new development in lanthanide coordination chemistry and illustrates the importance of steric effects upon a system. These complexes are potential scintillators, supported by their luminescence and measurements of similar compounds that demonstrate surprising scintillation efficiencies. In the second part, other hybrid materials that have also been prepared are discussed, including the synthesis of a polyoxometallate compound (POM) containing a typical Keggin ion, which is charge-balanced via protonated organic ligands. POMs are one of the most studied inorganic clusters owing to their potential catalytic capabilities. A third part concerns a pseudo hybrid material consisting of boron, a metalloid, and a polymeric network, which includes a site of contortion, provided by the incorporation of a disulfide linkage and polymerized through boronate ester linkages. Tuning of this disulfide-linked polymer of intrinsic microporosity has the potential to lead to a dynamic material that may have gas sorption properties. The fourth part describes research in which the goal was to synthesize novel metal organic frameworks (MOFs) for solid state lighting applications via the synthesis of long, rigid, highly conjugated ligands. The successful synthesis of these ligands and optimization of the reaction conditions through the use of cyano derivatives as intermediates was discovered. Subsequent incorporation into coordination polymers with the transition elements was unsuccessful. This is believed to be the case due to the rigidity of the ligands and their inability to be flexible enough to successfully coordinate to a metal cation in a crystalline form.

  16. The Lanthanides: The Forgotten Elements but an Excellent Teaching Resource

    ERIC Educational Resources Information Center

    Talbot, Christopher

    2017-01-01

    This article aims to introduce the lanthanides (also known as the lanthanoids) to teachers and their students. The lanthanides are not mere "footnotes" at the bottom of the periodic table but make up a group of interesting and unique metallic elements. They and their compounds have widespread technological applications that have become…

  17. A review on solid phase extraction of actinides and lanthanides with amide based extractants.

    PubMed

    Ansari, Seraj A; Mohapatra, Prasanta K

    2017-05-26

    Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A combined Cyanex-923/HEH[EHP]/Dodecane solvent for recovery of transuranic elements from used nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.; Nash, K.L.

    2013-07-01

    The separation of minor actinides from fission product lanthanides remains a primary challenge for enabling the recycle of used nuclear fuel. To minimize the complexity of materials handling, combining extractant processes has become an increasingly attractive option. Unfortunately, combined processes sometimes suffer reduced utility due to strong dipole-dipole interactions between the extractants. The results reported here describe a system based on a combination of commercially available extractants Cyanex-923 and HEH[EHP]. In contrast to other combined extractant systems, these extractant molecules exhibit comparatively weak interactions, reducing the impact of secondary interactions. In this process, mixtures containing equal ratios of Cyanex-923 andmore » HEH[EHP] were seen to co-extract americium and the lanthanides from nitric acid solutions. Stripping of An(III) was effectively achieved through contact with an aqueous phase comprised of glycine (for pH control) and a polyamino-poly-carboxylate stripping reagent that selectively removes An(III) from the extractant phase. The lanthanides can then be stripped from the loaded organic phase contacting with high nitric acid concentrations. Extraction of fission products zirconium and molybdenum was also investigated and potential strategies for their management have been identified. The work presented demonstrates the feasibility of combining Cyanex-923 and HEH[EHP] for separating and recovering the transuranic elements from the Ln(III). (authors)« less

  19. Lanthanide contraction effect on crystal structures of lanthanide coordination polymers with cyclohexanocucurbit[6]uril ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Li-Mei; Liu, Jing-Xin, E-mail: jxliu411@ahut.edu.cn

    A series of compounds based on the macrocyclic ligand cyclohexanocucurbit[6]uril (Cy6Q[6]) with formulas (Ln(H{sub 2}O){sub 6}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·xH{sub 2}O [isomorphous with Ln=La (1), Ce (2), Pr (3) and Nd (4), x=11 (1), 11 (2), 10 (3) and 11 (4)], (Sm(H{sub 2}O){sub 5}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·10H{sub 2}O (5) and (Ln(H{sub 2}O){sub 5}(NO{sub 3})@Cy6Q[6])·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with Ln=Gd (6), Tb (7) and Dy (8), x=8 (6), 6 (7) and 6 (8)], have been successfully synthesized by the self-assembly of Cy6Q[6] with the corresponding lanthanide nitrate under hydrochloric acid aqueous solution in the presence of CdCl{sub 2}. Single-crystal X-ray diffraction analyses revealedmore » that compounds 1–8 all crystallize in monoclinic space group P2{sub 1}/c, and display 1D coordination polymer structures. The lanthanide contraction effect on the structures of 1–8 has also been investigated and discussed in detail. In contrast, the reaction of Cy6Q[6] with the Ho(NO){sub 3}, Tm(NO){sub 3}, Yb(NO){sub 3} under the same conditions resulted in the compounds 9–11 with formulas Cy6Q[6]·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with x=10 (9), 10 (10), and 9 (11)], in which no lanthanide cations are observed. The structural difference of these compounds indicates that the Cy6Q[6] may be used in the separation of lanthanide cations. - Graphical abstract: The reaction of cyclohexanocucurbit[6]uril with lanthanide ions (La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+}) under hydrochloric acid in the presence of CdCl{sub 2} resulted in eleven compounds, which demonstrate interesting lanthanide contraction effect and provide a means of separating lanthanide ions. - Highlights: • Eleven compounds of the Ln{sup 3+} with the Cy6Q[6] were synthesized and described. • Compounds 1-8 demonstrate interesting lanthanide contraction effect. • In solid-state structures of compounds 9-11, no lanthanide ions were observed. • This study provides a means of separating lanthanides cations.« less

  20. General magnetic transition dipole moments for electron paramagnetic resonance.

    PubMed

    Nehrkorn, Joscha; Schnegg, Alexander; Holldack, Karsten; Stoll, Stefan

    2015-01-09

    We present general expressions for the magnetic transition rates in electron paramagnetic resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we determine the parities of ground and excited spin states of high-spin (S=5/2) Fe(III) in hemin from the polarization dependence of experimental EPR line intensities.

  1. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang Guilin, E-mail: glzhuang@zjut.edu.cn; Chen Wulin; Zheng Jun

    2012-08-15

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H{sub 3}SIDA) and Ln(NO{sub 3}){sub 3} (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd{sup 3+} ions for anti-anti and syn-anti carboxylate bridges are -1.0 Multiplication-Sign 10{sup -3} and -5.0 Multiplication-Signmore » 10{sup -3} cm{sup -1}, respectively, which reveals weak antiferromagnetic interaction in 4. - Graphical abstract: Four lanthanide coordination polymers with N-(sulfoethyl) iminodiacetic acid were obtained under hydrothermal condition and reveal the weak antiferromagnetic coupling between two Gd{sup 3+} ions by Quantum Monte Carlo studies. Highlights: Black-Right-Pointing-Pointer Four lanthanide coordination polymers of H{sub 3}SIDA ligand were obtained. Black-Right-Pointing-Pointer Lanthanide ions play an important role in their structural diversity. Black-Right-Pointing-Pointer Magnetic measure exhibits that compound 4 features antiferromagnetic property. Black-Right-Pointing-Pointer Quantum Monte Carlo studies reveal the coupling parameters of two Gd{sup 3+} ions.« less

  2. Effect of temperature on the protonation of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid in aqueous solutions: Potentiometric and calorimetric studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xingliang; Zhang, Zhicheng; Endrizzi, Francesco

    2015-06-01

    The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) has been demonstrated in several pilot-scale operations to be effective at separating trivalent actinides (An 3+) from trivalent lanthanides (Ln 3+). However, fundamental studies have revealed undesired aspects of TALSPEAK, such as the significant partitioning of Na +, lactic acid, and water into the organic phase, thermodynamically unpredictable pH dependence, and the slow extraction kinetics. In the modified TALSPEAK process, the combination of the aqueous holdback complexant HEDTA (N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid) with the extractant HEH[EHP] (2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester) in the organic phase has been found tomore » exhibit a nearly flat pH dependence between 2.5 and 4.5 and more rapid phase transfer kinetics for the heavier lanthanides. To help understand the speciation of Ln 3+ and An 3+ in the modified TALSPEAK, systematic studies are underway on the thermodynamics of major reactions in the HEDTA system under conditions relevant to the process (e.g., higher temperatures). Thermodynamics of the protonation and complexation of HEDTA with Ln 3+ were studied at variable temperatures. Equilibrium constants and enthalpies were determined by a combination of techniques including potentiometry and calorimetry. This paper presents the protonation constants of HEDTA at T = (25 to 70) °C. The potentiometric titrations have demonstrated that, stepwise, the first two protonation constants decrease and the third one slightly increases with the increase of temperature. This trend is in good agreement with the enthalpy of protonation directly determined by calorimetry. The results of NMR analysis further confirm that the first two protonation reactions occur on the diamine nitrogen atoms, while the third protonation reaction occurs on the oxygen of a carboxylate group. These data, in conjunction with the thermodynamic parameters of Ln 3+/An 3+ complexes with HEDTA at different temperatures, will help to predict the speciation and temperature-dependent behavior of Ln 3+/An 3+ in the modified TALSPEAK process.« less

  3. Lanthanide heterometallic terephthalates: Concentration quenching and the principles of the "multiphotonic emission"

    NASA Astrophysics Data System (ADS)

    Utochnikova, V. V.; Grishko, A. Yu.; Koshelev, D. S.; Averin, A. A.; Lepnev, L. S.; Kuzmina, N. P.

    2017-12-01

    The principles of the "multiphotonic emission", i.e. multiple emission from one lanthanide ion, in heterometallic lanthanide terephthalates were determined. Thanks to it, another system with the same effect, namely EuxY1-x(dbm)3(Phen) (Hdbm - dibenzoylmethanate, Phen - o-phenanthroline (mistape)) was found. The criteria for concentration quenching appearance were formulated and demonstrated.

  4. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  5. Metal-organic chemical vapor deposition of cerium oxide, gallium-indium-oxide, and magnesium oxide thin films: Precursor design, film growth, and film characterization

    NASA Astrophysics Data System (ADS)

    Edleman, Nikki Lynn

    A new class of volatile, low-melting, fluorine-free lanthanide metal-organic chemical vapor deposition (MOCVD) precursors has been developed. The neutral, monomeric cerium, neodymium, gadolinium, and erbium complexes are coordinatively saturated by a versatile, multidentate, ether-functionalized beta-ketoiminate ligand, and complex melting point and volatility characteristics can be tuned by altering the alkyl substituents on the ligand periphery. Direct comparison with lanthanide beta-diketonate complexes reveals that the present precursor class is a superior choice for lanthanide oxide MOCVD. Epitaxial CeO 2 buffer layer films have been grown on (001) YSZ substrates by MOCVD at significantly lower temperatures than previously reported using one of the newly developed cerium precursors. High-quality YBCO films grown on these CeO2 buffer layers by POMBE exhibit very good electrical transport properties. The cerium complex has therefore been explicitly demonstrated to be a stable and volatile precursor and is attractive for low-temperature growth of coated conductor multilayer structures by MOCVD. Gallium-indium-oxide thin films (GaxIn2-xO 3), x = 0.0˜1.1, have been grown by MOCVD using the volatile metal-organic precursors In(dpm)3 and Ga(dpm)3. The films have a homogeneously Ga-substituted, cubic In2O3 microstructure randomly oriented on quartz or heteroepitaxial on (100) YSZ single-crystal substrates. The highest conductivity of the as-grown films is found at x = 0.12. The optical transmission window and absolute transparency of the films rivals or exceeds that of the most transparent conductive oxides known. Reductive annealing results in improved charge transport characteristics with little loss of optical transparency. No significant difference in electrical properties is observed between randomly oriented and heteroepitaxial films, thus arguing that carrier scattering effects at high-angle grain boundaries play a minor role in the film conductivity mechanism. The synthesis and characterization of a new magnesium MOCVD precursor, Mg(dpm)2(TMEDA) is detailed. It is shown that the donating ligand TMEDA prevents oligomerization and subsequent volatility depression as observed in the commonly used [Mg(dpm)2]2. The superiority of Mg(dpm)2(TMEDA) as an MOCVD precursor is explicitly demonstrated by growth of epitaxial MgO thin films on single-crystal SrTiO3 substrates.

  6. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?

    PubMed

    Nohr, Daniel; Rodriguez, Ryan; Weber, Stefan; Schleicher, Erik

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.

  7. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?

    PubMed Central

    Nohr, Daniel; Rodriguez, Ryan; Weber, Stefan; Schleicher, Erik

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes. PMID:26389123

  8. Isolation of EPR spectra and estimation of spin-states in two-component mixtures of paramagnets.

    PubMed

    Chabbra, Sonia; Smith, David M; Bode, Bela E

    2018-04-26

    The presence of multiple paramagnetic species can lead to overlapping electron paramagnetic resonance (EPR) signals. This complication can be a critical obstacle for the use of EPR to unravel mechanisms and aid the understanding of earth abundant metal catalysis. Furthermore, redox or spin-crossover processes can result in the simultaneous presence of metal centres in different oxidation or spin states. In this contribution, pulse EPR experiments on model systems containing discrete mixtures of Cr(i) and Cr(iii) or Cu(ii) and Mn(ii) complexes demonstrate the feasibility of the separation of the EPR spectra of these species by inversion recovery filters and the identification of the relevant spin states by transient nutation experiments. We demonstrate the isolation of component spectra and identification of spin states in a mixture of catalyst precursors. The usefulness of the approach is emphasised by monitoring the fate of the chromium species upon activation of an industrially used precatalyst system.

  9. Copper complexes as a source of redox active MRI contrast agents.

    PubMed

    Dunbar, Lynsey; Sowden, Rebecca J; Trotter, Katherine D; Taylor, Michelle K; Smith, David; Kennedy, Alan R; Reglinski, John; Spickett, Corinne M

    2015-10-01

    The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.

  10. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth.

    PubMed

    Vu, Huong N; Subuyuj, Gabriel A; Vijayakumar, Srividhya; Good, Nathan M; Martinez-Gomez, N Cecilia; Skovran, Elizabeth

    2016-04-01

    Methylobacterium extorquens AM1 has two distinct types of methanol dehydrogenase (MeDH) enzymes that catalyze the oxidation of methanol to formaldehyde. MxaFI-MeDH requires pyrroloquinoline quinone (PQQ) and Ca in its active site, while XoxF-MeDH requires PQQ and lanthanides, such as Ce and La. Using MeDH mutant strains to conduct growth analysis and MeDH activity assays, we demonstrate that M. extorquens AM1 has at least one additional lanthanide-dependent methanol oxidation system contributing to methanol growth. Additionally, the abilities of different lanthanides to support growth were tested and strongly suggest that both XoxF and the unknown methanol oxidation system are able to use La, Ce, Pr, Nd, and, to some extent, Sm. Further, growth analysis using increasing La concentrations showed that maximum growth rate and yield were achieved at and above 1 μM La, while concentrations as low as 2.5 nM allowed growth at a reduced rate. Contrary to published data, we show that addition of exogenous lanthanides results in differential expression from the xox1 and mxa promoters, upregulating genes in the xox1 operon and repressing genes in the mxa operon. Using transcriptional reporter fusions, intermediate expression from both the mxa and xox1 promoters was detected when 50 to 100 nM La was added to the growth medium, suggesting that a condition may exist under which M. extorquens AM1 is able to utilize both enzymes simultaneously. Together, these results suggest that M. extorquens AM1 actively senses and responds to lanthanide availability, preferentially utilizing the lanthanide-dependent MeDHs when possible. The biological role of lanthanides is a nascent field of study with tremendous potential to impact many areas in biology. Our studies demonstrate that there is at least one additional lanthanide-dependent methanol oxidation system, distinct from the MxaFI and XoxF MeDHs, that may aid in classifying additional environmental organisms as methylotrophs. Further, our data suggest that M. extorquens AM1 has a mechanism to regulate which MeDH is transcribed, depending on the presence or absence of lanthanides. While the mechanism controlling differential regulation is not yet understood, further research into how methylotrophs obtain and use lanthanides will facilitate their cultivation in the laboratory and their use as a biomining and biorecycling strategy for recovery of these commercially valuable rare-earth elements. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth

    PubMed Central

    Vu, Huong N.; Subuyuj, Gabriel A.; Vijayakumar, Srividhya; Good, Nathan M.; Martinez-Gomez, N. Cecilia

    2016-01-01

    ABSTRACT Methylobacterium extorquens AM1 has two distinct types of methanol dehydrogenase (MeDH) enzymes that catalyze the oxidation of methanol to formaldehyde. MxaFI-MeDH requires pyrroloquinoline quinone (PQQ) and Ca in its active site, while XoxF-MeDH requires PQQ and lanthanides, such as Ce and La. Using MeDH mutant strains to conduct growth analysis and MeDH activity assays, we demonstrate that M. extorquens AM1 has at least one additional lanthanide-dependent methanol oxidation system contributing to methanol growth. Additionally, the abilities of different lanthanides to support growth were tested and strongly suggest that both XoxF and the unknown methanol oxidation system are able to use La, Ce, Pr, Nd, and, to some extent, Sm. Further, growth analysis using increasing La concentrations showed that maximum growth rate and yield were achieved at and above 1 μM La, while concentrations as low as 2.5 nM allowed growth at a reduced rate. Contrary to published data, we show that addition of exogenous lanthanides results in differential expression from the xox1 and mxa promoters, upregulating genes in the xox1 operon and repressing genes in the mxa operon. Using transcriptional reporter fusions, intermediate expression from both the mxa and xox1 promoters was detected when 50 to 100 nM La was added to the growth medium, suggesting that a condition may exist under which M. extorquens AM1 is able to utilize both enzymes simultaneously. Together, these results suggest that M. extorquens AM1 actively senses and responds to lanthanide availability, preferentially utilizing the lanthanide-dependent MeDHs when possible. IMPORTANCE The biological role of lanthanides is a nascent field of study with tremendous potential to impact many areas in biology. Our studies demonstrate that there is at least one additional lanthanide-dependent methanol oxidation system, distinct from the MxaFI and XoxF MeDHs, that may aid in classifying additional environmental organisms as methylotrophs. Further, our data suggest that M. extorquens AM1 has a mechanism to regulate which MeDH is transcribed, depending on the presence or absence of lanthanides. While the mechanism controlling differential regulation is not yet understood, further research into how methylotrophs obtain and use lanthanides will facilitate their cultivation in the laboratory and their use as a biomining and biorecycling strategy for recovery of these commercially valuable rare-earth elements. PMID:26833413

  12. The TRUSPEAK Concept: Combining CMPO and HDEHP for Separating Trivalent Lanthanides from the Transuranic Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Gelis, Artem V.; Braley, Jenifer C.

    2013-04-08

    Combining octyl(phenyl)-N,N-diisobutyl-carbamoylmethyl-phosphine oxide (CMPO) and bis-(2-ethylhexyl) phosphoric acid (HDEHP) into a single process solvent for separating transuranic elements from liquid high-level waste is explored. Co-extraction of americium and the lanthanide elements from nitric acid solution is possible with a solvent mixture consisting of 0.1-M CMPO plus 1-M HDEHP in n-dodecane. Switching the aqueous-phase chemistry to a citrate-buffered solution of diethylene triamine pentaacetic acid (DTPA) allows for selective stripping of americium, separating it from the lanthanide elements. Potential strategies for managing molybdenum and zirconium (both of which co-extract with americium and the lanthanides) have been developed. The work presented here demonstratesmore » the feasibility of combining CMPO and HDEHP into a single extraction solvent for recovering americium from high-level waste and its separation from the lanthanides.« less

  13. Fluorescence and electron paramagnetic resonance studies of norfloxacin and N-donor mixed-ligand ternary copper(II) complexes: Stability and interaction with SDS micelles

    NASA Astrophysics Data System (ADS)

    Vignoli Muniz, Gabriel S.; Incio, Jimmy Llontop; Alves, Odivaldo C.; Krambrock, Klaus; Teixeira, Letícia R.; Louro, Sonia R. W.

    2018-01-01

    The stability of ternary copper(II) complexes of a heterocyclic ligand, L (L being 2,2‧-bipyridine (bipy) or 1,10-phenanthroline (phen)) and the fluorescent antibacterial agent norfloxacin (NFX) as the second ligand was studied at pH 7.4 and different ionic strengths. Fluorescence quenching upon titration of NFX with the binary complexes allowed to obtain stability constants for NFX binding, Kb, as a function of ionic strength. The Kb values vary by more than two orders of magnitude when buffer concentration varies from 0.5 to 100 mM. It was observed that previously synthesized ternary complexes dissociate in buffer according with the obtained stability constants. This shows that equimolar solutions of NFX and binary complexes are equivalent to solutions of synthesized ternary complexes. The interaction of the ternary copper complexes with anionic SDS (sodium dodecyl sulfate) micelles was studied by fluorescence and electron paramagnetic resonance (EPR). Titration of NFX-loaded SDS micelles with the complexes Cu:L allowed to determine the stability constants inside the micelles. Fluorescence quenching demonstrated that SDS micelles increase the stability constants by factors around 50. EPR spectra gave details of the copper(II) local environment, and demonstrated that the structure of the ternary complexes inside SDS micelles is different from that in buffer. Mononuclear ternary complexes formed inside the micelles, while in buffer most ternary complexes are binuclear. The results show that anionic membrane interfaces increase formation of copper fluoroquinolone complexes, which can influence bioavailability, membrane diffusion, and mechanism of action of the antibiotics.

  14. Charge Transfer Salts of BO with Paramagnetic Isothiocyanato Complex Anions: (BO)[ M(isoq) 2(NCS) 4]; M=Cr III or Fe III, isoq=isoquinoline and BO=Bis(ethylenedioxo)tetrathiafulvalene

    NASA Astrophysics Data System (ADS)

    Setifi, Fatima; Ota, Akira; Ouahab, Lahcéne; Golhen, Stèphane; Yamochi, Hideki; Saito, Gunzi

    2002-11-01

    The preparation, X-ray structures and magnetic properties of two isostructural new charge transfer salts: (BO)[ M(isoq) 2(NCS) 4]; M=Cr III(1), Fe III(2) and isoq=isoquinoline are reported. Their structure consists of alternate organic and inorganic layers, each layer being formed by mixed columns of BO radical cations and paramagnetic metal complex anions. There are short intermolecular contacts between donor and anion (S2 anion· · ·S4 BO<3.5 Å) and between adjacent BO molecules (O· · · O1<3.2 Å). The two compounds are insulators. ESR measurements show single signal without separating the donor and anion spins. The magnetic measurements obey the Curie-Weiss law and revealed dominant antiferromagnetic interactions between anion spin and donor spin, but long-range magnetic ordering did not occur down to 2 K. This is directly related to structural reasons which were deduced from a comparison of the title compounds with other 1:1 salts containing same anion complexes and different donors.

  15. Switchable molecular magnets

    PubMed Central

    SATO, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes. PMID:22728438

  16. Understanding the complexation of Eu3+ with potential ligands used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle: A luminescence investigation.

    PubMed

    Sengupta, Arijit; Kadam, R M

    2017-02-15

    A systematic photoluminescence based investigation was carried out to understand the complexation of Eu 3+ with different ligands (TBP: tri-n-butyl phosphate, DHOA: di-n-hexyl octanamide, Cyanex 923: tri-n-alkyl phosphine oxide and Cyanex 272: Bis (2,4,4 trimethyl) pentyl phosphinic acid) used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle. In case of TBP and DHOA complexes, 3 ligand molecules coordinated in monodentate fashion and 3 nitrate ion in bidentate fashion to Eu 3+ to satisfy the 9 coordination of Eu. In case of Cyanex 923 and Cyanex 272 complexes, 3 ligand molecules, 3 nitrate ion and 3 water molecules coordinated to Eu 3+ in monodentate fashion. The Eu complexes of TBP and DHOA were found to have D 3h local symmetry while that for Cyanex 923 and Cyanex 272 were C 3h . Judd-Ofelt analysis of these systems revealed that the covalency of EuO bond followed the trend DHOA>TBP>Cyanex 272>Cyanex 923. Different photophysical properties like radiative and non-radiative life time, branching ratio for different transitions, magnetic and electric dipole moment transition probabilities and quantum efficiency were also evaluated and compared for these systems. The magnetic dipole transition probability was found to be almost independent of ligand field perturbation while electric dipole transition probability for 5 D 0 - 7 F 2 transition was found to be hypersensitive with ligand field with a trend DHOA>TBP>Cyanex 272>Cyanex 923. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Understanding the complexation of Eu3 + with potential ligands used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle: A luminescence investigation

    NASA Astrophysics Data System (ADS)

    Sengupta, Arijit; Kadam, R. M.

    2017-02-01

    A systematic photoluminescence based investigation was carried out to understand the complexation of Eu3 + with different ligands (TBP: tri-n-butyl phosphate, DHOA: di-n-hexyl octanamide, Cyanex 923: tri-n-alkyl phosphine oxide and Cyanex 272: Bis (2,4,4 trimethyl) pentyl phosphinic acid) used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle. In case of TBP and DHOA complexes, 3 ligand molecules coordinated in monodentate fashion and 3 nitrate ion in bidentate fashion to Eu3 + to satisfy the 9 coordination of Eu. In case of Cyanex 923 and Cyanex 272 complexes, 3 ligand molecules, 3 nitrate ion and 3 water molecules coordinated to Eu3 + in monodentate fashion. The Eu complexes of TBP and DHOA were found to have D3h local symmetry while that for Cyanex 923 and Cyanex 272 were C3h. Judd-Ofelt analysis of these systems revealed that the covalency of Eusbnd O bond followed the trend DHOA > TBP > Cyanex 272 > Cyanex 923. Different photophysical properties like radiative and non-radiative life time, branching ratio for different transitions, magnetic and electric dipole moment transition probabilities and quantum efficiency were also evaluated and compared for these systems. The magnetic dipole transition probability was found to be almost independent of ligand field perturbation while electric dipole transition probability for 5D0-7F2 transition was found to be hypersensitive with ligand field with a trend DHOA > TBP > Cyanex 272 > Cyanex 923. Supplementary Table 2: Determination of inner sphere water molecules from the different empirical formulae reported in the literature.

  18. Lanthanide-doped upconverting phosphors for bioassay and therapy

    NASA Astrophysics Data System (ADS)

    Guo, Huichen; Sun, Shiqi

    2012-10-01

    Lanthanide-doped fluorescent materials have gained increasing attention in recent years due to their unique luminescence properties which have led to their use in wide-ranging fields including those of biological applications. Aside from being used as agents for in vivo imaging, lanthanide-doped fluorescent materials also present many advantages for use in bioassays and therapy. In this review, we summarize the applications of lanthanide-doped up-converting phosphors (UCPs) in protein and gene detection, as well as in photodynamic and gene therapy in recent years, and outline their future potential in biological applications. The current report could serve as a reference for researchers in relevant fields.

  19. Recovery of transplutonium elements from nuclear reactor waste

    DOEpatents

    Campbell, David O.; Buxton, Samuel R.

    1977-05-24

    A method of separating actinide values from nitric acid waste solutions resulting from reprocessing of irradiated nuclear fuels comprises oxalate precipitation of the major portion of actinide and lanthanide values to provide a trivalent fraction suitable for subsequent actinide/lanthanide partition, exchange of actinide and lanthanide values in the supernate onto a suitable cation exchange resin to provide an intermediate-lived raffinate waste stream substantially free of actinides, and elution of the actinide values from the exchange resin. The eluate is then used to dissolve the trivalent oxalate fraction prior to actinide/lanthanide partition or may be combined with the reprocessing waste stream and recycled.

  20. Sol-Gel Electrolytes Incorporated by Lanthanide Luminescent Materials and Their Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Yu, Chufang; Zhang, Zhengyang; Fu, Meizhen; Gao, Jinwei; Zheng, Yuhui

    2017-10-01

    A group of silica gel electrolytes with lanthanide luminescent hybrid materials were assembled and investigated. Photophysical studies showed that terbium and europium hybrids displayed characteristic green and red emissions within the electrolytes. The influence of different concentration of the lanthanide hybrids on the electrochemical behavior of a gelled electrolyte valve-regulated lead-acid battery were studied through cyclic voltammograms, electrochemical impedance spectroscopy, water holding experiments and mobility tests. The morphology and particle size were analyzed by scanning electron microscopy. The results proved that lanthanide (Tb3+/Eu3+) luminescent materials are effective additives which will significantly improve the electrochemical properties of lead-acid batteries.

  1. Formation and corrosion of a 410 SS/ceramic composite

    NASA Astrophysics Data System (ADS)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2016-11-01

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases.

  2. Spontaneous magnetic order in complex materials: Role of longitudinal spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subrata; Vijay, Amrendra

    2017-06-01

    We show that the longitudinal spin-orbit interactions (SOI) critically determine the fate of spontaneous magnetic order (SMO) in complex materials. To study the magnetic response of interacting electrons constituting the material, we implement an extension of the Hubbard model that faithfully accounts for the SOI. Next, we use the double-time Green functions of quantum statistical mechanics to obtain the spontaneous magnetization, Msp , and thence ascertain the possibility of SMO. For materials with quenched SOI, in an arbitrary dimension, Msp vanishes at finite temperatures, implying the presence of the disordered (paramagnetic) phase. This is consistent with and goes beyond the Bogolyubov's inequality based analysis in one and two dimensions. In the presence of longitudinal SOI, Msp , for materials in an arbitrary dimension, remains non-zero at finite temperatures, which indicates the existence of the ordered (ferromagnetic) phase. As a plausible experimental evidence of the present SOI-based phenomenology, we discuss, inter alia, a recent experimental study on Y4Mn1-xGa12-yGey, an intermetallic compound, which exhibits a magnetic phase transition (paramagnetic to ferromagnetic) upon tuning the fraction of Ge atoms and thence the vacancies of the magnetic centers in this system. The availability of Ge atoms to form a direct chemical bond with octahedral Mn in this material appears to quench the SOI and, as a consequence, favours the formation of the disordered (paramagnetic) phase.

  3. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods.

    PubMed

    Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny

    2014-05-01

    To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.

  4. Characterization of the Interaction between the Salmonella Type III Secretion System Tip Protein SipD and the Needle Protein PrgI by Paramagnetic Relaxation Enhancement*

    PubMed Central

    Rathinavelan, Thenmalarchelvi; Tang, Chun; De Guzman, Roberto N.

    2011-01-01

    Many Gram-negative bacteria that cause major diseases and mortality worldwide require the type III secretion system (T3SS) to inject virulence proteins into their hosts and cause infections. A structural component of the T3SS is the needle apparatus, which consists of a base, an external needle, and a tip complex. In Salmonella typhimurium, the external needle is assembled by the polymerization of the needle protein PrgI. On top of this needle sits a tip complex, which is partly formed by the tip protein SipD. How SipD interacts with PrgI during the assembly of the T3SS needle apparatus remains unknown. The central region of PrgI forms an α-helical hairpin, whereas SipD has a long central coiled-coil, which is a defining structural feature of other T3SS tip proteins as well. Using NMR paramagnetic relaxation enhancement, we have identified a specific region on the SipD coiled-coil that interacts directly with PrgI. We present a model of how SipD might dock at the tip of the needle based on our paramagnetic relaxation enhancement results, thus offering new insight about the mechanism of assembly of the T3SS needle apparatus. PMID:21138848

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ling; Zhong, Jie-Cen; Qiu, Xing-Tai

    Two series of lanthanide-carboxylates, [Ln(2,2′-dtba)(2,2′-Hdtba)(EtOH)]{sub n} (I:Ln=Eu(1a), Dy(1b)) and [Ln(2,2′-dtba)(2,2′-Hdtba)(4,4′-bpy){sub 0.5}]{sub n} (II:Ln=Eu(2a), Dy(2b), Tb(2c) 2,2′-H{sub 2}dtba=2,2′-dithiodibenzoic acid, 4,4′-bpy=4,4′-bipyridine) have been synthesized under hydrothermal conditions. Interestingly, the H{sub 2}dtba organic ligand was generated by in situ S–S reaction of 2-mercaptobenzoic acid. Compounds I and II possess different 2D layered structures based on similar 1D [Ln(2,2′-dtba)]{sup +} chains. Photoluminescence studies reveal that compounds I and II exhibit strong lanthanide characteristic emission bands. Remarkably, Compounds 1b and 2a both exhibit good photocatalytic activity for degradation of Rhodamine-B (Rh-B) under the simulated sunlight irradiation. - Graphical abstract: Two series of lanthanide-carboxylates have beenmore » in situ synthesized under hydrothermal conditions. The lanthanide-carboxylates exhibit strong lanthanide characteristic emission bands and good photocatalytic activity for degradation of Rhodamine-B. - Highlights: • 2D layered lanthanide-carboxylates with 2,2′-dithiodibenzoic acid. • In situ S–S reaction of 2-mercaptobenzoic acid under hydrothermal condition. • The Emission spectra of I and II exhibit the characteristic transition of lanthanide ions. • Compounds 1b and 2a exhibit good photocatalytic activity for degradation of Rhodamine-B.« less

  6. Ground-state configurations and theoretical soft-x-ray emission of highly charged actinide ions

    NASA Astrophysics Data System (ADS)

    Sheil, J.; Kilbane, D.; O'Sullivan, G.; Liu, L.; Suzuki, C.

    2017-12-01

    It is well known that the lanthanide and actinide elements are formed by the filling of 4 f and 5 f subshells which occurs after the filling of 5 d and 6 d subshells, respectively, has begun. With increasing ionization one expects the energy levels to eventually regroup to their hydrogenic ordering, i.e., in terms of principal quantum number. In the lanthanides, the 4 f electron binding energy overtakes that of 5 p near the 6th or 7th ion stage and 5 s near the 14th or 15th ion stage, leading to dramatic rearrangements of ground-state configurations. In this paper we report on the results of a study to explore the effects of increasing ionization on the ground-state configurations of actinide ions as a result of 5 f and 6 p or 6 s level crossings. It is seen that the effects generally occur later and are more strongly influenced by spin-orbit splitting than in the lanthanides. The near degeneracies of 5 f and 6 l energies in these stages lead to configuration interaction (CI) amongst configurations with variable numbers of 5 f and 6 p electrons. The effects of CI on the level complexity are explored for ions along the Rn I sequence and are found to lead to the formation of "compound states" as predicted for the lanthanides. The extreme ultraviolet and soft x-ray spectra of medium and highly charged lanthanides are dominated by emission from unresolved transition arrays (UTAs) of the type Δ n =0 , 4 p64 dN +1-4 p54 dN +2+4 p64 dN4 f , which, in general, overlap in adjacent ion stages of a particular element. Here, the corresponding Δ n =0 , 5 p65 dN +1-5 p55 dN +2+5 p65 dN5 f UTAs have been studied theoretically with the aid of Hartree-Fock with configuration interaction calculations. As well as predicting the wavelengths and spectral details of the anticipated features, the calculations show that the effects of configuration interaction are quite different for the two different families of Δ n =0 transitions and, once more, spin-orbit interactions play a major role.

  7. Probing the Crystal Structure and Formation Mechanism of Lanthanide-Doped Upconverting Nanocrystals

    DOE PAGES

    Hudry, Damien; Abeykoon, A. M. M.; Dooryhee, E.; ...

    2016-11-23

    Lanthanide (Ln)-doped upconverting nanocrystals (UCNCs), such as NaLnF 4 (with Ln = lanthanide), constitute an important class of nanoscale materials due to their capacity to convert near-infrared photons into near-ultraviolet or visible light. Although under intense investigation for more than a decade, UCNCs have been relatively underexplored especially regarding their crystal structure and mechanisms of formation in organic media. The former is needed to explain the relationship between atomic scale structure and upconversion (UC) properties of UCNCs (i.e., local symmetry for 4f–4f transition probability, Ln 3+ distances for energy migration), while the latter is essential to finely tune the size, morphology, chemical composition, and architecture of well-defined upconverting nanostructures, which constitute the experimental levers to modify the optical properties. In this contribution, we use synchrotron-based diffraction experiments coupled to Rietveld and pair distribution function (PDF) analyses to understand the formation of NaGdF 4:Yb:Er UCNCs in organic media and to investigate their crystal structure. Our results reveal a complex mechanism of the formation of NaGdF 4:Yb:Er UCNCs based on chemical reactions involving molecular clusters and in situ-generated, crystalline sodium fluoride at high temperature. Additionally, a detailed crystallographic investigation of NaGdF 4:Yb:Er UCNCs is presented. Our Rietveld and PDF analyses show that the space group Pmore » $$\\bar{6}$$ is the one that best describes the crystal structure of NaGdF 4:Yb:Er UCNCs contrary to what has been recently proposed. Further, our Rietveld and PDF data reveal the formation of bulk-like crystal structure down to 10 nm with limited distortions. Finally, the results presented in this paper constitute an important step toward the comprehensive understanding of the underlying picture that governs UC properties of lanthanide-doped nanostructures.« less

  8. Anion responsive Europium (III) complexes for Optical Sensing and PARACEST MRI

    NASA Astrophysics Data System (ADS)

    Buttarazzi, Leandro Alfredo

    The Eu(III) complexes of 1-(acetyl-7-Methyl-4-(trifluoromethyl) quinolin-2(1H)-one)4,7,10 tris(2-hydroxypropyl)-1,4,7,10-tetraazacycladodecane (Eu(S-THPC)3+ ) and 1-(acetyl-dioctadecylamine)4,7,10 tris(hydroxypropyl)-1,4,7,10-tetraazacycladodecane (Eu(S-THMC)3+) were studied in order to develop complexes that are both optical sensors and MRI contrast agents that respond to biologically relevant anions. Both complexes are related to Eu(S-THP) where S-THP = (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane. Eu(III) excitation, emission and time resolved luminescence spectroscopy experiments were used to study binding of the anions. One complex, Eu(THPC)3+ has an appended carbostyril dye for sensitization of Eu(III) luminescence. Luminescence experiments were done on this complex in order to quantify the effectiveness of the energy transfer from the dye to the lanthanide and to obtain binding constants of the anions from the Eu(III) emission peaks. Emission spectra were obtained by exciting the chromophore at 340 nm. Our results suggest that phosphate binds with a dissociation constant (Kd) of 4.2mM and citrate binds with a Kd of 228 uM. The quantum yield for the complex was low compared to other reported complexes in literature. Eu(S-THMC) 3+, and Eu(S-THMAC)3+ containing long carbon chains for incorporation into liposomes were explored as an approach to develop complexes with increased sensitivity as CEST agents. CEST experiments with the complex incorporated into a liposome and as a micelle were carried out. Liposome formation was achieved but no CEST effect was observed with two different lanthanide complexes. Eu(S-THMC)3+ gave the most promising results by showing CEST in acetonitrile and 50/50 acetonitrile/H 2O. However further experiments with this complex in buffered aqueous solution failed. Yb(S-THMAC)3+ solubility was poor in both acetonitrile and in water and this likely prevented the observation of CEST spectra.

  9. Synthesis and characterization of lanthanide based nanomaterials for radiation detection and biomedical applications

    NASA Astrophysics Data System (ADS)

    Yao, Mingzhen

    2011-12-01

    Lanthanide based nanomaterials have shown a great potential in various areas such as luminescence imaging, luminescent labels, and detection of cellular functions. Due to the f-f transitions of the metal ion, luminescence of lanthanide ions is characterized by sharp and narrow emissions. In this dissertation lanthanide based nanoparticles such as Ce3+, Eu3+ and other lanthanide ions doped LaF3 were synthesized, their characterization, encapsulation and embedding into hybrid matrix were investigated and some of their biomedical and radiological applications were studied. DMSO is a common solvent which has been used widely for biological applications. LaF3:Ce nanoparticles were synthesized in DMSO and it was found that their fluorescent emission originates from the metal-to-ligand charge-transfer excited states. After conjugation with PpIX and then encapsulation within PLGA, the particles show efficient uptake by cancer cells and great cytotoxicity, which is promising for applications in cancer treatments. However, the emission of Eu3+ in DMSO is totally different from LaF3:Ce, very strong characteristic luminescence is observed but no emissions from metal-to-ligand charge-transfer excited states as observed in LaF3:Ce in DMSO. Besides, it is very interesting to see that the coupling of Eu 3+ with O-H oscillations after water was introduced has an opposite effect on emission peaks at 617 nm and its shoulder peak at 613 nm. As a result, the intensity ratio of these two emissions has a nearly perfect linear dependence on increasing water concentration in Eu-DMSO, which provides a very convenient and valuable method for water determination in DMSO. Ce3+ has been well known as an emitter for radiation detection due to its very short decay lifetime. However, its emission range limited the environment in which the detection system works. Whereas, Quantum dots have high luminescence quantum efficiency but their low stopping power results in very weak scintillation luminescence. Nanocompounds formed with CdTe quantum dots and LaF3:Ce nanoparticles optimize both stopping power and scintillation efficiency based on energy transfer from LaF3:Ce to CdTe. Hybrid matrix materials such as ORMOSIL have superior mechanical properties and a better processability than pure molecular material which could be used as carrier of radiation material. Moreover, embedding a lanthanide complex in a hybrid matrix enhances its thermal stability and luminescence output. LaF3:Ce doped ORMOSIL was synthesized by using two different LaF3:Ce, the nanoparticle doping concentration can reach up to 15.66% while its transparency and luminescent properties were maintained. These materials are very promising for radiation detection.

  10. Tuning Magnetic Order in Transition Metal Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Grutter, Alexander John

    In recent decades, one of the most active and promising areas of condensed matter research has been that of complex oxides. With the advent of new growth techniques such as pulsed laser deposition and molecular beam epitaxy, a wealth of new magnetic and electronic ground states have emerged in complex oxide heterostructures. The wide variety of ground states in complex oxides is well known and generally attributed to the unprecedented variety of valence, structure, and bonding available in these systems. The tunability of this already diverse playground of states and interactions is greatly multiplied in thin films and heterostructures by the addition of parameters such as substrate induced strain and interfacial electronic reconstruction. Thus, recent studies have shown emergent properties such as the stabilization of ferromagnetism in a paramagnetic system, conductivity at the interface of two insulators, and even exchange bias at the interface between a paramagnet and a ferromagnet. Despite these steps forward, there remains remarkable disagreement on the mechanisms by which these emergent phenomena are stabilized. The contributions of strain, stoichiometry, defects, intermixing, and electronic reconstruction are often very difficult to isolate in thin films and superlattices. This thesis will present model systems for isolating the effects of strain and interfacial electronic interactions on the magnetic state of complex oxides from alternative contributions. We will focus first on SrRuO3, an ideal system in which to isolate substrate induced strain effects. We explore the effects of structural distortions in the simplest case of growth on (100) oriented substrates. We find that parameters including saturated magnetic moment and Curie temperature are all highly tunable through substrate induced lattice distortions. We also report the stabilization of a nonmagnetic spin-zero configuration of Ru4+ in tetragonally distorted films under tensile strain. Through growth on (110) and (111) oriented substrates we explore the effects of different distortion symmetries on SrRuO3 and demonstrate the first reported strain induced transition to a high-spin state of Ru 4+. Finally, we examine the effects of strain on SrRuO3 thin films and demonstrate a completely reversible universal out-of-plane magnetic easy axis on films grown on different substrate orientations. Having demonstrated the ability to tune nearly every magnetic parameter of SrRuO 3 through strain, we turn to magnetic properties at interfaces. We study the emergent interfacial ferromagnetism in superlattices of the paramagnetic metal CaRuO3 and the antiferromagnetic insulator CaMnO3 and demonstrate that the interfacial ferromagnetic layer in this system is confined to a single unit cell of CaMnO3 at the interface. We discuss the remarkable oscillatory dependence of the saturated magnetic moment on the thickness of the CaMnO3 layers and explore mechanisms by which this oscillation may be stabilized. We find long range coherence of the antiferromagnetism of the CaMnO3 layers across intervening layers of paramagnetic CaRuO3. Finally, we utilize the system of LaNiO3/CaMnO3 to separate the effects of intermixing and interfacial electronic reconstruction and conclusively demonstrate intrinsic interfacial ferromagnetism at the interface between a paramagnetic metal and an antiferromagnetic insulator. We find that the emergent ferromagnetism is stabilized through interfacial double exchange and that the leakage of conduction electrons from the paramagnetic metal to the antiferromagnetic insulator is critical to establishing the ferromagnetic ground state.

  11. Cholesterol-diethylenetriaminepentaacetate complexed with thulium ions integrated into bicelles to increase their magnetic alignability.

    PubMed

    Liebi, Marianne; Kuster, Simon; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Walde, Peter; Windhab, Erich J

    2013-11-27

    Lanthanides have been used for several decades to increase the magnetic alignability of bicelles. DMPE-DTPA (1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylenetriaminepentaacetate) is commonly applied to anchor the lanthanides into the bicelles. However, because DMPE-DTPA has the tendency to accumulate at the highly curved edge region of the bicelles and if located there does not contribute to the magnetic orientation energy, we have tested cholesterol-DTPA complexed with thulium ions (Tm(3+)) as an alternative chelator to increase the magnetic alignability. Differential scanning calorimetric (DSC) measurements indicate the successful integration of cholesterol-DTPA into a DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer. Cryo transmission electron microscopy and small-angle neutron scattering (SANS) measurements show that the disklike structure, that is, bicelles, is maintained if cholesterol-DTPA·Tm(3+) is integrated into a mixture of DMPC, cholesterol, and DMPE-DTPA·Tm(3+). The size of the bicelles is increased compared to the size of the bicelles obtained from mixtures without cholesterol-DTPA·Tm(3+). Magnetic-field-induced birefringence and SANS measurements in a magnetic field show that with addition of cholesterol-DTPA·Tm(3+) the magnetic alignability of these bicelles is significantly increased compared to bicelles composed of DMPC, cholesterol, and DMPE-DTPA·Tm(3+) only.

  12. Open-Shell Lanthanide(II+) or -(III+) Complexes Bearing σ-Silyl and Silylene Ligands: Synthesis, Structure, and Bonding Analysis

    PubMed Central

    2015-01-01

    Complexes featuring lanthanide (Ln)–Si bonds represent a highly neglected research area. Herein, we report a series of open-shell LnII+ and LnIII+ complexes bearing σ-bonded silyl and base-stabilized N-heterocyclic silylene (NHSi) ligands. The reactions of the LnIII+ complexes Cp3Ln (Ln = Tm, Ho, Tb, Gd; Cp = cyclopentadienide) with the 18-crown-6 (18-cr-6)-stabilized 1,4-oligosilanyl dianion [(18-cr-6)KSi(SiMe3)2SiMe2SiMe2Si(SiMe3)2K(18-cr-6)] (1) selectively afford the corresponding metallacyclopentasilane salts [Cp2Ln({Si(SiMe3)2SiMe2}2)]−[K2(18-cr-6)2Cp]+ [Ln = Tm (2a), Ho (2b), Tb (2c), Gd (2d)]. Complexes 2a–2d represent the first examples of structurally characterized Tm, Ho, Tb, and Gd complexes featuring Ln–Si bonds. Strikingly, the analogous reaction of 1 with the lighter element analogue Cp3Ce affords the acyclic product [Cp3CeSi(SiMe3)2SiMe2SiMe2Si(SiMe3)2-Cp3Ce]2–2[K(18-cr-6)]+ (3) as the first example of a complex featuring a Ce–Si bond. In an alternative synthetic approach, the aryloxy-functionalized benzamidinato NHSi ligand Si(OC6H4-2-tBu){(NtBu)2CPh} (4a) and the alkoxy analogue Si(OtBu){(NtBu)2CPh} (4b) were reacted with Cp*2Sm(OEt2), affording, by OEt2 elimination, the corresponding silylene complexes, both featuring SmII+ centers: Cp*2Sm ← :Si(O–C6H4-2-tBu){(NtBu)2CPh} (6) and Cp*2Sm ← :Si(OtBu){(NtBu)2CPh} (5). Complexes 5 and 6 are the first four-coordinate silylene complexes of any f-block element to date. All complexes were fully characterized by spectroscopic means and by single-crystal X-ray diffraction analysis. In the series 2a–2d, a linear correlation was observed between the Ln–Si bond lengths and the covalent radii of the corresponding Ln metals. Moreover, in complexes 5 and 6, notably long Sm–Si bonds are observed, in accordance with a donor–acceptor interaction between Si and Sm [5, 3.4396(15) Å; 6, 3.3142(18) Å]. Density functional theory calculations were carried out for complexes 2a–2d, 5, and 6 to elucidate the bonding situation between the LnII+ or LnIII+ centers and Si. In particular, a decrease in the Mayer bond order (MBO) of the Ln–Si bond is observed in the series 2a–2d in moving from the lighter to the heavier lanthanides (Tm = 0.53, Ho = 0.62, Tb = 0.65, and Gd = 0.75), which might indicate decreasing covalency in the Ln–Si bond. In accordance with the long bond lengths observed experimentally in complexes 5 and 6, comparatively low MBOs were determined for both silylene complexes (5, 0.24; 6, 0.25) . PMID:25756230

  13. Assessing the exchange coupling in binuclear lanthanide(iii) complexes and the slow relaxation of the magnetization in the antiferromagnetically coupled Dy2 derivative† †Electronic supplementary information (ESI) available: Additional magnetic data, additional figures and computational details. CCDC 1020818–1020822. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01029b

    PubMed Central

    Chow, Chun Y.; Bolvin, Hélène; Campbell, Victoria E.; Guillot, Régis; Kampf, Jeff W.; Wernsdorfer, Wolfgang; Gendron, Frédéric; Autschbach, Jochen

    2015-01-01

    We report here the synthesis and the investigation of the magnetic properties of a series of binuclear lanthanide complexes belonging to the metallacrown family. The isostructural complexes have a core structure with the general formula [Ga4Ln2(shi3–)4(Hshi2–)2(H2shi–)2(C5H5N)4(CH3OH)x(H2O)x]·xC5H5N·xCH3OH·xH2O (where H3shi = salicylhydroxamic acid and Ln = GdIII1; TbIII2; DyIII3; ErIII4; YIII5; YIII0.9DyIII0.16). Apart from the Er-containing complex, all complexes exhibit an antiferromagnetic exchange coupling leading to a diamagnetic ground state. Magnetic studies, below 2 K, on a single crystal of 3 using a micro-squid array reveal an opening of the magnetic hysteresis cycle at zero field. The dynamic susceptibility studies of 3 and of the diluted DyY 6 complexes reveal the presence of two relaxation processes for 3 that are due to the excited ferromagnetic state and to the uncoupled DyIII ions. The antiferromagnetic coupling in 3 was shown to be mainly due to an exchange mechanism, which accounts for about 2/3 of the energy gap between the antiferro- and the ferromagnetic states. The overlap integrals between the Natural Spin Orbitals (NSOs) of the mononuclear fragments, which are related to the magnitude of the antiferromagnetic exchange, are one order of magnitude larger for the Dy2 than for the Er2 complex. PMID:29218180

  14. Effect of Temperature on the Protonation of the TALSPEAK Ligands: Lactic and Diethylenetrinitropentaacetic Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Guoxin; Rao, Linfeng

    2009-10-20

    The protonation reactions of two ligands that play important roles in the TALSPEAK process for the separation of trivalent actinides from lanthanides, lactic acid and diethylenetrinitropentaacetic acid (DTPA), have been studied at variable temperatures. The protonation constants at 10-70 C were determined by titration potentiometry and the protonation enthalpies were determined at 25 C by titration microcalorimetry. The protonation constants remain essentially unchanged (25-70 C) within the experimental uncertainties, indicating that the effect of temperature on the protonation of lactate is insignificant. In contrast, the protonation constants of DTPA (log {beta}H's) generally decrease as the temperature is increased. Results frommore » this study indicate that the effect of temperature on the protonation of DTPA could alter the speciation of metal ions (actinides and lanthanides) in the TALSPEAK system, since lower values of log{beta}H at higher temperatures suggest that the hydrogen ions would compete less strongly with the metal ions for the complexation of DTPA at higher temperatures.« less

  15. Two novel 2D lanthanide sulfate frameworks: Syntheses, structures, and luminescence properties

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Yi; Zhang, Chi; Zhang, Fu-Li; Zhang, Fu-Qiang; Zhang, Xiang-Fei; Li, Su-Zhi; Cao, Guang-Xiu; Zhai, Bin

    2016-03-01

    Two novel lanthanide-sulfate compounds, [Ln2(SO4)3(H2O)8] (Ln = Tb (1) and Dy (2)), have been synthesized under hydrothermal reactions. X-ray crystal structure analyses reveal that 1 and 2 are isomorphous and crystallize in monoclinic C2/c pace group, showing a layered structure. The layers bear a rare quasi-honeycomb metal arrangement, which is fastened by μ3 = η1:η1:η1 and μ2 = η1:η1 sulfates. If assigning the μ3 = η1:η1:η1 sulfate as a 3-connected node and the Ln3+ ion as a 4-connected node, the network can be rationalized as a binodal (3,4)-connected V2O5 topology with a Schäfli symbol of (42·63·8) (42·6). In addition, the infrared, thermogravimetric analysis and luminescent properties were also studied. Complexes 1 and 2 exhibit outstanding thermal stability and characteristic terbium and dysprosium luminescence.

  16. Bifacial Base-Pairing Behaviors of 5-Hydroxyuracil DNA Bases through Hydrogen Bonding and Metal Coordination.

    PubMed

    Takezawa, Yusuke; Nishiyama, Kotaro; Mashima, Tsukasa; Katahira, Masato; Shionoya, Mitsuhiko

    2015-10-12

    A novel bifacial ligand-bearing nucleobase, 5-hydroxyuracil (U(OH) ), which forms both a hydrogen-bonded base pair (U(OH) -A) and a metal-mediated base pair (U(OH) -M-U(OH) ) has been developed. The U(OH) -M-U(OH) base pairs were quantitatively formed in the presence of lanthanide ions such as Gd(III) when U(OH) -U(OH) pairs were consecutively incorporated into DNA duplexes. This result established metal-assisted duplex stabilization as well as DNA-templated assembly of lanthanide ions. Notably, a duplex possessing U(OH) -A base pairs was destabilized by addition of Gd(III) ions. This observation suggests that the hybridization behaviors of the U(OH) -containing DNA strands are altered by metal complexation. Thus, the U(OH) nucleobase with a bifacial base-pairing property holds great promise as a component for metal-responsive DNA materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Efficient enhancement of magnetic anisotropy by optimizing the ligand-field in a typically tetranuclear dysprosium cluster.

    PubMed

    Liu, Jiang; Chen, Yan-Cong; Jiang, Zhong-Xia; Liu, Jun-Liang; Jia, Jian-Hua; Wang, Long-Fei; Li, Quan-Wen; Tong, Ming-Liang

    2015-05-07

    The perturbation to the ligand field around the lanthanide ion may significantly contribute to the magnetic dynamics of single molecule magnets. This can be demonstrated by two typical Dy4 cluster-based single molecular magnets (SMMs), [Dy4X2(μ3-OH)2(μ-OH)2(2,2-bpt)4(H2O)4]X2·2H2O·4EtOH (X = Cl and Br for and , respectively), which were constructed by using 3,5-bis(pyridin-2-yl)-1,2,4-triazole (2,2-bptH) as the polynuclear-chelating ligand. Alternating-current (ac) magnetic susceptibility measurements show that the energy barriers in complexes and were immensely enhanced by comparing with our previous work due to the optimization of the ligand field around Dy(III) ions. Remarkably, their high thermal active barriers at 190 K () and 197 K () under a zero applied external dc magnetic field are also among the highest within the reported tetranuclear lanthanide-based SMMs.

  18. Understanding the Mechanism of Magnetic Relaxation in Pentanuclear {MnIVMnIII2LnIII2} Single-Molecule Magnets.

    PubMed

    Vignesh, Kuduva R; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Rajaraman, Gopalan

    2018-02-05

    A new family of heterometallic pentanuclear complexes of formulas [Mn IV Mn III 2 Ln III 2 O 2 (benz) 4 (mdea) 3 (NO 3 ) 2 (MeOH)] (Ln = Dy (1-Dy), Tb (2-Tb), Gd (3-Gd), Eu (4-Eu), Sm (5-Sm), Nd (6-Nd), Pr (7-Pr); benz(H) = benzoic acid; mdeaH 2 = N-methyldiethanolamine) and [Mn IV Mn III 2 Ln III 2 O 2 (o-tol) 4 (mdea) 3 (NO 3 ) 2 (MeOH)] (Ln = Gd (8-Gd), Eu (9-Eu); o-tol(H) = o-toluic acid) have been isolated and structurally, magnetically, and theoretically characterized. dc magnetic susceptibility measurements reveal dominant antiferromagnetic magnetic interactions for each complex, except for 2-Tb and 3-Gd, which reveal an upturn in the χ M T product at low temperatures. The magnetic interactions between the spin centers in the Gd derivatives, 3-Gd and 8-Gd, which display markedly different χ M T vs T profiles, were found to be due to the interactions of the Gd III -Gd III ions which change from ferromagnetic (3-Gd) to antiferromagnetic (8-Gd) due to structural differences. ac magnetic susceptibility measurements reveal a nonzero out-of-phase component for 1-Dy and 7-Pr, but no maxima were observed above 2 K (H dc = 0 Oe), which suggests single-molecule magnet (SMM) behavior. Out-of-phase signals were observed for complexes 2-Tb, 4-Eu, 8-Gd, and 9-Eu, in the presence of a static dc field (H dc = 2000, 3000 Oe). The anisotropic nature of the lanthanide ions in the benzoate series (1-Dy, 2-Tb, 5-Sm, 6-Nd, and 7-Pr) were thoroughly investigated using ab initio methods. CASSCF calculations predict that the origin of SMM behavior in 1-Dy and 7-Pr and the applied field SMM behavior in 2-Tb does not solely originate from the single-ion anisotropy of the lanthanide ions. To fully understand the relaxation mechanism, we have employed the Lines model to fit the susceptibility data using the POLY_ANISO program, which suggests that the zero-field SMM behavior observed in complexes 1-Dy and 7-Pr is due to weak Mn III/IV -Ln III and Ln III -Ln III couplings and an unfavorable Ln III /Mn III /Mn IV anisotropy. In complexes 4-Eu, 8-Gd, and 9-Eu ab initio calculations indicate that the anisotropy of the Mn III ions solely gives rise to the possibility of SMM behavior. Complex 7-Pr is a Pr(III)-containing complex that displays zero-field SMM behavior, which is rare, and our study suggests the possibility of coupling weak SOC lanthanide metal ions to anisotropic transition-metal ions to derive SMM characteristics; however, enhancing the exchange coupling in {3d-4f} complexes is still a stubborn hurdle in harnessing new generation {3d-4f} SMMs.

  19. New electrolyte systems for capillary zone electrophoresis of metal cations and non-ionic organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Youchun

    Excellent separations of metal ions can be obtained very quickly by capillary electrophoresis provided a weak complexing reagent is incorporated into the electrolyte to alter the effective mobilities of the sample ions. Indirect photometric detection is possible by also adding a UV-sensitive ion to the electrolyte. Separations are described using phthalate, tartrate, lactate or hydroxyisobutyrate as the complexing reagent. A separation of twenty-seven metal ions was achieved in only 6 min using a lactate system. A mechanism for the separation of lanthanides is proposed for the hydroxyisobutyrate system.

  20. A six-coordinate ytterbium complex exhibiting easy-plane anisotropy and field-induced single-ion magnet behavior.

    PubMed

    Liu, Jun-Liang; Yuan, Kang; Leng, Ji-Dong; Ungur, Liviu; Wernsdorfer, Wolfgang; Guo, Fu-Sheng; Chibotaru, Liviu F; Tong, Ming-Liang

    2012-08-06

    The field-induced blockage of magnetization behavior was first observed in an Yb(III)-based molecule with a trigonally distorted octahedral coordination environment. Ab initio calculations and micro-SQUID measurements were performed to demonstrate the exhibition of easy-plane anisotropy, suggesting the investigated complex is the first pure lanthanide field-induced single-ion magnet (field-induced SIM) of this type. Furthermore, we found the relaxation time obeys a power law instead of an exponential law, indicating that the relaxation process should be involved a direct process rather than an Orbach process.

  1. Features of the complexation of octadecane-2,4-dione and lanthanide ions in Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    Sokolov, M. E.; Repina, I. N.; Raitman, O. A.; Kolokolov, F. A.; Panyushkin, V. T.

    2016-05-01

    Monolayers of octadecane-2,4-dione on the surfaces of EuCl3 and TbCl3 solutions in the concentration range of 1 × 10-4 to 5 × 10-3 M at pH 5.8 are studied. It is found that the limiting area of octadecane-2,4-dione molecule in a monolayer dependence on Eu3+ and Tb3+ concentration is of extreme nature. The formation of complex compounds in the ligand monolayer is postulated, and structures are proposed for these compounds at different concentrations of metal ions.

  2. On the Suitability of Lanthanides as Actinide Analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szigethy, Geza; Raymond, Kenneth N.

    2008-04-11

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond groupmore » at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries.« less

  3. MxaY regulates the lanthanide-mediated methanol dehydrogenase switch in Methylomicrobium buryatense

    DOE PAGES

    Chu, Frances; Beck, David A. C.; Lidstrom, Mary E.

    2016-09-07

    Many methylotrophs, microorganisms that consume carbon compounds lacking carbon–carbon bonds, use two different systems to oxidize methanol for energy production and biomass accumulation. The MxaFI methanol dehydrogenase (MDH) contains calcium in its active site, while the XoxF enzyme contains a lanthanide in its active site. The genes encoding the MDH enzymes are differentially regulated by the presence of lanthanides. In this study, we found that the histidine kinase MxaY controls the lanthanide-mediated switch in Methylomicrobium buryatense 5GB1C. MxaY controls the transcription of genes encoding MxaFI and XoxF at least partially by controlling the transcript levels of the orphan response regulatormore » MxaB. We identify a constitutively active version of MxaY, and identify the mutated residue that may be involved in lanthanide sensing. Finally, we find evidence to suggest that tight control of active MDH production is required for wild-type growth rates.« less

  4. Hot-pressed silicon nitride with various lanthanide oxides as sintering additives

    NASA Technical Reports Server (NTRS)

    Ueno, K.; Toibana, Y.

    1984-01-01

    The effects of addition of various lanthanide oxides and their mixture with Y2O3 on the sintering of Si3N4 were investigated. The addition of simple and mixed lanthanide oxides promoted the densification of Si3N4 in hot-pressing at 1800 C under 300-400kg/ centimeters squared for 60 min. The crystallization of yttrium and lanthanide-silicon oxynitrides which was observed inn the sintered body containing yttrium-lanthanide mixed oxides as additives led to the formation of a highly refractory Si3N4 ceramic having a bending strength of 82 and 84 kg/millimeters squared at room temperature and 1300 C respectively. In a Y2O3+La2O3 system, a higher molar ratio of La2O3 to Y2O3 gave a higher hardness and strength at high temperatures. It was found that 90 min was an optimum sintering time for the highest strength.

  5. Synthesis and property investigation of metal-based nanomaterials for biotechnological applications

    NASA Astrophysics Data System (ADS)

    Darsanasiri, Nalin Dammika

    Luminescent lanthanide-based materials have drawn recent interest due to their applications in in vitro cellular imaging. Sensitive biological analysis requires optical labels with high water dispersibility & stability and excellent luminescent properties. Most literature reported lanthanide complexes with high luminescence intensity are hydrophobic and unstable, limiting their biological applications. This project was designed to incorporate a highly luminescent lanthanide beta-diketonate complex in a silica nanoparticle. Eu(btfa)3dmph complex was synthesized, which exhibits red luminescence at 614 nm with a narrow (15 nm) full with half-maximum (btfa=4,4,4-trifluoro-1-phenyl-1,3-butanedione, dmph=4,7-dimethyl,1,10-phenanthroline). A synthetic procedure was optimized to incorporate the Eu-complex in a silica-based nanoparticle with an average particle diameter of 36 nm. Eu-complex based silica nanoparticles exhibit high stability and water-dispersibility with a luminescence quantum yield of 10 %. The nanoparticles showed antimicrobial activity against clinically important E.coli, S.aureus and S.epidermidis. Synthesis, materials characterization, and antimicrobial studies of the complex and the nanoparticles was discussed in the first part of this thesis. Nanotechnology is emerging as a new interdisciplinary field combining biology, chemistry, physics, and material science. Recent advances promise developments in the synthesis, modification and practical applications of polymer-coated manganese (Mn)-based zinc oxide (ZnO) nanoparticles (NPs). The size distribution, shape, and surface modification of metal-based ZnO nanoparticles are the key factors determining their specific physical properties. Due to the strong antibacterial properties and low toxicity towards mammalian cells, ZnO NPs have been successfully used in a wide range of applications including wound dressing, protective clothing, antibacterial surfaces, food preservation, and cosmetics as biocidal and disinfecting agents. In this study, cotton textiles with antimicrobial activity were developed by incorporating polymer-coated Mn-doped ZnO nanoparticles. Antimicrobial potential of synthesized Mn-doped zinc oxide (ZnO) nanoparticles against two bacteria strains ( Escherichia coli as Gram-negative bacteria, Staphylococcus aureus as Gram-positive bacteria) in liquid and solid phases was studied in this work. Polymer-coated Mn-doped ZnO nanoparticles were prepared by the modified co-precipitation method. Characterization of the nanoparticles was carried out using Ultra-violet visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). The average particle size of the nanoparticles was found to be less than 15 nm. The antibacterial activity of the nanoparticles was evaluated using minimum inhibitory concentration (MIC) and agar diffusion method. Disk diffusion studies revealed that the nanoparticles have excellent antimicrobial activity against E.coli and S.aureus bacterial species. Therefore, it was concluded that the polymer-coated Mn-doped ZnO nanoparticles were excellent antibacterial agents with potential clinical applications.

  6. Time-resolved luminescence measurements of the magnetic field effect on paramagnetic photosensitizers in photodynamic reactions

    NASA Astrophysics Data System (ADS)

    Mermut, O.; Bouchard, J.-P.; Cormier, J.-F.; Desroches, P.; Diamond, K. R.; Fortin, M.; Gallant, P.; Leclair, S.; Marois, J.-S.; Noiseux, I.; Morin, J.-F.; Patterson, M. S.; Vernon, M.

    2008-02-01

    The development of multimodal molecular probes and photosensitizing agents for use in photodynamic therapy (PDT) is vital for optimizing and monitoring cytotoxic responses. We propose a combinatorial approach utilizing photosensitizing molecules that are both paramagnetic and luminescent with multimodal functionality to perturb, control, and monitor molecular-scale reaction pathways in PDT. To this end, a time-domain single photon counting lifetime apparatus with a 400 nm excitation source has been developed and integrated with a variable low field magnet (0- 350mT). The luminescence lifetime decay function was measured in the presence of a sweeping magnetic field for a custom designed photosensitizing molecule in which photoinduced electron transfer was studied The photosensitizer studied was a donor-acceptor complex synthesized using a porphyrin linked to a fullerene molecule. The magneto-optic properties were investigated for the free-base photosensitizer complex as well as those containing either diamagnetic (paired electron) or paramagnetic (unpaired electron) metal centers, Zn(II) and Cu(II). The magnetic field was employed to affect and modify the spin states of radical pairs of the photosensitizing agents via magnetically induced hyperfine and Zeeman effects. Since the Type 1 reaction pathway of an excited triplet state photosensitizer involves the production of radical species, lifetime measurements were conducted at low dissolved oxygen concentration (0.01ppm) to elucidate the dependence of the magnetic perturbation on the photosensitization mechanistic pathway. To optimize the magnetic response, a solvent study was performed examining the dependence of the emission properties on the magnetic field in solutions of varying dielectric constants. Lastly, the cytotoxicity in murine tumor cell suspensions was investigated for the novel porphyrin-fullerene complex by inducing photodynamic treatments and determining the associated cell survival.

  7. A novel strategy for phosphopeptide enrichment using lanthanide phosphate co-precipitation.

    PubMed

    Mirza, Munazza Raza; Rainer, Matthias; Güzel, Yüksel; Choudhary, Iqbal M; Bonn, Günther K

    2012-08-01

    Reversible phosphorylation of proteins is a common theme in the regulation of important cellular functions such as growth, metabolism, and differentiation. The comprehensive understanding of biological processes requires the characterization of protein phosphorylation at the molecular level. Although, the number of cellular phosphoproteins is relatively high, the phosphorylated residues themselves are generally of low abundance due to the sub-stoichiometric nature. However, low abundance of phosphopeptides and low degree of phosphorylation typically necessitates isolation and concentration of phosphopeptides prior to mass spectrometric analysis. In this study, we used trivalent lanthanide ions (LaCl(3), CeCl(3), EuCl(3), TbCl(3), HoCl(3), ErCl(3), and TmCl(3)) for phosphopeptide enrichment and cleaning-up. Due to their low solubility product, lanthanide ions form stable complexes with the phosphate groups of phosphopeptides and precipitate out of solution. In a further step, non-phosphorylated compounds can easily be removed by simple centrifugation and washing before mass spectrometric analysis using Matrix-assisted laser desorption/ionisation-time of flight. The precipitation method was applied for the isolation of phosphopeptides from standard proteins such as ovalbumin, α-casein, and β-casein. High enrichment of phosphopeptides could also be achieved for real samples such as fresh milk and egg white. The technology presented here represents an excellent and highly selective tool for phosphopeptide recovery; it is easily applicable and shows several advantages as compared with standard approaches such as TiO(2) or IMAC.

  8. Luminomagnetic Eu3+- and Dy3+-doped hydroxyapatite for multimodal imaging.

    PubMed

    Tesch, Annemarie; Wenisch, Christoph; Herrmann, Karl-Heinz; Reichenbach, Jürgen R; Warncke, Paul; Fischer, Dagmar; Müller, Frank A

    2017-12-01

    Multimodal imaging has recently attracted much attention due to the advantageous combination of different imaging modalities, like photoluminescence (PL) and magnetic resonance imaging (MRI). In the present study, luminescent and magnetic hydroxyapatites (HAp) were prepared via doping with europium (Eu 3+ ) and dysprosium (Dy 3+ ), respectively. Co-doping of Eu 3+ and Dy 3+ was used to combine the desired physical properties. Both lanthanide ions were successfully incorporated in the HAp crystal lattice, where they preferentially occupied calcium(I) sites. While Eu-doped HAp (Eu:HAp) exhibits dopant concentration dependent persistent PL properties, Dy-doped HAp (Dy:HAp) shows paramagnetic behavior due to the high magnetic moment of Dy 3+ . Co-doped HAp (Eu:Dy:HAp) nanoparticles combine both properties in one single crystal. Remarkably, multimodal co-doped HAp features enhanced PL properties due to an energy transfer from Dy 3+ sensitizer to Eu 3+ activator ions. Eu:Dy:HAp exhibits strong transverse relaxation effects with a maximum transverse relaxivity of 83.3L/(mmol·s). Due to their tunable PL, magnetic properties and cytocompatibility Eu:-, Dy:- and Eu:Dy:HAp represent promising biocompatible ceramic materials for luminescence imaging that simultaneously may serve as a contrast agent for MRI in permanent implants or functional coatings. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    PubMed

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  10. Magnesium and cadmium containing Heusler phases REPd2Mg, REPd2Cd, REAg2Mg, REAu2Mg and REAu2Cd

    NASA Astrophysics Data System (ADS)

    Johnscher, Michael; Stein, Sebastian; Niehaus, Oliver; Benndorf, Christopher; Heletta, Lukas; Kersting, Marcel; Höting, Christoph; Eckert, Hellmut; Pöttgen, Rainer

    2016-02-01

    Twenty-eight new Heusler phases REPd2Mg, REPd2Cd, REAg2Mg, REAu2Mg and REAu2Cd with different rare earth elements were synthesized from the elements in sealed niobium ampoules in a water-cooled sample chamber of an induction furnace. The samples were characterized by powder X-ray diffraction. The cell volumes show the expected lanthanide contraction. The structures of YPd2Cd, GdPd2Cd, GdAu2Cd, Y1.12Ag2Mg0.88 and GdAg2Mg were refined based on single crystal diffractometer data. The magnetic properties were determined for fifteen phase pure samples. LuAu2Mg is a weak Pauli paramagnet with a susceptibility of 1.0(2) × 10-5 emu mol-1 at room temperature. The remaining samples show stable trivalent rare earth ions and most of them order magnetically at low temperatures. The ferromagnet GdAg2Mg shows the highest ordering temperature of TC = 98.3 K. 113Cd and 89Y MAS NMR spectra of YAu2Cd and YPd2Cd confirm the presence of unique crystallographic sites. The resonances are characterized by large Knight shifts, whose magnitude can be correlated with electronegativity trends.

  11. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    DOE PAGES

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, Durga

    2017-05-17

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spinmore » orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. As a result, through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.« less

  12. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    NASA Astrophysics Data System (ADS)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. Through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.

  13. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, Durga

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spinmore » orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. As a result, through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.« less

  14. Complex-formation between reduced xanthine oxidase and purine substrates demonstrated by electron paramagnetic resonance

    PubMed Central

    Pick, Frances M.; Bray, R. C.

    1969-01-01

    The origin of the Rapid molybdenum electron-paramagnetic-resonance signals, which are obtained on reducing xanthine oxidase with purine or with xanthine, and whose parameters were measured by Bray & Vänngård (1969), was studied. It is concluded that these signals represent complexes of reduced enzyme with substrate molecules. Xanthine forms one complex at high concentrations and a different one at low concentrations. Purine forms a complex indistinguishable from the low-concentration xanthine complex. There are indications that some other substrates also form complexes, but uric acid, a reaction product, does not appear to do so. The possible significance of the complexes in the catalytic cycle of the enzyme is discussed and it is suggested that they represent substrate molecules bound at the reduced active site, waiting their turn to react there, when the enzyme has been reoxidized. Support for this role for the complexes was deduced from experiments in which frozen samples of enzyme–xanthine mixtures, prepared by the rapid-freezing method, were warmed until the signals began to change. Under these conditions an increase in amplitude of the Very Rapid signal took place. Data bearing on the origin of the Slow molybdenum signal are also discussed. This signal disappears only slowly in the presence of oxygen, and its appearance rate is unaffected by change in the concentration of dithionite. It is concluded that, like other signals from the enzyme, it is due to Mov but that a slow change of ligand takes place before it is seen. The Slow species, like the Rapid, seems capable of forming complexes with purines. PMID:4310056

  15. Electron Paramagnetic Resonance Spectroscopy of Vanadium (IV) Complexes and Related Species.

    DTIC Science & Technology

    1980-07-27

    Extensive near infrared (4000-650cm " ) investigations on VOCl 2 complexes have been made by many workers [21,39,43-49]. However the far infrared ...to facilitate the assignment of cation and ligand bacds. 4.2.1.2 Near Infrared Spectroscopy There are three principal reasons for measuriiio the... near infrared spectra of the co!;,plexes: (a) To establish the purity of the complex (b) To establish the bondi ng mode of the 1 i ( nd (c) To establish

  16. The upconversion luminescence and magnetism in Yb3+/Ho3+ co-doped LaF3 nanocrystals for potential bimodal imaging

    NASA Astrophysics Data System (ADS)

    Syamchand, Sasidharanpillai S.; George, Sony

    2016-12-01

    Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb3+ and Ho3+) doped LaF3 nanocrystals (LaF3 Yb3+/Ho3+) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF3 nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb3+ and Ho3+ as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to 5S2 → 5I8 and 5F5 → 5I8 transitions of Ho3+, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho3+ and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity ( r 1) of 0.12 s-1 mM-1 and transverse relaxivity ( r 2) of 28.18 s-1 mM-1, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF3 Yb3+/Ho3+ nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as morphological studies in HeLa cells. The upconversion luminescence and magnetism together with biocompatibility enables the adaptability of the present system as a nanoprobe for potential bimodal imaging.

  17. ^1H NMR studies of the diamagnetic gallium (III) and paramagnetic iron (III) complexes of a chiral macrobicyclic ligand of bicapped tris (binaphtol) type

    NASA Astrophysics Data System (ADS)

    Baret, P.; Beaujolais, V.; Bougault, C.; Gaude, D.; Pierre, J.-L.

    1998-01-01

    ^1H NMR studies of the diamagnetic gallium (III) and paramagnetic iron (III) complexes of a chiral macrobicyclic ligand of bicapped tris (binaphtol) type are described. The study of the gallium complex emphasizes: (i) that the inversion of the octahedral center is not observed and: (ii) the absence of exchange between free ligand and complex, at room temperature. In the case of the iron complex, assignments of the hyperfine shifted resolved resonances are achieved, based on temperature-behavior studies, which evidence the D3 symmetry of the complex. These assignments are in complete agreement with measured T1 values and proton-to-iron distances obtained from molecular modelling. Les complexes du gallium (III) et du fer (III) d'un ligand macrobicyclique chiral impliquant trois sous-unités de type binaphtol sont étudiés en RMN du proton en solution méthanolique. L'étude du complexe (diamagnétique) du gallium permet de montrer que le complexe : (i) ne subit pas d'inversion de la configuration (Δ/Λ) du site octaédrique et : (ii) qu'il n'y a pas d'échange entre ligand libre et complexe à la température ambiante. L'évolution du spectre du complexe paramagnétique du fer avec la température permet une attribution des protons du ligand et met en évidence la symétrie D3 du complexe. Une bonne corrélation est obtenue entre la distance fer-proton (donnée par la modélisation moléculaire) et le T1 du proton considéré.

  18. EPR and photoluminescence study of irradiated anion-defective alumina single crystals

    NASA Astrophysics Data System (ADS)

    Kortov, V. S.; Ananchenko, D. V.; Konev, S. F.; Pustovarov, V. A.

    2017-09-01

    Electron paramagnetic resonance (EPR) and photoluminescence (PL) spectra of anion-defective alumina single crystals were measured. Exposure to a dose 10 Gy-1 kGy causes isotropic EPR signal of a complex form, this signal contains narrow and broad components. At the same time, in the PL spectrum alongside with a band of F+-centers (3.8 eV) an additional emission band with the maximum of 2.25 eV is registered. This band corresponds to aggregate F22+-centers which were create under irradiation. By comparing measurements in EPR and PL spectra with further stepped annealing in the temperature range of 773-1473 K of the samples exposed to the same doses, we were able to conclude that a narrow component of isotropic EPR signal is associated with the formation of paramagnetic F22+-centers under irradiation. A wide component can be caused by deep hole traps which are created by a complex defect (VAl2- - F+) with a localized hole.

  19. Positive Effect of Propolis on Free Radicals in Burn Wounds

    PubMed Central

    Olczyk, Pawel; Ramos, Pawel; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Pilawa, Barbara

    2013-01-01

    Concentration and properties of free radicals in the burn wounds treated with propolis were examined by the use of electron paramagnetic resonance spectroscopy. Magnetic spin-spin interactions and complex free radicals structures in wound beds were studied. The results were compared to those obtained for silver sulphadiazine used as a standard pharmaceutical agent. The changes of free radicals in the matrix of injury with time of exposition on these substances were tested. The aim of this study was to check the hypothesis about the best influence of propolis on the burn wounds healing. It was confirmed that a relatively lower concentration of free radicals exists in the burn wounds treated with propolis. The homogeneously broadened spectra and a complex free radical system characterize the tested tissue samples. The fastening of spin-lattice relaxation processes in the matrix of injury after treatment with propolis and silver sulphadiazine was observed. Practical usefulness of electron paramagnetic resonance spectroscopy in alternative medicine was proved. PMID:23762125

  20. Influence of Molecular Oxygen on Ortho-Para Conversion of Water Molecules

    NASA Astrophysics Data System (ADS)

    Valiev, R. R.; Minaev, B. F.

    2017-07-01

    The mechanism of influence of molecular oxygen on the probability of ortho-para conversion of water molecules and its relation to water magnetization are considered within the framework of the concept of paramagnetic spin catalysis. Matrix elements of the hyperfine ortho-para interaction via the Fermi contact mechanism are calculated, as well as the Maliken spin densities on water protons in H2O and O2 collisional complexes. The mechanism of penetration of the electron spin density into the water molecule due to partial spin transfer from paramagnetic oxygen is considered. The probability of ortho-para conversion of the water molecules is estimated by the quantum chemistry methods. The results obtained show that effective ortho-para conversion of the water molecules is possible during the existence of water-oxygen dimers. An external magnetic field affects the ortho-para conversion rate given that the wave functions of nuclear spin sublevels of the water protons are mixed in the complex with oxygen.

  1. A simplified concept for controlling oxygen mixtures in the anaesthetic machine--better, cheaper and more user-friendly?

    PubMed

    Berge, J A; Gramstad, L; Grimnes, S

    1995-05-01

    Modern anaesthetic machines are equipped with several safety components to prevent delivery of hypoxic mixtures. However, such a technical development has increased the complexity of the equipment. We report a reconstructed anaesthetic machine in which a paramagnetic oxygen analyzer has provided the means to simplify the apparatus. The new machine is devoid of several components conventionally included to prevent hypoxic mixtures: oxygen failure protection device, reservoir O2 alarm, N2O/air selector, and proportioning system for oxygen/nitrous oxide delivery. These devices have been replaced by a simple safety system using a paramagnetic oxygen analyzer at the common gas outlet, which in a feed-back system cuts off the supply of nitrous oxide whenever the oxygen concentration falls below 25%. The simplified construction of the anaesthetic machine has important consequences for safety, cost and user-friendliness. Reducing the complexity of the construction also simplifies the pre-use checkout procedure, and an efficient 5-point check list is presented for the new machine.

  2. Studies of Lanthanide Transport in Metallic Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinsuo; Taylor, Christopher

    Metallic nuclear fuels were tested in fast reactor programs and performed well. However, metallic fuels have shown the phenomenon of FCCI that are due to deleterious reactions between lanthanide fission products and cladding material. As the burnup is increased, lanthanide fission products that contact with the cladding could react with cladding constituents such as iron and chrome. These reactions produce higher-melting intermetallic compounds and low-melting alloys, and weaken the mechanical integrity.

  3. SEPARATION OF EUROPIUM FROM OTHER LANTHANIDE RAE EARTHS BY SOLVENT EXTRACTION

    DOEpatents

    Peppard, D.F.; Horwitz, E.P.; Mason, G.W.

    1963-02-12

    This patent deals with a process of separating europium from other lanthanides present in aqueous hydrochloric or sulfuric acid solutions. The europium is selectively reduced to the divalent state with a divalent chromium salt formed in situ from chromium(III) salt plus zinc amalgam. The other trivalent lanthanides are then extracted away from the divalent europium with a nitrogen-flushed phosphoric acid ester or a phosphonic acid ester. (AEC)

  4. Lanthanide alkyl and silyl compounds: Synthesis, reactivity and catalysts for green

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pindwal, Aradhana

    2016-01-01

    The last few decades have witnessed enormous research in the field of organometallic lanthanide chemistry. Our research group has developed a few rare earth alkyl compounds containing tris(dimethylsilyl)methyl ligand and explored their reactivity. This thesis focusses on extending the study of lanthanide alkyl and silyl compounds to develop strategies for their synthesis and explore their reactivity and role as catalysts in processes such as hydrosilylation and cross-dehydrocoupling.

  5. Rapid and precise determination of zero-field splittings by terahertz time-domain electron paramagnetic resonance spectroscopy.

    PubMed

    Lu, Jian; Ozel, I Ozge; Belvin, Carina A; Li, Xian; Skorupskii, Grigorii; Sun, Lei; Ofori-Okai, Benjamin K; Dincă, Mircea; Gedik, Nuh; Nelson, Keith A

    2017-11-01

    Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g -factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science.

  6. The Role of Chromohalobacter on Transport of Lanthanides and Cesium in the Dolomite Mineral System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zengotita, Frances; Emerson, Hilary Palmer; Dittrich, Timothy M.

    2017-12-01

    The chemical behavior of actinide series elements and fission products is a concern for the Waste Isolation Pilot Plant repository due to their uncertain mobility in the subsurface salt formation. In this work, we are observing the behavior of the halophilic bacterium, Chromohalobacter, and its effect on the mobility of lanthanides and cesium in the presence of dolomite. Batch and minicolumn experiments were conducted with Cs + and lanthanides (Nd 3+, Eu 3+) to quantify potential transport with bacteria. Preliminary results show that Cs does not interact strongly with dolomite or Chromohalobacter, while the lanthanides can interact strongly with bothmore » minerals and bacteria depending on which the Ln contacts first.« less

  7. Failure of ESI Spectra to Represent Metal-Complex Solution Composition: A Study of Lanthanide-Carboxylate Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Luther W.; Campbell, James A.; Clark, Sue B.

    2014-01-21

    Electrospray ionization - mass spectrometry (ESI-MS) was used for the characterization of uranyl complexed to tributyl phosphate (TBP) and dibutyl phosphate (DBP). The stoichiometry of uranyl with TBP and DBP was determined, and the gas phase speciation was found to be dependent on the cone voltage applied to induce fragmentation on the gas phase complexes. To quantitatively compare the gas phase distribution of species to solution, apparent stability constants were calculated. With a cone voltage of 80V, the apparent stability constants for the complexes UO2(NO3)2•2TBP, UO2(NO3)2(H2O)•2TBP, and UO2(DBP)+ were determined. With a lower cone voltage applied, larger complexes were observedmore » and stability constants for the complexes UO2(NO3)2•3TBP and UO2(DBP)42- were determined.« less

  8. Measurement of Rate Constants for Homodimer Subunit Exchange Using Double Electron-Electron Resonance and Paramagnetic Relaxation Enhancements

    PubMed Central

    Yang, Yunhuang; Ramelot, Theresa A.; Ni, Shuisong; McCarrick, Robert M.; Kennedy, Michael A.

    2013-01-01

    Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electron-electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium hafniense Y51. At specific times following mixing site-specific MTSL-labeled Dsy0195 with uniformly 15N-labeled Dsy0195, the extent of exchange was determined either by monitoring the decrease of MTSL-labeled homodimer from the decay of the DEER modulation depth or by quantifying the increase of MTSL-labeled/15N-labeled heterodimer using PREs. Repeated measurements at several time points following mixing enabled determination of the homodimer subunit dissociation rate constant, k−1;, which was 0.037 ± 0.005 min−1 derived from DEER experiments with a corresponding half-life time of 18.7 minutes. These numbers agreed with independent measurements obtained from PRE experiments. These methods can be broadly applied to protein-protein and protein-DNA complex studies. PMID:23180051

  9. Nitrogen-vacancy-assisted magnetometry of paramagnetic centers in an individual diamond nanocrystal.

    PubMed

    Laraoui, Abdelghani; Hodges, Jonathan S; Meriles, Carlos A

    2012-07-11

    Semiconductor nanoparticles host a number of paramagnetic point defects and impurities, many of them adjacent to the surface, whose response to external stimuli could help probe the complex dynamics of the particle and its local, nanoscale environment. Here, we use optically detected magnetic resonance in a nitrogen-vacancy (NV) center within an individual diamond nanocrystal to investigate the composition and spin dynamics of the particle-hosted spin bath. For the present sample, a ∼45 nm diamond crystal, NV-assisted dark-spin spectroscopy reveals the presence of nitrogen donors and a second, yet-unidentified class of paramagnetic centers. Both groups share a common spin lifetime considerably shorter than that observed for the NV spin, suggesting some form of spatial clustering, possibly on the nanoparticle surface. Using double spin resonance and dynamical decoupling, we also demonstrate control of the combined NV center-spin bath dynamics and attain NV coherence lifetimes comparable to those reported for bulk, Type Ib samples. Extensions based on the experiments presented herein hold promise for applications in nanoscale magnetic sensing, biomedical labeling, and imaging.

  10. Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule

    NASA Astrophysics Data System (ADS)

    Teeling-Smith, Richelle M.; Jung, Young Woo; Scozzaro, Nicolas; Cardellino, Jeremy; Rampersaud, Isaac; North, Justin A.; Šimon, Marek; Bhallamudi, Vidya P.; Rampersaud, Arfaan; Johnston-Halperin, Ezekiel; Poirier, Michael G.; Hammel, P. Chris

    2016-05-01

    A key limitation of electron paramagnetic resonance (EPR), an established and powerful tool for studying atomic-scale biomolecular structure and dynamics is its poor sensitivity, samples containing in excess of 10^12 labeled biomolecules are required in typical experiments. In contrast, single molecule measurements provide improved insights into heterogeneous behaviors that can be masked by ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. We report EPR measurements of a single labeled biomolecule that merge these two powerful techniques. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy (NV) centers, and optically detect the paramagnetic resonance of NV spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic time scale for reorientation of the nanodiamond probe is slow compared to the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond labeled DNA provides the foundation for the development of single molecule magnetic resonance studies of complex biomolecular systems.

  11. Lanthanide doped strontium-barium cesium halide scintillators

    DOEpatents

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  12. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents

    PubMed Central

    Estelrich, Joan; Sánchez-Martín, María Jesús; Busquets, Maria Antònia

    2015-01-01

    Magnetic resonance imaging (MRI) has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin–lattice relaxation and T2, spin–spin relaxation) of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents) are administered prior to the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions), providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor) targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of nanoparticles at the site of interest and the bioavailability, respectively. Here, we review the most important characteristics of the nanoparticles or complexes used as MRI contrast agents. PMID:25834422

  13. The specific sorption of Np(V) on the corundum (α-Al2O3) surface in the presence of trivalent lanthanides Eu(III) and Gd(III): A batch sorption and XAS study.

    PubMed

    Virtanen, S; Bok, F; Ikeda-Ohno, A; Rossberg, A; Lützenkirchen, J; Rabung, T; Lehto, J; Huittinen, N

    2016-12-01

    The sorption of pentavalent neptunium, Np(V), on corundum (α-Al2O3) was investigated in the absence and presence of trivalent europium or gadolinium as a competing element under CO2-free conditions. The objective of this study was to investigate how a trivalent metal ion with a higher charge than that of the neptunyl(V) ion would affect the sorption of Np(V) when allowed to adsorb on the mineral surface before the addition of Np(V). Batch sorption experiments conducted as a function of pH (pH-edges) and as a function of Np(V) concentration (isotherms) in the absence and presence of 1×10(-5)M Eu(III) showed no sign of Eu being able to block Np sorption sites. Surface complexation modelling using the diffuse double layer model was applied to the batch data to obtain surface complexation constants for the formed Np(V) complexes on corundum. To account for potential changes occurring in the coordination environment of the neptunium ion in the presence of a trivalent lanthanide, X-ray absorption spectroscopy (XAS) measurements were carried out on the samples containing only Np(V) and Np(V)+Gd(III). The results reveal the presence of a bidentate Np(V) edge-sharing complex on the corundum surface in the absence of Gd(III), while the coordination environment of Np(V) on the corundum surface could be changed when Gd(III) is added to the sample before the sorption of Np(V). Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Slow magnetic relaxation and luminescence properties in lanthanide(iii)/anil complexes.

    PubMed

    Maniaki, Diamantoula; Mylonas-Margaritis, Ioannis; Mayans, Julia; Savvidou, Aikaterini; Raptopoulou, Catherine P; Bekiari, Vlasoula; Psycharis, Vassilis; Escuer, Albert; Perlepes, Spyros P

    2018-05-22

    The initial use of anils, i.e. bidentate Schiff bases derived from the condensation of anilines with salicylaldehyde or its derivatives, in 4f-metal chemistry is described. The 1 : 1 reactions between Ln(NO3)3·xH2O (Ln = lanthanide) or Y(NO3)3·6H2O and N-(5-bromosalicylidene)aniline (5BrsalanH) in MeCN has provided access to complexes [Ln(NO3)3(5BrsalanH)2(H2O)]·MeCN (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) and [Y(NO3)3(5BrsalanH)2(H2O)]·MeCN, respectively, in good yields. The structures of the isomorphous complexes with Ln = Pr(1·MeCN), Sm(3·MeCN), Gd(5·MeCN), Dy(7·MeCN) and Er(9·MeCN) have been determined by single-crystal X-ray crystallography. The other complexes were proven to be isostructural with the fully structurally characterized compounds based on elemental analyses, IR spectra, unit cell determinations and powder X-ray patterns. The 9-coordinate LnIII centre in the [Ln(NO3)3(5BrsalanH)2(H2O)] molecules is bound to six oxygen atoms from the three bidentate chelating nitrato groups, two oxygen atoms that belong to the organic ligands and one oxygen atom from the aquo ligand. The 5BrsalanH molecules behave as monodentate O-donors; the acidic H atom is clearly located on the imino N atom and thus the formally neutral ligands adopt an extremely rare coordination mode participating in the zwitterionic form. The coordination polyhedra defined by the nine donor atoms around the LnIII centres are best described as spherical capped square antiprisms. Various intermolecular interactions build the crystal structures and Hirshfeld surface analysis was applied to evaluate the magnitude of interactions between the molecules. Solid-state IR and UV/VIS data are discussed in terms of structural features. 1H NMR data prove that the diamagnetic [Y(NO3)3(5BrsalanH)2(H2O)] complex decomposes in DMSO. Combined dc and ac magnetic susceptibility, as well as magnetization data for 7 suggest that this complex shows field-induced slow magnetic relaxation. Two magnetization relaxation processes are evident. The fit to the Arrhenius law has been performed using the 6.5-8.5 K ac data, affording an effective barrier for the magnetization reversal of 27 cm-1. Cole-Cole plot analysis in the temperature range in which the Orbach relaxation process is assumed, reveals a narrow distribution of relaxation times. The solid Dy(iii) complex 7 emits green light at 338 nm, the emission being ligand-centered. The perspectives of the present, first results in the lanthanide(iii)-anil chemistry are critically discussed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chunying; Lu, Jialin; Han, Jingyu

    Polymeric lanthanide complexes with thiostannate and polyamine mixed ligands, [Ln(peha)(μ–SnS{sub 4}H)]{sub n} [Ln=La (1a), Nd (1b)] and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}nH{sub 2}O [Ln=Nd (2a), Sm (2b), Gd (2c), Dy (2d)] (peha=pentaethylenehexamine, tepa=tetraethylenepentamine) were respectively prepared in peha and tepa coordinative solvents by the solvothermal methods. In 1a and 1b, the Ln{sup 3+} ions are coordinated by a hexadentate peha ligand forming [Ln(peha)]{sup 3+} units. The [SnS{sub 4}H]{sup 3−} anion chelates a [Ln(peha)]{sup 3+} unit via two S atoms and coordinates to another [Ln(peha)]{sup 3+} unit via the third S atom. As a result, the [Ln(peha)]{sup 3+} units are connectedmore » into coordination polymers [Ln(peha)(μ–SnS{sub 4}H)]{sub n} by an unprecedented tridentate μ–η{sup 1},η{sup 2}–SnS{sub 4}H bridging ligands. In 2a–2d, the Ln{sup 3+} ions are coordinated by a pentadentate tepa ligand, and two [Ln(tepa)]{sup 3+} units are joined by two μ–OH bridges to form a binuclear [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} unit. Behaving as a bidentate μ–η{sup 1}, η{sup 1}–Sn{sub 2}S{sub 6} bridging ligand, the Sn{sub 2}S{sub 6} unit connects [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} units into a neutral coordination polymer [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n} via the trans S atoms. The Ln{sup 3+} ions are in distorted monocapped square antiprismatic and bicapped trigonal prismatic environments in [(Ln(peha)(μ–SnS{sub 4}H)]{sub n} and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}, respectively. The denticities of ethylene polyamine play an important role on the formation and complexation of the thiostannate in the presence of lanthanide ions. Compounds 1a–2d show well-defined absorption edges with band gaps between 2.81 and 3.15 eV. - Graphical abstract: Lanthanide coordination polymers concerning thiostannate ligands were prepared by the solvothermal methods, and μ{sub 3}–SnS{sub 4}H and μ–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. - Highlights: • Lanthanide coordination polymers were prepared in polyamines with higher denticity. • The μ–η{sup 1},η{sup 2}–SnS{sub 4}H and μ–η{sup 1},η{sup 1}–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. • Effect of amine on the complexation of Ln(III) with thiostannate is observed.« less

  16. Ferromagnetic interactions and slow magnetic relaxation behaviors of two lanthanide coordination polymers bridged by 2,6-naphthalenedicarboxylate ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ming; Li, Xiuhua; Cui, Ping

    2015-03-15

    Two lanthanide-based frameworks: (Ln(phen)(NDA){sub 1.5}(H{sub 2}O)){sub n} (Ln=Gd(1), NDA=2,6-naphthalenedicarboxylate anion, phen=1,10-phenanthroline), and ([Dy(phen)(NDA){sub 1.5}]·0.5H{sub 2}NDA){sub n} (2) were structurally and magnetically characterized. Compound 1 exhibits 2D layer structure, belonging to the triclinic system with space group P−1, while compound 2 features a 3D framework with space group P−1. The magnetic studies revealed that ferromagnetic coupling existed between adjacent lanthanide ions in 1 and 2, and frequency-dependence out-of-phase signals in the measurement of alternate-current susceptibilities were observed for 2, albeit without reaching the characteristic maxima above 2 K, implying slow magnetic relaxation behavior in 2. After the application of a dcmore » field, good peak shapes of ac signal were obtained and got the energy barrier ΔE/k{sub B}=29 K and the pre-exponential factor τ{sub 0}=4.47×10{sup −7} s at 2000 Oe field; and when the dc field was in 5000 Oe, giving ΔE/k{sub B}=40 K and τ{sub 0}=2.82×10{sup −6}. - Graphical abstract: Two novel lanthanide-based frameworks 1 and 2 were structurally and magnetically characterized. The results revealed that ferromagnetic coupling exists between adjacent lanthanide ions in 1 and 2, and 2 displayed slow magnetic relaxation behavior with the energy barrier of 29 K. - Highlights: • Two lanthanide frameworks were synthesized and magnetically characterized. • The magnetism studies indicate slow magnetic relaxation behavior in 2. • Weak ferromagnetic coupling existing between adjacent lanthanide centers.« less

  17. Influence of a Heterocyclic Nitrogen-Donor Group on the Coordination of Trivalent Actinides and Lanthanides by Aminopolycarboxylate Complexants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Travis S.; Heathman, Colt R.; Jansone-Popova, Santa

    Here, the novel metal chelator N-2-(pyridylmethyl)diethylenetriamine- N,N',N",N"-tetraacetic acid (DTTA-PyM) was designed to replace a single oxygen-donor acetate group of the well-known aminopolycarboxylate complexant diethylenetriamine- N,N,N',N",N"-pentaacetic acid (DTPA) with a nitrogen-donor 2-pyridylmethyl. Potentiometric, spectroscopic, computational, and radioisotope distribution methods show distinct differences for the 4f and 5f coordination environments and enhanced actinide binding due to the nitrogen-bearing heterocyclic moiety. The Am 3+, Cm 3+, and Ln 3+ complexation studies for DTTA-PyM reveal an enhanced preference, relative to DTPA, for trivalent actinide binding. Fluorescence studies indicate no changes to the octadentate coordination of trivalent curium, while evidence of heptadentate complexation of trivalentmore » europium is found in mixtures containing EuHL (aq) complexes at the same aqueous acidity. The denticity change observed for Eu 3+ suggests that complex protonation occurs on the pyridyl nitrogen. Formation of the CmHL (aq) complex is likely due to the protonation of an available carboxylate group because the carbonyl oxygen can maintain octadentate coordination through a rotation. The observed suppressed protonation of the pyridyl nitrogen in the curium complexes may be attributed to stronger trivalent actinide binding by DTTA-PyM. Density functional theory calculations indicate that added stabilization of the actinide complexes with DTTA-PyM may originate from π-back-bonding interactions between singly occupied 5f orbitals of Am 3+ and the pyridyl nitrogen. The differences between the stabilities of trivalent actinide chelates (Am 3+, Cm 3+) and trivalent lanthanide chelates (La 3+–Lu 3+) are observed in liquid–liquid extraction systems, yielding unprecedented 4f/5f differentiation when using DTTA-PyM as an aqueous holdback reagent. In addition, the enhanced nitrogen-donor softness of the new DTTA-PyM chelator was perturbed by adding a fluorine onto the pyridine group. The comparative characterization of N-(3-fluoro-2-pyridylmethyl)diethylenetriamine- N,N',N",N"-tetraacetic acid (DTTA-3-F-PyM) showed subdued 4 f/5 f differentiation due to the presence of this electron-withdrawing group.« less

  18. Parameter study of r-process lanthanide production and heating rates in kilonovae

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-04-01

    Explosive r-process nucleosynthesis in material ejected during compact object mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients are sensitive to the composition of the material after nuclear burning ceases, as the composition determines the local heating rate from nuclear decays and the opacity. The presence of lanthanides in the ejecta can drastically increase the opacity. We use the new general-purpose nuclear reaction network SkyNet to run a parameter study of r-process nucleosynthesis for a range of initial electron fractions Ye, initial entropies s, and density decay timescales τ. We find that the ejecta is lanthanide-free for Ye >~ 0 . 22 - 0 . 3 , depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Ye lead to reduced heating rates, because single nuclides dominate the heating. With a simple model we estimate the luminosity, time, and effective temperature at the peak of the light curve. Since the opacity is much lower in the lanthanide-free case, we find the luminosity peaks much earlier at ~ 1 day vs. ~ 15 days in the lanthanide-rich cases. Although there is significant variation in the heating rate with Ye, changes in the heating rate do not mitigate the effect of the lanthanides. This research is partially supported by NSF under Award Numbers AST-1333520 and AST-1205732.

  19. Formation and corrosion of a 410 SS/ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    This study evaluates the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel in a single waste form. A representative composite material AOC410 was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the Zr reacted with lanthanide oxides to form lanthanide zirconate, which combined with the remaining lanthanide oxides to form a porous ceramic network encapsulated by alloy as a composite puck. Excess alloy formed amore » metal bead on top of the composite. The alloys in the composite and bead were both mixture of martensite grains and ferrite grains with carbide precipitates. FeCrMo intermetallic phases also precipitated in the ferrite grains in the composite part. Ferrite surrounding carbides was sensitized and the least corrosion resistant in electrochemical corrosion tests conducted in an acidic brine electrolyte; ferrite neighboring martensite grains and intermetallics corroded galvanically. The lanthanide oxide domains dissolved chemically, but lanthanide zirconate domains did not dissolve. The presence of oxide phases did not affect corrosion of the neighboring alloy phases. These results suggest the longterm corrosion of a composite waste form can be evaluated by using separate material degradation models for the alloy and ceramic phases.« less

  20. On the suitability of lanthanides as actinide analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, Kenneth; Szigethy, Geza

    2008-07-01

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond groupmore » at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries. (authors)« less

  1. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS.

    PubMed

    Bentlin, Fabrina R S; dos Santos, Clarissa M M; Flores, Erico M M; Pozebon, Dirce

    2012-01-13

    This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 μL of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L(-1), respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. EPR study of free radicals in bread

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Mladenova, Ralitsa

    2004-05-01

    The features of the recorded EPR spectra of paramagnetic species formed in bread and rusk are reported. The appearance of free radicals in them is only connected with their thermal treatment since the starting materials (flour and grains) exhibit very weak EPR signal. The obtained EPR spectra are complex and indicate that: (i) the relative number of paramagnetic species depends on the temperature and treating time of the raw product; (ii) the g-values are strongly temperature dependent with a tendency to coincide at t≥220 °C. Because of the relatively low (150-220 °C) temperature of thermal treatment, the studied free radicals can be assumed to appear in the course of the browning (Maillard) reaction and not to the carbonization of the material.

  3. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    NASA Astrophysics Data System (ADS)

    Zhuang, Gui-lin; Chen, Wu-lin; Zheng, Jun; Yu, Hui-you; Wang, Jian-guo

    2012-08-01

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H3SIDA) and Ln(NO3)3 (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd3+ ions for anti-anti and syn-anti carboxylate bridges are -1.0×10-3 and -5.0×10-3 cm-1, respectively, which reveals weak antiferromagnetic interaction in 4.

  4. Separations of actinides, lanthanides and other metals

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ensor, Dale D.

    1995-01-01

    An organic extracting solution comprised of a bis(acylpyrazolone or a substituted bis(acylpyrazolone) and an extraction method useful for separating certain elements of the actinide series of the periodic table having a valence of four from one other, and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also useful for separating hexavalent actinides from one or more of the substances in a group consisting of trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals.

  5. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes.

    PubMed

    Chilton, Nicholas F; Collison, David; McInnes, Eric J L; Winpenny, Richard E P; Soncini, Alessandro

    2013-01-01

    Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±(15)/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.

  6. Coordination geometries of solvated lanthanide(II) ions: Molecular structures of the cationic species [(DIME)[sub 3]Ln][sup 2+] (DIME = diethylene glycol dimethyl ether; Ln[sup 2+] = Sm, Yb), [(DIME)[sub 2]Yb(CH[sub 3]CN)[sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.P. III; Deng, H.; Boyd, E.P.

    1994-04-13

    The first lanthanide(II) cationic species with coordination numbers 7,8, and 9 have been structurally characterized. Mercury amalgams of the elemental lanthanides (Ln(Hg) where Ln = Sm, Eu, Yb) cleanly reduce Mn[sub 2](CO)[sub 10] and Co[sub 2](CO)[sub 8] in polydentate ethers to [Mn(CO)[sub 5

  7. Ion-Size-Dependent Formation of Mixed Titanium/Lanthanide Oxo Clusters.

    PubMed

    Artner, Christine; Kronister, Stefan; Czakler, Matthias; Schubert, Ulrich

    2014-11-01

    The mixed-metal oxo clusters LnTi 4 O 3 (O i Pr) 2 (OMc) 11 (Ln = La, Ce; OMc = methacrylate), Ln 2 Ti 6 O 6 (OMc) 18 (HO i Pr) (Ln = La, Ce, Nd, Sm) and Ln 2 Ti 4 O 4 (OMc) 14 (HOMc) 2 (Ln = Sm, Eu, Gd, Ho) have been synthesized from titanium isopropoxide, the corresponding lanthanide acetate and methacrylic acid. The type of cluster obtained strongly depends on the size of the lanthanide ion.

  8. Method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.; Kaplan, Louis; Mason, George W.

    1985-01-01

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions with an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high level nuclear reprocessing waste solutions.

  9. Thermodynamical properties of liquid lanthanides-A variational approach

    NASA Astrophysics Data System (ADS)

    Patel, H. P.; Thakor, P. B.; Sonvane, Y. A.

    2015-06-01

    Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.

  10. Thermodynamical properties of liquid lanthanides-A variational approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, H. P.; Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat; Thakor, P. B., E-mail: pbthakor@rediffmail.com

    2015-06-24

    Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.

  11. Stable singlet carbenes as mimics for transition metal centers

    PubMed Central

    Martin, David; Soleilhavoup, Michele

    2011-01-01

    This perspective summarizes recent results, which demonstrate that stable carbenes can activate small molecules (CO, H2, NH3 and P4) and stabilize highly reactive intermediates (main group elements in the zero oxidation state and paramagnetic species). These two tasks were previously exclusive for transition metal complexes. PMID:21743834

  12. Infrared photodissociation spectroscopy of M(N2)n(+) (M = Y, La, Ce; n = 7-8) in the gas phase.

    PubMed

    Xie, Hua; Shi, Lei; Xing, Xiaopeng; Tang, Zichao

    2016-02-14

    M(N2)n(+) (M = Y, La, Ce; n = 7-8) complexes have been studied by infrared photodissociation (IRPD) spectroscopy and density functional theory (DFT) calculations. The experimental results indicate that the N-N stretching vibrational frequencies are red-shifted from the gas-phase N2 value. The π back-donation is found to be a main contributor in these systems. IRPD spectra and DFT calculations reveal the coexistence of two isomers in the seven-coordinate M(N2)7(+) and eight-coordinate M(N2)8(+) complexes, respectively. The present studies on these metal-nitrogen complexes shed light on the interactions and coordinations toward N2 with transition and lanthanide metals.

  13. Property enchancement of polyimide films by way of the incorporation of lanthanide metal ions

    NASA Technical Reports Server (NTRS)

    Thompson, David W.

    1993-01-01

    Lanthanide metal ions were incorporated into the polyimide derived from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 1,3-bis(aminophenoxy) benzene (APB) in an attempt to produce molecular level metal-polymer composites. The lanthanide series of metal ions (including aluminum, scandium, and yttrium) provide discrete and stable metal ions in the 3+ oxidation state. Throughout the series there is a uniform variation in ionic size ranging from 50 pm for aluminum to a maximum of 103.4 pm for cerium and gradually decreasing again to 84.8 pm for lutetium. The high charge-to-size ratio for these ions as well as the ability to obtain large coordination numbers makes them excellent candidates for interacting with the polymer substructure. The distinct lack of solubility of simple lanthanide salts such as the acetates and halides has made it difficult to obtain metal ions distributed in the polymer framework as discrete ions or metal complexes rather than microcomposites of metal clusters. (Lanthanum nitrates are quite soluble, but the presence of the strongly oxidizing nitrate ion leads to serious degradation of the polymer upon thermal curing. This work was successful at extending the range of soluble metals salts by using chelating agents derived from the beta-diketones dipivaloylmethane, dibenzoylmethane, trifluoroacetylacetone, and hexafluoroacetylacetone. Metal acetates which are insoluble in dimethylacetamide dissolve readily in the presence of the diketones. Addition of the polyimide yields a homogeneous resin which is then cast into a clear film. Upon curing clear films were obtained with the dibenzoylmethane and trifluoroacetylacetone ligands. The dipavaloylmethane precipitates the metal during the film casting process, and hexafluoroacetylacetone gives cured films which are deformed and brittle. These clear films are being evaluated for the effect of the metal ions on the coefficient of thermal expansion, resistance to atomic oxygen, and on selective gas permeability. Much more commonly than above, polyimide films are prepared by casting the film as the poly(amic acid) precursor which is then converted to the imidized form during the thermal cure cycle. Very limited success was achieved in the past in adding lanthanide metal ions to the amide precursors because of gellation and lack of solubility. With the use of the diketone ligands cited above, the solubility and gellation problems were overcome. However, the films after curing were clear but unacceptably brittle. Attempts to overcome this cure embrittlement problem are in progress.

  14. Ion binding compounds, radionuclide complexes, methods of making radionuclide complexes, methods of extracting radionuclides, and methods of delivering radionuclides to target locations

    DOEpatents

    Chen, Xiaoyuan; Wai, Chien M.; Fisher, Darrell R.

    2000-01-01

    The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.

  15. [Towards computer-aided catalyst design: Three effective core potential studies of C-H activation]. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    Research in the initial grant period focused on computational studies relevant to the selective activation of methane, the prime component of natural gas. Reaction coordinates for methane activation by experimental models were delineated, as well as the bonding and structure of complexes that effect this important reaction. This research, highlighted in the following sections, also provided the impetus for further development, and application of methods for modeling metal-containing catalysts. Sections of the report describe the following: methane activation by multiple-bonded transition metal complexes; computational lanthanide chemistry; and methane activation by non-imido, multiple-bonded ligands.

  16. Chiral probes for α1-AGP reporting by species-specific induced circularly polarised luminescence† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc00482j

    PubMed Central

    Suturina, Elizaveta A.; Mason, Kevin

    2018-01-01

    Luminescence spectroscopy has been used to monitor the selective and reversible binding of pH sensitive, macrocyclic lanthanide complexes, [LnL1], to the serum protein α1-AGP, whose concentration can vary significantly in response to inflammatory processes. On binding α1-AGP, a very strong induced circularly-polarised europium luminescence signal was observed that was of opposite sign for human and bovine variants of α1-AGP – reflecting the differences in the chiral environment of their drug-binding pockets. A mixture of [EuL1] and [TbL1] complexes allowed the ratiometric monitoring of α1-AGP levels in serum. Moreover, competitive displacement of [EuL1] from the protein by certain prescription drugs could be monitored, allowing the determination of drug binding constants. Reversible binding of the sulphonamide arm as a function of pH, led to a change of the coordination environment around the lanthanide ion, from twisted square antiprism (TSAP) to a square antiprismatic geometry (SAP), signalled by emission spectral changes and verified by detailed computations and the fitting of NMR pseudocontact shift data in the sulphonamide bound TSAP structure for the Dy and Eu examples. Such analyses allowed a full definition of the magnetic susceptibility tensor for [DyL1]. PMID:29732083

  17. Trinuclear Mn(II) complex with paramagnetic bridging 1,2,3-dithiazolyl ligands.

    PubMed

    Sullivan, David J; Clérac, Rodolphe; Jennings, Michael; Lough, Alan J; Preuss, Kathryn E

    2012-11-18

    The first metal coordination complex of a radical ligand based on the 1,2,3-dithiazolyl heterocycle is reported. 6,7-Dimethyl-1,4-dioxo-naphtho[2,3-d][1,2,3]dithiazolyl acts as a bridging ligand in the volatile trinuclear Mn(hfac)(2)-Rad-Mn(hfac)(2)-Rad-Mn(hfac)(2) complex (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). The Mn(II) and radical ligand spins are coupled anti-ferromagnetically (AF) resulting in an S(T) = 13/2 spin ground state.

  18. Toward lanthanide containing coordination polymers and nanomaterials

    NASA Astrophysics Data System (ADS)

    Greig, Natalie E.

    The focus of this thesis is to develop lanthanide (Ln) luminescent materials through the exploration of coordination polymers and nanomaterials. Herein, dimethyl-3,4-furanedicarboxylate acid undergoes hydrolysis under hydrothermal conditions to form coordination polymers with lanthanide ions. The resulting coordination polymers exhibited luminescent properties, with quantum yields and lifetimes for the Eu- and Tb-CP of 1.14±0.31% and 0.387±0.0001 ms, and 3.33±0.82% and 0.769±0.006 ms, respectively. While the incorporation of lanthanides was not achieved in this work, progress toward the production of pure phase InP in the nanoregime has been made, using a low-cost, hydrothermal method. Though SEM and PXRD conflict, it is believed that pure InP particles with a size range of 58-81 nm were successfully synthesized.

  19. Lanthanide co-ordination frameworks: Opportunities and diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robert J.; Long, De-Liang; Hubberstey, Peter

    2005-08-15

    Significant successes have been made over recent years in preparing co-ordination framework polymers that show macroscopic material properties, but in the vast majority of cases this has been achieved with d-block metal-based systems. Lanthanide co-ordination frameworks also offer attractive properties in terms of their potential applications as luminescent, non-linear optical and porous materials. However, lanthanide-based systems have been far less studied to date than their d-block counterparts. One possible reason for this is that the co-ordination spheres of lanthanide cations are more difficult to control and, in the absence of design strategies for lanthanide co-ordination frameworks, it is significantly moremore » difficult to target materials with specific properties. However, this article highlights some of the exciting possibilities that have emerged from the earliest investigations in this field with new topological families of compounds being discovered from relatively simple framework components, including unusual eight, seven and five-connected framework systems. Our own research, as well as others, is leading to a much greater appreciation of the factors that control framework formation and the resultant observed topologies of these polymers. As this understanding develops targeting particular framework types will become more straightforward and the development of designed polyfunctional materials more accessible. Thus, it can be seen that lanthanide co-ordination frameworks have the potential to open up previously unexplored directions for materials chemistry. This article focuses on the underlying concepts for the construction of these enticing and potentially highly important materials.« less

  20. The chemistry of TALSPEAK: A review of the science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Kenneth L.

    Here, the TALSPEAK Process (Trivalent Actinide Lanthanide Separation with Phosphorus-reagent Extraction from Aqueous Komplexes) was originally developed at Oak Ridge National Laboratory by B. Weaver and F.A. Kappelmann in the 1960s. It was envisioned initially as an alternative to the TRAMEX process (selective extraction of trivalent actinides by tertiary or quaternary amines over fission product lanthanides from concentrated LiCl solutions). TALSPEAK proposed the selective extraction of trivalent lanthanides away from the actinides, which are retained in the aqueous phase as aminopolycarboxylate complexes. After several decades of research and development, the conventional TALSPEAK process (based on di-(2-ethylhexyl) phosphoric acid (extractant) inmore » 1,4-di-isopropylbenzene (diluent) and a concentrated lactate buffer containing diethylenetriamine-N,N,N',N",N"-pentaacetic acid (actinide-selective holdback reagent)) has become a widely recognized benchmark for advanced aqueous partitioning of the trivalent 4f/5f elements. TALSPEAK chemistry has also been utilized as an actinide-selective stripping agent (Reverse TALSPEAK) with some notable success. Under ideal conditions, conventional TALSPEAK separates Am 3+ from Nd 3+ (the usual limiting pair) with a single-stage separation factor of about 100; both lighter and heavier lanthanides are more completely separated from Am 3+. Despite this apparent efficiency, TALSPEAK has not seen enthusiastic adoption for advanced partitioning of nuclear fuels at process scale for two principle reasons: 1) all adaptations of TALSPEAK chemistry to process scale applications require rigid pH control within a narrow range of pH, and 2) phase transfer kinetics are often slower than ideal. To compensate for these effects, high concentrations of the buffer (0.5-2 M H/Na lactate) are required. Acknowledgement of these complications in TALSPEAK process development has inspired significant research activities dedicated to improving understanding of the basic chemistry that controls TALSPEAK (and related processes based on the application of actinide-selective holdback reagents). In the following report, advances in understanding of the fundamental chemistry of TALSPEAK that have occurred during the past decade will be reviewed and discussed.« less

Top