NASA Astrophysics Data System (ADS)
Tennant, W. C.; Claridge, R. F. C.; Walsby, C. J.; Lees, N. S.
This article outlines the present state of knowledge of paramagnetic defects in crystalline zircon as obtained mainly, but not exclusively, from electron paramagnetic resonance (EPR) studies in crystalline zircon (zirconium silicate, ZrSiO4). The emphasis is on single-crystal studies where, in principle, unambiguous analysis is possible. Firstly, the crystallography of zircon is presented. Secondly, the relationships between available crystal-site symmetries and the symmetries of observed paramagnetic species in zircon, and how these observations lead to unambiguous assignments of point-group symmetries for particular paramagnetic species are detailed. Next, spin-Hamiltonian (SH) analysis is discussed with emphasis on the symmetry relationships that necessarily exist amongst the Laue classes of the crystal sites in zircon, the paramagnetic species occupying those sites and the SH itself. The final sections of the article then survey the results of EPR studies on zircon over the period 1960-2002.
Vanin, Anatoly F
2018-06-01
The overview demonstrates how the use of only one physico-chemical approach, viz., the electron paramagnetic resonance method, allowed detection and identification of dinitrosyl iron complexes with thiol-containing ligands in various animal and bacterial cells. These complexes are formed in biological objects in the paramagnetic (electron paramagnetic resonance-active) mononuclear and diamagnetic (electron paramagnetic resonance-silent) binuclear forms and control the activity of nitrogen monoxide, one of the most universal regulators of metabolic processes in the organism. The analysis of electronic and spatial structures of dinitrosyl iron complex sheds additional light on the mechanism whereby dinitrosyl iron complex with thiol-containing ligands function in human and animal cells as donors of nitrogen monoxide and its ionized form, viz., nitrosonium ions (NO + ).
NASA Astrophysics Data System (ADS)
Twardoch, Marek; Messai, Youcef; Vileno, Bertrand; Hoarau, Yannick; Mekki, Djamel E.; Felix, Olivier; Turek, Philippe; Weiss, Jean; Decher, Gero; Martel, David
2018-06-01
An experimental approach involving electron paramagnetic resonance is proposed for studying photo-generated reactive species in semiconductor nano-particle-based films deposited on the internal wall of glass capillaries. This methodology is applied here to nano-TiO2 and allows a semi-quantitative analysis of the kinetic evolutions of radical production using a spin scavenger probe.
Olczyk, Pawel; Ramos, Pawel; Bernas, Marcin; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Pilawa, Barbara
2013-01-01
Different groups of free radicals expressed in burn wounds treated with propolis and silver sulphadiazine were examined. The thermal effect forms major types of free radicals in a wound because of the breaking of chemical bonds. Free radicals, located in the heated skin, were tested after 21 days of treating by these two substances. The aim of this work was to find the method for determination of types and concentrations of different groups of free radicals in wound after high temperature impact during burning. The effects of the therapy by propolis and silver sulphadiazine on free radicals were studied. Since the chemical methods of free radicals studies are destructive, the usefulness of the electron paramagnetic resonance spectroscopy was tested in this work. The electron paramagnetic resonance spectra measured with the microwave power of 2.2 mW were numerically fitted by theoretical curves of Gaussian and Lorentzian shapes. The experimental electron paramagnetic resonance spectra of tissue samples are best fitted by the sum of one Gauss and two Lorentz lines. An innovatory numerical procedure of spectroscopic skin analysis was presented. It is very useful in the alternative medicine studies. PMID:23762162
1997-12-01
Armed Forces Rad I Research Institute Retrospective Reconstruction of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance A...of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance Authored by Scientific Center of Radiation Medicine Academy of Medical...libraries associated with the U.S. Government’s Depository Library System. Preface On April 26, 1986, Reactor #4 at the Chernobyl Nuclear Power Plant near
NARROW LINE ABSORPTION IN CACO3.
CARBONATES), (*CALCIUM COMPOUNDS, (*ABSORPTION SPECTRA, CALCITE), (*CALCITE, RADIATION EFFECTS), ELECTRON PARAMAGNETIC RESONANCE, SINGLE CRYSTALS , NEUTRONS, X RAYS, GAMMA RAYS, IONS, CRYSTAL DEFECTS, PARAMAGNETIC RESONANCE.
ERIC Educational Resources Information Center
Abell, Timothy N.; McCarrick, Robert M.; Bretz, Stacey Lowery; Tierney, David L.
2017-01-01
A structured inquiry experiment for inorganic synthesis has been developed to introduce undergraduate students to advanced spectroscopic techniques including paramagnetic nuclear magnetic resonance and electron paramagnetic resonance. Students synthesize multiple complexes with unknown first row transition metals and identify the unknown metals by…
Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule
NASA Astrophysics Data System (ADS)
Teeling-Smith, Richelle M.; Jung, Young Woo; Scozzaro, Nicolas; Cardellino, Jeremy; Rampersaud, Isaac; North, Justin A.; Šimon, Marek; Bhallamudi, Vidya P.; Rampersaud, Arfaan; Johnston-Halperin, Ezekiel; Poirier, Michael G.; Hammel, P. Chris
2016-05-01
A key limitation of electron paramagnetic resonance (EPR), an established and powerful tool for studying atomic-scale biomolecular structure and dynamics is its poor sensitivity, samples containing in excess of 10^12 labeled biomolecules are required in typical experiments. In contrast, single molecule measurements provide improved insights into heterogeneous behaviors that can be masked by ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. We report EPR measurements of a single labeled biomolecule that merge these two powerful techniques. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy (NV) centers, and optically detect the paramagnetic resonance of NV spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic time scale for reorientation of the nanodiamond probe is slow compared to the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond labeled DNA provides the foundation for the development of single molecule magnetic resonance studies of complex biomolecular systems.
da Silva, Yvana Lopes Pinheiro; Costa, Rita Zanlorensi Visneck; Pinho, Kátia Elisa Prus; Ferreira, Ricardo Rabello; Schuindt, Sueliton Miyamoto
2015-01-01
Objective To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality. Materials and Methods Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration. Results As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions. Conclusion Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography. PMID:25987746
NASA Astrophysics Data System (ADS)
Zhang, Huiming; Xie, Yang; Ji, Tongyu
2007-06-01
The off-resonance rotating frame technique based on the spin relaxation properties of off-resonance T1 ρ can significantly increase the sensitivity of detecting paramagnetic labeling at high magnetic fields by MRI. However, the in vivo detectable dimension for labeled cell clusters/tissues in T1 ρ-weighted images is limited by the water diffusion-exchange between mesoscopic scale compartments. An experimental investigation of the effect of water diffusion-exchange between compartments on the paramagnetic relaxation enhancement of paramagnetic agent compartment is presented for in vitro/ in vivo models. In these models, the size of paramagnetic agent compartment is comparable to the mean diffusion displacement of water molecules during the long RF pulses that are used to generate the off-resonance rotating frame. The three main objectives of this study were: (1) to qualitatively correlate the effect of water diffusion-exchange with the RF parameters of the long pulse and the rates of water diffusion, (2) to explore the effect of water diffusion-exchange on the paramagnetic relaxation enhancement in vitro, and (3) to demonstrate the paramagnetic relaxation enhancement in vivo. The in vitro models include the water permeable dialysis tubes or water permeable hollow fibers embedded in cross-linked proteins gels. The MWCO of the dialysis tubes was chosen from 0.1 to 15 kDa to control the water diffusion rate. Thin hollow fibers were chosen to provide sub-millimeter scale compartments for the paramagnetic agents. The in vivo model utilized the rat cerebral vasculatures as a paramagnetic agent compartment, and intravascular agents (Gd-DTPA) 30-BSA were administrated into the compartment via bolus injections. Both in vitro and in vivo results demonstrate that the paramagnetic relaxation enhancement is predominant in the T1 ρ-weighted image in the presence of water diffusion-exchange. The T1 ρ contrast has substantially higher sensitivity than the conventional T1 contrast in detecting paramagnetic agents, especially at low paramagnetic agent volumetric fractions, low paramagnetic agent concentrations, and low RF amplitudes. Short pulse duration, short pulse recycle delay and efficient paramagnetic relaxation can reduce the influence of water diffusion-exchange on the paramagnetic enhancement. This study paves the way for the design of off-resonance rotating experiments to detect labeled cell clusters/tissue compartments in vivo at a sub-millimeter scale.
Electron paramagnetic resonance of several lunar rock samples
NASA Technical Reports Server (NTRS)
Marov, P. N.; Dubrov, Y. N.; Yermakov, A. N.
1974-01-01
The results are presented of investigating lunar rock samples returned by the Luna 16 automatic station, using electron paramagnetic resonance (EPR). The EPR technique makes it possible to detect paramagnetic centers and investigate their nature, with high sensitivity. Regolith (finely dispersed material) and five particles from it, 0.3 mm in size, consisting mostly of olivine, were investigated with EPR.
Computer simulation of magnetic resonance spectra employing homotopy.
Gates, K E; Griffin, M; Hanson, G R; Burrage, K
1998-11-01
Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence transitions in the presence of energy level anticrossings and looping transitions. Herein we describe the application and implementation of homotopy to the analysis of continuous wave electron paramagnetic resonance spectra. The method can also be applied to electron nuclear double resonance, electron spin echo envelope modulation, solid-state nuclear magnetic resonance, and nuclear quadrupole resonance spectra. Copyright 1998 Academic Press.
Oliva, Cesare; Allieta, Mattia; Scavini, Marco; Biffi, Cesare; Rossetti, Ilenia; Forni, Lucio
2012-08-06
The physical-chemical properties of some nanostructured perovskite-like catalysts of general formula La(1-x)M(x)MnO(3+δ) (M = Ce, Sr) have been investigated, in particular by using the electron paramagnetic resonance (EPR) technique. We show that the interplay between the -O-Mn(3+)-O-Mn(4+)-O- electron double-exchange and the electron mobility is strictly dependent on the dopant nature and the annealing conditions in air. A relationship between the observed properties of these samples and their activity in the methane flameless catalytic combustion is proposed.
Paramagnetic resonance and susceptibility of ilmenite, FeTiO3 crystal
NASA Technical Reports Server (NTRS)
Mcdonald, P. F.; Parasiris, A.; Pandey, R. K.; Gries, B. L.; Kirk, W. P.
1991-01-01
Large high-purity single crystals of FeTiO3 with ilmenite structure have been grown from a stoichiometric melt of Fe2O3 and TiO2 under an inert atmosphere using the modified Czochralski technique. Susceptibility and X-band paramagnetic resonance studies have been performed. Susceptibility measurements indicate a Neel temperature of about 59 K. The paramagnetic resonance spectrum for magnetic field perpendicular to the crystal c axis consists of a portion of a single, very intense approximately Lorentzian absorption line with its peak at about 600 G and half width at half maximum almost 1200 G. The absorption extends to zero magnetic field. For magnetic field approximately parallel to the c axis, the paramagnetic absorption is much smaller and may be considered a superposition of two approximately Lorentzian line shapes. The magnetic resonance measurements indicate a weak temperature dependence and large angular anisotropy.
Hyperfine Structure and Exchange Narrowing of Paramagnetic Resonance
DOE R&D Accomplishments Database
Townes, C. H.; Turkevich, J.
1950-01-01
Discussion of electronic paramagnetic resonance for the free radical ?, ?-diphenyl ?-picryl hydrazyl as observed by its effect on the transmission of microwave through a TE{sub 01} cavity with a small amount of the free radical placed approximately on the axis of the cavity; the half-width of this resonance at half maximum absorption was 1.45 oersteds.
2014-09-18
compensation) during growth due to their preferred trivalent charge states. The electron paramagnetic resonance spectrum of the singly ionized chromium ...neutral nitrogen acceptor in ZnO . . . . . . . . . . . . . . . . . . 45 16 Spectrum of the singly ionized chromium acceptor in TiO2 . . . . . . . . . 49...is a single crystal of magnesium oxide that has been doped with chromium . Chromium Cr3+ substitutes for magnesium Mg2+ and creates a paramagnetic
Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior
NASA Astrophysics Data System (ADS)
Allieta, M.; Scavini, M.; Lo Presti, L.; Coduri, M.; Loconte, L.; Cappelli, S.; Oliva, C.; Ghigna, P.; Pattison, P.; Scagnoli, V.
2013-12-01
We present a detailed study on the charge ordering transition in a GdBaCo2O5.0 system by combining high-resolution synchrotron powder/single-crystal diffraction with electron paramagnetic resonance experiments as a function of temperature. We found a second-order structural phase transition at TCO = 247 K (Pmmm to Pmma) associated with the onset of long-range charge ordering. At Tmin ≈ 1.2TCO, the electron paramagnetic resonance linewidth rapidly broadens, providing evidence of antiferromagnetic spin fluctuations. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5.0 sets in at ≈TCO. Pair distribution function analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T ≈ 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of charge ordering. This result is supported by the weakening of superstructure reflections and the temperature evolution of electron paramagnetic resonance linewidth that is consistent with paramagnetic reentrant behavior reported in the GdBaCo2O5.5 parent compound.
ERIC Educational Resources Information Center
Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.
2016-01-01
Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocker, J.; Cornu, D.; Kieseritzky, E.
2014-08-01
A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of themore » resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic species with a density of approximately 5 × 10{sup 11} spins/cm{sup 2}, which is comparable to the limit obtained for the presently available UHV-EPR spectrometer operating at 10 GHz (X-band). Investigation of electron trapped centers in MgO(001) films shows that the increased resolution offered by the experiments at W-band allows to identify new paramagnetic species, that cannot be differentiated with the currently available methodology.« less
Application of Electron Paramagnetic Resonance to Study of Gallstones
NASA Astrophysics Data System (ADS)
Kiselev, S. A.; Tsyro, L. V.; Afanasiev, D. A.; Unger, F. G.; Soloviev, M. M.
2014-03-01
We present the results of an electron paramagnetic resonance (EPR) study of mixed cholesterol gallstones. We have established that free radicals are distributed nonuniformly within the interior of the stone. The type and number of paramagnetic centers depend on the pigment content in the selected layer. We show that the parameters of the sextet lines in the EPR spectrum of the pigment are close to the parameters of lines in the spectrum of a brown pigment stone.
The Effect of Electronic Paramagnetism on Nuclear Magnetic Resonance Frequencies in Metals
DOE R&D Accomplishments Database
Townes, C. H.; Herring, C.; Knight, W. D.
1950-09-22
Observations on the shifts of nuclear resonances in metals ( Li{sup 7}, Na{sup 23}, Cu {sup 63}, Be{sup 9}, Pb{sup 207}, Al{sup 27}, and Ca{sup 69} ) due to free electron paramagnetism; comparison with theoretical values.
Dynamics of paramagnetic agents by off-resonance rotating frame technique
NASA Astrophysics Data System (ADS)
Zhang, Huiming; Xie, Yang
2006-12-01
Off-resonance rotating frame technique offers a novel tool to explore the dynamics of paramagnetic agents at high magnetic fields ( B0 > 3 T). Based on the effect of paramagnetic relaxation enhancement in the off-resonance rotating frame, a new method is described here for determining the dynamics of paramagnetic ion chelates from the residual z-magnetizations of water protons. In this method, the dynamics of the chelates are identified by the difference magnetization profiles, which are the subtraction of the residual z-magnetization as a function of frequency offset obtained at two sets of RF amplitude ω1 and pulse duration τ. The choices of ω1 and τ are guided by a 2-D magnetization map that is created numerically by plotting the residual z-magnetization as a function of effective field angle θ and off-resonance pulse duration τ. From the region of magnetization map that is the most sensitive to the alteration of the paramagnetic relaxation enhancement efficiency R1 ρ/ R1, the ratio of the off-resonance rotating frame relaxation rate constant R1 ρ verse the laboratory frame relaxation rate constant R1, three types of difference magnetization profiles can be generated. The magnetization map and the difference magnetization profiles are correlated with the rotational correlation time τR of Gd-DTPA through numerical simulations, and further validated by the experimental data for a series of macromolecule conjugated Gd-DTPA in aqueous solutions. Effects of hydration water number q, diffusion coefficient D, magnetic field strength B0 and multiple rotational correlation times are explored with the simulations of the magnetization map. This method not only provides a simple and reliable approach to determine the dynamics of paramagnetic labeling of molecular/cellular events at high magnetic fields, but also a new strategy for spectral editing in NMR/MRI based on the dynamics of paramagnetic labeling in vivo.
NASA Astrophysics Data System (ADS)
Sarikaya, Ebru Karakaş; Dereli, Ömer
2017-02-01
To obtain liquid phase molecular structure, conformational analysis of Orotic acid was performed and six conformers were determined. For these conformations, eight possible radicals were modelled by using Density Functional Theory computations with respect to molecular structure. Electron Paramagnetic Resonance parameters of these model radicals were calculated and then they were compared with the experimental ones. Geometry optimizations of the molecule and modeled radicals were performed using Becke's three-parameter hybrid-exchange functional combined with the Lee-Yang-Parr correlation functional of Density Functional Theory and 6-311++G(d,p) basis sets in p-dioxane solution. Because Orotic acid can be mutagenic in mammalian somatic cells and it is also mutagenic for bacteria and yeast, it has been studied.
NASA Astrophysics Data System (ADS)
Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna
2012-10-01
β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.
Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins
ERIC Educational Resources Information Center
Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna
2013-01-01
An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…
Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy.
Kozuki, Kohei; Nagashima, Takeshi; Hangyo, Masanori
2011-12-05
We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.
Laser Spectroscopy Investigations of Materials for Solid State Laser Systems.
1988-02-01
34 ing tools such as electron paramagnetic resonance and ". oc Be11 uniaxial stress. 19 However, the lattice structure of chryso- .,Pt AI3 PAIR 4 beryl... paramagnetic of these new emission bands is not known at the present time. resonance spectrum. 15The other features of the optical spectra cannot be...solution is peak absorption c-iefficient, and E, is the saturation field. The detuning parameter which accounts for the width of the resonant electronic
Matsumoto, Ken-Ichiro; Hyodo, Fuminori; Mitchell, James B; Krishna, Murali C
2018-02-01
Pharmacokinetics of the tri[8-carboxy-2,2,6,6-tetrakis(2-hydroxymethyl)benzo[1,2-d:4,5-d']bis(1,3)dithio-4-yl]methyl radical (Oxo63) after a single bolus and/or continuous intravenous infusion was investigated in tumor-bearing C3H mice with or without body temperature control while under anesthesia. The in vivo time course of Oxo63 in blood was measured using X-band electron paramagnetic resonance spectroscopy. Distribution of Oxo63 in normal muscle and tumor tissues was obtained using a surface coil resonator and a 700-MHz electron paramagnetic resonance spectrometer. The whole-body distribution of Oxo63 was obtained by 300-MHz continuous-wave electron paramagnetic resonance imaging. The high-resolution 300-MHz time-domain electron paramagnetic resonance imaging was also carried out to probe the distribution of Oxo63. Urination of mice was retarded at low body temperature, causing the concentration of Oxo63 in blood to attain high levels. However, the concentration of Oxo63 in tumor tissue was lower with no control of body temperature than active body temperature control. The nonsystemized blood flow in the tumor tissues may pool Oxo63 at lower body temperature. Pharmacokinetics of the contrast agent were found to be significantly affected by body temperature of the experimental animal, and can influence the probe distribution and the image patterns. Magn Reson Med 79:1212-1218, 2018. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Magnetic resonance force microscopy with a paramagnetic probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.
Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.
Magnetic resonance force microscopy with a paramagnetic probe
NASA Astrophysics Data System (ADS)
Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.
2017-04-01
We consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.
Magnetic resonance force microscopy with a paramagnetic probe
Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.
2017-04-01
Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.
NASA Astrophysics Data System (ADS)
Zhang, Huiming; Xie, Yang
2007-02-01
The simple method for measuring the rotational correlation time of paramagnetic ion chelates via off-resonance rotating frame technique is challenged in vivo by the magnetization transfer effect. A theoretical model for the spin relaxation of water protons in the presence of paramagnetic ion chelates and magnetization transfer effect is described. This model considers the competitive relaxations of water protons by the paramagnetic relaxation pathway and the magnetization transfer pathway. The influence of magnetization transfer on the total residual z-magnetization has been quantitatively evaluated in the context of the magnetization map and various difference magnetization profiles for the macromolecule conjugated Gd-DTPA in cross-linked protein gels. The numerical simulations and experimental validations confirm that the rotational correlation time for the paramagnetic ion chelates can be measured even in the presence of strong magnetization transfer. This spin relaxation model also provides novel approaches to enhance the detection sensitivity for paramagnetic labeling by suppressing the spin relaxations caused by the magnetization transfer. The inclusion of the magnetization transfer effect allows us to use the magnetization map as a simulation tool to design efficient paramagnetic labeling targeting at specific tissues, to design experiments running at low RF power depositions, and to optimize the sensitivity for detecting paramagnetic labeling. Thus, the presented method will be a very useful tool for the in vivo applications such as molecular imaging via paramagnetic labeling.
Development of a Hybrid EPR/NMR Coimaging System
Samouilov, Alexandre; Caia, George L.; Kesselring, Eric; Petryakov, Sergey; Wasowicz, Tomasz; Zweier, Jay L.
2010-01-01
Electron paramagnetic resonance imaging (EPRI) is a powerful technique that enables spatial mapping of free radicals or other paramagnetic compounds; however, it does not in itself provide anatomic visualization of the body. Proton magnetic resonance imaging (MRI) is well suited to provide anatomical visualization. A hybrid EPR/NMR coimaging instrument was constructed that utilizes the complementary capabilities of both techniques, superimposing EPR and proton-MR images to provide the distribution of paramagnetic species in the body. A common magnet and field gradient system is utilized along with a dual EPR and proton-NMR resonator assembly, enabling coimaging without the need to move the sample. EPRI is performed at ~1.2 GHz/~40 mT and proton MRI is performed at 16.18 MHz/~380 mT; hence the method is suitable for whole-body coimaging of living mice. The gradient system used is calibrated and controlled in such a manner that the spatial geometry of the two acquired images is matched, enabling their superposition without additional postprocessing or marker registration. The performance of the system was tested in a series of phantoms and in vivo applications by mapping the location of a paramagnetic probe in the gastrointestinal (GI) tract of mice. This hybrid EPR/NMR coimaging instrument enables imaging of paramagnetic molecules along with their anatomic localization in the body. PMID:17659621
NASA Astrophysics Data System (ADS)
Kodama, Yasko; Rodrigues, Orlando, Jr.; Garcia, Rafael Henrique Lazzari; Santos, Paulo de Souza; Vasquez, Pablo A. S.
2016-07-01
Main subject of this article was to study room temperature stable radicals in Co-60 gamma irradiated contemporary paper using Electron Paramagnetic Resonance spectrometer (EPR). XRD was used to study the effect of ionizing radiation on the morphology of book paper. SEM images presented regions with cellulose fibers and regions with particles agglomeration on the cellulose fibers. Those agglomerations were rich in calcium, observed by EDS. XRD analysis confirmed presence of calcium carbonate diffraction peaks. The main objective of this study was to propose a method using conventional kinetics chemical reactions for the observed radical formed by ionizing radiation. Therefore, further analyses were made to study the half-life and the kinetics of the free radical created. This method can be suitably applied to study radicals on cultural heritage objects.
USSR Report, Cybernetics, Computers and Automation Technology.
1987-03-02
Studies in the Area of EPR of Non- Ordered Solids, Spectral Recording, Processing and Analysis System (A.N. Bals, L.M. Kuzmina ; AVTOMETRIYA, No 2, Feb...L.M. Kuzmina , Riga] [Abstract] An automated system has been developed for electron paramagnetic resonance studies, oriented toward achievement of
Mocanu, S; Matei, I; Ionescu, S; Tecuceanu, V; Marinescu, G; Ionita, P; Culita, D; Leonties, A; Ionita, Gabriela
2017-10-18
Electron paramagnetic resonance (EPR) and fluorescence spectroscopies provide molecular-level insights on the interaction of paramagnetic and fluorescent species with the microenvironment. A series of dual molecular probes bearing fluorescent and paramagnetic moieties linked by flexible short polyether chains have been synthesized. These new molecular probes open the possibility to investigate various multi-component systems such as host-guest systems, polymeric micelles, gels and protein solutions by using EPR and fluorescence spectroscopies concertedly. The EPR and fluorescence spectra of these compounds show that the dependence of the rotational correlation time and fluorescence quantum yield on the chain length of the linker is not linear, due to the flexibility of the polyether linker. The quenching effect of the nitroxide moiety on the fluorescence intensity of the pyrene group varies with the linker length and flexibility. The interaction of these dual molecular probes with β-cyclodextrin, in solution and in polymeric gels, was evaluated and demonstrated by analysis of EPR and fluorescence spectra.
[Amelanotic melanoma and nuclear magnetic resonance tomography--case report].
Schilling, A; Seiler, T; Bende, T; Wollensak, J
1989-01-01
In MRI choroidal melanoma shows a very short relaxation time (T2), shorter than that of any other intraocular tumor. This short T2 time is referred to the high concentration of paramagnetic melanine in this tumor. Therefore, it is of interest to measure the relaxation time in an amelanotic melanoma and compare it with the histological analysis. The duration of T2 for the amelanotic melanoma examined ranged from 130 to 160 ms. The small concentration of melanine is not a sufficient explanation, but it is possible that there are some precursors of melanine with paramagnetic characteristics.
EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Eastman, Michael P.
1982-01-01
Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…
Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy
Hogg, Neil
2010-01-01
Electron paramagnetic resonance (EPR) spectroscopy has been used in a number of ways to study nitric oxide chemistry and biology. As an intrinsically stable and relatively unreactive diatomic free radical, the challenges for detecting this species by EPR are somewhat different than those for transient radical species. This review gives a basic introduction to EPR spectroscopy and discusses its uses to assess and quantify nitric oxide formation in biological systems. PMID:20304044
Effect of ferroelastic domain pattern changes on the EPR spectra in TDM
NASA Astrophysics Data System (ADS)
Zapart, W.; Zapart, M. B.
2011-09-01
This article presents polarized light microscopy studies of the ferroelastic domain structure and the analysis of electron paramagnetic resonance spectra of Cr3+ admixture ions in trigonal double molybdates. The correlation has been found between abnormal EPR lineshape and domain structure in ferroelastic phases of these crystals.
Paratala, Bhavna S; Jacobson, Barry D; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji
2012-01-01
The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn(2+) ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents.
Paratala, Bhavna S.; Jacobson, Barry D.; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji
2012-01-01
The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn2+ ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents. PMID:22685555
Electron paramagnetic resonance of natural and gamma-irradiated alunite and kaolin mineral powders
NASA Astrophysics Data System (ADS)
Koksal, F.; Koseoglu, R.; Saka, I.; Basaran, E.; Sener, F.
2004-06-01
Natural alunite and kaolin minerals obtained from West Anatolia were investigated by electron paramagnetic resonance (EPR) in natural and gamma-irradiated states at room temperature and at 113 K. The paramagnetic centres at ambient temperature in natural alunite were attributed to the (C) over dot H 2OH, (C) over dot O-3(-), (S) over dot O-2(-), (C) over dot O-2(-) and [AlO4 ](0) radicals. In natural kaolin, the paramagnetic centres were attributed to the (C) over dot O-3(-), (S) over dot O-2(-) (C) over dot O-2(-) and [AlO4](0) radicals. The gamma-irradiation does not produce any detectable effects on these radicals. At 113 K, the lines for (C) over dot H2OH could not be observed well, probably due to the anisotropic behaviour of the hyperfine interaction of the methylene protons, but the lines for [AlO4](0) centres were found to be perfectly observable at above 20 mW microwave power in both alunite and kaolin powders before and after gamma-irradiation. The EPR parameters of the observed paramagnetic centres were reported.
López-Rayo, Sandra; Lucena, Juan J; Laghi, Luca; Cremonini, Mauro A
2011-12-28
The application of nuclear magnetic resonance (NMR) for the quality control of fertilizers based on Fe(3+), Mn(2+), and Cu(2+) chelates and complexes is precluded by the strong paramagnetism of metals. Recently, a method based on the use of ferrocyanide has been described to remove iron from commercial iron chelates based on the o,o-EDDHA [ethylenediamine-N,N'bis(2-hydroxyphenylacetic)acid] chelating agent for their analysis and quantification by NMR. The present work extended that procedure to other paramagnetic ions, manganese and copper, and other chelating, EDTA (ethylenediaminetetraacetic acid), IDHA [N-(1,2-dicarboxyethyl)-d,l-aspartic acid], and complexing agents, gluconate and heptagluconate. Results showed that the removal of the paramagnetic ions was complete, allowing us to obtain (1)H NMR spectra characterized by narrow peaks. The quantification of the ligands by NMR and high-performance liquid chromatography showed that their complete recovery was granted. The NMR analysis enabled detection and quantification of unknown impurities without the need of pure compounds as internal standards.
1978-12-12
EPR and ultrafiltration studies are recommceided to conduct luture metal ion- IgG binding research. Using Scatchard plots, bind.ng levels can be...of the binding sites can be best pursued by EPR and ultrafiltration using the fragments of IgG . This report noted some difference in the binding...immunoelectrophoresis, ultrafiltration, UV spectroscopy, atomic absorption spectroscopy, and electron paramagnetic resonance (EPR). IgG used ,- ,is non
NASA Astrophysics Data System (ADS)
Mett, Richard R.; Froncisz, Wojciech; Hyde, James S.
2001-11-01
This article is concerned with cylindrical transverse electric TE011 and rectangular TE102 microwave cavity resonators commonly used in electron paramagnetic resonance (EPR) spectroscopy. In the cylindrical mode geometry considered here, the sample is along the z axis of the cylinder, dielectric disks of 1/4 wavelength thickness are placed at each end wall, and the diameter of the cylinder is set at the cutoff condition for propagation of microwave energy in a cylindrical waveguide at the desired microwave frequency. The microwave magnetic field is exactly uniform along the sample in the region between the dielectric disks and the resonant frequency is independent of the length of the cylinder without limit. The rectangular TE102 geometry is analogous, but here the microwave magnetic field is exactly uniform in a plane. A uniform microwave field along a line sample is highly advantageous in EPR spectroscopy compared with the usual sinusoidal variation, and these geometries are called "uniform field" modes. Extensive theoretical analysis as well as finite element calculation of field patterns are presented. The perturbation of field patterns caused by sample insertion as functions of the overall length of the resonator and diameter of the sample is analyzed. The article is intended to provide a basis for design of practical structures in the range of 10 to 100 GHz.
Yang, Yunhuang; Ramelot, Theresa A.; Ni, Shuisong; McCarrick, Robert M.; Kennedy, Michael A.
2013-01-01
Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electron-electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium hafniense Y51. At specific times following mixing site-specific MTSL-labeled Dsy0195 with uniformly 15N-labeled Dsy0195, the extent of exchange was determined either by monitoring the decrease of MTSL-labeled homodimer from the decay of the DEER modulation depth or by quantifying the increase of MTSL-labeled/15N-labeled heterodimer using PREs. Repeated measurements at several time points following mixing enabled determination of the homodimer subunit dissociation rate constant, k−1;, which was 0.037 ± 0.005 min−1 derived from DEER experiments with a corresponding half-life time of 18.7 minutes. These numbers agreed with independent measurements obtained from PRE experiments. These methods can be broadly applied to protein-protein and protein-DNA complex studies. PMID:23180051
Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator
NASA Astrophysics Data System (ADS)
Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro
2013-07-01
This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.
NASA Astrophysics Data System (ADS)
Halim Başkan, M.; Kartal, Zeki; Aydın, Murat
2015-12-01
Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).
Electron paramagnetic resonance (EPR) is a technique for studying chemical species that have one or more unpaired electrons. The current invention describes Echo-based Single Point Imaging (ESPI), a novel EPR image formation strategy that allows in vivo imaging of physiological function. The National Cancer Institute's Radiation Biology Branch is seeking statements of capability or interest from parties interested in in-licensing an in vivo imaging using Electron paramagnetic resonance (EPR) to measure active oxygen species.
NASA Astrophysics Data System (ADS)
Soulié, Edgar; Gaugenot, Jacques
1995-04-01
Nettar and Villafranca wrote in the FORTRAN programming language a computer program which simulates the electron paramagnetic resonance (EPR) spectra of powders (Journal of Magnetic Resonance, vol. 64 (1985) pp. 61-65). The spin Hamiltonian which their program can handle includes the Zeeman electronic interaction, the fine interaction up to the sixth order in the electron spin, a general hyperfine interaction, an isotropic nuclear Zeeman term; anisotropic ligand hyperfine terms are treated to first order in perturbation. The above Hamiltonian, without the ligand hyperfine terms, is treated exactly, i.e. the resonance equation for a transition between states labeled i and j is solved numerically: h.ν=Ei(H)-Ej(H).
Multifrequency Pulsed EPR Studies of Biologically Relevant Manganese(II) Complexes
Stich, T. A.; Lahiri, S.; Yeagle, G.; Dicus, M.; Brynda, M.; Gunn, A.; Aznar, C.; DeRose, V. J.; Britt, R. D.
2011-01-01
Electron paramagnetic resonance studies at multiple frequencies (MF EPR) can provide detailed electronic structure descriptions of unpaired electrons in organic radicals, inorganic complexes, and metalloenzymes. Analysis of these properties aids in the assignment of the chemical environment surrounding the paramagnet and provides mechanistic insight into the chemical reactions in which these systems take part. Herein, we present results from pulsed EPR studies performed at three different frequencies (9, 31, and 130 GHz) on [Mn(II)(H2O)6]2+, Mn(II) adducts with the nucleotides ATP and GMP, and the Mn(II)-bound form of the hammerhead ribozyme (MnHH). Through line shape analysis and interpretation of the zero-field splitting values derived from successful simulations of the corresponding continuous-wave and field-swept echo-detected spectra, these data are used to exemplify the ability of the MF EPR approach in distinguishing the nature of the first ligand sphere. A survey of recent results from pulsed EPR, as well as pulsed electron-nuclear double resonance and electron spin echo envelope modulation spectroscopic studies applied to Mn(II)-dependent systems, is also presented. PMID:22190766
A 1-2 GHz pulsed and continuous wave electron paramagnetic resonance spectrometer
NASA Astrophysics Data System (ADS)
Quine, Richard W.; Rinard, George A.; Ghim, Barnard T.; Eaton, Sandra S.; Eaton, Gareth R.
1996-07-01
A microwave bridge has been constructed that performs three types of electron paramagnetic resonance experiments: continuous wave, pulsed saturation recovery, and pulsed electron spin echo. Switching between experiment types can be accomplished via front-panel switches without moving the sample. Design features and performance of the bridge and of a resonator used in testing the bridge are described. The bridge is constructed of coaxial components connected with semirigid cable. Particular attention has been paid to low-noise design of the preamplifier and stability of automatic frequency control circuits. The bridge incorporates a Smith chart display and phase adjustment meter for ease of tuning.
Gas-Surface Interactions in Cryogenic Whole Air Sampling.
1981-05-01
analysis using electron paramagnetic resonance (EPR) for the cryofrost in the solid phase, and gas chromatography for samples desorbed to the gas...e.g. cryogenic-fraction (used on occasion), and/or controlled vaporization, followed by analysis using NO xchemiluminescence, gas chromatography , and...CS202 closed cycle cryogenic refrigerator, which employs helium as the working fluid . This refrigerator is comprised of two basic sections - an
Resonance magnetoplasticity in ultralow magnetic fields
NASA Astrophysics Data System (ADS)
Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.
2016-09-01
Resonance relaxation displacements of dislocations in NaCl crystals placed in crossed static and alternating ultralow magnetic fields in the electron paramagnetic resonance scheme are discussed. The Earth's magnetic field B Earth ≈ 50μT and other fields in the range of 26-261 μT are used as the static field. New strongly anisotropic properties of the effect have been revealed. Frequency spectra including numerous peaks of paths at low pump frequencies beginning with 10 kHz, as well as the quartet of equidistant peaks at high frequencies ( 1.4 MHz at B= B Earth), have been measured. The effect is also observed in the pulsed pump field with a resonance duration of 0.5 μs. Resonance changes have been detected in the microhardness of ZnO, triglycine sulfate, and potassium hydrogen phthalate crystals after their exposure in the Earth's magnetic field in the same electron paramagnetic resonance scheme.
F, Hyodo; S, Subramanian; N, Devasahayam; R, Murugesan; K, Matsumoto; JB, Mitchell; MC, Krishna
2008-01-01
Time-domain (TD) electron paramagnetic resonance (EPR) imaging at 300 MHz for in vivo applications requires resonators with recovery times less than 1 microsecond after pulsed excitation to reliably capture the rapidly decaying free induction decay (FID). In this study, we tested the suitability of the Litz foil coil resonator (LCR), commonly used in MRI, for in vivo EPR/EPRI applications in the TD mode and compared with parallel coil resonator (PCR). In TD mode, the sensitivity of LCR was lower than that of the PCR. However, in continuous wave (CW) mode, the LCR showed better sensitivity. The RF homogeneity was similar in both the resonators. The axis of the RF magnetic field is transverse to the cylindrical axis of the LCR, making the resonator and the magnet co-axial. Therefore, the loading of animals, and placing of the anesthesia nose cone and temperature monitors was more convenient in the LCR compared to the PCR whose axis is perpendicular to the magnet axis. PMID:18042414
NASA Astrophysics Data System (ADS)
Alenkina, I. V.; Oshtrakh, M. I.; Klencsár, Z.; Kuzmann, E.; Chukin, A. V.; Semionkin, V. A.
2014-09-01
A human liver ferritin, commercial Ferrum Lek and Maltofer® samples were studied using Mössbauer spectroscopy and electron paramagnetic resonance. Two Mössbauer spectrometers have been used: (i) a high velocity resolution (4096 channels) at 90 and 295 K, (ii) and a low velocity resolution (250 channels) at 20 and 40 K. It is shown that the three studied materials have different superparamagnetic features at various temperatures. This may be caused by different magnetic anisotropy energy barriers, sizes (volume), structures and compositions of the iron cores. The electron paramagnetic resonance spectra of the ferritin, Ferrum Lek and Maltofer® were decomposed into multiple spectral components demonstrating the presence of minor ferro- or ferrimagnetic phases along with revealing marked differences among the studied substances. Mössbauer spectroscopy provides evidences on several components in the measured spectra which could be related to different regions, layers, nanocrystallites, etc. in the iron cores that coincides with heterogeneous and multiphase models for the ferritin iron cores.
Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho
2018-06-01
Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed and its performance demonstrated.
Chemical disorder influence on magnetic state of optimally-doped La0.7Ca0.3MnO3
NASA Astrophysics Data System (ADS)
Rozenberg, E.; Auslender, M.; Shames, A. I.; Jung, G.; Felner, I.; Tsindlekht, M. I.; Mogilyansky, D.; Sominski, E.; Gedanken, A.; Mukovskii, Ya. M.; Gorodetsky, G.
2011-10-01
X-band electron magnetic resonance and dc/ac magnetic measurements have been employed to study the effects of chemical disorder on magnetic ordering in bulk and nanometer-sized single crystals and bulk ceramics of optimally-doped La0.7Ca0.3MnO3 manganite. The magnetic ground state of bulk samples appeared to be ferromagnetic with the lower Curie temperature and higher magnetic homogeneity in the vicinity of the ferromagnetic-paramagnetic phase transition in the crystal, as compared with those characteristics in the ceramics. The influence of technological driven "macroscopic" fluctuations of Ca-dopant level in crystal and "mesoscopic" disorder within grain boundary regions in ceramics was proposed to be responsible for these effects. Surface spin disorder together with pronounced inter-particle interactions within agglomerated nano-sample results in well defined core/shell spin configuration in La0.7Ca0.3MnO3 nano-crystals. The analysis of the electron paramagnetic resonance data enlightened the reasons for the observed difference in the magnetic order. Lattice effects dominate the first-order nature of magnetic phase transition in bulk samples. However, mesoscale chemical disorder seems to be responsible for the appearance of small ferromagnetic polarons in the paramagnetic state of bulk ceramics. The experimental results and their analysis indicate that a chemical/magnetic disorder has a strong impact on the magnetic state even in the case of mostly stable optimally hole-doped manganites.
NASA Astrophysics Data System (ADS)
Mett, Richard R.; Anderson, James R.; Sidabras, Jason W.; Hyde, James S.
2005-09-01
Magnetic field modulation is often introduced into a cylindrical TE011 electron paramagnetic resonance (EPR) cavity through silver plating over a nonconductive substrate. The plating thickness must be many times the skin depth of the rf and smaller than the skin depth of the modulation. We derive a parameter that quantifies the modulation field penetration and find that it also depends on resonator dimensions. Design criteria based on this parameter are presented graphically. This parameter is then used to predict the behavior of eddy currents in substrates of moderate conductivity, such as graphite. The conductivity of the graphite permits improved plating uniformity and permits use of electric discharge machining (EDM) techniques to make the resonator. EDM offers precision tolerances of 0.005 mm and is suitable for small, complicated shapes that are difficult to machine by other methods. Analytic predictions of the modulation penetration are compared with the results of finite-element simulations. Simulated magnetic field modulation uniformity and penetration are shown for several elemental coils and structures including the plated graphite TE011 cavity. Fabrication and experimental testing of the structure are discussed. Spatial inhomogeneity of the modulation phase is also investigated by computer simulation. We find that the modulation phase is uniform to within 1% over the TE011 cavity. Structures of lower symmetry have increased phase nonuniformity.
Vistnes, A I
1983-01-01
In electron paramagnetic resonance (EPR) nonlinear phenomena with respect to magnetic-field modulation are often studied by out-of-phase spectra recordings. The existence of a nonzero out-of-phase signal implies that the EPR signal is phase shifted relative to the modulation signal. This phase shift is called a magnetization hysteresis. The hysteresis angle varies during a sweep through the resonance conditions for a free radical. By recording this variation, a magnetization hysteresis (MH) spectrum results. In practice, a MH spectrum is computer calculated from two EPR spectra detected with a 90 degree difference in phase setting. There is no need for a careful null-phase calibration like that in traditional analysis of nonlinearities. The MH spectra calculated from second harmonic EPR spectra of spin labels were highly dependent on the rotational correlation time. The technique can therefore be used to study slow molecular motion. In the present work MH spectra and Hemminga and deJager's magnitude saturation transfer EPR spectra (Hemminga, M. A., and P. A. deJager, 1981, J. Magn. Reson., 43:324-327) have been analyzed to define parameters that can describe variations in the rotational correlation time. A novel modification of the sample holder and temperature regulation equipment is described. PMID:6309263
Electron paramagnetic resonance of gamma-irradiated single crystals of 3-nitroacetanilide
NASA Astrophysics Data System (ADS)
Aşik, Biray
2008-06-01
The electron paramagnetic resonance of single crystals of 3-nitroacetanilide has been observed and analyzed for different orientations of the crystal in the magnetic field, after being damaged at 300 K by γ-irradiation. The crystals have been investigated between 123 and 300 K. The spectra were found to be temperature independent. The irradiation of 3-nitroacetanilide by γ-rays produces radicals at the nitrogen atoms in the molecule. The principal values of the hyperfine coupling tensor of the unpaired electron and the principal values of the g-tensor were determined.
Properties of nonaqueous electrolytes
NASA Technical Reports Server (NTRS)
Foster, J. N.; Hanson, D. C.; Hon, J. F.; Keller, R.; Muirhead, J. S.
1970-01-01
Physical property measurements and structural studies conducted in aprotic solvents using various solutes are applicable to the further development of lithum batteries. Structural studies utilize nuclear magnetic resonance and electron paramagnetic resonance techniques.
Persich, Peter; Hostyn, Steven; Joie, Céline; Winderickx, Guy; Pikkemaat, Jeroen; Romijn, Edwin P; Maes, Bert U W
2017-05-01
Forced degradation studies are an important tool for a systematic assessment of decomposition pathways and identification of reactive sites in active pharmaceutical ingredients (APIs). Two methodologies have been combined in order to provide a deeper understanding of singlet oxygen-related degradation pathways of APIs under light irradiation. First, we report that a "dark" singlet oxygen test enables the investigation of drug reactivity toward singlet oxygen independently of photolytic irradiation processes. Second, the photosensitizing properties of the API producing the singlet oxygen was proven and quantified by spin trapping and electron paramagnetic resonance analysis. A combination of these techniques is an interesting addition to the forced degradation portfolio as it can be used for (1) revealing unexpected degradation pathways of APIs due to singlet oxygen, (2) clarifying photolytic drug-drug interactions in fixed-dose combinations, and (3) synthesizing larger quantities of hardly accessible oxidative drug degradants. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Akiel, R D; Stepanov, V; Takahashi, S
2017-06-01
Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.
Enhanced Wireless Power Transmission Using Strong Paramagnetic Response.
Ahn, Dukju; Kiani, Mehdi; Ghovanloo, Maysam
2014-03-01
A method of quasi-static magnetic resonant coupling has been presented for improving the power transmission efficiency (PTE) in near-field wireless power transmission, which improves upon the state of the art. The traditional source resonator on the transmitter side is equipped with an additional resonator with a resonance frequency that is tuned substantially higher than the magnetic field excitation frequency. This additional resonator enhances the magnetic dipole moment and the effective permeability of the power transmitter, owing to a phenomenon known as the strong paramagnetic response. Both theoretical calculations and experimental results show increased PTE due to amplification of the effective permeability. In measurements, the PTE was improved from 57.8% to 64.2% at the nominal distance of 15 cm when the effective permeability was 2.6. The power delivered to load was also improved significantly, with the same 10 V excitation voltage, from 0.38 to 5.26 W.
Nitrogen-containing species in the structure of the synthesized nano-hydroxyapatite
NASA Astrophysics Data System (ADS)
Gafurov, M.; Biktagirov, T.; Yavkin, B.; Mamin, G.; Filippov, Y.; Klimashina, E.; Putlayev, V.; Orlinskii, S.
2014-04-01
Synthesized by the wet chemical precipitation technique, hydroxyapatite (HAp) powders with the sizes of the crystallites of 20-50 nm and 1 μm were analyzed by different analytical methods. By means of electron paramagnetic resonance (EPR) it is shown that during the synthesis process nitrate anions from the reagents (byproducts) could incorporate into the HAp structure. The relaxation times and EPR parameters of the stable axially symmetric NO{3/2-} paramagnetic centers detected after X-ray irradiation are measured with high accuracy. Analyses of high-frequency (95 GHz) electron-nuclear double resonance spectra from 1H and 31P nuclei and ab initio density functional theory calculations allow suggesting that the paramagnetic centers and nitrate anions as the precursors of NO{3/2-} radicals preferably occupy PO{4/3-} site in the HAp structure.
NASA Astrophysics Data System (ADS)
Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine
2017-09-01
Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.
Microstrip resonators for electron paramagnetic resonance experiments
NASA Astrophysics Data System (ADS)
Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.
2009-07-01
In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.
NASA Astrophysics Data System (ADS)
Koscielniak, J.; Devasahayam, N.; Moni, M. S.; Kuppusamy, P.; Yamada, K.; Mitchell, J. B.; Krishna, M. C.; Subramanian, S.
2000-11-01
Design and construction of an electron paramagnetic resonance (EPR) spectrometer, operating in the continuous wave mode in the radio frequency (rf) region, and capable of performing spectroscopy and in vivo imaging of paramagnetic spin probes is described. A resonant frequency of 300 MHz was chosen to provide the required sensitivity at nontoxic levels of commonly used spin probes and penetration of the rf in small animals. Three major components, the magnet, the radio frequency signal detection bridge, and the data acquisition module are described in this article. Integration of a rapid scan capability to reduce imaging time is also described. Two- and three-dimensional EPR images of the spin probe distribution in phantom objects as well as from in vivo experiments are reported. From the EPR images, morphology of some internal organs could be recognized. EPR images of the spin probe distribution in mice suggest differences in perfusion of the spin probe between normal and tumor regions. Addition of a spectral dimension to spatial images should enable differentiation of oxygen status in normal and pathological conditions.
Parker, Tory L; Miller, Samantha A; Myers, Lauren E; Miguez, Fernando E; Engeseth, Nicki J
2010-01-13
Previous research has demonstrated that certain combinations of compounds result in a decrease in toxic or pro-oxidative effects, previously noted when compounds were administered singly. Thus, there is a need to study many complex interactions further. Two in vitro techniques [electron paramagnetic resonance (EPR) and oxygen radical absorbance capacity (ORAC) assays] were used in this study to assess pro- and antioxidant capacity and synergistic potential of various compounds. Rutin, p-coumaric acid, abscisic acid, ascorbic acid, and a sugar solution were evaluated individually at various concentrations and in all 26 possible combinations at concentrations found in certain foods (honey or papaya), both before and after simulated digestion. EPR results indicated sugar-containing combinations provided significantly higher antioxidant capacity; those combinations containing sugars and ascorbic acid demonstrated synergistic potential. The ORAC assay suggested additive effects, with some combinations having synergistic potential, although fewer combinations were significantly synergistic after digestion. Finally, ascorbic acid, caffeic acid, quercetin, and urate were evaluated at serum-achievable levels. EPR analysis did not demonstrate additive or synergistic potential, although ORAC analysis did, principally in combinations containing ascorbic acid.
Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.
Mondal, Arobendo; Gaultois, Michael W; Pell, Andrew J; Iannuzzi, Marcella; Grey, Clare P; Hutter, Jürg; Kaupp, Martin
2018-01-09
Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li 3 V 2 (PO 4 ) 3 , for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2018-05-01
We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.
Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V
2016-05-01
Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Mukhamatdinov, I.; Gafurov, M.; Kemalov, A.; Rodionov, A.; Mamin, G.; Fakhretdinov, P.
2018-05-01
Cationic surfactant (adhesion additive) «Adgezolin» has been developed. It is shown that introduction of «Adgezolin» into the oxidized bitumen increases the relative amount of asphaltenes and monocyclearomatic hydrocarbons. By means of electron paramagnetic resonance (EPR) it is demonstrated that the introduction of additive «Adgezolin» increases the number of paramagnetic «free» carbon radicals (FR) in the oxidized bitumen and decreases that in the unoxidized species. In both types of bitumen shift from the Lorentzian to Gaussian EPR lineshape of FR is obtained that could be connected with as an increase of the samples homogeneity. It is supposed that while in the oxygenated bitumens introduction of additives leads to the disaggregation of asphaltene-resins compounds, in the unoxidized samples the balance is shifted towards formation of di-radicals.
The EPR of the triplet state of aryl cations in crystals of diazonium salts
NASA Astrophysics Data System (ADS)
Kondratenko, P. A.; Shrubovich, E. V.; Shulga, S. Z.
The spectra of the electron paramagnetic resonance (EPR) of aryl cations possessing a principle triplet ground-state and orientated in a monocrystal of diazonium salts is studied. It is shown that two nonequivalent paramagnetic centers, which differ in orientation are formed within the crystal. A theoretic description of experimental results is possible only when allowing for the effect of low symmetry. This symmetry is invoked by the interactivity of the paramagnetic center of symmetry C(sub 2v) with the crystal field of symmetry C(sub i).
Rice, Austin J; Harrison, Alistair; Alvarez, Frances J D; Davidson, Amy L; Pinkett, Heather W
2014-05-23
Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
A Paramagnetic Molecular Voltmeter
Surek, Jack T.; Thomas, David D.
2008-01-01
We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R1) and transverse (R2) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R1 increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835
EPR spectroscopic investigations in 15BaO-25Li2O-(60-x) B2O3-xFe2O3 glass system
NASA Astrophysics Data System (ADS)
Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.
2018-05-01
Glasses with composition 15BaO-25Li2O-(60-x) B2O3 -xFe2O3 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1 mol %) were prepared by the conventional melt quenching technique. These glasses were characterized using X-ray diffraction (XRD). Electron paramagnetic resonance (EPR) investigations have been carried out as a function of iron ion concentration. The observed EPR spectra of Fe3+ ion exhibits resonance signals at g= 2.0, 4.3 and 8.0. The resonance signal at g= 4.3 is due to isolated Fe3+ ions in site with rhombic symmetry where as the g= 2.0 resonance signal is attributed to the Fe3+ ions coupled by exchange interaction in a distorted octahedral environment and the signal at g= 8.0 arises from axially distorted sites. The number of spins participating in resonance (N) and its paramagnetic susceptibilities (χ) have also been evaluated. The peak-to-peak line width ΔB for the resonance lines at g ≈ 4.3 and at g ≈ 2.0 is increasing as function of the iron ion content. The line intensity of the resonance centered at g ≈ 4.3 and at g ≈ 2.0 increases up to 0.8 mol% of Fe2O3 and for 1 mol% of Fe2O3 its value is found to decrease. The analysis of these results indicated that the conversion some of Fe3+ cations to Fe2+ ions beyond 0.8 mol%.
NASA Astrophysics Data System (ADS)
Smirnov, Alex I.; Smirnova, Tatyana I.; MacArthur, Ryan L.; Good, Jeremy A.; Hall, Renny
2006-03-01
Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν =95-300GHz and this requires magnetic fields of 3.4-10.7T for electronic spins with g ≈2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppm/h over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.
Magnetic nanoparticles in magnetic resonance imaging and diagnostics.
Rümenapp, Christine; Gleich, Bernhard; Haase, Axel
2012-05-01
Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.
NASA Astrophysics Data System (ADS)
Enomoto, Ayano; Hirata, Hiroshi
2014-02-01
This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.
Microstrip resonators for electron paramagnetic resonance experiments.
Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G
2009-07-01
In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.
NASA Astrophysics Data System (ADS)
Murzakhanov, F.; Mamin, G.; Voloshin, A.; Klimashina, E.; Putlyaev, V.; Doronin, V.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.
2018-05-01
Powders of synthetic hydroxyapatite doped with Mn2+ ions in concentrations from 0.05 till 5 wt. % were investigated by conventional electron paramagnetic resonance (EPR). The parameters of the spin-Hamiltonian are derived. Partially resolved hyperfine structure in the magnetic fields corresponding to g ≈ 4.3 and g ≈ 9.4 is observed. The narrowing of the central peak with concentration is reported. A possibility to use the linewidth and intensity of the central peak for concentration measurements are discussed. The results could be used for the identification and qualification of Mn2+ in oil, mining and ore formations.
NASA Astrophysics Data System (ADS)
Owens, F. J.; Sharma, J.
1980-03-01
Solid samples of 1,3,5, trinitro 1,3,5, triazacyclohexane (RDX), trinitrotoluene (TNT), and ammonium nitrate were subjected to shock pulses of strength and duration less than the threshold to cause detonation. The recovered shocked samples were studied by x-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The results of these measurements indicate that the shock pulse either broke or altered the internal bonds of the molecules of the solid. The results of the shock decomposition are compared with measurements of the uv and slow thermal decomposition of these materials using the same experimental techniques.
General magnetic transition dipole moments for electron paramagnetic resonance.
Nehrkorn, Joscha; Schnegg, Alexander; Holldack, Karsten; Stoll, Stefan
2015-01-09
We present general expressions for the magnetic transition rates in electron paramagnetic resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we determine the parities of ground and excited spin states of high-spin (S=5/2) Fe(III) in hemin from the polarization dependence of experimental EPR line intensities.
Fadel, Maya Abou; de Juan, Anna; Vezin, Hervé; Duponchel, Ludovic
2016-12-01
Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique that is able to characterize radicals formed in kinetic reactions. However, spectral characterization of individual chemical species is often limited or even unmanageable due to the severe kinetic and spectral overlap among species in kinetic processes. Therefore, we applied, for the first time, multivariate curve resolution-alternating least squares (MCR-ALS) method to EPR time evolving data sets to model and characterize the different constituents in a kinetic reaction. Here we demonstrate the advantage of multivariate analysis in the investigation of radicals formed along the kinetic process of hydroxycoumarin in alkaline medium. Multiset analysis of several EPR-monitored kinetic experiments performed in different conditions revealed the individual paramagnetic centres as well as their kinetic profiles. The results obtained by MCR-ALS method demonstrate its prominent potential in analysis of EPR time evolved spectra. Copyright © 2016 Elsevier B.V. All rights reserved.
Paramagnetic resonance studies of bistrispyrazolylborate cobalt(II) and related derivatives
NASA Astrophysics Data System (ADS)
Myers, William K.
Herein, a systematic frozen solution electron-nuclear double resonance (ENDOR) study of high-spin Co(II) complexes is reported to demonstrate the efficacy of methyl substitutions as a means of separating dipolar and contact coupling, and further, to increase the utility of high-spin Co(II) as a spectroscopic probe for the ubiquitous, but spectroscopically-silent Zn(II) metalloenzymes. High-spin (hs) Co(II) has been subject of paramagnetic resonance studies for over 50 years and has been used as a spectroscopic probe for Zn metalloenzymes for over 35 years. However, as will be seen, the inherent complexity of the electronic properties of the cobaltous ion remains to be exploited to offer a wealth of information on Zn(II) enzymatic environments. Specifically, ENDOR measurements on bistrispyrazolylborate cobalt(II) confirm the utility of the novel method of methyl substitution to differentiate dipolar and Fermi contact couplings. An extensive set of electron paramagnetic resonance (EPR) simulations were performed. Software was developed to implement an ENDOR control interface. Finally, proton relaxation measurements were made in the range of 12-42 MHz, which were accounted for with the large g-value anisotropy of the Co(II) compounds. Taken as a whole, these studies point to the rich complexity of the electronic structure of high-spin cobalt(II) and, when sufficiently well-characterized, the great utility it has as a surrogate of biological Zn(II).
Hu, Lingzhi; Zhang, Lei; Chen, Junjie; Lanza, Gregory M.; Wickline, Samuel A.
2011-01-01
Purpose To develop a physical model for the 19F relaxation enhancement in paramagnetic perfluorocarbon nanoparticles (PFC NP) and demonstrate its application in monitoring cellular endosomal functionality through a “19F relaxation switch” phenomenon. Materials and Methods An explicit expression for 19F longitudinal relaxation enhancement was derived analytically. Monte-Carlo simulation was performed to confirm the gadolinium induced magnetic field inhomogenity inside the PFC NP. Field dependent T1 measurements for three types of paramagnetic PFC NPs were carried out to validate the theoretical prediction. Based on the physical model, 19F and 1H relaxation properties of macrophage internalized paramagnetic PFC NPs were measured to evaluate the intracellular process of NPs by macrophages in vitro. Results The theoretical description was confirmed experimentally by field-dependent T1 measurements. The shortening of 19F T1 was found to be attributed to the Brownian motion of PFC molecules inside the NP in conjunction with their ability to permeate into the lipid surfactant coating. A dramatic change of 19F T1 was observed upon endocytosis, revealing the transition from intact bound PFC NP to processed constituents. Conclusion The proposed first-principle analysis of 19F spins in paramagnetic PFC NP relates their structural parameters to the special MR relaxation features. The demonstrated “19F relaxation switch” phenomenon is potentially useful for monitoring cellular endosomal functionality. PMID:21761488
Corzilius, Björn; Michaelis, Vladimir K; Penzel, Susanne A; Ravera, Enrico; Smith, Albert A; Luchinat, Claudio; Griffin, Robert G
2014-08-20
The study of inorganic crystalline materials by solid-state NMR spectroscopy is often complicated by the low sensitivity of heavy nuclei. However, these materials often contain or can be prepared with paramagnetic dopants without significantly affecting the structure of the crystalline host. Dynamic nuclear polarization (DNP) is generally capable of enhancing NMR signals by transferring the magnetization of unpaired electrons to the nuclei. Therefore, the NMR sensitivity in these paramagnetically doped crystals might be increased by DNP. In this paper we demonstrate the possibility of efficient DNP transfer in polycrystalline samples of [Co(en)3Cl3]2·NaCl·6H2O (en = ethylenediamine, C2H8N2) doped with Cr(III) in varying concentrations between 0.1 and 3 mol %. We demonstrate that (1)H, (13)C, and (59)Co can be polarized by irradiation of Cr(III) with 140 GHz microwaves at a magnetic field of 5 T. We further explain our findings on the basis of electron paramagnetic resonance spectroscopy of the Cr(III) site and analysis of its temperature-dependent zero-field splitting, as well as the dependence of the DNP enhancement factor on the external magnetic field and microwave power. This first demonstration of DNP transfer from one paramagnetic metal ion to its diamagnetic host metal ion will pave the way for future applications of DNP in paramagnetically doped materials or metalloproteins.
2015-01-01
The study of inorganic crystalline materials by solid-state NMR spectroscopy is often complicated by the low sensitivity of heavy nuclei. However, these materials often contain or can be prepared with paramagnetic dopants without significantly affecting the structure of the crystalline host. Dynamic nuclear polarization (DNP) is generally capable of enhancing NMR signals by transferring the magnetization of unpaired electrons to the nuclei. Therefore, the NMR sensitivity in these paramagnetically doped crystals might be increased by DNP. In this paper we demonstrate the possibility of efficient DNP transfer in polycrystalline samples of [Co(en)3Cl3]2·NaCl·6H2O (en = ethylenediamine, C2H8N2) doped with Cr(III) in varying concentrations between 0.1 and 3 mol %. We demonstrate that 1H, 13C, and 59Co can be polarized by irradiation of Cr(III) with 140 GHz microwaves at a magnetic field of 5 T. We further explain our findings on the basis of electron paramagnetic resonance spectroscopy of the Cr(III) site and analysis of its temperature-dependent zero-field splitting, as well as the dependence of the DNP enhancement factor on the external magnetic field and microwave power. This first demonstration of DNP transfer from one paramagnetic metal ion to its diamagnetic host metal ion will pave the way for future applications of DNP in paramagnetically doped materials or metalloproteins. PMID:25069794
Experimental proof of the existence of water clusters in fullerene-like PrF3 nanoparticles
NASA Astrophysics Data System (ADS)
Alakshin, E. M.; Blokhin, D. S.; Sabitova, A. M.; Klochkov, A. V.; Klochkov, V. V.; Kono, K.; Korableva, S. L.; Tagirov, M. S.
2012-10-01
Synthesized fullerene-like nanoparticles of the Van Vleck paramagnet PrF3 have been studied by nuclear magnetic resonance cryoporometry. Water clusters have been discovered in the internal cavities of the nanoparticles. The analysis of the experimental data indicates that the cluster radius is 1-2.3 nm. The obtained data agree well with the high-resolution transmission electron microscopy data.
Honnavar, Gajanan V; Ramesh, K P; Bhat, S V
2014-01-23
The mixed alkali metal effect is a long-standing problem in glasses. Electron paramagnetic resonance (EPR) is used by several researchers to study the mixed alkali metal effect, but a detailed analysis of the nearest neighbor environment of the glass former using spin-Hamiltonian parameters was elusive. In this study we have prepared a series of vanadate glasses having general formula (mol %) 40 V2O5-30BaF2-(30 - x)LiF-xRbF with x = 5, 10, 15, 20, 25, and 30. Spin-Hamiltonian parameters of V(4+) ions were extracted by simulating and fitting to the experimental spectra using EasySpin. From the analysis of these parameters it is observed that the replacement of lithium ions by rubidium ions follows a "preferential substitution model". Using this proposed model, we were able to account for the observed variation in the ratio of the g parameter, which goes through a maximum. This reflects an asymmetric to symmetric changeover of the alkali metal ion environment around the vanadium site. Further, this model also accounts for the variation in oxidation state of vanadium ion, which was confirmed from the variation in signal intensity of EPR spectra.
Presley, Tennille; Kuppusamy, Periannan; Zweier, Jay L; Ilangovan, Govindasamy
2006-12-15
Electron paramagnetic resonance (EPR) oximetry is being widely used to measure the oxygen consumption of cells, mitochondria, and submitochondrial particles. However, further improvement of this technique, in terms of data analysis, is required to use it as a quantitative tool. Here, we present a new approach for quantitative analysis of cellular respiration using EPR oximetry. The course of oxygen consumption by cells in suspension has been observed to have three distinct zones: pO(2)-independent respiration at higher pO(2) ranges, pO(2)-dependent respiration at low pO(2) ranges, and a static equilibrium with no change in pO(2) at very low pO(2) values. The approach here enables one to comprehensively analyze all of the three zones together-where the progression of O(2) diffusion zones around each cell, their overlap within time, and their potential impact on the measured pO(2) data are considered. The obtained results agree with previously established methods such as high-resolution respirometry measurements. Additionally, it is also demonstrated how the diffusion limitations can depend on cell density and consumption rate. In conclusion, the new approach establishes a more accurate and meaningful model to evaluate the EPR oximetry data on cellular respiration to quantify related parameters using EPR oximetry.
NASA Astrophysics Data System (ADS)
Willoughby, W. R.; Zvanut, M. E.; Paudel, Subash; Iwinska, M.; Sochacki, T.; Bockowski, M.
2018-04-01
Electron paramagnetic resonance (EPR) spectroscopy was used to investigate a type of point defect present in 1019 cm-3 carbon-doped GaN substrates grown by hydride vapor phase epitaxy. A broad, isotropic resonance at g ˜ 1.987 was observed at 3.5 K, and the EPR intensity increased with illumination at energies greater than 2.75 eV and decreased with photon energies greater than 0.95 eV. The latter is consistent with a deep level of 0.95 eV above the valence band maximum and implies that the associated defect likely participates in donor compensation. The ionization energy for this defect is close to the predicted value for the (-/0) transition level of CN and transition levels associated with Ga vacancies such as VGa and VGa-ON-2H.
NASA Astrophysics Data System (ADS)
Iskhakova, K.; Murzakhanov, F.; Mamin, G.; Putlyaev, V.; Klimashina, E.; Fadeeva, I.; Fomin, A.; Barinov, S.; Maltsev, A.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.
2018-05-01
Calcium phosphates (CaP) are exploited in many fields of science, including geology, chemistry, biology and medicine due to their abundance in the nature and presence in the living organism. Various analytical and biochemical methods are used for controlling their chemical content, structure, morphology, etc. Unfortunately, magnetic resonance techniques are usually not even considered as necessary tools for CaP inspection. Some aspects of application of the commercially realized electron paramagnetic resonance (EPR) approaches for characterization of CaP powders and ceramics (including the nanosized materails) such as hydroxyapatite and tricalcium phosphates of biogenic and synthetic origins containing intrinsic impurities or intentional dopants are demonstrated. The key features and advantages of the EPR techniques for CaP based materials characterization that could compliment the data obtained with the recognized analytical methods are pointed out.
Ferromagnetism observed in silicon-carbide-derived carbon
NASA Astrophysics Data System (ADS)
Peng, Bo; Zhang, Yuming; Wang, Yutian; Guo, Hui; Yuan, Lei; Jia, Renxu
2018-02-01
Carbide-derived carbon (CDC) is prepared by etching high purity 4H-SiC single crystals in a mixed atmosphere of 5% Cl2 and 95% Ar for 120 min and 240 min. The secondary ion mass spectroscopy (SIMS) bulk analysis technique excludes the possibility of ferromagnetic transition metal (TM) contamination arising during the experimental process. The paramagnetic and ferromagnetic components are separated from the measured magnetization-magnetic field curves of the samples. Through the use of the Brillouin function, paramagnetic centers carrying a magnetic moment of ˜1.3 μB are fitted. A resolvable hysteresis loop in the low magnetic field area is preserved at room temperature. The temperature dependence of the relative intensity of the Lorentzian-like electron spin resonance (ESR) line observed by electron spin spectroscopy reveals the existence of exchange interaction between the localized paramagnetic centers. First-principles calculations show the dominant configuration of defects in the graphitic CDC films. By calculating the energy difference between the antiferromagnetic and ferromagnetic phases, we deduce that the ferromagnetic coupling is sensitive to the concentration of defects.
NASA Astrophysics Data System (ADS)
Osipov, V. Yu.; Shames, A. I.; Efimov, N. N.; Shakhov, F. M.; Kidalov, S. V.; Minin, V. V.; Vul', A. Ya.
2018-04-01
The electron paramagnetic resonance (EPR) spectra of triplet centers in detonation nanodiamonds (DNDs) and diamond single crystals of submicrometer size, synthesized from those DNDs at high pressures and temperatures, are studied. In the EPR spectra of DNDs, signals from negatively charged nitrogen- vacancy centers (NV)/sup(-) with a g factor of g 1 = 4.24 and multivacancies with g 2 = 4.00 are observed. The signals from (NV)/sup(-) centers disappear in the spectra of diamond single crystals, and a quintet signal with g = 4.00 is detected at the position of the signal from multivacancies. Analysis of the shape and position of the quintet' lines showed that this ESR signal is due to the pairs of nitrogen substitution centers in diamond, separated from each other by distances not exceeding 0.7 nm, between which a strong exchange interaction takes place. A comparison of the experimental data and the simulation results allows determining the spin-Hamiltonian parameters of the exchange-coupled pairs of paramagnetic impurity nitrogen atoms.
NASA Astrophysics Data System (ADS)
Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.
2011-12-01
A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.
Pingret, Daniella; Durand, Grégory; Fabiano-Tixier, Anne-Sylvie; Rockenbauer, Antal; Ginies, Christian; Chemat, Farid
2012-08-08
During ultrasound processing of lipid-containing food, some off-flavors can be detected, which can incite depreciation by consumers. The impacts of ultrasound treatment on sunflower oil using two different ultrasound horns (titanium and pyrex) were evaluated. An electron paramagnetic resonance study was performed to identify and quantify the formed radicals, along with the assessment of classical physicochemical parameters such as peroxide value, acid value, anisidine value, conjugated dienes, polar compounds, water content, polymer quantification, fatty acid composition, and volatiles profile. The study shows an increase of formed radicals in sonicated oils, as well as the modification of physicochemical parameters evidencing an oxidation of treated oils.
NASA Technical Reports Server (NTRS)
Woollam, J. A.; Sugawara, K.
1978-01-01
A Dewar system and associated equipment for electron paramagnetic resonance (EPR) studies of trapped free radicals and other optical or irradiation experiments are described. The apparatus is capable of reaching a temperature of 1.5 K and transporting on the order of 20 W per K temperature gradient; its principal advantages are for use at pumped cryogen temperatures and for experiments with large heat inputs. Two versions of the apparatus are discussed, one of which is designed for EPR in a rectangular cavity operating in a TE(102) mode and another in which EPR is performed in a cylindrical microwave cavity.
Structural, magnetic, and magnetocaloric properties of bilayer manganite La1.38Sr1.62Mn2O7
NASA Astrophysics Data System (ADS)
Yang, Yu-E.; Xie, Yunfei; Xu, Lisha; Hu, Dazhi; Ma, Chunlan; Ling, Langsheng; Tong, Wei; Pi, Li; Zhang, Yuheng; Fan, Jiyu
2018-04-01
In this study, we investigated the structural, magnetic phase transition, and magnetocaloric properties of bilayer perovskite manganite La1.38Sr1.62Mn2O7 based on X-ray diffraction, electron paramagnetic resonance, and temperature-/magnetic field-dependent magnetization measurements. The structural characterization results showed the prepared sample had a tetragonal structure with the space group I4/mmm. The Curie temperature was determined as 114 K in the magnetization studies and a second-order paramagnetic-ferromagnetic transition was confirmed by the Arrott plot, which showed that the slopes were positive for all the curves. According to the variation in the electron paramagnetic resonance spectrum, we detected obvious electronic phase separation across a broad temperature range from 220 to 80 K in this magnetic material, thereby indicating that the paramagnetic and ferromagnetic phases coexist above as well as below the Curie temperature. Based on a plot of the isothermal magnetization versus the magnetic applied field, we deduced the maximum magnetic entropy change, which only reached 1.89 J/kg.K under an applied magnetic field of 7.0 T. These theoretical investigations indicated that in addition to the magnetoelastic couplings and electron interaction, electronic phase separation and anisotropic exchange interactions also affect the magnetic entropy changes in this bilayer manganite.
Susceptibility cancellation of a microcoil wound with a paramagnetic-liquid-filled copper capillary
NASA Astrophysics Data System (ADS)
Takeda, Kazuyuki; Takasaki, Tomoya; Takegoshi, K.
2015-09-01
Even though microcoils improve the sensitivity of NMR measurement of tiny samples, magnetic-field inhomogeneity due to the bulk susceptibility effect of the coil material can cause serious resonance-line broadening. Here, we propose to fabricate the microcoil using a thin, hollow copper capillary instead of a wire and fill paramagnetic liquid inside the capillary, so as to cancel the diamagnetic contribution of the copper. Susceptibility cancellation is demonstrated using aqueous solution of NiSO4. In addition, the paramagnetic liquid serves as coolant when it is circulated through the copper capillary, effectively transferring the heat generated by radiofrequency pulses.
NASA Astrophysics Data System (ADS)
Peterson, Katie L.; Srivastava, Kriti; Pierre, Valérie C.
2018-05-01
Fluorine magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) of chemical and physiological processes is becoming more widespread. The strength of this technique comes from the negligible background signal in in vivo 19F MRI and the large chemical shift window of 19F that enables it to image concomitantly more than one marker. These same advantages have also been successfully exploited in the design of responsive 19F probes. Part of the recent growth of this technique can be attributed to novel designs of 19F probes with improved imaging parameters due to the incorporation of paramagnetic metal ions. In this review, we provide a description of the theories and strategies that have been employed successfully to improve the sensitivity of 19F probes with paramagnetic metal ions. The Bloch-Wangsness-Redfield theory accurately predicts how molecular parameters such as distance, geometry, rotational correlation times, as well as the nature, oxidation state, and spin state of the metal ion affect the sensitivity of the fluorine-based probes. The principles governing the design of responsive 19F probes are subsequently described in a “how to” guide format. Examples of such probes and their advantages and disadvantages are highlighted through a synopsis of the literature.
High-Yield Spin Labeling of Long RNAs for Electron Paramagnetic Resonance Spectroscopy.
Kerzhner, Mark; Matsuoka, Hideto; Wuebben, Christine; Famulok, Michael; Schiemann, Olav
2018-05-10
Site-directed spin labeling is a powerful tool for investigating the conformation and dynamics of biomacromolecules such as RNA. Here we introduce a spin labeling strategy based on click chemistry in solution that, in combination with enzymatic ligation, allows highly efficient labeling of complex and long RNAs with short reaction times and suppressed RNA degradation. With this approach, a 34-nucleotide aptamer domain of the preQ1 riboswitch and an 81-nucleotide TPP riboswitch aptamer could be labeled with two labels in several positions. We then show that conformations of the preQ1 aptamer and its dynamics can be monitored in the absence and presence of Mg 2+ and a preQ1 ligand by continuous wave electron paramagnetic resonance spectroscopy at room temperature and pulsed electron-electron double resonance spectroscopy (PELDOR or DEER) in the frozen state.
Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.
Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H
2011-12-06
Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.
NASA Astrophysics Data System (ADS)
Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon
2015-02-01
The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.
Soesbe, Todd C.; Wu, Yunkou; Sherry, A. Dean
2012-01-01
Paramagnetic saturation transfer chemical exchange (PARACEST) complexes are exogenous contrast agents that have great potential to further extend the functional and molecular imaging capabilities of magnetic resonance. Due to the presence of a central paramagnetic lanthanide ion (Ln3+ ≠ La3+, Gd3+, Lu3+) within the chelate, the resonance frequencies of protons and water molecules bound to the PARACEST agent are shifted far away from the bulk water frequency. This large chemical shift combined with an extreme sensitivity to the chemical exchange rate make PARACEST agents ideally suited for reporting significant biological metrics such as temperature, pH, and the presence of metabolites. Also, the ability to turn PARACEST agents “off” and “on” using a frequency selective saturation pulse gives them a distinct advantage over Gd3+-based contrast agents. A current challenge for PARACEST research is translating the promising in vitro results into in vivo systems. This short review article first describes the basic theory behind PARACEST contrast agents, their benefits over other contrast agents, and their applications to magnetic resonance imaging. It then describes some of the recent PARACEST research results. Specifically, pH measurements using water molecule exchange rate modulation, T2-exchange contrast due to water molecule exchange, the use of ultra-short echo times (TE<10 μs) to overcome T2-exchange line-broadening, and the potential application of T2-exchange as a new contrast mechanism for magnetic resonance imaging. PMID:23055299
NASA Astrophysics Data System (ADS)
Chen, Qingcai; Wang, Mamin; Wang, Yuqin; Zhang, Lixin; Xue, Jian; Sun, Haoyao; Mu, Zhen
2018-07-01
Environmentally persistent free radicals (EPFRs) are present within atmospheric fine particles, and they are assumed to be a potential factor responsible for human pneumonia and lung cancer. This study presents a new method for the rapid quantification of EPFRs in atmospheric particles with a quartz sheet-based approach using electron paramagnetic resonance (EPR) spectroscopy. The three-dimensional distributions of the relative response factors in a cavity resonator were simulated and utilized for an accurate quantitative determination of EPFRs in samples. Comparisons between the proposed method and conventional quantitative methods were also performed to illustrate the advantages of the proposed method. The results suggest that the reproducibility and accuracy of the proposed method are superior to those of the quartz tube-based method. Although the solvent extraction method is capable of extracting specific EPFR species, the developed method can be used to determine the total EPFR content; moreover, the analysis process of the proposed approach is substantially quicker than that of the solvent extraction method. The proposed method has been applied in this study to determine the EPFRs in ambient PM2.5 samples collected over Xi'an, the results of which will be useful for extensive research on the sources, concentrations, and physical-chemical characteristics of EPFRs in the atmosphere.
A flexible surface-coil-type resonator using triaxial cable
NASA Astrophysics Data System (ADS)
Hirata, Hiroshi; Ono, Mitsuhiro
1997-09-01
This note describes a newly developed flexible surface-coil-type resonator (FSCR) used for electron paramagnetic resonance (EPR) measurements. A conventional FSCR has used a balanced transmission line made by coaxial lines. The new resonator uses triaxial cable in order to avoid anisotropy of flexure of the transmission line. Experimental results show that the EPR signal measured with the triaxial FSCR is 35% stronger than that measured with the conventional FSCR.
The Demonstration of the Feasibility of the Tuning and Stimulation of Nuclear Radiation.
1988-10-31
line, or the center of a resonance pattern, is called the isomer shift. It is due to the electrostatic interaction of the nucleus with the electron ...magnetic moment due to the presence of unpaired electrons , the material is either paramagnetic or ferromagnetic. In paramagnetic materials these moments...capture and fission.4,5,8 A very fertile interdisciplinary area of nuclear quantum electronics 7 appeared to be developing, encouraged by the
NASA Astrophysics Data System (ADS)
Durand, Sylvain; Frapart, Yves-Michel; Kerebel, Maud
2017-11-01
Spatial electron paramagnetic resonance imaging (EPRI) is a recent method to localize and characterize free radicals in vivo or in vitro, leading to applications in material and biomedical sciences. To improve the quality of the reconstruction obtained by EPRI, a variational method is proposed to inverse the image formation model. It is based on a least-square data-fidelity term and the total variation and Besov seminorm for the regularization term. To fully comprehend the Besov seminorm, an implementation using the curvelet transform and the L 1 norm enforcing the sparsity is proposed. It allows our model to reconstruct both image where acquisition information are missing and image with details in textured areas, thus opening possibilities to reduce acquisition times. To implement the minimization problem using the algorithm developed by Chambolle and Pock, a thorough analysis of the direct model is undertaken and the latter is inverted while avoiding the use of filtered backprojection (FBP) and of non-uniform Fourier transform. Numerical experiments are carried out on simulated data, where the proposed model outperforms both visually and quantitatively the classical model using deconvolution and FBP. Improved reconstructions on real data, acquired on an irradiated distal phalanx, were successfully obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vries, Wilke de; Doerenkamp, Carsten; Zeng, Zhaoyang
Inorganic–organic hybrid materials based on amorphous mesoporous silica containing organized nitroxide radicals within its mesopores have been prepared using the micellar self-assembly of TEOS solutions containing the nitroxide functionalized amphiphile (4-(N,N-dimethyl-N-hexadecylammonium)-2,2,6, 6-tetramethyl-piperidin-N-oxyl-iodide) (CAT-16). This template has been used both in its pure form and in various mixtures with cetyl trimethylammonium bromide (CTAB). The samples have been characterized by chemical analysis, N{sub 2} sorption studies, magnetic susceptibility measurements, and various spectroscopic methods. While electron paramagnetic resonance (EPR) spectra indicate that the strength of the intermolecular spin–spin interactions can be controlled via the CAT-16/CTAB ratio, nuclear magnetic resonance (NMR) data suggest thatmore » these interactions are too weak to facilitate cooperative magnetism. - Graphical abstract: The amphiphilic radical CAT-16 is used as a template for the synthesis of amorphous mesoporous silica. The resulting paramagnetic hybrid materials are characterized by BET, FTIR, NMR, EPR and magnetic susceptibility studies. - Highlights: • Amphiphilic CAT-16 as a template for mesoporous silica. • Comprehensive structural characterization by BET, FTIR; EPR and NMR. • Strength of radical-radical interactions tuable within CAT-16/CTAB mixtures.« less
NASA Astrophysics Data System (ADS)
Mishra, D. K.; Roul, B. K.; Singh, S. K.; Srinivasu, V. V.
2018-02-01
We report on the possible observation of Griffith phase in a wide range of temperature (>272-378 K) in the 2.5 min plasma sintered La0.67Ca0.33MnO3 (LCMO) as deduced from careful electron spin resonance studies. This is 106 K higher than the paramagnetic to ferromagnetic transition (Curie transition ∼272 K) temperature. The indication of Griffith phase in such a wide range is not reported earlier by any group. We purposefully prepared LCMO samples by plasma sintering technique so as to create a disordered structure by rapid quenching which we believe, is the prime reason for the observation of Griffith Phase above the Curie transition temperature. The inverse susceptibility curve represents the existence of ferromagnetic cluster in paramagnetic region. The large resonance peak width (40-60 mT) within the temperature range 330-378 K confirms the sample magnetically inhomogeneity which is also established from our electron probe microstructure analysis (EPMA). EPMA establishes the presence of higher percentage of Mn3+ cluster in comparison to Mn4+. This is the reason for which Griffith state is enhanced largely to a higher range of temperature.
Magnetic characterization of mixed phases in FeVO4sbnd Co3V2O8 system
NASA Astrophysics Data System (ADS)
Guskos, N.; Zolnierkiewicz, G.; Pilarska, M.; Typek, J.; Berczynski, P.; Blonska-Tabero, A.; Aidinis, K.
2018-04-01
Dynamic and static magnetic properties of four nFeVO4/(1-n)Co3V2O8 composites obtained in reactions between nFeVO4 and (1-n)Co3V2O8 (n = 0.82, 0.80, 0.78 and 0.76) have been investigated by dc magnetometry and electron paramagnetic resonance (EPR). All samples were diphase containing both the howardevansite-type and the lyonsite-type phases in different proportions. Dc magnetic susceptibility study showed the Curie-Weiss paramagnetic behavior with strong antiferromagnetic (AFM) interaction in the high-temperature range and the phase transition to the AFM state at low temperatures. The calculated effective magnetic moment could be justified by the presence of high spin Fe3+ and Co2+ ions. The appearance of hysteresis loop in isothermal magnetisation at low temperature indicates the existence of the ferromagnetic component in all four samples, but only 0.5% of all magnetic ions are involved in this phase. EPR spectra recorded in high-temperature range (T > 90 K) consisted of a single broad line centred at ∼3.2 kG. The fitting of observed spectra with two Gaussian lineshape functions allowed to study the temperature dependence of EPR parameters (resonance field, linewidth, integrated intensity). This analysis suggests that EPR signal arises from two spin subsystems: paramagnetic Fe3+ ions subjected to AFM interaction and AFM spin pairs/clusters of iron/cobalt visible only at high temperatures. At low temperatures two transitions to AFM states, due to the mixture of two structural phases, are registered in magnetic susceptibility measurements.
NASA Astrophysics Data System (ADS)
Gafurov, M. R.; Biktagirov, T. B.; Mamin, G. V.; Shurtakova, D. V.; Klimashina, E. S.; Putlyaev, V. I.; Orlinskii, S. B.
2016-03-01
The effect of codoping of hydroxyapatite (HAP) nanocrystals with average sizes of 35 ± 15 nm during "wet" synthesis by CO 3 2- carbonate anions and Mn2+ cations on relaxation characteristics (for the times of electron spin-spin relaxation) of the NO 3 2- nitrate radical anion has been studied. By the example of HAP, it has been demonstrated that the electron paramagnetic resonance (EPR) is an efficient method for studying anion-cation (co)doping of nanoscale particles. It has been shown experimentally and by quantummechanical calculations that simultaneous introduction of several ions can be energetically more favorable than their separate inclusion. Possible codoping models have been proposed, and their energy parameters have been calculated.
X-Band Rapid-Scan Electron Paramagnetic Resonance of Radiation-Induced Defects in Tooth Enamel
Yu, Zhelin; Romanyukha, Alexander; Eaton, Sandra S.; Eaton, Gareth R.
2015-01-01
X-band rapid-scan electron paramagnetic resonance (EPR) spectra from tooth enamel samples irradiated with doses of 0.5, 1 and 10 Gy had substantially improved signal-to-noise relative to conventional continuous wave EPR. The radiation-induced signal in 60 mg of a tooth enamel sample irradiated with a 0.5 Gy dose was readily characterized in spectra recorded with 34 min data acquisition times. The coefficient of variance of the calculated dose for a 1 Gy irradiated sample, based on simulation of the first-derivative spectra for three replicates as the sum of native and radiation-induced signals, was 3.9% for continuous wave and 0.4% for rapid scan. PMID:26207683
Growth Kinetics of the S Sub H Center on Magnesium Oxide Using Electron Paramagnetic Resonance
NASA Technical Reports Server (NTRS)
Jayne, J. P.
1971-01-01
Electron paramagnetic resonance spectroscopy was used to study the growth of S sub H centers on magnesium oxide powder which had hydrogen adsorbed on its surface. The centers were produced by ultraviolet radiation. The effects of both radiation intensity and hydrogen pressure were also studied. At constant hydrogen pressure and radiation dose, the initial S sub H center growth rate was found to be zero order. Beyond the initial region the growth rate deviated from zero order and finally approached saturation. The results are interpreted in terms of a model which assumes that the S sub H center is a hydrogen atom associated with a surface vacancy. Saturation appears to result from a limited supply of surface vacancies.
Nuclear magnetic resonance studies of pseudospin fluctuations in URu 2 Si 2
Shirer, K. R.; Haraldsen, J. T.; Dioguardi, A. P.; ...
2013-09-26
Here, we report 29Si nuclear magnetic resonance measurements in single crystals and aligned powders of URu 2Si 2 in the hidden order and paramagnetic phases. The spin-lattice relaxation data reveal evidence of pseudospin fluctuations of U moments in the paramagnetic phase. We find evidence for partial suppression of the density of states below 30 K and analyze the data in terms of a two-component spin-fermion model. We propose that this behavior is a realization of a pseudogap between the hidden-order transition T HO and 30 K. This behavior is then compared to other materials that demonstrate precursor fluctuations in amore » pseudogap regime above a ground state with long-range order.« less
Keller, Katharina; Mertens, Valerie; Qi, Mian; Nalepa, Anna I; Godt, Adelheid; Savitsky, Anton; Jeschke, Gunnar; Yulikov, Maxim
2017-07-21
Extraction of distance distributions between high-spin paramagnetic centers from relaxation induced dipolar modulation enhancement (RIDME) data is affected by the presence of overtones of dipolar frequencies. As previously proposed, we account for these overtones by using a modified kernel function in Tikhonov regularization analysis. This paper analyzes the performance of such an approach on a series of model compounds with the Gd(iii)-PyMTA complex serving as paramagnetic high-spin label. We describe the calibration of the overtone coefficients for the RIDME kernel, demonstrate the accuracy of distance distributions obtained with this approach, and show that for our series of Gd-rulers RIDME technique provides more accurate distance distributions than Gd(iii)-Gd(iii) double electron-electron resonance (DEER). The analysis of RIDME data including harmonic overtones can be performed using the MATLAB-based program OvertoneAnalysis, which is available as open-source software from the web page of ETH Zurich. This approach opens a perspective for the routine use of the RIDME technique with high-spin labels in structural biology and structural studies of other soft matter.
Łabanowska, Maria; Filek, Maria; Kurdziel, Magdalena; Bednarska, Elżbieta; Dłubacz, Aleksandra; Hartikainen, Helina
2012-09-01
Grains of five genotypes of wheat (four Polish and one Finnish), differing in their tolerance to drought stress were chosen for this investigation. Electron paramagnetic resonance spectroscopy allowed observation of transition metal ions (Mn, Fe, Cu) and different types of stable radicals, including semiquinone centers, present in seed coats, as well as several types of carbohydrate radicals found mainly in the inner parts of grains. The content of paramagnetic metal centers was higher in sensitive genotypes (Radunia, Raweta) than in tolerant ones (Parabola, Nawra), whereas the Finnish genotype (Manu) exhibited intermediate amounts. Similarly, the concentrations of both types of radicals, carbohydrates and semiquinone were significantly higher in the grains originating from more sensitive wheat genotypes. The nature of carbohydrate radicals and their concentrations were confronted with the kinds and amounts of sugars found by the biochemical analyses and microscopy observations. It is suggested that some long lived radicals (semiquinone and starch radicals) occurring in grains could be indicators of stress resistance of wheat plants. Copyright © 2012 Elsevier GmbH. All rights reserved.
Nitrogen-vacancy-assisted magnetometry of paramagnetic centers in an individual diamond nanocrystal.
Laraoui, Abdelghani; Hodges, Jonathan S; Meriles, Carlos A
2012-07-11
Semiconductor nanoparticles host a number of paramagnetic point defects and impurities, many of them adjacent to the surface, whose response to external stimuli could help probe the complex dynamics of the particle and its local, nanoscale environment. Here, we use optically detected magnetic resonance in a nitrogen-vacancy (NV) center within an individual diamond nanocrystal to investigate the composition and spin dynamics of the particle-hosted spin bath. For the present sample, a ∼45 nm diamond crystal, NV-assisted dark-spin spectroscopy reveals the presence of nitrogen donors and a second, yet-unidentified class of paramagnetic centers. Both groups share a common spin lifetime considerably shorter than that observed for the NV spin, suggesting some form of spatial clustering, possibly on the nanoparticle surface. Using double spin resonance and dynamical decoupling, we also demonstrate control of the combined NV center-spin bath dynamics and attain NV coherence lifetimes comparable to those reported for bulk, Type Ib samples. Extensions based on the experiments presented herein hold promise for applications in nanoscale magnetic sensing, biomedical labeling, and imaging.
Nakagawa, Kouichi; Matsumoto, Kazuhiro; Chaiserm, Nattakan; Priprem, Aroonsri
2017-01-01
We investigated stable organic radicals formed in response to cold stratification in 'Fuji' apple seeds using X-band (9 GHz) electron paramagnetic resonance (EPR) technique. This technique primarily detected two paramagnetic species in each seed. These two different radical species were assigned as a stable organic radical and Mn 2+ species based on the g values and hyperfine components. Signal from the stable radicals was noted at a g value of about 2.00 and was strong and relatively stable. Significant radical intensity changes were observed in apple seeds on refrigeration along with water supplementation. The strongest radical intensity and a very weak Mn 2+ signal were also observed for the seeds kept in moisture-containing sand in a refrigerator. Noninvasive EPR of the radicals present in each seed revealed that the stable radicals were located primarily in the seed coat. These results indicate that the significant radical intensity changes in apple seeds under refrigeration for at least 90 days followed by water supplementation for one week, can be related to cold stratification of the seeds.
Farjadian, Fatemeh; Moradi, Sahar; Hosseini, Majid
2017-03-01
Magnetic nanoparticles have found application as MRI contrasting agents. Herein, chitosan thin films containing super-paramagnetic iron oxide nanoparticles (SPIONs) are evaluated in magnetic resonance imaging (MRI). To determine their contrasting capability, super-paramagnetic nanoparticles coated with citrate (SPIONs-cit) were synthesized. Then, chitosan thin films with different concentrations of SPIONs-cit were prepared and their MRI data (i.e., r 2 and r 2 *) was evaluated in an aqueous medium. The synthesized SPIONs-cit and chitosan/SPIONs-cit films were characterized by FTIR, EDX, XRD as well as VSM with the morphology evaluated by SEM and AFM. The nanoparticle sizes and distribution confirmed well-defined nanoparticles and thin films formation along with high contrasting capability in MRI. Images revealed well-dispersed uniform nanoparticles, averaging 10 nm in size. SPIONs-cit's hydrodynamic size averaged 23 nm in diameter. The crystallinity obeyed a chitosan and SPIONs pattern. The in vitro cellular assay of thin films with a novel route was performed within Hek293 cell lines showing that thin films can be biocompatible.
Excess-Si related defect centers in buried SiO2 thin films
NASA Astrophysics Data System (ADS)
Warren, W. L.; Fleetwood, D. M.; Shaneyfelt, M. R.; Schwank, J. R.; Winokur, P. S.; Devine, R. A. B.
1993-06-01
Using electron paramagnetic resonance (EPR) and capacitance-voltage measurements we have investigated the role of excess-silicon related defect centers as charge traps in separation by the implantation of oxygen materials. Three types of EPR-active centers were investigated: oxygen vacancy Eγ' centers (O3≡Si• +Si≡O3), delocalized Eδ' centers, and D centers (Si3≡Si•). It was found that all of these paramagnetic centers are created by selective hole injection, and are reasonably ascribed as positively charged when paramagnetic. These results provide the first experimental evidence for (1) the charge state of the Eδ' center, and (2) that the D center is an electrically active point defect in these materials.
NASA Astrophysics Data System (ADS)
Sambasiva Rao, P.; Rajendiran, T. M.; Venkatesan, R.; Madhu, N.; Chandrasekhar, A. V.; Reddy, B. J.; Reddy, Y. P.; Ravikumar, R. V. S. S. N.
2001-12-01
Single crystal electron paramagnetic resonance (EPR) studies on Cu(II) doped zinc potassium phosphate hexahydrate (ZPPH) were carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice substitutionally in place of Zn(II) and the spin Hamiltonian parameters calculated from these spectra are gxx=2.188, gyy=2.032, gzz=2.373, Axx=50 G, Ayy=65.0 G and Azz=80 G. The g and A tensors were coincident and these values matched fairly well with the values obtained from powder spectrum. The bonding parameters have also been calculated.
Presley, Tennille; Kuppusamy, Periannan; Zweier, Jay L.; Ilangovan, Govindasamy
2006-01-01
Electron paramagnetic resonance (EPR) oximetry is being widely used to measure the oxygen consumption of cells, mitochondria, and submitochondrial particles. However, further improvement of this technique, in terms of data analysis, is required to use it as a quantitative tool. Here, we present a new approach for quantitative analysis of cellular respiration using EPR oximetry. The course of oxygen consumption by cells in suspension has been observed to have three distinct zones: pO2-independent respiration at higher pO2 ranges, pO2-dependent respiration at low pO2 ranges, and a static equilibrium with no change in pO2 at very low pO2 values. The approach here enables one to comprehensively analyze all of the three zones together—where the progression of O2 diffusion zones around each cell, their overlap within time, and their potential impact on the measured pO2 data are considered. The obtained results agree with previously established methods such as high-resolution respirometry measurements. Additionally, it is also demonstrated how the diffusion limitations can depend on cell density and consumption rate. In conclusion, the new approach establishes a more accurate and meaningful model to evaluate the EPR oximetry data on cellular respiration to quantify related parameters using EPR oximetry. PMID:17012319
Nakagawa, Kouichi; Epel, Boris
2017-03-01
This study investigated the location and distribution of paramagnetic species in apple seeds using electron paramagnetic resonance (EPR) and X-band (9 GHz) EPR imaging (EPRI). EPR primarily detected two paramagnetic species per measured seed. These two different radical species were assigned as stable radicals and Mn 2+ species based on the g values and hyperfine components. The signal from the stable radical was noted at g ≈ 2.00 and was strong and relatively stable. The subsequent noninvasive EPRI of the radical present in each seed revealed that the stable radicals were located primarily in the seed coat, with very few radicals observed in the cotyledon of the seed. These results indicate that the stable radical species were only found within the seed coat, and few radical species were found in other seed parts.
Broadband W-band Rapid Frequency Sweep Considerations for Fourier Transform EPR.
Strangeway, Robert A; Hyde, James S; Camenisch, Theodore G; Sidabras, Jason W; Mett, Richard R; Anderson, James R; Ratke, Joseph J; Subczynski, Witold K
2017-12-01
A multi-arm W-band (94 GHz) electron paramagnetic resonance spectrometer that incorporates a loop-gap resonator with high bandwidth is described. A goal of the instrumental development is detection of free induction decay following rapid sweep of the microwave frequency across the spectrum of a nitroxide radical at physiological temperature, which is expected to lead to a capability for Fourier transform electron paramagnetic resonance. Progress toward this goal is a theme of the paper. Because of the low Q-value of the loop-gap resonator, it was found necessary to develop a new type of automatic frequency control, which is described in an appendix. Path-length equalization, which is accomplished at the intermediate frequency of 59 GHz, is analyzed. A directional coupler is favored for separation of incident and reflected power between the bridge and the loop-gap resonator. Microwave leakage of this coupler is analyzed. An oversize waveguide with hyperbolic-cosine tapers couples the bridge to the loop-gap resonator, which results in reduced microwave power and signal loss. Benchmark sensitivity data are provided. The most extensive application of the instrument to date has been the measurement of T 1 values using pulse saturation recovery. An overview of that work is provided.
Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny
2014-05-01
To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.
An EPR study on tea: Identification of paramagnetic species, effect of heat and sweeteners
NASA Astrophysics Data System (ADS)
Bıyık, Recep; Tapramaz, Recep
2009-10-01
Tea ( Camellia Sinensis) is the most widely consumed beverage in the world, and is known to be having therapeutic, antioxidant and nutritional effects. Electron paramagnetic resonance (EPR) spectral studies made on the tea cultivated along the shore of Black Sea, Turkey, show Mn 2+ and Fe 3+ centers in green tea leaves and in black tea extract. Dry black tea flakes and dry extract show additional sharp line attributed to semiquinone radical. The origins of the paramagnetic species in black tea are defined and discussed. Effect of humidity and heat are investigated. It is observed that dry extract of black tea melts at 100 °C and the semiquinone radical lives up to 140 °C while Mn 2+ sextet disappears just above 100 °C in tea extract. Natural and synthetics sweeteners have different effects on the paramagnetic centers. White sugar (sucrose) quenches the Mn 2+ and semiquinone lines in black tea EPR spectrum, and glucose, fructose, lactose and maltose quench Fe 3+ line while synthetic sweeteners acesulfam potassium, aspartame and sodium saccharine do not have any effect on paramagnetic species in tea.
An EPR study on tea: identification of paramagnetic species, effect of heat and sweeteners.
Biyik, Recep; Tapramaz, Recep
2009-10-15
Tea (Camellia Sinensis) is the most widely consumed beverage in the world, and is known to be having therapeutic, antioxidant and nutritional effects. Electron paramagnetic resonance (EPR) spectral studies made on the tea cultivated along the shore of Black Sea, Turkey, show Mn(2+) and Fe(3+) centers in green tea leaves and in black tea extract. Dry black tea flakes and dry extract show additional sharp line attributed to semiquinone radical. The origins of the paramagnetic species in black tea are defined and discussed. Effect of humidity and heat are investigated. It is observed that dry extract of black tea melts at 100 degrees C and the semiquinone radical lives up to 140 degrees C while Mn(2+) sextet disappears just above 100 degrees C in tea extract. Natural and synthetics sweeteners have different effects on the paramagnetic centers. White sugar (sucrose) quenches the Mn(2+) and semiquinone lines in black tea EPR spectrum, and glucose, fructose, lactose and maltose quench Fe(3+) line while synthetic sweeteners acesulfam potassium, aspartame and sodium saccharine do not have any effect on paramagnetic species in tea.
Paramagnetic resonance of Mn4+ and Mn2+ centers in lanthanum gallate single crystals
NASA Astrophysics Data System (ADS)
Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.
2010-03-01
An increase in the manganese concentration in lanthanum gallate in the range 0.5-5.0% has been found to result in a complete replacement of individual Mn4+ ions by Mn2+ ions. The relative concentrations and binding energies of individual Mn4+, Mn3+, and Mn2+ ions have been determined. The spin Hamiltonians of the Mn2+ and Mn4+ centers in the rhombohedral and orthorhombic phases, respectively, have been constructed and the orientation of the principal axes of the fine-structure tensor of Mn4+ at room temperature has been found. The possibility of using electron paramagnetic resonance for determining the rotation angles of oxygen octahedra of lanthanum gallate with respect to the perovskite structure has been discussed.
Electron-beam generated porous dextran gels: experimental and quantum chemical studies.
Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta
2014-06-01
The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.
Van Doorslaer, S; Schweiger, A
2000-06-01
During the last two decades, the possibilities of pulse electron paramagnetic resonance (EPR) and pulse electron nuclear double resonance (ENDOR) spectroscopy have increased tremendously. While at the beginning of the 1980s pulse-EPR and ENDOR applications were still a rarity, the techniques are now very frequently applied in chemistry, physics, materials science, biology and mineralogy. This is mainly due to the considerable efforts invested in the last few years on instrument development and pulse-sequence design. Pulse-EPR spectrometers are now commercially available, which enables many research groups to use these techniques. In this work, an overview of state-of-the-art pulse EPR and ENDOR spectroscopy is given. The rapid expansion of the field, however, does not allow us to give an exhaustive record of all the pulse methods introduced so far. After a brief and very qualitative description of the basic principles of pulse EPR, we discuss some of the experiments in more detail and illustrate the potential of the methods with a number of selected applications.
Sambasiva Rao, P; Rajendiran, T M; Venkatesan, R; Madhu, N; Chandrasekhar, A V; Reddy, B J; Reddy, Y P; Ravikumar, R V
2001-12-01
Single crystal electron paramagnetic resonance (EPR) studies on Cu(II) doped zinc potassium phosphate hexahydrate (ZPPH) were carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice substitutionally in place of Zn(II) and the spin Hamiltonian parameters calculated from these spectra are g(xx) = 2.188, g(yy) = 2.032, g(zz) = 2.373, Axx = 50 G, Ayy = 65.0 G and Azz = 80 G. The g and A tensors were coincident and these values matched fairly well with the values obtained from powder spectrum. The bonding parameters have also been calculated.
Use of gadolinium chloride as a contrast agent for imaging spruce knots by magnetic resonance
Thomas L. Eberhardt; Chi-Leung So; Amy H. Herlihy; Po-Wah So
2006-01-01
Treatments of knot-containing spruce wood blocks with a paramagnetic salt, gadolinium (III) chloride, in combination with solvent pretreatments, were evaluated as strategies to enhance the visualization of wood features by magnetic resonance imaging (MRI). Initial experiments with clear wood and excised knot samples showed differences in moisture uptake after...
Center for Cement Composite Materials
1990-01-31
metal-oxygen structures G. Kordas MSE-Ceramics Electron paramagnetic resonance W. M. Kriven MSE-Ceramics Electron microscopy Microstructural...SPONSORING iSb. OFFICE SYMBOL 9. PROWIREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) C S(2is _ _ _- r_,__’ Contract F49620-87-C...novel in-situ technique involving nuclear magnetic resonance . Fiber- matrix interactions in MDF laminates were also studied. Characterization of DSP
Ceccon, Alberto; Marius Clore, G; Tugarinov, Vitali
2016-09-01
In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ 2 (app) ) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k ex between the species is fast on the PRE time scale (k ex ≫ Γ2). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789-5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd(3+), we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k ex ≫ Γ2) the ratio of the apparent proton to carbon methyl PREs, ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γΗ/γC)(2). However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ2 is comparable in magnitude to k ex) the ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ) ratio provides a reliable measure of the 'true' methyl PREs.
Ho, Chien; Baldassare, Joseph J.; Charache, Samuel
1970-01-01
The spin label technique has been used to study human hemoglobins A, F, Zürich, and Chesapeake as a function of carbon monoxide saturation. The experimental results suggest that the changes in the electron paramagnetic resonance spectra of hemoglobin labeled with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)iodoacetamide depend on the state of ligation of more than one heme group. For those hemoglobins with full or large cooperative ligand binding (such as A, F, and Zürich), there is a lack of isosbestic points in the spectra as a function of CO saturation. However, for those hemoglobins with little or no cooperative ligand binding (such as Chesapeake and methemoglobins), there is a sharp set of isosbestic points. These findings confirm and extend the early work of McConnell and co-workers. The absence of a set of isosbestic points in those hemoglobins with full cooperative ligand binding is consistent with the sequential model of Koshland, Némethy, and Filmer for cooperative oxygen binding to hemoglobin. The present results, with hemoglobin variants having known amino acid substitutions, also focus on the importance of the interactions among the amino acid residues located at α1-β2 or α2-β1 subunit contacts for the functioning of hemoglobin as an oxygen carrier. In addition, the resonance spectra of the spin label are very sensitive to small structural variations around the heme groups in the β- or γ-chains where the labels are attached. The results of the spin label experiment are discussed in relation to recent findings on the mechanism of oxygenation of hemoglobin from the nuclear magnetic resonance studies of this laboratory and the x-ray crystallographic analysis of Perutz and co-workers. PMID:4316679
NASA Astrophysics Data System (ADS)
Singh, Geetanjali; Bhat, S. V.
2012-06-01
We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter ˜ 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at ˜230 K and an antiferromagnetic (AFM) transition at ˜130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at Tc ˜ 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO.
Ramos, Paweł; Pilawa, Barbara
The effect of UVA (315-400 nm) irradiation on Echinaceae purpureae interactions with free radicals was examined by the use of electron paramagnetic resonance (EPR) spectroscopy. The changes of antioxidant properties of E. purpureae with time of UV irradiation from 10 to 110 min (10 min steps) were determined. DPPH as the paramagnetic reference was used in this study. Changes of EPR signals of the reference after interactions with nonirradiated and UV-irradiated E. purpureae were detected. Interactions of the tested E. purpureae samples caused decrease of the EPR signal of DPPH as the result of its antioxidant properties. The decrease of the amplitude of EPR line of DPPH was lower for interactions with UV-irradiated E. purpureae . EPR examination confirmed antioxidant properties of E. purpureae . The weaker antioxidant properties of E. purpureae after UV irradiation were pointed out. E. purpureae should be storage in the dark. The tests bring to light usefulness of electron paramagnetic resonance with microwave frequency of 9.3 GHz (an X-band) in examination of storage conditions of pharmacological herbs.
Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy
Niklas, Jens; Poluektov, Oleg
2017-03-03
Understanding charge separation and charge transport at a molecular level is crucial for improving the efficiency of organic photovoltaic (OPV) cells. Under illumination of Bulk Heterojunction (BHJ) blends of polymers and fullerenes, various paramagnetic species are formed including polymer and fullerene radicals, radical pairs, and photoexcited triplet states. Light-induced Electron Paramagnetic Resonance (EPR) spectroscopy is ideally suited to study these states in BHJ due to its selectivity in probing the paramagnetic intermediates. Some advanced EPR techniques like light-induced ENDOR spectroscopy and pulsed techniques allow the determination of hyperfine coupling tensors, while high-frequency EPR allows the EPR signals of the individualmore » species to be resolved and their g-tensors to be determined. In these magnetic resonance parameters reveal details about the delocalization of the positive polaron on the various polymer donors which is important for the efficient charge separation in BHJ systems. Time-resolved EPR can contribute to the study of the dynamics of charge separation, charge transfer and recombination in BHJ by probing the unique spectral signatures of charge transfer and triplet states. Furthermore, the potential of the EPR also allows characterization of the intermediates and products of BHJ degradation.« less
Segmented surface coil resonator for in vivo EPR applications at 1.1GHz.
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L
2009-05-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20mm.
Segmented surface coil resonator for in vivo EPR applications at 1.1 GHz
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L.
2010-01-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18 mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20 mm. PMID:19268615
A new pulse width reduction technique for pulsed electron paramagnetic resonance spectroscopy.
Ohba, Yasunori; Nakazawa, Shigeaki; Kazama, Shunji; Mizuta, Yukio
2008-03-01
We present a new technique for a microwave pulse modulator that generates a short microwave pulse of approximately 1ns for use in an electron paramagnetic resonance (EPR) spectrometer. A quadruple-frequency multiplier that generates a signal of 16-20GHz from an input of 4-5GHz was employed to reduce the rise and fall times of the pulse prepared by a PIN diode switch. We examined the transient response characteristics of a commercial frequency multiplier and found that the device can function as a multiplier for pulsed signal even though it was designed for continuous wave operation. We applied the technique to a Ku band pulsed EPR spectrometer and successfully observed a spin echo signal with a broad excitation bandwidth of approximately 1.6mT using 80 degrees pulses of 1.5ns.
Stanjek-Cichoracka, A; Żegleń, S; Ramos, P; Pilawa, B; Wojarski, J
2018-06-01
The immunosuppressive drugs used in solid organ transplantation or autoimmunological processes were studied by electron paramagnetic resonance (EPR) spectroscopy to estimate their free radical scavenging activity. The interactions of immunosuppressants with free radicals were examined by an X-band (9.3 GHz) EPR spectroscopy and a model of DPPH free radicals. The EPR spectra of DPPH and DPPH interacting with individual drugs were compared. Kinetic studies were performed, and the effect of ultraviolet (UV) irradiation on the free radical scavenging activity of the tested drugs was determined. The free radical scavenging activity of non-irradiated drugs decreased in the order: rapamycin > mycophenolate mofetil > ciclosporin > tacrolimus. UV irradiation increased the free radical scavenging activity of all the tested immunosuppressive drugs, and the effect was highest for tacrolimus. For the non-irradiated samples, the speed of free radical interactions decreased in the order: ciclosporin > tacrolimus > mycophenolate mofetil > rapamycin. UV irradiation only slightly affected the speed of interactions of the immunosuppressive drugs with the model DPPH free radicals. Electron paramagnetic resonance spectroscopy is useful for obtaining information on interactions of immunosuppressive drugs with free radicals. We hypothesized that the long-term immunosuppressive effects of these drugs after transplantation or during autoimmune disorders may be mediated by anti-inflammatory action in addition to the known receptor/cell cycle inhibition. © 2018 John Wiley & Sons Ltd.
Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance
Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So
2009-01-01
Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...
TRIAGE of Irradiated Personnel
1996-09-25
Vivo Electron Paramagnetic Resonance, Electron Spin Resonance (EPR, ESR) for In Vivo Dosimetry Under Field Conditions Dr. Harold M. Swartz Dartmouth...Force Medical Center Andrews Air Force Base, MD • Status and Limitations of Physical Dosimetry in the Field Environment David A. Schauer, LCDR, MSC...USN Naval Dosimetry Center Navy Environmental Health Center Detachment Bethesda, MD • NATO Policy and Guidance on Antiemetic Usage Robert Kehlet
NASA Astrophysics Data System (ADS)
Crook, Nigel P.; Hoon, Stephen R.; Taylor, Kevin G.; Perry, Chris T.
2002-05-01
This study investigates the application of high sensitivity electron spin resonance (ESR) to environmental magnetism in conjunction with the more conventional techniques of magnetic susceptibility, vibrating sample magnetometry (VSM) and chemical compositional analysis. Using these techniques we have studied carbonate sediment samples from Discovery Bay, Jamaica, which has been impacted to varying degrees by a bauxite loading facility. The carbonate sediment samples contain magnetic minerals ranging from moderate to low concentrations. The ESR spectra for all sites essentially contain three components. First, a six-line spectra centred around g = 2 resulting from Mn2+ ions within a carbonate matrix; second a g = 4.3 signal from isolated Fe3+ ions incorporated as impurities within minerals such as gibbsite, kaolinite or quartz; third a ferrimagnetic resonance with a maxima at 230 mT resulting from the ferrimagnetic minerals present within the bauxite contamination. Depending upon the location of the sites within the embayment these signals vary in their relative amplitude in a systematic manner related to the degree of bauxite input. Analysis of the ESR spectral components reveals linear relationships between the amplitude of the Mn2+ and ferrimagnetic signals and total Mn and Fe concentrations. To assist in determining the origin of the ESR signals coral and bauxite reference samples were employed. Coral representative of the matrix of the sediment was taken remote from the bauxite loading facility whilst pure bauxite was collected from nearby mining facilities. We find ESR to be a very sensitive technique particularly appropriate to magnetic analysis of ferri- and para-magnetic components within environmental samples otherwise dominated by diamagnetic (carbonate) minerals. When employing typical sample masses of 200 mg the practical detection limit of ESR to ferri- and para-magnetic minerals within a diamagnetic carbonate matrix is of the order of 1 ppm and 1 ppb respectively, approximately 102 and 105 times the sensitivity achievable employing the VSM in our laboratory.
Filek, Maria; Łabanowska, Maria; Kurdziel, Magdalena; Sieprawska, Apolonia
2017-05-27
These studies concentrate on the possibility of using selenium ions and/or 24-epibrassinolide at non-toxic levels as protectors of wheat plants against zearalenone, which is a common and widespread mycotoxin. Analysis using the UHPLC-MS technique allowed for identification of grains having the stress-tolerant and stress-sensitive wheat genotype. When germinating in the presence of 30 µM of zearalenone, this mycotoxin can accumulate in both grains and hypocotyls germinating from these grains. Selenium ions (10 µM) and 24-epibrassinolide (0.1 µM) introduced together with zearalenone decreased the uptake of zearalenone from about 295 to 200 ng/g and from about 350 to 300 ng/g in the grains of tolerant and sensitive genotypes, respectively. As a consequence, this also resulted in a reduction in the uptake of zearalenone from about 100 to 80 ng/g and from about 155 to 128 ng/g in the hypocotyls from the germinated grains of tolerant and sensitive wheat, respectively. In the mechanism of protection against the zearalenone-induced oxidative stress, the antioxidative enzymes-mainly superoxide dismutase (SOD) and catalase (CAT)-were engaged, especially in the sensitive genotype. Electron paramagnetic resonance (EPR) studies allowed for a description of the chemical character of the long-lived organic radicals formed in biomolecular structures which are able to stabilize electrons released from reactive oxygen species as well as the changes in the status of transition paramagnetic metal ions. The presence of zearalenone drastically decreased the amount of paramagnetic metal ions-mainly Mn(II) and Fe(III)-bonded in the organic matrix. This effect was particularly found in the sensitive genotype, in which these species were found at a smaller level. The protective effect of selenium ions and 24-epibrassinolide originated from their ability to inhibit the destruction of biomolecules by reactive oxygen species. An increased ability to defend biomolecules against zearalenone action was observed for 24-epibrassinolide.
NASA Astrophysics Data System (ADS)
Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria
2018-01-01
Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed.
NASA Astrophysics Data System (ADS)
Caliskan, Betul; Caliskan, Ali Cengiz
2017-06-01
Bis(cyclopentadienyl)zirconium dichloride (BCZD; zirconocene dichloride) single crystals were exposed to 60Co-γ irradiation at room temperature. The irradiated single crystals were investigated between 125 and 470 K by electron paramagnetic resonance spectroscopy. The spectra of the crystals were found to be temperature independent. The paramagnetic center was attributed to the cyclopentadienyl radical. The g values of the radiation damage center observed in BCZD single crystal and the hyperfine structure constants of the free electron with nearby protons were obtained.
Emulsion Polymerization of Butyl Acrylate: Spin Trapping and EPR Study
NASA Technical Reports Server (NTRS)
Kim, S.; Westmoreland, D.
1994-01-01
The propagating radical in the emulsion polymerization reaction of butyl acrylate was detected by Electron Paramagnetic Resonance spectroscopy using two spin trapping agents, 2-methyl-2nitrosopropane and alpha -N-tert-butylnitrone.
NASA Astrophysics Data System (ADS)
Robinson, Bruce H.; Dalton, Larry R.
1980-01-01
The stochastic Liouville equation for the spin density matrix is modified to consider the effects of Brownian anisotropic rotational diffusion upon electron paramagnetic resonance (EPR) and saturation transfer electron paramagnetic resonance (ST-EPR) spectra. Spectral shapes and the ST-EPR parameters L″/L, C'/C, and H″/H defined by Thomas, Dalton, and Hyde at X-band microwave frequencies [J. Chem. Phys. 65, 3006 (1976)] are examined and discussed in terms of the rotational times τ∥ and τ⊥ and in terms of other defined correlation times for systems characterized by magnetic tensors of axial symmetry and for systems characterized by nonaxially symmetric magnetic tensors. For nearly axially symmetric magnetic tensors, such as nitroxide spin labels studied employing 1-3 GHz microwaves, ST-EPR spectra for systems undergoing anisotropic rotational diffusion are virtually indistinguishable from spectra for systems characterized by isotropic diffusion. For nonaxially symmetric magnetic tensors, such as nitroxide spin labels studied employing 8-35 GHz microwaves, the high field region of the ST-EPR spectra, and hence the H″/H parameter, will be virtually indistinguishable from spectra, and parameter values, obtained for isotropic diffusion. On the other hand, the central spectral region at x-band microwave frequencies, and hence the C'/C parameter, is sensitive to the anisotropic diffusion model provided that a unique and static relationship exists between the magnetic and diffusion tensors. Random labeling or motion of the spin label relative to the biomolecule whose hydrodynamic properties are to be investigated will destroy spectral sensitivity to anisotropic motion. The sensitivity to anisotropic motion is enhanced in proceeding to 35 GHz with the increased sensitivity evident in the low field half of the EPR and ST-EPR spectra. The L″/L parameter is thus a meaningful indicator of anisotropic motion when compared with H″/H parameter analysis. However, consideration of spectral shapes suggests that the C'/C parameter definition is not meaningfully extended from 9.5 to 35 GHz. Alternative definitions of the L″/L and C'/C parameters are proposed for those microwave frequencies for which the electron Zeeman anisotropy is comparable to or greater than the electron-nitrogen nuclear hyperfine anisotropy.
Nakagawa, Kouichi; Hara, Hideyuki
2016-01-01
We investigated the antioxidant activities and locations of stable paramagnetic species in dry (or drying) shiitake mushroom (Lentinus edodes) using continuous wave (CW) electron paramagnetic resonance (EPR) and 9 GHz EPR imaging. CW 9 GHz EPR detected paramagnetic species (peak-to-peak linewidth (ΔHpp) = 0.57 mT) in the mushroom. Two-dimensional imaging of the sharp line using a 9 GHz EPR imager showed that the species were located in the cap and shortened stem portions of the mushroom. No other location of the species was found in the mushroom. However, radical locations and concentrations varied along the cap of the mushroom. The 9 GHz EPR imaging determined the exact location of stable paramagnetic species in the shiitake mushroom. Distilled water extracts of the pigmented cap surface and the inner cap of the mushroom showed similar antioxidant activities that reduced an aqueous solution of 0.1 mM 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. The present results suggest that the antioxidant activities of the edible mushroom extracts are much weaker than those of ascorbic acid. Thus, CW EPR and EPR imaging revealed the location and distribution of stable paramagnetic species and the antioxidant activities in the shiitake mushroom for the first time.
Constantinou, Caterina; Apidianakis, Yiorgos; Psychogios, Nikolaos; Righi, Valeria; Mindrinos, Michael N; Khan, Nadeem; Swartz, Harold M; Szeto, Hazel H; Tompkins, Ronald G; Rahme, Laurence G; Tzika, A Aria
2016-02-01
Trauma is the most common cause of mortality among individuals aged between 1 and 44 years and the third leading cause of mortality overall in the US. In this study, we examined the effects of trauma on the expression of genes in Drosophila melanogaster, a useful model for investigating genetics and physiology. After trauma was induced by a non-lethal needle puncture of the thorax, we observed the differential expression of genes encoding for mitochondrial uncoupling proteins, as well as those encoding for apoptosis-related and insulin signaling-related proteins, thus indicating muscle functional dysregulation. These results prompted us to examine the link between insulin signaling and mitochondrial dysfunction using in vivo nuclear magnetic resonance (NMR) with complementary electron paramagnetic resonance (EPR) spectroscopy. Trauma significantly increased insulin resistance biomarkers, and the NMR spectral profile of the aged flies with trauma-induced thoracic injury resembled that of insulin-resistant chico mutant flies. In addition, the mitochondrial redox status, as measured by EPR, was significantly altered following trauma, indicating mitochondrial uncoupling. A mitochondria-targeted compound, Szeto-Schiller (SS)-31 that promotes adenosine triphosphate (ATP) synthesis normalized the NMR spectral profile, as well as the mitochondrial redox status of the flies with trauma-induced thoracic injury, as assessed by EPR. Based on these findings, we propose a molecular mechanism responsible for trauma-related mortality and also propose that trauma sequelae in aging are linked to insulin signaling and mitochondrial dysfunction. Our findings further suggest that SS-31 attenuates trauma-associated pathological changes.
Pulsed-High Field/High-Frequency EPR Spectroscopy
NASA Astrophysics Data System (ADS)
Fuhs, Michael; Moebius, Klaus
Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.
NASA Astrophysics Data System (ADS)
Bennati, Marina; Prisner, Thomas F.
2005-02-01
Recent developments in microwave technologies have led to a renaissance of electron paramagnetic resonance (EPR) due to the implementation of new spectrometers operating at frequencies >=90 GHz. EPR at high fields and high frequencies (HF-EPR) has been established up to THz (very high frequency (VHF) EPR) in continuous wave (cw) operation and up to about 300 GHz in pulsed operation. To date, its most prominent application field is structural biology. This review article first gives an overview of the theoretical basics and the technical aspects of HF-EPR methodologies, such as cw and pulsed HF-EPR, as well as electron nuclear double resonance at high fields (HF-ENDOR). In the second part, the article illustrates different application areas of HF-EPR in studies of protein structure and function. In particular, HF-EPR has delivered essential contributions to disentangling complex spectra of radical cofactors or reaction intermediates in photosynthetic reaction centres, radical enzymes (such as ribonucleotide reductase) and in metalloproteins. Furthermore, HF-EPR combined with site-directed spin labelling in membranes and soluble proteins provides new methods of investigating complex molecular dynamics and intermolecular distances.
NASA Astrophysics Data System (ADS)
Bitar, Z.; El-Said Bakeer, D.; Awad, R.
2017-07-01
Zinc Cobalt nano ferrite doped with Praseodymium, Zn0.5Co0.5Fe2-xPrxO4 (0 ≤ x ≤ 0.2), were prepared by co-precipitation method from an aqueous solution containing metal chlorides and two concentrations of poly(vinylpyrrolidone) (PVP) 0 and 30g/L as capping agent. The samples were characterized using X-ray powder diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible optical spectroscopy, Fourier transform infrared (FTIR) and Electron Paramagnetic Resonance (EPR). XRD results display the formation of cubic spinel structure with space group Fd3m and the lattice parameter (a) is slightly decreased for PVP capping samples. The particle size that determined by TEM, decreases for PVP capping samples. The optical band energy Eg increases for PVP capping samples, confirming the variation of energy gap with the particle size. The FTIR results indicate that the metal oxide bands were shifted for the PVP capping samples. EPR data shows that the PVP addition increases the magnetic resonance field and hence decreases the g-factor.
Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika
2011-08-24
The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.
Smart Contrast Agents for Magnetic Resonance Imaging.
Bonnet, Célia S; Tóth, Éva
2016-01-01
By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.
NASA Astrophysics Data System (ADS)
Weeks, Robert A.; Bogard, James S.; Elam, J. Michael; Weinand, Daniel C.; Kramer, Andrew
2003-06-01
The concentration of stable radiation-induced paramagnetic states in fossil teeth can be used as a measure of sample age. Temperature excursions >100 °C, however, can cause the paramagnetic state clock to differ from the actual postmortem time. We have heated irradiated enamel from both fossilized bovid and modern equine (MEQ) teeth for 30 min in 50 °C increments from 100 to 300 °C, measuring the electron paramagnetic resonance (EPR) spectrum after each anneal, to investigate such effects. Samples were irradiated again after the last anneal, with doses of 300-1200 Gy from 60Co photons, and measured. Two unirradiated MEQ samples were also annealed for 30 min at 300 °C, one in an evacuated EPR tube and the other in a tube open to the atmosphere, and subsequently irradiated. The data showed that hyperfine components attributed to the alanine radical were not detected in the irradiated MEQ sample until after the anneals. The spectrum of the MEQ sample heated in air and then irradiated was similar to that of the heat treated fossil sample. We conclude that the hyperfine components are due to sample heating to temperatures/times >100 °C/30 min and that similarities between fossil and MEQ spectra after the 300 °C/30 min MEQ anneal are also due to sample heating. We conclude that the presence of the hyperfine components in spectra of fossil tooth enamel indicate that such thermal events occurred either at the time of death, or during the postmortem history.
Ramanan, B.; Holmes, W. M.; Sloan, W. T.; Phoenix, V. R.
2010-01-01
Molecules become readily visible by magnetic resonance imaging (MRI) when labeled with a paramagnetic tag. Consequently, MRI can be used to image their transport through porous media. In this study, we demonstrated that this method could be applied to image mass transport processes in biofilms. The transport of a complex of gadolinium and diethylenetriamine pentaacetic acid (Gd-DTPA), a commercially available paramagnetic molecule, was imaged both in agar (as a homogeneous test system) and in a phototrophic biofilm. The images collected were T1 weighted, where T1 is an MRI property of the biofilm and is dependent on Gd-DTPA concentration. A calibration protocol was applied to convert T1 parameter maps into concentration maps, thus revealing the spatially resolved concentrations of this tracer at different time intervals. Comparing the data obtained from the agar experiment with data from a one-dimensional diffusion model revealed that transport of Gd-DTPA in agar was purely via diffusion, with a diffusion coefficient of 7.2 × 10−10 m2 s−1. In contrast, comparison of data from the phototrophic biofilm experiment with data from a two-dimensional diffusion model revealed that transport of Gd-DTPA inside the biofilm was by both diffusion and advection, equivalent to a diffusion coefficient of 1.04 × 10−9 m2 s−1. This technology can be used to further explore mass transport processes in biofilms, either by using the wide range of commercially available paramagnetically tagged molecules and nanoparticles or by using bespoke tagged molecules. PMID:20435773
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... that is a unique combination of: (1) multi-gradient Single Point Imaging involving global phase...-encoding gradients. The combination approach of single point imaging with the spin-echo signal detection...
Lethal effect of uv and $gamma$ irradiation on some species of Dematiaceae (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhdanova, N.N.; Gavryushina, A.I.; Bondar, A.I.
1972-01-01
A comparative study was conducted of relation of four species of Dematiaceae and a mutant with lowered content of melanine to gamma and uv rays. Under uv irradiation, survival iate of all studied species was characterized by a complex exponential curve with a large, sharply pronounced resistant area. An assumption is advanced that a sharp fall of survival rate during the first minutes of uv irradiation is conditioned by specificity of the protective effect of melanine pigment tint needs time for transition into the active state. Species resistant to gamma irradiation had sygmoid curves of survival rate and sensitive speciesmore » had the exponential ones. Increased resistance to gamma rays was accompanied by an increase in concentration of paramagnetic-particles that were determined by the method of electronic paramagnetic resonance. Analysis of the data obtained makes it possible to suppose that the protective effect of fungal melanine is various under gamma and uv irradiation. (auth)« less
An electron paramagnetic resonance study on irradiated triphenylphosphinselenid single crystal
NASA Astrophysics Data System (ADS)
Aras, Erdal; Karatas, Ozgul; Meric, Yasemin; Abbass, Hind Kh; Birey, Mehmet; Kilic, Ahmet
2014-09-01
The single crystals of triphenylphosphinselenid [C18H15PSe] were produced by slow evaporation of concentrated ethyl acetate solutions. These single crystals were exposed to 60Co gamma (γ) rays with a dose speed of 0.980 kGy/h at the room temperature for 72 h. The free radical over the sample was observed using electron paramagnetic resonance (EPR)-X band spectrometer. The EPR spectra were recorded between 120 and 400 K. Furthermore, the sample irradiated was rotated in steps of 10° and analyzed for different orientations of the crystal in the magnetic field. Only one radical structure was determined on the molecule. The hyperfine constants of the sample were found to be anisotropic. The average values of these constants and value of g were calculated as following: g=2.007656, aSe=37.47 G, aP=27.44 G, aHa=17.28 G, and aHb=18.16 G.
NASA Astrophysics Data System (ADS)
Hirata, Hiroshi; Itoh, Toshiharu; Hosokawa, Kouichi; Deng, Yuanmu; Susaki, Hitoshi
2005-08-01
This article describes a systematic method for determining the cutoff frequency of the low-pass window function that is used for deconvolution in two-dimensional continuous-wave electron paramagnetic resonance (EPR) imaging. An evaluation function for the criterion used to select the cutoff frequency is proposed, and is the product of the effective width of the point spread function for a localized point signal and the noise amplitude of a resultant EPR image. The present method was applied to EPR imaging for a phantom, and the result of cutoff frequency selection was compared with that based on a previously reported method for the same projection data set. The evaluation function has a global minimum point that gives the appropriate cutoff frequency. Images with reasonably good resolution and noise suppression can be obtained from projections with an automatically selected cutoff frequency based on the present method.
NASA Astrophysics Data System (ADS)
Scheerer, O.; Höhne, M.; Juda, U.; Riemann, H.
1997-10-01
In this article, we report about complexes in silicon investigated by electron paramagnetic resonance (EPR). In silicon doped with C and Pt we detected two different complexes: cr-1Pt (cr: carbon-related, 1Pt: one Pt atom) and cr-3Pt. The complexes have similar EPR properties. They show a trigonal symmetry with effective g-values geff,⊥=2g⊥≈4 and geff,‖=g‖≈2 (g⊥, g‖ true g-values). The g-values can be explained by a spin Hamiltonian with large fine-structure energy (electron spin S=3/2) and smaller Zeeman interaction. The participation of platinum in the complexes is proved by the hyperfine interaction. From experiments with varying carbon concentration we conclude that the complexes contain carbon. Atomistic models based on the Watkins vacancy-model for substitutional Pt were developed.
NASA Astrophysics Data System (ADS)
Van Doorslaer, Sabine; Cuypers, Bert
2018-02-01
At the start of the twenty-first century, the research into the haem-containing globins got a considerable impetus with the discovery of three new mammalian globins: neuroglobin, cytoglobin and androglobin. Globins are by now found in all kingdoms of life and, in many cases, their functions are still under debate. This revival in globin research increased the demand for adequate physico-chemical research tools to determine the structure-function relationships of these proteins. From early days onwards, electron paramagnetic resonance (EPR) has been used in globin research. In recent decades, the field of EPR has been revolutionised with the introduction of many new pulsed and high-field EPR techniques. In this review, we highlight how EPR has become an essential tool in globin research, and how globins equally provide ideal model systems to push technical developments in EPR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr; Tapramaz, Recep, E-mail: recept@omu.edu.tr
Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn{sup +2} ion complex with mixed ligand, [Mn(acs){sub 2}(2-pic){sub 2}(H{sub 2}O){sub 2}], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that themore » complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.« less
Imaging thiol redox status in murine tumors in vivo with rapid-scan electron paramagnetic resonance
NASA Astrophysics Data System (ADS)
Epel, Boris; Sundramoorthy, Subramanian V.; Krzykawska-Serda, Martyna; Maggio, Matthew C.; Tseytlin, Mark; Eaton, Gareth R.; Eaton, Sandra S.; Rosen, Gerald M.; Kao, Joseph P. Y.; Halpern, Howard J.
2017-03-01
Thiol redox status is an important physiologic parameter that affects the success or failure of cancer treatment. Rapid scan electron paramagnetic resonance (RS EPR) is a novel technique that has shown higher signal-to-noise ratio than conventional continuous-wave EPR in in vitro studies. Here we used RS EPR to acquire rapid three-dimensional images of the thiol redox status of tumors in living mice. This work presents, for the first time, in vivo RS EPR images of the kinetics of the reaction of 2H,15N-substituted disulfide-linked dinitroxide (PxSSPx) spin probe with intracellular glutathione. The cleavage rate is proportional to the intracellular glutathione concentration. Feasibility was demonstrated in a FSa fibrosarcoma tumor model in C3H mice. Similar to other in vivo and cell model studies, decreasing intracellular glutathione concentration by treating mice with L-buthionine sulfoximine (BSO) markedly altered the kinetic images.
Imaging single spin probes embedded in a conductive diamagnetic layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messina, P.; Fradin, F.
2009-01-01
The detection of spin noise by means of scanning tunneling microscopy (STM) has recently been substantially improved by the work presented by Komeda and Manassen (Komeda, T.; Manassen, Y. Appl. Phys. Lett. 2008, 92, 212506). The application of this technique to molecular paramagnets requires the positioning and anchoring of paramagnetic molecules at surfaces. It also requires the possibility of tunneling high current densities into the STM-molecule-substrate tunneling junction. In this letter, we exploit the self-assembly of 1,10-phenantroline on the Au(111) surface to form a diamagnetic matrix that hosts individual molecules and dimers of diphenyl-2-picryl-hydrazyl (DPPH). STM measurements are used tomore » characterize the molecular layer. Electron spin resonance (ESR) measurements elucidate the role of thermal annealing in the preservation of the paramagnetic nature of the DPPH molecules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suleman, N.K.
1994-12-01
A major long-term goal of the Materials Division at the NASA Langley Research Center is the characterization of new high-performance materials that have potential applications in the aircraft industry, and in space. The materials used for space applications are often subjected to a harsh and potentially damaging radiation environment. The present study constitutes the application of a novel technique to obtain reliable data for ascertaining the molecular basis for the resilience and durability of materials that have been exposed to simulated space radiations. The radiations of greatest concern are energetic electrons and protons, as well as galactic cosmic rays. Presently,more » the effects of such radiation on matter are not understood in their entirety. It is clear however, that electron radiation causes ionization and homolytic bond rupture, resulting in the formation of paramagnetic spin centers in the polymer matrices of the structural materials. Since the detection and structure elucidation of paramagnetic species are most readily accomplished using Electron Paramagnetic Resonance (EPR) Spectroscopy, the NASA LaRC EPR system was brought back on-line during the 1991 ASEE term. The subsequent 1992 ASEE term was devoted to the adaptation of the EPR core system to meet the requirements for EPR Imaging (EPRI), which provides detailed information on the spatial distribution of paramagnetic species in bulk media. The present (1994) ASEE term was devoted to the calibration of this EPR Imaging system, as well as to the application of this technology to study the effects of electron irradiation on Ultem(exp R), a high performance polymer which is a candidate for applications in aerospace. The Ultem was exposed to a dose of 2.4 x 10(exp 9) Rads (1-MeV energy/electron) at the LaRC electron accelerator facility. Subsequently, the exposed specimens were stored in liquid nitrogen, until immediately prior to analyses by EPRI.« less
Nuclear magnetic resonance contrast agents
Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.
1997-12-30
A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.
Nuclear magnetic resonance contrast agents
Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.
1997-01-01
A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.
Krudopp, Heimke; Sönnichsen, Frank D; Steffen-Heins, Anja
2015-08-15
The partitioning behavior of paramagnetic nitroxides in dispersed systems can be determined by deconvolution of electron paramagnetic resonance (EPR) spectra giving equivalent results with the validated methods of ultrafiltration techniques (UF) and pulsed-field gradient nuclear magnetic resonance spectroscopy (PFG-NMR). The partitioning behavior of nitroxides with increasing lipophilicity was investigated in anionic, cationic and nonionic micellar systems and 10 wt% o/w emulsions. Apart from EPR spectra deconvolution, the PFG-NMR was used in micellar solutions as a non-destructive approach, while UF based on separation of very small volume of the aqueous phase. As a function of their substituent and lipophilicity, the proportions of nitroxides that were solubilized in the micellar or emulsion interface increased with increasing nitroxide lipophilicity for all emulsifier used. Comparing the different approaches, EPR deconvolution and UF revealed comparable nitroxide proportions that were solubilized in the interfaces. Those proportions were higher than found with PFG-NMR. For PFG-NMR self-diffusion experiments the reduced nitroxides were used revealing a high dynamic of hydroxylamines and emulsifiers. Deconvolution of EPR spectra turned out to be the preferred method for measuring the partitioning behavior of paramagnetic molecules as it enables distinguishing between several populations at their individual solubilization sites. Copyright © 2015 Elsevier Inc. All rights reserved.
Junk, Matthias J.N.; Spiess, Hans W.; Hinderberger, Dariush
2011-01-01
The structure of human serum albumin loaded with a metal porphyrin and fatty acids in solution is characterized by orientation-selective double electron-electron resonance (DEER) spectroscopy. Human serum albumin, spin-labeled fatty acids, and Cu(II) protoporphyrin IX—a hemin analog—form a fully self-assembled system that allows obtaining distances and mutual orientations between the paramagnetic guest molecules. We report a simplified analysis for the orientation-selective DEER data which can be applied when the orientation selection of one spin in the spin pair dominates the orientation selection of the other spin. The dipolar spectra reveal a dominant distance of 3.85 nm and a dominant orientation of the spin-spin vectors between Cu(II) protoporphyrin IX and 16-doxyl stearic acid, the electron paramagnetic resonance reporter group of the latter being located near the entry points to the fatty acid binding sites. This observation is in contrast to crystallographic data that suggest an asymmetric distribution of the entry points in the protein and hence the occurrence of various distances. In conjunction with the findings of a recent DEER study, the obtained data are indicative of a symmetric distribution of the binding site entries on the protein's surface. The overall anisotropic shape of the protein is reflected by one spin-spin vector orientation dominating the DEER data. PMID:21539799
Electron paramagnetic resonance of a 10B-containing heterocyclic radical
NASA Astrophysics Data System (ADS)
Eaton, Sandra S.; Ngendahimana, Thacien; Eaton, Gareth R.; Jupp, Andrew R.; Stephan, Douglas W.
2018-05-01
Electron paramagnetic resonance measurements for a 10B-containing heterocyclic phenanthrenedione radical, (C6F5)2B(O2C14H8), were made at X-band in 9:1 toluene:dichloromethane from 10 to 293 K and in toluene from 180 to 293 K. In well-deoxygenated 0.1 mM toluene solution at room temperature hyperfine couplings to 10B, four pairs of protons and five pairs of fluorines contribute to a continuous wave spectrum with many resolved lines. Hyperfine couplings were adjusted to provide the best fit for spectra of the radical enriched in 10B and the analogous radical synthesized with 10,11B in natural abundance, resulting in small refinements of the hyperfine coupling constants previously reported for the natural abundance sample. Electron spin relaxation rates at temperatures between 15 and 293 K were similar for samples containing 10B and natural isotope abundance. Analysis of electron spin echo envelope modulation and hyperfine correlation spectroscopy data at 80 K found Axx = -7.5 ± 0.3, Ayy = -8.5 ± 0.3, and Azz = -10.8 ± 0.3 MHz for 11B, which indicates small spin density on the boron. The spin echo and hyperfine spectroscopy data for the 10B -containing radical are consistent with the factor of 2.99 smaller hyperfine values for 10B than for 11B.
Sin, Della W M; Wong, Yiu Chung; Yao, Wai Yin
2006-09-20
Seeds of melon (Citrullus lanatus var. sp.), pumpkin (Cucurbita moschata), and sunflower (Heliantus annus) were gamma-irradiated at 1, 3, 5, and 10 kGy and analyzed by electron paramagnetic resonance (EPR) and gas chromatography-mass spectrometry (GC-MS) according to EN1787:2000 and EN1785:2003, respectively. Distinguishable triplet signals due to the presence of induced cellulose radicals were found at 2.0010-2.0047 g in the EPR spectra. The gamma-irradiated radiolytic markers of 2-dodecylcyclobutanone (2-DCB) and 2-tetradecylcyclobutanone (2-TCB) were identified in all irradiated seed samples. Both the free radicals and the alkylcyclobutanones were found to increase with irradiation dose. In general, linear relationships between the amount of radicals and irradiation dosage could be established. Studies at an ambient temperature (20-25 degrees C) in a humidity-controlled environment showed a complete disappearance of the cellulosic peaks for irradiated samples upon 60 days of storage. Such instability behavior was considered to render the usefulness of using EPR alone in the determination of irradiated seed samples. On the other hand, 2-DCB and 2-TCB were also found to decompose rapidly (>85% loss after 120 days of storage), but the radiolytic markers remained quantifiable after 120 days of postirradiation storage. These results suggest that GC-MS is a versatile and complimentary technique for the confirmation of irradiation treatment to seeds.
Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna
2015-01-01
Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).
Small-Angle Neutron Scattering on Crosslink Distribution of Epoxy Networks.
1985-10-01
distinct second phase or heterogeneity has been detected. Small- angle X-ray scattering (SAXS), 1 nuclear magnetic resonance (NMR) ,2 electron ... paramagnetic resonance (EPR),3 and glass transition 4temperature (Tg) measurements reveal a second phase which is attri- . buted to a heterogeneous...FUNDING/SPONSORING lab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER * ORGANIZATION I (If applticable)j F3361 5-84-C-5020 * Bc ADDRESS
Locations of radical species in black pepper seeds investigated by CW EPR and 9 GHz EPR imaging
NASA Astrophysics Data System (ADS)
Nakagawa, Kouichi; Epel, Boris
2014-10-01
In this study, noninvasive 9 GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9 GHz EPR imaging capabilities. The 9 GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2 mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe3+, and Mn2+ complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1 h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9 GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds.
Locations of radical species in black pepper seeds investigated by CW EPR and 9GHz EPR imaging.
Nakagawa, Kouichi; Epel, Boris
2014-10-15
In this study, noninvasive 9GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9GHz EPR imaging capabilities. The 9GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe(3+), and Mn(2+) complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds. Copyright © 2014 Elsevier B.V. All rights reserved.
EPR investigation of electronic excitations in rare gas solids (Review Article)
NASA Astrophysics Data System (ADS)
Zhitnikov, R. A.; Dmitriev, Yu. A.
1998-10-01
The methods are described for producing unstable paramagnetic excited states in rare gas cryocrystals Ne, Ar, Kr, and Xe through the trapping, in the cryocrystals growing from the gas phase, the products of the gas discharge taking place in the same or other rare gas. The paper presents a technique and results of an observation and investigation of excited states in rare gas cryocrystals with electron paramagnetic resonance (EPR). The discovered unstable paramagnetic centers are interpreted as being local metastable excited np5(n+1)s atomic-type states in rare gas cryocrystals which are subject to the action of the anisotropic electric field resulted from the crystal surroundings distorted by the center. An account is given of the mechanisms for formation of observed paramagnetic excited states in cryocrystals which arise owing to the excitation energy of the metastable 3P2 atoms of Ne, Ar, Kr, Xe and He 23S1 and 21S0 atoms that form in the discharge in an appropriate gas and trap in the growing cryocrystal.
High-frequency EPR of surface impurities on nanodiamond
NASA Astrophysics Data System (ADS)
Peng, Zaili; Stepanov, Viktor; Takahashi, Susumu
Diamond is a fascinating material, hosting nitrogen-vacancy (NV) defect centers with unique magnetic and optical properties. There have been many reports that suggest the existence of paramagnetic impurities near surface of various kinds of diamonds. Electron paramagnetic resonance (EPR) investigation of mechanically crushed nanodiamonds (NDs) as well as detonation NDs revealed g 2 like signals that are attributed to structural defects and dangling bonds near the diamond surface. In this presentation, we investigate paramagnetic impurities in various sizes of NDs using high-frequency (HF) continuous wave (cw) and pulsed EPR spectroscopy. Strong size dependence on the linewidth of HF cw EPR spectra reveals the existence of paramagnetic impurities in the vicinity of the diamond surface. We also study the size dependence of the spin-lattice and spin-spin relaxation times (T1 and T2) of single substitutional nitrogen defects in NDs Significant deviations from the temperature dependence of the phonon-assisted T1 process were observed in the ND samples, and were attributed to the contribution from the surface impurities. This work was supported by the Searle Scholars Program and the National Science Foundation (DMR-1508661 and CHE-1611134).
Probing the Dipolar Coupling in a Heterospin Endohedral Fullerene-Phthalocyanine Dyad.
Zhou, Shen; Yamamoto, Masanori; Briggs, G Andrew D; Imahori, Hiroshi; Porfyrakis, Kyriakos
2016-02-03
Paramagnetic endohedral fullerenes and phthalocyanine (Pc) complexes are promising building blocks for molecular quantum information processing, for which tunable dipolar coupling is required. We have linked these two spin qubit candidates together and characterized the resulting electron paramagnetic resonance properties, including the spin dipolar coupling between the fullerene spin and the copper spin. Having interpreted the distance-dependent coupling strength quantitatively and further discussed the antiferromagnetic aggregation effect of the CuPc moieties, we demonstrate two ways of tuning the dipolar coupling in such dyad systems: changing the spacer group and adjusting the solution concentration.
Combined optical/MCD/ODMR investigations of photochromism in doubly-doped Bi12GeO20
NASA Astrophysics Data System (ADS)
Briat, B.; Borowiec, M. T.; Rjeily, H. B.; Ramaz, F.; Hamri, A.; Szymczak, H.
Electron paramagnetic resonance is detected optically via the change of magnetic circular dichroism under microwaves at 35 GHz. The technique is applied to Bi12GeO20 samples co-doped with vanadium and a second transition metal (Cr, Mn, Co, Cu). The optical and magnetic properties of several paramagnetic defects (V-Ge(4+) and Cr-Ge(4+)) are directly correlated. The basic photochromic processes occuring in samples doped with V, Mn, and Mn+V are explained. The V-Ge(4+/5+) level is positioned roughly 2.2 eV above the valence band.
Single-aliquot EPR dosimetry of wallboard (drywall).
Mistry, R; Thompson, J W; Boreham, D R; Rink, W J
2011-11-01
Electron paramagnetic resonance spectra and dose-response curves are presented for a variety of wallboard samples obtained from different manufacturing facilities, as well as for source gypsum and anhydrite. The intensity of the CO(3)(-) paramagnetic centre (G2) is enhanced with gamma radiation. Isothermal decay curves are used to propose annealing methods for the removal of the radiosensitive CO(3)(-) radical without affecting the unirradiated baseline. Post-irradiation annealing of wallboard prevents recuperation of the radiosensitive CO(3)(-) radical with additional irradiation. A single-aliquot additive dose procedure is developed that successfully measures test doses as low as 0.76 Gy.
Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria
2018-01-15
Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed. Copyright © 2017 Elsevier B.V. All rights reserved.
Combined multifrequency EPR and DFT study of dangling bonds in a-Si:H
NASA Astrophysics Data System (ADS)
Fehr, M.; Schnegg, A.; Rech, B.; Lips, K.; Astakhov, O.; Finger, F.; Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Bittl, R.; Teutloff, C.
2011-12-01
Multifrequency pulsed electron paramagnetic resonance (EPR) spectroscopy using S-, X-, Q-, and W-band frequencies (3.6, 9.7, 34, and 94 GHz, respectively) was employed to study paramagnetic coordination defects in undoped hydrogenated amorphous silicon (a-Si:H). The improved spectral resolution at high magnetic field reveals a rhombic splitting of the g tensor with the following principal values: gx=2.0079, gy=2.0061, and gz=2.0034, and shows pronounced g strain, i.e., the principal values are widely distributed. The multifrequency approach furthermore yields precise 29Si hyperfine data. Density functional theory (DFT) calculations on 26 computer-generated a-Si:H dangling-bond models yielded g values close to the experimental data but deviating hyperfine interaction values. We show that paramagnetic coordination defects in a-Si:H are more delocalized than computer-generated dangling-bond defects and discuss models to explain this discrepancy.
NASA Astrophysics Data System (ADS)
Kirillov, V. A.; Kuchuro, I. I.
2010-03-01
Based on study of spectral and relaxation characteristics, we have established that paramagnetic centers induced in tooth enamel by x-rays and gamma radiation are identical in nature. We show that for the same exposure dose, the intensity of the electron paramagnetic resonance (EPR) signal induced by x-radiation with effective energy 34 keV is about an order of magnitude higher than the amplitude of the signal induced by gamma radiation. We have identified a three-fold attenuation of the EPR signal along the path of the x-radiation from the buccal to the lingual side of a tooth, which is evidence that the individual had undergone diagnostic x-ray examination of the dentition or skull. We have shown that the x-ray exposure doses reconstructed from the EPR spectra are an order of magnitude higher than the applied doses, while the dose loads due to gamma radiation are equal to the applied doses. The data obtained indicate that for adequate reconstruction of individual absorbed doses from EPR spectra of tooth enamel in the population subjected to the combined effect of x-radiation and accidental external gamma radiation as a result of the disaster at the Chernobyl nuclear power plant, we need to take into account the contribution to the dose load from diagnostic x-rays in examination of the teeth, jaw, or skull.
Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).
Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha
2014-04-21
Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water.
Georgieva, Ekaterina; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana; Higashi, Tatsuya
2016-10-01
The present study describes a new approach for direct imaging of redox status in live cells using paramagnetic spin-probes, which allows evaluation of the level of oxidative stress due to overproduction of superoxide. The method is based on redox cycling of cell/mitochondria-penetrating nitroxide radicals (e.g. mito-TEMPO) and their electron-paramagnetic resonance (EPR) contrast, which makes them useful molecular sensors for analysis of redox status and oxidative stress in cells and tissues. Oxidative stress was induced in normal human lymphocytes by treatment with 2-methoxyestradiol and rotenone (ME/Rot) at different concentrations. This combination provokes mitochondrial dysfunction, which is accompanied by overproduction of superoxide. The EPR measurements were performed in dynamics on X-Band spectrometer after addition of mito-TEMPO to cell suspensions. The intensity of the EPR signal in untreated cells decreased significantly, which indicates a conversion of paramagnetic mito-TEMPO to its non-contrast diamagnetic form (hydroxylamine - mito-TEMPOH) due to reduction. In ME/Rot-treated cells, the signal decreased more slowly and to a lower level with increasing the concentration of ME/Rot. These data indicate an induction of oxidative stress in the cells in a concentration-dependent manner. A very good positive correlation between the intensity of EPR signal of mito-TEMPO and the intracellular level of superoxide was found, analyzed by conventional dihydroethidium test (R=0.9143, p<0.001). In conclusion, our study demonstrated that cell-penetrating paramagnetic spin-probes, such as mito-TEMPO, are valuable tools for EPR imaging of the superoxide level in live cells, as well as for EPR imaging of mitochondrial dysfunction and metabolic activity, accompanied by superoxide imbalance. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Nuclear magnetic resonance of Al-27 in topaz, Al2SiO4/F, OH/2.
NASA Technical Reports Server (NTRS)
Tsang, T.; Ghose, S.
1972-01-01
The Al-27 nuclear quadrupolar coupling constant and asymmetry parameter (eta) in topaz have been determined to be 1.67 (plus or minus 0.03) MHz and 0.38 plus or minus 0.05, respectively. These values and the orientations of the principal axes are consistent with the Fe(3+) paramagnetic resonance data and with the symmetry of the AlO4F2 octahedron.
Mendt, Matthias; Barth, Benjamin; Hartmann, Martin; Pöppl, Andreas
2017-12-14
The low-temperature binding of nitric oxide (NO) in the metal-organic framework MIL-100(Al) has been investigated by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Three NO adsorption species have been identified. Among them, one species has been verified experimentally to bind directly to an 27 Al atom and all its relevant 14 N and 27 Al hyperfine interaction parameters have been determined spectroscopically. Those parameters fit well to the calculated ones of a theoretical cluster model, which was derived by density functional theory (DFT) in the present work and describes the low temperature binding of NO to the regular coordinatively unsaturated Al 3+ site of the MIL-100(Al) structure. As a result, the Lewis acidity of that site has been characterized using the NO molecule as an electron paramagnetic resonance active probe. The DFT derived wave function analysis revealed a bent end-on coordination of the NO molecule adsorbed at that site which is almost purely ionic and has a weak binding energy. The calculated flat potential energy surface of this species indicates the ability of the NO molecule to freely rotate at intermediate temperatures while it is still binding to the Al 3+ site. For the other two NO adsorption species, no structural models could be derived, but one of them is indicated to be adsorbed at the organic part of the metal-organic framework. Hyperfine interactions with protons, weakly coupled to the observed NO adsorption species, have also been measured by pulsed electron paramagnetic resonance and found to be consistent with their attribution to protons of the MIL-100(Al) benzenetricarboxylate ligand molecules.
NASA Astrophysics Data System (ADS)
Struts, A. V.; Barmasov, A. V.; Brown, M. F.
2015-05-01
Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.
Impedance-matching system for a flexible surface-coil-type resonator
NASA Astrophysics Data System (ADS)
Hirata, Hiroshi; Ono, Mitsuhiro
1997-09-01
This article describes an impedance-matching system for a flexible surface-coil-type resonator (FSCR) used in electron paramagnetic resonance (EPR) experiments. To design the matching system, the input impedance of the FSCR was formulated using transmission line theory, and then the parameters of a matching circuit using varicap diodes were calculated. Experimental measurements of input impedance showed the validity of the formulation and the usefulness of the matching system. The matching circuit made by the varicap diodes 1SV186 offered the tunable bandwidth of 50 MHz for the prototype FSCR. Such a matching system also offers the possibility of remotely tuning EPR resonators electronically.
Skvortsov, Valeriy; Ivannikov, Alexander; Tikunov, Dimitri; Stepanenko, Valeriy; Borysheva, Natalie; Orlenko, Sergey; Nalapko, Mikhail; Hoshi, Masaharu
2006-02-01
General aspects of applying the method of retrospective dose estimation by electron paramagnetic resonance spectroscopy of human tooth enamel (EPR dosimetry) to the population residing in the vicinity of the Semipalatinsk nuclear test site are analyzed and summarized. The analysis is based on the results obtained during 20 years of investigations conducted in the Medical Radiological Research Center regarding the development and practical application of this method for wide-scale dosimetrical investigation of populations exposed to radiation after the Chernobyl accident and other radiation accidents.
Water Oxidation Catalysis by Co(II) Impurities in Co(III) 4O 4 Cubanes
Ullman, Andrew M.; Liu, Yi; Huynh, Michael; ...
2014-11-18
Here, the observed water oxidation activity of the compound class Co 4O 4(OAc) 4(Py–X) 4 emanates from a Co(II) impurity. This impurity is oxidized to produce the well-known Co-OEC heterogeneous cobaltate catalyst, which is an active water oxidation catalyst. We present results from electron paramagnetic resonance spectroscopy, nuclear magnetic resonance line broadening analysis, and electrochemical titrations to establish the existence of the Co(II) impurity as the major source of water oxidation activity that has been reported for Co 4O 4 molecular cubanes. Differential electrochemical mass spectrometry is used to characterize the fate of glassy carbon at water oxidizing potentials andmore » demonstrate that such electrode materials should be used with caution for the study of water oxidation catalysis.« less
EPR investigation of the trivalent chromium complexes in SrTiO3
NASA Astrophysics Data System (ADS)
Azamat, D. V.; Dejneka, A.; Lančok, J.; Jastrabik, L.; Trepakov, V. A.; Bryknar, Z.; Neverova, E. V.; Badalyan, A. G.
2014-02-01
The trivalent chromium centers were investigated by means of electron paramagnetic resonance (EPR) in SrTiO3 single crystals grown using the Verneuil technique. It was shown that the charge compensation of the Cr3+-VO dominant centers in octahedral environment is due to the remote oxygen vacancy located on the axial axis of the center. In order to provide insight into spin-phonon relaxation processes the studies of axial distortion of Cr3+-VO centers have been performed as function of temperature. The analysis of the trigonal Cr3+ centers found in SrTiO3 indicates the presence of the nearest-neighbor strontium vacancy. The next-nearest-neighbor exchange-coupled pairs of Cr3+ in SrTiO3 has been analyzed from the angular variation of the total electron spin of S=2 resonance lines.
NASA Astrophysics Data System (ADS)
Blair, Michael; Muenchausen, Ross; Bennett, Bryan; Smith, James; Stephens, Thomas; Cooke, Wayne
2007-03-01
The chemical aging of polymeric materials is largely governed by the characteristics of the storage environment. For polysiloxane foams, the diatomaceous earth (DE) filler is a small component of the foam, but it plays a large role in the handling of water in the system. The DE filler can act as either a ``source'' or a ``sink'' for water via both chemical hydroxylation/ dehydroxylation and physical adsorption/ desorption processes, depending on the processing history and storage conditions. We have used electron paramagnetic resonance (EPR) spectroscopy to examine composite foam material as well as the DE filler alone. Intense, broad (400 Gauss) resonances were recorded at room temperature as a function of the microwave power at X-band frequency. The observed spectra have been assigned to the iron oxide compounds goethite, lepidocrocite, hematite, and magnetite based upon the measured EPR spectra of these minerals. As the presence or absence of free H2O and the temperature of processing and storage also affects the interconversion of these various iron oxides, we indicate how this process can be followed by monitoring changes in the EPR spectra.
Barb, Adam W; Ho, Tienhuei Grace; Flanagan-Steet, Heather; Prestegard, James H
2012-01-01
Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb3+ with 130 nM affinity. Ions such as Dy3+, Yb3+, and Ce3+ produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd3+ complex) and luminescence microscopy (Z-L2LBT: Tb3+ complex). PMID:22851279
In Vivo Application of Proton-Electron Double-Resonance Imaging
Kishimoto, Shun; Krishna, Murali C.; Khramtsov, Valery V.; Utsumi, Hideo
2018-01-01
Abstract Significance: Proton-electron double-resonance imaging (PEDRI) employs electron paramagnetic resonance irradiation with low-field magnetic resonance imaging so that the electron spin polarization is transferred to nearby protons, resulting in higher signals. PEDRI provides information about free radical distribution and, indirectly, about the local microenvironment such as partial pressure of oxygen (pO2), tissue permeability, redox status, and acid-base balance. Recent Advances: Local acid-base balance can be imaged by exploiting the different resonance frequency of radical probes between R and RH+ forms. Redox status can also be imaged by using the loss of radical-related signal after reduction. These methods require optimized radical probes and pulse sequences. Critical Issues: High-power radio frequency irradiation is needed for optimum signal enhancement, which may be harmful to living tissue by unwanted heat deposition. Free radical probes differ depending on the purpose of PEDRI. Some probes are less effective for enhancing signal than others, which can reduce image quality. It is so far not possible to image endogenous radicals by PEDRI because low concentrations and broad line widths of the radicals lead to negligible signal enhancement. Future Directions: PEDRI has similarities with electron paramagnetic resonance imaging (EPRI) because both techniques observe the EPR signal, directly in the case of EPRI and indirectly with PEDRI. PEDRI provides information that is vital to research on homeostasis, development of diseases, or treatment responses in vivo. It is expected that the development of new EPR techniques will give insights into novel PEDRI applications and vice versa. Antioxid. Redox Signal. 28, 1345–1364. PMID:28990406
Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S
2014-10-01
A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.
Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.
2014-01-01
A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown. PMID:25362434
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S.
2014-10-15
A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is eithermore » surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.« less
Electron paramagnetic resonance in Cu-doped ZnO
NASA Astrophysics Data System (ADS)
Buchheit, R.; Acosta-Humánez, F.; Almanza, O.
2016-04-01
In this work, ZnO and Cu-doped ZnO nanoparticles (Zn1-xCuxO, x = 3%), with a calcination temperature of 500∘C were synthesized using the sol-gel method. The particles were analyzed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) at X-band, measurement in a temperature range from 90 K to room temperature. AAS confirmed a good correspondence between the experimental doping concentration and the theoretical value. XRD reveals the presence of ZnO phase in hexagonal wurtzite structure and a nanoparticle size for the samples synthesized. EPR spectroscopy shows the presence of point defects in both samples with g-values of g = 1.959 for shallow donors and g = 2.004 for ionized vacancies. It is important when these materials are required have been used as catalysts, as suggested that it is not necessary prepare them at higher temperature. A simulation of the Cu EPR signal using an anisotropic spin Hamiltonian was performed and showed good coincidence with the experimental spectra. It was shown that Cu2+ ions enter interstitial octahedral sites of orthorhombic symmetry in the wurtzite crystal structure. Temperature dependence of the EPR linewidth and signal intensity shows a paramagnetic behavior of the sample in the measurement range. A Néel temperature TN = 78 ± 19 K was determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grachev, Valentin G., E-mail: grachev@physics.montana.edu; Tse, Romand; Malovichko, Galina I.
2016-01-21
Qualitative transformations of spectra of Electron Paramagnetic Resonance, EPR, were found in KH{sub 2}PO{sub 4} crystals grown from liquor with 10{sup −5}–10{sup −1 }wt. % of anatase TiO{sub 2} nanoparticles in comparison with nominally pure KH{sub 2}PO{sub 4}. The nanoparticles have larger segregation coefficient for prismatic parts of the crystals than for pyramidal ones. Significant decrease in resonance absorption, complete disappearance of EPR lines of Fe{sup 3+} and Cr{sup 3+} centers, and appearance of four weak lines of equal intensities together with broad asymmetric lines with g-factors about 2.07–2.5 was observed in pyramidal parts grown with concentration of TiO{sub 2} nanoparticlesmore » larger than the threshold value 10{sup −2 }wt. %. The four lines were attributed to non-controlled impurity As substituted for P. In the presence of TiO{sub 2} nanoparticles, non-paramagnetic AsO{sub 4}{sup 3−} clusters trap electrons becoming AsO{sub 4}{sup 4−}. Disappearance of Fe{sup 3+} and Cr{sup 3+} centers was explained by their recharge to “EPR-silent” states and/or pairing at the surface of TiO{sub 2} nanoparticles.« less
Multi-photon Rabi oscillations in high spin paramagnetic impurity
NASA Astrophysics Data System (ADS)
Bertaina, S.; Groll, N.; Chen, L.; Chiorescu, I.
2011-10-01
We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.
Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.
Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar
2015-07-28
The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.
Serteyn, D; Pincemail, J; Mottart, E; Caudron, I; Deby, C; Deby-Dupont, G; Philippart, C; Lamy, M
1994-01-01
This preliminary study demonstrated the existence of a free radical generation during an experimental postischemic muscular reperfusion in a halothane anesthetized horse. The authors used alpha-phényl-N-tert-butylnitrone as a spin trap agent and the electronic paramagnetic resonance method to observe in vivo a free radical generation. PMID:7889465
Effects of intermediate-energy electrons on mechanical and molecular properties of a polyetherimide
NASA Technical Reports Server (NTRS)
Long, S. A. T.; Long, E. R., Jr.
1984-01-01
An experiment, using 100-keV electrons and 10 to the 9th -rad doses, was conducted on Ultem polyetherimide film. Mechanical, electron paramagnetic resonance, and infrared spectroscopic data suggested that the radiation produced crosslinking and embrittlement of the material.
Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim.
Kinoshita, Angela; Baffa, Oswaldo; Mascarenhas, Sérgio
2018-01-01
Explosion of the bombs in Hiroshima and Nagasaki corresponds to the only historical moment when atomic bombs were used against civilians. This event triggered countless investigations into the effects and dosimetry of ionizing radiation. However, none of the investigations has used the victims' bones as dosimeter. Here, we assess samples of bones obtained from fatal victims of the explosion by Electron Spin Resonance (ESR). In 1973, one of the authors of the present study (SM) traveled to Japan and conducted a preliminary experiment on the victims' bone samples. The idea was to use the paramagnetism induced in bone after irradiation to measure the radiation dose. Technological advances involved in the construction of spectrometers, better knowledge of the paramagnetic center, and improvement in signal processing techniques have allowed us to resume the investigation. We obtained a reconstructed dose of 9.46 ± 3.4 Gy from the jawbone, which was compatible with the dose distribution in different locations as measured in non-biological materials such as wall bricks and roof tiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moy, Franklin J.; Lee, Arthur; Gavrin, Lori Krim
2010-07-23
To aid in the pursuit of selective kinase inhibitors, we have developed a unique ATP site binder tool for the detection of binders outside the ATP site by nuclear magnetic resonance (NMR). We report here the novel synthesis that led to this paramagnetic spin-labeled pyrazolopyrimidine probe (1), which exhibits nanomolar inhibitory activity against multiple kinases. We demonstrate the application of this probe by performing NMR binding experiments with Lck and Src kinases and utilize it to detect the binding of two compounds proximal to the ATP site. The complex structure of the probe with Lck is also presented, revealing howmore » the probe fits in the ATP site and the specific interactions it has with the protein. We believe that this spin-labeled probe is a valuable tool that holds broad applicability in a screen for non-ATP site binders.« less
Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasenko, L.S.; Watkins, G.D.
The dominant defect observed in the photoluminescence (PL) of room-temperature electron-irradiated ZnO by optical detection of electron paramagnetic resonance (ODEPR) is determined to be the positively charged oxygen vacancy (V{sub O}{sup +}). Its spectrum, labeled L3, was previously observed in a 4.2 K in situ irradiation study [Yu. V. Gorelkinskii and G. D. Watkins, Phys. Rev. B 69, 115212 (2004)], but it was thought there not to be stable at room temperature and was not identified. Here it is found to be stable to 400 deg. C, where it disappears. It is observed as a competing process (negative signal) tomore » the dominant PL band produced by the irradiation at {approx}700 nm, but is positive in a weaker band at {approx}600 nm. Models are presented for its electrical level position in the gap to explain the results. Two other ODEPR signals are also detected, one of which is tentatively identified as also associated with the oxygen vacancy.« less
NASA Astrophysics Data System (ADS)
Han, Dan-Dan; Lu, Da-Yong; Meng, Fan-Ling; Yu, Xin-Yu
2018-03-01
Temperature-dependent electron paramagnetic resonance (EPR) study was employed to detect oxygen vacancy defects in the tetragonal Ba(Ti1-xCrx)O3 (x = 5%) ceramic for the first time. In the rhombohedral phase below -150 °C, an EPR signal at g = 1.955 appeared in the insulating Ba(Ti1-xCrx)O3 (x = 5%) ceramic with an electrical resistivity of 108 Ω cm and was assigned to ionized oxygen vacancy defects. Ba(Ti1-xCrx)O3 ceramics exhibited a tetragonal structure except Ba(Ti1-xCrx)O3 (x = 10%) with a tetragonal-hexagonal mixed phase and a first-order phase transition dielectric behavior (ε‧m > 11,000). Mixed valence Cr ions could coexist in ceramics, form CrTi‧-VOrad rad or CrTirad-TiTi‧ defect complexes and make no contribution to a dielectric peak shift towards low temperature.
Callens, F; Vanhaelewyn, G; Matthys, P
2002-04-01
Electron Paramagnetic Resonance (EPR) applications like e.g. EPR dosimetry and dating, are usually performed at X-band frequencies because of practical reasons (cost, sample size, etc.). However, it is increasingly recognized that the radiation-induced EPR signals are strongly composite, what might affect dose/age estimates. A few recent examples from both the dosimetry and dating field, illustrating the problems, will be presented. The involved spectra are mainly due to carbonate-derived radicals (CO2-, CO3(3-), etc.). Measurements at higher microwave frequencies are often recommended to improve the insight into the spectra and/or the practical signal quantification. Recent results at Q- and W-band frequencies will show that a multi-frequency approach indeed opens many interesting perspectives in this field but also that each frequency may have specific (dis)advantages depending on the EPR probe and application involved. The discussion will concern carbonate-containing apatite single crystals, shells, modern and fossil tooth enamel.
Positive Effect of Propolis on Free Radicals in Burn Wounds
Olczyk, Pawel; Ramos, Pawel; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Pilawa, Barbara
2013-01-01
Concentration and properties of free radicals in the burn wounds treated with propolis were examined by the use of electron paramagnetic resonance spectroscopy. Magnetic spin-spin interactions and complex free radicals structures in wound beds were studied. The results were compared to those obtained for silver sulphadiazine used as a standard pharmaceutical agent. The changes of free radicals in the matrix of injury with time of exposition on these substances were tested. The aim of this study was to check the hypothesis about the best influence of propolis on the burn wounds healing. It was confirmed that a relatively lower concentration of free radicals exists in the burn wounds treated with propolis. The homogeneously broadened spectra and a complex free radical system characterize the tested tissue samples. The fastening of spin-lattice relaxation processes in the matrix of injury after treatment with propolis and silver sulphadiazine was observed. Practical usefulness of electron paramagnetic resonance spectroscopy in alternative medicine was proved. PMID:23762125
Savic, Aleksandar G; Guidetti, Roberto; Turi, Ana; Pavicevic, Aleksandra; Giovannini, Ilaria; Rebecchi, Lorena; Mojovic, Milos
2015-01-01
Anhydrobiosis is an adaptive strategy that allows withstanding almost complete body water loss. It has been developed independently by many organisms belonging to different evolutionary lines, including tardigrades. The loss of water during anhydrobiotic processes leads to oxidative stress. To date, the metabolism of free radicals in tardigrades remained unclear. We present a method for in vivo monitoring of free radical production in tardigrades, based on electron paramagnetic resonance and spin-trap DEPMPO, which provides simultaneous identification of various spin adducts (i.e., different types of free radicals). The spin trap can be easily absorbed in animals, and tardigrades stay alive during the measurements and during 24-h monitoring after the treatment. The results show that hydrated specimens of the tardigrade Paramacrobiotus richtersi produce the pure superoxide anion radical ((•)O2(-)). This is an unexpected result, as all previously examined animals and plants produce both superoxide anion radical and hydroxyl radical ((•)OH) or exclusively hydroxyl radical.
NASA Astrophysics Data System (ADS)
Zhang, Huaming; Yu, Xiaopeng; Xiao, Wenbo
2017-12-01
The electron paramagnetic resonance parameters (g factors g ‖, g ⊥ and hyperfine structure constants A ‖, A ⊥) of a tetragonal V4+ center in oxyfluoroborate glasses (20Li2O-10Li2F2-70B2O3) are theoretically investigated by using the perturbation formulas for a 3d1 ion in tetragonally compressed octahedra. The calculated results are in good agreement with the experimental data. Local structure parameters of [VO6]8- clusters are obtained from the calculation (i.e., R‖ ≈ 1.74 Å and R⊥ ≈ 1.985 Å for the metal-ligand distances parallel and perpendicular to the C4 axis, respectively). It is shown that the local structure around the V4+ ion possesses a compressed tetragonal distortion along C 4 axis. The signs of the hyperfine structure constants A‖ and A ⊥ for V4+ centers in oxyfluoroborate glasses were also suggested in the discussion.
Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging.
Epel, Boris; Halpern, Howard J
2015-05-01
Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage. Copyright © 2015 Elsevier Inc. All rights reserved.
Novak, David; Mojovic, Milos; Pavicevic, Aleksandra; Zatloukalova, Martina; Hernychova, Lenka; Bartosik, Martin; Vacek, Jan
2018-02-01
Cytochrome c (cyt c) is one of the most studied conjugated proteins due to its electron-transfer properties and ability to regulate the processes involved in homeostasis or apoptosis. Here we report an electrochemical strategy for investigating the electroactivity of cyt c and its analogs with a disrupted heme moiety, i.e. apocytochrome c (acyt c) and porphyrin cytochrome c (pcyt c). The electrochemical data are supplemented with low-temperature and spin-probe electron paramagnetic resonance (EPR) spectroscopy. The main contribution of this report is a complex evaluation of cyt c reduction and oxidation at the level of surface-localized amino acid residues and the heme moiety in a single electrochemical scan. The electrochemical pattern of cyt c is substantially different to both analogs acyt c and pcyt c, which could be applicable in further studies on the redox properties and structural stability of cytochromes and other hemeproteins. Copyright © 2017 Elsevier B.V. All rights reserved.
Miyake, Yusuke; Akai, Nobuyuki; Kawai, Akio; Shibuya, Kazuhiko
2011-06-23
Rotational motion of a nitroxide radical, peroxylamine disulfonate (PADS), dissolved in room temperature ionic liquids (RTILs) was studied by analyzing electron paramagnetic resonance spectra of PADS in various RTILs. We determined physical properties of PADS such as the hyperfine coupling constant (A), the temperature dependence of anisotropic rotational correlation times (τ(∥) and τ(⊥)), and rotational anisotropy (N). We observed that the A values remain unchanged for various RTILs, which indicates negligible interaction between the N-O PADS group and the cation of RTIL. Large N values suggest strong interaction of the negative sulfonyl parts of PADS with the cations of RTILs. Most of the τ(∥), τ(⊥), and (τ(∥)τ(⊥))(1/2) values are within the range calculated on the basis of a hydrodynamic theory with stick and slip boundary conditions. It was deduced that this theory could not adequately explain the measured results in some RTILs with smaller BF(4) and PF(6) anions.
Niklas, Jens; Westwood, Mark; Mardis, Kristy L; Brown, Tiara L; Pitts-McCoy, Anthony M; Hopkins, Michael D; Poluektov, Oleg G
2015-07-06
The Ni(I) hydrogen oxidation catalyst [Ni(P(Cy)2N(tBu)2)2](+) (1(+); P(Cy)2N(tBu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane) has been studied using a combination of electron paramagnetic resonance (EPR) techniques (X-, Q-, and D-band, electron-nuclear double resonance, hyperfine sublevel correlation spectroscopy), X-ray crystallography, and density functional theory (DFT) calculations. Crystallographic and DFT studies indicate that the molecular structure of 1(+) is highly symmetrical. EPR spectroscopy has allowed determination of the electronic g tensor and the spin density distribution on the ligands, and revealed that the Ni(I) center does not interact strongly with the potentially coordinating solvents acetonitrile and butyronitrile. The EPR spectra and magnetic parameters of 1(+) are found to be distinctly different from those for the related compound [Ni(P(Ph)2N(Ph)2)2](+) (4(+)). One significant contributor to these differences is that the molecular structure of 4(+) is unsymmetrical, unlike that of 1(+). DFT calculations on derivatives in which the R and R' groups are systematically varied have allowed elucidation of structure/substituent relationships and their corresponding influence on the magnetic resonance parameters.
Upcycling: converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres.
Pol, Vilas Ganpat
2010-06-15
The recent tremendous increase in the volume of waste plastics (WP) will have a harmful environmental impact on the health of living beings. Hundreds of years are required to degrade WP in atmospheric conditions. Hence, in coming years, in addition to traditional recycling services, innovative "upcycling" processes are necessary. This article presents an environmentally benign, solvent-free autogenic process that converts various WP [low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene terephthalate (PET), polystyrene (PS), or their mixtures] into carbon microspheres (CMSs), an industrially significant, value-added product. The thermal dissociation of these individual or mixed WP in a closed reactor under autogenic pressure ( approximately 1000 psi) produced dry, pure powder of CMSs. In this paper, the optimization of process parameters such as the effect of mixing of WP with other materials, and the role of reaction temperature and time are reported. Employing advanced analytical techniques, the atomic structure, composition, and morphology of as-obtained CMSs were analyzed. The room-temperature paramagnetism in CMSs prepared from waste LDPE, HDPE, and PS was further studied by electron paramagnetic resonance (EPR). The conducting and paramagnetic nature of CMSs holds promise for their potential applications in toners, printers, paints, batteries, lubricants, and tires.
Oktaviani, Nur Alia; Risør, Michael W; Lee, Young-Ho; Megens, Rik P; de Jong, Djurre H; Otten, Renee; Scheek, Ruud M; Enghild, Jan J; Nielsen, Niels Chr; Ikegami, Takahisa; Mulder, Frans A A
2015-06-01
Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by shortening the T 1 relaxation time of the nucleus of interest and thus the necessary recycle delay. Here, we present the rationale to utilize high-spin iron(III) as the optimal transition metal for this purpose and characterize the properties of its neutral chelate form Fe(DO3A) as a suitable PRE agent. Fe(DO3A) effectively reduces the T 1 values across the entire sequence of the intrinsically disordered protein α-synuclein with negligible impact on line width. The agent is better suited than currently used alternatives, shows no specific interaction with the polypeptide chain and, due to its high relaxivity, is effective at low concentrations and in 'proton-less' NMR experiments. By using Fe(DO3A) we were able to complete the backbone resonance assignment of a highly fibrillogenic peptide from α1-antitrypsin by acquiring the necessary suite of multidimensional NMR datasets in 3 h.
NASA Astrophysics Data System (ADS)
Juliet sheela, K.; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.
2018-04-01
Electron paramagnetic resonance (EPR) studies have been investigated at X-band microwave frequency on Cu2+ ion incorporated into the single crystal of potassium succinate-succinic acid (KSSA) at room temperature. The angular variation of the EPR spectra has shown two magnetically in-equivalent Cu2+ sites in the KSSA single crystal system. The spin Hamiltonian parameters g and A are determined which reveals that the site I and site II occupied in rhombic and axial local field symmetry around the impurity ion. Among the two paramagnetic impurity ions, sites one occupies at substituitional position in the place of monovalent cation (K+) in the crystal whereas the other enters in its lattice interstitially by the correlation of EPR and crystal structure data. From the calculated principle values gxx, gyy, gzz and Axx, Ayy, Azz of both the sites, the admixture coefficients and molecular orbital coefficients were evaluated which gives the information of ground state wave function and types of bonding of impurity ions with the ligands.
NASA Astrophysics Data System (ADS)
Brosseau, C.; Molinié, P.; Boulic, F.; Carmona, F.
2001-06-01
Electron paramagnetic resonance (EPR) has now become firmly established as one of the methods of choice for analyzing the carbon network over a range of different volume fraction of the carbon black in the composite, i.e., below and above the respective conduction threshold concentration. In the present article, two types of carbon blacks, having very different primary structures, surface areas, and percolation thresholds, were used; Raven 7000 (of high surface area and high percolation threshold volume fraction) and Y50A (of low surface area and low percolation threshold volume fraction). A semiquantitative image analysis of the microstructure from transmission electron microscopy reveals information about the spatial distribution of the carbon aggregates and agglomerates inside the composite. We observe that the apparent surface of agglomerates increases significantly with increasing carbon black content for the two types of blacks investigated. Adsorbed oxygen on the carbon black cristallites and dynamic coalescence under mixing conditions can be responsible for the broadening of the dispersed phase surface distribution. The interagglomerate distance in two samples of concentrations f
NASA Astrophysics Data System (ADS)
Khalil, A. A. I.; Morsy, M. A.; El-Deen, H. Z.
2017-11-01
Series of manganese-co-precipitated poly (vinyl alcohol) (PVA) polymer were quantitatively and qualitatively analyzed using laser ablation system (LAS) based on double-pulse laser induced breakdown spectroscopy (DP-LIBS) and electron paramagnetic resonance (EPR) spectroscopy. The collinear nanosecond laser beams of 266 and 1064 nm were optimized to focus on the surface of the PVA polymer target. Both laser beams were employed to estimate the natural properties of the excited Mn-PVA plasma, such as electron number density (Ne), electron temperature (Te), and Mn concentration. Individual transition lines of manganese (Mn), carbon (C), lithium (Li), hydrogen (H) and oxygen (O) atoms are identified based on the NIST spectral database. The results show better responses with DP-LIBS than the single-pulse laser induced breakdown spectroscopy (SP-LIBS). On the other hand, the EPR investigation shows characteristic broad peak of Mn-nano-particles (Mn-NPs) in the range of quantum dots of superparamagnetic materials. The line width (peak-to-peak, ΔHpp) and g-value of the observed Mn-EPR peak are ∼20 mT and 2.0046, respectively. The intensities of Mn-emission line at a wavelength 403.07 nm and the Mn-EPR absorption peak were used to accurate quantify the Mn-content in the polymer matrix. The results produce linear trends within the studied concentration range with regression coefficient (R2) value of ∼0.99, and limit of detection (LOD) of 0.026 mol.% and 0.016 mol.%, respectively. The LOD values are at a fold change of about -0.2 of the studied lowest mol.%. The proposed protocols of trace element detection are of significant advantage and can be applied to the other metal analysis.
A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo.
Shazeeb, Mohammed S; Xie, Yang; Gupta, Suresh; Bogdanov, Alexei A
2012-01-01
Bis-phenylamides and bis-hydroxyindolamides of diethylenetriaminepentaacetic acid-gadolinium (DTPA(Gd)) are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, gadolinium chelates of bis-5-hydroxytryptamide-DTPA (bis-5HT-DTPA(Gd)) have been used to image localized inflammation in animal models by detecting neutrophil-derived myeloperoxidase (MPO) activity at the inflammation site. However, in other preclinical disease models, bis-5HT-DTPA(Gd) presents technical challenges due to its limited solubility in vivo. Here we report a novel MPO-sensing probe obtained by replacing the reducing substrate serotonin (5-HT) with 5-hydroxytryptophan (HTrp). Characterization of the resulting probe (bis-HTrp-DTPA(Gd)) in vitro using nuclear magnetic resonance spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd) (1) improves solubility in water; (2) acts as a substrate for both horseradish peroxidase and MPO enzymes; (3) induces cross-linking of proteins in the presence of MPO; (4) produces oxidation products, which bind to plasma proteins; and (5) unlike bis-5HT-DTPA(Gd), does not follow first-order reaction kinetics. In vivo magnetic resonance imaging (MRI) in mice demonstrated that bis-HTrp-DTPA(Gd) was retained for up to 5 days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd) from MPO-negative sites. Bis-HTrp-DTPA(Gd) should offer improvements for MRI of MPO-mediated inflammation in vivo, especially in high-field MRI, which requires a higher dose of contrast agent.
Interpretation of the Electron Paramagnetic Resonance Spectra of Copper(II)-Tyrosine Complex
NASA Astrophysics Data System (ADS)
Xu, Xiao-Hui; Kuang, Min-Quan
2017-12-01
The electron paramagnetic resonance (EPR) spectra of [Cu(l-tyrosine)2]n (CuA) were interpreted based on the fourth-order perturbation treatments where the contributions due to the local distortion, ligand orbit and spin-orbit coupling were included. The calculated band transitions d_{x^2} - y^2 to dxy (≈16412 cm-1) and d_{z^2} (≈14845 cm-1) agree well with the band analysis results (d_{x^2} - y^2 \\to d_{xy} ≈16410 and d_{x^2} - y^2 \\to d_{z^2} ≈14850 cm-1). The unresolved separations d_{x^2} - y^2 \\to d_{xz} and d_{x^2} - y^2 \\to d_{yz} in the absorption spectra were evaluated as 26283 and 26262 cm-1, respectively. For CuA, copper chromophores in 1,3-diaminorpropane isophtalate copper(II) complex (CuB) and N-methyl-1,2-diaminoetaane-bis copper(II) polymer (CuC), the transition d_{x^2} - y^2 \\to d_{xy} (=E1≈10Dq) suffered an increase with a decrease in R̅L which was evaluated as the mean value of the copper-ligand bond lengths. The correlations between the tetragonal elongation ratio ρ (=(Rz-R̅L)/R̅L) (or the ratio G=(gz-ge)/((gx+gy)/2-ge)) and the g isotropy gav (=(gx+gy+gz)/3) (or the covalency factor N) for CuA, CuB and CuC were acquired and all the results were discussed.
Electron Spin Resonance (ESR) studies of returned comet nucleus samples
NASA Technical Reports Server (NTRS)
Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.
1989-01-01
The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H2O, NH3, CH4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed.
Khalil, Ahmed A I; Morsy, Mohamed A
2016-07-01
A series of lithium-lead-borate glasses of a variable copper oxide loading were quantitatively analyzed in this work using two distinct spectroscopic techniques, namely double pulse laser induced breakdown spectroscopy (DP-LIBS) and electron paramagnetic resonance (EPR). DP-LIBS results measured upon a combined nanosecond lasers irradiation running at 266nm and 1064nm pulses of a collinear configuration directed to the surface of borate glass samples with a known composition. This arrangement was employed to predict the electron's temperature (Te) and density (Ne) of the excited plasma from the recorded spectra. The intensity of elements' responses using this scheme is higher than that of single-pulse laser induced breakdown spectroscopy (SP-LIBS) setup under the same experimental conditions. On the other hand, the EPR data shows typical Cu (II) EPR-signals in the borate glass system that is networked at a distorted tetragonal Borate-arrangement. The signal intensity of the Cu (II) peak at g⊥=2.0596 has been used to quantify the Cu-content accurately in the glass matrix. Both techniques produced linear calibration curves of Cu-metals in glasses with excellent linear regression coefficient (R(2)) values. This study establishes a good correlation between DP-LIBS analysis of glass and the results obtained using EPR spectroscopy. The proposed protocols prove the great advantage of DP-LIBS system for the detection of a trace copper on the surface of glasses. Copyright © 2016 Elsevier B.V. All rights reserved.
Low field electron paramagnetic resonance imaging with SQUID detection
NASA Technical Reports Server (NTRS)
Hahn, Inseob (Inventor); Day, Peter K. (Inventor); Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Cohen, Mark S. (Inventor)
2012-01-01
In one embodiment, a flux transformer with a gradiometer pickup coil is magnetically coupled to a SQUID, and a SQUID array amplifier comprising a plurality of SQUIDs, connected in series, is magnetically coupled to the output of the SQUID. Other embodiments are described and claimed.
1996-04-01
toluene or dinitrotoluene and toluene diamine have oligoasthenoteratozoospermia ( Radike , 1985). Oligoasthenoteratozoospermiais a condition of...transfer interations between Superoxide ion and organic compounds. J. Phys Chem 77: 1722-1724. Radike , M. Reproductive Toxicology Chpterl6 In
NASA Astrophysics Data System (ADS)
Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.
2015-05-01
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.
Assessments of Tumor Extracellular pH with PARACEST MRI
2012-01-01
of the spectra were calibrated by setting the resonance of TSP to 0.0 ppm. The pH was determined from the chemical shift of the...Matlab R2009B (Eq. [7G]) to measure each CEST effect (Eq. [1]). The value of M0 for the amine was determined from the value at +ω0 (the MR frequency of ...series to assess the determinants of the efficacy of paramagnetic chemical exchange saturation transfer agents for magnetic resonance imaging
Advanced Techniques for Transmutation Compensation of Extrinsic Silicon Detectors.
1980-10-01
generally better than 1..2 R . EPR Spectrometer NMicroscopic defect structure is determined by elec- tron paramagnetic resonance (HIlP ) or, as it is more...cnm- monly known, elet ron spin resonance ( I;R . The 1,S R instrument used for th(,se experimnents is -I COllVttiOl1l1 X-band (9 (;ll:) SpectroletoPr...226 75. DLTS electron traps in n-type neutron irra- diated Si as a function of isohronal anneals (100 Hz, th = 1.8 x 1015 n
NASA Astrophysics Data System (ADS)
Ohmichi, Eiji; Miki, Toshihiro; Horie, Hidekazu; Okamoto, Tsubasa; Takahashi, Hideyuki; Higashi, Yoshinori; Itoh, Shoichi; Ohta, Hitoshi
2018-02-01
We developed piezoresistive microcantilevers for mechanically detected electron spin resonance (ESR) in the millimeter-wave region. In this article, fabrication process and device characterization of our self-sensing microcantilevers are presented. High-frequency ESR measurements of a microcrystal of paramagnetic sample is also demonstrated at multiple frequencies up to 160 GHz at liquid helium temperature. Our fabrication is based on relatively simplified processes with silicon-on-insulator (SOI) wafers and spin-on diffusion doping, thus enabling cost-effective and time-saving cantilever fabrication.
NASA Astrophysics Data System (ADS)
Kadlec, C.; Goian, V.; Rushchanskii, K. Z.; Kužel, P.; Ležaić, M.; Kohn, K.; Pisarev, R. V.; Kamba, S.
2011-11-01
Terahertz and far-infrared electric and magnetic responses of hexagonal piezomagnetic YMnO3 single crystals are investigated. Antiferromagnetic resonance is observed in the spectra of magnetic permeability μa [H(ω) oriented within the hexagonal plane] below the Néel temperature TN. This excitation softens from 41 to 32 cm-1 upon heating and finally disappears above TN. An additional weak and heavily-damped excitation is seen in the spectra of complex dielectric permittivity ɛc within the same frequency range. This excitation contributes to the dielectric spectra in both antiferromagnetic and paramagnetic phases. Its oscillator strength significantly increases upon heating toward room temperature, thus providing evidence of piezomagnetic or higher-order couplings to polar phonons. Other heavily-damped dielectric excitations are detected near 100 cm-1 in the paramagnetic phase in both ɛc and ɛa spectra, and they exhibit similar temperature behavior. These excitations appearing in the frequency range of magnon branches well below polar phonons could remind electromagnons, however their temperature dependence is quite different. We have used density functional theory for calculating phonon dispersion branches in the whole Brillouin zone. A detailed analysis of these results and of previously published magnon dispersion branches brought us to the conclusion that the observed absorption bands stem from phonon-phonon and phonon-paramagnon differential absorption processes. The latter is enabled by strong short-range in-plane spin correlations in the paramagnetic phase.
A dual-beam actinic light source for photosynthesis research
NASA Technical Reports Server (NTRS)
Margozzi, A. P.; Henderson, M. E.
1972-01-01
Simulation of photosynthetic process in plants is accomplished by using two separate and identical optical channels that provide independently adjustable wavelengths (filters), shutter sequencing, and control intensity of illumination. In addition to experiments using electron paramagnetic resonance spectroscopy, system may be applicable to other types of research in photosynthetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalitha, P.V.; Ramaswamy, R.; Ramakrishnan, G.
1992-09-17
Electron paramagnetic resonance and potentiometric techniques using a platinium indicator electrode/ion selective electrode, are used to study Belousov-Zhabotinsky oscillatory reactions involving veratric acid and veratraldehyde as substrates in a mixed medium. These two techniques have yield a good correlation.
Structure and Function of Iron-Loaded Synthetic Melanin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yiwen; Xie, Yijun; Wang, Zhao
We describe a synthetic method for increasing and controlling the iron loading of synthetic melanin nanoparticles and use the resulting materials to perform a systematic quantitative investigation on their structure- property relationship. A comprehensive analysis by magnetometry, electron paramagnetic resonance, and nuclear magnetic relaxation dispersion reveals the complexities of their magnetic behavior and how these intraparticle magnetic interactions manifest in useful material properties such as their performance as MRI contrast agents. This analysis allows predictions of the optimal iron loading through a quantitative modeling of antiferromagnetic coupling that arises from proximal iron ions. This study provides a detailed understanding ofmore » this complex class of synthetic biomaterials and gives insight into interactions and structures prevalent in naturally occurring melanins.« less
How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?
Nohr, Daniel; Rodriguez, Ryan; Weber, Stefan; Schleicher, Erik
2015-01-01
Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.
Investigating Pigment Radicals in Black Rice Using HPLC and Multi-EPR.
Nakagawa, Kouichi; Maeda, Hayato
2017-01-01
We investigated the location and distribution of paramagnetic species in black and white rice using electron paramagnetic resonance (EPR), X-band (9 GHz) EPR imaging (EPRI), and HPLC. EPR primarily detected two paramagnetic species in black rice, which were identified as a stable radical and Mn 2+ species, based on the g values and hyperfine components of the EPR signals. The signal from the stable radical appeared at g ≈ 2.00 and was relatively strong and stable. Subsequent noninvasive two-dimensional (2D) EPRI revealed that this stable radical was primarily located in the pigmented region of black rice, while very few radicals were observed in the rice interior. Pigments extracted from black rice were analyzed using HPLC; the major compound was found to be cyanidin-3-glucoside. EPR and HPLC results indicate that the stable radical was only found within the pigmented region of the rice, and that it could either be cyanidin-3-glucoside, or one of its oxidative decomposition products.
How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?
Nohr, Daniel; Rodriguez, Ryan; Weber, Stefan; Schleicher, Erik
2015-01-01
Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes. PMID:26389123
Isolation of EPR spectra and estimation of spin-states in two-component mixtures of paramagnets.
Chabbra, Sonia; Smith, David M; Bode, Bela E
2018-04-26
The presence of multiple paramagnetic species can lead to overlapping electron paramagnetic resonance (EPR) signals. This complication can be a critical obstacle for the use of EPR to unravel mechanisms and aid the understanding of earth abundant metal catalysis. Furthermore, redox or spin-crossover processes can result in the simultaneous presence of metal centres in different oxidation or spin states. In this contribution, pulse EPR experiments on model systems containing discrete mixtures of Cr(i) and Cr(iii) or Cu(ii) and Mn(ii) complexes demonstrate the feasibility of the separation of the EPR spectra of these species by inversion recovery filters and the identification of the relevant spin states by transient nutation experiments. We demonstrate the isolation of component spectra and identification of spin states in a mixture of catalyst precursors. The usefulness of the approach is emphasised by monitoring the fate of the chromium species upon activation of an industrially used precatalyst system.
Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan
2015-07-28
The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclearmore » modulation spectrum.« less
Growth and characterization of manganese doped gallium nitride nanowires.
Kumar, V Suresh; Kesavamoorthy, R; Kumar, J
2008-08-01
Manganese doped GaN nanowires have been grown by chemical vapour transport method on sapphire (0001) substrates in the temperature range of 800-1050 degrees C. The surface features of nanowires have been investigated using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDAX), Raman scattering studies and Electron Paramagnetic Resonance (EPR). SEM images showed that the morphology of the one dimensional materials included straight nanorods and nanowires around 70-80 nm. Raman spectrum showed the GaMnN vibrational modes at 380, 432 and 445 cm(-1). EPR measurements were performed on Mn doped GaN nanowires in order to evaluate the magnetic behaviour.
Probing Fe-V Bonding in a C3-Symmetric Heterobimetallic Complex.
Greer, Samuel M; McKay, Johannes; Gramigna, Kathryn M; Thomas, Christine M; Stoian, Sebastian A; Hill, Stephen
2018-04-30
Direct metal-metal bonding of two distinct first-row transition metals remains relatively unexplored compared to their second- and third-row heterobimetallic counterparts. Herein, a recently reported Fe-V triply bonded species, [V( i PrNPPh 2 ) 3 FeI] (1; Kuppuswamy, S.; Powers, T. M.; Krogman, J. P.; Bezpalko, M. W.; Foxman, B. M.; Thomas, C. M. Vanadium-iron complexes featuring metal-metal multiple bonds. Chem. Sci. 2013, 4, 3557-3565), is investigated using high-frequency electron paramagnetic resonance, field- and temperature-dependent 57 Fe nuclear gamma resonance (Mössbauer) spectroscopy, and high-field electron-electron double resonance detected nuclear magnetic resonance. From the use of this suite of physical methods, we have assessed the electronic structure of 1. These studies allow us to establish the effective g̃ tensors as well as the Fe/V electro-nuclear hyperfine interaction tensors of the spin S = 1 / 2 ground state. We have rationalized these tensors in the context of ligand field theory supported by quantum chemical calculations. This theoretical analysis suggests that the S = 1 / 2 ground state originates from a single unpaired electron predominately localized on the Fe site.
A hand-held EPR scanner for transcutaneous oximetry
NASA Astrophysics Data System (ADS)
Wolfson, Helen; Ahmad, Rizwan; Twig, Ygal; Blank, Aharon; Kuppusamy, Periannan
2015-03-01
Cutaneous (skin) oxygenation is an important prognostic factor for the treatment of chronic wounds, skin cancer, diabetes side effects, and limb amputation. Currently, there are no reliable methods for measuring this parameter. Oximetry, using electron paramagnetic resonance (EPR) spectroscopy, is emerging as a potential tool for clinical oximetry, including cutaneous applications. The problem with EPR oximetry, however, is that the conventional EPR design requires the use of a large magnet that can generate homogeneous field across the sample, making it unattractive for clinical practice. We present a novel approach that makes use of a miniature permanent magnet, combined with a small microwave resonator, to enable the acquisition of EPR signals from paramagnetic species placed on the skin. The instrumentation consists of a hand-held, modular, cylindrical probehead with overall dimensions of 36-mm diameter and 24-mm height, with 150-g weight. The probehead includes a Halbach array of 16 pieces (4×4×8 mm3) of Sm-Co permanent magnet and a loop-gap resonator (2.24 GHz). Preliminary measurements using a Hahn-echo pulse sequence (800 echos in 20 ms) showed a signalto- noise ratio of ~70 compared to ~435 in a homogenous magnet under identical settings. Further work is in progress to improve the performance of the probehead and to optimize the hand-held system for clinical use
Lu, Jian; Ozel, I Ozge; Belvin, Carina A; Li, Xian; Skorupskii, Grigorii; Sun, Lei; Ofori-Okai, Benjamin K; Dincă, Mircea; Gedik, Nuh; Nelson, Keith A
2017-11-01
Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g -factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science.
Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M
2010-03-01
Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported. Copyright 2009 Elsevier B.V. All rights reserved.
Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis.
Chen, Jia-Liang; Zhao, Yu; Gong, Yan-Jun; Pan, Bin-Bin; Wang, Xiao; Su, Xun-Cheng
2018-02-01
Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorotynov, A. M., E-mail: sasa@iph.krasn.ru; Ovchinnikov, S. G.; Rudenko, V. V.
2016-04-15
A magnetic resonance method is applied to the investigation of a number of isostructural diamagnetic compounds ABO{sub 3} (A = Sc, Lu, In) with small additions of Cr{sup 3+} ions (S = 3/2) sufficient to observe single-ion spectra. It is shown that the resonance spectra for isolated Cr{sup 3+} ions can be described to a good accuracy by the ordinary axial spin Hamiltonian for 3d ions in octahedral oxygen environment. The parameters of the spin Hamiltonian are determined. It is established that Cr{sup 3+} ions in these crystals are characterized by easy-axis-type anisotropy.
Investigating electron spin resonance spectroscopy of a spin-½ compound in a home-built spectrometer
NASA Astrophysics Data System (ADS)
Sarkar, Jit; Roy, Subhadip; Singh, Jitendra Kumar; Singh, Sourabh; Chakraborty, Tanmoy; Mitra, Chiranjib
2018-05-01
In this work we report electron spin resonance (ESR) measurements performed on NH4CuPO4.H2O, a Heisenberg spin ½ dimer compound. We carried out the experiments both at room temperature and at 78 K, which are well above the antiferromagnetic ordering temperature of the system where the paramagnetic spins have a dominant role in determining its magnetic behavior. We performed the measurements in a home built custom designed continuous wave electron spin resonance (CW-ESR) spectrometer. By analyzing the experimental data, we were able to quantify the Landé g-factor and the ESR line-width of the sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pol, V.
2010-06-15
The recent tremendous increase in the volume of waste plastics (WP) will have a harmful environmental impact on the health of living beings. Hundreds of years are required to degrade WP in atmospheric conditions. Hence, in coming years, in addition to traditional recycling services, innovative 'upcycling' processes are necessary. This article presents an environmentally benign, solvent-free autogenic process that converts various WP [low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene terephthalate (PET), polystyrene (PS), or their mixtures] into carbon microspheres (CMSs), an industrially significant, value-added product. The thermal dissociation of these individual or mixed WP in a closed reactormore » under autogenic pressure (1000 psi) produced dry, pure powder of CMSs. In this paper, the optimization of process parameters such as the effect of mixing of WP with other materials, and the role of reaction temperature and time are reported. Employing advanced analytical techniques, the atomic structure, composition, and morphology of as-obtained CMSs were analyzed. The room-temperature paramagnetism in CMSs prepared from waste LDPE, HDPE, and PS was further studied by electron paramagnetic resonance (EPR). The conducting and paramagnetic nature of CMSs holds promise for their potential applications in toners, printers, paints, batteries, lubricants, and tires.« less
Terreno, Enzo; Delli Castelli, Daniela; Cabella, Claudia; Dastrù, Walter; Sanino, Alberto; Stancanello, Joseph; Tei, Lorenzo; Aime, Silvio
2008-10-01
This article illustrates some innovative applications of liposomes loaded with paramagnetic lanthanide-based complexes in MR molecular imaging field. When a relatively high amount of a Gd(III) chelate is encapsulated in the vesicle, the nanosystem can simultaneously affect both the longitudinal (R(1)) and the transverse (R(2)) relaxation rate of the bulk H2O H-atoms, and this finding can be exploited to design improved thermosensitive liposomes whose MRI response is not longer dependent on the concentration of the probe. The observation that the liposome compartmentalization of a paramagnetic Ln(III) complex induce a significant R(2) enhancement, primarily caused by magnetic susceptibility effects, prompted us to test the potential of such agents in cell-targeting MR experiments. The results obtained indicated that these nanoprobes may have a great potential for the MR visualization of cellular targets (like the glutamine membrane transporters) overexpressing in tumor cells. Liposomes loaded with paramagnetic complexes acting as NMR shift reagents have been recently proposed as highly sensitive CEST MRI agents. The main peculiarity of CEST probes is to allow the MR visualization of different agents present in the same region of interest, and this article provides an illustrative example of the in vivo potential of liposome-based CEST agents.
ERIC Educational Resources Information Center
Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen
2014-01-01
A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…
The World as Viewed by and with Unpaired Electrons
Eaton, Sandra S.; Eaton, Gareth R.
2012-01-01
Recent advances in electron paramagnetic resonance (EPR) include capabilities for applications to areas as diverse as archeology, beer shelf life, biological structure, dosimetry, in vivo imaging, molecular magnets, and quantum computing. Enabling technologies include multifrequency continuous wave, pulsed, and rapid scan EPR. Interpretation is enhanced by increasingly powerful computational models. PMID:22975244
NASA Astrophysics Data System (ADS)
Lalithaphani, A. V.; Srinivas, B.; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md.
2018-04-01
Borate glasses containing different concentrations of heavy metal oxide (CdO) with 2mol% of V2O5 as the paramagnetic probe were prepared by the conventional melt quenching technique. The prepared glasses were characterized by XRD to confirm the amorphous nature. EPR and Optical absorption studies were carried out at room temperature. EPR spectra of these glass samples were recorded at X-band frequency with 100 kHz field modulation at room temperature. From the EPR spectra the spin-Hamiltonian parameters were evaluated. The spin-Hamiltonian parameter values indicated that g|| < g┴ < ge [=2.0023] and A∥︀ > A┴. This suggests that VO2+ ions are present in octahedral sites with tetragonal compression and belong to C4v symmetry with dxy being the ground state. The measure of tetragonal distortion (Δg∥︀/Δg┴)varies non-linearly with glass composition indicating change in tetragonal distortion. The covalency rates were estimated. The number of spins participating in the resonance [N] and susceptibility (χ) values were also evaluated.
Niobium hyperfine structure in crystal calcium tungstate
NASA Technical Reports Server (NTRS)
Tseng, D. L.; Kikuchi, C.
1972-01-01
A study of the niobium hyperfine structure in single crystal calcium tungstate was made by the combination of the technique of electron paramagnetic resonance and electron nuclear double resonance (EPR/ENDOR). The microwave frequency was about 9.4 GHz and the radio frequency from 20MHz to 70 MHz. The rare earth ions Nd(3+), U(3+), or Tm(3+) were added as the charge compensator for Nb(5+). To create niobium paramagnetic centers, the sample was irradiated at 77 deg K with a 10 thousand curie Co-60 gamma source for 1 to 2 hours at a dose rate of 200 K rads per hour and then transferred quickly into the cavity. In a general direction of magnetic field, the spectra showed 4 sets of 10 main lines corresponding to 4 nonequivalent sites of niobium with I = 9/2. These 4 sets of lines coalesced into 2 sets of 10 in the ab-plane and into a single set of 10 along the c-axis. This symmetry suggested that the tungsten ions are substituted by the niobium ions in the crystal.
Mayo, Daniel J; Sahu, Indra D; Lorigan, Gary A
2018-07-01
Aligned CW-EPR membrane protein samples provide additional topology interactions that are absent from conventional randomly dispersed samples. These samples are aptly suited to studying antimicrobial peptides because of their dynamic peripheral topology. In this study, four consecutive substitutions of the model antimicrobial peptide magainin 2 were synthesized and labeled with the rigid TOAC spin label. The results revealed the helical tilts to be 66° ± 5°, 76° ± 5°, 70° ± 5°, and 72° ± 5° for the TOAC substitutions H7, S8, A9, and K10 respectively. These results are consistent with previously published literature. Using the EPR (electron paramagnetic resonance) mechanical alignment technique, these substitutions were used to critically assess the topology and surface orientation of the peptide with respect to the membrane. This methodology offers a rapid and simple approach to investigate the structural topology of antimicrobial peptides. Copyright © 2018 Elsevier B.V. All rights reserved.
Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim
2018-01-01
Explosion of the bombs in Hiroshima and Nagasaki corresponds to the only historical moment when atomic bombs were used against civilians. This event triggered countless investigations into the effects and dosimetry of ionizing radiation. However, none of the investigations has used the victims’ bones as dosimeter. Here, we assess samples of bones obtained from fatal victims of the explosion by Electron Spin Resonance (ESR). In 1973, one of the authors of the present study (SM) traveled to Japan and conducted a preliminary experiment on the victims’ bone samples. The idea was to use the paramagnetism induced in bone after irradiation to measure the radiation dose. Technological advances involved in the construction of spectrometers, better knowledge of the paramagnetic center, and improvement in signal processing techniques have allowed us to resume the investigation. We obtained a reconstructed dose of 9.46 ± 3.4 Gy from the jawbone, which was compatible with the dose distribution in different locations as measured in non-biological materials such as wall bricks and roof tiles. PMID:29408890
NASA Technical Reports Server (NTRS)
Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.
1997-01-01
Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron paramagnetic resonance imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of approximately 0.18 mm along a 2-mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2-mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 1-h cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.
NASA Technical Reports Server (NTRS)
Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.
1997-01-01
Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron Paramagnetic Resonance Imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of about 0.18 mm along a 2 mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2 mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 one-hour cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.
NASA Astrophysics Data System (ADS)
Stefanakis, Dimitrios; Seimenis, Ioannis; Ghanotakis, Demetrios
2014-11-01
Gadolinium (Gd) is a trivalent paramagnetic element, making it useful as a contrast agent for magnetic resonance imaging (MRI). Gd2(OH)5NO3· xH2O belongs to a new family of nanosheets. The advantages of these materials are their relatively small size, paramagnetic behavior, stability, lack of toxicity and highly ordered structure. In the present study, Gd2(OH)5NO3 nanosheets were functionalized with amino groups and modified with the photosensitiser rose bengal (RB). This surface modification makes possible the use of the nanosheets in photodynamic therapy. The coated nanosheets were characterized with X-ray diffraction, fourier transform infrared spectroscopy and UV-Vis spectroscopy, as well as transmission electron microscopy. The possibility of using these nanosheets as potential spin-lattice ( T 1) and spin-spin relaxation ( T 2) contrast agents in MRI was evaluated at 1.5 T. Finally, the ability of Gd2(OH)5NO3-RB to catalyze photooxidization reactions was examined using nuclear magnetic resonance (1H NMR) and gas chromatography-mass spectrometry (GC/MS).
Hales, Brian J
2015-07-14
Most hydrophilic organic solvents inhibit enzymatic activity. Nitrogenase is shown to be approximately 3 times more sensitive to organic inhibition than most other soluble enzymes. Ethylene glycol (EG) is demonstrated to rapidly inhibit nitrogenase activity without uncoupling ATP hydrolysis. Our data suggest the mechanism of inhibition is EG's blocking of binding of MgATP to the nitrogenase Fe protein. EG quenching allows, for the first time, the observation of the relaxation of the intermediate reaction states at room temperature. Electron paramagnetic resonance (EPR) spectroscopy is used to monitor the room-temperature decay of the nitrogenase turnover states following EG quenching of catalytic activity. The return of the intermediate states to the resting state occurs in multiple phases over 2 h. During the initial stage, nitrogenase still possesses the ability to generate CO-induced EPR signals even though catalytic activity has ceased. During the last phase of relaxation, the one-electron reduced state of the MoFe protein (E1) relaxes to the resting state (E0) in a slow first-order reaction.
Preservation of tumour oxygen after hyperbaric oxygenation monitored by magnetic resonance imaging
Kinoshita, Y; Kohshi, K; Kunugita, N; Tosaki, T; Yokota, A
1999-01-01
Hyperbaric oxygen (HBO) has been proposed to reduce tumour hypoxia by increasing the dissolved molecular oxygen in tissue. Using a non-invasive magnetic resonance imaging (MRI) technique, we monitored the changes in MRI signal intensity after HBO exposure because dissolved paramagnetic molecular oxygen itself shortens the T1 relation time. SCCVII tumour cells transplanted in mice were used. The molecular oxygen-enhanced MR images were acquired using an inversion recovery-preparation fast low angle shot (IR-FLASH) sequence sensitizing the paramagnetic effects of molecular oxygen using a 4.7 tesla MR system. MR signal of muscles decreased rapidly and returned to the control level within 40 min after decompression, whereas that of tumours decreased gradually and remained at a high level 60 min after HBO exposure. In contrast, the signal from the tumours in the normobaric oxygen group showed no significant change. Our data suggested that MR signal changes of tumours and muscles represent an alternation of extravascular oxygenation. The preserving tumour oxygen concentration after HBO exposure may be important regarding adjuvant therapy for cancer patients. © 2000 Cancer Research Campaign PMID:10638972
NASA Astrophysics Data System (ADS)
Savchenko, D.; Tarasenko, R.; Vališka, M.; Kopeček, J.; Fekete, L.; Carva, K.; Holý, V.; Springholz, G.; Sechovský, V.; Honolka, J.
2018-05-01
We compare the magnetic and electronic configuration of single Mn atoms in molecular beam epitaxy (MBE) grown Bi2Se3 thin films, focusing on electron paramagnetic (ferromagnetic) resonance (EPR and FMR, respectively) and superconducting quantum interference device (SQUID) techniques. X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) reveal the expected increase of disorder with increasing concentration of magnetic guest atoms, however, Kikuchi patterns show that disorder consists majorly of μm-scale 60° twin domains in the hexagonal Bi2Se3 structure, which are promoted by the presence of single unclustered Mn impurities. Ferromagnetism below TC (5.4±0.3) K can be well described by critical scaling laws M (T) (1 - T /TC) β with a critical exponent β = (0.34 ± 0.2) , suggesting 3D Heisenberg class magnetism instead of e.g. 2D-type coupling between Mn-spins in van der Waals gap sites. From EPR hyperfine structure data we determine a Mn2+ (d5, S = 5/2) electronic configuration with a g-factor of 2.002 for -1/2 → +1/2 transitions. In addition, from the strong dependence of the low temperature FMR fields and linewidth on the field strength and orientation with respect to the Bi2Se3 (0001) plane, we derive magnetic anisotropy energies of up to K1 = -3720 erg/cm3 in MBE-grown Mn-doped Bi2Se3, reflecting the first order magneto-crystalline anisotropy of an in-plane magnetic easy plane in a hexagonal (0001) crystal symmetry. We observe an increase of K1 with increasing Mn concentration, which we interpret to be correlated to a Mn-induced in-plane lattice contraction. Across the ferromagnetic-paramagnetic transition the FMR intensity is suppressed and resonance fields converge the paramagnetic limit of Mn2+ (d5, S = 5/2).
Liu, Zan; Qian, Junchao; Liu, Binmei; Wang, Qi; Ni, Xiaoyu; Dong, Yaling; Zhong, Kai; Wu, Yuejin
2014-01-01
Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice.
Methods of chemical and phase composition analysis of gallstones
NASA Astrophysics Data System (ADS)
Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.
2017-11-01
This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.
Royt, P.W.; Honeychuck, R.V.; Pant, R.R.; Rogers, M.L.; Asher, L.V.; Lloyd, J.R.; Carlos, W.E.; Belkin, H.E.; Patwardhan, S.
2007-01-01
Dark aggregated particles were seen on pellets of iron-rich, mid-logarithmic phase Pseudomonas aeruginosa. Transmission electron microscopy of these cells showed inclusion bodies in periplasmic vacuoles. Aggregated particles isolated from the spent medium of these cells contained iron as indicated by atomic absorption spectroscopy and by electron paramagnetic resonance spectroscopy that revealed Fe3+. Scanning electron microscopy/energy dispersive X-ray analysis of whole cells revealed the presence of iron-containing particles beneath the surface of the cell, indicating that the isolated aggregates were the intracellular inclusion bodies. Collectively, mass spectroscopy and nuclear magnetic resonance spectroscopy of the isolated inclusion bodies revealed the presence of 3,4-dihydroxy-2-heptylquinoline which is the Pseudomonas quinolone signaling compound (PQS) and an iron chelator; 4-hydroxy-2-heptylquinoline (pseudan VII), which is an iron chelator, antibacterial compound and precursor of PQS; 4-hydroxy-2-nonylquinoline (pseudan IX) which is an iron chelator and antibacterial compound; 4-hydroxy-2-methylquinoline (pseudan I), and 4-hydroxy-2-nonylquinoline N-oxide. ?? 2006 Elsevier Inc. All rights reserved.
29Si nuclear magnetic resonance study of URu 2Si 2 under pressure
Shirer, K. R.; Dioguardi, A. P.; Bush, B. T.; ...
2015-12-01
Here, we report 29Si nuclear magnetic resonance measurements of single crystals and aligned powders of URu 2Si 2 under pressure in the hidden order and paramagnetic phases. We find evidence for a reduction of the Knight shift with applied pressure, consistent with previous measurements of the static magnetic susceptibility. Previous measurements of the spin lattice relaxation time revealed a partial suppression of the density of states below 30 K. Here, we find that the temperature at which this suppression occurs is enhanced with applied pressure.
Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR
NASA Astrophysics Data System (ADS)
Zhang, Z. T.; Xu, C.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Wang, Y. T.; Helm, M.; Zhou, Shengqiang; Kühne, H.
2017-11-01
We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13C nuclear spin-lattice relaxation rate 1/T1 by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of 1/T1 below about 10 K can well be described by a thermally activated form, \
Pan, Dipanjan; Caruthers, Shelton D; Hu, Grace; Senpan, Angana; Scott, Mike J; Gaffney, Patrick J; Wickline, Samuel A; Lanza, Gregory M
2008-07-23
Although gadolinium has been the dominant paramagnetic metal for MR paramagnetic contrast agents, the recent association of this lanthanide with nephrogenic systemic fibrosis, an untreatable disease, has spawned renewed interest in alternative metals for MR molecular imaging. We have developed a self-assembled, manganese(III)-labeled nanobialys (1), a toroidal-shaped MR theranostic nanoparticle. In this report, Mn(III) nanobialys are characterized as MR molecular imaging agents for targeted detection of fibrin, a major biochemical feature of thrombus. A complementary ability of nanobialys to incorporate chemotherapeutic compounds with greater than 98% efficiency and to retain more than 80% of these drugs after infinite sink dissolution, point to the theranostic potential of this platform technology.
Simon, Ferenc; Murányi, Ferenc
2005-04-01
The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.
Frøystein, N A; Sletten, E
1991-03-01
The interaction of the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2 with two different transition-metal ions has been investigated in aqueous solution by means of 1H NMR spectroscopy. The effects on the DNA due to the presence of manganese(II) or zinc(II) have been monitored by observing the paramagnetic broadening and diamagnetic shifts of the non-exchangeable proton resonance lines, respectively. The 1H NMR spectra acquired during the course of the manganese(II) titration show very distinct broadening effects on certain DNA resonance lines. Primarily, the H8 resonance of G4 is affected, but also the H5 and H6 resonances of C3 are clearly affected by the metal. The results imply that the binding of manganese(II) to DNA is sequence specific. The 1H spectra obtained during the zinc(II) titration reveal diamagnetic shift effects which largely conform with the paramagnetic broadening effects due to the presence of manganese(II), although this picture is somewhat more complex. The H8 resonance of G4 displays a clearly visible high-field shift, while for the other guanosine H8 protons this effect is absent. The H1' and H2' protons of C3 show an effect of similar strength, although in the opposite direction, while H5 and H6 of C3 are only slightly affected. Local differences in the structure of the DNA and the basicities of potential binding sites on different base steps in the sequence might account for the observed sequence selectivity.
Paramagnetic Manganese in the Atherosclerotic Plaque of Carotid Arteries
Chelyshev, Yury; Ignatyev, Igor; Zanochkin, Alexey; Mamin, Georgy; Sorokin, Boris; Sorokina, Alexandra; Lyapkalo, Natalya; Gizatullina, Nazima; Orlinskii, Sergei
2016-01-01
The search for adequate markers of atherosclerotic plaque (AP) instability in the context of assessment of the ischemic stroke risk in patients with atherosclerosis of the carotid arteries as well as for solid physical and chemical factors that are connected with the AP stability is extremely important. We investigate the inner lining of the carotid artery specimens from the male patients with atherosclerosis (27 patients, 42–64 years old) obtained during carotid endarterectomy by using different analytical tools including ultrasound angiography, X-ray analysis, immunological, histochemical analyses, and high-field (3.4 T) pulse electron paramagnetic resonance (EPR) at 94 GHz. No correlation between the stable and unstable APs in the sense of the calcification is revealed. In all of the investigated samples, the EPR spectra of manganese, namely, Mn2+ ions, are registered. Spectral and relaxation characteristics of Mn2+ ions are close to those obtained for the synthetic (nano) hydroxyapatite species but differ from each other for stable and unstable APs. This demonstrates that AP stability could be specified by the molecular organization of their hydroxyapatite components. The origin of the obtained differences and the possibility of using EPR of Mn2+ as an AP stability marker are discussed. PMID:28078287
Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.
Knight, Michael J; Pell, Andrew J; Bertini, Ivano; Felli, Isabella C; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido
2012-07-10
We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.
Bräuer, Björn; Weigend, Florian; Fittipaldi, Maria; Gatteschi, Dante; Reijerse, Edward J; Guerri, Annalisa; Ciattini, Samuele; Salvan, Georgeta; Rüffer, Tobias
2008-08-04
In this work we present the investigation of the influence of electronic and structural variations induced by varying the N,N'-bridge on the magnetic properties of Cu(II)- bis(oxamato) complexes. For this study the complexes [Cu(opba)] (2-) ( 1, opba = o-phenylene- bis(oxamato)), [Cu(nabo)] (2-) ( 2, nabo = 2,3-naphthalene- bis(oxamato)), [Cu(acbo)] (2-) ( 3, acbo = 2,3-anthrachinone- bis(oxamato)), [Cu(pba)] (2-) ( 4, pba = propylene- bis(oxamato)), [Cu(obbo)] (2-) ( 5, obbo = o-benzyl- bis(oxamato)), and [Cu(npbo)] (2-) ( 6, npbo = 1,8-naphthalene- bis(oxamato)), and the respective structurally isomorphic Ni(II) complexes ( 8- 13) have been prepared as ( (n)Bu 4N) (+) salts. The new complex ( (n)Bu 4N) 2[Cu(R-bnbo)].2H 2O ( 7, R-bnbo = (R)-1,1'-binaphthalene-2,2'- bis(oxamato)) was synthesized and is the first chiral complex in the series of Cu(II)-bis(oxamato) complexes. The molecular structure of 7 has been determined by single crystal X-ray analysis. The Cu(II) ions of the complexes 1- 7 are eta (4)(kappa (2) N, kappa (2) O) coordinated with a more or less distorted square planar geometry for 1- 6 and a distorted tetrahedral geometry for 7. Using pulsed Electron Nuclear Double Resonance on complex 6, detailed information about the relative orientation of the hyperfine ( A) and nuclear quadrupole tensors ( Q) of the coordinating nitrogens with respect to the g tensor were obtained. Electron Paramagnetic Resonance studies in the X, Q, and W-band at variable temperatures were carried out to extract g and A values of N ligands and Cu ion for 1- 7. The hyperfine values were interpreted in terms of spin population on the corresponding atoms. The obtained trends of the spin population for the monomeric building blocks were shown to correlate to the trends obtained in the dependence of the exchange interaction of the corresponding trinuclear complexes on their geometry.
NASA Astrophysics Data System (ADS)
Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.
2014-08-01
An electron paramagnetic resonance (EPR) spectrometer’s lambda efficiency parameter (Λ) is one of the most important parameters that govern its sensitivity. It is studied for an EPR probe consisting of a dielectric resonator (DR) in a cavity (CV). Expressions for Λ are derived in terms of the probe’s individual DR and CV components, Λ1 and Λ2 respectively. Two important cases are considered. In the first, a probe consisting of a CV is improved by incorporating a DR. The sensitivity enhancement depends on the relative rather than the absolute values of the individual components. This renders the analysis general. The optimal configuration occurs when the CV and DR modes are nearly degenerate. This configuration guarantees that the probe can be easily coupled to the microwave bridge while maintaining a large Λ. It is shown that for a lossy CV with a small quality factor Q2, one chooses a DR that has the highest filling factor, η1, regardless of its Λ1 and Q1. On the other hand, if the CV has a large Q2, the optimum DR is the one which has the highest Λ1. This is regardless of its η1 and relative dielectric constant, ɛr. When the quality factors of both the CV and DR are comparable, the lambda efficiency is reduced by a factor of √{2}. Thus the signal intensity for an unsaturated sample is cut in half. The second case is the design of an optimum shield to house a DR. Besides preventing radiation leakage, it is shown that for a high loss DR, the shield can actually boost Λ above the DR value. This can also be very helpful for relatively low efficiency dielectrics as well as lossy samples, such as polar liquids.
Magnetic Ordering in Gold Nanoclusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrachev, Mikhail; Antonello, Sabrina; Dainese, Tiziano
Here, several research groups have observed magnetism in monolayer-protected gold-cluster samples, but the results were often contradictory and thus a clear understanding of this phenomenon is still missing. We used Au 25(SCH 2CH 2Ph) 18 0, which is a paramagnetic cluster that can be prepared with atomic precision and whose structure is known precisely. Previous magnetometry studies only detected paramagnetism. We used samples representing a range of crystallographic orders and studied their magnetic behaviors by electron paramagnetic resonance (EPR). As a film, Au 25(SCH 2CH 2Ph) 18 0 displays paramagnetic behavior but, at low temperature, ferromagnetic interactions are detectable. Onemore » or few single crystals undergo physical reorientation with the applied field and display ferromagnetism, as detected through hysteresis experiments. A large collection of microcrystals is magnetic even at room temperature and shows distinct paramagnetic, superparamagnetic, and ferromagnetic behaviors. Simulation of the EPR spectra shows that both spin-orbit coupling and crystal distortion are important to determine the observed magnetic behaviors. DFT calculations carried out on single cluster and periodic models predict values of spin6orbit coupling and crystal6splitting effects in agreement with the EPR derived quantities. Magnetism in gold nanoclusters is thus demonstrated to be the outcome of a very delicate balance of factors. To obtain reproducible results, the samples must be (i) controlled for composition and thus be monodispersed with atomic precision, (ii) of known charge state, and (iii) well defined also in terms of crystallinity and experimental conditions. This study highlights the efficacy of EPR spectroscopy to provide a molecular understanding of these phenomena« less
Magnetic Ordering in Gold Nanoclusters
Agrachev, Mikhail; Antonello, Sabrina; Dainese, Tiziano; ...
2017-06-12
Here, several research groups have observed magnetism in monolayer-protected gold-cluster samples, but the results were often contradictory and thus a clear understanding of this phenomenon is still missing. We used Au 25(SCH 2CH 2Ph) 18 0, which is a paramagnetic cluster that can be prepared with atomic precision and whose structure is known precisely. Previous magnetometry studies only detected paramagnetism. We used samples representing a range of crystallographic orders and studied their magnetic behaviors by electron paramagnetic resonance (EPR). As a film, Au 25(SCH 2CH 2Ph) 18 0 displays paramagnetic behavior but, at low temperature, ferromagnetic interactions are detectable. Onemore » or few single crystals undergo physical reorientation with the applied field and display ferromagnetism, as detected through hysteresis experiments. A large collection of microcrystals is magnetic even at room temperature and shows distinct paramagnetic, superparamagnetic, and ferromagnetic behaviors. Simulation of the EPR spectra shows that both spin-orbit coupling and crystal distortion are important to determine the observed magnetic behaviors. DFT calculations carried out on single cluster and periodic models predict values of spin6orbit coupling and crystal6splitting effects in agreement with the EPR derived quantities. Magnetism in gold nanoclusters is thus demonstrated to be the outcome of a very delicate balance of factors. To obtain reproducible results, the samples must be (i) controlled for composition and thus be monodispersed with atomic precision, (ii) of known charge state, and (iii) well defined also in terms of crystallinity and experimental conditions. This study highlights the efficacy of EPR spectroscopy to provide a molecular understanding of these phenomena« less
Double resonance calibration of g factor standards: Carbon fibers as a high precision standard
NASA Astrophysics Data System (ADS)
Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar
2018-04-01
The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than gfree with g = 2.002644 =gfree · (1 + 162ppm) with a relative uncertainty of 15ppm . This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time.
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
NASA Astrophysics Data System (ADS)
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
Soesbe, Todd C; Wu, Yunkou; Dean Sherry, A
2013-07-01
Paramagnetic chemical exchange saturation transfer (PARACEST) complexes are exogenous contrast agents that have great potential to further extend the functional and molecular imaging capabilities of magnetic resonance. As a result of the presence of a central paramagnetic lanthanide ion (Ln(3+) ≠ La(3+) , Gd(3+) , Lu(3+) ) within the chelate, the resonance frequencies of exchangeable protons bound to the PARACEST agent are shifted far away from the bulk water frequency. This large chemical shift, combined with an extreme sensitivity to the chemical exchange rate, make PARACEST agents ideally suited for the reporting of significant biological metrics, such as temperature, pH and the presence of metabolites. In addition, the ability to turn PARACEST agents 'off' and 'on' using a frequency-selective saturation pulse gives them a distinct advantage over Gd(3+) -based contrast agents. A current challenge for PARACEST research is the translation of the promising in vitro results into in vivo systems. This short review article first describes the basic theory behind PARACEST contrast agents, their benefits over other contrast agents and their applications to MRI. It then describes some of the recent PARACEST research results: specifically, pH measurements using water molecule exchange rate modulation, T2 exchange contrast caused by water molecule exchange, the use of ultrashort TEs (TE < 10 µs) to overcome T2 exchange line broadening and the potential application of T2 exchange as a new contrast mechanism for MRI. Copyright © 2012 John Wiley & Sons, Ltd.
The world as viewed by and with unpaired electrons.
Eaton, Sandra S; Eaton, Gareth R
2012-10-01
Recent advances in electron paramagnetic resonance (EPR) include capabilities for applications to areas as diverse as archeology, beer shelf life, biological structure, dosimetry, in vivo imaging, molecular magnets, and quantum computing. Enabling technologies include multifrequency continuous wave, pulsed, and rapid scan EPR. Interpretation is enhanced by increasingly powerful computational models. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yan; Ji, Lei; Zhang, Bingbo; Yin, Peihao; Qiu, Yanyan; Song, Daqian; Zhou, Juying; Li, Qi
2013-05-01
Multi-modal imaging based on multifunctional nanoparticles is a promising alternative approach to improve the sensitivity of early cancer diagnosis. In this study, highly upconverting fluorescence and strong relaxivity rare-earth nanoparticles coated with paramagnetic lanthanide complex shells and polyethylene glycol (PEGylated UCNPs@DTPA-Gd3+) are synthesized as dual-modality imaging contrast agents (CAs) for upconverting fluorescent and magnetic resonance dual-modality imaging. PEGylated UCNPs@DTPA-Gd3+ with sizes in the range of 32-86 nm are colloidally stable. They exhibit higher longitudinal relaxivity and transverse relaxivity in water (r1 and r2 values are 7.4 and 27.8 s-1 per mM Gd3+, respectively) than does commercial Gd-DTPA (r1 and r2 values of 3.7 and 4.6 s-1 per mM Gd3+, respectively). They are found to be biocompatible. In vitro cancer cell imaging shows good imaging contrast of PEGylated UCNPs@DTPA-Gd3+. In vivo upconversion fluorescent imaging and T1-weighted MRI show excellent enhancement of both fluorescent and MR signals in the livers of mice administered PEGylated UCNPs@DTPA-Gd3+. All the experimental results indicate that the synthesized PEGylated UCNPs@DTPA-Gd3+ present great potential for biomedical upconversion of fluorescent and magnetic resonance dual-modality imaging applications.
Lu, Jian; Ozel, I. Ozge; Belvin, Carina A.; Li, Xian; Skorupskii, Grigorii; Sun, Lei; Ofori-Okai, Benjamin K.; Dincă, Mircea; Gedik, Nuh
2017-01-01
Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g-factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science. PMID:29163882
Nakagawa, Kouichi; Maeda, Hayato
2017-02-01
We investigated the location and distribution of paramagnetic species in dry black, brown, and yellow (normal) soybean seeds using electron paramagnetic resonance (EPR), X-band (9 GHz) EPR imaging (EPRI), and HPLC. EPR primarily detected two paramagnetic species in black soybean. These two different radical species were assigned as stable organic radical and Mn 2+ species based on the g values and hyperfine structures. The signal from the stable radical was noted at g ≈ 2.00 and was relatively strong and stable. Subsequent noninvasive two-dimensional (2D) EPRI of the radical present in black soybean revealed that the stable radical was primarily located in the pigmented region of the soybean coat, with very few radicals observed in the soybean cotyledon (interior). Pigments extracted from black soybean were analyzed using HPLC. The major compound was found to be cyanidin-3-glucoside. Multi-EPR and HPLC results indicate that the stable radical was only found within the pigmented region of the soybean coat, and it could be cyanidin-3-glucoside or an oxidative decomposition product.
Specific features of the EPR spectra of KTaO3: Mn nanopowders
NASA Astrophysics Data System (ADS)
Golovina, I. S.; Shanina, B. D.; Geifman, I. N.; Andriiko, A. A.; Chernenko, L. V.
2012-03-01
The electron paramagnetic resonance spectra of KTaO3: Mn nanocrystalline powders in the temperature range from 77 to 620 K have been measured and studied for the first time. The change observed in the spectra has been investigated as a function of the doping level. The doping regions in which Mn2+ ions are individual paramagnetic impurities have been established, as well as the regions where the dipole-dipole and exchange interactions of these ions begin to occur. The spin-Hamiltonian constants for the spectrum of non-interacting individual Mn2+ ions have been determined as follows: g = 2.0022, D = 0.0170 cm-1, and A = 85 × 10-4 cm-1. A significant decrease in the axial constant D in the KTaO3: Mn nanopowder, as compared to the single crystal, has been explained by the remoteness of the charge compensator from the paramagnetic ion and by the influence of the surface of the nanoparticle. It has been assumed that the Mn2+ ions are located near the surface and do not penetrate deep into the crystallites.
In vivo EPR extracellular pH-metry in tumors using a triphosphonated trityl radical.
Marchand, Valérie; Levêque, Philippe; Driesschaert, Benoit; Marchand-Brynaert, Jacqueline; Gallez, Bernard
2017-06-01
The ability to assess the extracellular pH (pHe) is an important issue in oncology, because extracellular acidification is associated with tumor aggressiveness and resistance to cytotoxic therapies. In this study, a stable triphosphonated triarylmethyl (TPTAM) radical was qualified as a pHe electron paramagnetic resonance (EPR) molecular reporter. Calibration of hyperfine splitting as a function of pH was performed using a 1.2-GHz EPR spectrometer. Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was used as an extracellular paramagnetic broadening agent to assess the localization of TPTAM when incubated with cells. In vivo EPR pH-metry was performed in MDA, SiHa, and TLT tumor models and in muscle. Bicarbonate therapy was used to modulate the tumor pHe. EPR measurements were compared with microelectrode readouts. The hyperfine splitting of TPTAM was strongly pH-dependent around the pKa of the probe (pKa = 6.99). Experiments with Gd-DTPA demonstrated that TPTAM remained in the extracellular compartment. pHe was found to be more acidic in the MDA, SiHa, and TLT tumor models compared with muscle. Treatment of animals by bicarbonate induced an increase in pHe in tumors: similar variations in pHe were found when using in vivo EPR or invasive microelectrodes measurements. This study demonstrates the potential usefulness of TPTAM for monitoring pHe in tumors. Magn Reson Med 77:2438-2443, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.
2014-01-01
Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251
Paramagnetic NMR Investigation of Dendrimer-Based Host-Guest Interactions
Wang, Fei; Shao, Naimin; Cheng, Yiyun
2013-01-01
In this study, the host-guest behavior of poly(amidoamine) (PAMAM) dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the 1H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE) was observed between TEMPO-NH2, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and 1H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems. PMID:23762249
Four-channel surface coil array for sequential CW-EPR image acquisition
NASA Astrophysics Data System (ADS)
Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi
2013-09-01
This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.
Concentration of point defects in 4H-SiC characterized by a magnetic measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, B.; Jia, R. X., E-mail: rxjia@mail.xidian.edu.cn; Wang, Y. T.
A magnetic method is presented to characterize the concentration of point defects in silicon carbide. In this method, the concentration of common charged point defects, which is related to the density of paramagnetic centers, is determined by fitting the paramagnetic component of the specimen to the Brillouin function. Several parameters in the Brillouin function can be measured such as: the g-factor can be obtained from electron spin resonance spectroscopy, and the magnetic moment of paramagnetic centers can be obtained from positron lifetime spectroscopy combined with a first-principles calculation. To evaluate the characterization method, silicon carbide specimens with different concentrations ofmore » point defects are prepared with aluminum ion implantation. The fitting results of the densities of paramagnetic centers for the implanted doses of 1 × 10{sup 14} cm{sup −2}, 1 × 10{sup 15} cm{sup −2} and 1 × 10{sup 16} cm{sup −2} are 6.52 × 10{sup 14}/g, 1.14 × 10{sup 15}/g and 9.45 × 10{sup 14}/g, respectively. The same trends are also observed for the S-parameters in the Doppler broadening spectra. It is shown that this method is an accurate and convenient way to obtain the concentration of point defects in 4H-SiC.« less
Miller, Effie K; Trivelas, Nicholas E; Maugeri, Pearson T; Blaesi, Elizabeth J; Shafaat, Hannah S
2017-07-05
The assembly mechanism of the Mn/Fe ligand-binding oxidases (R2lox), a family of proteins that are homologous to the nonheme diiron carboxylate enzymes, has been investigated using time-resolved techniques. Multiple heterobimetallic intermediates that exhibit unique spectral features, including visible absorption bands and exceptionally broad electron paramagnetic resonance signatures, are observed through optical and magnetic resonance spectroscopies. On the basis of comparison to known diiron species and model compounds, the spectra have been attributed to (μ-peroxo)-Mn III /Fe III and high-valent Mn/Fe species. Global spectral analysis coupled with isotopic substitution and kinetic modeling reveals elementary rate constants for the assembly of Mn/Fe R2lox under aerobic conditions. A complete reaction mechanism for cofactor maturation that is consistent with experimental data has been developed. These results suggest that the Mn/Fe cofactor can perform direct C-H bond abstraction, demonstrating the potential for potent chemical reactivity that remains unexplored.
NASA Astrophysics Data System (ADS)
Perera, Gonaduwage; Johnson, Ian; Keller, Dustin
2017-09-01
Dynamic Nuclear Polarization (DNP) is used in most of the solid polarized target scattering experiments. Those target materials must be irradiated using microwaves at a frequency determined by the difference in the nuclear Larmor and electron paramagnetic resonance (EPR) frequencies. But the resonance frequency changes with time as a result of radiation damage. Hence the microwave frequency should be adjusted accordingly. Manually adjusting the frequency can be difficult, and improper adjustments negatively impact the polarization. In order to overcome these difficulties, two controllers were developed which automate the process of seeking and maintaining the optimal frequency: one being a standalone controller for a traditional DC motor and the other a LabVIEW VI for a stepper motor configuration. Further a Monte-Carlo simulation was developed which can accurately model the polarization over time as a function of microwave frequency. In this talk, analysis of the simulated data and recent improvements to the automated system will be presented. DOE.
Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging
NASA Astrophysics Data System (ADS)
Kawada, Yuuki; Hirata, Hiroshi; Fujii, Hirodata
2007-01-01
This article reports experimental investigations on the use of RF resonators for continuous-wave electron paramagnetic resonance (cw-EPR) and proton nuclear magnetic resonance (NMR) imaging. We developed a composite resonator system with multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. The resonance frequencies of each resonator were 21.8 MHz for NMR and 670 MHz for EPR. A smaller resonator (22 mm in diameter) for use in EPR was placed coaxially in a larger resonator (40 mm in diameter) for use in NMR. RF magnetic fields in the composite resonator system were visualized by measuring a homogeneous 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (4-hydroxy-TEMPO) solution in a test tube. A phantom of five tubes containing distilled water and 4-hydroxy-TEMPO solution was also measured to demonstrate the potential usefulness of this composite resonator system in biomedical science. An image of unpaired electrons was obtained for 4-hydroxy-TEMPO in three tubes, and was successfully mapped on the proton image for five tubes. Technical problems in the implementation of a composite resonator system are discussed with regard to co-registration EPR/NMR imaging for animal experiments.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe.
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-09-28
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La 3+ -Mn 4+ and Eu 3+ -Fe 3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La 3+ -Mn 4+ and Eu 3+ -Fe 3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-01-01
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications. PMID:28773925
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalfaoğlu, Emel, E-mail: emelkalfaoglu@mynet.com; Karabulut, Bünyamin
2016-03-25
Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in cesium hydrogen oxalate single crystals have been investigated at room temperature. The spin-Hamiltonian parameters (g and A), have been determined. Crystalline field around the Cu{sup 2+} ion is almost axially symmetric. The results show a single paramagnetic site which confirms the triclinic crystal symmetry. Molecular orbital bonding coefficients are studied from the EPR and optical data. Theoretical octahedral field parameter and the tetragonal field parameters have been evaluated from the superposition model. Using these parameters, various bonding parameters are analyzed and the nature of bonding in themore » complex is discussed. The theoretical results are supported by experimental results.« less
The [4Fe-4S](2+) cluster in reconstituted biotin synthase binds S-adenosyl-L-methionine.
Cosper, Michele Mader; Jameson, Guy N L; Davydov, Roman; Eidsness, Marly K; Hoffman, Brian M; Huynh, Boi Hanh; Johnson, Michael K
2002-11-27
The combination of resonance Raman, electron paramagnetic resonance and Mössbauer spectroscopies has been used to investigate the effect of S-adenosyl-l-methionine (SAM) on the spectroscopic properties of the [4Fe-4S]2+ cluster in biotin synthase. The results indicate that SAM interacts directly at a unique iron site of the [4Fe-4S]2+ cluster in BioB and support the hypothesis of a common inner-sphere mechanism for the reductive cleavage of SAM in the radical SAM family of Fe-S enzymes.
Stals, Patrick J M; Cheng, Chi-Yuan; van Beek, Lotte; Wauters, Annelies C; Palmans, Anja R A; Han, Songi; Meijer, E W
2016-03-01
A library of water-soluble dynamic single-chain polymeric nanoparticles (SCPN) was prepared using a controlled radical polymerisation technique followed by the introduction of functional groups, including probes at targeted positions. The combined tools of electron paramagnetic resonance (EPR) and Overhauser dynamic nuclear polarization (ODNP) reveal that these SCPNs have structural and surface hydration properties resembling that of enzymes.
Oxygen-related 1-platinum defects in silicon: An electron paramagnetic resonance study
NASA Astrophysics Data System (ADS)
Juda, U.; Scheerer, O.; Höhne, M.; Riemann, H.; Schilling, H.-J.; Donecker, J.; Gerhardt, A.
1996-09-01
A monoclinic 1-platinum defect recently detected was investigated more thoroughly by electron paramagnetic resonance (EPR). The defect is one of the dominating defects in platinum doped silicon. With a perfect reproducibility it is observed in samples prepared from n-type silicon as well as from p-type silicon, in float zone (FZ) silicon as well as in Czochralski (Cz) silicon. Its concentration varies with the conditions of preparation and nearly reaches that of isolated substitutional platinum in Cz silicon annealed for 2 h at 540 °C after quenching from the temperature of platinum diffusion. Because of its concentration which in Cz-Si exceeds that in FZ-Si the defect is assumed to be oxygen-related though a hyperfine structure with 17O could not be resolved. The defect causes a level close to the valence band. This is concluded from variations of the Fermi level and from a discussion of the spin Hamiltonian parameters. In photo-EPR experiments the defect is coupled to recently detected acceptorlike self-interstitial related defects (SIRDs); their level position turns out to be near-midgap. These defects belong to the lifetime limiting defects in Pt-doped Si.
Kozłowska, Mariola; Szterk, Arkadiusz; Zawada, Katarzyna; Ząbkowski, Tomasz
2012-09-01
The aim of this study was to establish the applicability of natural water-ethanol extracts of herbs and spices in increasing the oxidative stability of plant oils and in the production of novel food. Different concentrations (0, 100, 300, 500, and 700 ppm) of spice extracts and butylated hydroxyanisole (BHA) (100 ppm) were added to the studied oils. The antioxidant activity of spice extracts was determined with electron paramagnetic resonance (EPR) spectroscopy using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. The study showed that the extracts significantly increased the oxidative stability of the examined oils when compared to one of the strongest synthetic antioxidants--BHA. The applied simple production technology and addition of herb and spice extracts to plant oils enabled enhancement of their oxidative stability. The extracts are an alternative to the oils aromatized with an addition of fresh herbs, spices, and vegetables because it did not generate additional flavors thus enabling the maintenance of the characteristic ones. Moreover, it will increase the intake of natural substances in human diet, which are known to possess anticarcinogenic properties. © 2012 Institute of Food Technologists®
High field nuclear magnetic resonance in transition metal substituted BaFe{sub 2}As{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garitezi, T. M., E-mail: thalesmg@ifi.unicamp.br; Lesseux, G. G.; Rosa, P. F. S.
2014-05-07
We report high field {sup 75}As nuclear magnetic resonance (NMR) measurements on Co and Cu substituted BaFe{sub 2}As{sub 2} single crystals displaying same structural/magnetic transition T{sub 0}≃128 K. From our anisotropy studies in the paramagnetic state, we strikingly found virtually identical quadrupolar splitting and consequently the quadrupole frequency ν{sub Q}≃2.57(1) MHz for both compounds, despite the claim that each Cu delivers 2 extra 3d electrons in BaFe{sub 2}As{sub 2} compared to Co substitution. These results allow us to conclude that a subtle change in the crystallographic structure, particularly in the Fe–As tetrahedra, must be the most probable tuning parameter to determine T{submore » 0} in this class of superconductors rather than electronic doping. Furthermore, our NMR data around T{sub 0} suggest coexistence of tetragonal/paramagnetic and orthorhombic/antiferromagnetic phases between the structural and the spin density wave magnetic phase transitions, similarly to what was reported for K-doped BaFe{sub 2}As{sub 2} [Urbano et al., Phys. Rev. Lett. 105, 107001 (2010)].« less
ELECTRON PARAMAGNETIC RESONANCE AND BAKING STUDIES ON GAMMA-IRRADIATED FLOUR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.C.
1962-03-01
The irradiation of flour (from Western Canadian hard red spring wheat) at its usual moisture level of 12 to 14% with up to 10/sup 6/ rads of Co/sup 60/ gamma rays gave no observable electron paramagnetic resonance (EPR) spectrum. However, after reduction of the moisture contert to 8 or 4%, irradiation resulted in EPR absorption indicating presence of radioinduced free radicals, which were destroyed rapidly in the presence of water vapor. With the irradiated flour kept in a sealed tube, the EPR spectrum faded with time. The fading was quite rapid for the first few days and then proceeded moremore » slowly. Irradiation resulted in a moderate increase in baked bread loaf volume at fairly low radiation dosages, followed by a gradual decrease in loaf volume at higher dosages (0.25 Mrad). Also, loaf volume tended to decrease as the elapsed time between irradiation and baking increased. This finding, when considered with the fading of the EPR spectrum, indicated that the EPR-detectable free radicals in the irradiated flour did not cause a strengthenlng of the gluten to produce an increase in loaf volume, as the radicals disappeared on becoming stable compounds. (H.H.D.)« less
Resonance spectra of a paramagnetic probe dissolved in a viscous medium
NASA Technical Reports Server (NTRS)
Kaplan, J. I.; Gelerinter, E.; Fryburg, G. C.
1972-01-01
A model is presented for calculating the paramagnetic resonance (EPR) spectrum of vanadyl acetylacetonate (VAAC) dissolved in either a liquid crystal or isotropic solvent. It employs density matrix formulation in the rotating reference frame. The molecules occupy several discrete angles with respect to the magnetic field and can relax to neighboring positions in a characteristic time tau(theta). The form of tau(theta) is found from a diffusion approach, and the magnitude of tau(theta) is a measure of how freely the VAAC probe tumbles in the solvent. Spectra are predicted for values of tau between 10 to the minus 11th power sec and 10 to the minus 7th power sec. The EPR spectrum, in the isotropic case, is obtained be summing the contributions from the allowed angles weighted by the polar volume element, sin theta. When applying the model to the nematic liquid crystal case it is also necessary to multiply by the Saupe distribution function. For this case tau(theta) is obtained from the diffusion approach in which two diffusion constants are employed to reflect the difference in the parallel and perpendicular components of the viscosity.
Gadzheva, V; Ichimori, K; Raikov, Z; Nakazawa, H
1997-08-01
A new method for measuring the carbamoylating activity of nitrosoureas and isocyanates using electron paramagnetic resonance (EPR) spectroscopy is described. The extent and time course of carbamoylation reaction of chloroethyl isocyanate and a series of 9 nitrosoureas toward amino group of 4-amino-2,2,6,6-tetramethyl-piperidine-1-oxyl were examined with both the EPR method and the HPLC method which has been proposed by Brubaker et al. [Biochem. Pharmacol. 35:2359 (1986)]. Spin-labeled nitrosoureas we synthesized are included in this study since they have less toxicity or more efficiency than commercially available drug in some cases. The concentration of carbamoylated product was easily determined with the EPR spectra. There is a very high correlation (r = 0.982, t = 2.58, N = 10, p < 0.001) between the EPR and HPLC methods. Spin-labeled nitrosoureas showed lower carbamoylating activity than non-labeled analogues. The carbamoylating activity for these nitrosourea depended on the reactivity of isocyanate intermediate and almost independent of their half life. This rapid and simple EPR method is suitable for the detailed investigation of the rate and extent of carbamoylation reaction.
Baltimore, Barbara G.; Malkin, Richard
1977-01-01
Dark-grown barley (Hordeum vulgare) etioplasts were examined for their content of membrane-bound iron-sulfur centers by electron paramagnetic resonance spectroscopy at 15K. They were found to contain the high potential iron-sulfur center characterized (in the reduced state) by an electron paramagnetic resonance g value of 1.89 (the “Rieske” center) but did not contain any low potential iron-sulfur centers. Per mole of cytochrome f, dark-grown etioplasts and fully developed chloroplasts had the same content of the Rieske center. During greening of etioplasts under continuous light, low potential bound iron-sulfur centers appear. In addition, the photosystem I reaction center, as measured by the photooxidation of P700 at 15K, also became functional; during greening the appearance of a photoreducible low potential iron-sulfur center paralleled the appearance of P700 photoactivity. These findings indicate the close association of the low potential iron-sulfur centers with the photosystem I reaction center; they also support the concept that the development of stable charge separation in the photosystem I reaction center requires, in addition to P700, a low potential iron-sulfur center. PMID:16660048
Jurzak, Magdalena; Ramos, Paweł; Pilawa, Barbara
2017-01-01
Normal and keloid fibroblasts were examined using X-band (9.3 GHz) electron paramagnetic resonance spectroscopy. The effect of genistein on the concentration of free radicals in both normal dermal and keloid fibroblasts after ultraviolet irradiation was investigated. The highest concentration of free radicals was seen in keloid fibroblasts, with normal fibroblasts containing a lower concentration. The concentration of free radicals in both normal and keloid fibroblasts was altered in a concentration-dependent manner by the presence of genistein. The change in intra-cellular free radical concentration after the ultraviolet irradiation of both normal and keloid fibroblasts is also discussed. The antioxidant properties of genistein, using its 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging activity as a model, were tested, and the effect of ultraviolet irradiation on its interaction with free radicals was examined. The electron paramagnetic resonance spectra of DPPH showed quenching by genistein. The interaction of genistein with DPPH free radicals in the absence of ultraviolet irradiation was shown to be slow, but this interaction was much faster under ultraviolet irradiation. Ultraviolet irradiation enhanced the free radical-scavenging activity of genistein.
Severino, Joyce Ferreira; Goodman, Bernard A; Kay, Christopher W M; Stolze, Klaus; Tunega, Daniel; Reichenauer, Thomas G; Pirker, Katharina F
2009-04-15
Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), and (-)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O(2)(-)) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O(2)(-) oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O(2)(-) oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed.
NASA Astrophysics Data System (ADS)
Kempiński, Mateusz; Florczak, Patryk; Jurga, Stefan; Śliwińska-Bartkowiak, Małgorzata; Kempiński, Wojciech
2017-08-01
We report the observations of electronic properties of graphene oxide and reduced graphene oxide, performed with electron paramagnetic resonance technique in a broad temperature range. Both materials were examined in pure form and saturated with air, helium, and heavy water molecules. We show that spin localization strongly depends on the type and amount of molecules adsorbed at the graphene layer edges (and possible in-plane defects). Physical and chemical states of edges play crucial role in electrical transport within graphene-based materials, with hopping as the leading mechanism of charge carrier transport. Presented results are a good basis to understand the electronic properties of other carbon structures made of graphene-like building blocks. Most active carbons show some degree of functionalization and are known of having good adsorptive properties; thus, controlling both phenomena is important for many applications. Sample treatment with temperature, vacuum, and various adsorbents allowed for the observation of a possible metal-insulator transition and sorption pumping effects. The influence of adsorption on the localization phenomena in graphene would be very important if to consider the graphene-based material as possible candidates for the future spintronics that works in ambient conditions.
NASA Astrophysics Data System (ADS)
Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.
2014-09-01
Bioactive glass of composition 41CaO-44SiO2-4P2O5-8Fe2O3-3Na2O has been heat treated in the temperature (TA) range of 750-1150 °C for time periods (tA) ranging from 1 h to 3 h to yield magnetic bioactive glass ceramics (MBCs). X-ray diffraction studies indicate the presence of bone mineral (hydroxyapatite and wollastonite) and magnetic (magnetite and α-hematite) phases in nanocrystalline form in the MBCs. Electron paramagnetic resonance (EPR) study was carried out to understand the variation in saturation magnetization and coercivity of the MBCs with TA and tA. These studies reveal the nature and amount of iron ions present in the MBCs and their interaction in the glassy oxide matrix as a function of annealing parameters. The deterioration in the magnetic properties of the glass heat treated above 1050 °C is attributed to the crystallization of the non-magnetic α-hematite phase. These results are expected to be useful in the application of these MBCs as thermoseeds in hyperthermia treatment of cancer.
Bykov, Igor; Zagorodniy, Yuriy; Yurchenko, Lesya; Korduban, Alexander; Nejezchleb, Karel; Trachevsky, Vladimir; Dimza, Vilnis; Jastrabik, Lubomir; Dejneka, Alexander
2014-08-01
The nature of intrinsic and impurity point defects in lead zirconate titanate (PZT) ceramics has been explored. Using electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) methods, several impurity sites have been identified in the materials, including the Fe(3+)-oxygen vacancy (VO) complex and Pb ions. Both of these centers are incorporated into the PZT lattice. The Fe(3+) –VО paramagnetic complex serves as a sensitive probe of the local crystal field in the ceramic; the symmetry of this defect roughly correlates with PZT phase diagram as the composition is varied from PbTiO3 to PbZrO3. NMR spectra (207)Pb in PbTiO3, PbZrO3, and PZT with iron content from 0 to 0.4 wt% showed that increasing the iron concentration leads to a distortion of the crystal structure and to improvement of the electrophysical parameters of the piezoceramics. This is due to the formation of a phase which has a higher symmetry, but at high concentrations of iron (>0.4 wt%), it leads to sharp degradation of electrophysical parameters.
Niks, Dimitri; Duvvuru, Jayant; Escalona, Miguel; Hille, Russ
2016-01-01
We have examined the rapid reaction kinetics and spectroscopic properties of the molybdenum-containing, NAD+-dependent FdsABG formate dehydrogenase from Ralstonia eutropha. We confirm previous steady-state studies of the enzyme and extend its characterization to a rapid kinetic study of the reductive half-reaction (the reaction of formate with oxidized enzyme). We have also characterized the electron paramagnetic resonance signal of the molybdenum center in its MoV state and demonstrated the direct transfer of the substrate Cα hydrogen to the molybdenum center in the course of the reaction. Varying temperature, microwave power, and level of enzyme reduction, we are able to clearly identify the electron paramagnetic resonance signals for four of the iron/sulfur clusters of the enzyme and find suggestive evidence for two others; we observe a magnetic interaction between the molybdenum center and one of the iron/sulfur centers, permitting assignment of this signal to a specific iron/sulfur cluster in the enzyme. In light of recent advances in our understanding of the structure of the molybdenum center, we propose a reaction mechanism involving direct hydride transfer from formate to a molybdenum-sulfur group of the molybdenum center. PMID:26553877
Sugiyama, Kazuto; Tsuchiya, Takumi; Kikuchi, Azusa; Yagi, Mikio
2015-09-26
The energy levels and lifetimes of the lowest excited triplet (T1) states of UV-B absorbers, 2-ethylhexyl salicylate (EHS) and homomenthyl salicylate (HMS), and their deprotonated anions (EHS(-) and HMS(-)) were determined through measurements of phosphorescence and electron paramagnetic resonance (EPR) spectra in rigid solutions at 77 K. The observed T1 energies of EHS and HMS are higher than those of butylmethoxydibenzoylmethane, the most widely used UV-A absorber, and octyl methoxycinnamate, the most widely used UV-B absorber. The T1 states of EHS, HMS, EHS(-) and HMS(-) were assigned to almost pure (3)ππ* state from the observed T1 lifetimes and zero-field splitting parameters. EHS and HMS with an intramolecular hydrogen bond show a photoinduced phosphorescence enhancement in ethanol at 77 K. The EPR signals of the T1 states of EHS and HMS also increase in intensity with UV-irradiation time (photoinduced EPR enhancement). The T1 lifetimes of EHS and HMS at room temperature were determined through triplet-triplet absorption measurements in ethanol. The quantum yields of singlet oxygen production by EHS and HMS were determined by using time-resolved near-IR phosphorescence.
NASA Astrophysics Data System (ADS)
Coene, A.; Crevecoeur, G.; Dupré, L.; Vaes, P.
2013-06-01
In recent years, magnetic nanoparticles (MNPs) have gained increased attention due to their superparamagnetic properties. These properties allow the development of innovative biomedical applications such as targeted drug delivery and tumour heating. However, these modalities lack effective operation arising from the inaccurate quantification of the spatial MNP distribution. This paper proposes an approach for assessing the one-dimensional (1D) MNP distribution using electron paramagnetic resonance (EPR). EPR is able to accurately determine the MNP concentration in a single volume but not the MNP distribution throughout this volume. A new approach that exploits the solution of inverse problems for the correct interpretation of the measured EPR signals, is investigated. We achieve reconstruction of the 1D distribution of MNPs using EPR. Furthermore, the impact of temperature control on the reconstructed distributions is analysed by comparing two EPR setups where the latter setup is temperature controlled. Reconstruction quality for the temperature-controlled setup increases with an average of 5% and with a maximum increase of 13% for distributions with relatively lower iron concentrations and higher resolutions. However, these measurements are only a validation of our new method and form no hard limits.
Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé
2013-10-01
The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies.
Giorgio, Selma; Linares, Edlaine; Ischiropoulos, Harry; Von Zuben, Fernando José; Yamada, Aureo; Augusto, Ohara
1998-01-01
Recent studies have provided evidence for a dual role of nitric oxide (NO) during murine leishmaniasis. To explore this problem, we monitored the formation of NO and its derived oxidants during the course of Leishmania amazonensis infection in tissues of susceptible (BALB/c) and relatively resistant (C57BL/6) mice. NO production was detected directly by low-temperature electron paramagnetic resonance spectra of animal tissues. Both mouse strains presented detectable levels of hemoglobin nitrosyl (HbNO) complexes and of heme nitrosyl and iron-dithiol-dinitrosyl complexes in the blood and footpad lesions, respectively. Estimation of the nitrosyl complex levels demonstrated that most of the NO is synthesized in the footpad lesions. In agreement, immunohistochemical analysis of the lesions demonstrated the presence of nitrotyrosine in proteins of macrophage vacuoles and parasites. Since macrophages lack myeloperoxidase, peroxynitrite is likely to be the nitrating NO metabolite produced during the infection. The levels of HbNO complexes in the blood reflected changes occurring during the infection such as those in parasite burden and lesion size. The maximum levels of HbNO complexes detected in the blood of susceptible mice were higher than those of C57BL/6 mice but occurred at late stages of infection and were accompanied by the presence of bacteria in the cutaneous lesions. The results indicate that the local production of NO is an important mechanism for the elimination of parasites if it occurs before the parasite burden becomes too high. From then on, elevated production of NO and derived oxidants aggravates the inflammatory process with the occurrence of a hypoxic environment that may favor secondary infections. PMID:9453645
NASA Astrophysics Data System (ADS)
Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; Lampen-Kelley, P.; Banerjee, A.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Kolezhuk, A. K.; Zvyagin, S. A.
2017-12-01
We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α -RuCl3 , a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. The obtained data are compared with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α -RuCl3 . The frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced energy gap, revealed by thermodynamic measurements.
A loop resonator for slice-selective in vivo EPR imaging in rats
Hirata, Hiroshi; He, Guanglong; Deng, Yuanmu; Salikhov, Ildar; Petryakov, Sergey; Zweier, Jay L.
2008-01-01
A loop resonator was developed for 300-MHz continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy and imaging in live rats. A single-turn loop (55 mm in diameter) was used to provide sufficient space for the rat body. Efficiency for generating a radiofrequency magnetic field of 38 µT/W1/2 was achieved at the center of the loop. For the resonator itself, an unloaded quality factor of 430 was obtained. When a 350 g rat was placed in the resonator at the level of the lower abdomen, the quality factor decreased to 18. The sensitive volume in the loop was visualized with a bottle filled with an aqueous solution of the nitroxide spin probe 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy (3-CP). The resonator was shown to enable EPR imaging in live rats. Imaging was performed for 3-CP that had been infused intravenously into the rat and its distribution was visualized within the lower abdomen. PMID:18006343
Electron spin resonance microscopic imaging of oxygen concentration in cancer spheroids
NASA Astrophysics Data System (ADS)
Hashem, Mada; Weiler-Sagie, Michal; Kuppusamy, Periannan; Neufeld, Gera; Neeman, Michal; Blank, Aharon
2015-07-01
Oxygen (O2) plays a central role in most living organisms. The concentration of O2 is important in physiology and pathology. Despite the importance of accurate knowledge of the O2 levels, there is very limited capability to measure with high spatial resolution its distribution in millimeter-scale live biological samples. Many of the current oximetric methods, such as oxygen microelectrodes and fluorescence lifetime imaging, are compromised by O2 consumption, sample destruction, invasiveness, and difficulty to calibrate. Here, we present a new method, based on the use of the pulsed electron spin resonance (ESR) microimaging technique to obtain a 3D mapping of oxygen concentration in millimeter-scale biological samples. ESR imaging requires the incorporation of a suitable stable and inert paramagnetic spin probe into the desirable object. In this work, we use microcrystals of a paramagnetic spin probe in a new crystallographic packing form (denoted tg-LiNc-BuO). These paramagnetic species interact with paramagnetic oxygen molecules, causing a spectral line broadening that is linearly proportional to the oxygen concentration. Typical ESR results include 4D spatial-spectral images that give an indication about the oxygen concentration in different regions of the sample. This new oximetry microimaging method addresses all the problems mentioned above. It is noninvasive, sensitive to physiological oxygen levels, and easy to calibrate. Furthermore, in principle, it can be used for repetitive measurements without causing cell damage. The tissue model used in this research is spheroids of Human Colorectal carcinoma cell line (HCT-116) with a typical diameter of ∼600 μm. Most studies of the microenvironmental O2 conditions inside such viable spheroids carried out in the past used microelectrodes, which require an invasive puncturing of the spheroid and are also not applicable to 3D O2 imaging. High resolution 3D oxygen maps could make it possible to evaluate the relationship between morphological and physiological alterations in the spheroids, which would help understand the oxygen metabolism in solid tumors and its correlation with the susceptibility of tumors to various oncologic treatments.
Electron spin resonance microscopic imaging of oxygen concentration in cancer spheroids.
Hashem, Mada; Weiler-Sagie, Michal; Kuppusamy, Periannan; Neufeld, Gera; Neeman, Michal; Blank, Aharon
2015-07-01
Oxygen (O2) plays a central role in most living organisms. The concentration of O2 is important in physiology and pathology. Despite the importance of accurate knowledge of the O2 levels, there is very limited capability to measure with high spatial resolution its distribution in millimeter-scale live biological samples. Many of the current oximetric methods, such as oxygen microelectrodes and fluorescence lifetime imaging, are compromised by O2 consumption, sample destruction, invasiveness, and difficulty to calibrate. Here, we present a new method, based on the use of the pulsed electron spin resonance (ESR) microimaging technique to obtain a 3D mapping of oxygen concentration in millimeter-scale biological samples. ESR imaging requires the incorporation of a suitable stable and inert paramagnetic spin probe into the desirable object. In this work, we use microcrystals of a paramagnetic spin probe in a new crystallographic packing form (denoted tg-LiNc-BuO). These paramagnetic species interact with paramagnetic oxygen molecules, causing a spectral line broadening that is linearly proportional to the oxygen concentration. Typical ESR results include 4D spatial-spectral images that give an indication about the oxygen concentration in different regions of the sample. This new oximetry microimaging method addresses all the problems mentioned above. It is noninvasive, sensitive to physiological oxygen levels, and easy to calibrate. Furthermore, in principle, it can be used for repetitive measurements without causing cell damage. The tissue model used in this research is spheroids of Human Colorectal carcinoma cell line (HCT-116) with a typical diameter of ∼600μm. Most studies of the microenvironmental O2 conditions inside such viable spheroids carried out in the past used microelectrodes, which require an invasive puncturing of the spheroid and are also not applicable to 3D O2 imaging. High resolution 3D oxygen maps could make it possible to evaluate the relationship between morphological and physiological alterations in the spheroids, which would help understand the oxygen metabolism in solid tumors and its correlation with the susceptibility of tumors to various oncologic treatments. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wittmann, J. J.; Can, T. V.; Eckardt, M.; Harneit, W.; Griffin, R. G.; Corzilius, B.
2018-05-01
The electronic g factor carries highly useful information about the electronic structure of a paramagnetic species, such as spin-orbit coupling and dia- or paramagnetic (de-)shielding due to local fields of surrounding electron pairs. However, in many cases, a near "spin-only" case is observed, in particular for light elements, necessitating accurate and precise measurement of the g factors. Such measurement is typically impeded by a "chicken and egg situation": internal or external reference standards are used for relative comparison of electron paramagnetic resonance (EPR) Larmor frequencies. However, the g factor of the standard itself usually is subject to a significant uncertainty which directly limits the precision and/or accuracy of the sought after sample g factor. Here, we apply an EPR reference-free approach for determining the g factor of atomic nitrogen trapped within the endohedral fullerene C60:N@C60 in its polycrystalline state by measuring the 1H NMR resonance frequency of dispersing toluene at room temperature. We found a value of g = 2.00204 (4) with a finally reached relative precision of ∼20 ppm. This accurate measurement allows us to directly compare the electronic properties of N@C60 to those found in atomic nitrogen in the gas phase or trapped in other solid matrices at liquid helium temperature. We conclude that spin-orbit coupling in N@C60 at room temperature is very similar in magnitude and of same sign as found in other inert solid matrices and that interactions between the quartet spin system and the C60 molecular orbitals are thus negligible.
Burks, Scott R.; Macedo, Luciana F.; Barth, Eugene D.; Tkaczuk, Katherine H.; Martin, Stuart S.; Rosen, Gerald M.; Halpern, Howard J.; Brodie, Angela M.
2014-01-01
Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 μM nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals. PMID:20066490
NASA Astrophysics Data System (ADS)
Jida, Shin'suke; Miki, Toshikatsu
1996-11-01
Paramagnetic centers in Nb-doped BaTiO3 ceramics are measured at 77-500 K by electron paramagnetic resonance (EPR) for investigating the role of the centers on the well-known positive temperature coefficient of resistivity (PTCR) effect (PTCR at the Curie temperature). EPR detects four signals; an anisotropically broad singlet signal at g=2.005, a sextet signal due to Mn2+, a Cr3+ signal, and a Ti3+ signal. The former two signals arise in the rhombohedral and cubic phases, but disappear in the tetragonal and orthorhombic phases. The Cr3+ signal appears in all of the phases, while the Ti3+ signal is detected only at low temperatures. The singlet signal also arises in undoped, barium-deficient BaTiO3 ceramics, therefore the signal is attributable to barium-vacancy-associated centers rather than Nb4+ ions or Fe3+ ions proposed by several authors. In this article, we propose that the singlet signal is due to vacancy-pairs of VBa-F+ type, i.e., the vacancy pair of VBa-VO capturing one electron. The electrical resistivity data show a polaronic character of low-temperature conduction and a high resistivity jump around the Curie temperature. The low-temperature polaronic conduction is explained in terms of electron-hopping between Ti4+ and Ti3+ ions. The resistivity jump at the Curie temperature occurs along with the EPR intensity increase of the singlet signal, the Mn2+ signal and the Cr3+ signal. We conclude that the PTCR of Nb-doped BaTiO3 ceramics is strongly associated with the trap activation of the VBa-VO vacancy-pairs and manganese centers at the tetragonal-to-cubic transition.
Lanthanide co-doped paramagnetic spindle-like mesocrystals for imaging and autophagy induction
NASA Astrophysics Data System (ADS)
Xu, Yun-Jun; Lin, Jun; Lu, Yang; Zhong, Sheng-Liang; Wang, Lei; Dong, Liang; Wu, Ya-Dong; Peng, Jun; Zhang, Li; Pan, Xiao-Feng; Zhou, Wei; Zhao, Yang; Wen, Long-Ping; Yu, Shu-Hong
2016-07-01
We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy.We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy. Electronic supplementary information (ESI) available: Size distribution, HRTEM image and additional cellular data. See DOI: 10.1039/c6nr03171d
Sun, Li; Hernandez-Guzman, Jessica; Warncke, Kurt
2009-01-01
Electron spin echo envelope modulation (ESEEM) is a technique of pulsed-electron paramagnetic resonance (EPR) spectroscopy. The analyis of ESEEM data to extract information about the nuclear and electronic structure of a disordered (powder) paramagnetic system requires accurate and efficient numerical simulations. A single coupled nucleus of known nuclear g value (gN) and spin I=1 can have up to eight adjustable parameters in the nuclear part of the spin Hamiltonian. We have developed OPTESIM, an ESEEM simulation toolbox, for automated numerical simulation of powder two- and three-pulse one-dimensional ESEEM for arbitrary number (N) and type (I, gN) of coupled nuclei, and arbitrary mutual orientations of the hyperfine tensor principal axis systems for N>1. OPTESIM is based in the Matlab environment, and includes the following features: (1) a fast algorithm for translation of the spin Hamiltonian into simulated ESEEM, (2) different optimization methods that can be hybridized to achieve an efficient coarse-to-fine grained search of the parameter space and convergence to a global minimum, (3) statistical analysis of the simulation parameters, which allows the identification of simultaneous confidence regions at specific confidence levels. OPTESIM also includes a geometry-preserving spherical averaging algorithm as default for N>1, and global optimization over multiple experimental conditions, such as the dephasing time ( ) for three-pulse ESEEM, and external magnetic field values. Application examples for simulation of 14N coupling (N=1, N=2) in biological and chemical model paramagnets are included. Automated, optimized simulations by using OPTESIM lead to a convergence on dramatically shorter time scales, relative to manual simulations. PMID:19553148
Characterization of vanadium ion uptake in sulfonated diels alder poly(phenylene) membranes
Lawton, Jamie; Jones, Amanda; Tang, Zhijiang; ...
2015-11-28
Sulfonated diels alder poly(phenylene) (SDAPP), alternative aromatic hydrocarbon membranes for vanadium redox flow batteries (VRFBs) are characterized using electron paramagnetic resonance (EPR). Membranes soaked in sulfuric acid and vanadyl sulfate are analyzed to determine the membrane environment in which the vanadyl ion (VO 2+) diffuses in the membranes. These results are compared to Nafion 117 membranes. In contrast to Nafion, the VO 2+ in SDAPP membranes exists in two different environments. The results of analysis of rotational diffusion determined from fits the EPR spectral lineshapes in comparison with previously reported permeation studies and measurements of partitioning functions reported here suggestmore » that the diffusion pathways in SDAPP are very different than in Nafion.« less
Low temperature phase of the trigonal RbIn(MoO4)2 crystal
NASA Astrophysics Data System (ADS)
Zapart, W.; Zapart, M. B.; Schranz, W.; Reinecker, M.
2013-02-01
The present article is devoted to a new low-temperature phase transition found at about T pt = 84 K in the layered RbIn(MoO4)2 crystal. This phase transition is well proved by dynamical mechanical analysis through anomalies in the temperature behaviour of both real and imaginary parts of the Young's modulus. From the polarizing microscope observations it was found that below T pt the ferroelastic phase disappears. This transition has also been seen through strong changes in the shape of the electron paramagnetic resonance lines. EPR studies, performed in the liquid nitrogen temperature, yield evidence of strong rebuilding of the crystal unit cell in comparison with that of the high temperature paraelastic phase.
Influence of deep defects on device performance of thin-film polycrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Fehr, M.; Simon, P.; Sontheimer, T.; Leendertz, C.; Gorka, B.; Schnegg, A.; Rech, B.; Lips, K.
2012-09-01
Employing quantitative electron-paramagnetic resonance analysis and numerical simulations, we investigate the performance of thin-film polycrystalline silicon solar cells as a function of defect density. We find that the open-circuit voltage is correlated to the density of defects, which we assign to coordination defects at grain boundaries and in dislocation cores. Numerical device simulations confirm the observed correlation and indicate that the device performance is limited by deep defects in the absorber bulk. Analyzing the defect density as a function of grain size indicates a high concentration of intra-grain defects. For large grains (>2 μm), we find that intra-grain defects dominate over grain boundary defects and limit the solar cell performance.
VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.
Prakash, P Giri; Rao, J Lakshmana
2005-09-01
Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yap, Yung Szen, E-mail: yungszen@utm.my; Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor; Tabuchi, Yutaka
2015-06-15
We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, wemore » observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.« less
QUESP and QUEST revisited - fast and accurate quantitative CEST experiments.
Zaiss, Moritz; Angelovski, Goran; Demetriou, Eleni; McMahon, Michael T; Golay, Xavier; Scheffler, Klaus
2018-03-01
Chemical exchange saturation transfer (CEST) NMR or MRI experiments allow detection of low concentrated molecules with enhanced sensitivity via their proton exchange with the abundant water pool. Be it endogenous metabolites or exogenous contrast agents, an exact quantification of the actual exchange rate is required to design optimal pulse sequences and/or specific sensitive agents. Refined analytical expressions allow deeper insight and improvement of accuracy for common quantification techniques. The accuracy of standard quantification methodologies, such as quantification of exchange rate using varying saturation power or varying saturation time, is improved especially for the case of nonequilibrium initial conditions and weak labeling conditions, meaning the saturation amplitude is smaller than the exchange rate (γB 1 < k). The improved analytical 'quantification of exchange rate using varying saturation power/time' (QUESP/QUEST) equations allow for more accurate exchange rate determination, and provide clear insights on the general principles to execute the experiments and to perform numerical evaluation. The proposed methodology was evaluated on the large-shift regime of paramagnetic chemical-exchange-saturation-transfer agents using simulated data and data of the paramagnetic Eu(III) complex of DOTA-tetraglycineamide. The refined formulas yield improved exchange rate estimation. General convergence intervals of the methods that would apply for smaller shift agents are also discussed. Magn Reson Med 79:1708-1721, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, T. Rajavardhana; Raju, Ch. Linga, E-mail: drchlraj-phy@yahoo.com; Brahmam, K. Veera
2015-05-15
Polymer films of Poly(vinylalcohol) (PVA) complexed with Polyethylene glycol (PEG) with different dopant concentrations of Cr{sup 3+} ions are prepared by solution cast technique. Electron paramagnetic resonance (EPR), Optical absorption and FT-IR studies have been carried out on the polymer films. The EPR spectra of the entire samples exhibit resonance signal at g ≈1.97 which is attributed to the isolated Cr{sup 3+} pairs. The temperature variation EPR studies show that the population of spin-levels participating in the resonance decreases with an increase in temperature, which is in accordance with the Boltzmann Law. The paramagnetic susceptibilities (X) have been calculated frommore » the EPR data at different temperatures. The linewidth of the g ≈1.97 resonance signal has been found to be decreasing with an increase in temperature, which confirms the pairing mechanism between Cr{sup 3+} ions. The Optical absorption spectrum of chromium ions in (PVA+PEG) polymer films exhibits three bands, corresponding to the d-d transitions {sup 4}A{sub 2g}(F)→{sup 4}T{sub 1g}(F), {sup 4}A{sub 2g}(F)→{sup 4}T{sub 2g}(F) and {sup 4}A{sub 2g}(F)→{sup 2}T{sub 1g}(G), in the order of decreasing energy. The crystal field parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. From the ultraviolet absorption edges, Optical band gap (E{sub opt}) and Urbach (ΔE) energies are evaluated. FT-IR spectrum exhibits few bands which are attributed to O-H, CH, C=C and C=O groups of stretching and bending vibrations.« less
NASA Technical Reports Server (NTRS)
Suleman, Naushadalli K.
1994-01-01
A major long-term goal of the Materials Division at the NASA Langley Research Center is the characterization of new high-performance materials that have potential applications in the aircraft industry, and in space. The materials used for space applications are often subjected to a harsh and potentially damaging radiation environment. The present study constitutes the application of a novel technique to obtain reliable data for ascertaining the molecular basis for the resilience and durability of materials that have been exposed to simulated space radiations. The radiations of greatest concern are energetic electrons and protons, as well as galactic cosmic rays. Presently, the effects of such radiation on matter are not understood in their entirety. It is clear however, that electron radiation causes ionization and homolytic bond rupture, resulting in the formation of paramagnetic spin centers in the polymer matrices of the structural materials. Since the detection and structure elucidation of paramagnetic species are most readily accomplished using Electron Paramagnetic Resonance (EPR) Spectroscopy, the NASA LaRC EPR system was brought back on-line during the 1991 ASEE term. The subsequent 1992 ASEE term was devoted to the adaptation of the EPR core system to meet the requirements for EPR Imaging (EPRI), which provides detailed information on the spatial distribution of paramagnetic species in bulk media. The present (1994) ASEE term was devoted to the calibration of this EPR Imaging system, as well as to the application of this technology to study the effects of electron irradiation on Ultem(exp R), a high performance polymer which is a candidate for applications in aerospace. The Ultem was exposed to a dose of 2.4 x 10(exp 9) Rads (1-MeV energy/electron) at the LaRC electron accelerator facility. Subsequently, the exposed specimens were stored in liquid nitrogen, until immediately prior to analyses by EPRI. The intensity and dimensions of the EPR Images that were generated for the irradiated specimens showed that the electrons penetrated the material to a depth of approximately 0.125 inch. These data show a very high degree of correlation to the energy deposition profile as predicted by the Tiger Code, a Monte Carlo code that provides guidelines for the transport of electrons in matter. Subsequent efforts will focus on delineating the transport properties of energetic protons in Ultem(R).
Etienne, E; Le Breton, N; Martinho, M; Mileo, E; Belle, V
2017-08-01
Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL-EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non-expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL-EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL-EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
The coordination chemistry of the neutral tris-2-pyridyl silicon ligand [PhSi(6-Me-2-py)3].
Plajer, Alex J; Colebatch, Annie L; Enders, Markus; García-Romero, Álvaro; Bond, Andrew D; García-Rodríguez, Raúl; Wright, Dominic S
2018-05-22
Difficulties in the preparation of neutral ligands of the type [RSi(2-py)3] (where 2-py is an unfunctionalised 2-pyridyl ring unit) have thwarted efforts to expand the coordination chemistry of ligands of this type. However, simply switching the pyridyl substituents to 6-methyl-pyridyl groups (6-Me-2-py) in the current paper has allowed smooth, high-yielding access to the [PhSi(6-Me-2-py)3] ligand (1), and the first exploration of its coordination chemistry with transition metals. The synthesis, single-crystal X-ray structures and solution dynamics of the new complexes [{PhSi(6-Me-2-py)3}CuCH3CN][PF6], [{PhSi(6-Me-2-py)3}CuCH3CN][CuCl2], [{PhSi(6-Me-2-py)3}FeCl2], [{PhSi(6-Me-2-py)3}Mo(CO)3] and [{PhSi(6-Me-2-py)3}CoCl2] are reported. The paramagnetic Fe2+ and Co2+ complexes show strongly shifted NMR resonances for the coordinated pyridyl units due to large Fermi-contact shifts. However, magnetic anisotropy also leads to considerable pseudo-contact shifts so that both contributions have to be included in the paramagnetic NMR analysis.
Magnetic properties of Cu80Co20 and Cu80Co15Fe5 melt-spun ribbons
NASA Astrophysics Data System (ADS)
Rubinstein, Mark; Harris, V. G.; Das, B. N.; Koon, N. C.
1994-11-01
The magnetic properties of granular, annealed, melt-spun ribbons of the ``giant'' magnetoresistors, Cu80Co20 and Cu80Co15Fe5, have been studied by a variety of techniques. These include x-ray dfiffraction, electron microscopy, ferromagnetic resonance, SQUID magnetometry, Mössbauer-effect spectroscopy, and magnetoresistance. We utilize each of these measurements to reveal different aspects of the particle size distribution as a function of annealing temperatures. These melt-spun alloys require large magnetic fields for magnetic saturation, impairing their utility as magnetic sensors. However, the properties of melt-spun ribbons provide an understanding of why all granular magnetic materials are difficult to saturate. The magnetoresistance ratio of these alloys is maximized by a 500 °C anneal with Δρ/ρ~=14% at 4.2 K. The paramagnetic fraction determined by SQUID magnetometry at 4.2 K is 33% for this annealing temperature. The paramagnetic fraction determined by Mössbauer spectroscopy is 14% for samples annealed by 500 °C, and vanishes when the sample is annealed at 900 °C. The discrepancy between the two measurements of the paramagnetic fraction is due to the vastly different averaging times of the two techniques.
NASA Astrophysics Data System (ADS)
Subbulakshmi, N.; Kumar, M. Saravana; Sheela, K. Juliet; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.
2017-12-01
Electron Paramagnetic Resonance (EPR) spectroscopic studies of VO2+ ions as paramagnetic impurity in Lithium Sodium Acid Phthalate (LiNaP) single crystal have been done at room temperature on X-Band microwave frequency. The lattice parameter values are obtained for the chosen system from Single crystal X-ray diffraction study. Among the number of hyperfine lines in the EPR spectra only two sets are reported from EPR data. The principal values of g and A tensors are evaluated for the two different VO2+ sites I and II. They possess the crystalline field around the VO2+ as orthorhombic. Site II VO2+ ion is identified as substitutional in place of Na1 location and the other site I is identified as interstitial location. For both sites in LiNaP, VO2+ are identified in octahedral coordination with tetragonal distortion as seen from the spin Hamiltonian parameter values. The ground state of vanadyl ion in the LiNaP single crystal is dxy. Using optical absorption data the octahedral and tetragonal parameters are calculated. By correlating EPR and optical data, the molecular orbital bonding parameters have been discussed for both sites.
Accuracy of MRI-based Magnetic Susceptibility Measurements
NASA Astrophysics Data System (ADS)
Russek, Stephen; Erdevig, Hannah; Keenan, Kathryn; Stupic, Karl
Magnetic Resonance Imaging (MRI) is increasingly used to map tissue susceptibility to identify microbleeds associated with brain injury and pathologic iron deposits associated with neurologic diseases such as Parkinson's and Alzheimer's disease. Field distortions with a resolution of a few parts per billion can be measured using MRI phase maps. The field distortion map can be inverted to obtain a quantitative susceptibility map. To determine the accuracy of MRI-based susceptibility measurements, a set of phantoms with paramagnetic salts and nano-iron gels were fabricated. The shapes and orientations of features were varied. Measured susceptibility of 1.0 mM GdCl3 solution in water as a function of temperature agreed well with the theoretical predictions, assuming Gd+3 is spin 7/2. The MRI susceptibility measurements were compared with SQUID magnetometry. The paramagnetic susceptibility sits on top of the much larger diamagnetic susceptibility of water (-9.04 x 10-6), which leads to errors in the SQUID measurements. To extract out the paramagnetic contribution using standard magnetometry, measurements must be made down to low temperature (2K). MRI-based susceptometry is shown to be as or more accurate than standard magnetometry and susceptometry techniques.
Mars Oxidant and Radical Detector
NASA Technical Reports Server (NTRS)
Yen, A. S.; Kim, S. S.
2003-01-01
The Mars Oxidant and Radical Detector is an instrument designed to characterize the reactive nature of the martian surface environment. Using Electron Paramagnetic Resonance (EPR) techniques, this instrument can detect, identify, and quantify radical species in soil samples, including those inferred to be present by the Viking experiments. This instrument is currently funded by the Mars Instrument Development Program and is compatible with the Mars Science Laboratory mission.
Neutron-induced defects in optical fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzolo, S., E-mail: serena.rizzolo@univ-st-etienne.fr; Dipartimento di Fisica e Chimica, Università di Palermo, Palermo; and Areva Centre Technique, Le Creusot
2014-10-21
We present a study on 0.8 MeV neutron-induced defects up to fluences of 10{sup 17} n/cm{sup 2} in fluorine doped optical fibers by using electron paramagnetic resonance, optical absorption and confocal micro-luminescence techniques. Our results allow to address the microscopic mechanisms leading to the generation of Silica-related point-defects such as E', H(I), POR and NBOH Centers.
NASA Astrophysics Data System (ADS)
Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca
2018-06-01
Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets.
EPR oximetry in three spatial dimensions using sparse spin distribution
NASA Astrophysics Data System (ADS)
Som, Subhojit; Potter, Lee C.; Ahmad, Rizwan; Vikram, Deepti S.; Kuppusamy, Periannan
2008-08-01
A method is presented to use continuous wave electron paramagnetic resonance imaging for rapid measurement of oxygen partial pressure in three spatial dimensions. A particulate paramagnetic probe is employed to create a sparse distribution of spins in a volume of interest. Information encoding location and spectral linewidth is collected by varying the spatial orientation and strength of an applied magnetic gradient field. Data processing exploits the spatial sparseness of spins to detect voxels with nonzero spin and to estimate the spectral linewidth for those voxels. The parsimonious representation of spin locations and linewidths permits an order of magnitude reduction in data acquisition time, compared to four-dimensional tomographic reconstruction using traditional spectral-spatial imaging. The proposed oximetry method is experimentally demonstrated for a lithium octa- n-butoxy naphthalocyanine (LiNc-BuO) probe using an L-band EPR spectrometer.
NASA Technical Reports Server (NTRS)
Fryburg, G. C.; Gelerinter, E.
1972-01-01
Using vanadyl acetylacetonate (VAAC) as a paramagnetic probe, the molecular ordering in two smectic-A liquid crystals that do not display nematic phases were studied. Reproducible alinement was attained by slow cooling throughout the isotropic smectic-A transition in dc magnetic fields of 1.1 and 2.15 teslas. The degree of order attained is small for a smectic-A liquid crystal. Measurements were made of the variation of the average hyperfine splitting of the alined samples as a function of orientation relative to the dc magnetic field of the spectrometer. This functional dependence is in agreement with the theoretical prediction except where the viscosity of the liquid crystal becomes large enough to slow the tumbling of the VAAC, as indicated by asymmetry in the end lines of the spectrum.
Magnetic behavior of the nanophase of YbNi2 alloys
NASA Astrophysics Data System (ADS)
Ivanshin, V. A.; Gataullin, E. M.; Sukhanov, A. A.; Ivanshin, N. A.; Rojas, D. P.; Fernández Barquín, L.
2017-04-01
Variations in magnetic properties of the heavy-fermion YbNi2 alloy when milled in a high energy ball milling system have been investigated. The ferromagnetic transition ( T C = 10.4 K) in the initial sample almost vanishes after milling, which leads to the appearance of a magnetic transition at T* = 3.2 K in nanocrystallites. Before milling, processes of spin-lattice relaxation of the Orbach-Aminov type with the participation of the first excited Stark sublevel of the Yb3+ ion located at 75 K are dominating in the electron spin dynamics in the paramagnetic phase of the alloy. A comparative study of the temperature dependence of the magnetic properties and spectra of electron paramagnetic resonance in poly- and nanocrystalline samples indicates the existence of a magnetic inhomogeneity of the compound arising upon milling.
Magnetic properties, water proton relaxivities, and in-vivo MR images of paramagnetic nanoparticles
NASA Astrophysics Data System (ADS)
Lee, Gang Ho; Chang, Yongmin
2015-07-01
In this mini review, magnetic resonance imaging (MRI) contrast agents based on lanthanideoxide (Ln2O3) nanoparticles are described. Ln2O3 (Ln = Gd, Dy, Ho, and Er) nanoparticles are paramagnetic, but show appreciable magnetic moments at room temperature and even at ultrasmall particle diameters. Among Ln2O3 nanoparticles, Gd2O3 nanoparticles show larger longitudinal water proton relaxivity (r1) values than Gd-chelates because of the large amount of Gd in the nanoparticle, and the other Ln2O3 nanoparticles (Ln = Dy, Ho, and Er) show appreciable transverse water proton relaxivity (r2) values. Therefore, Gd2O3 nanoparticles are potential T1 MRI contrast agents while the other Ln2O3 nanoparticles are potential T2 MRI contrast agents at high MR fields.
Tsuda, K; Kinoshita, Y; Kimura, K; Nishio, I; Masuyama, Y
2001-08-01
Many studies have shown that estrogen may exert cardioprotective effects and reduce the risk of hypertension and coronary events. On the other hand, it has been proposed that cell membrane abnormalities play a role in the pathophysiology of hypertension, although it is not clear whether estrogen would influence membrane function in essential hypertension. The present study was performed to investigate the effects of 17beta-estradiol (E(2)) on membrane fluidity of erythrocytes in normotensive and hypertensive postmenopausal women. We determined the membrane fluidity of erythrocytes by means of an electron paramagnetic resonance and spin-labeling method. In an in vitro study, E(2) significantly decreased the order parameter for 5-nitroxide stearate and the peak height ratio for 16-nitroxide stearate obtained from electron paramagnetic resonance spectra of erythrocyte membranes in normotensive postmenopausal women. The finding indicates that E(2) might increase the membrane fluidity of erythrocytes. The effect of E(2) was significantly potentiated by the NO donor, S-nitroso-N-acetylpenicillamine, and a cGMP analogue, 8-bromo-cGMP. In contrast, the change in the membrane fluidity evoked by E(2) was attenuated in the presence of the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester, and asymmetric dimethyl-L-arginine. In hypertensive postmenopausal women, the membrane fluidity of erythrocytes was significantly lower than that in normotensive postmenopausal women. The effect of E(2) on membrane fluidity was significantly more pronounced in the erythrocytes of hypertensive postmenopausal women than in the erythrocytes of normotensive postmenopausal women. The results of the present study showed that E(2) significantly increased the membrane fluidity and improved the microviscosity of erythrocyte membranes, partially mediated by an NO- and cGMP-dependent pathway. Furthermore, the greater action of E(2) in hypertension might be consistent with the hypothesis that E(2) could have a beneficial effect in regulating rheological behavior of erythrocytes and could have a crucial role in the improvement of the microcirculation in hypertension.
Electron spin resonance study of CuGa1-xMnxSe2 magnetic semiconducting compounds
NASA Astrophysics Data System (ADS)
Fermin, José R.; Nava, Alexander; Durante-Rincón, C. A.; Castro, Jaime; Silva, Pedro J.
2013-02-01
We report on the magnetic properties of the diluted magnetic semiconductor CuGa1-xMnxSe2. For this, Electron spin resonance (ESR) experiments in the temperature range 70 K
A 3D MRI-based atlas of a lizard brain.
Hoops, Daniel; Desfilis, Ester; Ullmann, Jeremy F P; Janke, Andrew L; Stait-Gardner, Timothy; Devenyi, Gabriel A; Price, William S; Medina, Loreta; Whiting, Martin J; Keogh, J Scott
2018-06-22
Magnetic resonance imaging (MRI) is an established technique for neuroanatomical analysis, being particularly useful in the medical sciences. However, the application of MRI to evolutionary neuroscience is still in its infancy. Few magnetic resonance brain atlases exist outside the standard model organisms in neuroscience and no magnetic resonance atlas has been produced for any reptile brain. A detailed understanding of reptilian brain anatomy is necessary to elucidate the evolutionary origin of enigmatic brain structures such as the cerebral cortex. Here, we present a magnetic resonance atlas for the brain of a representative squamate reptile, the Australian tawny dragon (Agamidae: Ctenophorus decresii), which has been the object of numerous ecological and behavioral studies. We used a high-field 11.74T magnet, a paramagnetic contrasting-enhancing agent and minimum-deformation modeling of the brains of thirteen adult male individuals. From this, we created a high-resolution three-dimensional model of a lizard brain . The 3D-MRI model can be freely downloaded and allows a better comprehension of brain areas, nuclei, and fiber tracts, facilitating comparison with other species and setting the basis for future comparative evolution imaging studies. The MRI model of a tawny dragon brain (Ctenophorus decresii) can be viewed online and downloaded using the Wiley Biolucida Server at wiley.biolucida.net. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.
2012-09-01
We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.
Dual nature of 3 d electrons in YbT 2 Zn 20 (T = Co; Fe) evidenced by electron spin resonance
Ivanshin, V. A.; Litvinova, T. O.; Gimranova, K.; ...
2015-03-18
The electron spin resonance experiments were carried out in the single crystals YbFe 2Zn 20. The observed spin dynamics is compared with that in YbCo 2Zn 20 and Yb 2Co 12P 7 as well as with the data of inelastic neutron scattering and electronic band structure calculations. Our results provide direct evidence that 3d electrons are itinerant in YbFe 2Zn 20 and localized in YbCo 2Zn 20. Possible connection between spin paramagnetism of dense heavy fermion systems, quantum criticality effects, and ESR spectra is discussed.
Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; ...
2017-12-19
Here, we present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α-RuCl 3, a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. We compare the data obtained with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α-RuCl 3. Finally, the frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-inducedmore » energy gap, revealed by thermodynamic measurements.« less
Selective electron spin resonance measurements of micrometer-scale thin samples on a substrate
NASA Astrophysics Data System (ADS)
Dikarov, Ekaterina; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon
2013-11-01
An approach to the selective observation of paramagnetic centers in thin samples or surfaces with electron spin resonance (ESR) is presented. The methodology is based on the use of a surface microresonator that enables the selective obtention of ESR data from thin layers with minimal background signals from the supporting substrate. An experimental example is provided, which measures the ESR signal from a 1.2 µm polycrystalline silicon layer on a glass substrate used in modern solar-cell technology. The ESR results obtained with the surface microresonator show the effective elimination of background signals, especially at low cryogenic temperatures, compared to the use of a conventional resonator. The surface microresonator also facilitates much higher absolute spin sensitivity, requiring much smaller surfaces for the measurement.
Double resonance calibration of g factor standards: Carbon fibers as a high precision standard.
Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar
2018-04-01
The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than g free with g=2.002644=g free ·(1+162ppm) with a relative uncertainty of 15ppm. This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.
Here, we present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α-RuCl 3, a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. We compare the data obtained with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α-RuCl 3. Finally, the frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-inducedmore » energy gap, revealed by thermodynamic measurements.« less
Heme compounds in dinosaur trabecular bone.
Schweitzer, M H; Marshall, M; Carron, K; Bohle, D S; Busse, S C; Arnold, E V; Barnard, D; Horner, J R; Starkey, J R
1997-06-10
Six independent lines of evidence point to the existence of heme-containing compounds and/or hemoglobin breakdown products in extracts of trabecular tissues of the large theropod dinosaur Tyrannosaurus rex. These include signatures from nuclear magnetic resonance and electron spin resonance that indicate the presence of a paramagnetic compound consistent with heme. In addition, UV/visible spectroscopy and high performance liquid chromatography data are consistent with the Soret absorbance characteristic of this molecule. Resonance Raman profiles are also consistent with a modified heme structure. Finally, when dinosaurian tissues were extracted for protein fragments and were used to immunize rats, the resulting antisera reacted positively with purified avian and mammalian hemoglobins. The most parsimonious explanation of this evidence is the presence of blood-derived hemoglobin compounds preserved in the dinosaurian tissues.
On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.
Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M; Luski, Shalom; Aurbach, Doron; Halalay, Ion C
2017-02-08
We demonstrate herein that Mn 3+ and not Mn 2+ , as commonly accepted, is the dominant dissolved manganese cation in LiPF 6 -based electrolyte solutions of Li-ion batteries with lithium manganate spinel positive and graphite negative electrodes chemistry. The Mn 3+ fractions in solution, derived from a combined analysis of electron paramagnetic resonance and inductively coupled plasma spectroscopy data, are ∼80% for either fully discharged (3.0 V hold) or fully charged (4.2 V hold) cells, and ∼60% for galvanostatically cycled cells. These findings agree with the average oxidation state of dissolved Mn ions determined from X-ray absorption near-edge spectroscopy data, as verified through a speciation diagram analysis. We also show that the fractions of Mn 3+ in the aprotic nonaqueous electrolyte solution are constant over the duration of our experiments and that disproportionation of Mn 3+ occurs at a very slow rate.
Yulikov, Maxim; Lueders, Petra; Warsi, Muhammad Farooq; Chechik, Victor; Jeschke, Gunnar
2012-08-14
Nanosized gold particles were functionalised with two types of paramagnetic surface tags, one having a nitroxide radical and the other one carrying a DTPA complex loaded with Gd(3+). Selective measurements of nitroxide-nitroxide, Gd(3+)-nitroxide and Gd(3+)-Gd(3+) distances were performed on this system and information on the distance distribution in the three types of spin pairs was obtained. A numerical analysis of the dipolar frequency distributions is presented for Gd(3+) centres with moderate magnitudes of zero-field splitting, in the range of detection frequencies and resonance fields where the high-field approximation is only roughly valid. The dipolar frequency analysis confirms the applicability of DEER for distance measurements in such complexes and gives an estimate for the magnitudes of possible systematic errors due to the non-ideality of the measurement of the dipole-dipole interaction.
Ahn, Jae-Jun; Sanyal, Bhaskar; Akram, Kashif; Kwon, Joong-Ho
2014-11-19
Different spices such as turmeric, oregano, and cinnamon were γ-irradiated at 1 and 10 kGy. The electron paramagnetic resonance (EPR) spectra of the nonirradiated samples were characterized by a single central signal (g = 2.006), the intensity of which was significantly enhanced upon irradiation. The EPR spectra of the irradiated spice samples were characterized by an additional triplet signal at g = 2.006 with a hyperfine coupling constant of 3 mT, associated with the cellulose radical. EPR analysis on various sample pretreatments in the irradiated spice samples demonstrated that the spectral features of the cellulose radical varied on the basis of the pretreatment protocol. Alcoholic extraction pretreatment produced considerable improvements of the EPR signals of the irradiated spice samples relative to the conventional oven and freeze-drying techniques. The alcoholic extraction process is therefore proposed as the most suitable sample pretreatment for unambiguous detection of irradiated spices by EPR spectroscopy.
NASA Astrophysics Data System (ADS)
Di Valentin, M.; Salvadori, E.; Barone, V.; Carbonera, D.
2013-10-01
Advanced electron paramagnetic resonance (EPR) techniques, in combination with Density Functional theory (DFT), have been applied to the comparative study of carotenoid triplet states in two major photosynthetic antenna complexes, the Peridinin-chlorophyll a-protein of dinoflagellates and the light-harvesting complex II of higher plants. Carotenoid triplet states are populated by triplet-triplet energy transfer (TTET) from chlorophyll molecules to photoprotect the system from singlet oxygen formation under light-stress conditions. The TTET process is strongly dependent on the relative arrangement and on the electronic properties of the triplet states involved. The proposed spectroscopic approach exploits the concept of spin conservation during TTET, which leads to recognisable spin polarisation effects in the time-resolved and field-swept echo-detected EPR spectra. The electron spin polarisation produced at the carotenoid acceptor site depends on the initial polarisation of the chlorophyll donor and on the relative geometrical arrangement of the donor-acceptor zero-field splitting axes. We have demonstrated that a proper analysis of the spectra in the framework of spin angular momentum conservation allows to derive the pathways of TTET and to gain insight into the structural requirements of this mechanism for those antenna complexes, whose X-ray structure is available. We have further proved that this method, developed for natural antenna complexes of known X-ray structure, can be extended to systems lacking structural information in order to derive the relative arrangement of the partners in the energy transfer process. The structural requirements for efficient TTET, obtained from time-resolved and pulse EPR, have been complemented by a detailed description of the electronic structure of the carotenoid triplet state, provided by pulse Electron-Nuclear DOuble Resonance (ENDOR) experiments. Triplet-state hyperfine couplings of the α- and β-protons of the carotenoid conjugated chain have been assigned with the aid of quantum chemical calculation. DFT predictions of the electronic structure of the carotenoid triplet state, in terms of spin density distribution, frontier orbital description and orbital excitation represent suitable building blocks toward a deeper understanding of electronic requirements for efficient TTET.
Gagnon, Derek M; Brophy, Megan Brunjes; Bowman, Sarah E J; Stich, Troy A; Drennan, Catherine L; Britt, R David; Nolan, Elizabeth M
2015-03-04
The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron-nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed (15)N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin.
Gagnon, Derek M.; Brophy, Megan Brunjes; Bowman, Sarah E. J.; ...
2015-01-18
The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Here in this paper, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimermore » is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin–echo envelope modulation and electron–nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed 15N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His 6 site of human calprotectin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Derek M.; Brophy, Megan Brunjes; Bowman, Sarah E. J.
The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Here in this paper, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimermore » is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin–echo envelope modulation and electron–nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed 15N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His 6 site of human calprotectin.« less
EPR hyperfine structure of the Mo-related defect in CdWO4
NASA Astrophysics Data System (ADS)
Elsts, E.; Rogulis, U.
2005-01-01
The hyperfine structure (hf) of the electron paramagnetic resonance (EPR) spectrum of Mo-related impurity defects in CdWO4 crystals observed previously (U. Rogulis, Radiat. Meas. 29, 287 (1998) [1]) is reconsidered taking into account interactions with two different groups of neighbouring Cd nuclei. The best fit calculated EPR spectrum to the experimental is obtained considering 2 groups of 3 and 2 equivalent Cd nuclei, respectively.
Tsuda, K; Shimamoto, Y; Kimura, K; Nishio, I; Masuyama, Y
2001-05-01
The present in vitro study was performed to investigate the effects of estriol (E3) on membrane fluidity of erythrocytes by means of an electron paramagnetic resonance (EPR) and spin-labeling method. E3 was shown to significantly decrease the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (ho/h-1) for 16-NS obtained from EPR spectra of erythrocyte membranes. This finding indicated that E3 might increase the membrane fluidity of erythrocytes. The effect of E3 was significantly potentiated by the nitric oxide (NO) donor, S-nitroso-N-acetylpenicillamine (SNAP), and a cyclic guanosine 3',5'-monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change in the membrane fluidity induced by E3 was antagonized by the NO synthase inhibitor, L-NG-nitroarginine-methyl-ester (L-NAME), and asymmetric dimethyl-L-arginine (ADMA). The results of the present study showed that E3 significantly increased the membrane fluidity and improved the microviscosity of erythrocyte membranes, partially mediated by an NO- and cGMP-dependent pathway. Furthermore, the data might be consistent with the hypothesis that E3 could have a beneficial effect on the rheological behavior of erythrocytes and may play a crucial role in the regulation of microcirculation.
NASA Astrophysics Data System (ADS)
Nugraha, T. A.; Rohrmueller, M.; Gerstmann, U.; Greulich-Weber, S.; Stellhorn, A.; Cantin, J. L.; von Bardeleben, J.; Schmidt, W. G.; Wippermann, S.
SiC is widely used in high-power, high-frequency electronic devices. Recently, it has also been employed as a building block in nanocomposites used as light absorbers in solar energy conversion devices. Analogous to Si, SiC features SiO2 as native oxide that can be used for passivation and insulating layers. However, a significant number of defect states are reported to form at SiC/SiO2 interfaces, limiting mobility and increasing recombination of free charge carriers. We investigated the growth of oxide on different 3C-SiC surfaces from first principles. Carbon antisite Csi defects are found to be strongly stabilized in particular at the interface, because carbon changes its hybridization from sp3 in the SiC-bulk to sp2 at the interface, creating a dangling bond inside a porous region of the SiO2 passivating layer. Combining ab initio g-tensor calculations and electron paramagnetic resonance (EPR) measurements, we show that Csi defects explain the measured EPR signatures, while the hyperfine structure allows to obtain local structural information of the oxide layer. Financial support from BMBF NanoMatFutur Grant 13N12972 and DFG priority program SPP-1601 is gratefully acknowledged.
Identification of irradiated cashew nut by electron paramagnetic resonance spectroscopy.
Sanyal, Bhaskar; Sajilata, M G; Chatterjee, Suchandra; Singhal, Rekha S; Variyar, Prasad S; Kamat, M Y; Sharma, Arun
2008-10-08
Cashew nut samples were irradiated at gamma-radiation doses of 0.25, 0.5, 0.75, and 1 kGy, the permissible dose range for insect disinfestation of food commodities. A weak and short-lived triplet (g = 2.004 and hfcc = 30 G) along with an anisotropic signal (g perpendicular = 2.0069 and g parallel = 2.000) were produced immediately after irradiation. These signals were assigned to that of cellulose and CO 2 (-) radicals. However, the irradiated samples showed a dose-dependent increase of the central line (g = 2.0045 +/- 0.0002). The nature of the free radicals formed during conventional processing such as thermal treatment was investigated and showed an increase in intensity of the central line (g = 2.0045) similar to that of irradiation. Characteristics of the free radicals were studied by their relaxation and thermal behaviors. The present work explores the possibility to identify irradiated cashew nuts from nonirradiated ones by the thermal behaviors of the radicals beyond the period, when the characteristic electron paramagnetic resonance spectral lines of the cellulose free radicals have essentially disappeared. In addition, this study for the first time reports that relaxation behavior of the radicals could be a useful tool to distinguish between roasted and irradiated cashew nuts.
Synthesis, structural and electron paramagnetic resonance studies on Pb0.9Bi0.1Fe0.7W0.3O3 ceramic
NASA Astrophysics Data System (ADS)
Shivaraja, I.; Matteppanvar, Shidaling; Dadami, Sunanda T.; Rayaprol, Sudhindra; Angadi, Basavaraj
2018-04-01
A single phase Pb0.9Bi0.1Fe0.7W0.3O3 (0.9Pb(Fe2/3W1/3)O3 - 0.1BiFeO3 or PBFW) polycrystalline ceramic was synthesized by the two step solid state reaction method, with low-temperature sintering at 800°C for 30 mins and slow cooling to room temperature (RT). Detailed studies of RT X-ray diffraction (XRD) and Raman spectroscopy measurements confirm the formation of high symmetry cubic structure with Pm-3m space group. The Rietveld refinement was carried out on RT XRD data and the obtained structural parameters are a = b = c = 3.97563(6) Å and unit cell volume = 62.837 (2) Å3. Scanning Electron Microscopy (SEM) images show the uniform distribution of grains with some agglomerated nature. RT Raman spectroscopy reveals the main broad peak at 770 cm-1, related to the A1g mode, which confirms the formation of cubic (ABO3 perovskite) structure. The single symmetric electron paramagnetic resonance (EPR) line shape with g = 2.13985 observed in PBFW was identified to be due to Fe3+ ions.
NASA Astrophysics Data System (ADS)
Takahashi, Wataru; Miyake, Yusuke; Hirata, Hiroshi
2014-10-01
This article describes an improved method for suppressing image artifacts in the visualization of 14N- and 15N-labeled nitroxyl radicals in a single image scan using electron paramagnetic resonance (EPR). The purpose of this work was to solve the problem of asymmetric EPR absorption spectra in spectral processing. A hybrid function of Gaussian and Lorentzian lineshapes was used to perform spectral line-fitting to successfully separate the two kinds of nitroxyl radicals. This approach can process the asymmetric EPR absorption spectra of the nitroxyl radicals being measured, and can suppress image artifacts due to spectral asymmetry. With this improved visualization method and a 750-MHz continuous-wave EPR imager, a temporal change in the distributions of a two-phase paraffin oil and water/glycerin solution system was visualized using lipophilic and hydrophilic nitroxyl radicals, i.e., 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16-DOXYL stearic acid) and 4-hydroxyl-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl (TEMPOL-d17-15N). The results of the two-phase separation experiment verified that reasonable artifact suppression could be achieved by the present method that deals with asymmetric absorption spectra in the EPR imaging of 14N- and 15N-labeled nitroxyl radicals.
Davison, Gareth W; Ashton, Tony; Davies, Bruce; Bailey, Damian M
2008-04-01
This study tested the hypothesis that exercise-induced oxidative stress is caused by free radical-mediated damage to polyunsaturated fatty acids (PUFA) which can be prevented following ascorbate prophylaxis. Hyperfine coupling constants (HCC) of alpha-phenyl-tert-butylnitrone (PBN)-adducts were measured via room temperature electron paramagnetic resonance (EPR) spectroscopy in the venous blood of 12 subjects at rest and following maximal exercise during a randomized double-blind placebo-controlled trial and compared to those observed following room-air incubation (2 h at 37 degrees C) of L-alpha-phosphatidycholine, linoleic acid, alpha-linolenic acid and arachidonic acid. All adducts exhibited similar HCC [a(N) 13.6 Gauss (G) and a beta(H) 1.8 G] with the exception of L-alpha-phosphatidycholine [a(N1)=13.4 G, a beta(H1)=1.6 G (37%) and a(N2)=14.9 G, a beta(H2)=0.3 G (63%)] consistent with the trapping of lipid-derived alkoxyl and oleate radicals, respectively. Ascorbate pre-treatment ablated radical formation in both systems. These findings identify circulating PUFA as a potential source of secondary radicals that are capable of initiating oxidative stress in the exercising human.
González, Paula Mariela; Aguiar, María Belén; Malanga, Gabriela; Puntarulo, Susana
2013-08-01
Electron paramagnetic resonance (EPR) spectroscopy detects the presence of radicals of biological interest, such as ascorbyl radical (A(•)) and lipid radicals. A(•) is easily detectable by EPR even in aqueous solution at room-temperature. Under oxidative conditions leading to changes in total ascorbate (AH(-)) content, the A(•)/AH(-) ratio could be used to estimate early oxidative stress in the hydrophilic milieu. This methodology was applied to a wide range of aquatic systems including algae, sea urchin, limpets, bivalves and fish, under physiological and oxidative stress conditions as well. The A(•)/AH(-) ratio reflected the state of one part of the oxidative defense system and provided an early and simple diagnosis of environmental stressing conditions. Oxidative damage to lipids was assessed by the EPR-sensitive adduct formation that correlates well with cell membrane damage with no interference from other biological compounds. Probe instability, tissue metabolism, and lack of spin specificity are drawback factors for employing EPR for in vivo determination of free radicals. However, the dependability of this technique, mostly by combining it with other biochemical strategies, enhances the value of these procedures as contributors to the knowledge of oxidative condition in aquatic organisms. Copyright © 2013 Elsevier Inc. All rights reserved.
W-band PELDOR with 1 kW microwave power: molecular geometry, flexibility and exchange coupling.
Reginsson, Gunnar W; Hunter, Robert I; Cruickshank, Paul A S; Bolton, David R; Sigurdsson, Snorri Th; Smith, Graham M; Schiemann, Olav
2012-03-01
A technique that is increasingly being used to determine the structure and conformational flexibility of biomacromolecules is Pulsed Electron-Electron Double Resonance (PELDOR or DEER), an Electron Paramagnetic Resonance (EPR) based technique. At X-band frequencies (9.5 GHz), PELDOR is capable of precisely measuring distances in the range of 1.5-8 nm between paramagnetic centres but the orientation selectivity is weak. In contrast, working at higher frequencies increases the orientation selection but usually at the expense of decreased microwave power and PELDOR modulation depth. Here it is shown that a home-built high-power pulsed W-band EPR spectrometer (HiPER) with a large instantaneous bandwidth enables one to achieve PELDOR data with a high degree of orientation selectivity and large modulation depths. We demonstrate a measurement methodology that gives a set of PELDOR time traces that yield highly constrained data sets. Simulating the resulting time traces provides a deeper insight into the conformational flexibility and exchange coupling of three bisnitroxide model systems. These measurements provide strong evidence that W-band PELDOR may prove to be an accurate and quantitative tool in assessing the relative orientations of nitroxide spin labels and to correlate those orientations to the underlying biological structure and dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.
Mrakic-Sposta, Simona; Gussoni, Maristella; Montorsi, Michela; Porcelli, Simone; Vezzoli, Alessandra
2014-01-01
The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the “instantaneous” presence of ROS returning absolute concentration levels that correlate with “a posteriori” assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R 2 = 0.95), plasma (R 2 = 0.82), and erythrocytes (R 2 = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001–0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials. PMID:25374651
Thurber, Kent R; Tycko, Robert
2014-05-14
We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.
Zadlo, Andrzej; Pilat, Anna; Sarna, Michal; Pawlak, Anna; Sarna, Tadeusz
2017-12-01
With aging, retinal pigment epithelium melanosomes, by fusion with the age pigment lipofuscin, form complex granules called melanolipofuscin. Lipofuscin granules may contain oxidized proteins and lipid hydroperoxides, which in melanolipofuscin could chemically modify melanin polymer, while transition metal ions present in melanin can accelerate such oxidative modifications. The aim of this research was to examine the effect of selected transition metal ions on melanin susceptibility to chemical modification induced by the water-soluble tert-butyl hydroperoxide used as an oxidizing agent. Synthetic melanin obtained by DOPA autooxidation and melanosomes isolated from bovine retinal pigment epithelium were analyzed. To monitor tert-butyl hydroperoxide-induced oxidative changes of DMa and BMs, electron paramagnetic resonance spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering, atomic force microscopy and electron paramagnetic resonance oximetry were employed. These measurements revealed that both copper and iron ions accelerated chemical degradation induced by tert-butyl hydroperoxide, while zinc ions had no effect. Strong prooxidant action was detected only in the case of melanosomes and melanin degraded in the presence of iron. It can be postulated that similar chemical processes, if they occur in situ in melanolipofuscin granules of the human retinal pigment epithelium, would modify antioxidant properties of melanin and its reactivity.
Spectroscopic fingerprints for charge localization in the organic semiconductor (DOEO)4[HgBr4]·TCE
NASA Astrophysics Data System (ADS)
Koplak, Oksana V.; Chernenkaya, Alisa; Medjanik, Katerina; Brambilla, Alberto; Gloskovskii, Andrei; Calloni, Alberto; Elmers, Hans-Joachim; Schönhense, Gerd; Ciccacci, Franco; Morgunov, Roman B.
2015-05-01
Changes of the electronic structure accompanied by charge localization and a transition to an antiferromagnetic ground state were observed in the organic semiconductor (DOEO)4[HgBr4]·TCE. Localization starts in the temperature region of about 150 K and the antiferromagnetic state occurs below 60 K. The magnetic moment of the crystal contains contributions of inclusions (droplets), and individual paramagnetic centers formed by localized holes and free charge carriers at 2 K. Two types of inclusions of 100-400 nm and 2-5 nm sizes were revealed by transmission electron microscopy. Studying the temperature- and angular dependence of electron spin resonance (ESR) spectra revealed fingerprints of antiferromagnetic contributions as well as paramagnetic resonance spectra of individual localized charge carriers. The results point on coexistence of antiferromagnetic long and short range order as evident from a second ESR line. Photoelectron spectroscopy in the VUV, soft and hard X-ray range shows temperature-dependent effects upon crossing the critical temperatures around 60 K and 150 K. The substantially different probing depths of soft and hard X-ray photoelectron spectroscopy yield information on the surface termination. The combined investigation using complementary methods at the same sample reveals the close relation of changes in the transport properties and in the energy distribution of electronic states.
Fundamentals of thinking, patterns
NASA Astrophysics Data System (ADS)
Gafurov, O. M.; Gafurov, D. O.; Syryamkin, V. I.
2018-05-01
The authors analyze the fundamentals of thinking and propose to consider a model of the brain based on the presence of magnetic properties of gliacytes (Schwann cells) because of their oxygen saturation (oxygen has paramagnetic properties). The authors also propose to take into account the motion of electrical discharges through synapses causing electric and magnetic fields as well as additional effects such as paramagnetic resonance, which allows combining multisensory object-related information located in different parts of the brain. Therefore, the events of the surrounding world are reflected and remembered in the cortex columns, thus, creating isolated subnets with altered magnetic properties (patterns) and subsequently participate in recognition of objects, form a memory, and so on. The possibilities for the pattern-based thinking are based on the practical experience of applying methods and technologies of artificial neural networks in the form of a neuroemulator and neuromorphic computing devices.
Chen, Zhiyu; Reyes, Levy A.; Johnson, David H.; Velayutham, Murugesan; Yang, Changjun; Samouilov, Alexandre; Zweier, Jay L.
2012-01-01
In vivo or ex vivo electron paramagnetic resonance imaging (EPRI) is a powerful technique for determining the spatial distribution of free radicals and other paramagnetic species in living organs and tissues. However, applications of EPRI have been limited by long projection acquisition times and the consequent fact that rapid gated EPRI was not possible. Hence in vivo EPRI typically provided only time-averaged information. In order to achieve direct gated EPRI, a fast EPR acquisition scheme was developed to decrease EPR projection acquisition time down to 10 – 20 ms, along with corresponding software and instrumentation to achieve fast gated EPRI of the isolated beating heart with submillimeter spatial resolution in as little as 2 to 3 minutes. Reconstructed images display temporal and spatial variations of the free radical distribution, anatomical structure, and contractile function within the rat heart during the cardiac cycle. PMID:22473660
NASA Astrophysics Data System (ADS)
Smirnov, A. I.; Norby, S. W.; Walczak, T.; Liu, K. J.; Swartz, H. M.
The use of crystals of lithium phthalocyanine (LiPc) to measure the concentration of oxygen in vivo and in vitro by electron paramagnetic resonance leads to experimental constraints due to the very narrow EPR lines that may occur (as narrow as 11-13 mG in the absence of O 2), distortions induced by the automatic frequency control system, anisotropy in the spectra (orientation-dependent linewidth is 11-17 mG in the absence of O 2), microwave power saturation, and the effect of physiological motion. These constraints can be overcome if recognized. This article highlights the experimental and theoretical basis of these properties of the EPR signal of LiPc and suggests some technical solutions. It is most important to recognize that paramagnetic species such as LiPc present problems that are not commonly encountered in EPR spectroscopy.
Goishvili, N; Kakauridze, N; Sanikidze, T
2005-05-01
The aim of the work was to establish the oxidative metabolism changes and NO data in Chronic Hearth Failure (HF). 52 patients were included in the investigation, among them 37 patients with CHD and chronic HF (II-IV functional class by NIHA) and 17 without it (control group). For revealing of organism redox-status (ceruloplasmine, Fe3+-transfferine, Mn2+, methemoglobine) the blood paramagnetic centers was studied by electron paramagnetic resonance method. For revealing of blood free NO, the diethyldithiocarbamat (SIGMA) was used. In chronic HF the oxidative process intensification and organism compensate reaction reduction with low Fe3+-transferine levels, increased Mn2++, methaemoglobin and inactivation of erythrocytes membranes adrenergic receptors were revealed. In chronic HF the accumulation of reactive oxygen levels provoke NO transformation in peroxynitrote with following decreases of blood free NO and develop the endothelial dysfunction.
Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca
2018-06-15
Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets. Copyright © 2018 Elsevier B.V. All rights reserved.
Wu, Bo; Lu, Shu-Ting; Deng, Kai; Yu, Hui; Cui, Can; Zhang, Yang; Wu, Ming; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen
2017-01-01
In recent years, there has been increasing interest in developing a multifunctional nanoscale platform for cancer monitoring and chemotherapy. However, there is still a big challenge for current clinic contrast agents to improve their poor tumor selectivity and response. Herein, we report a new kind of Gd complex and folate-coated redox-sensitive lipid-polymer hybrid nanoparticle (Gd-FLPNP) for tumor-targeted magnetic resonance imaging and therapy. Gd-FLPNPs can simultaneously accomplish diagnostic imaging, and specific targeting and controlled release of doxorubicin (DOX). They exhibit good monodispersity, excellent size stability, and a well-defined core-shell structure. Paramagnetic nanoparticles based on gadolinium-diethylenetriaminepentaacetic acid-bis-cetylamine have paramagnetic properties with an approximately two-fold enhancement in the longitudinal relaxivity compared to clinical used Magnevist. For targeted and reduction-sensitive drug delivery, Gd-FLPNPs released DOX faster and enhanced cell uptake in vitro, and exhibited better antitumor effect both in vitro and in vivo.
EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline
NASA Astrophysics Data System (ADS)
Karray, Fekri; Kassiba, Abdelhadi
2012-06-01
Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.
W-band EPR of vanadyl complexes aggregates on the surface of Al2O3
NASA Astrophysics Data System (ADS)
Mamin, G.; Gafurov, M.; Galukhin, A.; Gracheva, I.; Murzakhanov, F.; Rodionov, A.; Orlinskii, S.
2018-05-01
Structural characterization of metalloporphyrins, asphaltenes and their aggregates in complex systems such as native hydrocarbons is in the focus of scientific and industrial interests since many years. We present W-band (95 GHz) electron paramagnetic resonance (EPR) study in the magnetic field of about 3.4 T and temperature of 100 K for Karmalinskoe oil, asphaltens and asphaltenes deposited on the surface of Al2O3. Features of the obtained spectra are described. Shift to the higher frequencies allows to separate spectrally the contributions from paramagnetic complexes of different origin and define the EPR parameters more accurately comparing to the conventional X-band (9 GHz). Changes of the EPR parameters are tracked. We suggest that the proposed approach can be used for the investigation of structure of vanadyl complexes aggregates in crude oil and their fractions.
Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.
Zhang, Z T; Xu, C; Dmytriieva, D; Molatta, S; Wosnitza, J; Wang, Y T; Helm, M; Zhou, Shengqiang; Kühne, H
2017-10-20
We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13 C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13 C nuclear spin-lattice relaxation rate [Formula: see text] by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of [Formula: see text] below about 10 K can well be described by a thermally activated form, [Formula: see text], yielding a singular Zeeman energy of ([Formula: see text]) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments.
Polarized Neutron Diffraction to Probe Local Magnetic Anisotropy of a Low-Spin Fe(III) Complex.
Ridier, Karl; Mondal, Abhishake; Boilleau, Corentin; Cador, Olivier; Gillon, Béatrice; Chaboussant, Grégory; Le Guennic, Boris; Costuas, Karine; Lescouëzec, Rodrigue
2016-03-14
We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3]⋅H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Costantini, J. M.; Beuneu, F.
We have used electron spin resonance spectroscopy to study the defects induced in yttria-stabilized zirconia (YSZ) single crystals by 2.5-MeV electron irradiations. Two paramagnetic centers are produced: the first one with an axial <111> symmetry is similar to the trigonal Zr3+ electron center (T center) found after X-ray irradiation or thermo-chemical reduction, whereas the second one is a new oxygen hole center with an axial <100> symmetry different from the orthorhombic O- center induced by X-ray irradiation. At a fluence around 10(18) e/cm(2) , both centers are bleached out near 600 K, like the corresponding X-ray induced defects. At a fluence around 10(19) e/cm(2) , defects are much more stable, since complete thermal bleaching occurs near 1000 K. Accordingly, ageing of as-irradiated samples shows that high-dose defects at more stable than the low-dose ones.
ENDOR-Induced EPR of Disordered Systems: Application to X-Irradiated Alanine.
Kusakovskij, Jevgenij; Maes, Kwinten; Callens, Freddy; Vrielinck, Henk
2018-02-15
The electron paramagnetic resonance (EPR) spectra of radiation-induced radicals in organic solids are generally composed of multiple components that largely overlap due to their similar weak g anisotropy and a large number of hyperfine (HF) interactions. Such properties make these systems difficult to study using standard cw EPR spectroscopy even in single crystals. Electron-nuclear double-resonance (ENDOR) spectroscopy is a powerful and widely used complementary technique. In particular, ENDOR-induced EPR (EIE) experiments are useful for separating the overlapping contributions. In the present work, these techniques were employed to study the EPR spectrum of stable radicals in X-irradiated alanine, which is widely used in dosimetric applications. The principal values of all major proton HF interactions of the dominant radicals were determined by analyzing the magnetic field dependence of the ENDOR spectrum at 50 K, where the rotation of methyl groups is frozen. Accurate simulations of the EPR spectrum were performed after the major components were separated using an EIE analysis. As a result, new evidence in favor of the model of the second dominant radical was obtained.
Coupled aging effects in nanofiber-reinforced siloxane foams
Labouriau, Andrea; Robison, Tom; Geller, Drew Adam; ...
2018-01-11
Here, this study investigates the combined effects of ionizing radiation and thermal treatments on the aging of siloxane foams containing small amounts of carbon nanofibers. Our siloxane foams were exposed to accelerated aging conditions for more than two years, resulting in very low dose rates. In addition, foams were aged under compressive load to evaluate the strength of the porous microstructure. Samples were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), Mössbauer, mass spectroscopy, electron paramagnetic resonance spectroscopy (EPR), solvent swelling, imaging techniques, uniaxial compressive load testing and tearmore » testing. No significant changes in thermal stability or chemistry of the accelerated aged foam were observed, although gas evolution was detected. Changes in crystallization levels at low temperatures, microstructure, and mechanical properties were observed for foams with and without carbon nanofibers. In particular, foams aged under compressive load showed irreversible deformation of the porous microstructure. This study demonstrates that aging effects were enhanced when thermal and radiolysis were coupled together and that the addition of carbon nanofibers did not improve aging effects.« less
Coupled aging effects in nanofiber-reinforced siloxane foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labouriau, Andrea; Robison, Tom; Geller, Drew Adam
Here, this study investigates the combined effects of ionizing radiation and thermal treatments on the aging of siloxane foams containing small amounts of carbon nanofibers. Our siloxane foams were exposed to accelerated aging conditions for more than two years, resulting in very low dose rates. In addition, foams were aged under compressive load to evaluate the strength of the porous microstructure. Samples were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), Mössbauer, mass spectroscopy, electron paramagnetic resonance spectroscopy (EPR), solvent swelling, imaging techniques, uniaxial compressive load testing and tearmore » testing. No significant changes in thermal stability or chemistry of the accelerated aged foam were observed, although gas evolution was detected. Changes in crystallization levels at low temperatures, microstructure, and mechanical properties were observed for foams with and without carbon nanofibers. In particular, foams aged under compressive load showed irreversible deformation of the porous microstructure. This study demonstrates that aging effects were enhanced when thermal and radiolysis were coupled together and that the addition of carbon nanofibers did not improve aging effects.« less
Iacomino, Mariagrazia; Mancebo-Aracil, Juan; Guardingo, Mireia; Martín, Raquel; Perfetti, Marco; Manini, Paola; Crescenzi, Orlando; Busqué, Félix; Sedó, Josep; Ruiz-Molina, Daniel
2017-01-01
The oxidative polymerization of 5,6-dihydroxybenzothiophene (DHBT), the sulfur analog of the key eumelanin building block 5,6-dihydroxyindole (DHI), was investigated to probe the role of nitrogen in eumelanin build-up and properties. Unlike DHI, which gives a typical black insoluble eumelanin polymer on oxidation, DHBT is converted to a grayish amorphous solid (referred to as thiomelanin) with visible absorption and electron paramagnetic resonance properties different from those of DHI melanin. Mass spectrometry experiments revealed gradational mixtures of oligomers up to the decamer level. Quite unexpectedly, nuclear magnetic resonance (NMR) analysis of the early oligomer fractions indicated linear, 4-, and 7-linked structures in marked contrast with DHI, which gives highly complex mixtures of partially degraded oligomers. Density functional theory (DFT) calculations supported the tendency of DHBT to couple via the 4- and 7-positions. These results uncover the role of nitrogen as a major determinant of the structural diversity generated by the polymerization of DHI, and point to replacement by sulfur as a viable entry to regioregular eumelanin-type materials for potential applications for surface functionalization by dip coating. PMID:29039817
Recycling of the High Valence States of Heme Proteins by Cysteine Residues of Thimet-Oligopeptidase
Ferreira, Juliana C.; Icimoto, Marcelo Y.; Marcondes, Marcelo F.; Oliveira, Vitor; Nascimento, Otaciro R.; Nantes, Iseli L.
2013-01-01
The peptidolytic enzyme THIMET-oligopeptidase (TOP) is able to act as a reducing agent in the peroxidase cycle of myoglobin (Mb) and horseradish peroxidase (HRP). The TOP-promoted recycling of the high valence states of the peroxidases to the respective resting form was accompanied by a significant decrease in the thiol content of the peptidolytic enzyme. EPR (electron paramagnetic resonance) analysis using DBNBS spin trapping revealed that TOP also prevented the formation of tryptophanyl radical in Mb challenged by H2O2. The oxidation of TOP thiol groups by peroxidases did not promote the inactivating oligomerization observed in the oxidation promoted by the enzyme aging. These findings are discussed towards a possible occurrence of these reactions in cells. PMID:24223886
A Study of Ziegler–Natta Propylene Polymerization Catalysts by Spectroscopic Methods
Tkachenko, Olga P.; Kucherov, Alexey V.; Kustov, Leonid M.; Virkkunen, Ville; Leinonen, Timo; Denifl, Peter
2017-01-01
Ziegler–Natta polymerization catalysts were characterized by a complex of surface- and bulk-sensitive methods (DRIFTS, XPS, ESR, and XAS = XANES + EXAFS). A diffuse-reflectance Fourier-transform IR spectroscopy (DRIFTS) study showed the presence of strong Lewis acid sites in different concentrations and absence of strong basic sites in the polymerization catalysts. X-ray photoelectron spectroscopy (XPS), electron-spin resonance (ESR), and (X-ray absorption near-edge structure (XANES) analysis revealed the presence of Ti4+, Ti3+, Ti2+, and Ti1+ species in the surface layers and in the bulk of catalysts. The samples under study differ drastically in terms of the number of ESR-visible paramagnetic sites. The EXAFS study shows the presence of a Cl atom as a nearest neighbor of the absorbing Ti atom. PMID:28772850
Dielectric relaxation in epitaxial films of paraelectric-magnetic SrTiO3-SrMnO3 solid solution
NASA Astrophysics Data System (ADS)
Savinov, M.; Bovtun, V.; Tereshina-Chitrova, E.; Stupakov, A.; Dejneka, A.; Tyunina, M.
2018-01-01
Magneto-dielectric properties of (A2+)MnO3-type perovskites are attractive for applications and stimulate extensive studies of these materials. Here, the complex dielectric and magnetic responses are investigated as in epitaxial films of SrTi0.6Mn0.4O3, solid solution of paraelectric SrTiO3 and magnetic SrMnO3. The impedance and resonance measurements at frequencies of 10-2-1010 Hz and temperatures of 10-500 K reveal broad dielectric anomalies centered at 100-200 K, while the films are paramagnetic at all temperatures. Analysis shows polaronic electrical conductivity behind the observed behavior. Electron-phonon correlations, rather than spin-phonon correlations, are suggested to produce the apparent magneto-dielectric responses in many multiferroic manganites.
Increasing sensitivity of pulse EPR experiments using echo train detection schemes.
Mentink-Vigier, F; Collauto, A; Feintuch, A; Kaminker, I; Tarle, V; Goldfarb, D
2013-11-01
Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo--either primary, stimulated or refocused--a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tolmachev, D. O.; Gurin, A. S.; Uspenskaya, Yu. A.; Asatryan, G. R.; Badalyan, A. G.; Romanov, N. G.; Petrosyan, A. G.; Baranov, P. G.; Wieczorek, H.; Ronda, C.
2017-06-01
Paramagnetic Ce3 +optical emitters have been studied by means of optically detected magnetic resonance (ODMR) via Ce3 + spin-dependent emission in cerium-doped garnet crystals which were both gadolinium free and contain gadolinium in a concentration from the lowest (0.1%) to 100%, i.e., to the superparamagnetic state. It has been shown that the intensity of photoluminescence excited by circularly polarized light into Ce3 + absorption bands can be used for selective monitoring the population of the Ce3 + ground-state spin sublevels. Direct evidence of the cross-relaxation effects in garnet crystals containing two electron spin systems, i.e., the simplest one of Ce3 + ions with the effective spin S =1/2 and the system of Gd3 + ions with the maximum spin S =7/2 , has been demonstrated. Magnetic resonance of Gd3 + has been found by monitoring Ce3 + emission in cerium-doped garnet crystals with gadolinium concentrations of 0.1 at. %, 4%-8%, and 100%, which implies the impact of the Gd3 + spin polarization on the optical properties of Ce3 +. Strong internal magnetic fields in superparamagnetic crystals were shown to modify the processes of recombination between UV-radiation-induced electron and hole centers that lead to the recombination-induced Ce3 + emission. Observation of spikes and subsequent decay in the cross-relaxation-induced ODMR signals under pulsed microwave excitation is suggested to be an informative method to investigate transient processes in the many-spin system of Ce3 +, Gd3 +, and electron and hole radiation-induced centers.
Krzystek, J; Telser, Joshua; Li, Jun; Subramanian, M A
2015-09-21
A variety of new oxide-based materials based on hexagonal phase of YInO3 have been recently described. In some of these materials, the In(III) ions are substituted by Mn(III), which finds itself in a trigonal-bipyramidal (TBP) coordination environment. While YInO3 is colorless and YMnO3 is black, mixed systems YIn1-xMnxO3 (0.02 < x < 0.25) display intense blue color and have been proposed as novel blue pigments. Since the Mn(III) ion is paramagnetic, its presence imparts distinct magnetic properties to the whole class of materials. These properties were investigated by electron paramagnetic resonance (EPR) in its high-frequency and -field version (HFEPR), a technique ideally suited for transition metal ions such as Mn(III) that, in contrast to, for example, Mn(II), are difficult to study by EPR at (conventional) low frequency and field. YIn1-xMnxO3 with 0.02 < x < 0.2 exhibited high-quality HFEPR spectra up to room temperature that could be interpreted as arising from isolated S = 2 paramagnets. A simple ligand-field model, based on the structure and optical spectra, explains the spin Hamiltonian parameters provided by HFEPR, which were D = +3.0 cm(-1), E = 0; g⊥ = 1.99, g∥ = 2.0. This study demonstrates the general applicability of a combined spectroscopic and classical theoretical approach to understanding the electronic structure of novel materials containing paramagnetic dopants. Moreover, HFEPR complements optical and other experimental methods as being a sensitive probe of dopant level.
NASA Technical Reports Server (NTRS)
Bruno, G. V.; Harrington, J. K.; Eastman, M. P.
1978-01-01
An analysis of EPR line shapes by the method of Polnaszek, Bruno, and Freed is made for slowly tumbling vanadyl spin probes in viscous nematic liquid crystals. The use of typical vanadyl complexes as spin probes for nematic liquid crystals is shown to simplify the theoretical analysis and the subsequent interpretation. Rotational correlation times tau and orientational ordering parameters S sub Z where slow tumbling effects are expected to be observed in vanadyl EPR spectra are indicated in a plot. Analysis of the inertial effects on the probe reorientation, which are induced by slowly fluctuating torque components of the local solvent structure, yield quantitative values for tau and S sub Z. The weakly ordered probe VOAA is in the slow tumbling region and displays these inertial effects throughout the nematic range of BEPC and Phase V. VOAA exhibits different reorientation behavior near the isotropic-nematic transition temperature than that displayed far below this transition temperature.
Brain magnetic resonance imaging with contrast dependent on blood oxygenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, S.; Lee, T.M.; Kay, A.R.
1990-12-01
Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normalmore » physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.« less
Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation
NASA Astrophysics Data System (ADS)
Ogawa, S.; Lee, T. M.; Kay, A. R.; Tank, D. W.
1990-12-01
Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high fields, we demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complements other techniques that are attempting to provide positron emission tomography-like measurements related to regional neural activity.
Framework Stability of Nanocrystalline NaY in Aqueous Solution at Varying pH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petushkov, Anton; Freeman, Jasmine; Larsen, Sarah C.
Nanocrystalline zeolites (with crystal sizes of less than 50 nm) are versatile, porous nanomaterials with potential applications in a broad range of areas including bifunctional catalysis, drug delivery, environmental protection, and sensing, to name a few. The characterization of the properties of nanocrystalline zeolites on a fundamental level is critical to the realization of these innovative applications. Nanocrystalline zeolites have unique surface chemistry that is distinct from conventional microcrystalline zeolite materials and that will result in novel applications. In the proposed work, magnetic resonance techniques (solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)) will be used tomore » elucidate the structure and reactivity of nanocrystalline zeolites and to motivate bifunctional applications. Density functional theory (DFT) calculations will enhance data interpretation through chemical shift, quadrupole coupling constant, g-value and hyperfine calculations.« less
A magnetic resonance study of MoS(2) fullerene-like nanoparticles.
Panich, A M; Shames, A I; Rosentsveig, R; Tenne, R
2009-09-30
We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) investigation of inorganic fullerene-like MoS(2) nanoparticles. Spectra of bulk 2H-MoS(2) samples have also been measured for comparison. The similarity between the measured quadrupole coupling constants and chemical shielding anisotropy parameters for bulk and fullerene-like MoS(2) reflects the nearly identical local crystalline environments of the Mo atoms in these two materials. EPR measurements show that fullerene-like MoS(2) exhibits a larger density of dangling bonds carrying unpaired electrons, indicative of them having a more defective structure than the bulk sample. The latter observation explains the increase in the spin-lattice relaxation rate observed in the NMR measurements for this sample in comparison with the bulk 2H- MoS(2) ones.
A magnetic resonance study of MoS2 fullerene-like nanoparticles
NASA Astrophysics Data System (ADS)
Panich, A. M.; Shames, A. I.; Rosentsveig, R.; Tenne, R.
2009-09-01
We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) investigation of inorganic fullerene-like MoS2 nanoparticles. Spectra of bulk 2H-MoS2 samples have also been measured for comparison. The similarity between the measured quadrupole coupling constants and chemical shielding anisotropy parameters for bulk and fullerene-like MoS2 reflects the nearly identical local crystalline environments of the Mo atoms in these two materials. EPR measurements show that fullerene-like MoS2 exhibits a larger density of dangling bonds carrying unpaired electrons, indicative of them having a more defective structure than the bulk sample. The latter observation explains the increase in the spin-lattice relaxation rate observed in the NMR measurements for this sample in comparison with the bulk 2H- MoS2 ones.
Jarý, Vítězslav; Havlák, Lubomír; Bárta, Jan; Buryi, Maksym; Mihóková, Eva; Rejman, Martin; Laguta, Valentin; Nikl, Martin
2015-01-01
Eu-doped ternary sulfides of general formula ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y) are presented as a novel interesting material family which may find usage as X-ray phosphors or solid state white light emitting diode (LED) lighting. Samples were synthesized in the form of transparent crystalline hexagonal platelets by chemical reaction under the flow of hydrogen sulfide. Their physical properties were investigated by means of X-ray diffraction, time-resolved photoluminescence spectroscopy, electron paramagnetic resonance, and X-ray excited fluorescence. Corresponding characteristics, including absorption, radioluminescence, photoluminescence excitation and emission spectra, and decay kinetics curves, were measured and evaluated in a broad temperature range (8–800 K). Calculations including quantum local crystal field potential and spin-Hamiltonian for a paramagnetic particle in D3d local symmetry and phenomenological model dealing with excited state dynamics were performed to explain the experimentally observed features. Based on the results, an energy diagram of lanthanide energy levels in KLuS2 is proposed. Color model xy-coordinates are used to compare effects of dopants on the resulting spectrum. The application potential of the mentioned compounds in the field of white LED solid state lighting or X-ray phosphors is thoroughly discussed. PMID:28793612
NASA Astrophysics Data System (ADS)
Jeong, Eun-Kee; Liu, Xin; Shi, Xianfeng; Yu, Y. Bruce; Lu, Zeng-Rong
2012-10-01
Magnetic resonance imaging (MRI) and spectroscopy (MRS) is very powerful modality for imaging and localized investigation of biological tissue. Medical MRI measures nuclear magnetization of the water protons, which consists of 70 % of our body. MRI provides superior contrast among different soft tissues to all other existing medical imaging modalities, including ultrasound, X-ray CT, PET, and SPECT. In principle, MRI/S may be an ideal non-invasive tool for drug delivery research. However, because of its low sensitivity, a large dose is required for tracing pharmaceuticals. Therefore, its use for imaging of pharmaceuticals is very limited mostly to molecules that contain a paramagnetic metal ion, such as gadolinium (Gd3+) and manganese (Mn2+). The paramagnetic metal ion provides a large fluctuating magnetic field at the proton in the water molecule via a coordinate site. The measurement of local drug concentration is the first step for further quantification. Local concentration of the paramagnetic-ion based MRI contrast agent can be indirectly measured via the change in the water signal intensity. 19F MRI/S of fluorinated complex may be an option for drug delivery and tracing agent, because the fluorinated molecule may be directly detected due to its large magnetic moment (94 % of proton) and 100 % abundance.
NASA Technical Reports Server (NTRS)
Suleman, Naushadalli K.
1992-01-01
The potential for long-term human activity beyond the Earth's protective magnetosphere is limited in part by the lack of detailed information on the effectiveness and performance of existing structural materials to shield the crew and spacecraft from highly penetrating space radiations. The two radiations of greatest concern are high energy protons emitted during solar flares and galactic cosmic rays which are energetic ions ranging from protons to highly oxidized iron. Although the interactions of such high-energy radiations with matter are not completely understood at this time, the effects of the incident radiation are clearly expected to include the formation of paramagnetic spin centers via ionization and bond-scission reactions in the molecular matrices of structural materials. Since this type of radiation damage is readily characterized by Electron Paramagnetic Resonance (EPR) spectroscopy, the NASA Langley Research Center EPR system was repaired and brought on-line during the 1991 ASEE term. A major goal of the 1992 ASEE term was to adapt the existing core of the LaRC EPR system to meet the requirements for EPR Imaging--a powerful new technique which provides detailed information on the internal structure of materials by mapping the spatial distribution of unpaired spin density in bulk media. Major impetus for this adaptation arises from the fact that information derived from EPRI complements other methods such as scanning electron microscopy which primarily characterize surface phenomena. The modification of the EPR system has been initiated by the construction of specially designed, counterwound Helmholtz coils which will be mounted on the main EPR electromagnet. The specifications of the coils have been set to achieve a static linear magnetic field gradient of 10 gauss/mm/amp along the principal (Z) axis of the Zeeman field. Construction is also in progress of a paramagnetic standard in which the spin distribution is known in all three dimensions. This sample will be used to assess the linearity of the magnetic field gradient and to ensure authentic image reconstruction. A second major task was to secure the computer capability to enable image reconstruction from projection data generated by the magnetic field gradients. To this end, commercially available and public domain software packages which perform inverse Fourier Transform and convoluted (filtered) back projection functions are being integrated into the existing EPR data processing system.
Schaeken, B; Cuypers, R; Lelie, S; Schroeyers, W; Schreurs, S; Janssens, H; Verellen, D
2011-04-01
A measurement procedure based on alanine/electron paramagnetic resonance (EPR) dosimetry was implemented successfully providing simple, stable, and accurate dose-to-water (D(w)) measurements. The correspondence between alanine and ionization chamber measurements in reference conditions was excellent. Alanine/EMR dosimetry might be a valuable alternative to thermoluminescent (TLD) and ionization chamber based measuring procedures in radiotherapy audits. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Room temperature ferromagnetism in Cu doped ZnO
NASA Astrophysics Data System (ADS)
Ali, Nasir; Singh, Budhi; Khan, Zaheer Ahmed; Ghosh, Subhasis
2018-05-01
We report the room temperature ferromagnetism in 2% Cu doped ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. X-ray photoelectron spectroscopy was used to ascertain the oxidation states of Cu in ZnO. The presence of defects within Cu-doped ZnO films can be revealed by electron paramagnetic resonance. It has been observed that saturated magnetic moment increase as we increase the zinc vacancies during deposition.
Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet.
Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J; Ares, Natalia; Thompson, Amber L; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J; Lancaster, Tom; Ardavan, Arzhang; Briggs, G Andrew D; Leek, Peter J; Laird, Edward A
2017-10-06
Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.
Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet
NASA Astrophysics Data System (ADS)
Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.
2017-10-01
Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.
Frequency-Temperature Compensation Techniques for High-Q Microwave Resonators
NASA Astrophysics Data System (ADS)
Hartnett, John G.; Tobar, Michael E.
Low-noise high-stability resonator oscillators based on high-Q monolithic sapphire ``Whispering Gallery'' (WG)-mode resonators have become important devices for telecommunication, radar and metrological applications. The extremely high quality factor of sapphire, of 2 x10^5 at room temperature, 5 x10^7 at liquid nitrogen temperature and 5 x10^9 at liquid helium temperature has enabled the lowest phase noise and highly frequency-stable oscillators in the microwave regime to be constructed. To create an oscillator with exceptional frequency stability, the resonator must have its frequency-temperature dependence annulled at some temperature, as well as a high quality factor. The Temperature Coefficient of Permittivity (TCP) for sapphire is quite large, at 10-100parts per million/K above 77K. This mechanism allows temperature fluctuations to transform to resonator frequency fluctuations.A number of research groups worldwide have investigated various methods of compensating the TCP of a sapphire dielectric resonator at different temperatures. The usual electromagnetic technique of annulment involves the use of paramagnetic impurities contributing an opposite temperature coefficient of the magnetic susceptibility to the TCP. This technique has only been realized successfully in liquid helium environments. Near 4K the thermal expansion and permittivity effects are small and only small quantities of the paramagnetic ions are necessary to compensate the mode frequency. Compensation is due to impurity ions that were incidentally left over from the manufacturing process.Recently, there has been an effort to dispense with the need for liquid helium and make a compact flywheel oscillator for the new generation of primary frequency standards such as the cesium fountain at the Laboratoire Primaire du Temps et des Fréquences (LPTF), France. To achieve the stability limit imposed by quantum projection noise requires that the local oscillator stability is of the order of 10^-14. Currently work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The work appears promising and, as at early 2000, the realization of this goal should not be far off.In this contribution we review techniques that cancel the TCP of sapphire and other dielectric resonators. Details of the temperature control system required to achieve current and target frequency stabilities are discussed.
NASA Astrophysics Data System (ADS)
Di Valentin, Marilena; Carbonera, Donatella
2017-08-01
Triplet-triplet energy transfer (TTET) from the chlorophyll to the carotenoid triplet state is the process exploited by photosynthetic systems to protect themselves from singlet oxygen formation under light-stress conditions. A deep comprehension of the molecular strategies adopted to guarantee TTET efficiency, while at the same time maintaining minimal energy loss and efficient light-harvesting capability, is still lacking. The paramagnetic nature of the triplet state makes electron paramagnetic resonance (EPR) the method of choice when investigating TTET. In this review, we focus on our extended comparative study of two photosynthetic antenna complexes, the Peridinin-chlorophyll a-protein of dinoflagellates and the light-harvesting complex II of higher plants, in order to point out important aspects of the molecular design adopted in the photoprotection strategy. We have demonstrated that a proper analysis of the EPR data allows one to identify the pigments involved in TTET and, consequently, gain an insight into the structure of the photoprotective sites. The structural information has been complemented by a detailed description of the electronic structure provided by hyperfine spectroscopy. All these elements represent the fundamental building blocks toward a deeper understanding of the requirements for efficient photoprotection, which is fundamental to guarantee the prolonged energy conversion action of photosynthesis.
Olczyk, Paweł; Komosinska-Vassev, Katarzyna; Ramos, Paweł; Mencner, Łukasz; Olczyk, Krystyna; Pilawa, Barbara
2015-07-25
Electron paramagnetic resonance (EPR) spectroscopy was used to examine insulins interactions with free radicals. Human recombinant DNA insulins of three groups were studied: short-acting insulin (Insuman Rapid); intermediate-acting insulins (Humulin N, Insuman Basal), and pre-mixed insulins (Humulin M3, Gensulin M50, Gensulin M40, Gensulin M30). The aim of an X-band (9.3GHz) study was comparative analysis of antioxidative properties of the three groups of human insulins. DPPH was used as a stable free radical model. Amplitudes of EPR lines of DPPH as the paramagnetic free radical reference, and DPPH interacting with the individual tested insulins were compared. For all the examined insulins kinetics of their interactions with free radicals up to 60 min were obtained. The strongest interactions with free radicals were observed for the short-acting insulin - Insuman Rapid. The lowest interactions with free radicals were characteristic for intermediate-acting insulin - Insuman Basal. The pre-mixed insulins i.e. Humulin M3 and Gensulin M50 revealed the fastest interactions with free radicals. The short acting, intermediate acting and premixed insulins have been found to be effective agents in reducing free radical formation in vitro and should be further considered as potential useful tools in attenuation of oxidative stress in diabetic patients. Copyright © 2015 Elsevier B.V. All rights reserved.
Scaling craters in carbonates: Electron paramagnetic resonance analysis of shock damage
NASA Technical Reports Server (NTRS)
Polanskey, Carol A.; Ahrens, Thomas J.
1994-01-01
Carbonate samples from the 8.9-Mt nuclear (near-surface explosion) crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron paramagnetic resonance (EPR). Samples from below the OAK apparent crater floor were obtained from six boreholes, as well as ejecta recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to the spectra of Solenhofen and Kaibab limestone, which had been skocked to known pressures. Analysis of the OAK Crater borehole samples has identified a thin zone of allocthonous highly shocked (10-13 GPa) carbonate material underneath the apparent crater floor. This approx. 5- to 15-m-thick zone occurs at a maximum depth of approx. 125 m below current seafloor at the borehole, sited at the initial position of the OAK explosive, and decreases in depth towards the apparent crater edge. Because this zone of allocthonous shocked rock delineates deformed rock below, and a breccia of mobilized sand and collapse debris above, it appears to outline the transient crater. The transient crater volume inferred in this way is found to by 3.2 +/- 0.2 times 10(exp 6)cu m, which is in good agreement with a volume of 5.3 times 10(exp 6)cu m inferred from gravity scaling of laboratory experiments. A layer of highly shocked material is also found near the surface outside the crater. The latter material could represent a fallout ejecta layer. The ejecta boulders recovered from the present crater floor experienced a range of shock pressures from approx. 0 to 15 GPa with the more heavily shocked samples all occurring between radii of 360 and approx. 600 m. Moreover, the fossil content, lithology and Sr isotopic composition all demonstrate that the initial position of the bulk of the heavily shocked rock ejecta sampled was originally near surface rock at initial depths in the 32 to 45-m depth (below sea level) range. The EPR technique is also sensitive to prehistoric shock damage. This is demonstrated by our study of shocked Kaibab limestone from the 49,000-year-old Meteor (Barringer) Crater Arizona.
Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes
Bucinsky, Lukas; Breza, Martin; Lee, Wei-Tsung; ...
2017-04-05
High-oxidation state metal complexes with multiply bonded ligands are of great interest for both their reactivity as well as their fundamental bonding properties. This paper reports a combined spectroscopic and theoretical investigation into the effect of the apical multiply bonded ligand on the spin state preferences of three-fold symmetric iron(IV) complexes with tris(carbene) donor ligands. Specifically, singlet (S = 0) nitrido [{PhB(Im R) 3}FeN], R = tBu (1), Mes (mesityl, 2) and the related triplet (S = 1) imido complexes, [{PhB(Im R) 3}Fe(NR')] +, R = Mes, R' = Ad (1- adamantyl, 3), tBu (4), have been investigated by electronicmore » absorption and Mössbauer effect spectroscopies. For comparison, two other Fe(IV) nitrido complexes, [(TIMEN Ar)FeN] +, (TIMEN Ar = tris[2-(3-aryl-imidazol-2-ylidene)ethyl]amine; Ar = Xyl (xylyl), Mes), have been investigated by 57Fe Mössbauer spectroscopy, including applied-field measurements. The paramagnetic imido complexes 3 and 4 were also studied by magnetic susceptibility measurements (for 3) and paramagnetic resonance spectroscopy: high-frequency and -field electron paramagnetic resonance (HFEPR) (for 3 and 4) and frequency-domain Fouriertransform (FD-FT) THz EPR (for 3), which reveal their zero-field splitting (zfs) parameters. Experimentally correlated theoretical studies comprising ligand-field theory (LFT) and quantum chemical theory (QCT), the latter including both density functional theory (DFT) and ab initio methods reveal the key role played by the Fe3 d z2 (a1) orbital in these systems: the nature of its interaction with the nitrido or imido ligand dictates the spin state preference of the complex. Lastly, the ability to tune the spin state through the energy and nature of a single orbital has general relevance to the factors controlling spin states in complexes with applicability as single molecule devices.« less
NASA Astrophysics Data System (ADS)
Struts, A. V.; Barmasov, A. V.; Brown, M. F.
2016-02-01
This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.
Lukoyanov, Dmitriy A; Khadka, Nimesh; Yang, Zhi-Yong; Dean, Dennis R; Seefeldt, Lance C; Hoffman, Brian M
2018-03-24
Early studies in which nitrogenase was freeze-trapped during enzymatic turnover revealed the presence of high-spin ( S = 3 / 2 ) electron paramagnetic resonance (EPR) signals from the active-site FeMo-cofactor (FeMo-co) in electron-reduced intermediates of the MoFe protein. Historically denoted as 1b and 1c, each of the signals is describable as a fictitious spin system, S' = 1 / 2 , with anisotropic g' tensor, 1b with g' = [4.21, 3.76, ?] and 1c with g' = [4.69, ∼3.20, ?]. A clear discrepancy between the magnetic properties of 1b and 1c and the kinetic analysis of their appearance during pre-steady-state turnover left their identities in doubt, however. We subsequently associated 1b with the state having accumulated 2[e - /H + ], denoted as E 2 (2H), and suggested that the reducing equivalents are stored on the catalytic FeMo-co cluster as an iron hydride, likely an [Fe-H-Fe] hydride bridge. Intra-EPR cavity photolysis (450 nm; temperature-independent from 4 to 12 K) of the E 2 (2H)/1b state now corroborates the identification of this state as storing two reducing equivalents as a hydride. Photolysis converts E 2 (2H)/1b to a state with the same EPR spectrum, and thus the same cofactor structure as pre-steady-state turnover 1c, but with a different active-site environment. Upon annealing of the photogenerated state at temperature T = 145 K, it relaxes back to E 2 (2H)/1b. This implies that the 1c signal comes from an E 2 (2H) hydride isomer of E 2 (2H)/1b that stores its two reducing equivalents either as a hydride bridge between a different pair of iron atoms or an Fe-H terminal hydride.
2001-01-01
approximately 0.2% of total number of chromium ions occupied tetrahedral sites forming phototropic centers in the YAG: Mg, Cr crystal. Keywords: yttrium...aluminium garnet, Cr doping, thermal treatment, phototropic centers, optical characterization, electron paramagnetic resonance. 1. INTRODUCTION An...of garnet structure while the main part of chromium occupies octahedral sites in three-valence state. 10-12 The dependence of amount of phototropic
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2003-07-01
A new method for relativistically corrected nuclear magnetic resonance (NMR) chemical shifts is developed by combining the individual gauge for the localized orbital approach for density functional theory with the normalized elimination of a small component using an effective potential. The new method is used for the calculation of the NMR chemical shifts of 95Mo and 183W in various molybdenum and tungsten compounds. It is shown that quasirelativistic corrections lead to an average improvement of calculated NMR chemical shift values by 300 and 120 ppm in the case of 95Mo and 183W, respectively, which is mainly due to improvements in the paramagnetic contributions. The relationship between electronic structure of a molecule and the relativistic paramagnetic corrections is discussed. Relativistic effects for the diamagnetic part of the magnetic shielding caused by a relativistic contraction of the s,p orbitals in the core region concern only the shielding values, however, have little consequence for the shift values because of the large independence from electronic structure and a cancellation of these effects in the shift values. It is shown that the relativistic corrections can be improved by level shift operators and a B3LYP hybrid functional, for which Hartree-Fock exchange is reduced to 15%.
Clinical EPR: Unique Opportunities and Some Challenges
Swartz, Harold M.; Williams, Benjamin B.; Zaki, Bassem I.; Hartford, Alan C.; Jarvis, Lesley A.; Chen, Eunice; Comi, Richard J.; Ernstoff, Marc S.; Hou, Huagang; Khan, Nadeem; Swarts, Steven G.; Flood, Ann B.; Kuppusamy, Periannan
2014-01-01
Electron paramagnetic resonance (EPR) spectroscopy has been well established as a viable technique for measurement of free radicals and oxygen in biological systems, from in vitro cellular systems to in vivo small animal models of disease. However, the use of EPR in human subjects in the clinical setting, although attractive for a variety of important applications such as oxygen measurement, is challenged with several factors including the need for instrumentation customized for human subjects, probe and regulatory constraints. This paper describes the rationale and development of the first clinical EPR systems for two important clinical applications, namely, measurement of tissue oxygen (oximetry), and radiation dose (dosimetry) in humans. The clinical spectrometers operate at 1.2 GHz frequency and use surface loop resonators capable of providing topical measurements up to 1 cm depth in tissues. Tissue pO2 measurements can be carried out noninvasively and repeatedly after placement of an oxygen-sensitive paramagnetic material (currently India ink) at the site of interest. Our EPR dosimetry system is capable of measuring radiation-induced free radicals in the tooth of irradiated human subjects to determine the exposure dose. These developments offer potential opportunities for clinical dosimetry and oximetry, which include guiding therapy for individual patients with tumors or vascular disease, by monitoring of tissue oxygenation. Further work is in progress to translate this unique technology to routine clinical practice. PMID:24439333
Burks, Scott R.; Legenzov, Eric A.; Rosen, Gerald M.
2011-01-01
Electron paramagnetic resonance (EPR) imaging using nitroxides as molecular probes is potentially a powerful tool for the detection and physiological characterization of micrometastatic lesions. Encapsulating nitroxides in anti-HER2 immunoliposomes at high concentrations to take advantage of the “self-quenching” phenomenon of nitroxides allows generation of robust EPR signals in HER2-overexpressing breast tumor cells with minimal background from indifferent tissues or circulating liposomes. We investigated the in vivo pharmacological properties of nitroxides encapsulated in sterically stabilized liposomes designed for long circulation times. We show that circulation times of nitroxides can be extended from hours to days; this increases the proportion of liposomes in circulation to enhance tumor targeting. Furthermore, nitroxides encapsulated in sterically stabilized anti-HER2 immunoliposomes can be delivered to HER2-overexpressing tumors at micromolar concentrations, which should be imageable by EPR. Lastly, after in vivo administration, liposomally encapsulated nitroxide signal also appears in the liver, spleen, and kidneys. Although these organs are spatially distinct and would not hinder tumor imaging in our model, understanding nitroxide signal retention in these organs is essential for further improvements in EPR imaging contrast between tumors and other tissues. These results lay the foundation to use liposomally delivered nitroxides and EPR imaging to visualize tumor cells in vivo. PMID:21737567
Rancan, F; Nazemi, B; Rautenberg, S; Ryll, M; Hadam, S; Gao, Q; Hackbarth, S; Haag, S F; Graf, C; Rühl, E; Blume-Peytavi, U; Lademann, J; Vogt, A; Meinke, M C
2014-05-01
Several nanoparticle-based formulations used in cosmetics and dermatology are exposed to sunlight once applied to the skin. Therefore, it is important to study possible synergistic effects of nanoparticles and ultraviolet radiation. Electron paramagnetic resonance spectroscopy (EPR) was used to detect intracellular free radicals induced by ultraviolet B (UVB) radiation and amorphous silica nanoparticle and to evaluate the influence of nanoparticle surface chemistry on particle cytotoxicity toward HaCaT cells. Uncoated titanium dioxide nanoparticles served as positive control. In addition, particle intracellular uptake, viability, and induction of interleukin-6 were measured. We found that photo-activated titanium dioxide particles induced a significant amount of intracellular free radicals. On the contrary, no intracellular free radicals were generated by the investigated silica nanoparticles in the dark as well as under UVB radiation. However, under UVB exposure, the non-functionalized silica nanoparticles altered the release of IL-6. At the same concentrations, the amino-functionalized silica nanoparticles had no influence on UVB-induced IL-6 release. EPR spectroscopy is a useful technique to measure nanoparticle-induced intracellular free radicals. Non-toxic concentrations of silica particles enhanced the toxicity of UVB radiation. This synergistic effect was not mediated by particle-generated free radicals and correlated with particle surface charge and intracellular distribution. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Conception of the first magnetic resonance imaging contrast agents: a brief history.
de Haën, C
2001-08-01
About 20 years ago, a technological innovation process started that eventually led to the affirmation of magnetic resonance imaging (MRI) contrast agents, which are used today in about 25% of all MRI procedures, as medical diagnostic tools. The process began with exploration of various technical possibilities and the conception in the years 1981 to 1982 of two types of agents (soluble paramagnetic chelates and protection colloid-stabilized colloidal particle solutions of magnetite) that eventually found embodiments in commercially available products. The pioneering products that eventually reached the market were gadopentetate dimeglumine (Magnevist, Schering AG) and the ferumoxides (Endorem, Guerbet SA; or Ferridex , Berlex Laboratories Inc.). The history of the conception phase of the technology is reconstructed here, focusing on the social dynamics rather than on technological aspects. In the period 1981 to 1982, a number of independent inventors from industry and academia conceived of water-soluble paramagnetic chelates and protection colloid-stabilized colloidal solutions of small particles of magnetite, both of acceptable tolerability, as contrast agents for MRI. Priorities on patents conditioned the further course of events. The analyzed history helps in understanding the typical roles of different institutions in technological innovation. The foundation of MRI contrast agent technology in basic science clearly was laid in academia. During the conception of practical products, industry assumed a dominant role. Beginning with the radiological evaluation of candidate products, the collaboration between industry and academia became essential.
NASA Astrophysics Data System (ADS)
Sakai, Osamu; Suzuki, Taku T.
2018-05-01
The scattering of an electron-spin-polarized 4He+ beam on paramagnetic materials has an anomalously large asymmetric scattering component (ASC) around 10%, which is 104 times that expected from the spin-orbit coupling for the potential of the target nucleus. The scattering angle (θ) dependence of the ASC has been measured. It changes sign near 90° for some materials (for example, Au and Pt), while it does not change sign for other materials (for example, Pb and Bi). It has been noted that the spin-orbit interaction of electrons on the target in the electron-transfer intermediate state causes the ASC of He nucleus motion, and it has also been predicted that the sign change in the θ dependence occurs when the d electron transfer is dominant. This seems to correspond to the cases of Au and Pt, but not to the cases of Pb and Bi. The previous approach is refined on the basis of the partial wave representation, which can give a more correct estimation of the ASC. It is shown that the sign change appears in the weak-resonance domain in the case of d electron excitation, whereas the sign change disappears in the strong-resonance domain. Our calculated results qualitatively agree with the material dependence of the ASC observed experimentally.
High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots.
Genc, Rukan; Alas, Melis Ozge; Harputlu, Ersan; Repp, Sergej; Kremer, Nora; Castellano, Mike; Colak, Suleyman Gokhan; Ocakoglu, Kasim; Erdem, Emre
2017-09-11
Multi-colored, water soluble fluorescent carbon nanodots (C-Dots) with quantum yield changing from 4.6 to 18.3% were synthesized in multi-gram using dated cola beverage through a simple thermal synthesis method and implemented as conductive and ion donating supercapacitor component. Various properties of C-Dots, including size, crystal structure, morphology and surface properties along with their Raman and electron paramagnetic resonance spectra were analyzed and compared by means of their fluorescence and electronic properties. α-Manganese Oxide-Polypyrrole (PPy) nanorods decorated with C-Dots were further conducted as anode materials in a supercapacitor. Reduced graphene oxide was used as cathode along with the dicationic bis-imidazolium based ionic liquid in order to enhance the charge transfer and wetting capacity of electrode surfaces. For this purpose, we used octyl-bis(3-methylimidazolium)diiodide (C8H16BImI) synthesized by N-alkylation reaction as liquid ionic membrane electrolyte. Paramagnetic resonance and impedance spectroscopy have been undertaken in order to understand the origin of the performance of hybrid capacitor in more depth. In particular, we obtained high capacitance value (C = 17.3 μF/cm 2 ) which is exceptionally related not only the quality of synthesis but also the choice of electrode and electrolyte materials. Moreover, each component used in the construction of the hybrid supercapacitor is also played a key role to achieve high capacitance value.
Tsegaw, Yetsedaw Andargie; Sander, Wolfram; Kaiser, Ralf I
2016-03-10
Thin films of nitromethane (CH3NO2) along with its isotopically labeled counterpart D3-nitromethane (CD3NO2) were photolyzed at discrete wavelength between 266 nm (4.7 eV) and 121 nm (10.2 eV) to explore the underlying mechanisms involved in the decomposition of model compounds of energetic materials in the condensed phase at 5 K. The chemical modifications of the ices were traced in situ via electron paramagnetic resonance, thus focusing on the detection of (hitherto elusive) reaction intermediates and products with unpaired electrons. These studies revealed the formation of two carbon-centered radicals [methyl (CH3), nitromethyl (CH2NO2)], one oxygen-centered radical [methoxy (CH3O)], two nitrogen-centered radicals [nitrogen monoxide (NO), nitrogen dioxide (NO2)], as well as atomic hydrogen (H). The decomposition products of these channels and the carbon-centered nitromethyl (CH2NO2) radical in particular represent crucial reaction intermediates leading via sequential molecular mass growth processes in the exposed nitromethane samples to complex organic molecules as predicted previously by dynamics calculations. The detection of the nitromethyl (CH2NO2) radical along with atomic hydrogen (H) demonstrated the existence of a high-energy decomposition pathway, which is closed under collisionless conditions in the gas phase.
Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals
NASA Astrophysics Data System (ADS)
Kananen, B. E.; Halliburton, L. E.; Scherrer, E. M.; Stevens, K. T.; Foundos, G. K.; Chang, K. B.; Giles, N. C.
2017-08-01
Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors ( M gGa0 ) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors ( M gGa- ). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion adjacent to an Mg ion at a sixfold-coordinated Ga site. These M gGa0 acceptors (S = 1/2) have a slightly anisotropic g matrix (principal values are 2.0038, 2.0153, and 2.0371). There is also partially resolved 69Ga and 71Ga hyperfine structure resulting from unequal interactions with the two Ga ions adjacent to the hole. With the magnetic field along the a direction, hyperfine parameters are 2.61 and 1.18 mT for the 69Ga nuclei at the two inequivalent neighboring Ga sites. The M gGa0 acceptors thermally convert back to their nonparamagnetic M gGa- charge state when the temperature of the crystal is raised above approximately 250 K.
Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.
2006-01-01
The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ~10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552
Training effects on ROS production determined by electron paramagnetic resonance in master swimmers.
Mrakic-Sposta, Simona; Gussoni, Maristella; Porcelli, Simone; Pugliese, Lorenzo; Pavei, Gaspare; Bellistri, Giuseppe; Montorsi, Michela; Tacchini, Philippe; Vezzoli, Alessandra
2015-01-01
Acute exercise induces an increase in Reactive Oxygen Species (ROS) production dependent on exercise intensity with highest ROS amount generated by strenuous exercise. However, chronic repetition of exercise, that is, exercise training, may reduce exercise-induced oxidative stress. Aim of this study was to evaluate the effects of 6-weeks high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on ROS production and antioxidant capacity in sixteen master swimmers. Time course changes of ROS generation were assessed by Electron Paramagnetic Resonance in capillary blood by a microinvasive approach. An incremental arm-ergometer exercise (IE) until exhaustion was carried out at both before (PRE) and after (POST) training (Trg) period. A significant (P < 0.01) increase of ROS production from REST to the END of IE in PRE Trg (2.82 ± 0.66 versus 3.28 ± 0.66 µmol·min(-1)) was observed. HIDT increased peak oxygen consumption (36.1 ± 4.3 versus 40.6 ± 5.7 mL·kg(-1)·min(-1) PRE and POST Trg, resp.) and the antioxidant capacity (+13%) while it significantly decreased the ROS production both at REST (-20%) and after IE (-25%). The observed link between ROS production, adaptive antioxidant defense mechanisms, and peak oxygen consumption provides new insight into the correlation between ROS response pathways and muscle metabolic function.
Emoto, Miho C; Matsuoka, Yuta; Yamada, Ken-Ichi; Sato-Akaba, Hideo; Fujii, Hirotada G
2017-04-15
Glutathione (GSH) is the most abundant non-protein thiol that buffers reactive oxygen species in the brain. GSH does not reduce nitroxides directly, but in the presence of ascorbates, addition of GSH increases ascorbate-induced reduction of nitroxides. In this study, we used electron paramagnetic resonance (EPR) imaging and the nitroxide imaging probe, 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), to non-invasively obtain spatially resolved redox data from mouse brains depleted of GSH with diethyl maleate compared to control. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of the redox status in vivo and mapped as a "redox map". The obtained redox maps from control and GSH-depleted mouse brains showed a clear change in the brain redox status, which was due to the decreased levels of GSH in brains as measured by a biochemical assay. We observed a linear relationship between the reduction rate constant of MCP and the level of GSH for both control and GSH-depleted mouse brains. Using this relationship, the GSH level in the brain can be estimated from the redox map obtained with EPR imaging. Copyright © 2017 Elsevier Inc. All rights reserved.
Serio, A; Chiarini, M; Tettamanti, E; Paparella, A
2010-08-01
To evaluate the effect of oregano essential oil on Listeria monocytogenes cytoplasmic membrane. Nitroxide free-radical Electron Paramagnetic Resonance was applied on L. monocytogenes after 30 min exposure to oregano essential oil concentrations ranging from 0 to 1.25%. The impact of essential oil on the number of viable cells was evaluated by plate count. Growth dynamics of survivors in BHI and TSB were evaluated by turbidometry. After exposure to essential oil concentrations up to 0.50%, the membrane fluidity was changed and its order increased. When L. monocytogenes was exposed to higher concentrations, membrane order parameters slightly returned to the values of untreated cells. However, when the cells were exposed to EO in the presence of sodium azide, which impairs energy metabolism, the membrane fluidity was progressively enhanced, even at the lowest EO concentration (0.25%). Microbiological analyses confirmed a progressive reduction of viable count, at increasing essential oil concentrations. Both in BHI and TSB, the Lag phase length increased in treated cells with respect to controls, suggesting a cell damage recovery. The combined approach including microbiological and EPR analyses provided relevant information on membrane modification and cell response to essential oils. EPR approach was demonstrated to be an effective and helpful tool to comprehend the modifications exerted by essential oil on the bacterial membrane.
Effects of water on fingernail electron paramagnetic resonance dosimetry.
Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi
2016-09-01
Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation-these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Kumada, Takayuki; Tachikawa, Hiroto; Takayanagi, Toshiyuki
2005-03-07
The quartet electron paramagnetic resonance (EPR) lines observed in gamma- and X-ray irradiated solid para-H2, which have previously been assigned to H2-, are reinvestigated. We have reassigned the quartet lines to H6 rather than H2- mainly due to comparison of experimentally obtained EPR parameters to theoretical results. Based on the new assignment, trapping site, rotation, ortho-para conversion, quantum diffusion and isotope effect of H+ have been reinterpreted by the precise reanalysis as follows. The H6+ ion is composed of the collinearly aligned H2+ core at the center and two H2 rotors at both ends, occupies a single substitutional site, and has a precession motion around a crystalline axis with the angle of approximately 57 degrees. The ortho-para conversion of H2+ core of H6+ is completed within the time-scale of hours, whereas ortho-H2 molecules near H6+ convert much faster. H6+ diffuses quantum mechanically by the repetition of H6+ + H2 --> H2 + H6+ reaction. The diffusion terminates by the reaction, H6(+) + HD --> H5D(+) + H2, with a HD impurity contained in the para-H2 sample at natural abundance. Finally, we will propose a possible reason why H6+ is produced instead of H3+ in the irradiated solid H2.
Martel, L; Somers, J; Berkmann, C; Koepp, F; Rothermel, A; Pauvert, O; Selfslag, C; Farnan, I
2013-05-01
A concept to integrate a commercial high-resolution, magic angle spinning nuclear magnetic resonance (MAS-NMR) probe capable of very rapid rotation rates (70 kHz) in a hermetically sealed enclosure for the study of highly radiotoxic materials has been developed and successfully demonstrated. The concept centres on a conventional wide bore (89 mm) solid-state NMR magnet operating with industry standard 54 mm diameter probes designed for narrow bore magnets. Rotor insertion and probe tuning take place within a hermetically enclosed glovebox, which extends into the bore of the magnet, in the space between the probe and the magnet shim system. Oxygen-17 MAS-NMR measurements demonstrate the possibility of obtaining high quality spectra from small sample masses (~10 mg) of highly radiotoxic material and the need for high spinning speeds to improve the spectral resolution when working with actinides. The large paramagnetic susceptibility arising from actinide paramagnetism in (Th(1-x)U(x))O2 solid solutions gives rise to extensive spinning sidebands and poor resolution at 15 kHz, which is dramatically improved at 55 kHz. The first (17)O MAS-NMR measurements on NpO(2+x) samples spinning at 55 kHz are also reported. The glovebox approach developed here for radiotoxic materials can be easily adapted to work with other hazardous or even air sensitive materials.
NASA Astrophysics Data System (ADS)
Bourbin, M.; Derenne, S.; Gourier, D.; Rouzaud, J.-N.; Gautret, P.; Westall, F.
2012-12-01
Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.
Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies.
Smolensky Koganov, Elena; Leitus, Gregory; Rozin, Rinat; Weiner, Lev; Friedman, Noga; Sheves, Mordechai
2017-05-04
Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn 2+ and Ca 2+ , to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn 2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn 2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn 2+ cations to xR is due to the formation of Mn 2+ clusters. Our data demonstrate that Ca 2+ cations bind to DI-xR with a lower affinity than Mn 2+ , supporting the assumption that binding of Mn 2+ occurs through cluster formation, because Ca 2+ cations cannot form clusters in contrast to Mn 2+ .
Tanaka, Motomasa; Matsuura, Koji; Yoshioka, Shiro; Takahashi, Satoshi; Ishimori, Koichiro; Hori, Hiroshi; Morishima, Isao
2003-01-01
To observe the formation process of compound I in horseradish peroxidase (HRP), we developed a new freeze-quench device with ∼200 μs of the mixing-to-freezing time interval and observed the reaction between HRP and hydrogen peroxide (H2O2). The developed device consists of a submillisecond solution mixer and rotating copper or silver plates cooled at 77 K; it freezes the small droplets of mixed solution on the surface of the rotating plates. The ultraviolet-visible spectra of the sample quenched at ∼1 ms after the mixing of HRP and H2O2 suggest the formation of compound I. The electron paramagnetic resonance spectra of the same reaction quenched at ∼200 μs show a convex peak at g = 2.00, which is identified as compound I due to its microwave power and temperature dependencies. The absence of ferric signals in the electron paramagnetic resonance spectra of the quenched sample indicates that compound I is formed within ∼200 μs after mixing HRP and H2O2. We conclude that the activation of H2O2 in HRP at ambient temperature completes within ∼200 μs. The developed device can be generally applied to investigate the electronic structures of short-lived intermediates of metalloenzymes. PMID:12609902
Dawson, Daniel M; Jamieson, Lauren E; Mohideen, M Infas H; McKinlay, Alistair C; Smellie, Iain A; Cadou, Romain; Keddie, Neil S; Morris, Russell E; Ashbrook, Sharon E
2013-01-21
Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach.
Trommer, Hagen; Böttcher, Rolf; Huschka, Christoph; Wohlrab, Wolfgang; Neubert, Reinhard H H
2005-08-01
This study is the continuation of our research into vitamin C and its possible effects on human skin after topical administration. The effects of ascorbic acid, iron ions and UV irradiation on stratum corneum lipid models were investigated. The lipid models used were: a simple system (linolenic acid dispersion), a complex system (liposomes consisting of dipalmitoylphosphatidylcholine, cholesterol and linolenic acid) and complex systems with additionally incorporated ceramides (types III and IV). The lipid peroxidation was quantified by the thiobarbituric acid assay. A human adult low-calcium high-temperature (HaCaT) keratinocytes cell culture was used as a second in-vitro model. The amount of intracellular peroxides was determined by measuring the fluorescence intensity using the dihydrorhodamine 123 assay. Electron paramagnetic resonance spectroscopy was used to study the influence of ascorbic acid and iron ions on the signal intensity of 5-doxylstearic acid during UV exposure. Ascorbic acid showed prooxidative properties in the thiobarbituric acid assay whereas cell protection was measured in the HaCaT keratinocytes experiments. Electron paramagnetic resonance investigations revealed different extents of free radical production generated by iron ions, ascorbic acid and UV irradiation. In evaluating the results from this study new aspects of the mechanism of lipid damage caused by these three factors were suggested, transcending the simple redox behaviour of ascorbic acid.
NASA Astrophysics Data System (ADS)
Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.
2018-05-01
The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.
Characterization of oxygen defects in diamond by means of density functional theory calculations
NASA Astrophysics Data System (ADS)
Thiering, Gergő; Gali, Adam
2016-09-01
Point defects in diamond are of high interest as candidates for realizing solid state quantum bits, bioimaging agents, or ultrasensitive electric or magnetic field sensors. Various artificial diamond synthesis methods should introduce oxygen contamination in diamond, however, the incorporation of oxygen into diamond crystal and the nature of oxygen-related point defects are largely unknown. Oxygen may be potentially interesting as a source of quantum bits or it may interact with other point defects which are well established solid state qubits. Here we employ plane-wave supercell calculations within density functional theory, in order to characterize the electronic and magneto-optical properties of various oxygen-related defects. Besides the trivial single interstitial and substitutional oxygen defects we also consider their complexes with vacancies and hydrogen atoms. We find that oxygen defects are mostly electrically active and introduce highly correlated orbitals that pose a challenge for density functional theory modeling. Nevertheless, we are able to identify the fingerprints of substitutional oxygen defect, the oxygen-vacancy and oxygen-vacancy-hydrogen complexes in the electron paramagnetic resonance spectrum. We demonstrate that first principles calculations can predict the motional averaging of the electron paramagnetic resonance spectrum of defects that are subject to Jahn-Teller distortion. We show that the high-spin neutral oxygen-vacancy defect exhibits very fast nonradiative decay from its optical excited state that might hinder applying it as a qubit.
Paramagnetic alignment of small grains: A novel method for measuring interstellar magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Thiem; Martin, P. G.; Lazarian, A.
2014-07-20
We present a novel method to measure the strength of interstellar magnetic fields using ultraviolet (UV) polarization of starlight that is in part produced by weakly aligned, small dust grains. We begin with calculating the degrees of the paramagnetic alignment of small (size a ∼ 0.01 μm) and very small (a ∼ 0.001 μm) grains in the interstellar magnetic field due to the Davis-Greenstein relaxation and resonance relaxation. To calculate the degrees of paramagnetic alignment, we use Langevin equations and take into account various interaction processes essential for the rotational dynamics of small grains. We find that the alignment ofmore » small grains is necessary to reproduce the observed polarization in the UV, although the polarization arising from these small grains is negligible at the optical and infrared (IR) wavelengths. Based on fitting theoretical models to observed extinction and polarization curves, we find that the best-fit model for the case with the peak wavelength of polarization λ{sub max} < 0.55 μm requires a higher degree of alignment of small grains than for the typical case with λ{sub max} = 0.55 μm. We interpret the correlation between the systematic increase of the UV polarization relative to maximum polarization (i.e., of p(6 μm{sup –1})/p{sub max}) with λ{sub max}{sup −1} for cases of low λ{sub max} by appealing to the higher degree of alignment of small grains. We utilize the correlation of the paramagnetic alignment of small grains with the magnetic field strength B to suggest a new way to measure B using the observable parameters λ{sub max} and p(6 μm{sup –1})/p{sub max}.« less
Fries, Pascal H
2012-01-28
We propose an easily applicable method for investigating the pair distribution function of a lanthanide Ln(3+) complex LnL (L = ligand) with respect to any solvent or solute molecule A carrying observable nuclear spins. Let r be the distance of Ln(3+) to the observed nuclear spin I. We derive a simple expression of the experimental value of the configurational average of 1/r(6) in terms of longitudinal paramagnetic relaxation (rate) enhancements (PREs) of the spin I measured on a standard high-resolution NMR spectrometer and due to well-chosen concentrations of LnL complexes in which Ln(3+) is a fast-relaxing paramagnetic lanthanide or the slowly-relaxing gadolinium Gd(3+). The derivation is justified in the general case of a molecule A which is by turns in a bound state where it follows the complex and a free state where it moves independently. It rests on the expression of the underlying PRE theory in terms of the angle-dependent pair distribution function of LnL and A. The simplifications of this theory in the high-field regime and under the condition of fast exchange between bound and free states are carefully discussed. We also show that original information on the angle dependence of the molecular pair distribution function can be gained from the measured paramagnetic dipolar shifts induced by complexed fast-relaxing Ln(3+) ions. The method is illustrated by the case study of the anionic Lnttha(3-) = [Ln(3+)(ttha)](3-) (ttha(6-) = triethylene tetraamine hexacetate) complex interacting with the biologically important tripeptide Arg-Gly-Asp (RGD) which carries peripheral ionic groups. The usefulness of an auxiliary reference outer sphere probe solute is emphasized. © 2012 American Institute of Physics
Design and testing of a 750MHz CW-EPR digital console for small animal imaging.
Sato-Akaba, Hideo; Emoto, Miho C; Hirata, Hiroshi; Fujii, Hirotada G
2017-11-01
This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed. Copyright © 2017 Elsevier Inc. All rights reserved.
Low-temperature magnetic resonance imaging with 2.8 μm isotropic resolution
NASA Astrophysics Data System (ADS)
Chen, Hsueh-Ying; Tycko, Robert
2018-02-01
We demonstrate the feasibility of high-resolution 1H magnetic resonance imaging (MRI) at low temperatures by obtaining an MRI image of 20 μm diameter glass beads in glycerol/water at 28 K with 2.8 μm isotropic resolution. The experiments use a recently-described MRI apparatus (Moore and Tycko, 2015) with minor modifications. The sample is contained within a radio-frequency microcoil with 150 μm inner diameter. Sensitivity is additionally enhanced by paramagnetic doping, optimization of the sample temperature, three-dimensional phase-encoding of k-space data, pulsed spin-lock detection of 1H nuclear magnetic resonance signals, and spherical sampling of k-space. We verify that the actual image resolution is 2.7 ± 0.3 μm by quantitative comparisons of experimental and calculated images. Our imaging approach is compatible with dynamic nuclear polarization, providing a path to significantly higher resolution in future experiments.
Design and testing of a 750 MHz CW-EPR digital console for small animal imaging
NASA Astrophysics Data System (ADS)
Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.
2017-11-01
This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.
Kaminker, Ilia; Han, Songi
2018-06-07
Dynamic nuclear polarization (DNP) takes center stage in nuclear magnetic resonance (NMR) as a tool to amplify its signal by orders of magnitude through the transfer of polarization from electron to nuclear spins. In contrast to modern NMR and electron paramagnetic resonance (EPR) that extensively rely on pulses for spin manipulation in the time domain, the current mainstream DNP technology exclusively relies on monochromatic continuous wave (CW) irradiation. This study introduces arbitrary phase shaped pulses that constitute a train of coherent chirp pulses in the time domain at 200 GHz (7 T) to dramatically enhance the saturation bandwidth and DNP performance compared to CW DNP, yielding up to 500-fold in NMR signal enhancements. The observed improvement is attributed to the recruitment of additional electron spins contributing to DNP via the cross-effect mechanism, as experimentally confirmed by two-frequency pump-probe electron-electron double resonance (ELDOR).
Tortora, Domenico; Severino, Mariasavina; Sedlacik, Jan; Toselli, Benedetta; Malova, Mariya; Parodi, Alessandro; Morana, Giovanni; Fato, Marco Massimo; Ramenghi, Luca Antonio; Rossi, Andrea
2018-05-10
Germinal matrix-intraventricular hemorrhage (GMH-IVH) is a common form of intracranial hemorrhage occurring in preterm neonates that may affect normal brain development. Although the primary lesion is easily identified on MRI by the presence of blood products, its exact extent may not be recognizable with conventional sequences. Quantitative susceptibility mapping (QSM) quantify the spatial distribution of magnetic susceptibility within biological tissues, including blood degradation products. To evaluate magnetic susceptibility of normal-appearing white (WM) and gray matter regions in preterm neonates with and without GMH-IVH. Retrospective case-control. A total of 127 preterm neonates studied at term equivalent age: 20 had mild GMH-IVH (average gestational age 28.7 ± 2.1 weeks), 15 had severe GMH-IVH (average gestational age 29.3 ± 1.8 weeks), and 92 had normal brain MRI (average gestational age 29.8 ± 1.8 weeks). QSM at 1.5 Tesla. QSM analysis was performed for each brain hemisphere with a region of interest-based approach including five WM regions (centrum semiovale, frontal, parietal, temporal, and cerebellum), and a subcortical gray matter region (basal ganglia/thalami). Changes in magnetic susceptibility were explored using a one-way analysis of covariance, according to GMH-IVH severity (P < 0.05). In preterm neonates with normal brain MRI, all white and subcortical gray matter regions had negative magnetic susceptibility values (diamagnetic). Neonates with severe GMH-IVH showed higher positive magnetic susceptibility values (i.e. paramagnetic) in the centrum semiovale (0.0019 versus -0.0014 ppm; P < 0.001), temporal WM (0.0011 versus -0.0012 ppm; P = 0.037), and parietal WM (0.0005 versus -0.0001 ppm; P = 0.002) compared with controls. No differences in magnetic susceptibility were observed between neonates with mild GMH-IVH and controls (P = 0.236). Paramagnetic susceptibility changes occur in several normal-appearing WM regions of neonates with severe GMH-IVH, likely related to the accumulation of hemosiderin/ferritin iron secondary to diffusion of extracellular hemoglobin from the ventricle into the periventricular WM. 4 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
An introduction to NMR-based approaches for measuring protein dynamics
Kleckner, Ian R; Foster, Mark P
2010-01-01
Proteins are inherently flexible at ambient temperature. At equilibrium, they are characterized by a set of conformations that undergo continuous exchange within a hierarchy of spatial and temporal scales ranging from nanometers to micrometers and femtoseconds to hours. Dynamic properties of proteins are essential for describing the structural bases of their biological functions including catalysis, binding, regulation and cellular structure. Nuclear magnetic resonance (NMR) spectroscopy represents a powerful technique for measuring these essential features of proteins. Here we provide an introduction to NMR-based approaches for studying protein dynamics, highlighting eight distinct methods with recent examples, contextualized within a common experimental and analytical framework. The selected methods are (1) Real-time NMR, (2) Exchange spectroscopy, (3) Lineshape analysis, (4) CPMG relaxation dispersion, (5) Rotating frame relaxation dispersion, (6) Nuclear spin relaxation, (7) Residual dipolar coupling, (8) Paramagnetic relaxation enhancement. PMID:21059410
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Karpova, S. G.; Staroverova, O. V.; Krutikova, A. A.; Orlov, N. A.; Kucherenko, E. L.; Iordanskii, A. L.
2016-11-01
The fibrous materials (the mats) based on poly-3-hydroxybutyrate (PHB) containing the drug, dipiridomole (DPD) were produced by electrospinning (ES). Thermophysical and dynamical properties of the single filaments and the mats were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and probe electron paramagnetic resonance spectroscopy (EPR). The effect of annealing temperature on the structure and crystallinity of the fibers was examined. It was shown that the loading of DPD influences on both the melting enthalpy and the morphology of the fibers. Besides the analysis of EPR spectra revealed that there are two populations of spin-probes distributed in the rigid and nonrigid amorphous regions of the PHB fibers respectively. For all fibrous materials with different content of DPD (0-5%) the correlation between thermophysical (DSC) and dynamic data (EPR) was observed.
Time-resolved EPR spectroscopy in a Unix environment.
Lacoff, N M; Franke, J E; Warden, J T
1990-02-01
A computer-aided time-resolved electron paramagnetic resonance (EPR) spectrometer implemented under version 2.9 BSD Unix was developed by interfacing a Varian E-9 EPR spectrometer and a Biomation 805 waveform recorder to a PDP-11/23A minicomputer having MINC A/D and D/A capabilities. Special problems with real-time data acquisition in a multiuser, multitasking Unix environment, addressing of computer main memory for the control of hardware devices, and limitation of computer main memory were resolved, and their solutions are presented. The time-resolved EPR system and the data acquisition and analysis programs, written entirely in C, are described. Furthermore, the benefits of utilizing the Unix operating system and the C language are discussed, and system performance is illustrated with time-resolved EPR spectra of the reaction center cation in photosystem 1 of green plant photosynthesis.
NASA Astrophysics Data System (ADS)
Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel
2015-12-01
The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.
NASA Astrophysics Data System (ADS)
Sheela, K. Juliet; Subbulakshmi, N.; Subramanian, P.
2018-04-01
Electron paramagnetic resonance (EPR) studies have been investigated on Cu2+ ion incorporated into the single crystals of potassium succinate-succinic acid (KSSA) at room temperature. Two magnetically in-equivalent Cu2+ sites in the lattice are identified, among them site I has been reported. The spin Hamiltonian parameters are determined with the fitting of spectra to rhombic symmetry crystalline field. The co-ordination of the Cu2+ ion in this molecule is a distorted dodecahedron. From the calculated gxx, gyy, gzz and Axx, Ayy, Azz and their directional cosines values, location of site I impurity ion Cu2+ could be identified as a substituitional one. Also the ground state wave function of the impurity ion was found to be d2z.
KHAN, NADEEM; MUPPARAJU, SRIRAM P.; MINTZOPOULOS, DIONYSSIOS; KESARWANI, MEENU; RIGHI, VALERIA; RAHME, LAURENCE G.; SWARTZ, HAROLD M.; TZIKA, A. ARIA
2010-01-01
Using a mouse model, we tested the hypotheses that severe burn trauma causes metabolic disturbances in skeletal muscle, and that these can be measured and repeatedly followed by in vivo electron paramagnetic resonance (EPR). We used a 1.2-GHz (L-band) EPR spectrometer to measure partial pressure of oxygen (pO2) levels, redox status and oxidative stress following a non-lethal burn trauma model to the left hind limbs of mice. Results obtained in the burned mouse gastrocnemius muscle indicated a significant decrease in tissue pO2 immediately (P=0.032) and at 6 h post burn (P=0.004), compared to the gastrocnemius of the unburned hind limb. The redox status of the skeletal muscle also peaked at 6 h post burn (P=0.027) in burned mice. In addition, there was an increase in the EPR signal of the nitroxide produced by oxidation of the hydroxylamine (CP-H) probe at 12 h post burn injury, indicating a burn-induced increase in mitochondrial reactive oxygen species (ROS). The nitroxide signal continued to increase between 12 and 24 h, suggesting a further increase in ROS generation post burn. These results confirm genomic results, which indicate a downregulation of antioxidant genes and therefore strongly suggest the dysfunction of the mitochondrial oxidative system. We believe that the direct measurement of tissue parameters such as pO2, redox and ROS by EPR may be used to complement measurements by nuclear magnetic resonance (NMR) in order to assess tissue damage and the therapeutic effectiveness of antioxidant agents in severe burn trauma. PMID:21179378
Sharma, Ajay; Gaidamakova, Elena K.; Matrosova, Vera Y.; Bennett, Brian; Daly, Michael J.; Hoffman, Brian M.
2013-01-01
The remarkable ability of bacterium Deinococcus radiodurans to survive extreme doses of γ-rays (12,000 Gy), 20 times greater than Escherichia coli, is undiminished by loss of Mn-dependent superoxide dismutase (SodA). D. radiodurans radiation resistance is attributed to the accumulation of low-molecular-weight (LMW) “antioxidant” Mn2+–metabolite complexes that protect essential enzymes from oxidative damage. However, in vivo information about such complexes within D. radiodurans cells is lacking, and the idea that they can supplant reactive-oxygen-species (ROS)–scavenging enzymes remains controversial. In this report, measurements by advanced paramagnetic resonance techniques [electron-spin-echo (ESE)-EPR/electron nuclear double resonance/ESE envelope modulation (ESEEM)] reveal differential details of the in vivo Mn2+ speciation in D. radiodurans and E. coli cells and their responses to 10 kGy γ-irradiation. The Mn2+ of D. radiodurans exists predominantly as LMW complexes with nitrogenous metabolites and orthophosphate, with negligible EPR signal from Mn2+ of SodA. Thus, the extreme radiation resistance of D. radiodurans cells cannot be attributed to SodA. Correspondingly, 10 kGy irradiation causes no change in D. radiodurans Mn2+ speciation, despite the paucity of holo-SodA. In contrast, the EPR signal of E. coli is dominated by signals from low-symmetry enzyme sites such as that of SodA, with a minority pool of LMW Mn2+ complexes that show negligible coordination by nitrogenous metabolites. Nonetheless, irradiation of E. coli majorly changes LMW Mn2+ speciation, with extensive binding of nitrogenous ligands created by irradiation. We infer that E. coli is highly susceptible to radiation-induced ROS because it lacks an adequate supply of LMW Mn antioxidants. PMID:23536297
Emoto, Miho C; Yamato, Mayumi; Sato-Akaba, Hideo; Yamada, Ken-ichi; Fujii, Hirotada G
2015-11-03
Much evidence supports the idea that oxidative stress is involved in the pathogenesis of epilepsy, and therapeutic interventions with antioxidants are expected as adjunct antiepileptic therapy. The aims of this study were to non-invasively obtain spatially resolved redox data from control and pentylenetetrazole (PTZ)-induced kindled mouse brains by electron paramagnetic resonance (EPR) imaging and to visualize the brain regions that are sensitive to oxidative damage. After infusion of the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), a series of EPR images of PTZ-induced mouse heads were measured. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of redox status in vivo and mapped as a redox map. The obtained redox map showed heterogeneity in the redox status in PTZ-induced mouse brains compared with control. The co-registered image of the redox map and magnetic resonance imaging (MRI) for both control and PTZ-induced mice showed a clear change in the redox status around the hippocampus after PTZ. To examine the role of antioxidants on the brain redox status, the levels of antioxidants were measured in brain tissues of control and PTZ-induced mice. Significantly lower concentrations of glutathione in the hippocampus of PTZ-kindled mice were detected compared with control. From the results of both EPR imaging and the biochemical assay, the hippocampus was found to be susceptible to oxidative damage in the PTZ-induced animal model of epilepsy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy
Davydov, Dmitri R.; Yang, Zhongyu; Davydova, Nadezhda; Halpert, James R.; Hubbell, Wayne L.
2016-01-01
We used high hydrostatic pressure as a tool for exploring the conformational landscape of human cytochrome P450 3A4 (CYP3A4) by electron paramagnetic resonance and fluorescence spectroscopy. Site-directed incorporation of a luminescence resonance energy transfer donor-acceptor pair allowed us to identify a pressure-dependent equilibrium between two states of the enzyme, where an increase in pressure increased the spatial separation between the two distantly located fluorophores. This transition is characterized by volume change (ΔV°) and P1/2 values of −36.8 ± 5.0 mL/mol and 1.45 ± 0.33 kbar, respectively, which corresponds to a Keq° of 0.13 ± 0.06, so that only 15% of the enzyme adopts the pressure-promoted conformation at ambient pressure. This pressure-promoted displacement of the equilibrium is eliminated by the addition of testosterone, an allosteric activator. Using site-directed spin labeling, we demonstrated that the pressure- and testosterone-sensitive transition is also revealed by pressure-induced changes in the electron paramagnetic resonance spectra of a nitroxide side chain placed at position 85 or 409 of the enzyme. Furthermore, we observed a pressure-induced displacement of the emission maxima of a solvatochromic fluorophore (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin) placed at the same positions, which suggests a relocation to a more polar environment. Taken together, the results reveal an effector-dependent conformational equilibrium between open and closed states of CYP3A4 that involves a pronounced change at the interface between the region of α-helices A/A′ and the meander loop of the enzyme, where residues 85 and 409 are located. Our study demonstrates the high potential of pressure-perturbation strategies for studying protein conformational landscapes. PMID:27074675
Le Breton, Nolwenn; Wright, John J; Jones, Andrew J Y; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M
2017-11-15
Energy-transducing respiratory complex I (NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes in mammalian cells. Here, we used hyperfine electron paramagnetic resonance (EPR) spectroscopic methods, combined with site-directed mutagenesis, to determine the mechanism of a single proton-coupled electron transfer reaction at one of eight iron-sulfur clusters in complex I, [4Fe-4S] cluster N2. N2 is the terminal cluster of the enzyme's intramolecular electron-transfer chain and the electron donor to ubiquinone. Because of its position and pH-dependent reduction potential, N2 has long been considered a candidate for the elusive "energy-coupling" site in complex I at which energy generated by the redox reaction is used to initiate proton translocation. Here, we used hyperfine sublevel correlation (HYSCORE) spectroscopy, including relaxation-filtered hyperfine and single-matched resonance transfer (SMART) HYSCORE, to detect two weakly coupled exchangeable protons near N2. We assign the larger coupling with A( 1 H) = [-3.0, -3.0, 8.7] MHz to the exchangeable proton of a conserved histidine and conclude that the histidine is hydrogen-bonded to N2, tuning its reduction potential. The histidine protonation state responds to the cluster oxidation state, but the two are not coupled sufficiently strongly to catalyze a stoichiometric and efficient energy transduction reaction. We thus exclude cluster N2, despite its proton-coupled electron transfer chemistry, as the energy-coupling site in complex I. Our work demonstrates the capability of pulse EPR methods for providing detailed information on the properties of individual protons in even the most challenging of energy-converting enzymes.
The role of halides on a chromium ligand field in lead borate glasses
NASA Astrophysics Data System (ADS)
Sekhar, K. Chandra; Srinivas, B.; Narsimlu, N.; Narasimha Chary, M.; Shareefuddin, Md
2017-10-01
Glasses with a composition of PbX-PbO-B2O3 (X = F2, Cl2 and Br2) containing Cr3+ ions were prepared by a melt quenching technique and investigated by using x-ray diffraction (XRD), optical absorption and electron paramagnetic resonance (EPR) studies. X-ray diffractograms revealed the amorphous nature of the glasses. The density and molar volume were determined. Density values increased for the PFPBCR glass system and decreased for the PCPBCR and PBPBCR glass systems with the composition. Optical absorption spectra were recorded at room temperature (RT) to evaluate the optical band gap E opt and Urbach energies. All the spectra showed characteristic peaks at around 450 nm, 600 nm and 690 nm, and they are assigned to 4 A 2g → 4 T 1g, 4 A 2g → 4 T 2g, 4 A 2g → 2 E transitions respectively. From the optical absorption spectral data, the crystal field (D q ) and Racah parameters (B and C) have been evaluated. Variations in optical band gaps were explained using the electro negativity of halide ions. Electron paramagnetic resonance (EPR) studies were carried out by introducing Cr3+ as the spin probe. The EPR spectra of all the glass samples were recorded at X-band frequencies. The EPR spectra exhibit two resonance signals with effective g values at g ≈ 4.82 and g ≈ 1.99 and are attributed to isolated Cr3+ ions and exchange coupled Cr3+ pairs respectively. The number of spins along with susceptibility are also calculated from the EPR spectra.
Paramagnetic Europium Salen Complex and Sickle-Cell Anemia
NASA Astrophysics Data System (ADS)
Wynter, Clive I.; Ryan, D. H.; May, Leopold; Oliver, F. W.; Brown, Eugene; Hoffman, Eugene J.; Bernstein, David
2005-04-01
A new europium salen complex, Eu(salen)2NH4, was synthesized, and its composition was confirmed by chemical analysis and infrared spectroscopy. Further characterization was carried out by 151 Eu Mössbauer spectroscopy and magnetic susceptibility measurements. Mössbauer spectroscopic measurements were made at varying temperatures between 9 K and room temperature and a value of Debye temperature of 133 ±5 K was computed. Both Mössbauer and magnetic susceptibility measurements confirmed the paramagnetic behavior of this complex and the trivalent state of the europium ion. In view of the fact that the "odd" paramagnetic molecule NO has been shown to reverse sickling of red blood cells in sickle cell anemia, the interaction between the paramagnetic europium salen complex and sickle cells was examined after incubation with this europium complex and shown to have similar effects.
NASA Astrophysics Data System (ADS)
Palke, A. C.; Geiger, C. A.; Stebbins, J. F.
2015-12-01
The petrological importance of silicate garnet is derived from the presence of three distinct cation sites of varying size and coordination number. This allows for a wide range of trace, minor, and major element substitutions. However, a full and precise crystal-chemical understanding of the nature of transition metals in garnet is not at hand. Possible mechanisms of various charge-balanced substitutions (e.g. octahedral Ti4+ or tetrahedral Al3+) and the structural state of solid solutions (i.e. short- to long-range ordering) need study. We report on ongoing efforts in these directions using 27Al and 29Si Magic-Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) spectroscopy. Early work on synthetic and natural Fe- and Mn-bearing pyrope- and grossular-rich garnets focused on the effect these paramagnetic transition metals have in measuring and interpreting NMR spectra. These results have been expanded with NMR measurements on synthetic pyrope-rich garnets containing other paramagnetic transition metals including Cr3+, V3+, Co2+, and Ni2+ as well as diamagnetic Ti4+. NMR peaks are severely broadened in the presence of even small concentrations of Cr3+, Mn2+, and Fe3+ leading to a loss of spectral resolution. On the other hand, the spectra of garnet containing V3+, Fe2+, Co2+, and Ni2+ have better resolution and show separate paramagnetically shifted NMR peaks. In some cases, crystal-chemical information can be obtained because of the large frequency separations between the NMR peaks that can be assigned to various local atomic configurations around Al and Si. Furthermore, the 27Al NMR spectrum of a synthetic pyrope garnet with about 2% diamagnetic Ti4+ on the octahedral site showed the absence of any tetrahedral Al3+, which rules out the substitution mechanism VITi + IVAl = VIAl + IVSi in the solid solution. Our NMR investigations on garnet are now being made at the exploratory level. We think that NMR spectra of diamagnetic garnet can provide information on a number of crystal-chemical properties. Spectra of garnet containing various paramagnetic transition elements can also, in some cases, give local structural information. With a better understanding of paramagnetic effects in NMR spectroscopy, this type of study can possibly be expanded to other geologically important paramagnetic minerals and phases.
NASA Astrophysics Data System (ADS)
Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin
2016-01-01
Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN-, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane.
Determining the Orientation and Localization of Membrane-Bound Peptides
Hohlweg, Walter; Kosol, Simone; Zangger, Klaus
2012-01-01
Many naturally occurring bioactive peptides bind to biological membranes. Studying and elucidating the mode of interaction is often an essential step to understand their molecular and biological functions. To obtain the complete orientation and immersion depth of such compounds in the membrane or a membrane-mimetic system, a number of methods are available, which are separated in this review into four main classes: solution NMR, solid-state NMR, EPR and other methods. Solution NMR methods include the Nuclear Overhauser Effect (NOE) between peptide and membrane signals, residual dipolar couplings and the use of paramagnetic probes, either within the membrane-mimetic or in the solvent. The vast array of solid state NMR methods to study membrane-bound peptide orientation and localization includes the anisotropic chemical shift, PISA wheels, dipolar waves, the GALA, MAOS and REDOR methods and again the use of paramagnetic additives on relaxation rates. Paramagnetic additives, with their effect on spectral linewidths, have also been used in EPR spectroscopy. Additionally, the orientation of a peptide within a membrane can be obtained by the anisotropic hyperfine tensor of a rigidly attached nitroxide label. Besides these magnetic resonance techniques a series of other methods to probe the orientation of peptides in membranes has been developed, consisting of fluorescence-, infrared- and oriented circular dichroism spectroscopy, colorimetry, interface-sensitive X-ray and neutron scattering and Quartz crystal microbalance. PMID:22044140
Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system.
Wang, Aifei; Guo, Mingyi; Wang, Nan; Zhao, Jianyun; Qi, Wenxiu; Muhammad, Faheem; Chen, Liang; Guo, Yingjie; Nguyen, Nam-Trung; Zhu, Guangshan
2014-05-21
Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn(2+) in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems.
Effect of magnetic coupling on non-radiative relaxation time of Fe3+ sites on LaAl1-xFexO3 pigments
NASA Astrophysics Data System (ADS)
Novatski, A.; Somer, A.; Maranha, F. G.; de Souza, E. C. F.; Andrade, A. V. C.; Antunes, S. R. M.; Borges, C. P. F.; Dias, D. T.; Medina, A. N.; Astrath, N. G. C.
2018-02-01
Inorganic pigments of the system LaAl1-xFexO3 were prepared by the Pechini and the Solid State Reaction (SSR) methods. Magnetic interactions and non-radiative relaxation time were analyzed by means of phase-resolved photoacoustic spectroscopy and electron paramagnetic resonance (EPR) techniques. EPR results show a change in the magnetic behavior from paramagnetic (x = 0.2 and 0.4) to antiferromagnetic (x = 1.0), which is believed to be a result of the SSR preparation method. Trends in the optical absorption bands of the Fe3+ are attributed to their electronic transitions, and the increase in the band's intensity at 480 and 550 nm was assigned to the increase in the magnetic coupling between Fe-Fe. The phase-resolved method is capable of distinguishing between the two preparation methods, and it is possible to infer that SSR modifies the magnetic coupling of Fe-Fe with x.
EPR and photoluminescence study of irradiated anion-defective alumina single crystals
NASA Astrophysics Data System (ADS)
Kortov, V. S.; Ananchenko, D. V.; Konev, S. F.; Pustovarov, V. A.
2017-09-01
Electron paramagnetic resonance (EPR) and photoluminescence (PL) spectra of anion-defective alumina single crystals were measured. Exposure to a dose 10 Gy-1 kGy causes isotropic EPR signal of a complex form, this signal contains narrow and broad components. At the same time, in the PL spectrum alongside with a band of F+-centers (3.8 eV) an additional emission band with the maximum of 2.25 eV is registered. This band corresponds to aggregate F22+-centers which were create under irradiation. By comparing measurements in EPR and PL spectra with further stepped annealing in the temperature range of 773-1473 K of the samples exposed to the same doses, we were able to conclude that a narrow component of isotropic EPR signal is associated with the formation of paramagnetic F22+-centers under irradiation. A wide component can be caused by deep hole traps which are created by a complex defect (VAl2- - F+) with a localized hole.
Peptide-membrane Interactions by Spin-labeling EPR
Smirnova, Tatyana I.; Smirnov, Alex I.
2016-01-01
Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described. PMID:26477253
Petasis, Doros T; Hendrich, Michael P
2015-01-01
Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wallace, John Paul
2011-03-01
Hydrogen is a difficult impurity to physically deal with in superconducting radio frequency (SRF) niobium, therefore, its properties in the metals should be well understood to allow the metal's superconducting properties to be optimized for minimum loss in the construction of resonant accelerator cavities. It is known that hydrogen is a paramagnetic impurity in niobium from NMR studies. This paramagnetism and its effect on superconducting properties are important to understand. To that end analytical induction measurements aimed at isolating the magnetic properties of hydrogen in SRF niobium are introduced along with optical reflection spectroscopy which is also sensitive to the presence of hydrogen. From the variety, magnitude and rapid kinetics found in the optical and magnetic properties of niobium contaminated with hydrogen forced a search for an atomic model. This yielded quantum mechanical description that correctly generates the activation energy for diffusion of the proton and its isotopes not only in niobium but the remaining metals for which data is available. This interpretation provides a frame work for understanding the individual and collective behavior of protons in metals.
Gottstein, Daniel; Reckel, Sina; Dötsch, Volker; Güntert, Peter
2012-06-06
Nuclear magnetic resonance (NMR) structure calculations of the α-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5 Å in the absence of other long-range conformational restraints. Our systematic study with simulated NMR data shows that about one spin label per transmembrane helix is necessary for obtaining enough PRE distance restraints to exclude wrong topologies, such as pseudo mirror images, if only limited other NMR restraints are available. Consequently, an experimentally realistic amount of PRE data enables α-helical membrane protein structure determinations that would not be feasible with the very limited amount of conventional NOESY data normally available for these systems. These findings are in line with our recent first de novo NMR structure determination of a heptahelical integral membrane protein, proteorhodopsin, that relied extensively on PRE data. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Manzerova, Julia; Krymov, Vladimir; Gerfen, Gary J.
2011-12-01
In this investigation high-frequency electron paramagnetic resonance spectroscopy (HFEPR) in conjunction with innovative rapid freeze-quench (RFQ) technology is employed to study the exchange-coupled thiyl radical-cob(II)alamin system in ribonucleotide reductase from a prokaryote Lactobacillus leichmannii. The size of the exchange coupling ( Jex) and the values of the thiyl radical g tensor are refined, while confirming the previously determined (Gerfen et al. (1996) [20]) distance between the paramagnets. Conclusions relevant to ribonucleotide reductase catalysis and the architecture of the active site are presented. A key part of this work has been the development of a unique RFQ apparatus for the preparation of millisecond quench time RFQ samples which can be packed into small (0.5 mm ID) sample tubes used for CW and pulsed HFEPR - lack of this ability has heretofore precluded such studies. The technology is compatible with a broad range of spectroscopic techniques and can be readily adopted by other laboratories.
In vivo triarylmethyl radical stabilization through encapsulation in Pluronic F-127 hydrogel
NASA Astrophysics Data System (ADS)
Abbas, Kahina; Boutier-Pischon, Audrey; Auger, Florian; Françon, Dominique; Almario, Antonio; Frapart, Yves-Michel
2016-09-01
In vivo electron paramagnetic resonance (EPR) imaging and spectroscopy are non-invasive technologies used to specifically detect and quantify paramagnetic species. However, the relative instability of spin probes such as triarylmethyl radicals limits their application to conduct oxygen quantification and mapping. In this study we encapsulated tetrathiatriarylmethyl radical (TAM; known as "Finland" probe) in Pluronic F-127 hydrogel (PF-127) in order to limit its degradation and evaluate its in vitro and in vivo EPR properties as a function of oxygen. Our results show that the EPR signal of encapsulated TAM in PF-127 hydrogel is similar to the one in solution. Although it is less sensitive to oxygen, it is suitable for oximetry. We also demonstrated that the incorporation of TAM in PF-127 hydrogel leads to an improved in vivo EPR stability of the radical under anesthesia. This new formulation enables high quality EPR imaging and oximetry and paves the way for the application of TAM radical-based probes in various biomedical fields.
Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.
Zhang, Zhi Tao; Xu, C; Dmytriieva, Daryna; Molatta, Sebastian; Wosnitza, J; Wang, Y T; Helm, Manfred; Zhou, Shengqiang; Kuehne, Hannes
2017-09-18
We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by $^{13}$C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the $^{13}$C nuclear spin-lattice relaxation rate $1/T_{1}$ by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of $1/T_{1}$ below about 10 K can well be described by a thermally activated form, $1/T_{1}\\propto\\exp(-\\Delta/k_{B}T)$, yielding a singular Zeeman energy of ($0.41\\pm0.01$) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments. © 2017 IOP Publishing Ltd.
Electron Paramagnetic Resonance Spectroscopy of Vanadium (IV) Complexes and Related Species.
1980-07-27
Extensive near infrared (4000-650cm " ) investigations on VOCl 2 complexes have been made by many workers [21,39,43-49]. However the far infrared ...to facilitate the assignment of cation and ligand bacds. 4.2.1.2 Near Infrared Spectroscopy There are three principal reasons for measuriiio the... near infrared spectra of the co!;,plexes: (a) To establish the purity of the complex (b) To establish the bondi ng mode of the 1 i ( nd (c) To establish
Time dependence of the radiation-induced EPR signal in sucrose.
Desrosiers, Marc; Wadley, Samara
2006-01-01
Sucrose and common household sugars (e.g. cane) have been studied as dosemeters for a wide variety of applications. However, previous studies of the post-irradiation time dependence of irradiated sugar did not include an electron paramagnetic resonance (EPR) reference material. This work employs synthetic ruby as an EPR reference material to remove significant spectrometer/environmental influences on the measured time-dependent changes in the EPR spectral amplitude of irradiated sucrose. As such, these more accurate measurements should replace the previously published data.
Factors Affecting the Quality of Tooth Enamel for In Vivo EPR-Based Retrospective Biodosimetry
Desmet, Céline M.; Levêque, Philippe; Gallez, Bernard
2016-01-01
In vivo electron paramagnetic resonance biodosimetry on tooth enamel is likely to be an important technology for triage of overexposed individuals after a major radiological incident. The accuracy and robustness of the technique relies on various properties of the enamel such as the geometry of the tooth, the presence of restorations, whitening treatments or exposition to sunlight. Those factors are reviewed, and their influence on dosimetry specifically for triage purposes is discussed. PMID:27473693
Efficiency of PBN to Trap 3-CAR in B6C3F1 Mouse Liver Slices: An EPR Study.
1995-09-01
be identified by electron paramagnetic resonance (EPR) using the spin trap N-tert-butyl-a phenyl nitrone (PBN). To quantitate the radicals detected...phenyl nitrone TCE trichloroethylene Vll INTRODUCTION Understanding free radical reactions is important to the military. The main objective of this...short lived radical with a spin trap’, usually a nitrone or nitroso compound yielding a longer lived nitroxide spin adduct which can be detected by
Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.
Reed, George H; Poyner, Russell R
2015-01-01
An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.
Comment on "Electron spin resonance studies in β-FeSi2 crystals" [J. Appl. Phys. 80, 1678 (1996)
NASA Astrophysics Data System (ADS)
Irmscher, K.; Gehlhoff, W.; Lange, H.
1997-06-01
In a recent article [J. Appl. Phys. 80, 1678 (1996)] Aksenov et al. reported on electron paramagnetic resonance (EPR) studies in β-FeSi2 crystals grown by chemical vapor transport. They did not perform a rigorous measurement of the angular variation of the EPR line positions. Consequently, there has been a drastic loss of information and most of their conclusions turn out to be erroneous. It is shown that the anisotropic signals (Ai,Bi) do not arise from spin triplet states but from centers with S=1/2 and their origins are not Ni2+ ions but Ni+ (Ai) and Cr- (Bi) ions substituting for Fe on one of its two inequivalent lattice sites. The analysis of the line structure of the isotropic signal (C) is incorrect and hence, the structure cannot be attributed to a ligand hyperfine interaction with four iron atoms. Finally, the determination of an acceptor activation energy from the temperature dependence of the C signal is not justified since no correction for the EPR intensity dependence due to the thermal population difference of the Zeeman levels was included.
Van Doorslaer, Sabine; Trandafir, Florin; Harmer, Jeffrey R; Moens, Luc; Dewilde, Sylvia
2014-06-01
Electron paramagnetic resonance (EPR) data reveal large differences between the ferric ((13)C-)cyanide complexes of wild-type human neuroglobin (NGB) and its H64Q and F28L point mutants and the cyanide complexes of mammalian myo- and haemoglobin. The point mutations, which involve residues comprising the distal haem pocket in NGB, induce smaller, but still significant changes, related to changes in the stabilization of the cyanide ligand. Furthermore, for the first time, the full (13)C hyperfine tensor of the cyanide carbon of cyanide-ligated horse heart myoglobin (hhMb) was determined using Davies ENDOR (electron nuclear double resonance). Disagreement of these experimental data with earlier predictions based on (13)C NMR data and a theoretical model reveal significant flaws in the model assumptions. The same ENDOR procedure allowed also partial determination of the corresponding (13)C hyperfine tensor of cyanide-ligated NGB and H64QNGB. These (13)C parameters differ significantly from those of cyanide-ligated hhMb and challenge our current theoretical understanding of how the haem environment influences the magnetic parameters obtained by EPR and NMR in cyanide-ligated haem proteins. Copyright © 2014 Elsevier B.V. All rights reserved.
Jåstad, Eirik O; Torheim, Turid; Villeneuve, Kathleen M; Kvaal, Knut; Hole, Eli O; Sagstuen, Einar; Malinen, Eirik; Futsaether, Cecilia M
2017-09-28
The amino acid l-α-alanine is the most commonly used material for solid-state electron paramagnetic resonance (EPR) dosimetry, due to the formation of highly stable radicals upon irradiation, with yields proportional to the radiation dose. Two major alanine radical components designated R1 and R2 have previously been uniquely characterized from EPR and electron-nuclear double resonance (ENDOR) studies as well as from quantum chemical calculations. There is also convincing experimental evidence of a third minor radical component R3, and a tentative radical structure has been suggested, even though no well-defined spectral signature has been observed experimentally. In the present study, temperature dependent EPR spectra of X-ray irradiated polycrystalline alanine were analyzed using five multivariate methods in further attempts to understand the composite nature of the alanine dosimeter EPR spectrum. Principal component analysis (PCA), maximum likelihood common factor analysis (MLCFA), independent component analysis (ICA), self-modeling mixture analysis (SMA), and multivariate curve resolution (MCR) were used to extract pure radical spectra and their fractional contributions from the experimental EPR spectra. All methods yielded spectral estimates resembling the established R1 spectrum. Furthermore, SMA and MCR consistently predicted both the established R2 spectrum and the shape of the R3 spectrum. The predicted shape of the R3 spectrum corresponded well with the proposed tentative spectrum derived from spectrum simulations. Thus, results from two independent multivariate data analysis techniques strongly support the previous evidence that three radicals are indeed present in irradiated alanine samples.
Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system
NASA Astrophysics Data System (ADS)
Wang, Aifei; Guo, Mingyi; Wang, Nan; Zhao, Jianyun; Qi, Wenxiu; Muhammad, Faheem; Chen, Liang; Guo, Yingjie; Nguyen, Nam-Trung; Zhu, Guangshan
2014-04-01
Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn2+ in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems.Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn2+ in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05687b
NASA Astrophysics Data System (ADS)
Luo, Hong-Wei; Chen, Jie-Jie; Sheng, Guo-Ping; Su, Ji-Hu; Wei, Shi-Qiang; Yu, Han-Qing
2014-11-01
Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants.
Assfalg, Michael; Gianolio, Eliana; Zanzoni, Serena; Tomaselli, Simona; Russo, Vito Lo; Cabella, Claudia; Ragona, Laura; Aime, Silvio; Molinari, Henriette
2007-11-01
The binding affinities of a selected series of Gd(III) chelates bearing bile acid residues, potential hepatospecific MRI contrast agents, to a liver cytosolic bile acid transporter, have been determined through relaxivity measurements. The Ln(III) complexes of compound 1 were selected for further NMR structural analysis aimed at assessing the molecular determinants of binding. A number of NMR experiments have been carried out on the bile acid-like adduct, using both diamagnetic Y(III) and paramagnetic Gd(III) complexes, bound to a liver bile acid binding protein. The identified protein "hot spots" defined a single binding site located at the protein portal region. The presented findings will serve in a medicinal chemistry approach for the design of hepatocytes-selective gadolinium chelates for liver malignancies detection.
Das, Biva; Medhi, Okhil K
2013-03-01
The formation of phenolate free radical is the factor of high turnover for catalytic activity of galactose oxidase (GO) compared to that by inorganic complexes. A new active center analog of GO, [Cu(II)(Salphenylalanine)H(2)O] have been synthesized and its single crystal X-ray analysis was done. In aqueous surfactant micellar solution chemical oxidation as well as electrochemical oxidation of structural models of galactose oxidase - [Cu(II)Salgly·H(2)O] and [Cu(II)(Salphenylalanine)·H(2)O], have been found to generate free radical originating at the phenolate group. Formation of the free radical have been proved by electron paramagnetic resonance spectroscopy, electronic spectroscopy and electrochemistry. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana
The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes andmore » oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.« less
Tooth enamel dosimetric response to 2.8 MeV neutrons
NASA Astrophysics Data System (ADS)
Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.
2003-03-01
Tooth enamel dosimetry, based on electron paramagnetic resonance (EPR) spectroscopy, is recognized as a powerful method for individual retrospective dose assessment. The method is mainly used for individual dose reconstruction in the epidemiological studies aimed at the radiation risk analysis. The study of the sensitivity of tooth enamel as a function of radiation quality is one of the main goals of the research in this field. In the present work, tooth enamel dose response in a monoenergetic neutron flux of 2.8 MeV, generated by the D-D reaction, was studied for in air and in phantom irradiations of enamel samples and of whole teeth. EPR measurements were complemented by Monte Carlo calculation and by gamma dose discrimination obtained with thermoluminescent and Geiger-Muller tube measurements. The 2.8 MeV neutrons to 60Co relative sensitivity was 0.33±0.08.
Khachatryan, Lavrent; Xu, Meng-xia; Wu, Ang-jian; Pechagin, Mikhail; Asatryan, Rubik
2016-01-01
The experimental results on detection and identification of intermediate radicals and molecular products from gas-phase pyrolysis of cinnamyl alcohol (CnA), the simplest non-phenolic lignin model compound, over the temperature range of 400–800 °C are reported. The low temperature matrix isolation – electron paramagnetic resonance (LTMI-EPR) experiments along with the theoretical calculations, provided evidences on the generation of the intermediate carbon and oxygen centered as well as oxygen-linked, conjugated radicals. A mechanistic analysis is performed based on density functional theory to explain formation of the major products from CnA pyrolysis; cinnamaldehyde, indene, styrene, benzaldehyde, 1-propynyl benzene, and 2-propenyl benzene. The evaluated bond dissociation patterns and unimolecular decomposition pathways involve dehydrogenation, dehydration, 1,3-sigmatropic H-migration, 1,2-hydrogen shift, C—O and C—C bond cleavage processes. PMID:28344372
Incommensurate to commensurate antiferromagnetism in CeRhAl 4 Si 2 : An Al 27 NMR study
Sakai, Hironori; Hattori, T.; Tokunaga, Y.; ...
2016-01-04
27Al nuclear magnetic resonance (NMR) experiments have been performed on a single crystal of CeRhAl 4Si 2, which is an antiferromagnetic Kondo-lattice compound with successive antiferromagnetic transitions of T N1 = 14 K and T N2 = 9 K at zero external field. In the paramagnetic state, the Knight shifts, quadrupolar frequency, and asymmetric parameter of electrical field gradient on the Al sites have been determined, which have local orthorhombic symmetry. The transferred hyperfine coupling constants are also determined. Here, analysis of the NMR spectra indicates that a commensurate antiferromagnetic structure exists below T N2, but an incommensurate modulation ofmore » antiferromagnetic moments is present in the antiferromagnetic state between T N1 and T N2. The spin-lattice relaxation rate suggests that the 4f electrons behave as local moments at temperatures above T N1.« less
Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.
1987-01-01
An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.
Iwai, Ichiro; Kunizawa, Naomi; Yagi, Eiichiro; Hirao, Tetsuji; Hatta, Ichiro
2013-03-27
The stratum corneum dehydrates after exogenous hydration due to skincare or bathing. In this study, sheets of stratum corneum were isolated from reconstructed human epidermis and the barrier function and structure of these sheets were assessed during drying with the aim of improving our understanding of skincare. Water diffusion through the sheets of stratum corneum decreased with drying, accompanied by decreased thickness and increased visible light transmission through the sheets. Electron paramagnetic resonance revealed that the order parameter values of stratum corneum lipids increased with drying. X-ray diffraction analysis revealed increases in the diffraction intensity of lamellar structures, with an 11-12 nm periodicity and spacing of 0.42 nm for lattice structures with drying. These results suggest that the drying process improves the barrier function of the stratum corneum by organizing the intercellular lipids in a vertically compressed arrangement.
Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.
Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian
2016-04-01
Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.
Kamidaki, Chihiro; Kondo, Toru; Noji, Tomoyasu; Itoh, Tetsuji; Yamaguchi, Akira; Itoh, Shigeru
2013-08-22
The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-μm thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores.
NASA Astrophysics Data System (ADS)
Ning, Shuai; Zhan, Peng; Wang, Wei-Peng; Li, Zheng-Cao; Zhang, Zheng-Jun
2014-12-01
Highly c-axis oriented un-doped zinc oxide (ZnO) thin films, each with a thickness of ~ 100 nm, are deposited on Si (001) substrates by pulsed electron beam deposition at a temperature of ~ 320 °C, followed by annealing at 650 °C in argon in a strong magnetic field. X-ray photoelectron spectroscopy (XPS), positron annihilation analysis (PAS), and electron paramagnetic resonance (EPR) characterizations suggest that the major defects generated in these ZnO films are oxygen vacancies. Photoluminescence (PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped ZnO film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the ZnO films are also discussed.