Van Derlinden, E; Bernaerts, K; Van Impe, J F
2010-05-21
Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Šimůnek, Jirka; Nimmo, John R.
2005-01-01
A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time‐variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field.
NASA Astrophysics Data System (ADS)
Samper, J.; Dewonck, S.; Zheng, L.; Yang, Q.; Naves, A.
Diffusion of inert and reactive tracers (DIR) is an experimental program performed by ANDRA at Bure underground research laboratory in Meuse/Haute Marne (France) to characterize diffusion and retention of radionuclides in Callovo-Oxfordian (C-Ox) argillite. In situ diffusion experiments were performed in vertical boreholes to determine diffusion and retention parameters of selected radionuclides. C-Ox clay exhibits a mild diffusion anisotropy due to stratification. Interpretation of in situ diffusion experiments is complicated by several non-ideal effects caused by the presence of a sintered filter, a gap between the filter and borehole wall and an excavation disturbed zone (EdZ). The relevance of such non-ideal effects and their impact on estimated clay parameters have been evaluated with numerical sensitivity analyses and synthetic experiments having similar parameters and geometric characteristics as real DIR experiments. Normalized dimensionless sensitivities of tracer concentrations at the test interval have been computed numerically. Tracer concentrations are found to be sensitive to all key parameters. Sensitivities are tracer dependent and vary with time. These sensitivities are useful to identify which are the parameters that can be estimated with less uncertainty and find the times at which tracer concentrations begin to be sensitive to each parameter. Synthetic experiments generated with prescribed known parameters have been interpreted automatically with INVERSE-CORE 2D and used to evaluate the relevance of non-ideal effects and ascertain parameter identifiability in the presence of random measurement errors. Identifiability analysis of synthetic experiments reveals that data noise makes difficult the estimation of clay parameters. Parameters of clay and EdZ cannot be estimated simultaneously from noisy data. Models without an EdZ fail to reproduce synthetic data. Proper interpretation of in situ diffusion experiments requires accounting for filter, gap and EdZ. Estimates of the effective diffusion coefficient and the porosity of clay are highly correlated, indicating that these parameters cannot be estimated simultaneously. Accurate estimation of De and porosities of clay and EdZ is only possible when the standard deviation of random noise is less than 0.01. Small errors in the volume of the circulation system do not affect clay parameter estimates. Normalized sensitivities as well as the identifiability analysis of synthetic experiments provide additional insight on inverse estimation of in situ diffusion experiments and will be of great benefit for the interpretation of real DIR in situ diffusion experiments.
NASA Astrophysics Data System (ADS)
Potters, M. G.; Bombois, X.; Mansoori, M.; Hof, Paul M. J. Van den
2016-08-01
Estimation of physical parameters in dynamical systems driven by linear partial differential equations is an important problem. In this paper, we introduce the least costly experiment design framework for these systems. It enables parameter estimation with an accuracy that is specified by the experimenter prior to the identification experiment, while at the same time minimising the cost of the experiment. We show how to adapt the classical framework for these systems and take into account scaling and stability issues. We also introduce a progressive subdivision algorithm that further generalises the experiment design framework in the sense that it returns the lowest cost by finding the optimal input signal, and optimal sensor and actuator locations. Our methodology is then applied to a relevant problem in heat transfer studies: estimation of conductivity and diffusivity parameters in front-face experiments. We find good correspondence between numerical and theoretical results.
OPTIMAL EXPERIMENT DESIGN FOR MAGNETIC RESONANCE FINGERPRINTING
Zhao, Bo; Haldar, Justin P.; Setsompop, Kawin; Wald, Lawrence L.
2017-01-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance. PMID:28268369
Optimal experiment design for magnetic resonance fingerprinting.
Bo Zhao; Haldar, Justin P; Setsompop, Kawin; Wald, Lawrence L
2016-08-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance.
Wagener, T.; Hogue, T.; Schaake, J.; Duan, Q.; Gupta, H.; Andreassian, V.; Hall, A.; Leavesley, G.
2006-01-01
The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrological models and in land surface parameterization schemes connected to atmospheric models. The MOPEX science strategy involves: database creation, a priori parameter estimation methodology development, parameter refinement or calibration, and the demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrological basins in the United States (US) and in other countries. This database is being continuously expanded to include basins from various hydroclimatic regimes throughout the world. MOPEX research has largely been driven by a series of international workshops that have brought interested hydrologists and land surface modellers together to exchange knowledge and experience in developing and applying parameter estimation techniques. With its focus on parameter estimation, MOPEX plays an important role in the international context of other initiatives such as GEWEX, HEPEX, PUB and PILPS. This paper outlines the MOPEX initiative, discusses its role in the scientific community, and briefly states future directions.
Parameter identification of thermophilic anaerobic degradation of valerate.
Flotats, Xavier; Ahring, Birgitte K; Angelidaki, Irini
2003-01-01
The considered mathematical model of the decomposition of valerate presents three unknown kinetic parameters, two unknown stoichiometric coefficients, and three unknown initial concentrations for biomass. Applying a structural identifiability study, we concluded that it is necessary to perform simultaneous batch experiments with different initial conditions for estimating these parameters. Four simultaneous batch experiments were conducted at 55 degrees C, characterized by four different initial acetate concentrations. Product inhibition of valerate degradation by acetate was considered. Practical identification was done optimizing the sum of the multiple determination coefficients for all measured state variables and for all experiments simultaneously. The estimated values of kinetic parameters and stoichiometric coefficients were characterized by the parameter correlation matrix, the confidence interval, and the student's t-test at 5% significance level with positive results except for the saturation constant, for which more experiments for improving its identifiability should be conducted. In this article, we discuss kinetic parameter estimation methods.
NASA Astrophysics Data System (ADS)
Harshan, S.; Roth, M.; Velasco, E.
2014-12-01
Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model validation studies to identify inherent deficiencies in model physics.
Optimal experimental designs for the estimation of thermal properties of composite materials
NASA Technical Reports Server (NTRS)
Scott, Elaine P.; Moncman, Deborah A.
1994-01-01
Reliable estimation of thermal properties is extremely important in the utilization of new advanced materials, such as composite materials. The accuracy of these estimates can be increased if the experiments are designed carefully. The objectives of this study are to design optimal experiments to be used in the prediction of these thermal properties and to then utilize these designs in the development of an estimation procedure to determine the effective thermal properties (thermal conductivity and volumetric heat capacity). The experiments were optimized by choosing experimental parameters that maximize the temperature derivatives with respect to all of the unknown thermal properties. This procedure has the effect of minimizing the confidence intervals of the resulting thermal property estimates. Both one-dimensional and two-dimensional experimental designs were optimized. A heat flux boundary condition is required in both analyses for the simultaneous estimation of the thermal properties. For the one-dimensional experiment, the parameters optimized were the heating time of the applied heat flux, the temperature sensor location, and the experimental time. In addition to these parameters, the optimal location of the heat flux was also determined for the two-dimensional experiments. Utilizing the optimal one-dimensional experiment, the effective thermal conductivity perpendicular to the fibers and the effective volumetric heat capacity were then estimated for an IM7-Bismaleimide composite material. The estimation procedure used is based on the minimization of a least squares function which incorporates both calculated and measured temperatures and allows for the parameters to be estimated simultaneously.
Duan, Q.; Schaake, J.; Andreassian, V.; Franks, S.; Goteti, G.; Gupta, H.V.; Gusev, Y.M.; Habets, F.; Hall, A.; Hay, L.; Hogue, T.; Huang, M.; Leavesley, G.; Liang, X.; Nasonova, O.N.; Noilhan, J.; Oudin, L.; Sorooshian, S.; Wagener, T.; Wood, E.F.
2006-01-01
The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrologic models and in land surface parameterization schemes of atmospheric models. The MOPEX science strategy involves three major steps: data preparation, a priori parameter estimation methodology development, and demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrologic basins in the United States (US) and in other countries. This database is being continuously expanded to include more basins in all parts of the world. A number of international MOPEX workshops have been convened to bring together interested hydrologists and land surface modelers from all over world to exchange knowledge and experience in developing a priori parameter estimation techniques. This paper describes the results from the second and third MOPEX workshops. The specific objective of these workshops is to examine the state of a priori parameter estimation techniques and how they can be potentially improved with observations from well-monitored hydrologic basins. Participants of the second and third MOPEX workshops were provided with data from 12 basins in the southeastern US and were asked to carry out a series of numerical experiments using a priori parameters as well as calibrated parameters developed for their respective hydrologic models. Different modeling groups carried out all the required experiments independently using eight different models, and the results from these models have been assembled for analysis in this paper. This paper presents an overview of the MOPEX experiment and its design. The main experimental results are analyzed. A key finding is that existing a priori parameter estimation procedures are problematic and need improvement. Significant improvement of these procedures may be achieved through model calibration of well-monitored hydrologic basins. This paper concludes with a discussion of the lessons learned, and points out further work and future strategy. ?? 2005 Elsevier Ltd. All rights reserved.
Graphical Evaluation of the Ridge-Type Robust Regression Estimators in Mixture Experiments
Erkoc, Ali; Emiroglu, Esra
2014-01-01
In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set. PMID:25202738
Graphical evaluation of the ridge-type robust regression estimators in mixture experiments.
Erkoc, Ali; Emiroglu, Esra; Akay, Kadri Ulas
2014-01-01
In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set.
NASA Astrophysics Data System (ADS)
Lorente-Plazas, Raquel; Hacker, Josua P.; Collins, Nancy; Lee, Jared A.
2017-04-01
The impact of assimilating surface observations has been shown in several publications, for improving weather prediction inside of the boundary layer as well as the flow aloft. However, the assimilation of surface observations is often far from optimal due to the presence of both model and observation biases. The sources of these biases can be diverse: an instrumental offset, errors associated to the comparison of point-based observations and grid-cell average, etc. To overcome this challenge, a method was developed using the ensemble Kalman filter. The approach consists on representing each observation bias as a parameter. These bias parameters are added to the forward operator and they extend the state vector. As opposed to the observation bias estimation approaches most common in operational systems (e.g. for satellite radiances), the state vector and parameters are simultaneously updated by applying the Kalman filter equations to the augmented state. The method to estimate and correct the observation bias is evaluated using observing system simulation experiments (OSSEs) with the Weather Research and Forecasting (WRF) model. OSSEs are constructed for the conventional observation network including radiosondes, aircraft observations, atmospheric motion vectors, and surface observations. Three different kinds of biases are added to 2-meter temperature for synthetic METARs. From the simplest to more sophisticated, imposed biases are: (1) a spatially invariant bias, (2) a spatially varying bias proportional to topographic height differences between the model and the observations, and (3) bias that is proportional to the temperature. The target region characterized by complex terrain is the western U.S. on a domain with 30-km grid spacing. Observations are assimilated every 3 hours using an 80-member ensemble during September 2012. Results demonstrate that the approach is able to estimate and correct the bias when it is spatially invariant (experiment 1). More complex bias structure in experiments (2) and (3) are more difficult to estimate, but still possible. Estimated the parameter in experiments with unbiased observations results in spatial and temporal parameter variability about zero, and establishes a threshold on the accuracy of the parameter in further experiments. When the observations are biased, the mean parameter value is close to the true bias, but temporal and spatial variability in the parameter estimates is similar to the parameters used when estimating a zero bias in the observations. The distributions are related to other errors in the forecasts, indicating that the parameters are absorbing some of the forecast error from other sources. In this presentation we elucidate the reasons for the resulting parameter estimates, and their variability.
Pasma, Jantsje H.; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C.
2018-01-01
The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This provides further evidence that the IC model is a valid description of human balance control. PMID:29615886
Pasma, Jantsje H; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C
2018-01-01
The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This provides further evidence that the IC model is a valid description of human balance control.
Ensemble-Based Parameter Estimation in a Coupled General Circulation Model
Liu, Y.; Liu, Z.; Zhang, S.; ...
2014-09-10
Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less
Inverse estimation of parameters for an estuarine eutrophication model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, J.; Kuo, A.Y.
1996-11-01
An inverse model of an estuarine eutrophication model with eight state variables is developed. It provides a framework to estimate parameter values of the eutrophication model by assimilation of concentration data of these state variables. The inverse model using the variational technique in conjunction with a vertical two-dimensional eutrophication model is general enough to be applicable to aid model calibration. The formulation is illustrated by conducting a series of numerical experiments for the tidal Rappahannock River, a western shore tributary of the Chesapeake Bay. The numerical experiments of short-period model simulations with different hypothetical data sets and long-period model simulationsmore » with limited hypothetical data sets demonstrated that the inverse model can be satisfactorily used to estimate parameter values of the eutrophication model. The experiments also showed that the inverse model is useful to address some important questions, such as uniqueness of the parameter estimation and data requirements for model calibration. Because of the complexity of the eutrophication system, degrading of speed of convergence may occur. Two major factors which cause degradation of speed of convergence are cross effects among parameters and the multiple scales involved in the parameter system.« less
Jang, Cheongjae; Ha, Junhyoung; Dupont, Pierre E.; Park, Frank Chongwoo
2017-01-01
Although existing mechanics-based models of concentric tube robots have been experimentally demonstrated to approximate the actual kinematics, determining accurate estimates of model parameters remains difficult due to the complex relationship between the parameters and available measurements. Further, because the mechanics-based models neglect some phenomena like friction, nonlinear elasticity, and cross section deformation, it is also not clear if model error is due to model simplification or to parameter estimation errors. The parameters of the superelastic materials used in these robots can be slowly time-varying, necessitating periodic re-estimation. This paper proposes a method for estimating the mechanics-based model parameters using an extended Kalman filter as a step toward on-line parameter estimation. Our methodology is validated through both simulation and experiments. PMID:28717554
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Liu, Z.; Zhang, S.
Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less
NASA Astrophysics Data System (ADS)
Nair, S. P.; Righetti, R.
2015-05-01
Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.
Determining the accuracy of maximum likelihood parameter estimates with colored residuals
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Klein, Vladislav
1994-01-01
An important part of building high fidelity mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of the accuracy of parameter estimates, the estimates themselves have limited value. In this work, an expression based on theoretical analysis was developed to properly compute parameter accuracy measures for maximum likelihood estimates with colored residuals. This result is important because experience from the analysis of measured data reveals that the residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Simulated data runs were used to show that the parameter accuracy measures computed with this technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for analysis of the output residuals in the frequency domain or heuristically determined multiplication factors. The result is general, although the application studied here is maximum likelihood estimation of aerodynamic model parameters from flight test data.
Wagner, Brian J.; Gorelick, Steven M.
1986-01-01
A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference contaminant transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2–3 times more reliable than estimates based on temporal data for all parameters except velocity. Comparison of estimated linear and nonlinear confidence intervals based upon Monte Carlo analysis showed that the linear approximation is poor for dispersion coefficient and zero-order production coefficient when data are collected over time. In addition, examples demonstrate transport parameter estimation for two real one-dimensional systems. First, the longitudinal dispersivity and effective porosity of an unsaturated soil are estimated using laboratory column data. We compare the reliability of estimates based upon data from individual laboratory experiments versus estimates based upon pooled data from several experiments. Second, the simulation nonlinear regression procedure is extended to include an additional governing equation that describes delayed storage during contaminant transport. The model is applied to analyze the trends, variability, and interrelationship of parameters in a mourtain stream in northern California.
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry
2013-04-01
An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.
On the Nature of SEM Estimates of ARMA Parameters.
ERIC Educational Resources Information Center
Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.
2002-01-01
Reexamined the nature of structural equation modeling (SEM) estimates of autoregressive moving average (ARMA) models, replicated the simulation experiments of P. Molenaar, and examined the behavior of the log-likelihood ratio test. Simulation studies indicate that estimates of ARMA parameters observed with SEM software are identical to those…
NASA Astrophysics Data System (ADS)
Baatz, D.; Kurtz, W.; Hendricks Franssen, H. J.; Vereecken, H.; Kollet, S. J.
2017-12-01
Parameter estimation for physically based, distributed hydrological models becomes increasingly challenging with increasing model complexity. The number of parameters is usually large and the number of observations relatively small, which results in large uncertainties. A moving transmitter - receiver concept to estimate spatially distributed hydrological parameters is presented by catchment tomography. In this concept, precipitation, highly variable in time and space, serves as a moving transmitter. As response to precipitation, runoff and stream discharge are generated along different paths and time scales, depending on surface and subsurface flow properties. Stream water levels are thus an integrated signal of upstream parameters, measured by stream gauges which serve as the receivers. These stream water level observations are assimilated into a distributed hydrological model, which is forced with high resolution, radar based precipitation estimates. Applying a joint state-parameter update with the Ensemble Kalman Filter, the spatially distributed Manning's roughness coefficient and saturated hydraulic conductivity are estimated jointly. The sequential data assimilation continuously integrates new information into the parameter estimation problem, especially during precipitation events. Every precipitation event constrains the possible parameter space. In the approach, forward simulations are performed with ParFlow, a variable saturated subsurface and overland flow model. ParFlow is coupled to the Parallel Data Assimilation Framework for the data assimilation and the joint state-parameter update. In synthetic, 3-dimensional experiments including surface and subsurface flow, hydraulic conductivity and the Manning's coefficient are efficiently estimated with the catchment tomography approach. A joint update of the Manning's coefficient and hydraulic conductivity tends to improve the parameter estimation compared to a single parameter update, especially in cases of biased initial parameter ensembles. The computational experiments additionally show to which degree of spatial heterogeneity and to which degree of uncertainty of subsurface flow parameters the Manning's coefficient and hydraulic conductivity can be estimated efficiently.
NASA Astrophysics Data System (ADS)
Mendoza, Sergio; Rothenberger, Michael; Hake, Alison; Fathy, Hosam
2016-03-01
This article presents a framework for optimizing the thermal cycle to estimate a battery cell's entropy coefficient at 20% state of charge (SOC). Our goal is to maximize Fisher identifiability: a measure of the accuracy with which a parameter can be estimated. Existing protocols in the literature for estimating entropy coefficients demand excessive laboratory time. Identifiability optimization makes it possible to achieve comparable accuracy levels in a fraction of the time. This article demonstrates this result for a set of lithium iron phosphate (LFP) cells. We conduct a 24-h experiment to obtain benchmark measurements of their entropy coefficients. We optimize a thermal cycle to maximize parameter identifiability for these cells. This optimization proceeds with respect to the coefficients of a Fourier discretization of this thermal cycle. Finally, we compare the estimated parameters using (i) the benchmark test, (ii) the optimized protocol, and (iii) a 15-h test from the literature (by Forgez et al.). The results are encouraging for two reasons. First, they confirm the simulation-based prediction that the optimized experiment can produce accurate parameter estimates in 2 h, compared to 15-24. Second, the optimized experiment also estimates a thermal time constant representing the effects of thermal capacitance and convection heat transfer.
NASA Technical Reports Server (NTRS)
Breedlove, W. J., Jr.
1976-01-01
Major activities included coding and verifying equations of motion for the earth-moon system. Some attention was also given to numerical integration methods and parameter estimation methods. Existing analytical theories such as Brown's lunar theory, Eckhardt's theory for lunar rotation, and Newcomb's theory for the rotation of the earth were coded and verified. These theories serve as checks for the numerical integration. Laser ranging data for the period January 1969 - December 1975 was collected and stored on tape. The main goal of this research is the development of software to enable physical parameters of the earth-moon system to be estimated making use of data available from the Lunar Laser Ranging Experiment and the Very Long Base Interferometry experiment of project Apollo. A more specific goal is to develop software for the estimation of certain physical parameters of the moon such as inertia ratios, and the third and fourth harmonic gravity coefficients.
Constitutive Modeling of Porcine Liver in Indentation Using 3D Ultrasound Imaging
Jordan, P.; Socrate, S.; Zickler, T.E.; Howe, R.D.
2009-01-01
In this work we present an inverse finite-element modeling framework for constitutive modeling and parameter estimation of soft tissues using full-field volumetric deformation data obtained from 3D ultrasound. The finite-element model is coupled to full-field visual measurements by regularization springs attached at nodal locations. The free ends of the springs are displaced according to the locally estimated tissue motion and the normalized potential energy stored in all springs serves as a measure of model-experiment agreement for material parameter optimization. We demonstrate good accuracy of estimated parameters and consistent convergence properties on synthetically generated data. We present constitutive model selection and parameter estimation for perfused porcine liver in indentation and demonstrate that a quasilinear viscoelastic model with shear modulus relaxation offers good model-experiment agreement in terms of indenter displacement (0.19 mm RMS error) and tissue displacement field (0.97 mm RMS error). PMID:19627823
Heidari, M.; Ranjithan, S.R.
1998-01-01
In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.
Jing, Nan; Li, Chuang; Chong, Yaqin
2017-01-20
An estimation method for indirectly observable parameters for a typical low dynamic vehicle (LDV) is presented. The estimation method utilizes apparent magnitude, azimuth angle, and elevation angle to estimate the position and velocity of a typical LDV, such as a high altitude balloon (HAB). In order to validate the accuracy of the estimated parameters gained from an unscented Kalman filter, two sets of experiments are carried out to obtain the nonresolved photometric and astrometric data. In the experiments, a HAB launch is planned; models of the HAB dynamics and kinematics and observation models are built to use as time update and measurement update functions, respectively. When the HAB is launched, a ground-based optoelectronic detector is used to capture the object images, which are processed using aperture photometry technology to obtain the time-varying apparent magnitude of the HAB. Two sets of actual and estimated parameters are given to clearly indicate the parameter differences. Two sets of errors between the actual and estimated parameters are also given to show how the estimated position and velocity differ with respect to the observation time. The similar distribution curve results from the two scenarios, which agree within 3σ, verify that nonresolved photometric and astrometric data can be used to estimate the indirectly observable state parameters (position and velocity) for a typical LDV. This technique can be applied to small and dim space objects in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Guoping; Mayes, Melanie; Parker, Jack C
2010-01-01
We implemented the widely used CXTFIT code in Excel to provide flexibility and added sensitivity and uncertainty analysis functions to improve transport parameter estimation and to facilitate model discrimination for multi-tracer experiments on structured soils. Analytical solutions for one-dimensional equilibrium and nonequilibrium convection dispersion equations were coded as VBA functions so that they could be used as ordinary math functions in Excel for forward predictions. Macros with user-friendly interfaces were developed for optimization, sensitivity analysis, uncertainty analysis, error propagation, response surface calculation, and Monte Carlo analysis. As a result, any parameter with transformations (e.g., dimensionless, log-transformed, species-dependent reactions, etc.) couldmore » be estimated with uncertainty and sensitivity quantification for multiple tracer data at multiple locations and times. Prior information and observation errors could be incorporated into the weighted nonlinear least squares method with a penalty function. Users are able to change selected parameter values and view the results via embedded graphics, resulting in a flexible tool applicable to modeling transport processes and to teaching students about parameter estimation. The code was verified by comparing to a number of benchmarks with CXTFIT 2.0. It was applied to improve parameter estimation for four typical tracer experiment data sets in the literature using multi-model evaluation and comparison. Additional examples were included to illustrate the flexibilities and advantages of CXTFIT/Excel. The VBA macros were designed for general purpose and could be used for any parameter estimation/model calibration when the forward solution is implemented in Excel. A step-by-step tutorial, example Excel files and the code are provided as supplemental material.« less
NASA Astrophysics Data System (ADS)
Dafflon, B.; Barrash, W.; Cardiff, M.; Johnson, T. C.
2011-12-01
Reliable predictions of groundwater flow and solute transport require an estimation of the detailed distribution of the parameters (e.g., hydraulic conductivity, effective porosity) controlling these processes. However, such parameters are difficult to estimate because of the inaccessibility and complexity of the subsurface. In this regard, developments in parameter estimation techniques and investigations of field experiments are still challenging and necessary to improve our understanding and the prediction of hydrological processes. Here we analyze a conservative tracer test conducted at the Boise Hydrogeophysical Research Site in 2001 in a heterogeneous unconfined fluvial aquifer. Some relevant characteristics of this test include: variable-density (sinking) effects because of the injection concentration of the bromide tracer, the relatively small size of the experiment, and the availability of various sources of geophysical and hydrological information. The information contained in this experiment is evaluated through several parameter estimation approaches, including a grid-search-based strategy, stochastic simulation of hydrological property distributions, and deterministic inversion using regularization and pilot-point techniques. Doing this allows us to investigate hydraulic conductivity and effective porosity distributions and to compare the effects of assumptions from several methods and parameterizations. Our results provide new insights into the understanding of variable-density transport processes and the hydrological relevance of incorporating various sources of information in parameter estimation approaches. Among others, the variable-density effect and the effective porosity distribution, as well as their coupling with the hydraulic conductivity structure, are seen to be significant in the transport process. The results also show that assumed prior information can strongly influence the estimated distributions of hydrological properties.
The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.
White, Andrew; Tolman, Malachi; Thames, Howard D; Withers, Hubert Rodney; Mason, Kathy A; Transtrum, Mark K
2016-12-01
We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.
The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems
Tolman, Malachi; Thames, Howard D.; Mason, Kathy A.
2016-01-01
We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model’s discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system–a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model. PMID:27923060
NASA Astrophysics Data System (ADS)
Tong, M.; Xue, M.
2006-12-01
An important source of model error for convective-scale data assimilation and prediction is microphysical parameterization. This study investigates the possibility of estimating up to five fundamental microphysical parameters, which are closely involved in the definition of drop size distribution of microphysical species in a commonly used single-moment ice microphysics scheme, using radar observations and the ensemble Kalman filter method. The five parameters include the intercept parameters for rain, snow and hail/graupel, and the bulk densities of hail/graupel and snow. Parameter sensitivity and identifiability are first examined. The ensemble square-root Kalman filter (EnSRF) is employed for simultaneous state and parameter estimation. OSS experiments are performed for a model-simulated supercell storm, in which the five microphysical parameters are estimated individually or in different combinations starting from different initial guesses. When error exists in only one of the microphysical parameters, the parameter can be successfully estimated without exception. The estimation of multiple parameters is found to be less robust, with end results of estimation being sensitive to the realization of the initial parameter perturbation. This is believed to be because of the reduced parameter identifiability and the existence of non-unique solutions. The results of state estimation are, however, always improved when simultaneous parameter estimation is performed, even when the estimated parameters values are not accurate.
Samsudin, Hayati; Auras, Rafael; Mishra, Dharmendra; Dolan, Kirk; Burgess, Gary; Rubino, Maria; Selke, Susan; Soto-Valdez, Herlinda
2018-01-01
Migration studies of chemicals from contact materials have been widely conducted due to their importance in determining the safety and shelf life of a food product in their packages. The US Food and Drug Administration (FDA) and the European Food Safety Authority (EFSA) require this safety assessment for food contact materials. So, migration experiments are theoretically designed and experimentally conducted to obtain data that can be used to assess the kinetics of chemical release. In this work, a parameter estimation approach was used to review and to determine the mass transfer partition and diffusion coefficients governing the migration process of eight antioxidants from poly(lactic acid), PLA, based films into water/ethanol solutions at temperatures between 20 and 50°C. Scaled sensitivity coefficients were calculated to assess simultaneously estimation of a number of mass transfer parameters. An optimal experimental design approach was performed to show the importance of properly designing a migration experiment. Additional parameters also provide better insights on migration of the antioxidants. For example, the partition coefficients could be better estimated using data from the early part of the experiment instead at the end. Experiments could be conducted for shorter periods of time saving time and resources. Diffusion coefficients of the eight antioxidants from PLA films were between 0.2 and 19×10 -14 m 2 /s at ~40°C. The use of parameter estimation approach provided additional and useful insights about the migration of antioxidants from PLA films. Copyright © 2017 Elsevier Ltd. All rights reserved.
Accurate motion parameter estimation for colonoscopy tracking using a regression method
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2010-03-01
Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.
Rapid estimation of high-parameter auditory-filter shapes
Shen, Yi; Sivakumar, Rajeswari; Richards, Virginia M.
2014-01-01
A Bayesian adaptive procedure, the quick-auditory-filter (qAF) procedure, was used to estimate auditory-filter shapes that were asymmetric about their peaks. In three experiments, listeners who were naive to psychoacoustic experiments detected a fixed-level, pure-tone target presented with a spectrally notched noise masker. The qAF procedure adaptively manipulated the masker spectrum level and the position of the masker notch, which was optimized for the efficient estimation of the five parameters of an auditory-filter model. Experiment I demonstrated that the qAF procedure provided a convergent estimate of the auditory-filter shape at 2 kHz within 150 to 200 trials (approximately 15 min to complete) and, for a majority of listeners, excellent test-retest reliability. In experiment II, asymmetric auditory filters were estimated for target frequencies of 1 and 4 kHz and target levels of 30 and 50 dB sound pressure level. The estimated filter shapes were generally consistent with published norms, especially at the low target level. It is known that the auditory-filter estimates are narrower for forward masking than simultaneous masking due to peripheral suppression, a result replicated in experiment III using fewer than 200 qAF trials. PMID:25324086
Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A
2014-11-15
Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modeling. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lähivaara, Timo; Kärkkäinen, Leo; Huttunen, Janne M. J.; Hesthaven, Jan S.
2018-02-01
We study the feasibility of data based machine learning applied to ultrasound tomography to estimate water-saturated porous material parameters. In this work, the data to train the neural networks is simulated by solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, we consider a high-order discontinuous Galerkin method while deep convolutional neural networks are used to solve the parameter estimation problem. In the numerical experiment, we estimate the material porosity and tortuosity while the remaining parameters which are of less interest are successfully marginalized in the neural networks-based inversion. Computational examples confirms the feasibility and accuracy of this approach.
Parameter estimation for chaotic systems using improved bird swarm algorithm
NASA Astrophysics Data System (ADS)
Xu, Chuangbiao; Yang, Renhuan
2017-12-01
Parameter estimation of chaotic systems is an important problem in nonlinear science and has aroused increasing interest of many research fields, which can be basically reduced to a multidimensional optimization problem. In this paper, an improved boundary bird swarm algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the good global convergence and robustness of the bird swarm algorithm and the exploitation capability of improved boundary learning strategy. Experiments are conducted on the Lorenz system and the coupling motor system. Numerical simulation results reveal the effectiveness and with desirable performance of IBBSA for parameter estimation of chaotic systems.
Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation
NASA Astrophysics Data System (ADS)
Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei
2018-04-01
Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.
Convergence in parameters and predictions using computational experimental design.
Hagen, David R; White, Jacob K; Tidor, Bruce
2013-08-06
Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, however, suggests that optimal experimental design techniques can select sets of experiments whose members probe complementary aspects of a biochemical network that together can account for its full behaviour. Here, we implemented an experimental design approach for selecting sets of experiments that constrain parameter uncertainty. We demonstrated with a model of the epidermal growth factor-nerve growth factor pathway that, after synthetically performing a handful of optimal experiments, the uncertainty in all 48 parameters converged below 10 per cent. Furthermore, the fitted parameters converged to their true values with a small error consistent with the residual uncertainty. When untested experimental conditions were simulated with the fitted models, the predicted species concentrations converged to their true values with errors that were consistent with the residual uncertainty. This paper suggests that accurate parameter estimation is achievable with complementary experiments specifically designed for the task, and that the resulting parametrized models are capable of accurate predictions.
Kalman filter data assimilation: targeting observations and parameter estimation.
Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex
2014-06-01
This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.
Kalman filter data assimilation: Targeting observations and parameter estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellsky, Thomas, E-mail: bellskyt@asu.edu; Kostelich, Eric J.; Mahalov, Alex
2014-06-15
This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly locatedmore » observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.« less
Amiralizadeh, Siamak; Nguyen, An T; Rusch, Leslie A
2013-08-26
We investigate the performance of digital filter back-propagation (DFBP) using coarse parameter estimation for mitigating SOA nonlinearity in coherent communication systems. We introduce a simple, low overhead method for parameter estimation for DFBP based on error vector magnitude (EVM) as a figure of merit. The bit error rate (BER) penalty achieved with this method has negligible penalty as compared to DFBP with fine parameter estimation. We examine different bias currents for two commercial SOAs used as booster amplifiers in our experiments to find optimum operating points and experimentally validate our method. The coarse parameter DFBP efficiently compensates SOA-induced nonlinearity for both SOA types in 80 km propagation of 16-QAM signal at 22 Gbaud.
NASA Astrophysics Data System (ADS)
Yang, Qi; Deng, Bin; Wang, Hongqiang; Qin, Yuliang
2017-07-01
Rotation is one of the typical micro-motions of radar targets. In many cases, rotation of the targets is always accompanied with vibrating interference, and it will significantly affect the parameter estimation and imaging, especially in the terahertz band. In this paper, we propose a parameter estimation method and an image reconstruction method based on the inverse Radon transform, the time-frequency analysis, and its inverse. The method can separate and estimate the rotating Doppler and the vibrating Doppler simultaneously and can obtain high-quality reconstructed images after vibration compensation. In addition, a 322-GHz radar system and a 25-GHz commercial radar are introduced and experiments on rotating corner reflectors are carried out in this paper. The results of the simulation and experiments verify the validity of the methods, which lay a foundation for the practical processing of the terahertz radar.
Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data.
Dosso, Stan E; Nielsen, Peter L
2002-01-01
This paper applies the new method of fast Gibbs sampling (FGS) to estimate the uncertainties of seabed geoacoustic parameters in a broadband, shallow-water acoustic survey, with the goal of interpreting the survey results and validating the method for experimental data. FGS applies a Bayesian approach to geoacoustic inversion based on sampling the posterior probability density to estimate marginal probability distributions and parameter covariances. This requires knowledge of the statistical distribution of the data errors, including both measurement and theory errors, which is generally not available. Invoking the simplifying assumption of independent, identically distributed Gaussian errors allows a maximum-likelihood estimate of the data variance and leads to a practical inversion algorithm. However, it is necessary to validate these assumptions, i.e., to verify that the parameter uncertainties obtained represent meaningful estimates. To this end, FGS is applied to a geoacoustic experiment carried out at a site off the west coast of Italy where previous acoustic and geophysical studies have been performed. The parameter uncertainties estimated via FGS are validated by comparison with: (i) the variability in the results of inverting multiple independent data sets collected during the experiment; (ii) the results of FGS inversion of synthetic test cases designed to simulate the experiment and data errors; and (iii) the available geophysical ground truth. Comparisons are carried out for a number of different source bandwidths, ranges, and levels of prior information, and indicate that FGS provides reliable and stable uncertainty estimates for the geoacoustic inverse problem.
NASA Astrophysics Data System (ADS)
Mayotte, Jean-Marc; Grabs, Thomas; Sutliff-Johansson, Stacy; Bishop, Kevin
2017-06-01
This study examined how the inactivation of bacteriophage MS2 in water was affected by ionic strength (IS) and dissolved organic carbon (DOC) using static batch inactivation experiments at 4 °C conducted over a period of 2 months. Experimental conditions were characteristic of an operational managed aquifer recharge (MAR) scheme in Uppsala, Sweden. Experimental data were fit with constant and time-dependent inactivation models using two methods: (1) traditional linear and nonlinear least-squares techniques; and (2) a Monte-Carlo based parameter estimation technique called generalized likelihood uncertainty estimation (GLUE). The least-squares and GLUE methodologies gave very similar estimates of the model parameters and their uncertainty. This demonstrates that GLUE can be used as a viable alternative to traditional least-squares parameter estimation techniques for fitting of virus inactivation models. Results showed a slight increase in constant inactivation rates following an increase in the DOC concentrations, suggesting that the presence of organic carbon enhanced the inactivation of MS2. The experiment with a high IS and a low DOC was the only experiment which showed that MS2 inactivation may have been time-dependent. However, results from the GLUE methodology indicated that models of constant inactivation were able to describe all of the experiments. This suggested that inactivation time-series longer than 2 months were needed in order to provide concrete conclusions regarding the time-dependency of MS2 inactivation at 4 °C under these experimental conditions.
Quantitative body DW-MRI biomarkers uncertainty estimation using unscented wild-bootstrap.
Freiman, M; Voss, S D; Mulkern, R V; Perez-Rossello, J M; Warfield, S K
2011-01-01
We present a new method for the uncertainty estimation of diffusion parameters for quantitative body DW-MRI assessment. Diffusion parameters uncertainty estimation from DW-MRI is necessary for clinical applications that use these parameters to assess pathology. However, uncertainty estimation using traditional techniques requires repeated acquisitions, which is undesirable in routine clinical use. Model-based bootstrap techniques, for example, assume an underlying linear model for residuals rescaling and cannot be utilized directly for body diffusion parameters uncertainty estimation due to the non-linearity of the body diffusion model. To offset this limitation, our method uses the Unscented transform to compute the residuals rescaling parameters from the non-linear body diffusion model, and then applies the wild-bootstrap method to infer the body diffusion parameters uncertainty. Validation through phantom and human subject experiments shows that our method identify the regions with higher uncertainty in body DWI-MRI model parameters correctly with realtive error of -36% in the uncertainty values.
Improved battery parameter estimation method considering operating scenarios for HEV/EV applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jufeng; Xia, Bing; Shang, Yunlong
This study presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted datasetmore » is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.« less
Improved battery parameter estimation method considering operating scenarios for HEV/EV applications
Yang, Jufeng; Xia, Bing; Shang, Yunlong; ...
2016-12-22
This study presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted datasetmore » is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.« less
Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2017-09-01
We propose a sparse Bayesian learning algorithm for improved estimation of white matter fiber parameters from compressed (under-sampled q-space) multi-shell diffusion MRI data. The multi-shell data is represented in a dictionary form using a non-monoexponential decay model of diffusion, based on continuous gamma distribution of diffusivities. The fiber volume fractions with predefined orientations, which are the unknown parameters, form the dictionary weights. These unknown parameters are estimated with a linear un-mixing framework, using a sparse Bayesian learning algorithm. A localized learning of hyperparameters at each voxel and for each possible fiber orientations improves the parameter estimation. Our experiments using synthetic data from the ISBI 2012 HARDI reconstruction challenge and in-vivo data from the Human Connectome Project demonstrate the improvements.
Impact of orbit modeling on DORIS station position and Earth rotation estimates
NASA Astrophysics Data System (ADS)
Štěpánek, Petr; Rodriguez-Solano, Carlos Javier; Hugentobler, Urs; Filler, Vratislav
2014-04-01
The high precision of estimated station coordinates and Earth rotation parameters (ERP) obtained from satellite geodetic techniques is based on the precise determination of the satellite orbit. This paper focuses on the analysis of the impact of different orbit parameterizations on the accuracy of station coordinates and the ERPs derived from DORIS observations. In a series of experiments the DORIS data from the complete year 2011 were processed with different orbit model settings. First, the impact of precise modeling of the non-conservative forces on geodetic parameters was compared with results obtained with an empirical-stochastic modeling approach. Second, the temporal spacing of drag scaling parameters was tested. Third, the impact of estimating once-per-revolution harmonic accelerations in cross-track direction was analyzed. And fourth, two different approaches for solar radiation pressure (SRP) handling were compared, namely adjusting SRP scaling parameter or fixing it on pre-defined values. Our analyses confirm that the empirical-stochastic orbit modeling approach, which does not require satellite attitude information and macro models, results for most of the monitored station parameters in comparable accuracy as the dynamical model that employs precise non-conservative force modeling. However, the dynamical orbit model leads to a reduction of the RMS values for the estimated rotation pole coordinates by 17% for x-pole and 12% for y-pole. The experiments show that adjusting atmospheric drag scaling parameters each 30 min is appropriate for DORIS solutions. Moreover, it was shown that the adjustment of cross-track once-per-revolution empirical parameter increases the RMS of the estimated Earth rotation pole coordinates. With recent data it was however not possible to confirm the previously known high annual variation in the estimated geocenter z-translation series as well as its mitigation by fixing the SRP parameters on pre-defined values.
Tuo, Rui; Jeff Wu, C. F.
2016-07-19
Calibration parameters in deterministic computer experiments are those attributes that cannot be measured or available in physical experiments. Here, an approach to estimate them by using data from physical experiments and computer simulations. A theoretical framework is given which allows us to study the issues of parameter identifiability and estimation. We define the L 2-consistency for calibration as a justification for calibration methods. It is shown that a simplified version of the original KO method leads to asymptotically L 2-inconsistent calibration. This L 2-inconsistency can be remedied by modifying the original estimation procedure. A novel calibration method, called the Lmore » 2 calibration, is proposed and proven to be L 2-consistent and enjoys optimal convergence rate. Furthermore a numerical example and some mathematical analysis are used to illustrate the source of the L 2-inconsistency problem.« less
Virtual parameter-estimation experiments in Bioprocess-Engineering education.
Sessink, Olivier D T; Beeftink, Hendrik H; Hartog, Rob J M; Tramper, Johannes
2006-05-01
Cell growth kinetics and reactor concepts constitute essential knowledge for Bioprocess-Engineering students. Traditional learning of these concepts is supported by lectures, tutorials, and practicals: ICT offers opportunities for improvement. A virtual-experiment environment was developed that supports both model-related and experimenting-related learning objectives. Students have to design experiments to estimate model parameters: they choose initial conditions and 'measure' output variables. The results contain experimental error, which is an important constraint for experimental design. Students learn from these results and use the new knowledge to re-design their experiment. Within a couple of hours, students design and run many experiments that would take weeks in reality. Usage was evaluated in two courses with questionnaires and in the final exam. The faculties involved in the two courses are convinced that the experiment environment supports essential learning objectives well.
Wagner, Brian J.; Harvey, Judson W.
1997-01-01
Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute exchange rates are fast relative to stream-water velocity and all solute is exchanged with the storage zone over the experimental reach. As DaI increases, tracer dispersion caused by hyporheic exchange eventually reaches an equilibrium condition and storage-zone exchange parameters become essentially nonidentifiable.
Image informative maps for component-wise estimating parameters of signal-dependent noise
NASA Astrophysics Data System (ADS)
Uss, Mykhail L.; Vozel, Benoit; Lukin, Vladimir V.; Chehdi, Kacem
2013-01-01
We deal with the problem of blind parameter estimation of signal-dependent noise from mono-component image data. Multispectral or color images can be processed in a component-wise manner. The main results obtained rest on the assumption that the image texture and noise parameters estimation problems are interdependent. A two-dimensional fractal Brownian motion (fBm) model is used for locally describing image texture. A polynomial model is assumed for the purpose of describing the signal-dependent noise variance dependence on image intensity. Using the maximum likelihood approach, estimates of both fBm-model and noise parameters are obtained. It is demonstrated that Fisher information (FI) on noise parameters contained in an image is distributed nonuniformly over intensity coordinates (an image intensity range). It is also shown how to find the most informative intensities and the corresponding image areas for a given noisy image. The proposed estimator benefits from these detected areas to improve the estimation accuracy of signal-dependent noise parameters. Finally, the potential estimation accuracy (Cramér-Rao Lower Bound, or CRLB) of noise parameters is derived, providing confidence intervals of these estimates for a given image. In the experiment, the proposed and existing state-of-the-art noise variance estimators are compared for a large image database using CRLB-based statistical efficiency criteria.
Optimal experimental design for parameter estimation of a cell signaling model.
Bandara, Samuel; Schlöder, Johannes P; Eils, Roland; Bock, Hans Georg; Meyer, Tobias
2009-11-01
Differential equation models that describe the dynamic changes of biochemical signaling states are important tools to understand cellular behavior. An essential task in building such representations is to infer the affinities, rate constants, and other parameters of a model from actual measurement data. However, intuitive measurement protocols often fail to generate data that restrict the range of possible parameter values. Here we utilized a numerical method to iteratively design optimal live-cell fluorescence microscopy experiments in order to reveal pharmacological and kinetic parameters of a phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) second messenger signaling process that is deregulated in many tumors. The experimental approach included the activation of endogenous phosphoinositide 3-kinase (PI3K) by chemically induced recruitment of a regulatory peptide, reversible inhibition of PI3K using a kinase inhibitor, and monitoring of the PI3K-mediated production of PIP(3) lipids using the pleckstrin homology (PH) domain of Akt. We found that an intuitively planned and established experimental protocol did not yield data from which relevant parameters could be inferred. Starting from a set of poorly defined model parameters derived from the intuitively planned experiment, we calculated concentration-time profiles for both the inducing and the inhibitory compound that would minimize the predicted uncertainty of parameter estimates. Two cycles of optimization and experimentation were sufficient to narrowly confine the model parameters, with the mean variance of estimates dropping more than sixty-fold. Thus, optimal experimental design proved to be a powerful strategy to minimize the number of experiments needed to infer biological parameters from a cell signaling assay.
NASA Astrophysics Data System (ADS)
Rasa, Ehsan; Foglia, Laura; Mackay, Douglas M.; Scow, Kate M.
2013-11-01
Conservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs ( m 1), and tracer cumulative mass discharge ( M d) through control planes combined with hydraulic head observations ( h). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used. In this experiment, bromide was injected to create two adjacent plumes monitored at six different transects (perpendicular to groundwater flow) with a total of 162 monitoring wells. A total of 133 different observations of transient hydraulic head, 1,158 of BTC concentration, 23 of first moment, and 36 of mass discharge were used for sensitivity analysis and parameter estimation of nine flow and transport parameters. The importance of each group of transport observations in estimating these parameters was evaluated using sensitivity analysis, and five out of nine parameters were calibrated against these data. Results showed the advantages of using temporal moment of conservative tracer BTCs and mass discharge as observations for inverse modeling.
Practical input optimization for aircraft parameter estimation experiments. Ph.D. Thesis, 1990
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1993-01-01
The object of this research was to develop an algorithm for the design of practical, optimal flight test inputs for aircraft parameter estimation experiments. A general, single pass technique was developed which allows global optimization of the flight test input design for parameter estimation using the principles of dynamic programming with the input forms limited to square waves only. Provision was made for practical constraints on the input, including amplitude constraints, control system dynamics, and selected input frequency range exclusions. In addition, the input design was accomplished while imposing output amplitude constraints required by model validity and considerations of safety during the flight test. The algorithm has multiple input design capability, with optional inclusion of a constraint that only one control move at a time, so that a human pilot can implement the inputs. It is shown that the technique can be used to design experiments for estimation of open loop model parameters from closed loop flight test data. The report includes a new formulation of the optimal input design problem, a description of a new approach to the solution, and a summary of the characteristics of the algorithm, followed by three example applications of the new technique which demonstrate the quality and expanded capabilities of the input designs produced by the new technique. In all cases, the new input design approach showed significant improvement over previous input design methods in terms of achievable parameter accuracies.
NASA Astrophysics Data System (ADS)
Sailhac, P.
2004-05-01
Field estimation of soil water flux has direct application for water resource management. Standard hydrologic methods like tensiometry or TDR are often difficult to apply because of the heterogeneity of the subsurface, and non invasive tools like ERT, NMR or GPR are limited to the estimation of the water content. Electrical Streaming Potential (SP) monitoring can provide a cost-effective tool to help estimate the nature of the hydraulic transfers (infiltration or evaporation) in the vadose zone. Indeed this technique has improved during the last decade and has been shown to be a useful tool for quantitative groundwater flow characterization (see the poster of Marquis et al. for a review). We now account for our latest development on the possibility of using SP for estimating hydraulic parameters of unsaturated soils from in situ SP measurements during infiltration experiments. The proposed method consists in SP profiling perpendicularly to a line source of steady-state infiltration. Analytic expressions for the forward modeling show a sensitivity to six parameters: the electrokinetic coupling parameter at saturation CS, the soil sorptive number α , the ratio of the constant source strength to the hydraulic conductivity at saturation q/KS, the soil effective water saturation prior to the infiltration experiment Se0, Mualem parameter m, and Archie law exponent n. In applications, all these parameters could be constrained by inverting electrokinetic data obtained during a series of infiltration experiments with varying source strength q.
New spatial upscaling methods for multi-point measurements: From normal to p-normal
NASA Astrophysics Data System (ADS)
Liu, Feng; Li, Xin
2017-12-01
Careful attention must be given to determining whether the geophysical variables of interest are normally distributed, since the assumption of a normal distribution may not accurately reflect the probability distribution of some variables. As a generalization of the normal distribution, the p-normal distribution and its corresponding maximum likelihood estimation (the least power estimation, LPE) were introduced in upscaling methods for multi-point measurements. Six methods, including three normal-based methods, i.e., arithmetic average, least square estimation, block kriging, and three p-normal-based methods, i.e., LPE, geostatistics LPE and inverse distance weighted LPE are compared in two types of experiments: a synthetic experiment to evaluate the performance of the upscaling methods in terms of accuracy, stability and robustness, and a real-world experiment to produce real-world upscaling estimates using soil moisture data obtained from multi-scale observations. The results show that the p-normal-based methods produced lower mean absolute errors and outperformed the other techniques due to their universality and robustness. We conclude that introducing appropriate statistical parameters into an upscaling strategy can substantially improve the estimation, especially if the raw measurements are disorganized; however, further investigation is required to determine which parameter is the most effective among variance, spatial correlation information and parameter p.
PSYCHOACOUSTICS: a comprehensive MATLAB toolbox for auditory testing.
Soranzo, Alessandro; Grassi, Massimo
2014-01-01
PSYCHOACOUSTICS is a new MATLAB toolbox which implements three classic adaptive procedures for auditory threshold estimation. The first includes those of the Staircase family (method of limits, simple up-down and transformed up-down); the second is the Parameter Estimation by Sequential Testing (PEST); and the third is the Maximum Likelihood Procedure (MLP). The toolbox comes with more than twenty built-in experiments each provided with the recommended (default) parameters. However, if desired, these parameters can be modified through an intuitive and user friendly graphical interface and stored for future use (no programming skills are required). Finally, PSYCHOACOUSTICS is very flexible as it comes with several signal generators and can be easily extended for any experiment.
PSYCHOACOUSTICS: a comprehensive MATLAB toolbox for auditory testing
Soranzo, Alessandro; Grassi, Massimo
2014-01-01
PSYCHOACOUSTICS is a new MATLAB toolbox which implements three classic adaptive procedures for auditory threshold estimation. The first includes those of the Staircase family (method of limits, simple up-down and transformed up-down); the second is the Parameter Estimation by Sequential Testing (PEST); and the third is the Maximum Likelihood Procedure (MLP). The toolbox comes with more than twenty built-in experiments each provided with the recommended (default) parameters. However, if desired, these parameters can be modified through an intuitive and user friendly graphical interface and stored for future use (no programming skills are required). Finally, PSYCHOACOUSTICS is very flexible as it comes with several signal generators and can be easily extended for any experiment. PMID:25101013
Ming, Y; Peiwen, Q
2001-03-01
The understanding of ultrasonic motor performances as a function of input parameters, such as the voltage amplitude, driving frequency, the preload on the rotor, is a key to many applications and control of ultrasonic motor. This paper presents performances estimation of the piezoelectric rotary traveling wave ultrasonic motor as a function of input voltage amplitude and driving frequency and preload. The Love equation is used to derive the traveling wave amplitude on the stator surface. With the contact model of the distributed spring-rigid body between the stator and rotor, a two-dimension analytical model of the rotary traveling wave ultrasonic motor is constructed. Then the performances of stead rotation speed and stall torque are deduced. With MATLAB computational language and iteration algorithm, we estimate the performances of rotation speed and stall torque versus input parameters respectively. The same experiments are completed with the optoelectronic tachometer and stand weight. Both estimation and experiment results reveal the pattern of performance variation as a function of its input parameters.
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Curtis, Gary P.; Lane, John W.
2013-01-01
Anomalous solute transport, modeled as rate-limited mass transfer, has an observable geoelectrical signature that can be exploited to infer the controlling parameters. Previous experiments indicate the combination of time-lapse geoelectrical and fluid conductivity measurements collected during ionic tracer experiments provides valuable insight into the exchange of solute between mobile and immobile porosity. Here, we use geoelectrical measurements to monitor tracer experiments at a former uranium mill tailings site in Naturita, Colorado. We use nonlinear regression to calibrate dual-domain mass transfer solute-transport models to field data. This method differs from previous approaches by calibrating the model simultaneously to observed fluid conductivity and geoelectrical tracer signals using two parameter scales: effective parameters for the flow path upgradient of the monitoring point and the parameters local to the monitoring point. We use regression statistics to rigorously evaluate the information content and sensitivity of fluid conductivity and geophysical data, demonstrating multiple scales of mass transfer parameters can simultaneously be estimated. Our results show, for the first time, field-scale spatial variability of mass transfer parameters (i.e., exchange-rate coefficient, porosity) between local and upgradient effective parameters; hence our approach provides insight into spatial variability and scaling behavior. Additional synthetic modeling is used to evaluate the scope of applicability of our approach, indicating greater range than earlier work using temporal moments and a Lagrangian-based Damköhler number. The introduced Eulerian-based Damköhler is useful for estimating tracer injection duration needed to evaluate mass transfer exchange rates that range over several orders of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuo, Rui; Jeff Wu, C. F.
Calibration parameters in deterministic computer experiments are those attributes that cannot be measured or available in physical experiments. Here, an approach to estimate them by using data from physical experiments and computer simulations. A theoretical framework is given which allows us to study the issues of parameter identifiability and estimation. We define the L 2-consistency for calibration as a justification for calibration methods. It is shown that a simplified version of the original KO method leads to asymptotically L 2-inconsistent calibration. This L 2-inconsistency can be remedied by modifying the original estimation procedure. A novel calibration method, called the Lmore » 2 calibration, is proposed and proven to be L 2-consistent and enjoys optimal convergence rate. Furthermore a numerical example and some mathematical analysis are used to illustrate the source of the L 2-inconsistency problem.« less
ERIC Educational Resources Information Center
Fan, Xitao
This paper empirically and systematically assessed the performance of bootstrap resampling procedure as it was applied to a regression model. Parameter estimates from Monte Carlo experiments (repeated sampling from population) and bootstrap experiments (repeated resampling from one original bootstrap sample) were generated and compared. Sample…
Estimation of the sea surface's two-scale backscatter parameters
NASA Technical Reports Server (NTRS)
Wentz, F. J.
1978-01-01
The relationship between the sea-surface normalized radar cross section and the friction velocity vector is determined using a parametric two-scale scattering model. The model parameters are found from a nonlinear maximum likelihood estimation. The estimation is based on aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP '75 experiment. The estimates of the ten model parameters converge to realistic values that are in good agreement with the available oceanographic data. The rms discrepancy between the model and the cross section measurements is 0.7 db, which is the rms sum of a 0.3 db average measurement error and a 0.6 db modeling error.
Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo
2015-01-01
Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation. PMID:26150807
Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo
2015-01-01
Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation.
NASA Astrophysics Data System (ADS)
Morandage, Shehan; Schnepf, Andrea; Vanderborght, Jan; Javaux, Mathieu; Leitner, Daniel; Laloy, Eric; Vereecken, Harry
2017-04-01
Root traits are increasingly important in breading of new crop varieties. E.g., longer and fewer lateral roots are suggested to improve drought resistance of wheat. Thus, detailed root architectural parameters are important. However, classical field sampling of roots only provides more aggregated information such as root length density (coring), root counts per area (trenches) or root arrival curves at certain depths (rhizotubes). We investigate the possibility of obtaining the information about root system architecture of plants using field based classical root sampling schemes, based on sensitivity analysis and inverse parameter estimation. This methodology was developed based on a virtual experiment where a root architectural model was used to simulate root system development in a field, parameterized for winter wheat. This information provided the ground truth which is normally unknown in a real field experiment. The three sampling schemes coring, trenching, and rhizotubes where virtually applied to and aggregated information computed. Morris OAT global sensitivity analysis method was then performed to determine the most sensitive parameters of root architecture model for the three different sampling methods. The estimated means and the standard deviation of elementary effects of a total number of 37 parameters were evaluated. Upper and lower bounds of the parameters were obtained based on literature and published data of winter wheat root architectural parameters. Root length density profiles of coring, arrival curve characteristics observed in rhizotubes, and root counts in grids of trench profile method were evaluated statistically to investigate the influence of each parameter using five different error functions. Number of branches, insertion angle inter-nodal distance, and elongation rates are the most sensitive parameters and the parameter sensitivity varies slightly with the depth. Most parameters and their interaction with the other parameters show highly nonlinear effect to the model output. The most sensitive parameters will be subject to inverse estimation from the virtual field sampling data using DREAMzs algorithm. The estimated parameters can then be compared with the ground truth in order to determine the suitability of the sampling schemes to identify specific traits or parameters of the root growth model.
RnaSeqSampleSize: real data based sample size estimation for RNA sequencing.
Zhao, Shilin; Li, Chung-I; Guo, Yan; Sheng, Quanhu; Shyr, Yu
2018-05-30
One of the most important and often neglected components of a successful RNA sequencing (RNA-Seq) experiment is sample size estimation. A few negative binomial model-based methods have been developed to estimate sample size based on the parameters of a single gene. However, thousands of genes are quantified and tested for differential expression simultaneously in RNA-Seq experiments. Thus, additional issues should be carefully addressed, including the false discovery rate for multiple statistic tests, widely distributed read counts and dispersions for different genes. To solve these issues, we developed a sample size and power estimation method named RnaSeqSampleSize, based on the distributions of gene average read counts and dispersions estimated from real RNA-seq data. Datasets from previous, similar experiments such as the Cancer Genome Atlas (TCGA) can be used as a point of reference. Read counts and their dispersions were estimated from the reference's distribution; using that information, we estimated and summarized the power and sample size. RnaSeqSampleSize is implemented in R language and can be installed from Bioconductor website. A user friendly web graphic interface is provided at http://cqs.mc.vanderbilt.edu/shiny/RnaSeqSampleSize/ . RnaSeqSampleSize provides a convenient and powerful way for power and sample size estimation for an RNAseq experiment. It is also equipped with several unique features, including estimation for interested genes or pathway, power curve visualization, and parameter optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonova, A. O., E-mail: aoantonova@mail.ru; Savyolova, T. I.
2016-05-15
A two-dimensional mathematical model of a polycrystalline sample and an experiment on electron backscattering diffraction (EBSD) is considered. The measurement parameters are taken to be the scanning step and threshold grain-boundary angle. Discrete pole figures for materials with hexagonal symmetry have been calculated based on the results of the model experiment. Discrete and smoothed (by the kernel method) pole figures of the model sample and the samples in the model experiment are compared using homogeneity criterion χ{sup 2}, an estimate of the pole figure maximum and its coordinate, a deviation of the pole figures of the model in the experimentmore » from the sample in the space of L{sub 1} measurable functions, and the RP-criterion for estimating the pole figure errors. Is is shown that the problem of calculating pole figures is ill-posed and their determination with respect to measurement parameters is not reliable.« less
NASA Astrophysics Data System (ADS)
Ito, Shin-ichi; Yoshie, Naoki; Okunishi, Takeshi; Ono, Tsuneo; Okazaki, Yuji; Kuwata, Akira; Hashioka, Taketo; Rose, Kenneth A.; Megrey, Bernard A.; Kishi, Michio J.; Nakamachi, Miwa; Shimizu, Yugo; Kakehi, Shigeho; Saito, Hiroaki; Takahashi, Kazutaka; Tadokoro, Kazuaki; Kusaka, Akira; Kasai, Hiromi
2010-10-01
The Oyashio region in the western North Pacific supports high biological productivity and has been well monitored. We applied the NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography) model to simulate the nutrients, phytoplankton, and zooplankton dynamics. Determination of parameters values is very important, yet ad hoc calibration methods are often used. We used the automatic calibration software PEST (model-independent Parameter ESTimation), which has been used previously with NEMURO but in a system without ontogenetic vertical migration of the large zooplankton functional group. Determining the performance of PEST with vertical migration, and obtaining a set of realistic parameter values for the Oyashio, will likely be useful in future applications of NEMURO. Five identical twin simulation experiments were performed with the one-box version of NEMURO. The experiments differed in whether monthly snapshot or averaged state variables were used, in whether state variables were model functional groups or were aggregated (total phytoplankton, small plus large zooplankton), and in whether vertical migration of large zooplankton was included or not. We then applied NEMURO to monthly climatological field data covering 1 year for the Oyashio, and compared model fits and parameter values between PEST-determined estimates and values used in previous applications to the Oyashio region that relied on ad hoc calibration. We substituted the PEST and ad hoc calibrated parameter values into a 3-D version of NEMURO for the western North Pacific, and compared the two sets of spatial maps of chlorophyll- a with satellite-derived data. The identical twin experiments demonstrated that PEST could recover the known model parameter values when vertical migration was included, and that over-fitting can occur as a result of slight differences in the values of the state variables. PEST recovered known parameter values when using monthly snapshots of aggregated state variables, but estimated a different set of parameters with monthly averaged values. Both sets of parameters resulted in good fits of the model to the simulated data. Disaggregating the variables provided to PEST into functional groups did not solve the over-fitting problem, and including vertical migration seemed to amplify the problem. When we used the climatological field data, simulated values with PEST-estimated parameters were closer to these field data than with the previously determined ad hoc set of parameter values. When these same PEST and ad hoc sets of parameter values were substituted into 3-D-NEMURO (without vertical migration), the PEST-estimated parameter values generated spatial maps that were similar to the satellite data for the Kuroshio Extension during January and March and for the subarctic ocean from May to November. With non-linear problems, such as vertical migration, PEST should be used with caution because parameter estimates can be sensitive to how the data are prepared and to the values used for the searching parameters of PEST. We recommend the usage of PEST, or other parameter optimization methods, to generate first-order parameter estimates for simulating specific systems and for insertion into 2-D and 3-D models. The parameter estimates that are generated are useful, and the inconsistencies between simulated values and the available field data provide valuable information on model behavior and the dynamics of the ecosystem.
NASA Astrophysics Data System (ADS)
Cheung, Shao-Yong; Lee, Chieh-Han; Yu, Hwa-Lung
2017-04-01
Due to the limited hydrogeological observation data and high levels of uncertainty within, parameter estimation of the groundwater model has been an important issue. There are many methods of parameter estimation, for example, Kalman filter provides a real-time calibration of parameters through measurement of groundwater monitoring wells, related methods such as Extended Kalman Filter and Ensemble Kalman Filter are widely applied in groundwater research. However, Kalman Filter method is limited to linearity. This study propose a novel method, Bayesian Maximum Entropy Filtering, which provides a method that can considers the uncertainty of data in parameter estimation. With this two methods, we can estimate parameter by given hard data (certain) and soft data (uncertain) in the same time. In this study, we use Python and QGIS in groundwater model (MODFLOW) and development of Extended Kalman Filter and Bayesian Maximum Entropy Filtering in Python in parameter estimation. This method may provide a conventional filtering method and also consider the uncertainty of data. This study was conducted through numerical model experiment to explore, combine Bayesian maximum entropy filter and a hypothesis for the architecture of MODFLOW groundwater model numerical estimation. Through the virtual observation wells to simulate and observe the groundwater model periodically. The result showed that considering the uncertainty of data, the Bayesian maximum entropy filter will provide an ideal result of real-time parameters estimation.
Veraart, Jelle; Sijbers, Jan; Sunaert, Stefan; Leemans, Alexander; Jeurissen, Ben
2013-11-01
Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods. Copyright © 2013 Elsevier Inc. All rights reserved.
Wendell R. Haag
2009-01-01
There may be bias associated with markârecapture experiments used to estimate age and growth of freshwater mussels. Using subsets of a markârecapture dataset for Quadrula pustulosa, I examined how age and growth parameter estimates are affected by (i) the range and skew of the data and (ii) growth reduction due to handling. I compared predictions...
Distributed weighted least-squares estimation with fast convergence for large-scale systems.
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods.
Distributed weighted least-squares estimation with fast convergence for large-scale systems☆
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods. PMID:25641976
NASA Astrophysics Data System (ADS)
Sun, Xiaolong; Xiang, Yang; Shi, Zheming
2018-05-01
Groundwater flow models implemented to manage regional water resources require aquifer hydraulic parameters. Traditional methods for obtaining these parameters include laboratory experiments, field tests and model inversions, and each are potentially hindered by their unique limitations. Here, we propose a methodology for estimating hydraulic conductivity and storage coefficients using the spectral characteristics of the coseismic groundwater-level oscillations and seismic Rayleigh waves. The results from Well X10 are consistent with the variations and spectral characteristics of the water-level oscillations and seismic waves and present an estimated hydraulic conductivity of approximately 1 × 10-3 m s-1 and storativity of 15 × 10-6. The proposed methodology for estimating hydraulic parameters in confined aquifers is a practical and novel approach for groundwater management and seismic precursor anomaly analyses.
Mixed effects versus fixed effects modelling of binary data with inter-subject variability.
Murphy, Valda; Dunne, Adrian
2005-04-01
The question of whether or not a mixed effects model is required when modelling binary data with inter-subject variability and within subject correlation was reported in this journal by Yano et al. (J. Pharmacokin. Pharmacodyn. 28:389-412 [2001]). That report used simulation experiments to demonstrate that, under certain circumstances, the use of a fixed effects model produced more accurate estimates of the fixed effect parameters than those produced by a mixed effects model. The Laplace approximation to the likelihood was used when fitting the mixed effects model. This paper repeats one of those simulation experiments, with two binary observations recorded for every subject, and uses both the Laplace and the adaptive Gaussian quadrature approximations to the likelihood when fitting the mixed effects model. The results show that the estimates produced using the Laplace approximation include a small number of extreme outliers. This was not the case when using the adaptive Gaussian quadrature approximation. Further examination of these outliers shows that they arise in situations in which the Laplace approximation seriously overestimates the likelihood in an extreme region of the parameter space. It is also demonstrated that when the number of observations per subject is increased from two to three, the estimates based on the Laplace approximation no longer include any extreme outliers. The root mean squared error is a combination of the bias and the variability of the estimates. Increasing the sample size is known to reduce the variability of an estimator with a consequent reduction in its root mean squared error. The estimates based on the fixed effects model are inherently biased and this bias acts as a lower bound for the root mean squared error of these estimates. Consequently, it might be expected that for data sets with a greater number of subjects the estimates based on the mixed effects model would be more accurate than those based on the fixed effects model. This is borne out by the results of a further simulation experiment with an increased number of subjects in each set of data. The difference in the interpretation of the parameters of the fixed and mixed effects models is discussed. It is demonstrated that the mixed effects model and parameter estimates can be used to estimate the parameters of the fixed effects model but not vice versa.
NASA Astrophysics Data System (ADS)
Magga, Zoi; Tzovolou, Dimitra N.; Theodoropoulou, Maria A.; Tsakiroglou, Christos D.
2012-03-01
The risk assessment of groundwater pollution by pesticides may be based on pesticide sorption and biodegradation kinetic parameters estimated with inverse modeling of datasets from either batch or continuous flow soil column experiments. In the present work, a chemical non-equilibrium and non-linear 2-site sorption model is incorporated into solute transport models to invert the datasets of batch and soil column experiments, and estimate the kinetic sorption parameters for two pesticides: N-phosphonomethyl glycine (glyphosate) and 2,4-dichlorophenoxy-acetic acid (2,4-D). When coupling the 2-site sorption model with the 2-region transport model, except of the kinetic sorption parameters, the soil column datasets enable us to estimate the mass-transfer coefficients associated with solute diffusion between mobile and immobile regions. In order to improve the reliability of models and kinetic parameter values, a stepwise strategy that combines batch and continuous flow tests with adequate true-to-the mechanism analytical of numerical models, and decouples the kinetics of purely reactive steps of sorption from physical mass-transfer processes is required.
Parameter learning for performance adaptation
NASA Technical Reports Server (NTRS)
Peek, Mark D.; Antsaklis, Panos J.
1990-01-01
A parameter learning method is introduced and used to broaden the region of operability of the adaptive control system of a flexible space antenna. The learning system guides the selection of control parameters in a process leading to optimal system performance. A grid search procedure is used to estimate an initial set of parameter values. The optimization search procedure uses a variation of the Hooke and Jeeves multidimensional search algorithm. The method is applicable to any system where performance depends on a number of adjustable parameters. A mathematical model is not necessary, as the learning system can be used whenever the performance can be measured via simulation or experiment. The results of two experiments, the transient regulation and the command following experiment, are presented.
Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad; Roman, Monica
2015-01-01
Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies.
Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad
2015-01-01
Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies. PMID:25685797
Model-data integration for developing the Cropland Carbon Monitoring System (CCMS)
NASA Astrophysics Data System (ADS)
Jones, C. D.; Bandaru, V.; Pnvr, K.; Jin, H.; Reddy, A.; Sahajpal, R.; Sedano, F.; Skakun, S.; Wagle, P.; Gowda, P. H.; Hurtt, G. C.; Izaurralde, R. C.
2017-12-01
The Cropland Carbon Monitoring System (CCMS) has been initiated to improve regional estimates of carbon fluxes from croplands in the conterminous United States through integration of terrestrial ecosystem modeling, use of remote-sensing products and publically available datasets, and development of improved landscape and management databases. In order to develop these improved carbon flux estimates, experimental datasets are essential for evaluating the skill of estimates, characterizing the uncertainty of these estimates, characterizing parameter sensitivities, and calibrating specific modeling components. Experiments were sought that included flux tower measurement of CO2 fluxes under production of major agronomic crops. Currently data has been collected from 17 experiments comprising 117 site-years from 12 unique locations. Calibration of terrestrial ecosystem model parameters using available crop productivity and net ecosystem exchange (NEE) measurements resulted in improvements in RMSE of NEE predictions of between 3.78% to 7.67%, while improvements in RMSE for yield ranged from -1.85% to 14.79%. Model sensitivities were dominated by parameters related to leaf area index (LAI) and spring growth, demonstrating considerable capacity for model improvement through development and integration of remote-sensing products. Subsequent analyses will assess the impact of such integrated approaches on skill of cropland carbon flux estimates.
Simple Experiment for Studying the Properties of a Ferromagnetic Material.
ERIC Educational Resources Information Center
Sood, B. R.; And Others
1980-01-01
Describes an undergraduate physics experiment for studying Curie temperature and Curie constant of a ferromagnetic material. The exchange field (Weiss field) has been estimated by using these parameters. (HM)
NASA Astrophysics Data System (ADS)
Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping
2016-09-01
Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.
NASA Astrophysics Data System (ADS)
Yang, X.; Zhu, P.; Gu, Y.; Xu, Z.
2015-12-01
Small scale heterogeneities of subsurface medium can be characterized conveniently and effectively using a few simple random medium parameters (RMP), such as autocorrelation length, angle and roughness factor, etc. The estimation of these parameters is significant in both oil reservoir prediction and metallic mine exploration. Poor accuracy and low stability existed in current estimation approaches limit the application of random medium theory in seismic exploration. This study focuses on improving the accuracy and stability of RMP estimation from post-stacked seismic data and its application in the seismic inversion. Experiment and theory analysis indicate that, although the autocorrelation of random medium is related to those of corresponding post-stacked seismic data, the relationship is obviously affected by the seismic dominant frequency, the autocorrelation length, roughness factor and so on. Also the error of calculation of autocorrelation in the case of finite and discrete model decreases the accuracy. In order to improve the precision of estimation of RMP, we design two improved approaches. Firstly, we apply region growing algorithm, which often used in image processing, to reduce the influence of noise in the autocorrelation calculated by the power spectrum method. Secondly, the orientation of autocorrelation is used as a new constraint in the estimation algorithm. The numerical experiments proved that it is feasible. In addition, in post-stack seismic inversion of random medium, the estimated RMP may be used to constrain inverse procedure and to construct the initial model. The experiment results indicate that taking inversed model as random medium and using relatively accurate estimated RMP to construct initial model can get better inversion result, which contained more details conformed to the actual underground medium.
Commowick, Olivier; Akhondi-Asl, Alireza; Warfield, Simon K.
2012-01-01
We present a new algorithm, called local MAP STAPLE, to estimate from a set of multi-label segmentations both a reference standard segmentation and spatially varying performance parameters. It is based on a sliding window technique to estimate the segmentation and the segmentation performance parameters for each input segmentation. In order to allow for optimal fusion from the small amount of data in each local region, and to account for the possibility of labels not being observed in a local region of some (or all) input segmentations, we introduce prior probabilities for the local performance parameters through a new Maximum A Posteriori formulation of STAPLE. Further, we propose an expression to compute confidence intervals in the estimated local performance parameters. We carried out several experiments with local MAP STAPLE to characterize its performance and value for local segmentation evaluation. First, with simulated segmentations with known reference standard segmentation and spatially varying performance, we show that local MAP STAPLE performs better than both STAPLE and majority voting. Then we present evaluations with data sets from clinical applications. These experiments demonstrate that spatial adaptivity in segmentation performance is an important property to capture. We compared the local MAP STAPLE segmentations to STAPLE, and to previously published fusion techniques and demonstrate the superiority of local MAP STAPLE over other state-of-the- art algorithms. PMID:22562727
Lin, Jen-Jen; Cheng, Jung-Yu; Huang, Li-Fei; Lin, Ying-Hsiu; Wan, Yung-Liang; Tsui, Po-Hsiang
2017-05-01
The Nakagami distribution is an approximation useful to the statistics of ultrasound backscattered signals for tissue characterization. Various estimators may affect the Nakagami parameter in the detection of changes in backscattered statistics. In particular, the moment-based estimator (MBE) and maximum likelihood estimator (MLE) are two primary methods used to estimate the Nakagami parameters of ultrasound signals. This study explored the effects of the MBE and different MLE approximations on Nakagami parameter estimations. Ultrasound backscattered signals of different scatterer number densities were generated using a simulation model, and phantom experiments and measurements of human liver tissues were also conducted to acquire real backscattered echoes. Envelope signals were employed to estimate the Nakagami parameters by using the MBE, first- and second-order approximations of MLE (MLE 1 and MLE 2 , respectively), and Greenwood approximation (MLE gw ) for comparisons. The simulation results demonstrated that, compared with the MBE and MLE 1 , the MLE 2 and MLE gw enabled more stable parameter estimations with small sample sizes. Notably, the required data length of the envelope signal was 3.6 times the pulse length. The phantom and tissue measurement results also showed that the Nakagami parameters estimated using the MLE 2 and MLE gw could simultaneously differentiate various scatterer concentrations with lower standard deviations and reliably reflect physical meanings associated with the backscattered statistics. Therefore, the MLE 2 and MLE gw are suggested as estimators for the development of Nakagami-based methodologies for ultrasound tissue characterization. Copyright © 2017 Elsevier B.V. All rights reserved.
Markham, Deborah C; Simpson, Matthew J; Baker, Ruth E
2015-04-01
In vitro cell biology assays play a crucial role in informing our understanding of the migratory, proliferative and invasive properties of many cell types in different biological contexts. While mono-culture assays involve the study of a population of cells composed of a single cell type, co-culture assays study a population of cells composed of multiple cell types (or subpopulations of cells). Such co-culture assays can provide more realistic insights into many biological processes including tissue repair, tissue regeneration and malignant spreading. Typically, system parameters, such as motility and proliferation rates, are estimated by calibrating a mathematical or computational model to the observed experimental data. However, parameter estimates can be highly sensitive to the choice of model and modelling framework. This observation motivates us to consider the fundamental question of how we can best choose a model to facilitate accurate parameter estimation for a particular assay. In this work we describe three mathematical models of mono-culture and co-culture assays that include different levels of spatial detail. We study various spatial summary statistics to explore if they can be used to distinguish between the suitability of each model over a range of parameter space. Our results for mono-culture experiments are promising, in that we suggest two spatial statistics that can be used to direct model choice. However, co-culture experiments are far more challenging: we show that these same spatial statistics which provide useful insight into mono-culture systems are insufficient for co-culture systems. Therefore, we conclude that great care ought to be exercised when estimating the parameters of co-culture assays.
Robust optimal design of diffusion-weighted magnetic resonance experiments for skin microcirculation
NASA Astrophysics Data System (ADS)
Choi, J.; Raguin, L. G.
2010-10-01
Skin microcirculation plays an important role in several diseases including chronic venous insufficiency and diabetes. Magnetic resonance (MR) has the potential to provide quantitative information and a better penetration depth compared with other non-invasive methods such as laser Doppler flowmetry or optical coherence tomography. The continuous progress in hardware resulting in higher sensitivity must be coupled with advances in data acquisition schemes. In this article, we first introduce a physical model for quantifying skin microcirculation using diffusion-weighted MR (DWMR) based on an effective dispersion model for skin leading to a q-space model of the DWMR complex signal, and then design the corresponding robust optimal experiments. The resulting robust optimal DWMR protocols improve the worst-case quality of parameter estimates using nonlinear least squares optimization by exploiting available a priori knowledge of model parameters. Hence, our approach optimizes the gradient strengths and directions used in DWMR experiments to robustly minimize the size of the parameter estimation error with respect to model parameter uncertainty. Numerical evaluations are presented to demonstrate the effectiveness of our approach as compared to conventional DWMR protocols.
Improving the accuracy of burn-surface estimation.
Nichter, L S; Williams, J; Bryant, C A; Edlich, R F
1985-09-01
A user-friendly computer-assisted method of calculating total body surface area burned (TBSAB) has been developed. This method is more accurate, faster, and subject to less error than conventional methods. For comparison, the ability of 30 physicians to estimate TBSAB was tested. Parameters studied included the effect of prior burn care experience, the influence of burn size, the ability to accurately sketch the size of burns on standard burn charts, and the ability to estimate percent TBSAB from the sketches. Despite the ability for physicians of all levels of training to accurately sketch TBSAB, significant burn size over-estimation (p less than 0.01) and large interrater variability of potential consequence was noted. Direct benefits of a computerized system are many. These include the need for minimal user experience and the ability for wound-trend analysis, permanent record storage, calculation of fluid and caloric requirements, hemodynamic parameters, and the ability to compare meaningfully the different treatment protocols.
NASA Astrophysics Data System (ADS)
Barone, Alessandro; Fenton, Flavio; Veneziani, Alessandro
2017-09-01
An accurate estimation of cardiac conductivities is critical in computational electro-cardiology, yet experimental results in the literature significantly disagree on the values and ratios between longitudinal and tangential coefficients. These are known to have a strong impact on the propagation of potential particularly during defibrillation shocks. Data assimilation is a procedure for merging experimental data and numerical simulations in a rigorous way. In particular, variational data assimilation relies on the least-square minimization of the misfit between simulations and experiments, constrained by the underlying mathematical model, which in this study is represented by the classical Bidomain system, or its common simplification given by the Monodomain problem. Operating on the conductivity tensors as control variables of the minimization, we obtain a parameter estimation procedure. As the theory of this approach currently provides only an existence proof and it is not informative for practical experiments, we present here an extensive numerical simulation campaign to assess practical critical issues such as the size and the location of the measurement sites needed for in silico test cases of potential experimental and realistic settings. This will be finalized with a real validation of the variational data assimilation procedure. Results indicate the presence of lower and upper bounds for the number of sites which guarantee an accurate and minimally redundant parameter estimation, the location of sites being generally non critical for properly designed experiments. An effective combination of parameter estimation based on the Monodomain and Bidomain models is tested for the sake of computational efficiency. Parameter estimation based on the Monodomain equation potentially leads to the accurate computation of the transmembrane potential in real settings.
NASA Astrophysics Data System (ADS)
Rosland, R.; Strand, Ø.; Alunno-Bruscia, M.; Bacher, C.; Strohmeier, T.
2009-08-01
A Dynamic Energy Budget (DEB) model for simulation of growth and bioenergetics of blue mussels ( Mytilus edulis) has been tested in three low seston sites in southern Norway. The observations comprise four datasets from laboratory experiments (physiological and biometrical mussel data) and three datasets from in situ growth experiments (biometrical mussel data). Additional in situ data from commercial farms in southern Norway were used for estimation of biometrical relationships in the mussels. Three DEB parameters (shape coefficient, half saturation coefficient, and somatic maintenance rate coefficient) were estimated from experimental data, and the estimated parameters were complemented with parameter values from literature to establish a basic parameter set. Model simulations based on the basic parameter set and site specific environmental forcing matched fairly well with observations, but the model was not successful in simulating growth at the extreme low seston regimes in the laboratory experiments in which the long period of negative growth caused negative reproductive mass. Sensitivity analysis indicated that the model was moderately sensitive to changes in the parameter and initial conditions. The results show the robust properties of the DEB model as it manages to simulate mussel growth in several independent datasets from a common basic parameter set. However, the results also demonstrate limitations of Chl a as a food proxy for blue mussels and limitations of the DEB model to simulate long term starvation. Future work should aim at establishing better food proxies and improving the model formulations of the processes involved in food ingestion and assimilation. The current DEB model should also be elaborated to allow shrinking in the structural tissue in order to produce more realistic growth simulations during long periods of starvation.
Optimal time points sampling in pathway modelling.
Hu, Shiyan
2004-01-01
Modelling cellular dynamics based on experimental data is at the heart of system biology. Considerable progress has been made to dynamic pathway modelling as well as the related parameter estimation. However, few of them gives consideration for the issue of optimal sampling time selection for parameter estimation. Time course experiments in molecular biology rarely produce large and accurate data sets and the experiments involved are usually time consuming and expensive. Therefore, to approximate parameters for models with only few available sampling data is of significant practical value. For signal transduction, the sampling intervals are usually not evenly distributed and are based on heuristics. In the paper, we investigate an approach to guide the process of selecting time points in an optimal way to minimize the variance of parameter estimates. In the method, we first formulate the problem to a nonlinear constrained optimization problem by maximum likelihood estimation. We then modify and apply a quantum-inspired evolutionary algorithm, which combines the advantages of both quantum computing and evolutionary computing, to solve the optimization problem. The new algorithm does not suffer from the morass of selecting good initial values and being stuck into local optimum as usually accompanied with the conventional numerical optimization techniques. The simulation results indicate the soundness of the new method.
System IDentification Programs for AirCraft (SIDPAC)
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2002-01-01
A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.
Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A
2013-07-01
Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.
Identification of modal parameters including unmeasured forces and transient effects
NASA Astrophysics Data System (ADS)
Cauberghe, B.; Guillaume, P.; Verboven, P.; Parloo, E.
2003-08-01
In this paper, a frequency-domain method to estimate modal parameters from short data records with known input (measured) forces and unknown input forces is presented. The method can be used for an experimental modal analysis, an operational modal analysis (output-only data) and the combination of both. A traditional experimental and operational modal analysis in the frequency domain starts respectively, from frequency response functions and spectral density functions. To estimate these functions accurately sufficient data have to be available. The technique developed in this paper estimates the modal parameters directly from the Fourier spectra of the outputs and the known input. Instead of using Hanning windows on these short data records the transient effects are estimated simultaneously with the modal parameters. The method is illustrated, tested and validated by Monte Carlo simulations and experiments. The presented method to process short data sequences leads to unbiased estimates with a small variance in comparison to the more traditional approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplanoglu, Erkan; Safak, Koray K.; Varol, H. Selcuk
2009-01-12
An experiment based method is proposed for parameter estimation of a class of linear multivariable systems. The method was applied to a pressure-level control process. Experimental time domain input/output data was utilized in a gray-box modeling approach. Prior knowledge of the form of the system transfer function matrix elements is assumed to be known. Continuous-time system transfer function matrix parameters were estimated in real-time by the least-squares method. Simulation results of experimentally determined system transfer function matrix compare very well with the experimental results. For comparison and as an alternative to the proposed real-time estimation method, we also implemented anmore » offline identification method using artificial neural networks and obtained fairly good results. The proposed methods can be implemented conveniently on a desktop PC equipped with a data acquisition board for parameter estimation of moderately complex linear multivariable systems.« less
Probabilistic parameter estimation of activated sludge processes using Markov Chain Monte Carlo.
Sharifi, Soroosh; Murthy, Sudhir; Takács, Imre; Massoudieh, Arash
2014-03-01
One of the most important challenges in making activated sludge models (ASMs) applicable to design problems is identifying the values of its many stoichiometric and kinetic parameters. When wastewater characteristics data from full-scale biological treatment systems are used for parameter estimation, several sources of uncertainty, including uncertainty in measured data, external forcing (e.g. influent characteristics), and model structural errors influence the value of the estimated parameters. This paper presents a Bayesian hierarchical modeling framework for the probabilistic estimation of activated sludge process parameters. The method provides the joint probability density functions (JPDFs) of stoichiometric and kinetic parameters by updating prior information regarding the parameters obtained from expert knowledge and literature. The method also provides the posterior correlations between the parameters, as well as a measure of sensitivity of the different constituents with respect to the parameters. This information can be used to design experiments to provide higher information content regarding certain parameters. The method is illustrated using the ASM1 model to describe synthetically generated data from a hypothetical biological treatment system. The results indicate that data from full-scale systems can narrow down the ranges of some parameters substantially whereas the amount of information they provide regarding other parameters is small, due to either large correlations between some of the parameters or a lack of sensitivity with respect to the parameters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Single neuron modeling and data assimilation in BNST neurons
NASA Astrophysics Data System (ADS)
Farsian, Reza
Neurons, although tiny in size, are vastly complicated systems, which are responsible for the most basic yet essential functions of any nervous system. Even the most simple models of single neurons are usually high dimensional, nonlinear, and contain many parameters and states which are unobservable in a typical neurophysiological experiment. One of the most fundamental problems in experimental neurophysiology is the estimation of these parameters and states, since knowing their values is essential in identification, model construction, and forward prediction of biological neurons. Common methods of parameter and state estimation do not perform well for neural models due to their high dimensionality and nonlinearity. In this dissertation, two alternative approaches for parameters and state estimation of biological neurons have been demonstrated: dynamical parameter estimation (DPE) and a Markov Chain Monte Carlo (MCMC) method. The first method uses elements of chaos control and synchronization theory for parameter and state estimation. MCMC is a statistical approach which uses a path integral formulation to evaluate a mean and an error bound for these unobserved parameters and states. These methods have been applied to biological system of neurons in Bed Nucleus of Stria Termialis neurons (BNST) of rats. State and parameters of neurons in both systems were estimated, and their value were used for recreating a realistic model and predicting the behavior of the neurons successfully. The knowledge of biological parameters can ultimately provide a better understanding of the internal dynamics of a neuron in order to build robust models of neuron networks.
Relating stick-slip friction experiments to earthquake source parameters
McGarr, Arthur F.
2012-01-01
Analytical results for parameters, such as static stress drop, for stick-slip friction experiments, with arbitrary input parameters, can be determined by solving an energy-balance equation. These results can then be related to a given earthquake based on its seismic moment and the maximum slip within its rupture zone, assuming that the rupture process entails the same physics as stick-slip friction. This analysis yields overshoots and ratios of apparent stress to static stress drop of about 0.25. The inferred earthquake source parameters static stress drop, apparent stress, slip rate, and radiated energy are robust inasmuch as they are largely independent of the experimental parameters used in their estimation. Instead, these earthquake parameters depend on C, the ratio of maximum slip to the cube root of the seismic moment. C is controlled by the normal stress applied to the rupture plane and the difference between the static and dynamic coefficients of friction. Estimating yield stress and seismic efficiency using the same procedure is only possible when the actual static and dynamic coefficients of friction are known within the earthquake rupture zone.
Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.
Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van
2017-06-01
In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.
Tissue Viscoelasticity Imaging Using Vibration and Ultrasound Coupler Gel
NASA Astrophysics Data System (ADS)
Yamakawa, Makoto; Shiina, Tsuyoshi
2012-07-01
In tissue diagnosis, both elasticity and viscosity are important indexes. Therefore, we propose a method for evaluating tissue viscoelasticity by applying vibration that is usually performed in elastography and using an ultrasound coupler gel with known viscoelasticity. In this method, we use three viscoelasticity parameters based on the coupler strain and tissue strain: the strain ratio as an elasticity parameter, and the phase difference and the normalized hysteresis loop area as viscosity parameters. In the agar phantom experiment, using these viscoelasticity parameters, we were able to estimate the viscoelasticity distribution of the phantom. In particular, the strain ratio and the phase difference were robust to strain estimation error.
Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks.
Rumschinski, Philipp; Borchers, Steffen; Bosio, Sandro; Weismantel, Robert; Findeisen, Rolf
2010-05-25
Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates.
Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks
2010-01-01
Background Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. Results In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. Conclusions The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates. PMID:20500862
Pierrillas, Philippe B; Tod, Michel; Amiel, Magali; Chenel, Marylore; Henin, Emilie
2016-09-01
The purpose of this study was to explore the impact of censoring due to animal sacrifice on parameter estimates and tumor volume calculated from two diameters in larger tumors during tumor growth experiments in preclinical studies. The type of measurement error that can be expected was also investigated. Different scenarios were challenged using the stochastic simulation and estimation process. One thousand datasets were simulated under the design of a typical tumor growth study in xenografted mice, and then, eight approaches were used for parameter estimation with the simulated datasets. The distribution of estimates and simulation-based diagnostics were computed for comparison. The different approaches were robust regarding the choice of residual error and gave equivalent results. However, by not considering missing data induced by sacrificing the animal, parameter estimates were biased and led to false inferences in terms of compound potency; the threshold concentration for tumor eradication when ignoring censoring was 581 ng.ml(-1), but the true value was 240 ng.ml(-1).
The estimation of material and patch parameters in a PDE-based circular plate model
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.
1995-01-01
The estimation of material and patch parameters for a system involving a circular plate, to which piezoceramic patches are bonded, is considered. A partial differential equation (PDE) model for the thin circular plate is used with the passive and active contributions form the patches included in the internal and external bending moments. This model contains piecewise constant parameters describing the density, flexural rigidity, Poisson ratio, and Kelvin-Voigt damping for the system as well as patch constants and a coefficient for viscous air damping. Examples demonstrating the estimation of these parameters with experimental acceleration data and a variety of inputs to the experimental plate are presented. By using a physically-derived PDE model to describe the system, parameter sets consistent across experiments are obtained, even when phenomena such as damping due to electric circuits affect the system dynamics.
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
Handling the unknown soil hydraulic parameters in data assimilation for unsaturated flow problems
NASA Astrophysics Data System (ADS)
Lange, Natascha; Erdal, Daniel; Neuweiler, Insa
2017-04-01
Model predictions of flow in the unsaturated zone require the soil hydraulic parameters. However, these parameters cannot be determined easily in applications, in particular if observations are indirect and cover only a small range of possible states. Correlation of parameters or their correlation in the range of states that are observed is a problem, as different parameter combinations may reproduce approximately the same measured water content. In field campaigns this problem can be helped by adding more measurement devices. Often, observation networks are designed to feed models for long term prediction purposes (i.e. for weather forecasting). A popular way of making predictions with such kind of observations are data assimilation methods, like the ensemble Kalman filter (Evensen, 1994). These methods can be used for parameter estimation if the unknown parameters are included in the state vector and updated along with the model states. Given the difficulties related to estimation of the soil hydraulic parameters in general, it is questionable, though, whether these methods can really be used for parameter estimation under natural conditions. Therefore, we investigate the ability of the ensemble Kalman filter to estimate the soil hydraulic parameters. We use synthetic identical twin-experiments to guarantee full knowledge of the model and the true parameters. We use the van Genuchten model to describe the soil water retention and relative permeability functions. This model is unfortunately prone to the above mentioned pseudo-correlations of parameters. Therefore, we also test the simpler Russo Gardner model, which is less affected by that problem, in our experiments. The total number of unknown parameters is varied by considering different layers of soil. Besides, we study the influence of the parameter updates on the water content predictions. We test different iterative filter approaches and compare different observation strategies for parameter identification. Considering heterogeneous soils, we discuss the representativeness of different observation types to be used for the assimilation. G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99(C5):10143-10162, 1994
NASA Technical Reports Server (NTRS)
Cash, W.
1979-01-01
Many problems in the experimental estimation of parameters for models can be solved through use of the likelihood ratio test. Applications of the likelihood ratio, with particular attention to photon counting experiments, are discussed. The procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply. The procedures are proved analytically, and examples from current problems in astronomy are discussed.
NASA Astrophysics Data System (ADS)
Nasonova, O. N.; Gusev, Ye. M.; Kovalev, Ye. E.
2009-04-01
Global estimates of the components of terrestrial water balance depend on a technique of estimation and on the global observational data sets used for this purpose. Land surface modelling is an up-to-date and powerful tool for such estimates. However, the results of modelling are affected by the quality of both a model and input information (including meteorological forcing data and model parameters). The latter is based on available global data sets containing meteorological data, land-use information, and soil and vegetation characteristics. Now there are a lot of global data sets, which differ in spatial and temporal resolution, as well as in accuracy and reliability. Evidently, uncertainties in global data sets will influence the results of model simulations, but to which extent? The present work is an attempt to investigate this issue. The work is based on the land surface model SWAP (Soil Water - Atmosphere - Plants) and global 1-degree data sets on meteorological forcing data and the land surface parameters, provided within the framework of the Second Global Soil Wetness Project (GSWP-2). The 3-hourly near-surface meteorological data (for the period from 1 July 1982 to 31 December 1995) are based on reanalyses and gridded observational data used in the International Satellite Land-Surface Climatology Project (ISLSCP) Initiative II. Following the GSWP-2 strategy, we used a number of alternative global forcing data sets to perform different sensitivity experiments (with six alternative versions of precipitation, four versions of radiation, two pure reanalysis products and two fully hybridized products of meteorological data). To reveal the influence of model parameters on simulations, in addition to GSWP-2 parameter data sets, we produced two alternative global data sets with soil parameters on the basis of their relationships with the content of clay and sand in a soil. After this the sensitivity experiments with three different sets of parameters were performed. As a result, 16 variants of global annual estimates of water balance components were obtained. Application of alternative data sets on radiation, precipitation, and soil parameters allowed us to reveal the influence of uncertainties in input data on global estimates of water balance components.
Ballarini, E; Bauer, S; Eberhardt, C; Beyer, C
2012-06-01
Transverse dispersion represents an important mixing process for transport of contaminants in groundwater and constitutes an essential prerequisite for geochemical and biodegradation reactions. Within this context, this work describes the detailed numerical simulation of highly controlled laboratory experiments using uranine, bromide and oxygen depleted water as conservative tracers for the quantification of transverse mixing in porous media. Synthetic numerical experiments reproducing an existing laboratory experimental set-up of quasi two-dimensional flow through tank were performed to assess the applicability of an analytical solution of the 2D advection-dispersion equation for the estimation of transverse dispersivity as fitting parameter. The fitted dispersivities were compared to the "true" values introduced in the numerical simulations and the associated error could be precisely estimated. A sensitivity analysis was performed on the experimental set-up in order to evaluate the sensitivities of the measurements taken at the tank experiment on the individual hydraulic and transport parameters. From the results, an improved experimental set-up as well as a numerical evaluation procedure could be developed, which allow for a precise and reliable determination of dispersivities. The improved tank set-up was used for new laboratory experiments, performed at advective velocities of 4.9 m d(-1) and 10.5 m d(-1). Numerical evaluation of these experiments yielded a unique and reliable parameter set, which closely fits the measured tracer concentration data. For the porous medium with a grain size of 0.25-0.30 mm, the fitted longitudinal and transverse dispersivities were 3.49×10(-4) m and 1.48×10(-5) m, respectively. The procedures developed in this paper for the synthetic and rigorous design and evaluation of the experiments can be generalized and transferred to comparable applications. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu
2018-01-01
Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.
NASA Astrophysics Data System (ADS)
Wang, Liqiang; Liu, Zhen; Zhang, Zhonghua
2014-11-01
Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation robustness and accuracy of the fundamental matrix. Finally, we take an experiment for computing the relationship of a pair of stereo cameras to demonstrate accurate performance of the algorithm.
A Rapid Screen Technique for Estimating Nanoparticle Transport in Porous Media
Quantifying the mobility of engineered nanoparticles in hydrologic pathways from point of release to human or ecological receptors is essential for assessing environmental exposures. Column transport experiments are a widely used technique to estimate the transport parameters of ...
Vedenov, Dmitry; Alhotan, Rashed A; Wang, Runlian; Pesti, Gene M
2017-02-01
Nutritional requirements and responses of all organisms are estimated using various models representing the response to different dietary levels of the nutrient in question. To help nutritionists design experiments for estimating responses and requirements, we developed a simulation workbook using Microsoft Excel. The objective of the present study was to demonstrate the influence of different numbers of nutrient levels, ranges of nutrient levels and replications per nutrient level on the estimates of requirements based on common nutritional response models. The user provides estimates of the shape of the response curve, requirements and other parameters and observation to observation variation. The Excel workbook then produces 1-1000 randomly simulated responses based on the given response curve and estimates the standard errors of the requirement (and other parameters) from different models as an indication of the expected power of the experiment. Interpretations are based on the assumption that the smaller the standard error of the requirement, the more powerful the experiment. The user can see the potential effects of using one or more subjects, different nutrient levels, etc., on the expected outcome of future experiments. From a theoretical perspective, each organism should have some enzyme-catalysed reaction whose rate is limited by the availability of some limiting nutrient. The response to the limiting nutrient should therefore be similar to enzyme kinetics. In conclusion, the workbook eliminates some of the guesswork involved in designing experiments and determining the minimum number of subjects needed to achieve desired outcomes.
Li, Tingting; Cheng, Zhengguo; Zhang, Le
2017-01-01
Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency. PMID:29194393
Li, Tingting; Cheng, Zhengguo; Zhang, Le
2017-12-01
Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency.
Rüdt, Matthias; Gillet, Florian; Heege, Stefanie; Hitzler, Julian; Kalbfuss, Bernd; Guélat, Bertrand
2015-09-25
Application of model-based design is appealing to support the development of protein chromatography in the biopharmaceutical industry. However, the required efforts for parameter estimation are frequently perceived as time-consuming and expensive. In order to speed-up this work, a new parameter estimation approach for modelling ion-exchange chromatography in linear conditions was developed. It aims at reducing the time and protein demand for the model calibration. The method combines the estimation of kinetic and thermodynamic parameters based on the simultaneous variation of the gradient slope and the residence time in a set of five linear gradient elutions. The parameters are estimated from a Yamamoto plot and a gradient-adjusted Van Deemter plot. The combined approach increases the information extracted per experiment compared to the individual methods. As a proof of concept, the combined approach was successfully applied for a monoclonal antibody on a cation-exchanger and for a Fc-fusion protein on an anion-exchange resin. The individual parameter estimations for the mAb confirmed that the new approach maintained the accuracy of the usual Yamamoto and Van Deemter plots. In the second case, offline size-exclusion chromatography was performed in order to estimate the thermodynamic parameters of an impurity (high molecular weight species) simultaneously with the main product. Finally, the parameters obtained from the combined approach were used in a lumped kinetic model to simulate the chromatography runs. The simulated chromatograms obtained for a wide range of gradient lengths and residence times showed only small deviations compared to the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.
3-D transient hydraulic tomography in unconfined aquifers with fast drainage response
NASA Astrophysics Data System (ADS)
Cardiff, M.; Barrash, W.
2011-12-01
We investigate, through numerical experiments, the viability of three-dimensional transient hydraulic tomography (3DTHT) for identifying the spatial distribution of groundwater flow parameters (primarily, hydraulic conductivity K) in permeable, unconfined aquifers. To invert the large amount of transient data collected from 3DTHT surveys, we utilize an iterative geostatistical inversion strategy in which outer iterations progressively increase the number of data points fitted and inner iterations solve the quasi-linear geostatistical formulas of Kitanidis. In order to base our numerical experiments around realistic scenarios, we utilize pumping rates, geometries, and test lengths similar to those attainable during 3DTHT field campaigns performed at the Boise Hydrogeophysical Research Site (BHRS). We also utilize hydrologic parameters that are similar to those observed at the BHRS and in other unconsolidated, unconfined fluvial aquifers. In addition to estimating K, we test the ability of 3DTHT to estimate both average storage values (specific storage Ss and specific yield Sy) as well as spatial variability in storage coefficients. The effects of model conceptualization errors during unconfined 3DTHT are investigated including: (1) assuming constant storage coefficients during inversion and (2) assuming stationary geostatistical parameter variability. Overall, our findings indicate that estimation of K is slightly degraded if storage parameters must be jointly estimated, but that this effect is quite small compared with the degradation of estimates due to violation of "structural" geostatistical assumptions. Practically, we find for our scenarios that assuming constant storage values during inversion does not appear to have a significant effect on K estimates or uncertainty bounds.
USDA-ARS?s Scientific Manuscript database
To evaluate newer indirect calorimetry system to quantify energetic parameters, 8 cross-bred beef steers (initial BW = 241 ± 4.10 kg) were used in a 77-d experiment to examine energetics parameters calculated from carbon dioxide (CO2), methane (CH4), and oxygen (O2) fluxes. Steers were individually ...
NASA Astrophysics Data System (ADS)
Simon, E.; Bertino, L.; Samuelsen, A.
2011-12-01
Combined state-parameter estimation in ocean biogeochemical models with ensemble-based Kalman filters is a challenging task due to the non-linearity of the models, the constraints of positiveness that apply to the variables and parameters, and the non-Gaussian distribution of the variables in which they result. Furthermore, these models are sensitive to numerous parameters that are poorly known. Previous works [1] demonstrated that the Gaussian anamorphosis extensions of ensemble-based Kalman filters were relevant tools to perform combined state-parameter estimation in such non-Gaussian framework. In this study, we focus on the estimation of the grazing preferences parameters of zooplankton species. These parameters are introduced to model the diet of zooplankton species among phytoplankton species and detritus. They are positive values and their sum is equal to one. Because the sum-to-one constraint cannot be handled by ensemble-based Kalman filters, a reformulation of the parameterization is proposed. We investigate two types of changes of variables for the estimation of sum-to-one constrained parameters. The first one is based on Gelman [2] and leads to the estimation of normal distributed parameters. The second one is based on the representation of the unit sphere in spherical coordinates and leads to the estimation of parameters with bounded distributions (triangular or uniform). These formulations are illustrated and discussed in the framework of twin experiments realized in the 1D coupled model GOTM-NORWECOM with Gaussian anamorphosis extensions of the deterministic ensemble Kalman filter (DEnKF). [1] Simon E., Bertino L. : Gaussian anamorphosis extension of the DEnKF for combined state and parameter estimation : application to a 1D ocean ecosystem model. Journal of Marine Systems, 2011. doi :10.1016/j.jmarsys.2011.07.007 [2] Gelman A. : Method of Moments Using Monte Carlo Simulation. Journal of Computational and Graphical Statistics, 4, 1, 36-54, 1995.
NASA Astrophysics Data System (ADS)
Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue
2018-06-01
Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.
A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.
Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio
2017-11-01
Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force.
Wu, Yabei; Lu, Huanzhang; Zhao, Fei; Zhang, Zhiyong
2016-01-01
Shape serves as an important additional feature for space target classification, which is complementary to those made available. Since different shapes lead to different projection functions, the projection property can be regarded as one kind of shape feature. In this work, the problem of estimating the projection function from the infrared signature of the object is addressed. We show that the projection function of any rotationally symmetric object can be approximately represented as a linear combination of some base functions. Based on this fact, the signal model of the emissivity-area product sequence is constructed, which is a particular mathematical function of the linear coefficients and micro-motion parameters. Then, the least square estimator is proposed to estimate the projection function and micro-motion parameters jointly. Experiments validate the effectiveness of the proposed method. PMID:27763500
Towards reliable ET estimates in the semi-arid Júcar region in Spain.
NASA Astrophysics Data System (ADS)
Brenner, Johannes; Zink, Matthias; Schrön, Martin; Thober, Stephan; Rakovec, Oldrich; Cuntz, Matthias; Merz, Ralf; Samaniego, Luis
2017-04-01
Current research indicated the potential for improving evapotranspiration (ET) estimates in state-of-the-art hydrologic models such as the mesoscale Hydrological Model (mHM, www.ufz.de/mhm). Most models exhibit deficiencies to estimate the ET flux in semi-arid regions. Possible reasons for poor performance may be related to the low resolution of the forcings, the estimation of the PET, which is in most cases based on temperature only, the joint estimation of the transpiration and evaporation through the Feddes equation, poor process parameterizations, among others. In this study, we aim at sequential hypothesis-based experiments to uncover the main reasons of these deficiencies at the Júcar basin in Spain. We plan the following experiments: 1) Use the high resolution meteorological forcing (P and T) provided by local authorities to estimate its effects on ET and streamflow. 2) Use local ET measurements at seven eddy covariance stations to estimate evaporation related parameters. 3) Test the influence of the PET formulations (Hargreaves-Samani, Priestley-Taylor, Penman-Montheith). 4) Estimate evaporation and transpiration separately based on equations proposed by Bohn and Vivoni (2016) 5) Incorporate local soil moisture measurements to re-estimate ET and soil moisture related parameters. We set-up mHM for seven eddy-covariance sites at the local scale (100 × 100 m2). This resolution was chosen because it is representative for the footprint of the latent heat estimation at the eddy-covariance station. In the second experiment, for example, a parameter set is to be found as a compromised solution between ET measured at local stations and the streamflow observations at eight sub-basins of the Júcar river. Preliminary results indicate that higher model performance regarding streamflow can be achieved using local high-resolution meteorology. ET performance is, however, still deficient. On the contrary, using ET site calibrations alone increase performance in ET but yields in poor performance in streamflow. Results suggest the need of multi-variable, simultaneous calibration schemes to reliable estimate ET and streamflow in the Júcar basin. Penman-Montheith appears to be the best performing PET formulation. Experiments 4 and 5 should reveal the benefits of separating evaporation from bare soil and transpiration in semi-arid regions using mHM. Further research in this direction is foreseen by incorporating neutron counts from Cosmic Ray Neutron Sensing technology in the calibration/validation procedure of mHM.
Gilliom, Robert J.; Helsel, Dennis R.
1986-01-01
A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations, for determining the best performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilliom, R.J.; Helsel, D.R.
1986-02-01
A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensoredmore » observations, for determining the best performing parameter estimation method for any particular data det. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.« less
On-line estimation of error covariance parameters for atmospheric data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1995-01-01
A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.
Nguyen, N; Milanfar, P; Golub, G
2001-01-01
In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters. We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cross-validation method (GCV). We propose efficient approximation techniques based on the Lanczos algorithm and Gauss quadrature theory, reducing the computational complexity of the GCV. Data-driven PSF and regularization parameter estimation experiments with synthetic and real image sequences are presented to demonstrate the effectiveness and robustness of our method.
Liang, Hua; Miao, Hongyu; Wu, Hulin
2010-03-01
Modeling viral dynamics in HIV/AIDS studies has resulted in deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper, we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies. We applied the proposed techniques to estimate the key HIV viral dynamic parameters for two individual AIDS patients treated with antiretroviral therapies. We demonstrate that HIV viral dynamics can be well characterized and quantified for individual patients. As a result, personalized treatment decision based on viral dynamic models is possible.
Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data
NASA Astrophysics Data System (ADS)
Moradizadeh, Mina; Saradjian, Mohammad R.
2018-03-01
Microwave remote sensing provides a unique capability for soil parameter retrievals. Therefore, various soil parameters estimation models have been developed using brightness temperature (BT) measured by passive microwave sensors. Due to the low resolution of satellite microwave radiometer data, the main goal of this study is to develop a downscaling approach to improve the spatial resolution of soil moisture estimates with the use of higher resolution visible/infrared sensor data. Accordingly, after the soil parameters have been obtained using Simultaneous Land Parameters Retrieval Model algorithm, the downscaling method has been applied to the soil moisture estimations that have been validated against in situ soil moisture data. Advance Microwave Scanning Radiometer-EOS BT data in Soil Moisture Experiment 2003 region in the south and north of Oklahoma have been used to this end. Results illustrated that the soil moisture variability is effectively captured at 5 km spatial scales without a significant degradation of the accuracy.
NASA Astrophysics Data System (ADS)
Zhou, Si-Da; Ma, Yuan-Chen; Liu, Li; Kang, Jie; Ma, Zhi-Sai; Yu, Lei
2018-01-01
Identification of time-varying modal parameters contributes to the structural health monitoring, fault detection, vibration control, etc. of the operational time-varying structural systems. However, it is a challenging task because there is not more information for the identification of the time-varying systems than that of the time-invariant systems. This paper presents a vector time-dependent autoregressive model and least squares support vector machine based modal parameter estimator for linear time-varying structural systems in case of output-only measurements. To reduce the computational cost, a Wendland's compactly supported radial basis function is used to achieve the sparsity of the Gram matrix. A Gamma-test-based non-parametric approach of selecting the regularization factor is adapted for the proposed estimator to replace the time-consuming n-fold cross validation. A series of numerical examples have illustrated the advantages of the proposed modal parameter estimator on the suppression of the overestimate and the short data. A laboratory experiment has further validated the proposed estimator.
DEM Calibration Approach: design of experiment
NASA Astrophysics Data System (ADS)
Boikov, A. V.; Savelev, R. V.; Payor, V. A.
2018-05-01
The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.
Barbagallo, Gabriele; d’Agostino, Marco Valerio; Placidi, Luca; Neff, Patrizio
2016-01-01
In this paper, we propose the first estimate of some elastic parameters of the relaxed micromorphic model on the basis of real experiments of transmission of longitudinal plane waves across an interface separating a classical Cauchy material (steel plate) and a phononic crystal (steel plate with fluid-filled holes). A procedure is set up in order to identify the parameters of the relaxed micromorphic model by superimposing the experimentally based profile of the reflection coefficient (plotted as function of the wave-frequency) with the analogous profile obtained via numerical simulations. We determine five out of six constitutive parameters which are featured by the relaxed micromorphic model in the isotropic case, plus the determination of the micro-inertia parameter. The sixth elastic parameter, namely the Cosserat couple modulus μc, still remains undetermined, since experiments on transverse incident waves are not yet available. A fundamental result of this paper is the estimate of the non-locality intrinsically associated with the underlying microstructure of the metamaterial. We show that the characteristic length Lc measuring the non-locality of the phononic crystal is of the order of 13 of the diameter of its fluid-filled holes. PMID:27436984
Madeo, Angela; Barbagallo, Gabriele; d'Agostino, Marco Valerio; Placidi, Luca; Neff, Patrizio
2016-06-01
In this paper, we propose the first estimate of some elastic parameters of the relaxed micromorphic model on the basis of real experiments of transmission of longitudinal plane waves across an interface separating a classical Cauchy material (steel plate) and a phononic crystal (steel plate with fluid-filled holes). A procedure is set up in order to identify the parameters of the relaxed micromorphic model by superimposing the experimentally based profile of the reflection coefficient (plotted as function of the wave-frequency) with the analogous profile obtained via numerical simulations. We determine five out of six constitutive parameters which are featured by the relaxed micromorphic model in the isotropic case, plus the determination of the micro-inertia parameter. The sixth elastic parameter, namely the Cosserat couple modulus μ c , still remains undetermined, since experiments on transverse incident waves are not yet available. A fundamental result of this paper is the estimate of the non-locality intrinsically associated with the underlying microstructure of the metamaterial. We show that the characteristic length L c measuring the non-locality of the phononic crystal is of the order of [Formula: see text] of the diameter of its fluid-filled holes.
Pathak, Shriram M; Ruff, Aaron; Kostewicz, Edmund S; Patel, Nikunjkumar; Turner, David B; Jamei, Masoud
2017-12-04
Mechanistic modeling of in vitro data generated from metabolic enzyme systems (viz., liver microsomes, hepatocytes, rCYP enzymes, etc.) facilitates in vitro-in vivo extrapolation (IVIV_E) of metabolic clearance which plays a key role in the successful prediction of clearance in vivo within physiologically-based pharmacokinetic (PBPK) modeling. A similar concept can be applied to solubility and dissolution experiments whereby mechanistic modeling can be used to estimate intrinsic parameters required for mechanistic oral absorption simulation in vivo. However, this approach has not widely been applied within an integrated workflow. We present a stepwise modeling approach where relevant biopharmaceutics parameters for ketoconazole (KTZ) are determined and/or confirmed from the modeling of in vitro experiments before being directly used within a PBPK model. Modeling was applied to various in vitro experiments, namely: (a) aqueous solubility profiles to determine intrinsic solubility, salt limiting solubility factors and to verify pK a ; (b) biorelevant solubility measurements to estimate bile-micelle partition coefficients; (c) fasted state simulated gastric fluid (FaSSGF) dissolution for formulation disintegration profiling; and (d) transfer experiments to estimate supersaturation and precipitation parameters. These parameters were then used within a PBPK model to predict the dissolved and total (i.e., including the precipitated fraction) concentrations of KTZ in the duodenum of a virtual population and compared against observed clinical data. The developed model well characterized the intraluminal dissolution, supersaturation, and precipitation behavior of KTZ. The mean simulated AUC 0-t of the total and dissolved concentrations of KTZ were comparable to (within 2-fold of) the corresponding observed profile. Moreover, the developed PBPK model of KTZ successfully described the impact of supersaturation and precipitation on the systemic plasma concentration profiles of KTZ for 200, 300, and 400 mg doses. These results demonstrate that IVIV_E applied to biopharmaceutical experiments can be used to understand and build confidence in the quality of the input parameters and mechanistic models used for mechanistic oral absorption simulations in vivo, thereby improving the prediction performance of PBPK models. Moreover, this approach can inform the selection and design of in vitro experiments, potentially eliminating redundant experiments and thus helping to reduce the cost and time of drug product development.
Consistent Parameter and Transfer Function Estimation using Context Free Grammars
NASA Astrophysics Data System (ADS)
Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten
2017-04-01
This contribution presents a method for the inference of transfer functions for rainfall-runoff models. Here, transfer functions are defined as parametrized (functional) relationships between a set of spatial predictors (e.g. elevation, slope or soil texture) and model parameters. They are ultimately used for estimation of consistent, spatially distributed model parameters from a limited amount of lumped global parameters. Additionally, they provide a straightforward method for parameter extrapolation from one set of basins to another and can even be used to derive parameterizations for multi-scale models [see: Samaniego et al., 2010]. Yet, currently an actual knowledge of the transfer functions is often implicitly assumed. As a matter of fact, for most cases these hypothesized transfer functions can rarely be measured and often remain unknown. Therefore, this contribution presents a general method for the concurrent estimation of the structure of transfer functions and their respective (global) parameters. Note, that by consequence an estimation of the distributed parameters of the rainfall-runoff model is also undertaken. The method combines two steps to achieve this. The first generates different possible transfer functions. The second then estimates the respective global transfer function parameters. The structural estimation of the transfer functions is based on the context free grammar concept. Chomsky first introduced context free grammars in linguistics [Chomsky, 1956]. Since then, they have been widely applied in computer science. But, to the knowledge of the authors, they have so far not been used in hydrology. Therefore, the contribution gives an introduction to context free grammars and shows how they can be constructed and used for the structural inference of transfer functions. This is enabled by new methods from evolutionary computation, such as grammatical evolution [O'Neill, 2001], which make it possible to exploit the constructed grammar as a search space for equations. The parametrization of the transfer functions is then achieved through a second optimization routine. The contribution explores different aspects of the described procedure through a set of experiments. These experiments can be divided into three categories: (1) The inference of transfer functions from directly measurable parameters; (2) The estimation of global parameters for given transfer functions from runoff data; and (3) The estimation of sets of completely unknown transfer functions from runoff data. The conducted tests reveal different potentials and limits of the procedure. In concrete it is shown that example (1) and (2) work remarkably well. Example (3) is much more dependent on the setup. In general, it can be said that in that case much more data is needed to derive transfer function estimations, even for simple models and setups. References: - Chomsky, N. (1956): Three Models for the Description of Language. IT IRETr. 2(3), p 113-124 - O'Neil, M. (2001): Grammatical Evolution. IEEE ToEC, Vol.5, No. 4 - Samaniego, L.; Kumar, R.; Attinger, S. (2010): Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. WWR, Vol. 46, W05523, doi:10.1029/2008WR007327
He, Ning; Sun, Hechun; Dai, Miaomiao
2014-05-01
To evaluate the influence of temperature and humidity on the drug stability by initial average rate experiment, and to obtained the kinetic parameters. The effect of concentration error, drug degradation extent, humidity and temperature numbers, humidity and temperature range, and average humidity and temperature on the accuracy and precision of kinetic parameters in the initial average rate experiment was explored. The stability of vitamin C, as a solid state model, was investigated by an initial average rate experiment. Under the same experimental conditions, the kinetic parameters obtained from this proposed method were comparable to those from classical isothermal experiment at constant humidity. The estimates were more accurate and precise by controlling the extent of drug degradation, changing humidity and temperature range, or by setting the average temperature closer to room temperature. Compared with isothermal experiments at constant humidity, our proposed method saves time, labor, and materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Justin; Hund, Lauren
2017-02-01
Dynamic compression experiments are being performed on complicated materials using increasingly complex drivers. The data produced in these experiments are beginning to reach a regime where traditional analysis techniques break down; requiring the solution of an inverse problem. A common measurement in dynamic experiments is an interface velocity as a function of time, and often this functional output can be simulated using a hydrodynamics code. Bayesian model calibration is a statistical framework to estimate inputs into a computational model in the presence of multiple uncertainties, making it well suited to measurements of this type. In this article, we apply Bayesianmore » model calibration to high pressure (250 GPa) ramp compression measurements in tantalum. We address several issues speci c to this calibration including the functional nature of the output as well as parameter and model discrepancy identi ability. Speci cally, we propose scaling the likelihood function by an e ective sample size rather than modeling the autocorrelation function to accommodate the functional output and propose sensitivity analyses using the notion of `modularization' to assess the impact of experiment-speci c nuisance input parameters on estimates of material properties. We conclude that the proposed Bayesian model calibration procedure results in simple, fast, and valid inferences on the equation of state parameters for tantalum.« less
Estimation of distributional parameters for censored trace-level water-quality data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilliom, R.J.; Helsel, D.R.
1984-01-01
A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water-sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations,more » for determining the best-performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least-squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification. 6 figs., 6 tabs.« less
A Nonlinear, Multiinput, Multioutput Process Control Laboratory Experiment
ERIC Educational Resources Information Center
Young, Brent R.; van der Lee, James H.; Svrcek, William Y.
2006-01-01
Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…
Parameter estimation using meta-heuristics in systems biology: a comprehensive review.
Sun, Jianyong; Garibaldi, Jonathan M; Hodgman, Charlie
2012-01-01
This paper gives a comprehensive review of the application of meta-heuristics to optimization problems in systems biology, mainly focussing on the parameter estimation problem (also called the inverse problem or model calibration). It is intended for either the system biologist who wishes to learn more about the various optimization techniques available and/or the meta-heuristic optimizer who is interested in applying such techniques to problems in systems biology. First, the parameter estimation problems emerging from different areas of systems biology are described from the point of view of machine learning. Brief descriptions of various meta-heuristics developed for these problems follow, along with outlines of their advantages and disadvantages. Several important issues in applying meta-heuristics to the systems biology modelling problem are addressed, including the reliability and identifiability of model parameters, optimal design of experiments, and so on. Finally, we highlight some possible future research directions in this field.
NASA Astrophysics Data System (ADS)
Hu, Xiao-Ming; Zhang, Fuqing; Nielsen-Gammon, John W.
2010-04-01
This study explores the treatment of model error and uncertainties through simultaneous state and parameter estimation (SSPE) with an ensemble Kalman filter (EnKF) in the simulation of a 2006 air pollution event over the greater Houston area during the Second Texas Air Quality Study (TexAQS-II). Two parameters in the atmospheric boundary layer parameterization associated with large model sensitivities are combined with standard prognostic variables in an augmented state vector to be continuously updated through assimilation of wind profiler observations. It is found that forecasts of the atmosphere with EnKF/SSPE are markedly improved over experiments with no state and/or parameter estimation. More specifically, the EnKF/SSPE is shown to help alleviate a near-surface cold bias and to alter the momentum mixing in the boundary layer to produce more realistic wind profiles.
Cosmological Parameters and Hyper-Parameters: The Hubble Constant from Boomerang and Maxima
NASA Astrophysics Data System (ADS)
Lahav, Ofer
Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalise this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint likelihood function a set of `Hyper-Parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the Hyper-Parameters, is very simple to implement. We illustrate the method by estimating the Hubble constant H0 from different sets of recent CMB experiments (including Saskatoon, Python V, MSAM1, TOCO, Boomerang and Maxima). The approach can be generalised for a combination of cosmic probes, and for other priors on the Hyper-Parameters. Reference: Lahav, Bridle, Hobson, Lasenby & Sodre, 2000, MNRAS, in press (astro-ph/9912105)
Geodetic and Astrometric Measurements with Very-Long-Baseline Interferometry. Ph.D. Thesis - MIT
NASA Technical Reports Server (NTRS)
Robertson, D. S.
1975-01-01
The use of very-long-baseline interferometry (VLBI) observations for the estimation of geodetic and astrometric parameters is discussed. Analytic models for the dependence of delay and delay rate on these parameters are developed and used for parameter estimation by the method of weighted least squares. Results are presented from approximately 15,000 delay and delay-rate observations, obtained in a series of nineteen VLBI experiments involving a total of five stations on two continents. The closure of baseline triangles is investigated and found to be consistent with the scatter of the various baseline-component results. Estimates are made of the wobble of the earth's pole and of the irregularities in the earth's rotation rate. Estimates are also made of the precession constant and of the vertical Love number, for which a value of 0.55 + or - 0.05 was obtained.
Methods for the identification of material parameters in distributed models for flexible structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Crowley, J. M.; Rosen, I. G.
1986-01-01
Theoretical and numerical results are presented for inverse problems involving estimation of spatially varying parameters such as stiffness and damping in distributed models for elastic structures such as Euler-Bernoulli beams. An outline of algorithms used and a summary of computational experiences are presented.
A global parallel model based design of experiments method to minimize model output uncertainty.
Bazil, Jason N; Buzzard, Gregory T; Rundell, Ann E
2012-03-01
Model-based experiment design specifies the data to be collected that will most effectively characterize the biological system under study. Existing model-based design of experiment algorithms have primarily relied on Fisher Information Matrix-based methods to choose the best experiment in a sequential manner. However, these are largely local methods that require an initial estimate of the parameter values, which are often highly uncertain, particularly when data is limited. In this paper, we provide an approach to specify an informative sequence of multiple design points (parallel design) that will constrain the dynamical uncertainty of the biological system responses to within experimentally detectable limits as specified by the estimated experimental noise. The method is based upon computationally efficient sparse grids and requires only a bounded uncertain parameter space; it does not rely upon initial parameter estimates. The design sequence emerges through the use of scenario trees with experimental design points chosen to minimize the uncertainty in the predicted dynamics of the measurable responses of the system. The algorithm was illustrated herein using a T cell activation model for three problems that ranged in dimension from 2D to 19D. The results demonstrate that it is possible to extract useful information from a mathematical model where traditional model-based design of experiments approaches most certainly fail. The experiments designed via this method fully constrain the model output dynamics to within experimentally resolvable limits. The method is effective for highly uncertain biological systems characterized by deterministic mathematical models with limited data sets. Also, it is highly modular and can be modified to include a variety of methodologies such as input design and model discrimination.
Bayesian parameter estimation for nonlinear modelling of biological pathways.
Ghasemi, Omid; Lindsey, Merry L; Yang, Tianyi; Nguyen, Nguyen; Huang, Yufei; Jin, Yu-Fang
2011-01-01
The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC) method. We applied this approach to the biological pathways involved in the left ventricle (LV) response to myocardial infarction (MI) and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly parameterized dynamic systems. Our proposed Bayesian algorithm successfully estimated parameters in nonlinear mathematical models for biological pathways. This method can be further extended to high order systems and thus provides a useful tool to analyze biological dynamics and extract information using temporal data.
Perceptual Calibration for Immersive Display Environments
Ponto, Kevin; Gleicher, Michael; Radwin, Robert G.; Shin, Hyun Joon
2013-01-01
The perception of objects, depth, and distance has been repeatedly shown to be divergent between virtual and physical environments. We hypothesize that many of these discrepancies stem from incorrect geometric viewing parameters, specifically that physical measurements of eye position are insufficiently precise to provide proper viewing parameters. In this paper, we introduce a perceptual calibration procedure derived from geometric models. While most research has used geometric models to predict perceptual errors, we instead use these models inversely to determine perceptually correct viewing parameters. We study the advantages of these new psychophysically determined viewing parameters compared to the commonly used measured viewing parameters in an experiment with 20 subjects. The perceptually calibrated viewing parameters for the subjects generally produced new virtual eye positions that were wider and deeper than standard practices would estimate. Our study shows that perceptually calibrated viewing parameters can significantly improve depth acuity, distance estimation, and the perception of shape. PMID:23428454
Bayesian `hyper-parameters' approach to joint estimation: the Hubble constant from CMB measurements
NASA Astrophysics Data System (ADS)
Lahav, O.; Bridle, S. L.; Hobson, M. P.; Lasenby, A. N.; Sodré, L.
2000-07-01
Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalize this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint χ2 function a set of `hyper-parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the hyper-parameters, is very simple: instead of minimizing \\sum \\chi_j2 (where \\chi_j2 is per data set j) we propose to minimize \\sum Nj (\\chi_j2) (where Nj is the number of data points per data set j). We illustrate the method by estimating the Hubble constant H0 from different sets of recent cosmic microwave background (CMB) experiments (including Saskatoon, Python V, MSAM1, TOCO and Boomerang). The approach can be generalized for combinations of cosmic probes, and for other priors on the hyper-parameters.
Müller, Dirk K; Pampel, André; Möller, Harald E
2013-05-01
Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data. Copyright © 2013 Elsevier Inc. All rights reserved.
Model-based high-throughput design of ion exchange protein chromatography.
Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo
2016-08-12
This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Moes, Timothy R.; Iliff, Kenneth
2002-01-01
A maximum-likelihood output-error parameter estimation technique is used to obtain stability and control derivatives for the NASA Dryden Flight Research Center SR-71A airplane and for configurations that include experiments externally mounted to the top of the fuselage. This research is being done as part of the envelope clearance for the new experiment configurations. Flight data are obtained at speeds ranging from Mach 0.4 to Mach 3.0, with an extensive amount of test points at approximately Mach 1.0. Pilot-input pitch and yaw-roll doublets are used to obtain the data. This report defines the parameter estimation technique used, presents stability and control derivative results, and compares the derivatives for the three configurations tested. The experimental configurations studied generally show acceptable stability, control, trim, and handling qualities throughout the Mach regimes tested. The reduction of directional stability for the experimental configurations is the most significant aerodynamic effect measured and identified as a design constraint for future experimental configurations. This report also shows the significant effects of aircraft flexibility on the stability and control derivatives.
Towards a smart non-invasive fluid loss measurement system.
Suryadevara, N K; Mukhopadhyay, S C; Barrack, L
2015-04-01
In this article, a smart wireless sensing non-invasive system for estimating the amount of fluid loss, a person experiences while physical activity is presented. The system measures three external body parameters, Heart Rate, Galvanic Skin Response (GSR, or skin conductance), and Skin Temperature. These three parameters are entered into an empirically derived formula along with the user's body mass index, and estimation for the amount of fluid lost is determined. The core benefit of the developed system is the affluence usage in combining with smart home monitoring systems to care elderly people in ambient assisted living environments as well in automobiles to monitor the body parameters of a motorist.
Pazos, Valérie; Mongrain, Rosaire; Tardif, Jean-Claude
2010-06-01
Clinical studies on lipid-lowering therapy have shown that changing the composition of lipid pools reduced significantly the risk of cardiac events associated with plaque rupture. It has been shown also that changing the composition of the lipid pool affects its mechanical properties. However, knowledge about the mechanical properties of human atherosclerotic lesions remains limited due to the difficulty of the experiments. This paper aims to assess the feasibility of characterizing a lipid pool embedded in the wall of a pressurized vessel using finite-element simulations and an optimization algorithm. Finite-element simulations of inflation experiments were used together with nonlinear least squares algorithm to estimate the material model parameters of the wall and of the inclusion. An optimal fit of the simulated experiment and the real experiment was sought with the parameter estimation algorithm. The method was first tested on a single-layer polyvinyl alcohol (PVA) cryogel stenotic vessel, and then, applied on a double-layered PVA cryogel stenotic vessel with a lipid inclusion.
Earth-Moon system: Dynamics and parameter estimation
NASA Technical Reports Server (NTRS)
Breedlove, W. J., Jr.
1979-01-01
The following topics are discussed: (1) the Unified Model of Lunar Translation/Rotation (UMLTR); (2) the effect of figure-figure interactions on lunar physical librations; (3) the effect of translational-rotational coupling on the lunar orbit; and(4) an error analysis for estimating lunar inertias from LURE (Lunar Laser Ranging Experiment) data.
NASA Astrophysics Data System (ADS)
Simon, Ehouarn; Samuelsen, Annette; Bertino, Laurent; Mouysset, Sandrine
2015-12-01
A sequence of one-year combined state-parameter estimation experiments has been conducted in a North Atlantic and Arctic Ocean configuration of the coupled physical-biogeochemical model HYCOM-NORWECOM over the period 2007-2010. The aim is to evaluate the ability of an ensemble-based data assimilation method to calibrate ecosystem model parameters in a pre-operational setting, namely the production of the MyOcean pilot reanalysis of the Arctic biology. For that purpose, four biological parameters (two phyto- and two zooplankton mortality rates) are estimated by assimilating weekly data such as, satellite-derived Sea Surface Temperature, along-track Sea Level Anomalies, ice concentrations and chlorophyll-a concentrations with an Ensemble Kalman Filter. The set of optimized parameters locally exhibits seasonal variations suggesting that time-dependent parameters should be used in ocean ecosystem models. A clustering analysis of the optimized parameters is performed in order to identify consistent ecosystem regions. In the north part of the domain, where the ecosystem model is the most reliable, most of them can be associated with Longhurst provinces and new provinces emerge in the Arctic Ocean. However, the clusters do not coincide anymore with the Longhurst provinces in the Tropics due to large model errors. Regarding the ecosystem state variables, the assimilation of satellite-derived chlorophyll concentration leads to significant reduction of the RMS errors in the observed variables during the first year, i.e. 2008, compared to a free run simulation. However, local filter divergences of the parameter component occur in 2009 and result in an increase in the RMS error at the time of the spring bloom.
Design of Experiments for the Thermal Characterization of Metallic Foam
NASA Technical Reports Server (NTRS)
Crittenden, Paul E.; Cole, Kevin D.
2003-01-01
Metallic foams are being investigated for possible use in the thermal protection systems of reusable launch vehicles. As a result, the performance of these materials needs to be characterized over a wide range of temperatures and pressures. In this paper a radiation/conduction model is presented for heat transfer in metallic foams. Candidates for the optimal transient experiment to determine the intrinsic properties of the model are found by two methods. First, an optimality criterion is used to find an experiment to find all of the parameters using one heating event. Second, a pair of heating events is used to determine the parameters in which one heating event is optimal for finding the parameters related to conduction, while the other heating event is optimal for finding the parameters associated with radiation. Simulated data containing random noise was analyzed to determine the parameters using both methods. In all cases the parameter estimates could be improved by analyzing a larger data record than suggested by the optimality criterion.
An improved method to estimate reflectance parameters for high dynamic range imaging
NASA Astrophysics Data System (ADS)
Li, Shiying; Deguchi, Koichiro; Li, Renfa; Manabe, Yoshitsugu; Chihara, Kunihiro
2008-01-01
Two methods are described to accurately estimate diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness, over the dynamic range of the camera used to capture input images. Neither method needs to segment color areas on an image, or to reconstruct a high dynamic range (HDR) image. The second method improves on the first, bypassing the requirement for specific separation of diffuse and specular reflection components. For the latter method, diffuse and specular reflectance parameters are estimated separately, using the least squares method. Reflection values are initially assumed to be diffuse-only reflection components, and are subjected to the least squares method to estimate diffuse reflectance parameters. Specular reflection components, obtained by subtracting the computed diffuse reflection components from reflection values, are then subjected to a logarithmically transformed equation of the Torrance-Sparrow reflection model, and specular reflectance parameters for gloss intensity and surface roughness are finally estimated using the least squares method. Experiments were carried out using both methods, with simulation data at different saturation levels, generated according to the Lambert and Torrance-Sparrow reflection models, and the second method, with spectral images captured by an imaging spectrograph and a moving light source. Our results show that the second method can estimate the diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness more accurately and faster than the first one, so that colors and gloss can be reproduced more efficiently for HDR imaging.
NASA Astrophysics Data System (ADS)
Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten
2015-04-01
A multi-scale parameter-estimation method, as presented by Samaniego et al. (2010), is implemented and extended for the conceptual hydrological model COSERO. COSERO is a HBV-type model that is specialized for alpine-environments, but has been applied over a wide range of basins all over the world (see: Kling et al., 2014 for an overview). Within the methodology available small-scale information (DEM, soil texture, land cover, etc.) is used to estimate the coarse-scale model parameters by applying a set of transfer-functions (TFs) and subsequent averaging methods, whereby only TF hyper-parameters are optimized against available observations (e.g. runoff data). The parameter regionalisation approach was extended in order to allow for a more meta-heuristical handling of the transfer-functions. The two main novelties are: 1. An explicit introduction of constrains into parameter estimation scheme: The constraint scheme replaces invalid parts of the transfer-function-solution space with valid solutions. It is inspired by applications in evolutionary algorithms and related to the combination of learning and evolution. This allows the consideration of physical and numerical constraints as well as the incorporation of a priori modeller-experience into the parameter estimation. 2. Spline-based transfer-functions: Spline-based functions enable arbitrary forms of transfer-functions: This is of importance since in many cases the general relationship between sub-grid information and parameters are known, but not the form of the transfer-function itself. The contribution presents the results and experiences with the adopted method and the introduced extensions. Simulation are performed for the pre-alpine/alpine Traisen catchment in Lower Austria. References: Samaniego, L., Kumar, R., Attinger, S. (2010): Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., doi: 10.1029/2008WR007327 Kling, H., Stanzel, P., Fuchs, M., and Nachtnebel, H. P. (2014): Performance of the COSERO precipitation-runoff model under non-stationary conditions in basins with different climates, Hydrolog. Sci. J., doi: 10.1080/02626667.2014.959956.
Edge Modeling by Two Blur Parameters in Varying Contrasts.
Seo, Suyoung
2018-06-01
This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.
Cohn, T.A.; Lane, W.L.; Baier, W.G.
1997-01-01
This paper presents the expected moments algorithm (EMA), a simple and efficient method for incorporating historical and paleoflood information into flood frequency studies. EMA can utilize three types of at-site flood information: systematic stream gage record; information about the magnitude of historical floods; and knowledge of the number of years in the historical period when no large flood occurred. EMA employs an iterative procedure to compute method-of-moments parameter estimates. Initial parameter estimates are calculated from systematic stream gage data. These moments are then updated by including the measured historical peaks and the expected moments, given the previously estimated parameters, of the below-threshold floods from the historical period. The updated moments result in new parameter estimates, and the last two steps are repeated until the algorithm converges. Monte Carlo simulations compare EMA, Bulletin 17B's [United States Water Resources Council, 1982] historically weighted moments adjustment, and maximum likelihood estimators when fitting the three parameters of the log-Pearson type III distribution. These simulations demonstrate that EMA is more efficient than the Bulletin 17B method, and that it is nearly as efficient as maximum likelihood estimation (MLE). The experiments also suggest that EMA has two advantages over MLE when dealing with the log-Pearson type III distribution: It appears that EMA estimates always exist and that they are unique, although neither result has been proven. EMA can be used with binomial or interval-censored data and with any distributional family amenable to method-of-moments estimation.
NASA Astrophysics Data System (ADS)
Cohn, T. A.; Lane, W. L.; Baier, W. G.
This paper presents the expected moments algorithm (EMA), a simple and efficient method for incorporating historical and paleoflood information into flood frequency studies. EMA can utilize three types of at-site flood information: systematic stream gage record; information about the magnitude of historical floods; and knowledge of the number of years in the historical period when no large flood occurred. EMA employs an iterative procedure to compute method-of-moments parameter estimates. Initial parameter estimates are calculated from systematic stream gage data. These moments are then updated by including the measured historical peaks and the expected moments, given the previously estimated parameters, of the below-threshold floods from the historical period. The updated moments result in new parameter estimates, and the last two steps are repeated until the algorithm converges. Monte Carlo simulations compare EMA, Bulletin 17B's [United States Water Resources Council, 1982] historically weighted moments adjustment, and maximum likelihood estimators when fitting the three parameters of the log-Pearson type III distribution. These simulations demonstrate that EMA is more efficient than the Bulletin 17B method, and that it is nearly as efficient as maximum likelihood estimation (MLE). The experiments also suggest that EMA has two advantages over MLE when dealing with the log-Pearson type III distribution: It appears that EMA estimates always exist and that they are unique, although neither result has been proven. EMA can be used with binomial or interval-censored data and with any distributional family amenable to method-of-moments estimation.
Yoshida, Keiichiro; Nishidate, Izumi; Ishizuka, Tomohiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-05-01
In order to estimate multispectral images of the absorption and scattering properties in the cerebral cortex of in vivo rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital RGB camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentrations of oxygenated hemoglobin and that of deoxygenated hemoglobin were estimated as the absorption parameters, whereas the coefficient a and the exponent b of the reduced scattering coefficient spectrum approximated by a power law function were estimated as the scattering parameters. The spectra of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters, and the spectral images of absorption and reduced scattering coefficients were then estimated. In order to confirm the feasibility of this method, we performed in vivo experiments on exposed rat brain. The estimated images of the absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. The changes in the estimated absorption and scattering parameters during normoxia, hyperoxia, and anoxia indicate the potential applicability of the method by which to evaluate the pathophysiological conditions of in vivo brain due to the loss of tissue viability.
The Variance of Intraclass Correlations in Three- and Four-Level Models
ERIC Educational Resources Information Center
Hedges, Larry V.; Hedberg, E. C.; Kuyper, Arend M.
2012-01-01
Intraclass correlations are used to summarize the variance decomposition in populations with multilevel hierarchical structure. There has recently been considerable interest in estimating intraclass correlations from surveys or designed experiments to provide design parameters for planning future large-scale randomized experiments. The large…
The Variance of Intraclass Correlations in Three and Four Level
ERIC Educational Resources Information Center
Hedges, Larry V.; Hedberg, Eric C.; Kuyper, Arend M.
2012-01-01
Intraclass correlations are used to summarize the variance decomposition in popula- tions with multilevel hierarchical structure. There has recently been considerable interest in estimating intraclass correlations from surveys or designed experiments to provide design parameters for planning future large-scale randomized experiments. The large…
State and parameter estimation of the heat shock response system using Kalman and particle filters.
Liu, Xin; Niranjan, Mahesan
2012-06-01
Traditional models of systems biology describe dynamic biological phenomena as solutions to ordinary differential equations, which, when parameters in them are set to correct values, faithfully mimic observations. Often parameter values are tweaked by hand until desired results are achieved, or computed from biochemical experiments carried out in vitro. Of interest in this article, is the use of probabilistic modelling tools with which parameters and unobserved variables, modelled as hidden states, can be estimated from limited noisy observations of parts of a dynamical system. Here we focus on sequential filtering methods and take a detailed look at the capabilities of three members of this family: (i) extended Kalman filter (EKF), (ii) unscented Kalman filter (UKF) and (iii) the particle filter, in estimating parameters and unobserved states of cellular response to sudden temperature elevation of the bacterium Escherichia coli. While previous literature has studied this system with the EKF, we show that parameter estimation is only possible with this method when the initial guesses are sufficiently close to the true values. The same turns out to be true for the UKF. In this thorough empirical exploration, we show that the non-parametric method of particle filtering is able to reliably estimate parameters and states, converging from initial distributions relatively far away from the underlying true values. Software implementation of the three filters on this problem can be freely downloaded from http://users.ecs.soton.ac.uk/mn/HeatShock
The reliability of physiologically based pharmacokinetic (PBPK) models is directly related to the accuracy of the metabolic rate parameters used as model inputs. When metabolic rate parameters derived from in vivo experiments are unavailable, they can be estimated from in vitro d...
Estimation in a discrete tail rate family of recapture sampling models
NASA Technical Reports Server (NTRS)
Gupta, Rajan; Lee, Larry D.
1990-01-01
In the context of recapture sampling design for debugging experiments the problem of estimating the error or hitting rate of the faults remaining in a system is considered. Moment estimators are derived for a family of models in which the rate parameters are assumed proportional to the tail probabilities of a discrete distribution on the positive integers. The estimators are shown to be asymptotically normal and fully efficient. Their fixed sample properties are compared, through simulation, with those of the conditional maximum likelihood estimators.
Ensemble Kalman filter inference of spatially-varying Manning's n coefficients in the coastal ocean
NASA Astrophysics Data System (ADS)
Siripatana, Adil; Mayo, Talea; Knio, Omar; Dawson, Clint; Maître, Olivier Le; Hoteit, Ibrahim
2018-07-01
Ensemble Kalman (EnKF) filtering is an established framework for large scale state estimation problems. EnKFs can also be used for state-parameter estimation, using the so-called "Joint-EnKF" approach. The idea is simply to augment the state vector with the parameters to be estimated and assign invariant dynamics for the time evolution of the parameters. In this contribution, we investigate the efficiency of the Joint-EnKF for estimating spatially-varying Manning's n coefficients used to define the bottom roughness in the Shallow Water Equations (SWEs) of a coastal ocean model. Observation System Simulation Experiments (OSSEs) are conducted using the ADvanced CIRCulation (ADCIRC) model, which solves a modified form of the Shallow Water Equations. A deterministic EnKF, the Singular Evolutive Interpolated Kalman (SEIK) filter, is used to estimate a vector of Manning's n coefficients defined at the model nodal points by assimilating synthetic water elevation data. It is found that with reasonable ensemble size (O (10)) , the filter's estimate converges to the reference Manning's field. To enhance performance, we have further reduced the dimension of the parameter search space through a Karhunen-Loéve (KL) expansion. We have also iterated on the filter update step to better account for the nonlinearity of the parameter estimation problem. We study the sensitivity of the system to the ensemble size, localization scale, dimension of retained KL modes, and number of iterations. The performance of the proposed framework in term of estimation accuracy suggests that a well-tuned Joint-EnKF provides a promising robust approach to infer spatially varying seabed roughness parameters in the context of coastal ocean modeling.
[Atmospheric parameter estimation for LAMOST/GUOSHOUJING spectra].
Lu, Yu; Li, Xiang-Ru; Yang, Tan
2014-11-01
It is a key task to estimate the atmospheric parameters from the observed stellar spectra in exploring the nature of stars and universe. With our Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST) which begun its formal Sky Survey in September 2012, we are obtaining a mass of stellar spectra in an unprecedented speed. It has brought a new opportunity and a challenge for the research of galaxies. Due to the complexity of the observing system, the noise in the spectrum is relatively large. At the same time, the preprocessing procedures of spectrum are also not ideal, such as the wavelength calibration and the flow calibration. Therefore, there is a slight distortion of the spectrum. They result in the high difficulty of estimating the atmospheric parameters for the measured stellar spectra. It is one of the important issues to estimate the atmospheric parameters for the massive stellar spectra of LAMOST. The key of this study is how to eliminate noise and improve the accuracy and robustness of estimating the atmospheric parameters for the measured stellar spectra. We propose a regression model for estimating the atmospheric parameters of LAMOST stellar(SVM(lasso)). The basic idea of this model is: First, we use the Haar wavelet to filter spectrum, suppress the adverse effects of the spectral noise and retain the most discrimination information of spectrum. Secondly, We use the lasso algorithm for feature selection and extract the features of strongly correlating with the atmospheric parameters. Finally, the features are input to the support vector regression model for estimating the parameters. Because the model has better tolerance to the slight distortion and the noise of the spectrum, the accuracy of the measurement is improved. To evaluate the feasibility of the above scheme, we conduct experiments extensively on the 33 963 pilot surveys spectrums by LAMOST. The accuracy of three atmospheric parameters is log Teff: 0.006 8 dex, log g: 0.155 1 dex, [Fe/H]: 0.104 0 dex.
NASA Technical Reports Server (NTRS)
Rowlands, D. D.; Luthcke, S. B.; McCarthy J. J.; Klosko, S. M.; Chinn, D. S.; Lemoine, F. G.; Boy, J.-P.; Sabaka, T. J.
2010-01-01
The differences between mass concentration (mas con) parameters and standard Stokes coefficient parameters in the recovery of gravity infonnation from gravity recovery and climate experiment (GRACE) intersatellite K-band range rate data are investigated. First, mascons are decomposed into their Stokes coefficient representations to gauge the range of solutions available using each of the two types of parameters. Next, a direct comparison is made between two time series of unconstrained gravity solutions, one based on a set of global equal area mascon parameters (equivalent to 4deg x 4deg at the equator), and the other based on standard Stokes coefficients with each time series using the same fundamental processing of the GRACE tracking data. It is shown that in unconstrained solutions, the type of gravity parameter being estimated does not qualitatively affect the estimated gravity field. It is also shown that many of the differences in mass flux derivations from GRACE gravity solutions arise from the type of smoothing being used and that the type of smoothing that can be embedded in mas con solutions has distinct advantages over postsolution smoothing. Finally, a 1 year time series based on global 2deg equal area mascons estimated every 10 days is presented.
Suspension parameter estimation in the frequency domain using a matrix inversion approach
NASA Astrophysics Data System (ADS)
Thite, A. N.; Banvidi, S.; Ibicek, T.; Bennett, L.
2011-12-01
The dynamic lumped parameter models used to optimise the ride and handling of a vehicle require base values of the suspension parameters. These parameters are generally experimentally identified. The accuracy of identified parameters can depend on the measurement noise and the validity of the model used. The existing publications on suspension parameter identification are generally based on the time domain and use a limited degree of freedom. Further, the data used are either from a simulated 'experiment' or from a laboratory test on an idealised quarter or a half-car model. In this paper, a method is developed in the frequency domain which effectively accounts for the measurement noise. Additional dynamic constraining equations are incorporated and the proposed formulation results in a matrix inversion approach. The nonlinearities in damping are estimated, however, using a time-domain approach. Full-scale 4-post rig test data of a vehicle are used. The variations in the results are discussed using the modal resonant behaviour. Further, a method is implemented to show how the results can be improved when the matrix inverted is ill-conditioned. The case study shows a good agreement between the estimates based on the proposed frequency-domain approach and measurable physical parameters.
Zimmer, Christoph
2016-01-01
Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.
2014-01-01
Background Accurate estimation of parameters of biochemical models is required to characterize the dynamics of molecular processes. This problem is intimately linked to identifying the most informative experiments for accomplishing such tasks. While significant progress has been made, effective experimental strategies for parameter identification and for distinguishing among alternative network topologies remain unclear. We approached these questions in an unbiased manner using a unique community-based approach in the context of the DREAM initiative (Dialogue for Reverse Engineering Assessment of Methods). We created an in silico test framework under which participants could probe a network with hidden parameters by requesting a range of experimental assays; results of these experiments were simulated according to a model of network dynamics only partially revealed to participants. Results We proposed two challenges; in the first, participants were given the topology and underlying biochemical structure of a 9-gene regulatory network and were asked to determine its parameter values. In the second challenge, participants were given an incomplete topology with 11 genes and asked to find three missing links in the model. In both challenges, a budget was provided to buy experimental data generated in silico with the model and mimicking the features of different common experimental techniques, such as microarrays and fluorescence microscopy. Data could be bought at any stage, allowing participants to implement an iterative loop of experiments and computation. Conclusions A total of 19 teams participated in this competition. The results suggest that the combination of state-of-the-art parameter estimation and a varied set of experimental methods using a few datasets, mostly fluorescence imaging data, can accurately determine parameters of biochemical models of gene regulation. However, the task is considerably more difficult if the gene network topology is not completely defined, as in challenge 2. Importantly, we found that aggregating independent parameter predictions and network topology across submissions creates a solution that can be better than the one from the best-performing submission. PMID:24507381
Inverse problems and optimal experiment design in unsteady heat transfer processes identification
NASA Technical Reports Server (NTRS)
Artyukhin, Eugene A.
1991-01-01
Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.
Uav-Based Automatic Tree Growth Measurement for Biomass Estimation
NASA Astrophysics Data System (ADS)
Karpina, M.; Jarząbek-Rychard, M.; Tymków, P.; Borkowski, A.
2016-06-01
Manual in-situ measurements of geometric tree parameters for the biomass volume estimation are time-consuming and economically non-effective. Photogrammetric techniques can be deployed in order to automate the measurement procedure. The purpose of the presented work is an automatic tree growth estimation based on Unmanned Aircraft Vehicle (UAV) imagery. The experiment was conducted in an agriculture test field with scots pine canopies. The data was collected using a Leica Aibotix X6V2 platform equipped with a Nikon D800 camera. Reference geometric parameters of selected sample plants were measured manually each week. In situ measurements were correlated with the UAV data acquisition. The correlation aimed at the investigation of optimal conditions for a flight and parameter settings for image acquisition. The collected images are processed in a state of the art tool resulting in a generation of dense 3D point clouds. The algorithm is developed in order to estimate geometric tree parameters from 3D points. Stem positions and tree tops are identified automatically in a cross section, followed by the calculation of tree heights. The automatically derived height values are compared to the reference measurements performed manually. The comparison allows for the evaluation of automatic growth estimation process. The accuracy achieved using UAV photogrammetry for tree heights estimation is about 5cm.
Estimating parameters from rotating ring disc electrode measurements
Santhanagopalan, Shriram; White, Ralph E.
2017-10-21
Rotating ring disc electrode (RRDE) experiments are a classic tool for investigating kinetics of electrochemical reactions. Several standardized methods exist for extracting transport parameters and reaction rate constants using RRDE measurements. Here in this work, we compare some approximate solutions to the convective diffusion used popularly in the literature to a rigorous numerical solution of the Nernst-Planck equations coupled to the three dimensional flow problem. In light of these computational advancements, we explore design aspects of the RRDE that will help improve sensitivity of our parameter estimation procedure to experimental data. We use the oxygen reduction in acidic media involvingmore » three charge transfer reactions and a chemical reaction as an example, and identify ways to isolate reaction currents for the individual processes in order to accurately estimate the exchange current densities.« less
Bockman, Alexander; Fackler, Cameron; Xiang, Ning
2015-04-01
Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters.
An Agitation Experiment with Multiple Aspects
ERIC Educational Resources Information Center
Spencer, Jordan L.
2006-01-01
This paper describes a multifaceted agitation and mixing experiment. The relatively inexpensive apparatus includes a variable-speed stirrer motor, two polycarbonate tanks, and an instrumented torque table. Students measure torque as a function of stirrer speed, and use conductive tracer data to estimate two parameters of a flow model. The effect…
A New Application for Radioimmunoassay: Measurement of Thermodynamic Constants.
ERIC Educational Resources Information Center
Angstadt, Carol N.; And Others
1983-01-01
Describes a laboratory experiment in which an equilibrium radioimmunoassay (RIA) is used to estimate thermodynamic parameters such as equilibrium constants. The experiment is simple and inexpensive, and it introduces a technique that is important in the clinical chemistry and research laboratory. Background information, procedures, and results are…
NASA Technical Reports Server (NTRS)
Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.
2012-01-01
Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh
2015-01-15
Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowlymore » biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.« less
Zhang, Hang; Maloney, Laurence T.
2012-01-01
In decision from experience, the source of probability information affects how probability is distorted in the decision task. Understanding how and why probability is distorted is a key issue in understanding the peculiar character of experience-based decision. We consider how probability information is used not just in decision-making but also in a wide variety of cognitive, perceptual, and motor tasks. Very similar patterns of distortion of probability/frequency information have been found in visual frequency estimation, frequency estimation based on memory, signal detection theory, and in the use of probability information in decision-making under risk and uncertainty. We show that distortion of probability in all cases is well captured as linear transformations of the log odds of frequency and/or probability, a model with a slope parameter, and an intercept parameter. We then consider how task and experience influence these two parameters and the resulting distortion of probability. We review how the probability distortions change in systematic ways with task and report three experiments on frequency distortion where the distortions change systematically in the same task. We found that the slope of frequency distortions decreases with the sample size, which is echoed by findings in decision from experience. We review previous models of the representation of uncertainty and find that none can account for the empirical findings. PMID:22294978
Moving target parameter estimation of SAR after two looks cancellation
NASA Astrophysics Data System (ADS)
Gan, Rongbing; Wang, Jianguo; Gao, Xiang
2005-11-01
Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.
Estimation of kinetic parameters from list-mode data using an indirect apporach
NASA Astrophysics Data System (ADS)
Ortiz, Joseph Christian
This dissertation explores the possibility of using an imaging approach to model classical pharmacokinetic (PK) problems. The kinetic parameters which describe the uptake rates of a drug within a biological system, are parameters of interest. Knowledge of the drug uptake in a system is useful in expediting the drug development process, as well as providing a dosage regimen for patients. Traditionally, the uptake rate of a drug in a system is obtained via sampling the concentration of the drug in a central compartment, usually the blood, and fitting the data to a curve. In a system consisting of multiple compartments, the number of kinetic parameters is proportional to the number of compartments, and in classical PK experiments, the number of identifiable parameters is less than the total number of parameters. Using an imaging approach to model classical PK problems, the support region of each compartment within the system will be exactly known, and all the kinetic parameters are uniquely identifiable. To solve for the kinetic parameters, an indirect approach, which is a two part process, was used. First the compartmental activity was obtained from data, and next the kinetic parameters were estimated. The novel aspect of the research is using listmode data to obtain the activity curves from a system as opposed to a traditional binned approach. Using techniques from information theoretic learning, particularly kernel density estimation, a non-parametric probability density function for the voltage outputs on each photo-multiplier tube, for each event, was generated on the fly, which was used in a least squares optimization routine to estimate the compartmental activity. The estimability of the activity curves for varying noise levels as well as time sample densities were explored. Once an estimate for the activity was obtained, the kinetic parameters were obtained using multiple cost functions, and the compared to each other using the mean squared error as the figure of merit.
NASA Astrophysics Data System (ADS)
Moon, Byung-Young
2005-12-01
The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.
Beibei, Zhou; Quanjiu, Wang; Shuai, Tan
2014-01-01
A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately only using water advance distance in the irrigation process comparing to the experimental data. With the calculated parameters and the water balance equation, the irrigation coefficients were also estimated. The water advance velocity should be measured at about 0.5 m to 1.0 m far from the water advance in the experimental corn fields. PMID:25061664
Workflow for Criticality Assessment Applied in Biopharmaceutical Process Validation Stage 1.
Zahel, Thomas; Marschall, Lukas; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Mueller, Eric M; Murphy, Patrick; Natschläger, Thomas; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph
2017-10-12
Identification of critical process parameters that impact product quality is a central task during regulatory requested process validation. Commonly, this is done via design of experiments and identification of parameters significantly impacting product quality (rejection of the null hypothesis that the effect equals 0). However, parameters which show a large uncertainty and might result in an undesirable product quality limit critical to the product, may be missed. This might occur during the evaluation of experiments since residual/un-modelled variance in the experiments is larger than expected a priori. Estimation of such a risk is the task of the presented novel retrospective power analysis permutation test. This is evaluated using a data set for two unit operations established during characterization of a biopharmaceutical process in industry. The results show that, for one unit operation, the observed variance in the experiments is much larger than expected a priori, resulting in low power levels for all non-significant parameters. Moreover, we present a workflow of how to mitigate the risk associated with overlooked parameter effects. This enables a statistically sound identification of critical process parameters. The developed workflow will substantially support industry in delivering constant product quality, reduce process variance and increase patient safety.
Lessons learned in deploying software estimation technology and tools
NASA Technical Reports Server (NTRS)
Panlilio-Yap, Nikki; Ho, Danny
1994-01-01
Developing a software product involves estimating various project parameters. This is typically done in the planning stages of the project when there is much uncertainty and very little information. Coming up with accurate estimates of effort, cost, schedule, and reliability is a critical problem faced by all software project managers. The use of estimation models and commercially available tools in conjunction with the best bottom-up estimates of software-development experts enhances the ability of a product development group to derive reasonable estimates of important project parameters. This paper describes the experience of the IBM Software Solutions (SWS) Toronto Laboratory in selecting software estimation models and tools and deploying their use to the laboratory's product development groups. It introduces the SLIM and COSTAR products, the software estimation tools selected for deployment to the product areas, and discusses the rationale for their selection. The paper also describes the mechanisms used for technology injection and tool deployment, and concludes with a discussion of important lessons learned in the technology and tool insertion process.
NASA Astrophysics Data System (ADS)
Akita, T.; Takaki, R.; Shima, E.
2012-04-01
An adaptive estimation method of spacecraft thermal mathematical model is presented. The method is based on the ensemble Kalman filter, which can effectively handle the nonlinearities contained in the thermal model. The state space equations of the thermal mathematical model is derived, where both temperature and uncertain thermal characteristic parameters are considered as the state variables. In the method, the thermal characteristic parameters are automatically estimated as the outputs of the filtered state variables, whereas, in the usual thermal model correlation, they are manually identified by experienced engineers using trial-and-error approach. A numerical experiment of a simple small satellite is provided to verify the effectiveness of the presented method.
Cosmological perturbation effects on gravitational-wave luminosity distance estimates
NASA Astrophysics Data System (ADS)
Bertacca, Daniele; Raccanelli, Alvise; Bartolo, Nicola; Matarrese, Sabino
2018-06-01
Waveforms of gravitational waves provide information about a variety of parameters for the binary system merging. However, standard calculations have been performed assuming a FLRW universe with no perturbations. In reality this assumption should be dropped: we show that the inclusion of cosmological perturbations translates into corrections to the estimate of astrophysical parameters derived for the merging binary systems. We compute corrections to the estimate of the luminosity distance due to velocity, volume, lensing and gravitational potential effects. Our results show that the amplitude of the corrections will be negligible for current instruments, mildly important for experiments like the planned DECIGO, and very important for future ones such as the Big Bang Observer.
NASA Technical Reports Server (NTRS)
Howell, L. W.
2001-01-01
A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
Faugeras, Blaise; Maury, Olivier
2005-10-01
We develop an advection-diffusion size-structured fish population dynamics model and apply it to simulate the skipjack tuna population in the Indian Ocean. The model is fully spatialized, and movements are parameterized with oceanographical and biological data; thus it naturally reacts to environment changes. We first formulate an initial-boundary value problem and prove existence of a unique positive solution. We then discuss the numerical scheme chosen for the integration of the simulation model. In a second step we address the parameter estimation problem for such a model. With the help of automatic differentiation, we derive the adjoint code which is used to compute the exact gradient of a Bayesian cost function measuring the distance between the outputs of the model and catch and length frequency data. A sensitivity analysis shows that not all parameters can be estimated from the data. Finally twin experiments in which pertubated parameters are recovered from simulated data are successfully conducted.
NASA Astrophysics Data System (ADS)
Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim
2016-08-01
Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKFOSA. Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25 % more accurate state and parameter estimations than the joint and dual approaches.
Comparison of Two Methods Used to Model Shape Parameters of Pareto Distributions
Liu, C.; Charpentier, R.R.; Su, J.
2011-01-01
Two methods are compared for estimating the shape parameters of Pareto field-size (or pool-size) distributions for petroleum resource assessment. Both methods assume mature exploration in which most of the larger fields have been discovered. Both methods use the sizes of larger discovered fields to estimate the numbers and sizes of smaller fields: (1) the tail-truncated method uses a plot of field size versus size rank, and (2) the log-geometric method uses data binned in field-size classes and the ratios of adjacent bin counts. Simulation experiments were conducted using discovered oil and gas pool-size distributions from four petroleum systems in Alberta, Canada and using Pareto distributions generated by Monte Carlo simulation. The estimates of the shape parameters of the Pareto distributions, calculated by both the tail-truncated and log-geometric methods, generally stabilize where discovered pool numbers are greater than 100. However, with fewer than 100 discoveries, these estimates can vary greatly with each new discovery. The estimated shape parameters of the tail-truncated method are more stable and larger than those of the log-geometric method where the number of discovered pools is more than 100. Both methods, however, tend to underestimate the shape parameter. Monte Carlo simulation was also used to create sequences of discovered pool sizes by sampling from a Pareto distribution with a discovery process model using a defined exploration efficiency (in order to show how biased the sampling was in favor of larger fields being discovered first). A higher (more biased) exploration efficiency gives better estimates of the Pareto shape parameters. ?? 2011 International Association for Mathematical Geosciences.
Experiment design for pilot identification in compensatory tracking tasks
NASA Technical Reports Server (NTRS)
Wells, W. R.
1976-01-01
A design criterion for input functions in laboratory tracking tasks resulting in efficient parameter estimation is formulated. The criterion is that the statistical correlations between pairs of parameters be reduced in order to minimize the problem of nonuniqueness in the extraction process. The effectiveness of the method is demonstrated for a lower order dynamic system.
PV cells electrical parameters measurement
NASA Astrophysics Data System (ADS)
Cibira, Gabriel
2017-12-01
When measuring optical parameters of a photovoltaic silicon cell, precise results bring good electrical parameters estimation, applying well-known physical-mathematical models. Nevertheless, considerable re-combination phenomena might occur in both surface and intrinsic thin layers within novel materials. Moreover, rear contact surface parameters may influence close-area re-combination phenomena, too. Therefore, the only precise electrical measurement approach is to prove assumed cell electrical parameters. Based on theoretical approach with respect to experiments, this paper analyses problems within measurement procedures and equipment used for electrical parameters acquisition within a photovoltaic silicon cell, as a case study. Statistical appraisal quality is contributed.
Human Resource Scheduling in Performing a Sequence of Discrete Responses
2009-02-28
each is a graph comparing simulated results of each respective model with data from Experiment 3b. As described below the parameters of the model...initiated in parallel with ongoing Central operations on another. To fix model parameters we estimated the range of times to perform the sum of the...standard deviation for each parameter was set to 50% of mean value. Initial simulations found no meaningful differences between setting the standard
de Monchy, Romain; Rouyer, Julien; Destrempes, François; Chayer, Boris; Cloutier, Guy; Franceschini, Emilie
2018-04-01
Quantitative ultrasound techniques based on the backscatter coefficient (BSC) have been commonly used to characterize red blood cell (RBC) aggregation. Specifically, a scattering model is fitted to measured BSC and estimated parameters can provide a meaningful description of the RBC aggregates' structure (i.e., aggregate size and compactness). In most cases, scattering models assumed monodisperse RBC aggregates. This study proposes the Effective Medium Theory combined with the polydisperse Structure Factor Model (EMTSFM) to incorporate the polydispersity of aggregate size. From the measured BSC, this model allows estimating three structural parameters: the mean radius of the aggregate size distribution, the width of the distribution, and the compactness of the aggregates. Two successive experiments were conducted: a first experiment on blood sheared in a Couette flow device coupled with an ultrasonic probe, and a second experiment, on the same blood sample, sheared in a plane-plane rheometer coupled to a light microscope. Results demonstrated that the polydisperse EMTSFM provided the best fit to the BSC data when compared to the classical monodisperse models for the higher levels of aggregation at hematocrits between 10% and 40%. Fitting the polydisperse model yielded aggregate size distributions that were consistent with direct light microscope observations at low hematocrits.
Estimation of Transport and Kinetic Parameters of Vanadium Redox Batteries Using Static Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seong Beom; Pratt, III, Harry D.; Anderson, Travis M.
Mathematical models of Redox Flow Batteries (RFBs) can be used to analyze cell performance, optimize battery operation, and control the energy storage system efficiently. Among many other models, physics-based electrochemical models are capable of predicting internal states of the battery, such as temperature, state-of-charge, and state-of-health. In the models, estimating parameters is an important step that can study, analyze, and validate the models using experimental data. A common practice is to determine these parameters either through conducting experiments or based on the information available in the literature. However, it is not easy to investigate all proper parameters for the modelsmore » through this way, and there are occasions when important information, such as diffusion coefficients and rate constants of ions, has not been studied. Also, the parameters needed for modeling charge-discharge are not always available. In this paper, an efficient way to estimate parameters of physics-based redox battery models will be proposed. Furthermore, this paper also demonstrates that the proposed approach can study and analyze aspects of capacity loss/fade, kinetics, and transport phenomena of the RFB system.« less
Estimation of Transport and Kinetic Parameters of Vanadium Redox Batteries Using Static Cells
Lee, Seong Beom; Pratt, III, Harry D.; Anderson, Travis M.; ...
2018-03-27
Mathematical models of Redox Flow Batteries (RFBs) can be used to analyze cell performance, optimize battery operation, and control the energy storage system efficiently. Among many other models, physics-based electrochemical models are capable of predicting internal states of the battery, such as temperature, state-of-charge, and state-of-health. In the models, estimating parameters is an important step that can study, analyze, and validate the models using experimental data. A common practice is to determine these parameters either through conducting experiments or based on the information available in the literature. However, it is not easy to investigate all proper parameters for the modelsmore » through this way, and there are occasions when important information, such as diffusion coefficients and rate constants of ions, has not been studied. Also, the parameters needed for modeling charge-discharge are not always available. In this paper, an efficient way to estimate parameters of physics-based redox battery models will be proposed. Furthermore, this paper also demonstrates that the proposed approach can study and analyze aspects of capacity loss/fade, kinetics, and transport phenomena of the RFB system.« less
Pecha, Petr; Šmídl, Václav
2016-11-01
A stepwise sequential assimilation algorithm is proposed based on an optimisation approach for recursive parameter estimation and tracking of radioactive plume propagation in the early stage of a radiation accident. Predictions of the radiological situation in each time step of the plume propagation are driven by an existing short-term meteorological forecast and the assimilation procedure manipulates the model parameters to match the observations incoming concurrently from the terrain. Mathematically, the task is a typical ill-posed inverse problem of estimating the parameters of the release. The proposed method is designated as a stepwise re-estimation of the source term release dynamics and an improvement of several input model parameters. It results in a more precise determination of the adversely affected areas in the terrain. The nonlinear least-squares regression methodology is applied for estimation of the unknowns. The fast and adequately accurate segmented Gaussian plume model (SGPM) is used in the first stage of direct (forward) modelling. The subsequent inverse procedure infers (re-estimates) the values of important model parameters from the actual observations. Accuracy and sensitivity of the proposed method for real-time forecasting of the accident propagation is studied. First, a twin experiment generating noiseless simulated "artificial" observations is studied to verify the minimisation algorithm. Second, the impact of the measurement noise on the re-estimated source release rate is examined. In addition, the presented method can be used as a proposal for more advanced statistical techniques using, e.g., importance sampling. Copyright © 2016 Elsevier Ltd. All rights reserved.
A simplified parsimonious higher order multivariate Markov chain model
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.
A Process Dynamics and Control Experiment for the Undergraduate Laboratory
ERIC Educational Resources Information Center
Spencer, Jordan L.
2009-01-01
This paper describes a process control experiment. The apparatus includes a three-vessel glass flow system with a variable flow configuration, means for feeding dye solution controlled by a stepper-motor driven valve, and a flow spectrophotometer. Students use impulse response data and nonlinear regression to estimate three parameters of a model…
Colloid-Facilitated Transport of 137Cs in Fracture-Fill Material. Experiments and Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William
2015-10-29
In this study, we demonstrate how a combination of batch sorption/desorption experiments and column transport experiments were used to effectively parameterize a model describing the colloid-facilitated transport of Cs in the Grimsel granodiorite/FFM system. Cs partition coefficient estimates onto both the colloids and the stationary media obtained from the batch experiments were used as initial estimates of partition coefficients in the column experiments, and then the column experiment results were used to obtain refined estimates of the number of different sorption sites and the adsorption and desorption rate constants of the sites. The desorption portion of the column breakthrough curvesmore » highlighted the importance of accounting for adsorption-desorption hysteresis (or a very nonlinear adsorption isotherm) of the Cs on the FFM in the model, and this portion of the breakthrough curves also dictated that there be at least two different types of sorption sites on the FFM. In the end, the two-site model parameters estimated from the column experiments provided excellent matches to the batch adsorption/desorption data, which provided a measure of assurance in the validity of the model.« less
Adaptive and Personalized Plasma Insulin Concentration Estimation for Artificial Pancreas Systems.
Hajizadeh, Iman; Rashid, Mudassir; Samadi, Sediqeh; Feng, Jianyuan; Sevil, Mert; Hobbs, Nicole; Lazaro, Caterina; Maloney, Zacharie; Brandt, Rachel; Yu, Xia; Turksoy, Kamuran; Littlejohn, Elizabeth; Cengiz, Eda; Cinar, Ali
2018-05-01
The artificial pancreas (AP) system, a technology that automatically administers exogenous insulin in people with type 1 diabetes mellitus (T1DM) to regulate their blood glucose concentrations, necessitates the estimation of the amount of active insulin already present in the body to avoid overdosing. An adaptive and personalized plasma insulin concentration (PIC) estimator is designed in this work to accurately quantify the insulin present in the bloodstream. The proposed PIC estimation approach incorporates Hovorka's glucose-insulin model with the unscented Kalman filtering algorithm. Methods for the personalized initialization of the time-varying model parameters to individual patients for improved estimator convergence are developed. Data from 20 three-days-long closed-loop clinical experiments conducted involving subjects with T1DM are used to evaluate the proposed PIC estimation approach. The proposed methods are applied to the clinical data containing significant disturbances, such as unannounced meals and exercise, and the results demonstrate the accurate real-time estimation of the PIC with the root mean square error of 7.15 and 9.25 mU/L for the optimization-based fitted parameters and partial least squares regression-based testing parameters, respectively. The accurate real-time estimation of PIC will benefit the AP systems by preventing overdelivery of insulin when significant insulin is present in the bloodstream.
NASA Astrophysics Data System (ADS)
Shi, Y.; Davis, K. J.; Zhang, F.; Duffy, C.; Yu, X.
2014-12-01
A coupled physically based land surface hydrologic model, Flux-PIHM, has been developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM has been implemented and manually calibrated at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Model predictions of discharge, point soil moisture, point water table depth, sensible and latent heat fluxes, and soil temperature show good agreement with observations. When calibrated only using discharge, and soil moisture and water table depth at one point, Flux-PIHM is able to resolve the observed 101 m scale soil moisture pattern at the Shale Hills watershed when an appropriate map of soil hydraulic properties is provided. A Flux-PIHM data assimilation system has been developed by incorporating EnKF for model parameter and state estimation. Both synthetic and real data assimilation experiments have been performed at the Shale Hills watershed. Synthetic experiment results show that the data assimilation system is able to simultaneously provide accurate estimates of multiple parameters. In the real data experiment, the EnKF estimated parameters and manually calibrated parameters yield similar model performances, but the EnKF method significantly decreases the time and labor required for calibration. The data requirements for accurate Flux-PIHM parameter estimation via data assimilation using synthetic observations have been tested. Results show that by assimilating only in situ outlet discharge, soil water content at one point, and the land surface temperature averaged over the whole watershed, the data assimilation system can provide an accurate representation of watershed hydrology. Observations of these key variables are available with national and even global spatial coverage (e.g., MODIS surface temperature, SMAP soil moisture, and the USGS gauging stations). National atmospheric reanalysis products, soil databases and land cover databases (e.g., NLDAS-2, SSURGO, NLCD) can provide high resolution forcing and input data. Therefore the Flux-PIHM data assimilation system could be readily expanded to other watersheds to provide regional scale land surface and hydrologic reanalysis with high spatial temporal resolution.
Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations
Palmiotti, Giuseppe; Salvatores, Massimo
2012-01-01
The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.
Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Massonnet, F.; Goosse, H.; Fichefet, T.; Counillon, F.
2014-07-01
The choice of parameter values is crucial in the course of sea ice model development, since parameters largely affect the modeled mean sea ice state. Manual tuning of parameters will soon become impractical, as sea ice models will likely include more parameters to calibrate, leading to an exponential increase of the number of possible combinations to test. Objective and automatic methods for parameter calibration are thus progressively called on to replace the traditional heuristic, "trial-and-error" recipes. Here a method for calibration of parameters based on the ensemble Kalman filter is implemented, tested and validated in the ocean-sea ice model NEMO-LIM3. Three dynamic parameters are calibrated: the ice strength parameter P*, the ocean-sea ice drag parameter Cw, and the atmosphere-sea ice drag parameter Ca. In twin, perfect-model experiments, the default parameter values are retrieved within 1 year of simulation. Using 2007-2012 real sea ice drift data, the calibration of the ice strength parameter P* and the oceanic drag parameter Cw improves clearly the Arctic sea ice drift properties. It is found that the estimation of the atmospheric drag Ca is not necessary if P* and Cw are already estimated. The large reduction in the sea ice speed bias with calibrated parameters comes with a slight overestimation of the winter sea ice areal export through Fram Strait and a slight improvement in the sea ice thickness distribution. Overall, the estimation of parameters with the ensemble Kalman filter represents an encouraging alternative to manual tuning for ocean-sea ice models.
Simulating the effect of non-linear mode coupling in cosmological parameter estimation
NASA Astrophysics Data System (ADS)
Kiessling, A.; Taylor, A. N.; Heavens, A. F.
2011-09-01
Fisher Information Matrix methods are commonly used in cosmology to estimate the accuracy that cosmological parameters can be measured with a given experiment and to optimize the design of experiments. However, the standard approach usually assumes both data and parameter estimates are Gaussian-distributed. Further, for survey forecasts and optimization it is usually assumed that the power-spectrum covariance matrix is diagonal in Fourier space. However, in the low-redshift Universe, non-linear mode coupling will tend to correlate small-scale power, moving information from lower to higher order moments of the field. This movement of information will change the predictions of cosmological parameter accuracy. In this paper we quantify this loss of information by comparing naïve Gaussian Fisher matrix forecasts with a maximum likelihood parameter estimation analysis of a suite of mock weak lensing catalogues derived from N-body simulations, based on the SUNGLASS pipeline, for a 2D and tomographic shear analysis of a Euclid-like survey. In both cases, we find that the 68 per cent confidence area of the Ωm-σ8 plane increases by a factor of 5. However, the marginal errors increase by just 20-40 per cent. We propose a new method to model the effects of non-linear shear-power mode coupling in the Fisher matrix by approximating the shear-power distribution as a multivariate Gaussian with a covariance matrix derived from the mock weak lensing survey. We find that this approximation can reproduce the 68 per cent confidence regions of the full maximum likelihood analysis in the Ωm-σ8 plane to high accuracy for both 2D and tomographic weak lensing surveys. Finally, we perform a multiparameter analysis of Ωm, σ8, h, ns, w0 and wa to compare the Gaussian and non-linear mode-coupled Fisher matrix contours. The 6D volume of the 1σ error contours for the non-linear Fisher analysis is a factor of 3 larger than for the Gaussian case, and the shape of the 68 per cent confidence volume is modified. We propose that future Fisher matrix estimates of cosmological parameter accuracies should include mode-coupling effects.
Linear theory for filtering nonlinear multiscale systems with model error
Berry, Tyrus; Harlim, John
2014-01-01
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure, simultaneously produce accurate filtering and equilibrium statistical prediction. In contrast, an offline estimation technique based on a linear regression, which fits the parameters to a training dataset without using the filter, yields filter estimates which are worse than the observations or even divergent when the slow variables are not fully observed. This finding does not imply that all offline methods are inherently inferior to the online method for nonlinear estimation problems, it only suggests that an ideal estimation technique should estimate all parameters simultaneously whether it is online or offline. PMID:25002829
Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; ...
2015-10-22
To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two ν μ → ν μ disappearance experiments operating inmore » different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
2017-10-31
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions,more » DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO 2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 10 5 km 2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO 2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO 2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO 2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO 2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.« less
Thomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.; ...
2017-07-26
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions,more » DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO 2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 10 5 km 2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO 2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO 2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO 2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO 2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.« less
NASA Astrophysics Data System (ADS)
Quinn Thomas, R.; Brooks, Evan B.; Jersild, Annika L.; Ward, Eric J.; Wynne, Randolph H.; Albaugh, Timothy J.; Dinon-Aldridge, Heather; Burkhart, Harold E.; Domec, Jean-Christophe; Fox, Thomas R.; Gonzalez-Benecke, Carlos A.; Martin, Timothy A.; Noormets, Asko; Sampson, David A.; Teskey, Robert O.
2017-07-01
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model-data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 105 km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.
A tridiagonal parsimonious higher order multivariate Markov chain model
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.
Hone, J.; Pech, R.; Yip, P.
1992-01-01
Infectious diseases establish in a population of wildlife hosts when the number of secondary infections is greater than or equal to one. To estimate whether establishment will occur requires extensive experience or a mathematical model of disease dynamics and estimates of the parameters of the disease model. The latter approach is explored here. Methods for estimating key model parameters, the transmission coefficient (beta) and the basic reproductive rate (RDRS), are described using classical swine fever (hog cholera) in wild pigs as an example. The tentative results indicate that an acute infection of classical swine fever will establish in a small population of wild pigs. Data required for estimation of disease transmission rates are reviewed and sources of bias and alternative methods discussed. A comprehensive evaluation of the biases and efficiencies of the methods is needed. PMID:1582476
Concepción-Acevedo, Jeniffer; Weiss, Howard N; Chaudhry, Waqas Nasir; Levin, Bruce R
2015-01-01
The maximum exponential growth rate, the Malthusian parameter (MP), is commonly used as a measure of fitness in experimental studies of adaptive evolution and of the effects of antibiotic resistance and other genes on the fitness of planktonic microbes. Thanks to automated, multi-well optical density plate readers and computers, with little hands-on effort investigators can readily obtain hundreds of estimates of MPs in less than a day. Here we compare estimates of the relative fitness of antibiotic susceptible and resistant strains of E. coli, Pseudomonas aeruginosa and Staphylococcus aureus based on MP data obtained with automated multi-well plate readers with the results from pairwise competition experiments. This leads us to question the reliability of estimates of MP obtained with these high throughput devices and the utility of these estimates of the maximum growth rates to detect fitness differences.
Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?
NASA Technical Reports Server (NTRS)
Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander
2016-01-01
Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.
Zimmer, Christoph
2016-01-01
Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models. PMID:27583802
NASA Technical Reports Server (NTRS)
Walker, R.; Gupta, N.
1984-01-01
The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.
Parameter estimation for groundwater models under uncertain irrigation data
Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen
2015-01-01
The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.
Characterizing the SWOT discharge error budget on the Sacramento River, CA
NASA Astrophysics Data System (ADS)
Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.
2013-12-01
The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.
Nonlinear Blind Compensation for Array Signal Processing Application
Ma, Hong; Jin, Jiang; Zhang, Hua
2018-01-01
Recently, nonlinear blind compensation technique has attracted growing attention in array signal processing application. However, due to the nonlinear distortion stemming from array receiver which consists of multi-channel radio frequency (RF) front-ends, it is too difficult to estimate the parameters of array signal accurately. A novel nonlinear blind compensation algorithm aims at the nonlinearity mitigation of array receiver and its spurious-free dynamic range (SFDR) improvement, which will be more precise to estimate the parameters of target signals such as their two-dimensional directions of arrival (2-D DOAs). Herein, the suggested method is designed as follows: the nonlinear model parameters of any channel of RF front-end are extracted to synchronously compensate the nonlinear distortion of the entire receiver. Furthermore, a verification experiment on the array signal from a uniform circular array (UCA) is adopted to testify the validity of our approach. The real-world experimental results show that the SFDR of the receiver is enhanced, leading to a significant improvement of the 2-D DOAs estimation performance for weak target signals. And these results demonstrate that our nonlinear blind compensation algorithm is effective to estimate the parameters of weak array signal in concomitance with strong jammers. PMID:29690571
Estimation of surface temperature in remote pollution measurement experiments
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.
Application of physical parameter identification to finite-element models
NASA Technical Reports Server (NTRS)
Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.
1987-01-01
The time domain parameter identification method described previously is applied to TRW's Large Space Structure Truss Experiment. Only control sensors and actuators are employed in the test procedure. The fit of the linear structural model to the test data is improved by more than an order of magnitude using a physically reasonable parameter set. The electro-magnetic control actuators are found to contribute significant damping due to a combination of eddy current and back electro-motive force (EMF) effects. Uncertainties in both estimated physical parameters and modal behavior variables are given.
Regression to fuzziness method for estimation of remaining useful life in power plant components
NASA Astrophysics Data System (ADS)
Alamaniotis, Miltiadis; Grelle, Austin; Tsoukalas, Lefteri H.
2014-10-01
Mitigation of severe accidents in power plants requires the reliable operation of all systems and the on-time replacement of mechanical components. Therefore, the continuous surveillance of power systems is a crucial concern for the overall safety, cost control, and on-time maintenance of a power plant. In this paper a methodology called regression to fuzziness is presented that estimates the remaining useful life (RUL) of power plant components. The RUL is defined as the difference between the time that a measurement was taken and the estimated failure time of that component. The methodology aims to compensate for a potential lack of historical data by modeling an expert's operational experience and expertise applied to the system. It initially identifies critical degradation parameters and their associated value range. Once completed, the operator's experience is modeled through fuzzy sets which span the entire parameter range. This model is then synergistically used with linear regression and a component's failure point to estimate the RUL. The proposed methodology is tested on estimating the RUL of a turbine (the basic electrical generating component of a power plant) in three different cases. Results demonstrate the benefits of the methodology for components for which operational data is not readily available and emphasize the significance of the selection of fuzzy sets and the effect of knowledge representation on the predicted output. To verify the effectiveness of the methodology, it was benchmarked against the data-based simple linear regression model used for predictions which was shown to perform equal or worse than the presented methodology. Furthermore, methodology comparison highlighted the improvement in estimation offered by the adoption of appropriate of fuzzy sets for parameter representation.
Taylor, Brian A.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason
2009-01-01
The authors investigated the performance of the iterative Steiglitz–McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (≤16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer–Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR)≥5 for echo train lengths (ETLs)≥4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and∕or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with ≥4 echoes and for T2* (<1.0%) with ≥7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire ≤16 echoes for one- and two-peak systems. Preliminary ex vivo and in vivo experiments corroborated the results from simulation experiments and further indicate the potential of this technique for MR-guided interventional procedures with high spatiotemporal resolution ∼1.6×1.6×4 mm3 in ≤5 s. PMID:19378736
NASA Astrophysics Data System (ADS)
Gan, L.; Yang, F.; Shi, Y. F.; He, H. L.
2017-11-01
Many occasions related to batteries demand to know how much continuous and instantaneous power can batteries provide such as the rapidly developing electric vehicles. As the large-scale applications of lithium-ion batteries, lithium-ion batteries are used to be our research object. Many experiments are designed to get the lithium-ion battery parameters to ensure the relevance and reliability of the estimation. To evaluate the continuous and instantaneous load capability of a battery called state-of-function (SOF), this paper proposes a fuzzy logic algorithm based on battery state-of-charge(SOC), state-of-health(SOH) and C-rate parameters. Simulation and experimental results indicate that the proposed approach is suitable for battery SOF estimation.
Cornick, Matthew; Hunt, Brian; Ott, Edward; Kurtuldu, Huseyin; Schatz, Michael F
2009-03-01
Data assimilation refers to the process of estimating a system's state from a time series of measurements (which may be noisy or incomplete) in conjunction with a model for the system's time evolution. Here we demonstrate the applicability of a recently developed data assimilation method, the local ensemble transform Kalman filter, to nonlinear, high-dimensional, spatiotemporally chaotic flows in Rayleigh-Bénard convection experiments. Using this technique we are able to extract the full temperature and velocity fields from a time series of shadowgraph measurements. In addition, we describe extensions of the algorithm for estimating model parameters. Our results suggest the potential usefulness of our data assimilation technique to a broad class of experimental situations exhibiting spatiotemporal chaos.
Havens, Timothy C; Roggemann, Michael C; Schulz, Timothy J; Brown, Wade W; Beyer, Jeff T; Otten, L John
2002-05-20
We discuss a method of data reduction and analysis that has been developed for a novel experiment to detect anisotropic turbulence in the tropopause and to measure the spatial statistics of these flows. The experimental concept is to make measurements of temperature at 15 points on a hexagonal grid for altitudes from 12,000 to 18,000 m while suspended from a balloon performing a controlled descent. From the temperature data, we estimate the index of refraction and study the spatial statistics of the turbulence-induced index of refraction fluctuations. We present and evaluate the performance of a processing approach to estimate the parameters of an anisotropic model for the spatial power spectrum of the turbulence-induced index of refraction fluctuations. A Gaussian correlation model and a least-squares optimization routine are used to estimate the parameters of the model from the measurements. In addition, we implemented a quick-look algorithm to have a computationally nonintensive way of viewing the autocorrelation function of the index fluctuations. The autocorrelation of the index of refraction fluctuations is binned and interpolated onto a uniform grid from the sparse points that exist in our experiment. This allows the autocorrelation to be viewed with a three-dimensional plot to determine whether anisotropy exists in a specific data slab. Simulation results presented here show that, in the presence of the anticipated levels of measurement noise, the least-squares estimation technique allows turbulence parameters to be estimated with low rms error.
Marginal regression approach for additive hazards models with clustered current status data.
Su, Pei-Fang; Chi, Yunchan
2014-01-15
Current status data arise naturally from tumorigenicity experiments, epidemiology studies, biomedicine, econometrics and demographic and sociology studies. Moreover, clustered current status data may occur with animals from the same litter in tumorigenicity experiments or with subjects from the same family in epidemiology studies. Because the only information extracted from current status data is whether the survival times are before or after the monitoring or censoring times, the nonparametric maximum likelihood estimator of survival function converges at a rate of n(1/3) to a complicated limiting distribution. Hence, semiparametric regression models such as the additive hazards model have been extended for independent current status data to derive the test statistics, whose distributions converge at a rate of n(1/2) , for testing the regression parameters. However, a straightforward application of these statistical methods to clustered current status data is not appropriate because intracluster correlation needs to be taken into account. Therefore, this paper proposes two estimating functions for estimating the parameters in the additive hazards model for clustered current status data. The comparative results from simulation studies are presented, and the application of the proposed estimating functions to one real data set is illustrated. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Fang, Z.; Ward, A. L.; Fang, Y.; Yabusaki, S.
2011-12-01
High-resolution geologic models have proven effective in improving the accuracy of subsurface flow and transport predictions. However, many of the parameters in subsurface flow and transport models cannot be determined directly at the scale of interest and must be estimated through inverse modeling. A major challenge, particularly in vadose zone flow and transport, is the inversion of the highly-nonlinear, high-dimensional problem as current methods are not readily scalable for large-scale, multi-process models. In this paper we describe the implementation of a fully automated approach for addressing complex parameter optimization and sensitivity issues on massively parallel multi- and many-core systems. The approach is based on the integration of PNNL's extreme scale Subsurface Transport Over Multiple Phases (eSTOMP) simulator, which uses the Global Array toolkit, with the Beowulf-Cluster inspired parallel nonlinear parameter estimation software, BeoPEST in the MPI mode. In the eSTOMP/BeoPEST implementation, a pre-processor generates all of the PEST input files based on the eSTOMP input file. Simulation results for comparison with observations are extracted automatically at each time step eliminating the need for post-process data extractions. The inversion framework was tested with three different experimental data sets: one-dimensional water flow at Hanford Grass Site; irrigation and infiltration experiment at the Andelfingen Site; and a three-dimensional injection experiment at Hanford's Sisson and Lu Site. Good agreements are achieved in all three applications between observations and simulations in both parameter estimates and water dynamics reproduction. Results show that eSTOMP/BeoPEST approach is highly scalable and can be run efficiently with hundreds or thousands of processors. BeoPEST is fault tolerant and new nodes can be dynamically added and removed. A major advantage of this approach is the ability to use high-resolution geologic models to preserve the spatial structure in the inverse model, which leads to better parameter estimates and improved predictions when using the inverse-conditioned realizations of parameter fields.
NASA Astrophysics Data System (ADS)
Karimi, F. S.; Saviz, S.; Ghoranneviss, M.; Salem, M. K.; Aghamir, F. M.
The circuit parameters are investigated in a Mather-type plasma focus device. The experiments are performed in the SABALAN-I plasma focus facility (2 kJ, 20 kV, 10 μF). A 12-turn Rogowski coil is built and used to measure the time derivative of discharge current (dI/dt). The high pressure test has been performed in this work, as alternative technique to short circuit test to determine the machine circuit parameters and calibration factor of the Rogowski coil. The operating parameters are calculated by two methods and the results show that the relative error of determined parameters by method I, are very low in comparison to method II. Thus the method I produces more accurate results than method II. The high pressure test is operated with this assumption that no plasma motion and the circuit parameters may be estimated using R-L-C theory given that C0 is known. However, for a plasma focus, even at highest permissible pressure it is found that there is significant motion, so that estimated circuit parameters not accurate. So the Lee Model code is used in short circuit mode to generate the computed current trace for fitting to the current waveform was integrated from current derivative signal taken with Rogowski coil. Hence, the dynamics of plasma is accounted for into the estimation and the static bank parameters are determined accurately.
Experimental Design for Parameter Estimation of Gene Regulatory Networks
Timmer, Jens
2012-01-01
Systems biology aims for building quantitative models to address unresolved issues in molecular biology. In order to describe the behavior of biological cells adequately, gene regulatory networks (GRNs) are intensively investigated. As the validity of models built for GRNs depends crucially on the kinetic rates, various methods have been developed to estimate these parameters from experimental data. For this purpose, it is favorable to choose the experimental conditions yielding maximal information. However, existing experimental design principles often rely on unfulfilled mathematical assumptions or become computationally demanding with growing model complexity. To solve this problem, we combined advanced methods for parameter and uncertainty estimation with experimental design considerations. As a showcase, we optimized three simulated GRNs in one of the challenges from the Dialogue for Reverse Engineering Assessment and Methods (DREAM). This article presents our approach, which was awarded the best performing procedure at the DREAM6 Estimation of Model Parameters challenge. For fast and reliable parameter estimation, local deterministic optimization of the likelihood was applied. We analyzed identifiability and precision of the estimates by calculating the profile likelihood. Furthermore, the profiles provided a way to uncover a selection of most informative experiments, from which the optimal one was chosen using additional criteria at every step of the design process. In conclusion, we provide a strategy for optimal experimental design and show its successful application on three highly nonlinear dynamic models. Although presented in the context of the GRNs to be inferred for the DREAM6 challenge, the approach is generic and applicable to most types of quantitative models in systems biology and other disciplines. PMID:22815723
Estimation of channel parameters and background irradiance for free-space optical link.
Khatoon, Afsana; Cowley, William G; Letzepis, Nick; Giggenbach, Dirk
2013-05-10
Free-space optical communication can experience severe fading due to optical scintillation in long-range links. Channel estimation is also corrupted by background and electrical noise. Accurate estimation of channel parameters and scintillation index (SI) depends on perfect removal of background irradiance. In this paper, we propose three different methods, the minimum-value (MV), mean-power (MP), and maximum-likelihood (ML) based methods, to remove the background irradiance from channel samples. The MV and MP methods do not require knowledge of the scintillation distribution. While the ML-based method assumes gamma-gamma scintillation, it can be easily modified to accommodate other distributions. Each estimator's performance is compared using simulation data as well as experimental measurements. The estimators' performance are evaluated from low- to high-SI areas using simulation data as well as experimental trials. The MV and MP methods have much lower complexity than the ML-based method. However, the ML-based method shows better SI and background-irradiance estimation performance.
NASA Astrophysics Data System (ADS)
Aioanei, Daniel; Samorì, Bruno; Brucale, Marco
2009-12-01
Single molecule force spectroscopy (SMFS) is extensively used to characterize the mechanical unfolding behavior of individual protein domains under applied force by pulling chimeric polyproteins consisting of identical tandem repeats. Constant velocity unfolding SMFS data can be employed to reconstruct the protein unfolding energy landscape and kinetics. The methods applied so far require the specification of a single stretching force increase function, either theoretically derived or experimentally inferred, which must then be assumed to accurately describe the entirety of the experimental data. The very existence of a suitable optimal force model, even in the context of a single experimental data set, is still questioned. Herein, we propose a maximum likelihood (ML) framework for the estimation of protein kinetic parameters which can accommodate all the established theoretical force increase models. Our framework does not presuppose the existence of a single force characteristic function. Rather, it can be used with a heterogeneous set of functions, each describing the protein behavior in the stretching time range leading to one rupture event. We propose a simple way of constructing such a set of functions via piecewise linear approximation of the SMFS force vs time data and we prove the suitability of the approach both with synthetic data and experimentally. Additionally, when the spontaneous unfolding rate is the only unknown parameter, we find a correction factor that eliminates the bias of the ML estimator while also reducing its variance. Finally, we investigate which of several time-constrained experiment designs leads to better estimators.
A computational model for biosonar echoes from foliage
Gupta, Anupam Kumar; Lu, Ruijin; Zhu, Hongxiao
2017-01-01
Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals’ sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats. PMID:28817631
A computational model for biosonar echoes from foliage.
Ming, Chen; Gupta, Anupam Kumar; Lu, Ruijin; Zhu, Hongxiao; Müller, Rolf
2017-01-01
Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals' sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats.
Bencala, Kenneth E.
1984-01-01
Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solutestreambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. During the first 24 hours of the experiment, chloride concentrations were attenuated relative to expected plateau levels. Additional attenuation occurred for the sorbing cation strontium. The simulations account for these storage processes. Parameter values determined by calibration compare favorably with estimates from other studies in mountain streams. Without further calibration, the transport of potassium and lithium is adequately simulated using parameters determined in the chloride-strontium simulation and with measured cation distribution coefficients.
NASA Astrophysics Data System (ADS)
Timpe, Nathalie F.; Stuch, Julia; Scholl, Marcus; Russek, Ulrich A.
2016-03-01
This contribution presents a phenomenological, analytical model for laser welding of polymers which is suited for a quick process quality estimation for the practitioner. Besides material properties of the polymer and processing parameters like welding pressure, feed rate and laser power the model is based on a simple few parameter description of the size and shape of the laser power density distribution (PDD) in the processing zone. The model allows an estimation of the weld seam tensile strength. It is based on energy balance considerations within a thin sheet with the thickness of the optical penetration depth on the surface of the absorbing welding partner. The joining process itself is modelled by a phenomenological approach. The model reproduces the experimentally known process windows for the main process parameters correctly. Using the parameters describing the shape of the laser PDD the critical dependence of the process windows on the PDD shape will be predicted and compared with experiments. The adaption of the model to other laser manufacturing processes where the PDD influence can be modelled comparably will be discussed.
NASA Astrophysics Data System (ADS)
Kopka, Piotr; Wawrzynczak, Anna; Borysiewicz, Mieczyslaw
2016-11-01
In this paper the Bayesian methodology, known as Approximate Bayesian Computation (ABC), is applied to the problem of the atmospheric contamination source identification. The algorithm input data are on-line arriving concentrations of the released substance registered by the distributed sensors network. This paper presents the Sequential ABC algorithm in detail and tests its efficiency in estimation of probabilistic distributions of atmospheric release parameters of a mobile contamination source. The developed algorithms are tested using the data from Over-Land Atmospheric Diffusion (OLAD) field tracer experiment. The paper demonstrates estimation of seven parameters characterizing the contamination source, i.e.: contamination source starting position (x,y), the direction of the motion of the source (d), its velocity (v), release rate (q), start time of release (ts) and its duration (td). The online-arriving new concentrations dynamically update the probability distributions of search parameters. The atmospheric dispersion Second-order Closure Integrated PUFF (SCIPUFF) Model is used as the forward model to predict the concentrations at the sensors locations.
Wu, Zhihong; Lu, Ke; Zhu, Yuan
2015-01-01
The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment.
Zhu, Yuan
2015-01-01
The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment. PMID:26114557
Estimation of Key Parameters of the Coupled Energy and Water Model by Assimilating Land Surface Data
NASA Astrophysics Data System (ADS)
Abdolghafoorian, A.; Farhadi, L.
2017-12-01
Accurate estimation of land surface heat and moisture fluxes, as well as root zone soil moisture, is crucial in various hydrological, meteorological, and agricultural applications. Field measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state observations that are widely available from remote sensing across a range of scale. In this work, we applies the variational data assimilation approach to estimate land surface fluxes and soil moisture profile from the implicit information contained Land Surface Temperature (LST) and Soil Moisture (SM) (hereafter the VDA model). The VDA model is focused on the estimation of three key parameters: 1- neutral bulk heat transfer coefficient (CHN), 2- evaporative fraction from soil and canopy (EF), and 3- saturated hydraulic conductivity (Ksat). CHN and EF regulate the partitioning of available energy between sensible and latent heat fluxes. Ksat is one of the main parameters used in determining infiltration, runoff, groundwater recharge, and in simulating hydrological processes. In this study, a system of coupled parsimonious energy and water model will constrain the estimation of three unknown parameters in the VDA model. The profile of SM (LST) at multiple depths is estimated using moisture diffusion (heat diffusion) equation. In this study, the uncertainties of retrieved unknown parameters and fluxes are estimated from the inverse of Hesian matrix of cost function which is computed using the Lagrangian methodology. Analysis of uncertainty provides valuable information about the accuracy of estimated parameters and their correlation and guide the formulation of a well-posed estimation problem. The results of proposed algorithm are validated with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. In addition, the feasibility of extending this algorithm to use remote sensing observations that have low temporal resolution is examined by assimilating the limited number of land surface moisture and temperature observations.
Adaptive control of bivalirudin in the cardiac intensive care unit.
Zhao, Qi; Edrich, Thomas; Paschalidis, Ioannis Ch
2015-02-01
Bivalirudin is a direct thrombin inhibitor used in the cardiac intensive care unit when heparin is contraindicated due to heparin-induced thrombocytopenia. Since it is not a commonly used drug, clinical experience with its dosing is sparse. In earlier work [1], we developed a dynamic system model that accurately predicts the effect of bivalirudin given dosage over time and patient physiological characteristics. This paper develops adaptive dosage controllers that regulate its effect to desired levels. To that end, and in the case that bivalirudin model parameters are available, we develop a Model Reference Control law. In the case that model parameters are unknown, an indirect Model Reference Adaptive Control scheme is applied to estimate model parameters first and then adapt the controller. Alternatively, direct Model Reference Adaptive Control is applied to adapt the controller directly without estimating model parameters first. Our algorithms are validated using actual patient data from a large hospital in the Boston area.
On the interaction of luminol with human serum albumin: Nature and thermodynamics of ligand binding
NASA Astrophysics Data System (ADS)
Moyon, N. Shaemningwar; Mitra, Sivaprasad
2010-09-01
The mechanism and thermodynamic parameters for the binding of luminol (LH 2) with human serum albumin was explored by steady state and picosecond time-resolved fluorescence spectroscopy. It was shown that out of two possible LH 2 conformers present is solution, only one is accessible for binding with HSA. The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated by performing the experiment at different temperatures. The ligand replacement experiment with bilirubin confirms that LH 2 binds into the sub-domain IIA of the protein.
Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick; Klein, Vladislav
2011-01-01
Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.
NASA Technical Reports Server (NTRS)
Hocking, W. K.
1989-01-01
The objective of any radar experiment is to determine as much as possible about the entities which scatter the radiation. This review discusses many of the various parameters which can be deduced in a radar experiment, and also critically examines the procedures used to deduce them. Methods for determining the mean wind velocity, the RMS fluctuating velocities, turbulence parameters, and the shapes of the scatterers are considered. Complications with these determinations are discussed. It is seen throughout that a detailed understanding of the shape and cause of the scatterers is important in order to make better determinations of these various quantities. Finally, some other parameters, which are less easily acquired, are considered. For example, it is noted that momentum fluxes due to buoyancy waves and turbulence can be determined, and on occasions radars can be used to determine stratospheric diffusion coefficients and even temperature profiles in the atmosphere.
Simon, Aaron B.; Dubowitz, David J.; Blockley, Nicholas P.; Buxton, Richard B.
2016-01-01
Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2′ as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2′, we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2′-based estimate of the metabolic response to CO2 of 1.4%, and R2′- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2′-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. PMID:26790354
Simon, Aaron B; Dubowitz, David J; Blockley, Nicholas P; Buxton, Richard B
2016-04-01
Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2' as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2', we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2'-based estimate of the metabolic response to CO2 of 1.4%, and R2'- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2'-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. Copyright © 2016 Elsevier Inc. All rights reserved.
Monochloramine Cometabolism by Mixed-Culture Nitrifiers ...
The current research investigated monochloramine cometabolism by nitrifying mixed cultures grown under drinking water relevant conditions and harvested from sand-packed reactors before conducting suspended growth batch kinetic experiments. Three batch reactors were used in each experiment: (1) a positive control to estimate ammonia kinetic parameters, (2) a negative control to account for abiotic reactions, and (3) a cometabolism reactor to estimate cometabolism kinetic constants. Kinetic parameters were estimated in AQUASIM with a simultaneous fit to all experimental data. Cometabolism kinetics were best described by a first order model. Monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (30% of the observed monochloramine loss). These results demonstrated that monochloramine cometabolism occurred in mixed cultures similar to those found in drinking water distribution systems; thus, cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in drinking water distribution systems. The results demonstrated that monochloramine cometabolism occurred in mixed cultures similar to those found in drinking water distribution systems; thus, cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in drinking water distribution systems.
Symbolic Regression for the Estimation of Transfer Functions of Hydrological Models
NASA Astrophysics Data System (ADS)
Klotz, D.; Herrnegger, M.; Schulz, K.
2017-11-01
Current concepts for parameter regionalization of spatially distributed rainfall-runoff models rely on the a priori definition of transfer functions that globally map land surface characteristics (such as soil texture, land use, and digital elevation) into the model parameter space. However, these transfer functions are often chosen ad hoc or derived from small-scale experiments. This study proposes and tests an approach for inferring the structure and parametrization of possible transfer functions from runoff data to potentially circumvent these difficulties. The concept uses context-free grammars to generate possible proposition for transfer functions. The resulting structure can then be parametrized with classical optimization techniques. Several virtual experiments are performed to examine the potential for an appropriate estimation of transfer function, all of them using a very simple conceptual rainfall-runoff model with data from the Austrian Mur catchment. The results suggest that a priori defined transfer functions are in general well identifiable by the method. However, the deduction process might be inhibited, e.g., by noise in the runoff observation data, often leading to transfer function estimates of lower structural complexity.
NASA Astrophysics Data System (ADS)
Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.
2017-04-01
Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.
On parameterization of the inverse problem for estimating aquifer properties using tracer data
NASA Astrophysics Data System (ADS)
Kowalsky, M. B.; Finsterle, S.; Williams, K. H.; Murray, C.; Commer, M.; Newcomer, D.; Englert, A.; Steefel, C. I.; Hubbard, S. S.
2012-06-01
In developing a reliable approach for inferring hydrological properties through inverse modeling of tracer data, decisions made on how to parameterize heterogeneity (i.e., how to represent a heterogeneous distribution using a limited number of parameters that are amenable to estimation) are of paramount importance, as errors in the model structure are partly compensated for by estimating biased property values during the inversion. These biased estimates, while potentially providing an improved fit to the calibration data, may lead to wrong interpretations and conclusions and reduce the ability of the model to make reliable predictions. We consider the estimation of spatial variations in permeability and several other parameters through inverse modeling of tracer data, specifically synthetic and actual field data associated with the 2007 Winchester experiment from the Department of Energy Rifle site. Characterization is challenging due to the real-world complexities associated with field experiments in such a dynamic groundwater system. Our aim is to highlight and quantify the impact on inversion results of various decisions related to parameterization, such as the positioning of pilot points in a geostatistical parameterization; the handling of up-gradient regions; the inclusion of zonal information derived from geophysical data or core logs; extension from 2-D to 3-D; assumptions regarding the gradient direction, porosity, and the semivariogram function; and deteriorating experimental conditions. This work adds to the relatively limited number of studies that offer guidance on the use of pilot points in complex real-world experiments involving tracer data (as opposed to hydraulic head data).
Estimation of settling velocity of sediment particles in estuarine and coastal waters
NASA Astrophysics Data System (ADS)
Nasiha, Hussain J.; Shanmugam, Palanisamy
2018-04-01
A model for estimating the settling velocity of sediment particles (spherical and non-spherical) in estuarine and coastal waters is developed and validated using experimental data. The model combines the physical, optical and hydrodynamic properties of the particles and medium to estimate the sediment settling velocity. The well-known Stokes law is broadened to account for the influencing factors of settling velocity such as particle size, shape and density. To derive the model parameters, laboratory experiments were conducted using natural flaky seashells, spherical beach sands and ball-milled seashell powders. Spectral light backscattering measurements of settling particles in a water tank were made showing a distinct optical feature with a peak shifting from 470-490 nm to 500-520 nm for particle populations from spherical to flaky grains. This significant optical feature was used as a proxy to make a shape determination in the present model. Other parameters experimentally determined included specific gravity (ΔSG) , Corey shape factor (CSF) , median grain diameter (D50) , drag coefficient (Cd) and Reynolds number (Re) . The CSF values considered ranged from 0.2 for flaky to 1.0 for perfectly spherical grains and Reynolds numbers from 2.0 to 105 for the laminar to turbulent flow regimes. The specific gravity of submerged particles was optically derived and used along with these parameters to estimate the sediment settling velocity. Comparison with the experiment data showed that the present model estimated settling velocities of spherical and non-spherical particles that were closely consistent with the measured values. Findings revealed that for a given D50, the flaky particles caused a greater decrease in settling velocity than the spherical particles which suggests that the particle shape factor has a profound role in influencing the sediment settling velocity and drag coefficients, especially in transitional and turbulent flow regimes. The present model can be easily adopted for various scientific and operational applications since the required parameters are readily measurable with the commercially available instrumentations.
(abstract) Ulysses Solar Wind Ion Temperatures: Radial, Latitudinal, and Dynamical Dependencies
NASA Technical Reports Server (NTRS)
Goldstein, B. E.; Smith, E. J.; Gosling, J. T.; McComas, D. J.; Balogh, A.
1996-01-01
Observations of the Ulysses SWOOPS plasma experiment are used to determine the dependencies of solar wind ion temperatures upon radial distance, speed, and other parameters, and to estimate solar wind heating. Comparisons with three dimensional temperature estimates determined from the ion spectra by a least squares fitting program will be provided (only small samples of data have been reduced with this program).
NASA Technical Reports Server (NTRS)
Harney, A. G.; Raphael, L.; Warren, S.; Yakura, J. K.
1972-01-01
A systematic and standardized procedure for estimating life cycle costs of solid rocket motor booster configurations. The model consists of clearly defined cost categories and appropriate cost equations in which cost is related to program and hardware parameters. Cost estimating relationships are generally based on analogous experience. In this model the experience drawn on is from estimates prepared by the study contractors. Contractors' estimates are derived by means of engineering estimates for some predetermined level of detail of the SRM hardware and program functions of the system life cycle. This method is frequently referred to as bottom-up. A parametric cost analysis is a useful technique when rapid estimates are required. This is particularly true during the planning stages of a system when hardware designs and program definition are conceptual and constantly changing as the selection process, which includes cost comparisons or trade-offs, is performed. The use of cost estimating relationships also facilitates the performance of cost sensitivity studies in which relative and comparable cost comparisons are significant.
Probabilistic segmentation and intensity estimation for microarray images.
Gottardo, Raphael; Besag, Julian; Stephens, Matthew; Murua, Alejandro
2006-01-01
We describe a probabilistic approach to simultaneous image segmentation and intensity estimation for complementary DNA microarray experiments. The approach overcomes several limitations of existing methods. In particular, it (a) uses a flexible Markov random field approach to segmentation that allows for a wider range of spot shapes than existing methods, including relatively common 'doughnut-shaped' spots; (b) models the image directly as background plus hybridization intensity, and estimates the two quantities simultaneously, avoiding the common logical error that estimates of foreground may be less than those of the corresponding background if the two are estimated separately; and (c) uses a probabilistic modeling approach to simultaneously perform segmentation and intensity estimation, and to compute spot quality measures. We describe two approaches to parameter estimation: a fast algorithm, based on the expectation-maximization and the iterated conditional modes algorithms, and a fully Bayesian framework. These approaches produce comparable results, and both appear to offer some advantages over other methods. We use an HIV experiment to compare our approach to two commercial software products: Spot and Arrayvision.
Journal: A Review of Some Tracer-Test Design Equations for ...
Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estimation equations are reviewed here, 32 of which were evaluated using previously published tracer-test design examination parameters. Comparison of the results produced a wide range of estimated tracer mass, but no means is available by which one equation may be reasonably selected over the others. Each equation produces a simple approximation for tracer mass. Most of the equations are based primarily on estimates or measurements of discharge, transport distance, and suspected transport times. Although the basic field parameters commonly employed are appropriate for estimating tracer mass, the 33 equations are problematic in that they were all probably based on the original developers' experience in a particular field area and not necessarily on measured hydraulic parameters or solute-transport theory. Suggested sampling frequencies are typically based primarily on probable transport distance, but with little regard to expected travel times. This too is problematic in that tends to result in false negatives or data aliasing. Simulations from the recently developed efficient hydrologic tracer-test design methodology (EHTD) were compared with those obtained from 32 of the 33 published tracer-
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2014-03-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.
Barth, Gilbert R.; Hill, M.C.
2005-01-01
This paper evaluates the importance of seven types of parameters to virus transport: hydraulic conductivity, porosity, dispersivity, sorption rate and distribution coefficient (representing physical-chemical filtration), and in-solution and adsorbed inactivation (representing virus inactivation). The first three parameters relate to subsurface transport in general while the last four, the sorption rate, distribution coefficient, and in-solution and adsorbed inactivation rates, represent the interaction of viruses with the porous medium and their ability to persist. The importance of four types of observations to estimate the virus-transport parameters are evaluated: hydraulic heads, flow, temporal moments of conservative-transport concentrations, and virus concentrations. The evaluations are conducted using one- and two-dimensional homogeneous simulations, designed from published field experiments, and recently developed sensitivity-analysis methods. Sensitivity to the transport-simulation time-step size is used to evaluate the importance of numerical solution difficulties. Results suggest that hydraulic conductivity, porosity, and sorption are most important to virus-transport predictions. Most observation types provide substantial information about hydraulic conductivity and porosity; only virus-concentration observations provide information about sorption and inactivation. The observations are not sufficient to estimate these important parameters uniquely. Even with all observation types, there is extreme parameter correlation between porosity and hydraulic conductivity and between the sorption rate and in-solution inactivation. Parameter estimation was accomplished by fixing values of porosity and in-solution inactivation.
A LiDAR data-based camera self-calibration method
NASA Astrophysics Data System (ADS)
Xu, Lijun; Feng, Jing; Li, Xiaolu; Chen, Jianjun
2018-07-01
To find the intrinsic parameters of a camera, a LiDAR data-based camera self-calibration method is presented here. Parameters have been estimated using particle swarm optimization (PSO), enhancing the optimal solution of a multivariate cost function. The main procedure of camera intrinsic parameter estimation has three parts, which include extraction and fine matching of interest points in the images, establishment of cost function, based on Kruppa equations and optimization of PSO using LiDAR data as the initialization input. To improve the precision of matching pairs, a new method of maximal information coefficient (MIC) and maximum asymmetry score (MAS) was used to remove false matching pairs based on the RANSAC algorithm. Highly precise matching pairs were used to calculate the fundamental matrix so that the new cost function (deduced from Kruppa equations in terms of the fundamental matrix) was more accurate. The cost function involving four intrinsic parameters was minimized by PSO for the optimal solution. To overcome the issue of optimization pushed to a local optimum, LiDAR data was used to determine the scope of initialization, based on the solution to the P4P problem for camera focal length. To verify the accuracy and robustness of the proposed method, simulations and experiments were implemented and compared with two typical methods. Simulation results indicated that the intrinsic parameters estimated by the proposed method had absolute errors less than 1.0 pixel and relative errors smaller than 0.01%. Based on ground truth obtained from a meter ruler, the distance inversion accuracy in the experiments was smaller than 1.0 cm. Experimental and simulated results demonstrated that the proposed method was highly accurate and robust.
NASA Astrophysics Data System (ADS)
D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice
2018-05-01
In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.
Bayesian inference for dynamic transcriptional regulation; the Hes1 system as a case study.
Heron, Elizabeth A; Finkenstädt, Bärbel; Rand, David A
2007-10-01
In this study, we address the problem of estimating the parameters of regulatory networks and provide the first application of Markov chain Monte Carlo (MCMC) methods to experimental data. As a case study, we consider a stochastic model of the Hes1 system expressed in terms of stochastic differential equations (SDEs) to which rigorous likelihood methods of inference can be applied. When fitting continuous-time stochastic models to discretely observed time series the lengths of the sampling intervals are important, and much of our study addresses the problem when the data are sparse. We estimate the parameters of an autoregulatory network providing results both for simulated and real experimental data from the Hes1 system. We develop an estimation algorithm using MCMC techniques which are flexible enough to allow for the imputation of latent data on a finer time scale and the presence of prior information about parameters which may be informed from other experiments as well as additional measurement error.
NASA Astrophysics Data System (ADS)
Unnikrishnan, Madhusudanan; Rajan, Akash; Basanthvihar Raghunathan, Binulal; Kochupillai, Jayaraj
2017-08-01
Experimental modal analysis is the primary tool for obtaining the fundamental dynamic characteristics like natural frequency, mode shape and modal damping ratio that determine the behaviour of any structure under dynamic loading conditions. This paper discusses about a carefully designed experimental method for calculating the dynamic characteristics of a pre-stretched horizontal flexible tube made of polyurethane material. The factors that affect the modal parameter estimation like the application time of shaker excitation, pause time between successive excitation cycles, averaging and windowing of measured signal, as well as the precautions to be taken during the experiment are explained in detail. The modal parameter estimation is done using MEscopeVESTM software. A finite element based pre-stressed modal analysis of the flexible tube is also done using ANSYS ver.14.0 software. The experimental and analytical results agreed well. The proposed experimental methodology may be extended for carrying out the modal analysis of many flexible structures like inflatables, tires and membranes.
NASA Technical Reports Server (NTRS)
Vanlunteren, A.
1977-01-01
A previously described parameter estimation program was applied to a number of control tasks, each involving a human operator model consisting of more than one describing function. One of these experiments is treated in more detail. It consisted of a two dimensional tracking task with identical controlled elements. The tracking errors were presented on one display as two vertically moving horizontal lines. Each loop had its own manipulator. The two forcing functions were mutually independent and consisted each of 9 sine waves. A human operator model was chosen consisting of 4 describing functions, thus taking into account possible linear cross couplings. From the Fourier coefficients of the relevant signals the model parameters were estimated after alignment, averaging over a number of runs and decoupling. The results show that for the elements in the main loops the crossover model applies. A weak linear cross coupling existed with the same dynamics as the elements in the main loops but with a negative sign.
syris: a flexible and efficient framework for X-ray imaging experiments simulation.
Faragó, Tomáš; Mikulík, Petr; Ershov, Alexey; Vogelgesang, Matthias; Hänschke, Daniel; Baumbach, Tilo
2017-11-01
An open-source framework for conducting a broad range of virtual X-ray imaging experiments, syris, is presented. The simulated wavefield created by a source propagates through an arbitrary number of objects until it reaches a detector. The objects in the light path and the source are time-dependent, which enables simulations of dynamic experiments, e.g. four-dimensional time-resolved tomography and laminography. The high-level interface of syris is written in Python and its modularity makes the framework very flexible. The computationally demanding parts behind this interface are implemented in OpenCL, which enables fast calculations on modern graphics processing units. The combination of flexibility and speed opens new possibilities for studying novel imaging methods and systematic search of optimal combinations of measurement conditions and data processing parameters. This can help to increase the success rates and efficiency of valuable synchrotron beam time. To demonstrate the capabilities of the framework, various experiments have been simulated and compared with real data. To show the use case of measurement and data processing parameter optimization based on simulation, a virtual counterpart of a high-speed radiography experiment was created and the simulated data were used to select a suitable motion estimation algorithm; one of its parameters was optimized in order to achieve the best motion estimation accuracy when applied on the real data. syris was also used to simulate tomographic data sets under various imaging conditions which impact the tomographic reconstruction accuracy, and it is shown how the accuracy may guide the selection of imaging conditions for particular use cases.
NASA Astrophysics Data System (ADS)
Laura, P.; Probert, I.; Langer, G.; Aloisi, G.
2016-02-01
Coccolithophores are unicellular, calcifying marine algae that play a fundamental role in the oceanic carbon cycle. Recent research has focused on investigating the effect of ocean acidification on cellular calcification. However, the success of this important phytoplankton group in the future ocean will depend on how cellular growth reacts to changes in a combination of environmental variables. We carried out batch culture experiments in conditions of light- and nutrient- (nitrate and phosphate) limitation that reproduce the in situ conditions of a deep ecological niche of coccolithophores in the South Pacific Gyre (BIOSOPE cruise, 2004). We modelled nutrient acquisition and cellular growth in our batch experiments using a Droop internal-stores model. We show that nutrient acquisition and growth are decoupled in coccolithophores; this ability may be key in making life possible in oligotrophic conditions such as the deep BIOSOPE biological niche. Combining the results of our culture experiments with those of Langer et al. (2013), we used the model to obtain estimates of fundamental physiological parameters such as the Monod constant for nutrient uptake, the maximum growth rate and the minimum cellular nutrient quota. These parameters are characteristic of different phytoplankton groups and are needed to simulate phytoplankton growth in biogeochemical models. Our results suggest that growth of coccolithophores in the BIOSOPE deep ecological niche is light-limited rather than nutrient-limited. Our work also shows that simple batch experiments and straightforward numerical modelling are capable of providing estimates of physiological parameters usually obtained in more costly and complicated chemostat experiments.
FracFit: A Robust Parameter Estimation Tool for Anomalous Transport Problems
NASA Astrophysics Data System (ADS)
Kelly, J. F.; Bolster, D.; Meerschaert, M. M.; Drummond, J. D.; Packman, A. I.
2016-12-01
Anomalous transport cannot be adequately described with classical Fickian advection-dispersion equations (ADE). Rather, fractional calculus models may be used, which capture non-Fickian behavior (e.g. skewness and power-law tails). FracFit is a robust parameter estimation tool based on space- and time-fractional models used to model anomalous transport. Currently, four fractional models are supported: 1) space fractional advection-dispersion equation (sFADE), 2) time-fractional dispersion equation with drift (TFDE), 3) fractional mobile-immobile equation (FMIE), and 4) tempered fractional mobile-immobile equation (TFMIE); additional models may be added in the future. Model solutions using pulse initial conditions and continuous injections are evaluated using stable distribution PDFs and CDFs or subordination integrals. Parameter estimates are extracted from measured breakthrough curves (BTCs) using a weighted nonlinear least squares (WNLS) algorithm. Optimal weights for BTCs for pulse initial conditions and continuous injections are presented, facilitating the estimation of power-law tails. Two sample applications are analyzed: 1) continuous injection laboratory experiments using natural organic matter and 2) pulse injection BTCs in the Selke river. Model parameters are compared across models and goodness-of-fit metrics are presented, assisting model evaluation. The sFADE and time-fractional models are compared using space-time duality (Baeumer et. al., 2009), which links the two paradigms.
NASA Astrophysics Data System (ADS)
Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.
2017-12-01
Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.
Kwon, Bong-Oh; Kim, Hae-Cheol; Koh, Chul-Hwan; Ryu, Jongseong; Son, SeungHyun; Kim, Yong Hoon; Khim, Jong Seong
2018-05-23
This study presents the results of field experiments that were designed to investigate the photophysiological characteristics of microphytobenthos (MPB) and to estimate primary production (PP) in Daebu mudflat, which is located at the west coast of Korea. A typical seasonal (or monthly) fluctuation of intertidal MPB PP was found in association with biotic (benthic Chl-a) and/or abiotic parameters (irradiance and temperature) over a period of three years. From a series of field-laboratory experiments using the oxygen micro-profiling method (totaling 28 surveys), three consistent phenomena were observed: 1) winter to early spring algal blooms, 2) seasonal changes in Q 10 , and 3) temperature dependent MPB photosynthesis-irradiance (P-I). In particular, both the chlorophyll-specific maximum photosynthetic capacity (P b max ) and the saturated light intensity (I k ), derived from 126 P-I curves (1870 data sets of oxygen micro-profiling in the sediment), were significantly correlated with sediment temperature (p < 0.01). To develop an empirical MPB PP model, the relationships between P-I parameters and environmental variables were parameterized following established exponential forms (e.g., Q 10 ). It was possible to estimate the MPB PP in Daebu mudflat area by using easily accessible explanatory factor, suitable to be used for future explorations of parameters such as sediment temperature, irradiance, chlorophyll concentration, and tidal height. The estimated annual MPB PP based on the empirical PP model were found to be greater than that in the Wadden Sea and average annual PP in the temperate zones of the world. Authors believe that the present approach of the MPB PP estimation could be combined with remote-sensing techniques (e.g., satellites) to support coastal ecosystem management. Copyright © 2018 Elsevier Ltd. All rights reserved.
Parameter estimation by decoherence in the double-slit experiment
NASA Astrophysics Data System (ADS)
Matsumura, Akira; Ikeda, Taishi; Kukita, Shingo
2018-06-01
We discuss a parameter estimation problem using quantum decoherence in the double-slit interferometer. We consider a particle coupled to a massive scalar field after the particle passing through the double slit and solve the dynamics non-perturbatively for the coupling by the WKB approximation. This allows us to analyze the estimation problem which cannot be treated by master equation used in the research of quantum probe. In this model, the scalar field reduces the interference fringes of the particle and the fringe pattern depends on the field mass and coupling. To evaluate the contrast and the estimation precision obtained from the pattern, we introduce the interferometric visibility and the Fisher information matrix of the field mass and coupling. For the fringe pattern observed on the distant screen, we derive a simple relation between the visibility and the Fisher matrix. Also, focusing on the estimation precision of the mass, we find that the Fisher information characterizes the wave-particle duality in the double-slit interferometer.
Vision System for Coarsely Estimating Motion Parameters for Unknown Fast Moving Objects in Space
Chen, Min; Hashimoto, Koichi
2017-01-01
Motivated by biological interests in analyzing navigation behaviors of flying animals, we attempt to build a system measuring their motion states. To do this, in this paper, we build a vision system to detect unknown fast moving objects within a given space, calculating their motion parameters represented by positions and poses. We proposed a novel method to detect reliable interest points from images of moving objects, which can be hardly detected by general purpose interest point detectors. 3D points reconstructed using these interest points are then grouped and maintained for detected objects, according to a careful schedule, considering appearance and perspective changes. In the estimation step, a method is introduced to adapt the robust estimation procedure used for dense point set to the case for sparse set, reducing the potential risk of greatly biased estimation. Experiments are conducted against real scenes, showing the capability of the system of detecting multiple unknown moving objects and estimating their positions and poses. PMID:29206189
Application of step-frequency radars in medicine
NASA Astrophysics Data System (ADS)
Anishchenko, L.; Alekhin, M.; Tataraidze, A.; Ivashov, S.; Bugaev, Alexander S.; Soldovieri, F.
2014-05-01
The paper summarizes results of step-frequency radars application in medicine. Remote and non-contact control of physiological parameters with modern bioradars provides a wide range of possibilities for non-contact remote monitoring of a human psycho-emotional state and physiological condition. The paper provides information about technical characteristics of bioradars designed at Bauman Moscow State Technical University and experiments using them. Results of verification experiment showed that bioradars of BioRASCAN type may be used for simultaneous remote measurements of breathing and heart rate parameters. In addition, bioradar assisted experiments for detecting of different sleep disorders are described. Their results proved that method of bioradiolocation allows correct estimation of obstructive sleep apnea severity compared to the polysomnography method, which satisfies standard medical recommendations.
Acoustic parameters inversion and sediment properties in the Yellow River reservoir
NASA Astrophysics Data System (ADS)
Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei
2018-03-01
The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.
Bhalla, Kavi; Harrison, James E
2016-04-01
Burden of disease and injury methods can be used to summarise and compare the effects of conditions in terms of disability-adjusted life years (DALYs). Burden estimation methods are not inherently complex. However, as commonly implemented, the methods include complex modelling and estimation. To provide a simple and open-source software tool that allows estimation of incidence-DALYs due to injury, given data on incidence of deaths and non-fatal injuries. The tool includes a default set of estimation parameters, which can be replaced by users. The tool was written in Microsoft Excel. All calculations and values can be seen and altered by users. The parameter sets currently used in the tool are based on published sources. The tool is available without charge online at http://calculator.globalburdenofinjuries.org. To use the tool with the supplied parameter sets, users need to only paste a table of population and injury case data organised by age, sex and external cause of injury into a specified location in the tool. Estimated DALYs can be read or copied from tables and figures in another part of the tool. In some contexts, a simple and user-modifiable burden calculator may be preferable to undertaking a more complex study to estimate the burden of disease. The tool and the parameter sets required for its use can be improved by user innovation, by studies comparing DALYs estimates calculated in this way and in other ways, and by shared experience of its use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Through-the-earth communication: Experiment results from Billie Mine and Mississippi Chemical Mine
NASA Astrophysics Data System (ADS)
Buettner, H. M.; Didwall, E. M.; Bukofzer, D. C.
1988-06-01
As part of the Lawrence Livermore National Laboratory (LLNL) effort to evaluate Through-the-Earth Communication (TEC) as an option for military communication systems, experiments were conducted involving transmission, reception, and performance monitoring of digital electromagnetic communication signals propagating through the earth. The two experiments reported on here not only demonstrated that TEC is useful for transmissions at digital rates above a few bits per second, but also provided data on performance parameters with which to evaluate TEC in various military applications. The most important aspect of these experiments is that the bit error rate (BER) is measured rather than just estimated from purely analytic developments. By measuring this important parameter, not only has more credibility been lent to the proof of concept goals of the experiment, but also a means for judging the effects of assumptions in BER theoretical models has been provided.
NASA Technical Reports Server (NTRS)
Wang, Shugong; Liang, Xu
2013-01-01
A new approach is presented in this paper to effectively obtain parameter estimations for the Multiscale Kalman Smoother (MKS) algorithm. This new approach has demonstrated promising potentials in deriving better data products based on data of different spatial scales and precisions. Our new approach employs a multi-objective (MO) parameter estimation scheme (called MO scheme hereafter), rather than using the conventional maximum likelihood scheme (called ML scheme) to estimate the MKS parameters. Unlike the ML scheme, the MO scheme is not simply built on strict statistical assumptions related to prediction errors and observation errors, rather, it directly associates the fused data of multiple scales with multiple objective functions in searching best parameter estimations for MKS through optimization. In the MO scheme, objective functions are defined to facilitate consistency among the fused data at multiscales and the input data at their original scales in terms of spatial patterns and magnitudes. The new approach is evaluated through a Monte Carlo experiment and a series of comparison analyses using synthetic precipitation data. Our results show that the MKS fused precipitation performs better using the MO scheme than that using the ML scheme. Particularly, improvements are significant compared to that using the ML scheme for the fused precipitation associated with fine spatial resolutions. This is mainly due to having more criteria and constraints involved in the MO scheme than those included in the ML scheme. The weakness of the original ML scheme that blindly puts more weights onto the data associated with finer resolutions is overcome in our new approach.
Green, Christopher T.; Böhlke, John Karl; Bekins, Barbara A.; Phillips, Steven P.
2010-01-01
Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field‐scale (apparent) estimated reaction rates and isotopic fractionations and local‐scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample‐based estimates of “apparent” parameters with “true“ (intrinsic) values. For this aquifer, non‐Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport.
Adjoint-Based Climate Model Tuning: Application to the Planet Simulator
NASA Astrophysics Data System (ADS)
Lyu, Guokun; Köhl, Armin; Matei, Ion; Stammer, Detlef
2018-01-01
The adjoint method is used to calibrate the medium complexity climate model "Planet Simulator" through parameter estimation. Identical twin experiments demonstrate that this method can retrieve default values of the control parameters when using a long assimilation window of the order of 2 months. Chaos synchronization through nudging, required to overcome limits in the temporal assimilation window in the adjoint method, is employed successfully to reach this assimilation window length. When assimilating ERA-Interim reanalysis data, the observations of air temperature and the radiative fluxes are the most important data for adjusting the control parameters. The global mean net longwave fluxes at the surface and at the top of the atmosphere are significantly improved by tuning two model parameters controlling the absorption of clouds and water vapor. The global mean net shortwave radiation at the surface is improved by optimizing three model parameters controlling cloud optical properties. The optimized parameters improve the free model (without nudging terms) simulation in a way similar to that in the assimilation experiments. Results suggest a promising way for tuning uncertain parameters in nonlinear coupled climate models.
Robust Online Hamiltonian Learning
NASA Astrophysics Data System (ADS)
Granade, Christopher; Ferrie, Christopher; Wiebe, Nathan; Cory, David
2013-05-01
In this talk, we introduce a machine-learning algorithm for the problem of inferring the dynamical parameters of a quantum system, and discuss this algorithm in the example of estimating the precession frequency of a single qubit in a static field. Our algorithm is designed with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online, during experimental data collection, or can be used as a tool for post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. Finally, we discuss the performance of the our algorithm by appeal to the Cramer-Rao bound. This work was financially supported by the Canadian government through NSERC and CERC and by the United States government through DARPA. NW would like to acknowledge funding from USARO-DTO.
Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images.
Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin
2009-01-01
Recently, marginal space learning (MSL) was proposed as a generic approach for automatic detection of 3D anatomical structures in many medical imaging modalities [1]. To accurately localize a 3D object, we need to estimate nine pose parameters (three for position, three for orientation, and three for anisotropic scaling). Instead of exhaustively searching the original nine-dimensional pose parameter space, only low-dimensional marginal spaces are searched in MSL to improve the detection speed. In this paper, we apply MSL to 2D object detection and perform a thorough comparison between MSL and the alternative full space learning (FSL) approach. Experiments on left ventricle detection in 2D MRI images show MSL outperforms FSL in both speed and accuracy. In addition, we propose two novel techniques, constrained MSL and nonrigid MSL, to further improve the efficiency and accuracy. In many real applications, a strong correlation may exist among pose parameters in the same marginal spaces. For example, a large object may have large scaling values along all directions. Constrained MSL exploits this correlation for further speed-up. The original MSL only estimates the rigid transformation of an object in the image, therefore cannot accurately localize a nonrigid object under a large deformation. The proposed nonrigid MSL directly estimates the nonrigid deformation parameters to improve the localization accuracy. The comparison experiments on liver detection in 226 abdominal CT volumes demonstrate the effectiveness of the proposed methods. Our system takes less than a second to accurately detect the liver in a volume.
Predicting Explosion-Generated SN and LG Coda Using Syntheic Seismograms
2008-09-01
velocities in the upper crust are based on borehole data, geologic and gravity data, refraction studies and seismic experiments (McLaughlin et al. 1983...realizations of random media. We have estimated the heterogeneity parameters for the NTS using available seismic and geologic data. Lateral correlation...variance and coherence measures between seismic traces are estimated from clusters of nuclear explosions and well- log data. The horizontal von Karman
Kamoi, Shun; Pretty, Christopher; Balmer, Joel; Davidson, Shaun; Pironet, Antoine; Desaive, Thomas; Shaw, Geoffrey M; Chase, J Geoffrey
2017-04-24
Pressure contour analysis is commonly used to estimate cardiac performance for patients suffering from cardiovascular dysfunction in the intensive care unit. However, the existing techniques for continuous estimation of stroke volume (SV) from pressure measurement can be unreliable during hemodynamic instability, which is inevitable for patients requiring significant treatment. For this reason, pressure contour methods must be improved to capture changes in vascular properties and thus provide accurate conversion from pressure to flow. This paper presents a novel pressure contour method utilizing pulse wave velocity (PWV) measurement to capture vascular properties. A three-element Windkessel model combined with the reservoir-wave concept are used to decompose the pressure contour into components related to storage and flow. The model parameters are identified beat-to-beat from the water-hammer equation using measured PWV, wave component of the pressure, and an estimate of subject-specific aortic dimension. SV is then calculated by converting pressure to flow using identified model parameters. The accuracy of this novel method is investigated using data from porcine experiments (N = 4 Pietrain pigs, 20-24.5 kg), where hemodynamic properties were significantly altered using dobutamine, fluid administration, and mechanical ventilation. In the experiment, left ventricular volume was measured using admittance catheter, and aortic pressure waveforms were measured at two locations, the aortic arch and abdominal aorta. Bland-Altman analysis comparing gold-standard SV measured by the admittance catheter and estimated SV from the novel method showed average limits of agreement of ±26% across significant hemodynamic alterations. This result shows the method is capable of estimating clinically acceptable absolute SV values according to Critchely and Critchely. The novel pressure contour method presented can accurately estimate and track SV even when hemodynamic properties are significantly altered. Integrating PWV measurements into pressure contour analysis improves identification of beat-to-beat changes in Windkessel model parameters, and thus, provides accurate estimate of blood flow from measured pressure contour. The method has great potential for overcoming weaknesses associated with current pressure contour methods for estimating SV.
NASA Astrophysics Data System (ADS)
Swanson, Ryan David
The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to hydraulic conductivity fields estimated through ordinary kriging and sequential Gaussian simulation. Time-lapse electrical measurements are used to verify or dismiss aspects of breakthrough curves for different hydraulic conductivity fields. Our results quantify the potential for geophysical measurements to infer on single-rate DDMT parameters, show site-specific relations between hydraulic and electrical conductivity, and track solute exchange into and out of less-mobile domains.
Information gains from cosmic microwave background experiments
NASA Astrophysics Data System (ADS)
Seehars, Sebastian; Amara, Adam; Refregier, Alexandre; Paranjape, Aseem; Akeret, Joël
2014-07-01
To shed light on the fundamental problems posed by dark energy and dark matter, a large number of experiments have been performed and combined to constrain cosmological models. We propose a novel way of quantifying the information gained by updates on the parameter constraints from a series of experiments which can either complement earlier measurements or replace them. For this purpose, we use the Kullback-Leibler divergence or relative entropy from information theory to measure differences in the posterior distributions in model parameter space from a pair of experiments. We apply this formalism to a historical series of cosmic microwave background experiments ranging from Boomerang to WMAP, SPT, and Planck. Considering different combinations of these experiments, we thus estimate the information gain in units of bits and distinguish contributions from the reduction of statistical errors and the "surprise" corresponding to a significant shift of the parameters' central values. For this experiment series, we find individual relative entropy gains ranging from about 1 to 30 bits. In some cases, e.g. when comparing WMAP and Planck results, we find that the gains are dominated by the surprise rather than by improvements in statistical precision. We discuss how this technique provides a useful tool for both quantifying the constraining power of data from cosmological probes and detecting the tensions between experiments.
M-estimator for the 3D symmetric Helmert coordinate transformation
NASA Astrophysics Data System (ADS)
Chang, Guobin; Xu, Tianhe; Wang, Qianxin
2018-01-01
The M-estimator for the 3D symmetric Helmert coordinate transformation problem is developed. Small-angle rotation assumption is abandoned. The direction cosine matrix or the quaternion is used to represent the rotation. The 3 × 1 multiplicative error vector is defined to represent the rotation estimation error. An analytical solution can be employed to provide the initial approximate for iteration, if the outliers are not large. The iteration is carried out using the iterative reweighted least-squares scheme. In each iteration after the first one, the measurement equation is linearized using the available parameter estimates, the reweighting matrix is constructed using the residuals obtained in the previous iteration, and then the parameter estimates with their variance-covariance matrix are calculated. The influence functions of a single pseudo-measurement on the least-squares estimator and on the M-estimator are derived to theoretically show the robustness. In the solution process, the parameter is rescaled in order to improve the numerical stability. Monte Carlo experiments are conducted to check the developed method. Different cases to investigate whether the assumed stochastic model is correct are considered. The results with the simulated data slightly deviating from the true model are used to show the developed method's statistical efficacy at the assumed stochastic model, its robustness against the deviations from the assumed stochastic model, and the validity of the estimated variance-covariance matrix no matter whether the assumed stochastic model is correct or not.
Improving estimation of kinetic parameters in dynamic force spectroscopy using cluster analysis
NASA Astrophysics Data System (ADS)
Yen, Chi-Fu; Sivasankar, Sanjeevi
2018-03-01
Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according to their pulling speeds, and the mean force and loading rate of each group are calculated. These data are subsequently fit to established models, and energy landscape parameters such as the intrinsic off-rate (koff) and the width of the potential energy barrier (xβ) are extracted. However, due to large uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff and xβ can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS experiment can be dramatically improved by sorting rupture events into groups using cluster analysis instead of sorting them according to their pulling speeds. We test different clustering algorithms including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these clustering algorithms over a wide range of koff and xβ, under different levels of thermal noise, and as a function of both the number of unbinding events and the number of pulling speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the accuracy of parameter estimation, particularly when the number of unbinding events are limited and not well separated into distinct groups. Cluster analysis is easy to implement, and our performance benchmarks serve as a guide in choosing an appropriate method for DFS data analysis.
Lee, Yu; Yu, Chanki; Lee, Sang Wook
2018-01-10
We present a sequential fitting-and-separating algorithm for surface reflectance components that separates individual dominant reflectance components and simultaneously estimates the corresponding bidirectional reflectance distribution function (BRDF) parameters from the separated reflectance values. We tackle the estimation of a Lafortune BRDF model, which combines a nonLambertian diffuse reflection and multiple specular reflectance components with a different specular lobe. Our proposed method infers the appropriate number of BRDF lobes and their parameters by separating and estimating each of the reflectance components using an interval analysis-based branch-and-bound method in conjunction with iterative K-ordered scale estimation. The focus of this paper is the estimation of the Lafortune BRDF model. Nevertheless, our proposed method can be applied to other analytical BRDF models such as the Cook-Torrance and Ward models. Experiments were carried out to validate the proposed method using isotropic materials from the Mitsubishi Electric Research Laboratories-Massachusetts Institute of Technology (MERL-MIT) BRDF database, and the results show that our method is superior to a conventional minimization algorithm.
An approach to software cost estimation
NASA Technical Reports Server (NTRS)
Mcgarry, F.; Page, J.; Card, D.; Rohleder, M.; Church, V.
1984-01-01
A general procedure for software cost estimation in any environment is outlined. The basic concepts of work and effort estimation are explained, some popular resource estimation models are reviewed, and the accuracy of source estimates is discussed. A software cost prediction procedure based on the experiences of the Software Engineering Laboratory in the flight dynamics area and incorporating management expertise, cost models, and historical data is described. The sources of information and relevant parameters available during each phase of the software life cycle are identified. The methodology suggested incorporates these elements into a customized management tool for software cost prediction. Detailed guidelines for estimation in the flight dynamics environment developed using this methodology are presented.
Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models
NASA Astrophysics Data System (ADS)
Ardani, S.; Kaihatu, J. M.
2012-12-01
Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques, MCMC
NASA Astrophysics Data System (ADS)
Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria
2016-11-01
Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.
THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trott, Cathryn M.; Wayth, Randall B.; Tingay, Steven J., E-mail: cathryn.trott@curtin.edu.au
Precise subtraction of foreground sources is crucial for detecting and estimating 21 cm H I signals from the Epoch of Reionization (EoR). We quantify how imperfect point-source subtraction due to limitations of the measurement data set yields structured residual signal in the data set. We use the Cramer-Rao lower bound, as a metric for quantifying the precision with which a parameter may be measured, to estimate the residual signal in a visibility data set due to imperfect point-source subtraction. We then propagate these residuals into two metrics of interest for 21 cm EoR experiments-the angular power spectrum and two-dimensional powermore » spectrum-using a combination of full analytic covariant derivation, analytic variant derivation, and covariant Monte Carlo simulations. This methodology differs from previous work in two ways: (1) it uses information theory to set the point-source position error, rather than assuming a global rms error, and (2) it describes a method for propagating the errors analytically, thereby obtaining the full correlation structure of the power spectra. The methods are applied to two upcoming low-frequency instruments that are proposing to perform statistical EoR experiments: the Murchison Widefield Array and the Precision Array for Probing the Epoch of Reionization. In addition to the actual antenna configurations, we apply the methods to minimally redundant and maximally redundant configurations. We find that for peeling sources above 1 Jy, the amplitude of the residual signal, and its variance, will be smaller than the contribution from thermal noise for the observing parameters proposed for upcoming EoR experiments, and that optimal subtraction of bright point sources will not be a limiting factor for EoR parameter estimation. We then use the formalism to provide an ab initio analytic derivation motivating the 'wedge' feature in the two-dimensional power spectrum, complementing previous discussion in the literature.« less
Numerical Problem Solving Using Mathcad in Undergraduate Reaction Engineering
ERIC Educational Resources Information Center
Parulekar, Satish J.
2006-01-01
Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…
Accurate estimations of electromagnetic transitions of Sn IV for stellar and interstellar media
NASA Astrophysics Data System (ADS)
Biswas, Swapan; Das, Arghya; Bhowmik, Anal; Majumder, Sonjoy
2018-04-01
Here we report on accurate ab initio calculations to study astrophysically important electromagnetic transition parameters among different low-lying states of Sn IV. Our ab initio calculations are based on the sophisticated relativistic coupled-cluster theory, which almost exhausts many important electron correlations. To establish the accuracy of the calculations, we compare our results with the available experiments and estimates the transition amplitudes in length and velocity gauged forms. Most of these allowed and forbidden transition wavelengths lie in the infrared region, and they can be observed in the different cool stellar and interstellar media. For the improvement of uncertainty, we use experimental energies to the estimations of the above transition parameters. The presented data will be helpful to find the abundances of the ion in different astrophysical and laboratory plasma.
NASA Technical Reports Server (NTRS)
Stephenson, J. D.
1983-01-01
Flight experiments with an augmented jet flap STOL aircraft provided data from which the lateral directional stability and control derivatives were calculated by applying a linear regression parameter estimation procedure. The tests, which were conducted with the jet flaps set at a 65 deg deflection, covered a large range of angles of attack and engine power settings. The effect of changing the angle of the jet thrust vector was also investigated. Test results are compared with stability derivatives that had been predicted. The roll damping derived from the tests was significantly larger than had been predicted, whereas the other derivatives were generally in agreement with the predictions. Results obtained using a maximum likelihood estimation procedure are compared with those from the linear regression solutions.
Accurate estimations of electromagnetic transitions of Sn IV for stellar and interstellar media
NASA Astrophysics Data System (ADS)
Biswas, Swapan; Das, Arghya; Bhowmik, Anal; Majumder, Sonjoy
2018-07-01
Here, we report on accurate ab initio calculations to study astrophysically important electromagnetic transition parameters among different low-lying states of Sn IV. Our ab initio calculations are based on the sophisticated relativistic coupled cluster theory, which almost exhausts many important electron correlations. To establish the accuracy of the calculations, we compare our results with the available experiments and estimate the transition amplitudes in length and velocity gauged forms. Most of these allowed and forbidden transition wavelengths lie in the infrared region, and they can be observed in the different cool stellar and interstellar media. For the improvement of uncertainty, we use experimental energies to the estimations of the above transition parameters. The presented data will be helpful to find the abundances of the ion in different astrophysical and laboratory plasma.
Optimization of CW Fiber Lasers With Strong Nonlinear Cavity Dynamics
NASA Astrophysics Data System (ADS)
Shtyrina, O. V.; Efremov, S. A.; Yarutkina, I. A.; Skidin, A. S.; Fedoruk, M. P.
2018-04-01
In present work the equation for the saturated gain is derived from one-level gain equations describing the energy evolution inside the laser cavity. It is shown how to derive the parameters of the mathematical model from the experimental results. The numerically-estimated energy and spectrum of the signal are in good agreement with the experiment. Also, the optimization of the output energy is performed for a given set of model parameters.
Non-stationary (13)C-metabolic flux ratio analysis.
Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola
2013-12-01
(13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.
Data pieces-based parameter identification for lithium-ion battery
NASA Astrophysics Data System (ADS)
Gao, Wei; Zou, Yuan; Sun, Fengchun; Hu, Xiaosong; Yu, Yang; Feng, Sen
2016-10-01
Battery characteristics vary with temperature and aging, it is necessary to identify battery parameters periodically for electric vehicles to ensure reliable State-of-Charge (SoC) estimation, battery equalization and safe operation. Aiming for on-board applications, this paper proposes a data pieces-based parameter identification (DPPI) method to identify comprehensive battery parameters including capacity, OCV (open circuit voltage)-Ah relationship and impedance-Ah relationship simultaneously only based on battery operation data. First a vehicle field test was conducted and battery operation data was recorded, then the DPPI method is elaborated based on vehicle test data, parameters of all 97 cells of the battery package are identified and compared. To evaluate the adaptability of the proposed DPPI method, it is used to identify battery parameters of different aging levels and different temperatures based on battery aging experiment data. Then a concept of ;OCV-Ah aging database; is proposed, based on which battery capacity can be identified even though the battery was never fully charged or discharged. Finally, to further examine the effectiveness of the identified battery parameters, they are used to perform SoC estimation for the test vehicle with adaptive extended Kalman filter (AEKF). The result shows good accuracy and reliability.
NASA Technical Reports Server (NTRS)
Taylor, Brian R.
2012-01-01
A novel, efficient air data calibration method is proposed for aircraft with limited envelopes. This method uses output-error optimization on three-dimensional inertial velocities to estimate calibration and wind parameters. Calibration parameters are based on assumed calibration models for static pressure, angle of attack, and flank angle. Estimated wind parameters are the north, east, and down components. The only assumptions needed for this method are that the inertial velocities and Euler angles are accurate, the calibration models are correct, and that the steady-state component of wind is constant throughout the maneuver. A two-minute maneuver was designed to excite the aircraft over the range of air data calibration parameters and de-correlate the angle-of-attack bias from the vertical component of wind. Simulation of the X-48B (The Boeing Company, Chicago, Illinois) aircraft was used to validate the method, ultimately using data derived from wind-tunnel testing to simulate the un-calibrated air data measurements. Results from the simulation were accurate and robust to turbulence levels comparable to those observed in flight. Future experiments are planned to evaluate the proposed air data calibration in a flight environment.
NASA Astrophysics Data System (ADS)
Raju, Subramanian; Saibaba, Saroja
2016-09-01
The enthalpy of formation Δo H f is an important thermodynamic quantity, which sheds significant light on fundamental cohesive and structural characteristics of an alloy. However, being a difficult one to determine accurately through experiments, simple estimation procedures are often desirable. In the present study, a modified prescription for estimating Δo H f L of liquid transition metal alloys is outlined, based on the Macroscopic Atom Model of cohesion. This prescription relies on self-consistent estimation of liquid-specific model parameters, namely electronegativity ( ϕ L) and bonding electron density ( n b L ). Such unique identification is made through the use of well-established relationships connecting surface tension, compressibility, and molar volume of a metallic liquid with bonding charge density. The electronegativity is obtained through a consistent linear scaling procedure. The preliminary set of values for ϕ L and n b L , together with other auxiliary model parameters, is subsequently optimized to obtain a good numerical agreement between calculated and experimental values of Δo H f L for sixty liquid transition metal alloys. It is found that, with few exceptions, the use of liquid-specific model parameters in Macroscopic Atom Model yields a physically consistent methodology for reliable estimation of mixing enthalpies of liquid alloys.
NASA Astrophysics Data System (ADS)
Huang, Chunlin; Chen, Weijin; Wang, Weizhen; Gu, Juan
2017-04-01
Uncertainties in model parameters can easily cause systematic differences between model states and observations from ground or satellites, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this paper, a novel soil moisture assimilation scheme is developed to simultaneously assimilate AMSR-E brightness temperature (TB) and MODIS Land Surface Temperature (LST), which can correct model bias by simultaneously updating model states and parameters with dual ensemble Kalman filter (DEnKS). The Common Land Model (CoLM) and a Q-h Radiative Transfer Model (RTM) are adopted as model operator and observation operator, respectively. The assimilation experiment is conducted in Naqu, Tibet Plateau, from May 31 to September 27, 2011. Compared with in-situ measurements, the accuracy of soil moisture estimation is tremendously improved in terms of a variety of scales. The updated soil temperature by assimilating MODIS LST as input of RTM can reduce the differences between the simulated and observed brightness temperatures to a certain degree, which helps to improve the estimation of soil moisture and model parameters. The updated parameters show large discrepancy with the default ones and the former effectively reduces the states bias of CoLM. Results demonstrate the potential of assimilating both microwave TB and MODIS LST to improve the estimation of soil moisture and related parameters. Furthermore, this study also indicates that the developed scheme is an effective soil moisture downscaling approach for coarse-scale microwave TB.
Noise elimination algorithm for modal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, X. X., E-mail: baoxingxian@upc.edu.cn; Li, C. L.; Xiong, C. B.
2015-07-27
Modal analysis is an ongoing interdisciplinary physical issue. Modal parameters estimation is applied to determine the dynamic characteristics of structures under vibration excitation. Modal analysis is more challenging for the measured vibration response signals are contaminated with noise. This study develops a mathematical algorithm of structured low rank approximation combined with the complex exponential method to estimate the modal parameters. Physical experiments using a steel cantilever beam with ten accelerometers mounted, excited by an impulse load, demonstrate that this method can significantly eliminate noise from measured signals and accurately identify the modal frequencies and damping ratios. This study provides amore » fundamental mechanism of noise elimination using structured low rank approximation in physical fields.« less
Lactate threshold by muscle electrical impedance in professional rowers
NASA Astrophysics Data System (ADS)
Jotta, B.; Coutinho, A. B. B.; Pino, A. V.; Souza, M. N.
2017-04-01
Lactate threshold (LT) is one of the physiological parameters usually used in rowing sport training prescription because it indicates the transitions from aerobic to anaerobic metabolism. Assessment of LT is classically based on a series of values of blood lactate concentrations obtained during progressive exercise tests and thus has an invasive aspect. The feasibility of noninvasive LT estimative through bioelectrical impedance spectroscopy (BIS) data collected in thigh muscles during rowing ergometer exercise tests was investigated. Nineteen professional rowers, age 19 (mean) ± 4.8 (standard deviation) yr, height 187.3 ± 6.6 cm, body mass 83 ± 7.7 kg, and training experience of 7 ± 4 yr, were evaluated in a rowing ergometer progressive test with paired measures of blood lactate concentration and BIS in thigh muscles. Bioelectrical impedance data were obtained by using a bipolar method of spectroscopy based on the current response to a voltage step. An electrical model was used to interpret BIS data and to derive parameters that were investigated to estimate LT noninvasively. From the serial blood lactate measurements, LT was also determined through Dmax method (LTDmax). The zero crossing of the second derivative of kinetic of the capacitance electrode (Ce), one of the BIS parameters, was used to estimate LT. The agreement between the LT estimates through BIS (LTBIS) and through Dmax method (LTDmax) was evaluated using Bland-Altman plots, leading to a mean difference between the estimates of just 0.07 W and a Pearson correlation coefficient r = 0.85. This result supports the utilization of the proposed method based on BIS parameters for estimating noninvasively the lactate threshold in rowing.
Testing General Relativity with the Radio Science Experiment of the BepiColombo mission to Mercury
NASA Astrophysics Data System (ADS)
Schettino, Giulia; Tommei, Giacomo
2016-09-01
The relativity experiment is part of the Mercury Orbiter Radio science Experiment (MORE) on-board the ESA/JAXA BepiColombo mission to Mercury. Thanks to very precise radio tracking from the Earth and accelerometer, it will be possible to perform an accurate test of General Relativity, by constraining a number of post-Newtonian and related parameters with an unprecedented level of accuracy. The Celestial Mechanics Group of the University of Pisa developed a new dedicated software, ORBIT14, to perform the simulations and to determine simultaneously all the parameters of interest within a global least squares fit. After highlighting some critical issues, we report on the results of a full set of simulations, carried out in the most up-to-date mission scenario. For each parameter we discuss the achievable accuracy, in terms of a formal analysis through the covariance matrix and, furthermore, by the introduction of an alternative, more representative, estimation of the errors. We show that, for example, an accuracy of some parts in 10^-6 for the Eddington parameter β and of 10^-5 for the Nordtvedt parameter η can be attained, while accuracies at the level of 5×10^-7 and 1×10^-7 can be achieved for the preferred frames parameters α1 and α2, respectively.
Cosmological Parameters from the QUAD CMB Polarization Experiment
NASA Astrophysics Data System (ADS)
Castro, P. G.; Ade, P.; Bock, J.; Bowden, M.; Brown, M. L.; Cahill, G.; Church, S.; Culverhouse, T.; Friedman, R. B.; Ganga, K.; Gear, W. K.; Gupta, S.; Hinderks, J.; Kovac, J.; Lange, A. E.; Leitch, E.; Melhuish, S. J.; Memari, Y.; Murphy, J. A.; Orlando, A.; Pryke, C.; Schwarz, R.; O'Sullivan, C.; Piccirillo, L.; Rajguru, N.; Rusholme, B.; Taylor, A. N.; Thompson, K. L.; Turner, A. H.; Wu, E. Y. S.; Zemcov, M.; QUa D Collaboration
2009-08-01
In this paper, we present a parameter estimation analysis of the polarization and temperature power spectra from the second and third season of observations with the QUaD experiment. QUaD has for the first time detected multiple acoustic peaks in the E-mode polarization spectrum with high significance. Although QUaD-only parameter constraints are not competitive with previous results for the standard six-parameter ΛCDM cosmology, they do allow meaningful polarization-only parameter analyses for the first time. In a standard six-parameter ΛCDM analysis, we find the QUaD TT power spectrum to be in good agreement with previous results. However, the QUaD polarization data show some tension with ΛCDM. The origin of this 1σ-2σ tension remains unclear, and may point to new physics, residual systematics, or simple random chance. We also combine QUaD with the five-year WMAP data set and the SDSS luminous red galaxies 4th data release power spectrum, and extend our analysis to constrain individual isocurvature mode fractions, constraining cold dark matter density, αcdmi < 0.11 (95% confidence limit (CL)), neutrino density, αndi < 0.26 (95% CL), and neutrino velocity, αnvi < 0.23 (95% CL), modes. Our analysis sets a benchmark for future polarization experiments.
Optimal hemodynamic response model for functional near-infrared spectroscopy
Kamran, Muhammad A.; Jeong, Myung Yung; Mannan, Malik M. N.
2015-01-01
Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650–950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > tcritical and p-value < 0.05). PMID:26136668
Optimal hemodynamic response model for functional near-infrared spectroscopy.
Kamran, Muhammad A; Jeong, Myung Yung; Mannan, Malik M N
2015-01-01
Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).
NASA Astrophysics Data System (ADS)
Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo
2017-06-01
We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters ( b) and the state-evolution distances (L_{{c}}), keeping the direct effect parameter ( a) constant. We then identified the confident range of b and L_{{c}} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{{c}} increase as the cumulative slip displacement increases, and b increases and L_{{c}} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.
Rinderknecht, Mike D; Ranzani, Raffaele; Popp, Werner L; Lambercy, Olivier; Gassert, Roger
2018-05-10
Psychophysical procedures are applied in various fields to assess sensory thresholds. During experiments, sampled psychometric functions are usually assumed to be stationary. However, perception can be altered, for example by loss of attention to the presentation of stimuli, leading to biased data, which results in poor threshold estimates. The few existing approaches attempting to identify non-stationarities either detect only whether there was a change in perception, or are not suitable for experiments with a relatively small number of trials (e.g., [Formula: see text] 300). We present a method to detect inattention periods on a trial-by-trial basis with the aim of improving threshold estimates in psychophysical experiments using the adaptive sampling procedure Parameter Estimation by Sequential Testing (PEST). The performance of the algorithm was evaluated in computer simulations modeling inattention, and tested in a behavioral experiment on proprioceptive difference threshold assessment in 20 stroke patients, a population where attention deficits are likely to be present. Simulations showed that estimation errors could be reduced by up to 77% for inattentive subjects, even in sequences with less than 100 trials. In the behavioral data, inattention was detected in 14% of assessments, and applying the proposed algorithm resulted in reduced test-retest variability in 73% of these corrected assessments pairs. The novel algorithm complements existing approaches and, besides being applicable post hoc, could also be used online to prevent collection of biased data. This could have important implications in assessment practice by shortening experiments and improving estimates, especially for clinical settings.
NASA Astrophysics Data System (ADS)
Wei, Zhongbao; Meng, Shujuan; Tseng, King Jet; Lim, Tuti Mariana; Soong, Boon Hee; Skyllas-Kazacos, Maria
2017-03-01
An accurate battery model is the prerequisite for reliable state estimate of vanadium redox battery (VRB). As the battery model parameters are time varying with operating condition variation and battery aging, the common methods where model parameters are empirical or prescribed offline lacks accuracy and robustness. To address this issue, this paper proposes to use an online adaptive battery model to reproduce the VRB dynamics accurately. The model parameters are online identified with both the recursive least squares (RLS) and the extended Kalman filter (EKF). Performance comparison shows that the RLS is superior with respect to the modeling accuracy, convergence property, and computational complexity. Based on the online identified battery model, an adaptive peak power estimator which incorporates the constraints of voltage limit, SOC limit and design limit of current is proposed to fully exploit the potential of the VRB. Experiments are conducted on a lab-scale VRB system and the proposed peak power estimator is verified with a specifically designed "two-step verification" method. It is shown that different constraints dominate the allowable peak power at different stages of cycling. The influence of prediction time horizon selection on the peak power is also analyzed.
In Silico Estimation of Skin Concentration Following the Dermal Exposure to Chemicals.
Hatanaka, Tomomi; Yoshida, Shun; Kadhum, Wesam R; Todo, Hiroaki; Sugibayashi, Kenji
2015-12-01
To develop an in silico method based on Fick's law of diffusion to estimate the skin concentration following dermal exposure to chemicals with a wide range of lipophilicity. Permeation experiments of various chemicals were performed through rat and porcine skin. Permeation parameters, namely, permeability coefficient and partition coefficient, were obtained by the fitting of data to two-layered and one-layered diffusion models for whole and stripped skin. The mean skin concentration of chemicals during steady-state permeation was calculated using the permeation parameters and compared with the observed values. All permeation profiles could be described by the diffusion models. The estimated skin concentrations of chemicals using permeation parameters were close to the observed levels and most data fell within the 95% confidence interval for complete prediction. The permeability coefficient and partition coefficient for stripped skin were almost constant, being independent of the permeant's lipophilicity. Skin concentration following dermal exposure to various chemicals can be accurately estimated based on Fick's law of diffusion. This method should become a useful tool to assess the efficacy of topically applied drugs and cosmetic ingredients, as well as the risk of chemicals likely to cause skin disorders and diseases.
Wang, Gang; Briskot, Till; Hahn, Tobias; Baumann, Pascal; Hubbuch, Jürgen
2017-03-03
Mechanistic modeling has been repeatedly successfully applied in process development and control of protein chromatography. For each combination of adsorbate and adsorbent, the mechanistic models have to be calibrated. Some of the model parameters, such as system characteristics, can be determined reliably by applying well-established experimental methods, whereas others cannot be measured directly. In common practice of protein chromatography modeling, these parameters are identified by applying time-consuming methods such as frontal analysis combined with gradient experiments, curve-fitting, or combined Yamamoto approach. For new components in the chromatographic system, these traditional calibration approaches require to be conducted repeatedly. In the presented work, a novel method for the calibration of mechanistic models based on artificial neural network (ANN) modeling was applied. An in silico screening of possible model parameter combinations was performed to generate learning material for the ANN model. Once the ANN model was trained to recognize chromatograms and to respond with the corresponding model parameter set, it was used to calibrate the mechanistic model from measured chromatograms. The ANN model's capability of parameter estimation was tested by predicting gradient elution chromatograms. The time-consuming model parameter estimation process itself could be reduced down to milliseconds. The functionality of the method was successfully demonstrated in a study with the calibration of the transport-dispersive model (TDM) and the stoichiometric displacement model (SDM) for a protein mixture. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Advances in Experiment Design for High Performance Aircraft
NASA Technical Reports Server (NTRS)
Morelli, Engene A.
1998-01-01
A general overview and summary of recent advances in experiment design for high performance aircraft is presented, along with results from flight tests. General theoretical background is included, with some discussion of various approaches to maneuver design. Flight test examples from the F-18 High Alpha Research Vehicle (HARV) are used to illustrate applications of the theory. Input forms are compared using Cramer-Rao bounds for the standard errors of estimated model parameters. Directions for future research in experiment design for high performance aircraft are identified.
NASA Astrophysics Data System (ADS)
Klees, R.; Slobbe, D. C.; Farahani, H. H.
2018-03-01
The posed question arises for instance in regional gravity field modelling using weighted least-squares techniques if the gravity field functionals are synthesised from the spherical harmonic coefficients of a satellite-only global gravity model (GGM), and are used as one of the noisy datasets. The associated noise covariance matrix, appeared to be extremely ill-conditioned with a singular value spectrum that decayed gradually to zero without any noticeable gap. We analysed three methods to deal with the ill-conditioned noise covariance matrix: Tihonov regularisation of the noise covariance matrix in combination with the standard formula for the weighted least-squares estimator, a formula of the weighted least-squares estimator, which does not involve the inverse noise covariance matrix, and an estimator based on Rao's unified theory of least-squares. Our analysis was based on a numerical experiment involving a set of height anomalies synthesised from the GGM GOCO05s, which is provided with a full noise covariance matrix. We showed that the three estimators perform similar, provided that the two regularisation parameters each method knows were chosen properly. As standard regularisation parameter choice rules do not apply here, we suggested a new parameter choice rule, and demonstrated its performance. Using this rule, we found that the differences between the three least-squares estimates were within noise. For the standard formulation of the weighted least-squares estimator with regularised noise covariance matrix, this required an exceptionally strong regularisation, much larger than one expected from the condition number of the noise covariance matrix. The preferred method is the inversion-free formulation of the weighted least-squares estimator, because of its simplicity with respect to the choice of the two regularisation parameters.
Volume effects of late term normal tissue toxicity in prostate cancer radiotherapy
NASA Astrophysics Data System (ADS)
Bonta, Dacian Viorel
Modeling of volume effects for treatment toxicity is paramount for optimization of radiation therapy. This thesis proposes a new model for calculating volume effects in gastro-intestinal and genito-urinary normal tissue complication probability (NTCP) following radiation therapy for prostate carcinoma. The radiobiological and the pathological basis for this model and its relationship to other models are detailed. A review of the radiobiological experiments and published clinical data identified salient features and specific properties a biologically adequate model has to conform to. The new model was fit to a set of actual clinical data. In order to verify the goodness of fit, two established NTCP models and a non-NTCP measure for complication risk were fitted to the same clinical data. The method of fit for the model parameters was maximum likelihood estimation. Within the framework of the maximum likelihood approach I estimated the parameter uncertainties for each complication prediction model. The quality-of-fit was determined using the Aikaike Information Criterion. Based on the model that provided the best fit, I identified the volume effects for both types of toxicities. Computer-based bootstrap resampling of the original dataset was used to estimate the bias and variance for the fitted parameter values. Computer simulation was also used to estimate the population size that generates a specific uncertainty level (3%) in the value of predicted complication probability. The same method was used to estimate the size of the patient population needed for accurate choice of the model underlying the NTCP. The results indicate that, depending on the number of parameters of a specific NTCP model, 100 (for two parameter models) and 500 patients (for three parameter models) are needed for accurate parameter fit. Correlation of complication occurrence in patients was also investigated. The results suggest that complication outcomes are correlated in a patient, although the correlation coefficient is rather small.
A Comparison of Methods for a Priori Bias Correction in Soil Moisture Data Assimilation
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Reichle, Rolf H.; Harrison, Kenneth W.; Peters-Lidard, Christa D.; Yatheendradas, Soni; Santanello, Joseph A.
2011-01-01
Data assimilation is being increasingly used to merge remotely sensed land surface variables such as soil moisture, snow and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here, a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (i) parameter estimation to calibrate the land model to the climatology of the soil moisture observations, and (ii) scaling of the observations to the model s soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model s climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue.
Improved estimation of anomalous diffusion exponents in single-particle tracking experiments
NASA Astrophysics Data System (ADS)
Kepten, Eldad; Bronshtein, Irena; Garini, Yuval
2013-05-01
The mean square displacement is a central tool in the analysis of single-particle tracking experiments, shedding light on various biophysical phenomena. Frequently, parameters are extracted by performing time averages on single-particle trajectories followed by ensemble averaging. This procedure, however, suffers from two systematic errors when applied to particles that perform anomalous diffusion. The first is significant at short-time lags and is induced by measurement errors. The second arises from the natural heterogeneity in biophysical systems. We show how to estimate and correct these two errors and improve the estimation of the anomalous parameters for the whole particle distribution. As a consequence, we manage to characterize ensembles of heterogeneous particles even for rather short and noisy measurements where regular time-averaged mean square displacement analysis fails. We apply this method to both simulations and in vivo measurements of telomere diffusion in 3T3 mouse embryonic fibroblast cells. The motion of telomeres is found to be subdiffusive with an average exponent constant in time. Individual telomere exponents are normally distributed around the average exponent. The proposed methodology has the potential to improve experimental accuracy while maintaining lower experimental costs and complexity.
Retrieving relevant time-course experiments: a study on Arabidopsis microarrays.
Şener, Duygu Dede; Oğul, Hasan
2016-06-01
Understanding time-course regulation of genes in response to a stimulus is a major concern in current systems biology. The problem is usually approached by computational methods to model the gene behaviour or its networked interactions with the others by a set of latent parameters. The model parameters can be estimated through a meta-analysis of available data obtained from other relevant experiments. The key question here is how to find the relevant experiments which are potentially useful in analysing current data. In this study, the authors address this problem in the context of time-course gene expression experiments from an information retrieval perspective. To this end, they introduce a computational framework that takes a time-course experiment as a query and reports a list of relevant experiments retrieved from a given repository. These retrieved experiments can then be used to associate the environmental factors of query experiment with the findings previously reported. The model is tested using a set of time-course Arabidopsis microarrays. The experimental results show that relevant experiments can be successfully retrieved based on content similarity.
Design of experiments for zeroth and first-order reaction rates.
Amo-Salas, Mariano; Martín-Martín, Raúl; Rodríguez-Aragón, Licesio J
2014-09-01
This work presents optimum designs for reaction rates experiments. In these experiments, time at which observations are to be made and temperatures at which reactions are to be run need to be designed. Observations are performed along time under isothermal conditions. Each experiment needs a fixed temperature and so the reaction can be measured at the designed times. For these observations under isothermal conditions over the same reaction a correlation structure has been considered. D-optimum designs are the aim of our work for zeroth and first-order reaction rates. Temperatures for the isothermal experiments and observation times, to obtain the most accurate estimates of the unknown parameters, are provided in these designs. D-optimum designs for a single observation in each isothermal experiment or for several correlated observations have been obtained. Robustness of the optimum designs for ranges of the correlation parameter and comparisons of the information gathered by different designs are also shown. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Derieppe, Marc; de Senneville, Baudouin Denis; Kuijf, Hugo; Moonen, Chrit; Bos, Clemens
2014-10-01
Previously, we demonstrated the feasibility to monitor ultrasound-mediated uptake of a cell-impermeable model drug in real time with fibered confocal fluorescence microscopy. Here, we present a complete post-processing methodology, which corrects for cell displacements, to improve the accuracy of pharmacokinetic parameter estimation. Nucleus detection was performed based on the radial symmetry transform algorithm. Cell tracking used an iterative closest point approach. Pharmacokinetic parameters were calculated by fitting a two-compartment model to the time-intensity curves of individual cells. Cells were tracked successfully, improving time-intensity curve accuracy and pharmacokinetic parameter estimation. With tracking, 93 % of the 370 nuclei showed a fluorescence signal variation that was well-described by a two-compartment model. In addition, parameter distributions were narrower, thus increasing precision. Dedicated image analysis was implemented and enabled studying ultrasound-mediated model drug uptake kinetics in hundreds of cells per experiment, using fiber-based confocal fluorescence microscopy.
Estimating the Variance of Design Parameters
ERIC Educational Resources Information Center
Hedberg, E. C.; Hedges, L. V.; Kuyper, A. M.
2015-01-01
Randomized experiments are generally considered to provide the strongest basis for causal inferences about cause and effect. Consequently randomized field trials have been increasingly used to evaluate the effects of education interventions, products, and services. Populations of interest in education are often hierarchically structured (such as…
An adaptive bit synchronization algorithm under time-varying environment.
NASA Technical Reports Server (NTRS)
Chow, L. R.; Owen, H. A., Jr.; Wang, P. P.
1973-01-01
This paper presents an adaptive estimation algorithm for bit synchronization, assuming that the parameters of the incoming data process are time-varying. Experiment results have proved that this synchronizer is workable either judged by the amount of data required or the speed of convergence.
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.
NASA Astrophysics Data System (ADS)
Lee, Michael; Freed, Adrian; Wessel, David
1992-08-01
In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.
GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models.
Ligon, Thomas S; Fröhlich, Fabian; Chis, Oana T; Banga, Julio R; Balsa-Canto, Eva; Hasenauer, Jan
2018-04-15
Mathematical modeling using ordinary differential equations is used in systems biology to improve the understanding of dynamic biological processes. The parameters of ordinary differential equation models are usually estimated from experimental data. To analyze a priori the uniqueness of the solution of the estimation problem, structural identifiability analysis methods have been developed. We introduce GenSSI 2.0, an advancement of the software toolbox GenSSI (Generating Series for testing Structural Identifiability). GenSSI 2.0 is the first toolbox for structural identifiability analysis to implement Systems Biology Markup Language import, state/parameter transformations and multi-experiment structural identifiability analysis. In addition, GenSSI 2.0 supports a range of MATLAB versions and is computationally more efficient than its previous version, enabling the analysis of more complex models. GenSSI 2.0 is an open-source MATLAB toolbox and available at https://github.com/genssi-developer/GenSSI. thomas.ligon@physik.uni-muenchen.de or jan.hasenauer@helmholtz-muenchen.de. Supplementary data are available at Bioinformatics online.
Development of the Contact Lens User Experience: CLUE Scales
Wirth, R. J.; Edwards, Michael C.; Henderson, Michael; Henderson, Terri; Olivares, Giovanna; Houts, Carrie R.
2016-01-01
ABSTRACT Purpose The field of optometry has become increasingly interested in patient-reported outcomes, reflecting a common trend occurring across the spectrum of healthcare. This article reviews the development of the Contact Lens User Experience: CLUE system designed to assess patient evaluations of contact lenses. CLUE was built using modern psychometric methods such as factor analysis and item response theory. Methods The qualitative process through which relevant domains were identified is outlined as well as the process of creating initial item banks. Psychometric analyses were conducted on the initial item banks and refinements were made to the domains and items. Following this data-driven refinement phase, a second round of data was collected to further refine the items and obtain final item response theory item parameters estimates. Results Extensive qualitative work identified three key areas patients consider important when describing their experience with contact lenses. Based on item content and psychometric dimensionality assessments, the developing CLUE instruments were ultimately focused around four domains: comfort, vision, handling, and packaging. Item response theory parameters were estimated for the CLUE item banks (377 items), and the resulting scales were found to provide precise and reliable assignment of scores detailing users’ subjective experiences with contact lenses. Conclusions The CLUE family of instruments, as it currently exists, exhibits excellent psychometric properties. PMID:27383257
Thomas, Ekelijn; Bouma, Annemarie; Klinkenberg, Don
2011-02-23
Human cases of bacterial gastro-enteritis are often caused by the consumption of eggs contaminated with Salmonella species, mainly Salmonella enterica serovar Enteriditis (Salmonella Enteritidis). To reduce human exposure, in several countries worldwide surveillance programmes are implemented to detect colonized layer flocks. The sampling schemes are based on the within-flock prevalence, and, as this changes over time, knowledge of the within-flock dynamics of Salmonella Enteritidis is required. Transmission of Salmonella Enteritidis has been quantified in pairs of layers, but the question is whether the dynamics in pairs is comparable to transmission in large groups, which are more representative for commercial layer flocks. The aim of this study was to compare results of transmission experiments between pairs and groups of laying hens. Experimental groups of either 2 or 200 hens were housed at similar densities, and 1 or 4 hens were inoculated with Salmonella Enteritidis, respectively. Excretion was monitored by regularly testing of fecal samples for the presence of Salmonella Enteritidis. Using mathematical modeling, the group experiments were simulated with transmission parameter estimates from the pairwise experiments. Transmission of the bacteria did not differ significantly between pairs or groups. This finding suggests that the transmission parameter estimates from small-scale experiments might be extrapolated to the field situation.
NASA Astrophysics Data System (ADS)
Farzamian, Mohammad; Monteiro Santos, Fernando A.; Khalil, Mohamed A.
2017-12-01
The coupled hydrogeophysical approach has proved to be a valuable tool for improving the use of geoelectrical data for hydrological model parameterization. In the coupled approach, hydrological parameters are directly inferred from geoelectrical measurements in a forward manner to eliminate the uncertainty connected to the independent inversion of electrical resistivity data. Several numerical studies have been conducted to demonstrate the advantages of a coupled approach; however, only a few attempts have been made to apply the coupled approach to actual field data. In this study, we developed a 1D coupled hydrogeophysical code to estimate the van Genuchten-Mualem model parameters, K s, n, θ r and α, from time-lapse vertical electrical sounding data collected during a constant inflow infiltration experiment. van Genuchten-Mualem parameters were sampled using the Latin hypercube sampling method to provide a full coverage of the range of each parameter from their distributions. By applying the coupled approach, vertical electrical sounding data were coupled to hydrological models inferred from van Genuchten-Mualem parameter samples to investigate the feasibility of constraining the hydrological model. The key approaches taken in the study are to (1) integrate electrical resistivity and hydrological data and avoiding data inversion, (2) estimate the total water mass recovery of electrical resistivity data and consider it in van Genuchten-Mualem parameters evaluation and (3) correct the influence of subsurface temperature fluctuations during the infiltration experiment on electrical resistivity data. The results of the study revealed that the coupled hydrogeophysical approach can improve the value of geophysical measurements in hydrological model parameterization. However, the approach cannot overcome the technical limitations of the geoelectrical method associated with resolution and of water mass recovery.
An adaptive learning control system for large flexible structures
NASA Technical Reports Server (NTRS)
Thau, F. E.
1985-01-01
The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.
NASA Astrophysics Data System (ADS)
Wu, Hongjie; Yuan, Shifei; Zhang, Xi; Yin, Chengliang; Ma, Xuerui
2015-08-01
To improve the suitability of lithium-ion battery model under varying scenarios, such as fluctuating temperature and SoC variation, dynamic model with parameters updated realtime should be developed. In this paper, an incremental analysis-based auto regressive exogenous (I-ARX) modeling method is proposed to eliminate the modeling error caused by the OCV effect and improve the accuracy of parameter estimation. Then, its numerical stability, modeling error, and parametric sensitivity are analyzed at different sampling rates (0.02, 0.1, 0.5 and 1 s). To identify the model parameters recursively, a bias-correction recursive least squares (CRLS) algorithm is applied. Finally, the pseudo random binary sequence (PRBS) and urban dynamic driving sequences (UDDSs) profiles are performed to verify the realtime performance and robustness of the newly proposed model and algorithm. Different sampling rates (1 Hz and 10 Hz) and multiple temperature points (5, 25, and 45 °C) are covered in our experiments. The experimental and simulation results indicate that the proposed I-ARX model can present high accuracy and suitability for parameter identification without using open circuit voltage.
NASA Astrophysics Data System (ADS)
Orlando, José Ignacio; Fracchia, Marcos; del Río, Valeria; del Fresno, Mariana
2017-11-01
Several ophthalmological and systemic diseases are manifested through pathological changes in the properties and the distribution of the retinal blood vessels. The characterization of such alterations requires the segmentation of the vasculature, which is a tedious and time-consuming task that is infeasible to be performed manually. Numerous attempts have been made to propose automated methods for segmenting the retinal vasculature from fundus photographs, although their application in real clinical scenarios is usually limited by their ability to deal with images taken at different resolutions. This is likely due to the large number of parameters that have to be properly calibrated according to each image scale. In this paper we propose to apply a novel strategy for automated feature parameter estimation, combined with a vessel segmentation method based on fully connected conditional random fields. The estimation model is learned by linear regression from structural properties of the images and known optimal configurations, that were previously obtained for low resolution data sets. Our experiments in high resolution images show that this approach is able to estimate appropriate configurations that are suitable for performing the segmentation task without requiring to re-engineer parameters. Furthermore, our combined approach reported state of the art performance on the benchmark data set HRF, as measured in terms of the F1-score and the Matthews correlation coefficient.
Samsudin, Hayati; Auras, Rafael; Burgess, Gary; Dolan, Kirk; Soto-Valdez, Herlinda
2018-03-01
A two-step solution based on the boundary conditions of Crank's equations for mass transfer in a film was developed. Three driving factors, the diffusion (D), partition (K p,f ) and convective mass transfer coefficients (h), govern the sorption and/or desorption kinetics of migrants from polymer films. These three parameters were simultaneously estimated. They provide in-depth insight into the physics of a migration process. The first step was used to find the combination of D, K p,f and h that minimized the sums of squared errors (SSE) between the predicted and actual results. In step 2, an ordinary least square (OLS) estimation was performed by using the proposed analytical solution containing D, K p,f and h. Three selected migration studies of PLA/antioxidant-based films were used to demonstrate the use of this two-step solution. Additional parameter estimation approaches such as sequential and bootstrap were also performed to acquire a better knowledge about the kinetics of migration. The proposed model successfully provided the initial guesses for D, K p,f and h. The h value was determined without performing a specific experiment for it. By determining h together with D, under or overestimation issues pertaining to a migration process can be avoided since these two parameters are correlated. Copyright © 2017 Elsevier Ltd. All rights reserved.
A biodynamic feedthrough model based on neuromuscular principles.
Venrooij, Joost; Abbink, David A; Mulder, Mark; van Paassen, Marinus M; Mulder, Max; van der Helm, Frans C T; Bulthoff, Heinrich H
2014-07-01
A biodynamic feedthrough (BDFT) model is proposed that describes how vehicle accelerations feed through the human body, causing involuntary limb motions and so involuntary control inputs. BDFT dynamics strongly depend on limb dynamics, which can vary between persons (between-subject variability), but also within one person over time, e.g., due to the control task performed (within-subject variability). The proposed BDFT model is based on physical neuromuscular principles and is derived from an established admittance model-describing limb dynamics-which was extended to include control device dynamics and account for acceleration effects. The resulting BDFT model serves primarily the purpose of increasing the understanding of the relationship between neuromuscular admittance and biodynamic feedthrough. An added advantage of the proposed model is that its parameters can be estimated using a two-stage approach, making the parameter estimation more robust, as the procedure is largely based on the well documented procedure required for the admittance model. To estimate the parameter values of the BDFT model, data are used from an experiment in which both neuromuscular admittance and biodynamic feedthrough are measured. The quality of the BDFT model is evaluated in the frequency and time domain. Results provide strong evidence that the BDFT model and the proposed method of parameter estimation put forward in this paper allows for accurate BDFT modeling across different subjects (accounting for between-subject variability) and across control tasks (accounting for within-subject variability).
Pooseh, Shakoor; Bernhardt, Nadine; Guevara, Alvaro; Huys, Quentin J M; Smolka, Michael N
2018-02-01
Using simple mathematical models of choice behavior, we present a Bayesian adaptive algorithm to assess measures of impulsive and risky decision making. Practically, these measures are characterized by discounting rates and are used to classify individuals or population groups, to distinguish unhealthy behavior, and to predict developmental courses. However, a constant demand for improved tools to assess these constructs remains unanswered. The algorithm is based on trial-by-trial observations. At each step, a choice is made between immediate (certain) and delayed (risky) options. Then the current parameter estimates are updated by the likelihood of observing the choice, and the next offers are provided from the indifference point, so that they will acquire the most informative data based on the current parameter estimates. The procedure continues for a certain number of trials in order to reach a stable estimation. The algorithm is discussed in detail for the delay discounting case, and results from decision making under risk for gains, losses, and mixed prospects are also provided. Simulated experiments using prescribed parameter values were performed to justify the algorithm in terms of the reproducibility of its parameters for individual assessments, and to test the reliability of the estimation procedure in a group-level analysis. The algorithm was implemented as an experimental battery to measure temporal and probability discounting rates together with loss aversion, and was tested on a healthy participant sample.
Tracking of electrochemical impedance of batteries
NASA Astrophysics Data System (ADS)
Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.
2016-04-01
This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.
View Estimation Based on Value System
NASA Astrophysics Data System (ADS)
Takahashi, Yasutake; Shimada, Kouki; Asada, Minoru
Estimation of a caregiver's view is one of the most important capabilities for a child to understand the behavior demonstrated by the caregiver, that is, to infer the intention of behavior and/or to learn the observed behavior efficiently. We hypothesize that the child develops this ability in the same way as behavior learning motivated by an intrinsic reward, that is, he/she updates the model of the estimated view of his/her own during the behavior imitated from the observation of the behavior demonstrated by the caregiver based on minimizing the estimation error of the reward during the behavior. From this view, this paper shows a method for acquiring such a capability based on a value system from which values can be obtained by reinforcement learning. The parameters of the view estimation are updated based on the temporal difference error (hereafter TD error: estimation error of the state value), analogous to the way such that the parameters of the state value of the behavior are updated based on the TD error. Experiments with simple humanoid robots show the validity of the method, and the developmental process parallel to young children's estimation of its own view during the imitation of the observed behavior of the caregiver is discussed.
Clear: Composition of Likelihoods for Evolve and Resequence Experiments.
Iranmehr, Arya; Akbari, Ali; Schlötterer, Christian; Bafna, Vineet
2017-06-01
The advent of next generation sequencing technologies has made whole-genome and whole-population sampling possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe molecular evolution "in action" via evolve-and-resequence (E&R) experiments. Among other applications, E&R studies can be used to locate the genes and variants responsible for genetic adaptation. Most existing literature on time-series data analysis often assumes large population size, accurate allele frequency estimates, or wide time spans. These assumptions do not hold in many E&R studies. In this article, we propose a method-composition of likelihoods for evolve-and-resequence experiments (Clear)-to identify signatures of selection in small population E&R experiments. Clear takes whole-genome sequences of pools of individuals as input, and properly addresses heterogeneous ascertainment bias resulting from uneven coverage. Clear also provides unbiased estimates of model parameters, including population size, selection strength, and dominance, while being computationally efficient. Extensive simulations show that Clear achieves higher power in detecting and localizing selection over a wide range of parameters, and is robust to variation of coverage. We applied the Clear statistic to multiple E&R experiments, including data from a study of adaptation of Drosophila melanogaster to alternating temperatures and a study of outcrossing yeast populations, and identified multiple regions under selection with genome-wide significance. Copyright © 2017 by the Genetics Society of America.
Taguchi Optimization of Cutting Parameters in Turning AISI 1020 MS with M2 HSS Tool
NASA Astrophysics Data System (ADS)
Sonowal, Dharindom; Sarma, Dhrupad; Bakul Barua, Parimal; Nath, Thuleswar
2017-08-01
In this paper the effect of three cutting parameters viz. Spindle speed, Feed and Depth of Cut on surface roughness of AISI 1020 mild steel bar in turning was investigated and optimized to obtain minimum surface roughness. All the experiments are conducted on HMT LB25 lathe machine using M2 HSS cutting tool. Ranges of parameters of interest have been decided through some preliminary experimentation (One Factor At a Time experiments). Finally a combined experiment has been carried out using Taguchi’s L27 Orthogonal Array (OA) to study the main effect and interaction effect of the all three parameters. The experimental results were analyzed with raw data ANOVA (Analysis of Variance) and S/N data (Signal to Noise ratio) ANOVA. Results show that Spindle speed, Feed and Depth of Cut have significant effects on both mean and variation of surface roughness in turning AISI 1020 mild steel. Mild two factors interactions are observed among the aforesaid factors with significant effects only on the mean of the output variable. From the Taguchi parameter optimization the optimum factor combination is found to be 630 rpm spindle speed, 0.05 mm/rev feed and 1.25 mm depth of cut with estimated surface roughness 2.358 ± 0.970 µm. A confirmatory experiment was conducted with the optimum factor combination to verify the results. In the confirmatory experiment the average value of surface roughness is found to be 2.408 µm which is well within the range (0.418 µm to 4.299 µm) predicted for confirmatory experiment.
Optimal Design of Calibration Signals in Space-Borne Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Ferroni, Valerio;
2016-01-01
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterisation of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
Optimal Design of Calibration Signals in Space Borne Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Thorpe, James I.
2014-01-01
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterization of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
Cosmic gamma-ray bursts detected in the RELEC experiment onboard the Vernov satellite
NASA Astrophysics Data System (ADS)
Bogomolov, A. V.; Bogomolov, V. V.; Iyudin, A. F.; Kuznetsova, E. A.; Minaev, P. Yu.; Panasyuk, M. I.; Pozanenko, A. S.; Prokhorov, A. V.; Svertilov, S. I.; Chernenko, A. M.
2017-08-01
The RELEC scientific instrumentation onboard the Vernov spacecraft launched on July 8, 2014, included the DRGE gamma-ray and electron spectrometer. This instrument incorporates a set of scintillation phoswich detectors, including four identical X-ray and gamma-ray detectors in the energy range from 10 keV to 3 MeV with a total area of 500 cm2 directed toward the nadir, and an electron spectrometer containing three mutually orthogonal detector units with a geometry factor of 2 cm2 sr, which is also sensitive to X-rays and gamma-rays. The goal of the space experiment with the DRGE instrument was to investigate phenomena with fast temporal variability, in particular, terrestrial gammaray flashes (TGFs) and magnetospheric electron precipitations. However, the detectors of the DRGE instrument could record cosmic gamma-ray bursts (GRBs) and allowed one not only to perform a detailed analysis of the gamma-ray variability but also to compare the time profiles with the measurements made by other instruments of the RELEC scientific instrumentation (the detectors of optical and ultraviolet flashes, the radio-frequency and low-frequency analyzers of electromagnetic field parameters). We present the results of our observations of cosmicGRB 141011A and GRB 141104A, compare the parameters obtained in the GBM/Fermi and KONUS-Wind experiments, and estimate the redshifts and E iso for the sources of these GRBs. The detectability of GRBs and good agreement between the independent estimates of their parameters obtained in various experiments are important factors of the successful operation of similar detectors onboard the Lomonosov spacecraft.
Fisher information and Cramér-Rao lower bound for experimental design in parallel imaging.
Bouhrara, Mustapha; Spencer, Richard G
2018-06-01
The Cramér-Rao lower bound (CRLB) is widely used in the design of magnetic resonance (MR) experiments for parameter estimation. Previous work has considered only Gaussian or Rician noise distributions in this calculation. However, the noise distribution for multi-coil acquisitions, such as in parallel imaging, obeys the noncentral χ-distribution under many circumstances. The purpose of this paper is to present the CRLB calculation for parameter estimation from multi-coil acquisitions. We perform explicit calculations of Fisher matrix elements and the associated CRLB for noise distributions following the noncentral χ-distribution. The special case of diffusion kurtosis is examined as an important example. For comparison with analytic results, Monte Carlo (MC) simulations were conducted to evaluate experimental minimum standard deviations (SDs) in the estimation of diffusion kurtosis model parameters. Results were obtained for a range of signal-to-noise ratios (SNRs), and for both the conventional case of Gaussian noise distribution and noncentral χ-distribution with different numbers of coils, m. At low-to-moderate SNR, the noncentral χ-distribution deviates substantially from the Gaussian distribution. Our results indicate that this departure is more pronounced for larger values of m. As expected, the minimum SDs (i.e., CRLB) in derived diffusion kurtosis model parameters assuming a noncentral χ-distribution provided a closer match to the MC simulations as compared to the Gaussian results. Estimates of minimum variance for parameter estimation and experimental design provided by the CRLB must account for the noncentral χ-distribution of noise in multi-coil acquisitions, especially in the low-to-moderate SNR regime. Magn Reson Med 79:3249-3255, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Cardiff, Michael; Barrash, Warren; Thoma, Michael; Malama, Bwalya
2011-06-01
SummaryA recently developed unified model for partially-penetrating slug tests in unconfined aquifers ( Malama et al., in press) provides a semi-analytical solution for aquifer response at the wellbore in the presence of inertial effects and wellbore skin, and is able to model the full range of responses from overdamped/monotonic to underdamped/oscillatory. While the model provides a unifying framework for realistically analyzing slug tests in aquifers (with the ultimate goal of determining aquifer properties such as hydraulic conductivity K and specific storage Ss), it is currently unclear whether parameters of this model can be well-identified without significant prior information and, thus, what degree of information content can be expected from such slug tests. In this paper, we examine the information content of slug tests in realistic field scenarios with respect to estimating aquifer properties, through analysis of both numerical experiments and field datasets. First, through numerical experiments using Markov Chain Monte Carlo methods for gauging parameter uncertainty and identifiability, we find that: (1) as noted by previous researchers, estimation of aquifer storage parameters using slug test data is highly unreliable and subject to significant uncertainty; (2) joint estimation of aquifer and skin parameters contributes to significant uncertainty in both unless prior knowledge is available; and (3) similarly, without prior information joint estimation of both aquifer radial and vertical conductivity may be unreliable. These results have significant implications for the types of information that must be collected prior to slug test analysis in order to obtain reliable aquifer parameter estimates. For example, plausible estimates of aquifer anisotropy ratios and bounds on wellbore skin K should be obtained, if possible, a priori. Secondly, through analysis of field data - consisting of over 2500 records from partially-penetrating slug tests in a heterogeneous, highly conductive aquifer, we present some general findings that have applicability to slug testing. In particular, we find that aquifer hydraulic conductivity estimates obtained from larger slug heights tend to be lower on average (presumably due to non-linear wellbore losses) and tend to be less variable (presumably due to averaging over larger support volumes), supporting the notion that using the smallest slug heights possible to produce measurable water level changes is an important strategy when mapping aquifer heterogeneity. Finally, we present results specific to characterization of the aquifer at the Boise Hydrogeophysical Research Site. Specifically, we note that (1) K estimates obtained using a range of different slug heights give similar results, generally within ±20%; (2) correlations between estimated K profiles with depth at closely-spaced wells suggest that K values obtained from slug tests are representative of actual aquifer heterogeneity and not overly affected by near-well media disturbance (i.e., "skin"); (3) geostatistical analysis of K values obtained indicates reasonable correlation lengths for sediments of this type; and (4) overall, K values obtained do not appear to correlate well with porosity data from previous studies.
Parameter Estimation as a Problem in Statistical Thermodynamics.
Earle, Keith A; Schneider, David J
2011-03-14
In this work, we explore the connections between parameter fitting and statistical thermodynamics using the maxent principle of Jaynes as a starting point. In particular, we show how signal averaging may be described by a suitable one particle partition function, modified for the case of a variable number of particles. These modifications lead to an entropy that is extensive in the number of measurements in the average. Systematic error may be interpreted as a departure from ideal gas behavior. In addition, we show how to combine measurements from different experiments in an unbiased way in order to maximize the entropy of simultaneous parameter fitting. We suggest that fit parameters may be interpreted as generalized coordinates and the forces conjugate to them may be derived from the system partition function. From this perspective, the parameter fitting problem may be interpreted as a process where the system (spectrum) does work against internal stresses (non-optimum model parameters) to achieve a state of minimum free energy/maximum entropy. Finally, we show how the distribution function allows us to define a geometry on parameter space, building on previous work[1, 2]. This geometry has implications for error estimation and we outline a program for incorporating these geometrical insights into an automated parameter fitting algorithm.
Real-time moving horizon estimation for a vibrating active cantilever
NASA Astrophysics Data System (ADS)
Abdollahpouri, Mohammad; Takács, Gergely; Rohaľ-Ilkiv, Boris
2017-03-01
Vibrating structures may be subject to changes throughout their operating lifetime due to a range of environmental and technical factors. These variations can be considered as parameter changes in the dynamic model of the structure, while their online estimates can be utilized in adaptive control strategies, or in structural health monitoring. This paper implements the moving horizon estimation (MHE) algorithm on a low-cost embedded computing device that is jointly observing the dynamic states and parameter variations of an active cantilever beam in real time. The practical behavior of this algorithm has been investigated in various experimental scenarios. It has been found, that for the given field of application, moving horizon estimation converges faster than the extended Kalman filter; moreover, it handles atypical measurement noise, sensor errors or other extreme changes, reliably. Despite its improved performance, the experiments demonstrate that the disadvantage of solving the nonlinear optimization problem in MHE is that it naturally leads to an increase in computational effort.
vFitness: a web-based computing tool for improving estimation of in vitro HIV-1 fitness experiments
2010-01-01
Background The replication rate (or fitness) between viral variants has been investigated in vivo and in vitro for human immunodeficiency virus (HIV). HIV fitness plays an important role in the development and persistence of drug resistance. The accurate estimation of viral fitness relies on complicated computations based on statistical methods. This calls for tools that are easy to access and intuitive to use for various experiments of viral fitness. Results Based on a mathematical model and several statistical methods (least-squares approach and measurement error models), a Web-based computing tool has been developed for improving estimation of virus fitness in growth competition assays of human immunodeficiency virus type 1 (HIV-1). Conclusions Unlike the two-point calculation used in previous studies, the estimation here uses linear regression methods with all observed data in the competition experiment to more accurately estimate relative viral fitness parameters. The dilution factor is introduced for making the computational tool more flexible to accommodate various experimental conditions. This Web-based tool is implemented in C# language with Microsoft ASP.NET, and is publicly available on the Web at http://bis.urmc.rochester.edu/vFitness/. PMID:20482791
vFitness: a web-based computing tool for improving estimation of in vitro HIV-1 fitness experiments.
Ma, Jingming; Dykes, Carrie; Wu, Tao; Huang, Yangxin; Demeter, Lisa; Wu, Hulin
2010-05-18
The replication rate (or fitness) between viral variants has been investigated in vivo and in vitro for human immunodeficiency virus (HIV). HIV fitness plays an important role in the development and persistence of drug resistance. The accurate estimation of viral fitness relies on complicated computations based on statistical methods. This calls for tools that are easy to access and intuitive to use for various experiments of viral fitness. Based on a mathematical model and several statistical methods (least-squares approach and measurement error models), a Web-based computing tool has been developed for improving estimation of virus fitness in growth competition assays of human immunodeficiency virus type 1 (HIV-1). Unlike the two-point calculation used in previous studies, the estimation here uses linear regression methods with all observed data in the competition experiment to more accurately estimate relative viral fitness parameters. The dilution factor is introduced for making the computational tool more flexible to accommodate various experimental conditions. This Web-based tool is implemented in C# language with Microsoft ASP.NET, and is publicly available on the Web at http://bis.urmc.rochester.edu/vFitness/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staehle, R.W.; Agrawal, A.K.
1978-01-01
The straining electrode technique was used to evaluate the stress corrosion cracking (SCC) susceptibility of AISI 304 stainless steel in 20N NaOH solution, and of Inconel 600 Alloy and Incoloy 800 Alloy in boiling 17.5N NaOH solution. The crack propagation rate estimated from the straining experiments correlated well with the previous constant load experiments. It was found that the straining electrode technique is a useful method for estimating, through short term experiments, parameters like crack propagation rate, crack morphology, and repassivation rate, as a function of the electrode potential. The role of alloying elements on the crack propagation rate inmore » the above alloys are also discussed.« less
Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru
2010-12-01
The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.
NASA Technical Reports Server (NTRS)
Lugo, Rafael A.; Tolson, Robert H.; Schoenenberger, Mark
2013-01-01
As part of the Mars Science Laboratory (MSL) trajectory reconstruction effort at NASA Langley Research Center, free-flight aeroballistic experiments of instrumented MSL scale models was conducted at Aberdeen Proving Ground in Maryland. The models carried an inertial measurement unit (IMU) and a flush air data system (FADS) similar to the MSL Entry Atmospheric Data System (MEADS) that provided data types similar to those from the MSL entry. Multiple sources of redundant data were available, including tracking radar and on-board magnetometers. These experimental data enabled the testing and validation of the various tools and methodologies that will be used for MSL trajectory reconstruction. The aerodynamic parameters Mach number, angle of attack, and sideslip angle were estimated using minimum variance with a priori to combine the pressure data and pre-flight computational fluid dynamics (CFD) data. Both linear and non-linear pressure model terms were also estimated for each pressure transducer as a measure of the errors introduced by CFD and transducer calibration. Parameter uncertainties were estimated using a "consider parameters" approach.
NASA Astrophysics Data System (ADS)
Jiao, J.; Trautz, A.; Zhang, Y.; Illangasekera, T.
2017-12-01
Subsurface flow and transport characterization under data-sparse condition is addressed by a new and computationally efficient inverse theory that simultaneously estimates parameters, state variables, and boundary conditions. Uncertainty in static data can be accounted for while parameter structure can be complex due to process uncertainty. The approach has been successfully extended to inverting transient and unsaturated flows as well as contaminant source identification under unknown initial and boundary conditions. In one example, by sampling numerical experiments simulating two-dimensional steady-state flow in which tracer migrates, a sequential inversion scheme first estimates the flow field and permeability structure before the evolution of tracer plume and dispersivities are jointly estimated. Compared to traditional inversion techniques, the theory does not use forward simulations to assess model-data misfits, thus the knowledge of the difficult-to-determine site boundary condition is not required. To test the general applicability of the theory, data generated during high-precision intermediate-scale experiments (i.e., a scale intermediary to the field and column scales) in large synthetic aquifers can be used. The design of such experiments is not trivial as laboratory conditions have to be selected to mimic natural systems in order to provide useful data, thus requiring a variety of sensors and data collection strategies. This paper presents the design of such an experiment in a synthetic, multi-layered aquifer with dimensions of 242.7 x 119.3 x 7.7 cm3. Different experimental scenarios that will generate data to validate the theory are presented.
NASA Astrophysics Data System (ADS)
Davis, Rebecca Anne
The increase in waste disposal and energy costs has provided an incentive to convert carbohydrate-rich food waste streams into fuel. For example, dining halls and restaurants discard foods that require tipping fees for removal. An effective use of food waste may be the enzymatic hydrolysis of the waste to simple sugars and fermentation of the sugars to ethanol. As these wastes have complex compositions which may change day-to-day, experiments were carried out to test fermentability of two different types of food waste at 27° C using Saccharomyces cerevisiae yeast (ATCC4124) and Genencor's STARGEN™ enzyme in batch simultaneous saccharification and fermentation (SSF) experiments. A mathematical model of SSF based on experimentally matched rate equations for enzyme hydrolysis and yeast fermentation was developed in Matlab Simulink®. Using Simulink® parameter estimation 1.1.3, parameters for hydrolysis and fermentation were estimated through modified Michaelis-Menten and Monod-type equations with the aim of predicting changes in the levels of ethanol and glycerol from different initial concentrations of glucose, fructose, maltose, and starch. The model predictions and experimental observations agree reasonably well for the two food waste streams and a third validation dataset. The approach of using Simulink® as a dynamic visual model for SSF represents a simple method which can be applied to a variety of biological pathways and may be very useful for systems approaches in metabolic engineering in the future.
Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities.
Cruz Bournazou, M N; Barz, T; Nickel, D B; Lopez Cárdenas, D C; Glauche, F; Knepper, A; Neubauer, P
2017-03-01
We present an integrated framework for the online optimal experimental re-design applied to parallel nonlinear dynamic processes that aims to precisely estimate the parameter set of macro kinetic growth models with minimal experimental effort. This provides a systematic solution for rapid validation of a specific model to new strains, mutants, or products. In biosciences, this is especially important as model identification is a long and laborious process which is continuing to limit the use of mathematical modeling in this field. The strength of this approach is demonstrated by fitting a macro-kinetic differential equation model for Escherichia coli fed-batch processes after 6 h of cultivation. The system includes two fully-automated liquid handling robots; one containing eight mini-bioreactors and another used for automated at-line analyses, which allows for the immediate use of the available data in the modeling environment. As a result, the experiment can be continually re-designed while the cultivations are running using the information generated by periodical parameter estimations. The advantages of an online re-computation of the optimal experiment are proven by a 50-fold lower average coefficient of variation on the parameter estimates compared to the sequential method (4.83% instead of 235.86%). The success obtained in such a complex system is a further step towards a more efficient computer aided bioprocess development. Biotechnol. Bioeng. 2017;114: 610-619. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Parameter estimation techniques and application in aircraft flight testing
NASA Technical Reports Server (NTRS)
1974-01-01
Technical papers presented at the symposium by selected representatives from industry, universities, and various Air Force, Navy, and NASA installations are given. The topics covered include the newest developments in identification techniques, the most recent flight-test experience, and the projected potential for the near future.
Yu, Liyang; Han, Qi; Niu, Xiamu; Yiu, S M; Fang, Junbin; Zhang, Ye
2016-02-01
Most of the existing image modification detection methods which are based on DCT coefficient analysis model the distribution of DCT coefficients as a mixture of a modified and an unchanged component. To separate the two components, two parameters, which are the primary quantization step, Q1, and the portion of the modified region, α, have to be estimated, and more accurate estimations of α and Q1 lead to better detection and localization results. Existing methods estimate α and Q1 in a completely blind manner, without considering the characteristics of the mixture model and the constraints to which α should conform. In this paper, we propose a more effective scheme for estimating α and Q1, based on the observations that, the curves on the surface of the likelihood function corresponding to the mixture model is largely smooth, and α can take values only in a discrete set. We conduct extensive experiments to evaluate the proposed method, and the experimental results confirm the efficacy of our method. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Fukayama, Osamu; Taniguchi, Noriyuki; Suzuki, Takafumi; Mabuchi, Kunihiko
2008-01-01
An online brain-machine interface (BMI) in the form of a small vehicle, the 'RatCar,' has been developed. A rat had neural electrodes implanted in its primary motor cortex and basal ganglia regions to continuously record neural signals. Then, a linear state space model represents a correlation between the recorded neural signals and locomotion states (i.e., moving velocity and azimuthal variances) of the rat. The model parameters were set so as to minimize estimation errors, and the locomotion states were estimated from neural firing rates using a Kalman filter algorithm. The results showed a small oscillation to achieve smooth control of the vehicle in spite of fluctuating firing rates with noises applied to the model. Major variation of the model variables converged in a first 30 seconds of the experiments and lasted for the entire one hour session.
Estimation of αL, velocity, Kd and confidence limits from tracer injection test data
Broermann, James; Bassett, R.L.; Weeks, Edwin P.; Borgstrom, Mark
1997-01-01
Bromide and boron were used as tracers during an injection experiment conducted at an artificial recharge facility near Stanton, Texas. The Ogallala aquifer at the Stanton site represents a heterogeneous alluvial environment and provides the opportunity to report scale dependent dispersivities at observation distances of 2 to 15 m in this setting. Values of longitudinal dispersivities are compared with other published values. Water samples were collected at selected depths both from piezometers and from fully screened observation wells at radii of 2, 5, 10 and 15 m. An exact analytical solution is used to simulate the concentration breakthrough curves and estimate longitudinal dispersivities and velocity parameters. Greater confidence can be placed on these data because the estimated parameters are error bounded using the bootstrap method. The non-conservative behavior of boron transport in clay rich sections of the aquifer were quantified with distribution coefficients by using bromide as a conservative reference tracer.
Estimation of αL, velocity, Kd, and confidence limits from tracer injection data
Broermann, James; Bassett, R.L.; Weeks, Edwin P.; Borgstrom, Mark
1997-01-01
Bromide and boron were used as tracers during an injection experiment conducted at an artificial recharge facility near Stanton, Texas. The Ogallala aquifer at the Stanton site represents a heterogeneous alluvial environment and provides the opportunity to report scale dependent dispersivities at observation distances of 2 to 15 m in this setting. Values of longitudinal dispersivities are compared with other published values. Water samples were collected at selected depths both from piezometers and from fully screened observation wells at radii of 2, 5, 10 and 15 m. An exact analytical solution is used to simulate the concentration breakthrough curves and estimate longitudinal dispersivities and velocity parameters. Greater confidence can be placed on these data because the estimated parameters are error bounded using the bootstrap method. The non-conservative behavior of boron transport in clay rich sections of the aquifer were quantified with distribution coefficients by using bromide as a conservative reference tracer.
NASA Astrophysics Data System (ADS)
Uilhoorn, F. E.
2016-10-01
In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.
Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting
Zhao, Bo; Setsompop, Kawin; Ye, Huihui; Cauley, Stephen; Wald, Lawrence L.
2017-01-01
This paper introduces a statistical estimation framework for magnetic resonance (MR) fingerprinting, a recently proposed quantitative imaging paradigm. Within this framework, we present a maximum likelihood (ML) formalism to estimate multiple parameter maps directly from highly undersampled, noisy k-space data. A novel algorithm, based on variable splitting, the alternating direction method of multipliers, and the variable projection method, is developed to solve the resulting optimization problem. Representative results from both simulations and in vivo experiments demonstrate that the proposed approach yields significantly improved accuracy in parameter estimation, compared to the conventional MR fingerprinting reconstruction. Moreover, the proposed framework provides new theoretical insights into the conventional approach. We show analytically that the conventional approach is an approximation to the ML reconstruction; more precisely, it is exactly equivalent to the first iteration of the proposed algorithm for the ML reconstruction, provided that a gridding reconstruction is used as an initialization. PMID:26915119
Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting.
Zhao, Bo; Setsompop, Kawin; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L
2016-08-01
This paper introduces a statistical estimation framework for magnetic resonance (MR) fingerprinting, a recently proposed quantitative imaging paradigm. Within this framework, we present a maximum likelihood (ML) formalism to estimate multiple MR tissue parameter maps directly from highly undersampled, noisy k-space data. A novel algorithm, based on variable splitting, the alternating direction method of multipliers, and the variable projection method, is developed to solve the resulting optimization problem. Representative results from both simulations and in vivo experiments demonstrate that the proposed approach yields significantly improved accuracy in parameter estimation, compared to the conventional MR fingerprinting reconstruction. Moreover, the proposed framework provides new theoretical insights into the conventional approach. We show analytically that the conventional approach is an approximation to the ML reconstruction; more precisely, it is exactly equivalent to the first iteration of the proposed algorithm for the ML reconstruction, provided that a gridding reconstruction is used as an initialization.
NASA Astrophysics Data System (ADS)
Scharnagl, Benedikt; Durner, Wolfgang
2013-04-01
Models are inherently imperfect because they simplify processes that are themselves imperfectly known and understood. Moreover, the input variables and parameters needed to run a model are typically subject to various sources of error. As a consequence of these imperfections, model predictions will always deviate from corresponding observations. In most applications in soil hydrology, these deviations are clearly not random but rather show a systematic structure. From a statistical point of view, this systematic mismatch may be a reason for concern because it violates one of the basic assumptions made in inverse parameter estimation: the assumption of independence of the residuals. But what are the consequences of simply ignoring the autocorrelation in the residuals, as it is current practice in soil hydrology? Are the parameter estimates still valid even though the statistical foundation they are based on is partially collapsed? Theory and practical experience from other fields of science have shown that violation of the independence assumption will result in overconfident uncertainty bounds and that in some cases it may lead to significantly different optimal parameter values. In our contribution, we present three soil hydrological case studies, in which the effect of autocorrelated residuals on the estimated parameters was investigated in detail. We explicitly accounted for autocorrelated residuals using a formal likelihood function that incorporates an autoregressive model. The inverse problem was posed in a Bayesian framework, and the posterior probability density function of the parameters was estimated using Markov chain Monte Carlo simulation. In contrast to many other studies in related fields of science, and quite surprisingly, we found that the first-order autoregressive model, often abbreviated as AR(1), did not work well in the soil hydrological setting. We showed that a second-order autoregressive, or AR(2), model performs much better in these applications, leading to parameter and uncertainty estimates that satisfy all the underlying statistical assumptions. For theoretical reasons, these estimates are deemed more reliable than those estimates based on the neglect of autocorrelation in the residuals. In compliance with theory and results reported in the literature, our results showed that parameter uncertainty bounds were substantially wider if autocorrelation in the residuals was explicitly accounted for, and also the optimal parameter vales were slightly different in this case. We argue that the autoregressive model presented here should be used as a matter of routine in inverse modeling of soil hydrological processes.
The use of subjective rating of exertion in Ergonomics.
Capodaglio, P
2002-01-01
In Ergonomics, the use of psychophysical methods for subjectively evaluating work tasks and determining acceptable loads has become more common. Daily activities at the work site are studied not only with physiological methods but also with perceptual estimation and production methods. The psychophysical methods are of special interest in field studies of short-term work tasks for which valid physiological measurements are difficult to obtain. The perceived exertion, difficulty and fatigue that a person experiences in a certain work situation is an important sign of a real or objective load. Measurement of the physical load with physiological parameters is not sufficient since it does not take into consideration the particular difficulty of the performance or the capacity of the individual. It is often difficult from technical and biomechanical analyses to understand the seriousness of a difficulty that a person experiences. Physiological determinations give important information, but they may be insufficient due to the technical problems in obtaining relevant but simple measurements for short-term activities or activities involving special movement patterns. Perceptual estimations using Borg's scales give important information because the severity of a task's difficulty depends on the individual doing the work. Observation is the most simple and used means to assess job demands. Other evaluations integrating observation are the followings: indirect estimation of energy expenditure based on prediction equations or direct measurement of oxygen consumption; measurements of forces, angles and biomechanical parameters; measurements of physiological and neurophysiological parameters during tasks. It is recommended that determinations of performances of occupational activities assess rating of perceived exertion and integrate these measurements of intensity levels with those of activity's type, duration and frequency. A better estimate of the degree of physical activity of individuals thus can be obtained.
NASA Astrophysics Data System (ADS)
Schönert, Stefan; Lasserre, Thierry; Oberauer, Lothar
2003-03-01
In the forthcoming months, the KamLAND experiment will probe the parameter space of the solar large mixing angle MSW solution as the origin of the solar neutrino deficit with ν¯e's from distant nuclear reactors. If however the solution realized in nature is such that Δm2sol>~2×10-4 eV2 (thereafter named the HLMA region), KamLAND will only observe a rate suppression but no spectral distortion and hence it will not have the optimal sensitivity to measure the mixing parameters. In this case, we propose a new medium baseline reactor experiment located at Heilbronn (Germany) to pin down the precise value of the solar mixing parameters. In this paper, we present the Heilbronn detector site, we calculate the ν¯e interaction rate and the positron spectrum expected from the surrounding nuclear power plants. We also discuss the sensitivity of such an experiment to |Ue3| in both normal and inverted neutrino mass hierarchy scenarios. We then outline the detector design, estimate background signals induced by natural radioactivity as well as by in situ cosmic ray muon interaction, and discuss a strategy to detect the anti-neutrino signal `free of background'.
NASA Astrophysics Data System (ADS)
Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.
2011-12-01
A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.
Statistical analysis of target acquisition sensor modeling experiments
NASA Astrophysics Data System (ADS)
Deaver, Dawne M.; Moyer, Steve
2015-05-01
The U.S. Army RDECOM CERDEC NVESD Modeling and Simulation Division is charged with the development and advancement of military target acquisition models to estimate expected soldier performance when using all types of imaging sensors. Two elements of sensor modeling are (1) laboratory-based psychophysical experiments used to measure task performance and calibrate the various models and (2) field-based experiments used to verify the model estimates for specific sensors. In both types of experiments, it is common practice to control or measure environmental, sensor, and target physical parameters in order to minimize uncertainty of the physics based modeling. Predicting the minimum number of test subjects required to calibrate or validate the model should be, but is not always, done during test planning. The objective of this analysis is to develop guidelines for test planners which recommend the number and types of test samples required to yield a statistically significant result.
Simplified Estimation and Testing in Unbalanced Repeated Measures Designs.
Spiess, Martin; Jordan, Pascal; Wendt, Mike
2018-05-07
In this paper we propose a simple estimator for unbalanced repeated measures design models where each unit is observed at least once in each cell of the experimental design. The estimator does not require a model of the error covariance structure. Thus, circularity of the error covariance matrix and estimation of correlation parameters and variances are not necessary. Together with a weak assumption about the reason for the varying number of observations, the proposed estimator and its variance estimator are unbiased. As an alternative to confidence intervals based on the normality assumption, a bias-corrected and accelerated bootstrap technique is considered. We also propose the naive percentile bootstrap for Wald-type tests where the standard Wald test may break down when the number of observations is small relative to the number of parameters to be estimated. In a simulation study we illustrate the properties of the estimator and the bootstrap techniques to calculate confidence intervals and conduct hypothesis tests in small and large samples under normality and non-normality of the errors. The results imply that the simple estimator is only slightly less efficient than an estimator that correctly assumes a block structure of the error correlation matrix, a special case of which is an equi-correlation matrix. Application of the estimator and the bootstrap technique is illustrated using data from a task switch experiment based on an experimental within design with 32 cells and 33 participants.
Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu
2016-11-23
The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.
Optimal designs for copula models
Perrone, E.; Müller, W.G.
2016-01-01
Copula modelling has in the past decade become a standard tool in many areas of applied statistics. However, a largely neglected aspect concerns the design of related experiments. Particularly the issue of whether the estimation of copula parameters can be enhanced by optimizing experimental conditions and how robust all the parameter estimates for the model are with respect to the type of copula employed. In this paper an equivalence theorem for (bivariate) copula models is provided that allows formulation of efficient design algorithms and quick checks of whether designs are optimal or at least efficient. Some examples illustrate that in practical situations considerable gains in design efficiency can be achieved. A natural comparison between different copula models with respect to design efficiency is provided as well. PMID:27453616
NASA Astrophysics Data System (ADS)
Jacquin, A. P.
2012-04-01
This study analyses the effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model's discharge estimates. Prediction uncertainty bounds are derived using the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation (at a single station within the catchment) and a precipitation factor FPi. Thus, these factors provide a simplified representation of the spatial variation of precipitation, specifically the shape of the functional relationship between precipitation and height. In the absence of information about appropriate values of the precipitation factors FPi, these are estimated through standard calibration procedures. The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. Monte Carlo samples of the model output are obtained by randomly varying the model parameters within their feasible ranges. In the first experiment, the precipitation factors FPi are considered unknown and thus included in the sampling process. The total number of unknown parameters in this case is 16. In the second experiment, precipitation factors FPi are estimated a priori, by means of a long term water balance between observed discharge at the catchment outlet, evapotranspiration estimates and observed precipitation. In this case, the number of unknown parameters reduces to 11. The feasible ranges assigned to the precipitation factors in the first experiment are slightly wider than the range of fixed precipitation factors used in the second experiment. The mean squared error of the Box-Cox transformed discharge during the calibration period is used for the evaluation of the goodness of fit of the model realizations. GLUE-type uncertainty bounds during the verification period are derived at the probability levels p=85%, 90% and 95%. Results indicate that, as expected, prediction uncertainty bounds indeed change if precipitation factors FPi are estimated a priori rather than being allowed to vary, but that this change is not dramatic. Firstly, the width of the uncertainty bounds at the same probability level only slightly reduces compared to the case where precipitation factors are allowed to vary. Secondly, the ability to enclose the observations improves, but the decrease in the fraction of outliers is not significant. These results are probably due to the narrow range of variability allowed to the precipitation factors FPi in the first experiment, which implies that although they indicate the shape of the functional relationship between precipitation and height, the magnitude of precipitation estimates were mainly determined by the magnitude of the observations at the available raingauge. It is probable that the situation where no prior information is available on the realistic ranges of variation of the precipitation factors, and the inclusion of precipitation data uncertainty, would have led to a different conclusion. Acknowledgements: This research was funded by FONDECYT, Research Project 1110279.
Optimal design criteria - prediction vs. parameter estimation
NASA Astrophysics Data System (ADS)
Waldl, Helmut
2014-05-01
G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.
Lee, Jared A.; Hacker, Joshua P.; Monache, Luca Delle; ...
2016-08-03
A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this paper we usemore » the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining z 0, the time-varying sea-surface roughness length, we conduct four WRF-SCM/DART experiments over the October-December 2006 period. The two methods for determining z 0 are the default Fairall-adjusted Charnock formulation in WRF, and using parameter estimation techniques to estimate z 0 in DART. Using DART to estimate z 0 is found to reduce 1-h forecast errors of wind speed over the Charnock-Fairall z 0 ensembles by 4%–22%. Finally, however, parameter estimation of z 0 does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.« less
Alvares, R C; Silva, F C; Melo, L C; Melo, P G S; Pereira, H S
2016-11-21
Slow seed coat darkening is desirable in common bean cultivars and genetic parameters are important to define breeding strategies. The aims of this study were to estimate genetic parameters for plant architecture, grain yield, grain size, and seed-coat darkening in common bean; identify any genetic association among these traits; and select lines that associate desirable phenotypes for these traits. Three experiments were set up in the winter 2012 growing season, in Santo Antônio de Goiás and Brasília, Brazil, including 220 lines obtained from four segregating populations and five parents. A triple lattice 15 x 15 experimental design was used. The traits evaluated were plant architecture, grain yield, grain size, and seed-coat darkening. Analyses of variance were carried out and genetic parameters such as heritability, gain expected from selection, and correlations, were estimated. For selection of superior lines, a "weight-free and parameter-free" index was used. The estimates of genetic variance, heritability, and gain expected from selection were high, indicating good possibility for success in selection of the four traits. The genotype x environment interaction was proportionally more important for yield than for the other traits. There was no strong genetic correlation observed among the four traits, which indicates the possibility of selection of superior lines with many traits. Considering simultaneous selection, it was not possible to join high genetic gains for the four traits. Forty-four lines that combined high yield, more upright plant architecture, slow darkening grains, and commercial grade size were selected.
NASA Astrophysics Data System (ADS)
Amjad, M.; Salam, Z.; Ishaque, K.
2014-04-01
In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.
UCODE, a computer code for universal inverse modeling
Poeter, E.P.; Hill, M.C.
1999-01-01
This article presents the US Geological Survey computer program UCODE, which was developed in collaboration with the US Army Corps of Engineers Waterways Experiment Station and the International Ground Water Modeling Center of the Colorado School of Mines. UCODE performs inverse modeling, posed as a parameter-estimation problem, using nonlinear regression. Any application model or set of models can be used; the only requirement is that they have numerical (ASCII or text only) input and output files and that the numbers in these files have sufficient significant digits. Application models can include preprocessors and postprocessors as well as models related to the processes of interest (physical, chemical and so on), making UCODE extremely powerful for model calibration. Estimated parameters can be defined flexibly with user-specified functions. Observations to be matched in the regression can be any quantity for which a simulated equivalent value can be produced, thus simulated equivalent values are calculated using values that appear in the application model output files and can be manipulated with additive and multiplicative functions, if necessary. Prior, or direct, information on estimated parameters also can be included in the regression. The nonlinear regression problem is solved by minimizing a weighted least-squares objective function with respect to the parameter values using a modified Gauss-Newton method. Sensitivities needed for the method are calculated approximately by forward or central differences and problems and solutions related to this approximation are discussed. Statistics are calculated and printed for use in (1) diagnosing inadequate data or identifying parameters that probably cannot be estimated with the available data, (2) evaluating estimated parameter values, (3) evaluating the model representation of the actual processes and (4) quantifying the uncertainty of model simulated values. UCODE is intended for use on any computer operating system: it consists of algorithms programmed in perl, a freeware language designed for text manipulation and Fortran90, which efficiently performs numerical calculations.
PHOTOMETRIC ORBITS OF EXTRASOLAR PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Robert A.
We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a Keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily, we assume a Lambertian phase function. We study in detail the case of short-period giant planets (SPGPs) and observational parameters relevant to the Kepler mission: 20 ppm photometry with normal errors, 6.5 hr cadence, and three-year duration. We define a relevantmore » 'planetary population of interest' in terms of probability distributions of the PhO parameters. We perform Monte Carlo experiments to estimate the ability to detect planets and to recover PhO parameters from light curves. We calibrate the completeness of a periodogram search technique, and find structure caused by degeneracy. We recover full orbital solutions from synthetic Kepler data sets and estimate the median errors in recovered PhO parameters. We treat in depth a case of a Jupiter body-double. For the stated assumptions, we find that Kepler should obtain orbital solutions for many of the 100-760 SPGP that Jenkins and Doyle estimate Kepler will discover. Because most or all of these discoveries will be followed up by ground-based radial velocity observations, the estimates of inclination angle from the PhO may enable the calculation of true companion masses: Kepler photometry may break the 'msin i' degeneracy. PhO observations may be difficult. There is uncertainty about how low the albedos of SPGPs actually are, about their phase functions, and about a possible noise floor due to systematic errors from instrumental and stellar sources. Nevertheless, simple detection of SPGPs in reflected light should be robust in the regime of Kepler photometry, and estimates of all six orbital parameters may be feasible in at least a subset of cases.« less
NASA Astrophysics Data System (ADS)
Li, Y. J.; Kokkinaki, Amalia; Darve, Eric F.; Kitanidis, Peter K.
2017-08-01
The operation of most engineered hydrogeological systems relies on simulating physical processes using numerical models with uncertain parameters and initial conditions. Predictions by such uncertain models can be greatly improved by Kalman-filter techniques that sequentially assimilate monitoring data. Each assimilation constitutes a nonlinear optimization, which is solved by linearizing an objective function about the model prediction and applying a linear correction to this prediction. However, if model parameters and initial conditions are uncertain, the optimization problem becomes strongly nonlinear and a linear correction may yield unphysical results. In this paper, we investigate the utility of one-step ahead smoothing, a variant of the traditional filtering process, to eliminate nonphysical results and reduce estimation artifacts caused by nonlinearities. We present the smoothing-based compressed state Kalman filter (sCSKF), an algorithm that combines one step ahead smoothing, in which current observations are used to correct the state and parameters one step back in time, with a nonensemble covariance compression scheme, that reduces the computational cost by efficiently exploring the high-dimensional state and parameter space. Numerical experiments show that when model parameters are uncertain and the states exhibit hyperbolic behavior with sharp fronts, as in CO2 storage applications, one-step ahead smoothing reduces overshooting errors and, by design, gives physically consistent state and parameter estimates. We compared sCSKF with commonly used data assimilation methods and showed that for the same computational cost, combining one step ahead smoothing and nonensemble compression is advantageous for real-time characterization and monitoring of large-scale hydrogeological systems with sharp moving fronts.
NASA Astrophysics Data System (ADS)
Sharan, Maithili; Singh, Amit Kumar; Singh, Sarvesh Kumar
2017-11-01
Estimation of an unknown atmospheric release from a finite set of concentration measurements is considered an ill-posed inverse problem. Besides ill-posedness, the estimation process is influenced by the instrumental errors in the measured concentrations and model representativity errors. The study highlights the effect of minimizing model representativity errors on the source estimation. This is described in an adjoint modelling framework and followed in three steps. First, an estimation of point source parameters (location and intensity) is carried out using an inversion technique. Second, a linear regression relationship is established between the measured concentrations and corresponding predicted using the retrieved source parameters. Third, this relationship is utilized to modify the adjoint functions. Further, source estimation is carried out using these modified adjoint functions to analyse the effect of such modifications. The process is tested for two well known inversion techniques, called renormalization and least-square. The proposed methodology and inversion techniques are evaluated for a real scenario by using concentrations measurements from the Idaho diffusion experiment in low wind stable conditions. With both the inversion techniques, a significant improvement is observed in the retrieval of source estimation after minimizing the representativity errors.
Bowen, Spencer L.; Byars, Larry G.; Michel, Christian J.; Chonde, Daniel B.; Catana, Ciprian
2014-01-01
Kinetic parameters estimated from dynamic 18F-fluorodeoxyglucose PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For OSEM, image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting 18F-fluorodeoxyglucose dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation GTM PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in CMRGlc estimates, although by less than 5% in most cases compared to the other PVC methods. The results indicate that the PVC implementation and choice of PSF modelling in the reconstruction can significantly impact model parameters. PMID:24052021
Tuning a physically-based model of the air-sea gas transfer velocity
NASA Astrophysics Data System (ADS)
Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.
Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.
NASA Astrophysics Data System (ADS)
Tichý, Ondřej; Šmídl, Václav; Hofman, Radek; Stohl, Andreas
2016-11-01
Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. It is typically formalized as an inverse problem using a linear model that can explain observable quantities (e.g., concentrations or deposition values) as a product of the source-receptor sensitivity (SRS) matrix obtained from an atmospheric transport model multiplied by the unknown source-term vector. Since this problem is typically ill-posed, current state-of-the-art methods are based on regularization of the problem and solution of a formulated optimization problem. This procedure depends on manual settings of uncertainties that are often very poorly quantified, effectively making them tuning parameters. We formulate a probabilistic model, that has the same maximum likelihood solution as the conventional method using pre-specified uncertainties. Replacement of the maximum likelihood solution by full Bayesian estimation also allows estimation of all tuning parameters from the measurements. The estimation procedure is based on the variational Bayes approximation which is evaluated by an iterative algorithm. The resulting method is thus very similar to the conventional approach, but with the possibility to also estimate all tuning parameters from the observations. The proposed algorithm is tested and compared with the standard methods on data from the European Tracer Experiment (ETEX) where advantages of the new method are demonstrated. A MATLAB implementation of the proposed algorithm is available for download.
Analysis of Brown camera distortion model
NASA Astrophysics Data System (ADS)
Nowakowski, Artur; Skarbek, Władysław
2013-10-01
Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.
A Novel Statistical Analysis and Interpretation of Flow Cytometry Data
2013-03-31
the resulting residuals appear random. In the work that follows, I∗ = 200. The values of B and b̂j are known from the experiment. Notice that the...conjunction with the model parameter vector in a two- stage process. Unfortunately two- stage estimation may cause some parameters of the mathematical model to...information theoretic criteria such as Akaike’s Information Criterion (AIC). From (4.3), it follows that the scaled residuals rjk = λjI[n̂](tj , zk; ~q
Analysing neutron scattering data using McStas virtual experiments
NASA Astrophysics Data System (ADS)
Udby, L.; Willendrup, P. K.; Knudsen, E.; Niedermayer, Ch.; Filges, U.; Christensen, N. B.; Farhi, E.; Wells, B. O.; Lefmann, K.
2011-04-01
With the intention of developing a new data analysis method using virtual experiments we have built a detailed virtual model of the cold triple-axis spectrometer RITA-II at PSI, Switzerland, using the McStas neutron ray-tracing package. The parameters characterising the virtual instrument were carefully tuned against real experiments. In the present paper we show that virtual experiments reproduce experimentally observed linewidths within 1-3% for a variety of samples. Furthermore we show that the detailed knowledge of the instrumental resolution found from virtual experiments, including sample mosaicity, can be used for quantitative estimates of linewidth broadening resulting from, e.g., finite domain sizes in single-crystal samples.
Magnetic properties of type-I and type-II Weyl semimetals in the superconducting state
NASA Astrophysics Data System (ADS)
Rosenstein, Baruch; Shapiro, B. Ya.; Li, Dingping; Shapiro, I.
2018-04-01
Superconductivity was observed in certain range of pressure and chemical composition in Weyl semimetals of both type I and type II (when the Dirac cone tilt parameter κ >1 ). Magnetic properties of these superconductors are studied on the basis of microscopic phonon-mediated pairing model. The Ginzburg-Landau effective theory for the order parameter is derived using the Gorkov approach and used to determine anisotropic coherence length, the penetration depth determining the Abrikosov parameter for a layered material and applied to recent extensive experiments on MoTe2. It is found that superconductivity is of second kind near the topological transition at κ =1 . For a larger tilt parameter, superconductivity becomes first kind. For κ <1 , the Abrikosov parameter also tends to be reduced, often crossing over to the first kind. For the superconductors of the second kind, the dependence of critical fields Hc 2 and Hc 1 on the tilt parameter κ (governed by pressure) is compared with the experiments. Strength of thermal fluctuations is estimated and it is found that they are strong enough to cause Abrikosov vortex lattice melting near Hc 2. The melting line is calculated and is consistent with experiments provided the fluctuations are three dimensional in the type-I phase (large pressure) and two dimensional in the type-II phase (small pressure).
Varadarajan, Divya; Haldar, Justin P
2017-11-01
The data measured in diffusion MRI can be modeled as the Fourier transform of the Ensemble Average Propagator (EAP), a probability distribution that summarizes the molecular diffusion behavior of the spins within each voxel. This Fourier relationship is potentially advantageous because of the extensive theory that has been developed to characterize the sampling requirements, accuracy, and stability of linear Fourier reconstruction methods. However, existing diffusion MRI data sampling and signal estimation methods have largely been developed and tuned without the benefit of such theory, instead relying on approximations, intuition, and extensive empirical evaluation. This paper aims to address this discrepancy by introducing a novel theoretical signal processing framework for diffusion MRI. The new framework can be used to characterize arbitrary linear diffusion estimation methods with arbitrary q-space sampling, and can be used to theoretically evaluate and compare the accuracy, resolution, and noise-resilience of different data acquisition and parameter estimation techniques. The framework is based on the EAP, and makes very limited modeling assumptions. As a result, the approach can even provide new insight into the behavior of model-based linear diffusion estimation methods in contexts where the modeling assumptions are inaccurate. The practical usefulness of the proposed framework is illustrated using both simulated and real diffusion MRI data in applications such as choosing between different parameter estimation methods and choosing between different q-space sampling schemes. Copyright © 2017 Elsevier Inc. All rights reserved.
Observations of HF backscatter decay rates from HAARP generated FAI
NASA Astrophysics Data System (ADS)
Bristow, William; Hysell, David
2016-07-01
Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.
Observations of HF backscatter decay rates from HAARP generated FAI
NASA Astrophysics Data System (ADS)
Bristow, W. A.; Hysell, D. L.
2016-12-01
Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.
The drift diffusion model as the choice rule in reinforcement learning.
Pedersen, Mads Lund; Frank, Michael J; Biele, Guido
2017-08-01
Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyperactivity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups.
Runkel, Robert L.
1998-01-01
OTIS is a mathematical simulation model used to characterize the fate and transport of water-borne solutes in streams and rivers. The governing equation underlying the model is the advection-dispersion equation with additional terms to account for transient storage, lateral inflow, first-order decay, and sorption. This equation and the associated equations describing transient storage and sorption are solved using a Crank-Nicolson finite-difference solution. OTIS may be used in conjunction with data from field-scale tracer experiments to quantify the hydrologic parameters affecting solute transport. This application typically involves a trial-and-error approach wherein parameter estimates are adjusted to obtain an acceptable match between simulated and observed tracer concentrations. Additional applications include analyses of nonconservative solutes that are subject to sorption processes or first-order decay. OTIS-P, a modified version of OTIS, couples the solution of the governing equation with a nonlinear regression package. OTIS-P determines an optimal set of parameter estimates that minimize the squared differences between the simulated and observed concentrations, thereby automating the parameter estimation process. This report details the development and application of OTIS and OTIS-P. Sections of the report describe model theory, input/output specifications, sample applications, and installation instructions.
The drift diffusion model as the choice rule in reinforcement learning
Frank, Michael J.
2017-01-01
Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyper-activity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups. PMID:27966103
Analysis of pumping tests: Significance of well diameter, partial penetration, and noise
Heidari, M.; Ghiassi, K.; Mehnert, E.
1999-01-01
The nonlinear least squares (NLS) method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating pumping wells, and with partially penetrating piezometers or observation wells. It was demonstrated that noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced an exact or acceptable set of parameters when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters, particularly that of specific storage, decreased with increases in the noise level in the observed drawdown data. With consideration of the well radii, the noiseless drawdown data from the pumping well in an unconfined aquifer produced good estimates of horizontal and vertical hydraulic conductivities and specific yield, but the estimated specific storage was unacceptable. When noisy data from the pumping well were used, an acceptable set of parameters was not obtained. Further experiments with noisy drawdown data in an unconfined aquifer revealed that when the well diameter was included in the analysis, hydraulic conductivity, specific yield and vertical hydraulic conductivity may be estimated rather effectively from piezometers located over a range of distances from the pumping well. Estimation of specific storage became less reliable for piezemeters located at distances greater than the initial saturated thickness of the aquifer. Application of the NLS to field pumping and recovery data from a confined aquifer showed that the estimated parameters from the two tests were in good agreement only when the well diameter was included in the analysis. Without consideration of well radii, the estimated values of hydraulic conductivity from the pumping and recovery tests were off by a factor of four.The nonlinear least squares method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating piezometers and observation wells. Noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced a set of parameters that agrees very well with piezometer test data when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters decreased with increasing noise level.
Calibration of DEM parameters on shear test experiments using Kriging method
NASA Astrophysics Data System (ADS)
Bednarek, Xavier; Martin, Sylvain; Ndiaye, Abibatou; Peres, Véronique; Bonnefoy, Olivier
2017-06-01
Calibration of powder mixing simulation using Discrete-Element-Method is still an issue. Achieving good agreement with experimental results is difficult because time-efficient use of DEM involves strong assumptions. This work presents a methodology to calibrate DEM parameters using Efficient Global Optimization (EGO) algorithm based on Kriging interpolation method. Classical shear test experiments are used as calibration experiments. The calibration is made on two parameters - Young modulus and friction coefficient. The determination of the minimal number of grains that has to be used is a critical step. Simulations of a too small amount of grains would indeed not represent the realistic behavior of powder when using huge amout of grains will be strongly time consuming. The optimization goal is the minimization of the objective function which is the distance between simulated and measured behaviors. The EGO algorithm uses the maximization of the Expected Improvement criterion to find next point that has to be simulated. This stochastic criterion handles with the two interpolations made by the Kriging method : prediction of the objective function and estimation of the error made. It is thus able to quantify the improvement in the minimization that new simulations at specified DEM parameters would lead to.
NASA Astrophysics Data System (ADS)
Xu, Zheyao; Qi, Naiming; Chen, Yukun
2015-12-01
Spacecraft simulators are widely used to study the dynamics, guidance, navigation, and control of a spacecraft on the ground. A spacecraft simulator can have three rotational degrees of freedom by using a spherical air-bearing to simulate a frictionless and micro-gravity space environment. The moment of inertia and center of mass are essential for control system design of ground-based three-axis spacecraft simulators. Unfortunately, they cannot be known precisely. This paper presents two approaches, i.e. a recursive least-squares (RLS) approach with tracking differentiator (TD) and Extended Kalman Filter (EKF) method, to estimate inertia parameters. The tracking differentiator (TD) filter the noise coupled with the measured signals and generate derivate of the measured signals. Combination of two TD filters in series obtains the angular accelerations that are required in RLS (TD-TD-RLS). Another method that does not need to estimate the angular accelerations is using the integrated form of dynamics equation. An extended TD (ETD) filter which can also generate the integration of the function of signals is presented for RLS (denoted as ETD-RLS). States and inertia parameters are estimated simultaneously using EKF. The observability is analyzed. All proposed methods are illustrated by simulations and experiments.
Tsamandouras, Nikolaos; Rostami-Hodjegan, Amin; Aarons, Leon
2015-01-01
Pharmacokinetic models range from being entirely exploratory and empirical, to semi-mechanistic and ultimately complex physiologically based pharmacokinetic (PBPK) models. This choice is conditional on the modelling purpose as well as the amount and quality of the available data. The main advantage of PBPK models is that they can be used to extrapolate outside the studied population and experimental conditions. The trade-off for this advantage is a complex system of differential equations with a considerable number of model parameters. When these parameters cannot be informed from in vitro or in silico experiments they are usually optimized with respect to observed clinical data. Parameter estimation in complex models is a challenging task associated with many methodological issues which are discussed here with specific recommendations. Concepts such as structural and practical identifiability are described with regards to PBPK modelling and the value of experimental design and sensitivity analyses is sketched out. Parameter estimation approaches are discussed, while we also highlight the importance of not neglecting the covariance structure between model parameters and the uncertainty and population variability that is associated with them. Finally the possibility of using model order reduction techniques and minimal semi-mechanistic models that retain the physiological-mechanistic nature only in the parts of the model which are relevant to the desired modelling purpose is emphasized. Careful attention to all the above issues allows us to integrate successfully information from in vitro or in silico experiments together with information deriving from observed clinical data and develop mechanistically sound models with clinical relevance. PMID:24033787
Bayesian Methods for Effective Field Theories
NASA Astrophysics Data System (ADS)
Wesolowski, Sarah
Microscopic predictions of the properties of atomic nuclei have reached a high level of precision in the past decade. This progress mandates improved uncertainty quantification (UQ) for a robust comparison of experiment with theory. With the uncertainty from many-body methods under control, calculations are now sensitive to the input inter-nucleon interactions. These interactions include parameters that must be fit to experiment, inducing both uncertainty from the fit and from missing physics in the operator structure of the Hamiltonian. Furthermore, the implementation of the inter-nucleon interactions is not unique, which presents the additional problem of assessing results using different interactions. Effective field theories (EFTs) take advantage of a separation of high- and low-energy scales in the problem to form a power-counting scheme that allows the organization of terms in the Hamiltonian based on their expected contribution to observable predictions. This scheme gives a natural framework for quantification of uncertainty due to missing physics. The free parameters of the EFT, called the low-energy constants (LECs), must be fit to data, but in a properly constructed EFT these constants will be natural-sized, i.e., of order unity. The constraints provided by the EFT, namely the size of the systematic uncertainty from truncation of the theory and the natural size of the LECs, are assumed information even before a calculation is performed or a fit is done. Bayesian statistical methods provide a framework for treating uncertainties that naturally incorporates prior information as well as putting stochastic and systematic uncertainties on an equal footing. For EFT UQ Bayesian methods allow the relevant EFT properties to be incorporated quantitatively as prior probability distribution functions (pdfs). Following the logic of probability theory, observable quantities and underlying physical parameters such as the EFT breakdown scale may be expressed as pdfs that incorporate the prior pdfs. Problems of model selection, such as distinguishing between competing EFT implementations, are also natural in a Bayesian framework. In this thesis we focus on two complementary topics for EFT UQ using Bayesian methods--quantifying EFT truncation uncertainty and parameter estimation for LECs. Using the order-by-order calculations and underlying EFT constraints as prior information, we show how to estimate EFT truncation uncertainties. We then apply the result to calculating truncation uncertainties on predictions of nucleon-nucleon scattering in chiral effective field theory. We apply model-checking diagnostics to our calculations to ensure that the statistical model of truncation uncertainty produces consistent results. A framework for EFT parameter estimation based on EFT convergence properties and naturalness is developed which includes a series of diagnostics to ensure the extraction of the maximum amount of available information from data to estimate LECs with minimal bias. We develop this framework using model EFTs and apply it to the problem of extrapolating lattice quantum chromodynamics results for the nucleon mass. We then apply aspects of the parameter estimation framework to perform case studies in chiral EFT parameter estimation, investigating a possible operator redundancy at fourth order in the chiral expansion and the appropriate inclusion of truncation uncertainty in estimating LECs.
In situ diffusion experiment in granite: Phase I
NASA Astrophysics Data System (ADS)
Vilks, P.; Cramer, J. J.; Jensen, M.; Miller, N. H.; Miller, H. G.; Stanchell, F. W.
2003-03-01
A program of in situ experiments, supported by laboratory studies, was initiated to study diffusion in sparsely fractured rock (SFR), with a goal of developing an understanding of diffusion processes within intact crystalline rock. Phase I of the in situ diffusion experiment was started in 1996, with the purpose of developing a methodology for estimating diffusion parameter values. Four in situ diffusion experiments, using a conservative iodide tracer, were performed in highly stressed SFR at a depth of 450 m in the Underground Research Laboratory (URL). The experiments, performed over a 2 year period, yielded rock permeability estimates of 2×10 -21 m 2 and effective diffusion coefficients varying from 2.1×10 -14 to 1.9×10 -13 m 2/s, which were estimated using the MOTIF code. The in situ diffusion profiles reveal a characteristic "dog leg" pattern, with iodide concentrations decreasing rapidly within a centimeter of the open borehole wall. It is hypothesized that this is an artifact of local stress redistribution and creation of a zone of increased constrictivity close to the borehole wall. A comparison of estimated in situ and laboratory diffusivities and permeabilities provides evidence that the physical properties of rock samples removed from high-stress regimes change. As a result of the lessons learnt during Phase I, a Phase II in situ program has been initiated to improve our general understanding of diffusion in SFR.
Modeling of copper sorption onto GFH and design of full-scale GFH adsorbers.
Steiner, Michele; Pronk, Wouter; Boller, Markus A
2006-03-01
During rain events, copper wash-off occurring from copper roofs results in environmental hazards. In this study, columns filled with granulated ferric hydroxide (GFH) were used to treat copper-containing roof runoff. It was shown that copper could be removed to a high extent. A model was developed to describe this removal process. The model was based on the Two Region Model (TRM), extended with an additional diffusion zone. The extended model was able to describe the copper removal in long-term experiments (up to 125 days) with variable flow rates reflecting realistic runoff events. The four parameters of the model were estimated based on data gained with specific column experiments according to maximum sensitivity for each parameter. After model validation, the parameter set was used for the design of full-scale adsorbers. These full-scale adsorbers show high removal rates during extended periods of time.
NASA Technical Reports Server (NTRS)
Usry, J. W.; Whitlock, C. H.
1981-01-01
Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.
Merlé, Y; Mentré, F
1995-02-01
In this paper 3 criteria to design experiments for Bayesian estimation of the parameters of nonlinear models with respect to their parameters, when a prior distribution is available, are presented: the determinant of the Bayesian information matrix, the determinant of the pre-posterior covariance matrix, and the expected information provided by an experiment. A procedure to simplify the computation of these criteria is proposed in the case of continuous prior distributions and is compared with the criterion obtained from a linearization of the model about the mean of the prior distribution for the parameters. This procedure is applied to two models commonly encountered in the area of pharmacokinetics and pharmacodynamics: the one-compartment open model with bolus intravenous single-dose injection and the Emax model. They both involve two parameters. Additive as well as multiplicative gaussian measurement errors are considered with normal prior distributions. Various combinations of the variances of the prior distribution and of the measurement error are studied. Our attention is restricted to designs with limited numbers of measurements (1 or 2 measurements). This situation often occurs in practice when Bayesian estimation is performed. The optimal Bayesian designs that result vary with the variances of the parameter distribution and with the measurement error. The two-point optimal designs sometimes differ from the D-optimal designs for the mean of the prior distribution and may consist of replicating measurements. For the studied cases, the determinant of the Bayesian information matrix and its linearized form lead to the same optimal designs. In some cases, the pre-posterior covariance matrix can be far from its lower bound, namely, the inverse of the Bayesian information matrix, especially for the Emax model and a multiplicative measurement error. The expected information provided by the experiment and the determinant of the pre-posterior covariance matrix generally lead to the same designs except for the Emax model and the multiplicative measurement error. Results show that these criteria can be easily computed and that they could be incorporated in modules for designing experiments.
Reliable evaluation of the quantal determinants of synaptic efficacy using Bayesian analysis
Beato, M.
2013-01-01
Communication between neurones in the central nervous system depends on synaptic transmission. The efficacy of synapses is determined by pre- and postsynaptic factors that can be characterized using quantal parameters such as the probability of neurotransmitter release, number of release sites, and quantal size. Existing methods of estimating the quantal parameters based on multiple probability fluctuation analysis (MPFA) are limited by their requirement for long recordings to acquire substantial data sets. We therefore devised an algorithm, termed Bayesian Quantal Analysis (BQA), that can yield accurate estimates of the quantal parameters from data sets of as small a size as 60 observations for each of only 2 conditions of release probability. Computer simulations are used to compare its performance in accuracy with that of MPFA, while varying the number of observations and the simulated range in release probability. We challenge BQA with realistic complexities characteristic of complex synapses, such as increases in the intra- or intersite variances, and heterogeneity in release probabilities. Finally, we validate the method using experimental data obtained from electrophysiological recordings to show that the effect of an antagonist on postsynaptic receptors is correctly characterized by BQA by a specific reduction in the estimates of quantal size. Since BQA routinely yields reliable estimates of the quantal parameters from small data sets, it is ideally suited to identify the locus of synaptic plasticity for experiments in which repeated manipulations of the recording environment are unfeasible. PMID:23076101
Phobos laser ranging: Numerical Geodesy experiments for Martian system science
NASA Astrophysics Data System (ADS)
Dirkx, D.; Vermeersen, L. L. A.; Noomen, R.; Visser, P. N. A. M.
2014-09-01
Laser ranging is emerging as a technology for use over (inter)planetary distances, having the advantage of high (mm-cm) precision and accuracy and low mass and power consumption. We have performed numerical simulations to assess the science return in terms of geodetic observables of a hypothetical Phobos lander performing active two-way laser ranging with Earth-based stations. We focus our analysis on the estimation of Phobos and Mars gravitational, tidal and rotational parameters. We explicitly include systematic error sources in addition to uncorrelated random observation errors. This is achieved through the use of consider covariance parameters, specifically the ground station position and observation biases. Uncertainties for the consider parameters are set at 5 mm and at 1 mm for the Gaussian uncorrelated observation noise (for an observation integration time of 60 s). We perform the analysis for a mission duration up to 5 years. It is shown that a Phobos Laser Ranging (PLR) can contribute to a better understanding of the Martian system, opening the possibility for improved determination of a variety of physical parameters of Mars and Phobos. The simulations show that the mission concept is especially suited for estimating Mars tidal deformation parameters, estimating degree 2 Love numbers with absolute uncertainties at the 10-2 to 10-4 level after 1 and 4 years, respectively and providing separate estimates for the Martian quality factors at Sun and Phobos-forced frequencies. The estimation of Phobos libration amplitudes and gravity field coefficients provides an estimate of Phobos' relative equatorial and polar moments of inertia with an absolute uncertainty of 10-4 and 10-7, respectively, after 1 year. The observation of Phobos tidal deformation will be able to differentiate between a rubble pile and monolithic interior within 2 years. For all parameters, systematic errors have a much stronger influence (per unit uncertainty) than the uncorrelated Gaussian observation noise. This indicates the need for the inclusion of systematic errors in simulation studies and special attention to the mitigation of these errors in mission and system design.
Estimation of intra-operator variability in perfusion parameter measurements using DCE-US
Gauthier, Marianne; Leguerney, Ingrid; Thalmensi, Jessie; Chebil, Mohamed; Parisot, Sarah; Peronneau, Pierre; Roche, Alain; Lassau, Nathalie
2011-01-01
AIM: To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue®. METHODS: The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue® (Bracco, Milan, Italy) and using a Toshiba Aplio® ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging (“Vascular Recognition Imaging”) involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV). RESULTS: In vitro, different volumes of SonoVue® were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%. CONCLUSION: AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values. PMID:21512654
Estimation of intra-operator variability in perfusion parameter measurements using DCE-US.
Gauthier, Marianne; Leguerney, Ingrid; Thalmensi, Jessie; Chebil, Mohamed; Parisot, Sarah; Peronneau, Pierre; Roche, Alain; Lassau, Nathalie
2011-03-28
To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue(®). The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue(®) (Bracco, Milan, Italy) and using a Toshiba Aplio(®) ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging ("Vascular Recognition Imaging") involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV). In vitro, different volumes of SonoVue(®) were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%. AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.
MRI-based intelligence quotient (IQ) estimation with sparse learning.
Wang, Liye; Wee, Chong-Yaw; Suk, Heung-Il; Tang, Xiaoying; Shen, Dinggang
2015-01-01
In this paper, we propose a novel framework for IQ estimation using Magnetic Resonance Imaging (MRI) data. In particular, we devise a new feature selection method based on an extended dirty model for jointly considering both element-wise sparsity and group-wise sparsity. Meanwhile, due to the absence of large dataset with consistent scanning protocols for the IQ estimation, we integrate multiple datasets scanned from different sites with different scanning parameters and protocols. In this way, there is large variability in these different datasets. To address this issue, we design a two-step procedure for 1) first identifying the possible scanning site for each testing subject and 2) then estimating the testing subject's IQ by using a specific estimator designed for that scanning site. We perform two experiments to test the performance of our method by using the MRI data collected from 164 typically developing children between 6 and 15 years old. In the first experiment, we use a multi-kernel Support Vector Regression (SVR) for estimating IQ values, and obtain an average correlation coefficient of 0.718 and also an average root mean square error of 8.695 between the true IQs and the estimated ones. In the second experiment, we use a single-kernel SVR for IQ estimation, and achieve an average correlation coefficient of 0.684 and an average root mean square error of 9.166. All these results show the effectiveness of using imaging data for IQ prediction, which is rarely done in the field according to our knowledge.
Estimating normal mixture parameters from the distribution of a reduced feature vector
NASA Technical Reports Server (NTRS)
Guseman, L. F.; Peters, B. C., Jr.; Swasdee, M.
1976-01-01
A FORTRAN computer program was written and tested. The measurements consisted of 1000 randomly chosen vectors representing 1, 2, 3, 7, and 10 subclasses in equal portions. In the first experiment, the vectors are computed from the input means and covariances. In the second experiment, the vectors are 16 channel measurements. The starting covariances were constructed as if there were no correlation between separate passes. The biases obtained from each run are listed.
Guarín, Diego L.; Kearney, Robert E.
2017-01-01
Dynamic joint stiffness determines the relation between joint position and torque, and plays a vital role in the control of posture and movement. Dynamic joint stiffness can be quantified during quasi-stationary conditions using disturbance experiments, where small position perturbations are applied to the joint and the torque response is recorded. Dynamic joint stiffness is composed of intrinsic and reflex mechanisms that act and change together, so that nonlinear, mathematical models and specialized system identification techniques are necessary to estimate their relative contributions to overall joint stiffness. Quasi-stationary experiments have demonstrated that dynamic joint stiffness is heavily modulated by joint position and voluntary torque. Consequently, during movement, when joint position and torque change rapidly, dynamic joint stiffness will be Time-Varying (TV). This paper introduces a new method to quantify the TV intrinsic and reflex components of dynamic joint stiffness during movement. The algorithm combines ensemble and deterministic approaches for estimation of TV systems; and uses a TV, parallel-cascade, nonlinear system identification technique to separate overall dynamic joint stiffness into intrinsic and reflex components from position and torque records. Simulation studies of a stiffness model, whose parameters varied with time as is expected during walking, demonstrated that the new algorithm accurately tracked the changes in dynamic joint stiffness using as little as 40 gait cycles. The method was also used to estimate the intrinsic and reflex dynamic ankle stiffness from an experiment with a healthy subject during which ankle movements were imposed while the subject maintained a constant muscle contraction. The method identified TV stiffness model parameters that predicted the measured torque very well, accounting for more than 95% of its variance. Moreover, both intrinsic and reflex dynamic stiffness were heavily modulated through the movement in a manner that could not be predicted from quasi-stationary experiments. The new method provides the tool needed to explore the role of dynamic stiffness in the control of movement. PMID:28649196
Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P
2013-03-04
Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.
NASA Astrophysics Data System (ADS)
Santos, C. Almeida; Costa, C. Oliveira; Batista, J.
2016-05-01
The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.
NASA Astrophysics Data System (ADS)
Song, Wanjuan; Mu, Xihan; Ruan, Gaiyan; Gao, Zhan; Li, Linyuan; Yan, Guangjian
2017-06-01
Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.
Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.
2013-01-01
Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283
On-orbit calibration for star sensors without priori information.
Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, Chengfen; Yang, Yanqiang
2017-07-24
The star sensor is a prerequisite navigation device for a spacecraft. The on-orbit calibration is an essential guarantee for its operation performance. However, traditional calibration methods rely on ground information and are invalid without priori information. The uncertain on-orbit parameters will eventually influence the performance of guidance navigation and control system. In this paper, a novel calibration method without priori information for on-orbit star sensors is proposed. Firstly, the simplified back propagation neural network is designed for focal length and main point estimation along with system property evaluation, called coarse calibration. Then the unscented Kalman filter is adopted for the precise calibration of all parameters, including focal length, main point and distortion. The proposed method benefits from self-initialization and no attitude or preinstalled sensor parameter is required. Precise star sensor parameter estimation can be achieved without priori information, which is a significant improvement for on-orbit devices. Simulations and experiments results demonstrate that the calibration is easy for operation with high accuracy and robustness. The proposed method can satisfy the stringent requirement for most star sensors.
Dynamic imaging model and parameter optimization for a star tracker.
Yan, Jinyun; Jiang, Jie; Zhang, Guangjun
2016-03-21
Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.
Realtime Reconstruction of an Animating Human Body from a Single Depth Camera.
Chen, Yin; Cheng, Zhi-Quan; Lai, Chao; Martin, Ralph R; Dang, Gang
2016-08-01
We present a method for realtime reconstruction of an animating human body,which produces a sequence of deforming meshes representing a given performance captured by a single commodity depth camera. We achieve realtime single-view mesh completion by enhancing the parameterized SCAPE model.Our method, which we call Realtime SCAPE, performs full-body reconstruction without the use of markers.In Realtime SCAPE, estimations of body shape parameters and pose parameters, needed for reconstruction, are decoupled. Intrinsic body shape is first precomputed for a given subject, by determining shape parameters with the aid of a body shape database. Subsequently, per-frame pose parameter estimation is performed by means of linear blending skinning (LBS); the problem is decomposed into separately finding skinning weights and transformations. The skinning weights are also determined offline from the body shape database,reducing online reconstruction to simply finding the transformations in LBS. Doing so is formulated as a linear variational problem;carefully designed constraints are used to impose temporal coherence and alleviate artifacts. Experiments demonstrate that our method can produce full-body mesh sequences with high fidelity.
NASA Astrophysics Data System (ADS)
Bo, Zhang; Li, Jin-Ling; Wang, Guan-Gli
2002-01-01
We checked the dependence of the estimation of parameters on the choice of piecewise interval in the continuous piecewise linear modeling of the residual clock and atmosphere effects by single analysis of 27 VLBI experiments involving Shanghai station (Seshan 25m). The following are tentatively shown: (1) Different choices of the piecewise interval lead to differences in the estimation of station coordinates and in the weighted root mean squares ( wrms ) of the delay residuals, which can be of the order of centimeters or dozens of picoseconds respectively. So the choice of piecewise interval should not be arbitrary . (2) The piecewise interval should not be too long, otherwise the short - term variations in the residual clock and atmospheric effects can not be properly modeled. While in order to maintain enough degrees of freedom in parameter estimation, the interval can not be too short, otherwise the normal equation may become near or solely singular and the noises can not be constrained as well. Therefore the choice of the interval should be within some reasonable range. (3) Since the conditions of clock and atmosphere are different from experiment to experiment and from station to station, the reasonable range of the piecewise interval should be tested and chosen separately for each experiment as well as for each station by real data analysis. This is really arduous work in routine data analysis. (4) Generally speaking, with the default interval for clock as 60min, the reasonable range of piecewise interval for residual atmospheric effect modeling is between 10min to 40min, while with the default interval for atmosphere as 20min, that for residual clock behavior is between 20min to 100min.
Parameter recovery, bias and standard errors in the linear ballistic accumulator model.
Visser, Ingmar; Poessé, Rens
2017-05-01
The linear ballistic accumulator (LBA) model (Brown & Heathcote, , Cogn. Psychol., 57, 153) is increasingly popular in modelling response times from experimental data. An R package, glba, has been developed to fit the LBA model using maximum likelihood estimation which is validated by means of a parameter recovery study. At sufficient sample sizes parameter recovery is good, whereas at smaller sample sizes there can be large bias in parameters. In a second simulation study, two methods for computing parameter standard errors are compared. The Hessian-based method is found to be adequate and is (much) faster than the alternative bootstrap method. The use of parameter standard errors in model selection and inference is illustrated in an example using data from an implicit learning experiment (Visser et al., , Mem. Cogn., 35, 1502). It is shown that typical implicit learning effects are captured by different parameters of the LBA model. © 2017 The British Psychological Society.
Predicting mutant selection in competition experiments with ciprofloxacin-exposed Escherichia coli.
Khan, David D; Lagerbäck, Pernilla; Malmberg, Christer; Kristoffersson, Anders N; Wistrand-Yuen, Erik; Sha, Cao; Cars, Otto; Andersson, Dan I; Hughes, Diarmaid; Nielsen, Elisabet I; Friberg, Lena E
2018-03-01
Predicting competition between antibiotic-susceptible wild-type (WT) and less susceptible mutant (MT) bacteria is valuable for understanding how drug concentrations influence the emergence of resistance. Pharmacokinetic/pharmacodynamic (PK/PD) models predicting the rate and extent of takeover of resistant bacteria during different antibiotic pressures can thus be a valuable tool in improving treatment regimens. The aim of this study was to evaluate a previously developed mechanism-based PK/PD model for its ability to predict in vitro mixed-population experiments with competition between Escherichia coli (E. coli) WT and three well-defined E. coli resistant MTs when exposed to ciprofloxacin. Model predictions for each bacterial strain and ciprofloxacin concentration were made for in vitro static and dynamic time-kill experiments measuring CFU (colony forming units)/mL up to 24 h with concentrations close to or below the minimum inhibitory concentration (MIC), as well as for serial passage experiments with concentrations well below the MIC measuring ratios between the two strains with flow cytometry. The model was found to reasonably well predict the initial bacterial growth and killing of most static and dynamic time-kill competition experiments without need for parameter re-estimation. With parameter re-estimation of growth rates, an adequate fit was also obtained for the 6-day serial passage competition experiments. No bacterial interaction in growth was observed. This study demonstrates the predictive capacity of a PK/PD model and further supports the application of PK/PD modelling for prediction of bacterial kill in different settings, including resistance selection. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Ionosphere Profile Estimation Using Ionosonde & GPS Data in an Inverse Refraction Calculation
NASA Astrophysics Data System (ADS)
Psiaki, M. L.
2014-12-01
A method has been developed to assimilate ionosonde virtual heights and GPS slant TEC data to estimate the parameters of a local ionosphere model, including estimates of the topside and of latitude and longitude variations. This effort seeks to better assimilate a variety of remote sensing data in order to characterize local (and eventually regional and global) ionosphere electron density profiles. The core calculations involve a forward refractive ray-tracing solution and a nonlinear optimal estimation algorithm that inverts the forward model. The ray-tracing calculations solve a nonlinear two-point boundary value problem for the curved ionosonde or GPS ray path through a parameterized electron density profile. It implements a full 3D solution that can handle the case of a tilted ionosphere. These calculations use Hamiltonian equivalents of the Appleton-Hartree magneto-plasma refraction index model. The current ionosphere parameterization is a modified Booker profile. It has been augmented to include latitude and longitude dependencies. The forward ray-tracing solution yields a given signal's group delay and beat carrier phase observables. An auxiliary set of boundary value problem solutions determine the sensitivities of the ray paths and observables with respect to the parameters of the augmented Booker profile. The nonlinear estimation algorithm compares the measured ionosonde virtual-altitude observables and GPS slant-TEC observables to the corresponding values from the forward refraction model. It uses the parameter sensitivities of the model to iteratively improve its parameter estimates in a way the reduces the residual errors between the measurements and their modeled values. This method has been applied to data from HAARP in Gakona, AK and has produced good TEC and virtual height fits. It has been extended to characterize electron density perturbations caused by HAARP heating experiments through the use of GPS slant TEC data for an LOS through the heated zone. The next planned extension of the method is to estimate the parameters of a regional ionosphere profile. The input observables will be slant TEC from an array of GPS receivers and group delay and carrier phase observables from an array of high-frequency beacons. The beacon array will function as a sort of multi-static ionosonde.
Conlan, Andrew J. K.; Line, John E.; Hiett, Kelli; Coward, Chris; Van Diemen, Pauline M.; Stevens, Mark P.; Jones, Michael A.; Gog, Julia R.; Maskell, Duncan J.
2011-01-01
Dose–response experiments characterize the relationship between infectious agents and their hosts. These experiments are routinely used to estimate the minimum effective infectious dose for an infectious agent, which is most commonly characterized by the dose at which 50 per cent of challenged hosts become infected—the ID50. In turn, the ID50 is often used to compare between different agents and quantify the effect of treatment regimes. The statistical analysis of dose–response data typically makes the assumption that hosts within a given dose group are independent. For social animals, in particular avian species, hosts are routinely housed together in groups during experimental studies. For experiments with non-infectious agents, this poses no practical or theoretical problems. However, transmission of infectious agents between co-housed animals will modify the observed dose–response relationship with implications for the estimation of the ID50 and the comparison between different agents and treatments. We derive a simple correction to the likelihood for standard dose–response models that allows us to estimate dose–response and transmission parameters simultaneously. We use this model to show that: transmission between co-housed animals reduces the apparent value of the ID50 and increases the variability between replicates leading to a distinctive all-or-nothing response; in terms of the total number of animals used, individual housing is always the most efficient experimental design for ascertaining dose–response relationships; estimates of transmission from previously published experimental data for Campylobacter spp. in chickens suggest that considerable transmission occurred, greatly increasing the uncertainty in the estimates of dose–response parameters reported in the literature. Furthermore, we demonstrate that accounting for transmission in the analysis of dose–response data for Campylobacter spp. challenges our current understanding of the differing response of chickens with respect to host-age and in vivo passage of bacteria. Our findings suggest that the age-dependence of transmissibility between hosts—rather than their susceptibility to colonization—is the mechanism behind the ‘lag-phase’ reported in commercial flocks, which are typically found to be Campylobacter free for the first 14–21 days of life. PMID:21593028
Methodology for Software Reliability Prediction. Volume 2.
1987-11-01
The overall acquisition ,z program shall include the resources, schedule, management, structure , and controls necessary to ensure that specified AD...Independent Verification/Validation - Programming Team Structure - Educational Level of Team Members - Experience Level of Team Members * Methods Used...Prediction or Estimation Parameter Supported: Software - Characteristics 3. Objectives: Structured programming studies and Government Ur.’.. procurement
USDA-ARS?s Scientific Manuscript database
Technical Abstract: This study was aimed to estimate the combining ability, through diallel crosses, of T. cacao genotypes preselected for drought tolerance. The experiment was conducted under greenhouse conditions at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a completely randomiz...
Bayesian statistics: estimating plant demographic parameters
James S. Clark; Michael Lavine
2001-01-01
There are times when external information should be brought tobear on an ecological analysis. experiments are never conducted in a knowledge-free context. The inference we draw from an observation may depend on everything else we know about the process. Bayesian analysis is a method that brings outside evidence into the analysis of experimental and observational data...
A series of simulated rainfall run-off experiments with applications of different manure types (cattle solid pats, poultry dry litter, swine slurry) was conducted across four seasons on a field containing 36 plots (0.75 × 2 m each), resulting in 144 rainfall run-off events....
Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment
ERIC Educational Resources Information Center
Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos
2013-01-01
In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…
Estimating p-n Diode Bulk Parameters, Bandgap Energy and Absolute Zero by a Simple Experiment
ERIC Educational Resources Information Center
Ocaya, R. O.; Dejene, F. B.
2007-01-01
This paper presents a straightforward but interesting experimental method for p-n diode characterization. The method differs substantially from many approaches in diode characterization by offering much tighter control over the temperature and current variables. The method allows the determination of important diode constants such as temperature…
Star tracking method based on multiexposure imaging for intensified star trackers.
Yu, Wenbo; Jiang, Jie; Zhang, Guangjun
2017-07-20
The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhanagopalan, Shriram; White, Ralph E.
Rotating ring disc electrode (RRDE) experiments are a classic tool for investigating kinetics of electrochemical reactions. Several standardized methods exist for extracting transport parameters and reaction rate constants using RRDE measurements. Here in this work, we compare some approximate solutions to the convective diffusion used popularly in the literature to a rigorous numerical solution of the Nernst-Planck equations coupled to the three dimensional flow problem. In light of these computational advancements, we explore design aspects of the RRDE that will help improve sensitivity of our parameter estimation procedure to experimental data. We use the oxygen reduction in acidic media involvingmore » three charge transfer reactions and a chemical reaction as an example, and identify ways to isolate reaction currents for the individual processes in order to accurately estimate the exchange current densities.« less
History matching by spline approximation and regularization in single-phase areal reservoirs
NASA Technical Reports Server (NTRS)
Lee, T. Y.; Kravaris, C.; Seinfeld, J.
1986-01-01
An automatic history matching algorithm is developed based on bi-cubic spline approximations of permeability and porosity distributions and on the theory of regularization to estimate permeability or porosity in a single-phase, two-dimensional real reservoir from well pressure data. The regularization feature of the algorithm is used to convert the ill-posed history matching problem into a well-posed problem. The algorithm employs the conjugate gradient method as its core minimization method. A number of numerical experiments are carried out to evaluate the performance of the algorithm. Comparisons with conventional (non-regularized) automatic history matching algorithms indicate the superiority of the new algorithm with respect to the parameter estimates obtained. A quasioptimal regularization parameter is determined without requiring a priori information on the statistical properties of the observations.
Model-based Estimation for Pose, Velocity of Projectile from Stereo Linear Array Image
NASA Astrophysics Data System (ADS)
Zhao, Zhuxin; Wen, Gongjian; Zhang, Xing; Li, Deren
2012-01-01
The pose (position and attitude) and velocity of in-flight projectiles have major influence on the performance and accuracy. A cost-effective method for measuring the gun-boosted projectiles is proposed. The method adopts only one linear array image collected by the stereo vision system combining a digital line-scan camera and a mirror near the muzzle. From the projectile's stereo image, the motion parameters (pose and velocity) are acquired by using a model-based optimization algorithm. The algorithm achieves optimal estimation of the parameters by matching the stereo projection of the projectile and that of the same size 3D model. The speed and the AOA (angle of attack) could also be determined subsequently. Experiments are made to test the proposed method.
Bayesian experimental design for models with intractable likelihoods.
Drovandi, Christopher C; Pettitt, Anthony N
2013-12-01
In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations. Our focus is on stochastic models and, in particular, we investigate the methodology for Markov process models of epidemics and macroparasite population evolution. The macroparasite example involves a multivariate process and we assess the loss of information from not observing all variables. © 2013, The International Biometric Society.
Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Dwight A.; Poore, III, Willis P.
2015-01-01
The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Markmore » I plant for those instrumentation systems considered most important for accident management purposes.« less
Yu, Chanki; Lee, Sang Wook
2016-05-20
We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.
Brautigam, Chad A; Zhao, Huaying; Vargas, Carolyn; Keller, Sandro; Schuck, Peter
2016-05-01
Isothermal titration calorimetry (ITC) is a powerful and widely used method to measure the energetics of macromolecular interactions by recording a thermogram of differential heating power during a titration. However, traditional ITC analysis is limited by stochastic thermogram noise and by the limited information content of a single titration experiment. Here we present a protocol for bias-free thermogram integration based on automated shape analysis of the injection peaks, followed by combination of isotherms from different calorimetric titration experiments into a global analysis, statistical analysis of binding parameters and graphical presentation of the results. This is performed using the integrated public-domain software packages NITPIC, SEDPHAT and GUSSI. The recently developed low-noise thermogram integration approach and global analysis allow for more precise parameter estimates and more reliable quantification of multisite and multicomponent cooperative and competitive interactions. Titration experiments typically take 1-2.5 h each, and global analysis usually takes 10-20 min.
Optimally designing games for behavioural research
Rafferty, Anna N.; Zaharia, Matei; Griffiths, Thomas L.
2014-01-01
Computer games can be motivating and engaging experiences that facilitate learning, leading to their increasing use in education and behavioural experiments. For these applications, it is often important to make inferences about the knowledge and cognitive processes of players based on their behaviour. However, designing games that provide useful behavioural data are a difficult task that typically requires significant trial and error. We address this issue by creating a new formal framework that extends optimal experiment design, used in statistics, to apply to game design. In this framework, we use Markov decision processes to model players' actions within a game, and then make inferences about the parameters of a cognitive model from these actions. Using a variety of concept learning games, we show that in practice, this method can predict which games will result in better estimates of the parameters of interest. The best games require only half as many players to attain the same level of precision. PMID:25002821
Statistical fusion of continuous labels: identification of cardiac landmarks
NASA Astrophysics Data System (ADS)
Xing, Fangxu; Soleimanifard, Sahar; Prince, Jerry L.; Landman, Bennett A.
2011-03-01
Image labeling is an essential task for evaluating and analyzing morphometric features in medical imaging data. Labels can be obtained by either human interaction or automated segmentation algorithms. However, both approaches for labeling suffer from inevitable error due to noise and artifact in the acquired data. The Simultaneous Truth And Performance Level Estimation (STAPLE) algorithm was developed to combine multiple rater decisions and simultaneously estimate unobserved true labels as well as each rater's level of performance (i.e., reliability). A generalization of STAPLE for the case of continuous-valued labels has also been proposed. In this paper, we first show that with the proposed Gaussian distribution assumption, this continuous STAPLE formulation yields equivalent likelihoods for the bias parameter, meaning that the bias parameter-one of the key performance indices-is actually indeterminate. We resolve this ambiguity by augmenting the STAPLE expectation maximization formulation to include a priori probabilities on the performance level parameters, which enables simultaneous, meaningful estimation of both the rater bias and variance performance measures. We evaluate and demonstrate the efficacy of this approach in simulations and also through a human rater experiment involving the identification the intersection points of the right ventricle to the left ventricle in CINE cardiac data.
NASA Astrophysics Data System (ADS)
Ahmed, Ali
2017-03-01
Finite element (FE) analyses were performed to explore the prying influence on moment-rotation behaviour and to locate yielding zones of top- and seat-angle connections in author's past research studies. The results of those FE analyses with experimental failure strategies of the connections were used to develop failure mechanisms of top- and seat-angle connections in the present study. Then a formulation was developed based on three simple failure mechanisms considering bending and shear deformations, effects of prying action on the top angle and stiffness of the tension bolts to estimate rationally the ultimate moment M u of the connection, which is a vital parameter of the proposed four-parameter power model. Applicability of the proposed formulation is assessed by comparing moment-rotation ( M- θ r ) curves and ultimate moment capacities with those measured by experiments and estimated by FE analyses and three-parameter power model. This study shows that proposed formulation and Kishi-Chen's method both achieved close approximation driving M- θ r curves of all given connections except a few cases of Kishi-Chen model, and M u estimated by the proposed formulation is more rational than that predicted by Kishi-Chen's method.
Statistical Fusion of Continuous Labels: Identification of Cardiac Landmarks.
Xing, Fangxu; Soleimanifard, Sahar; Prince, Jerry L; Landman, Bennett A
2011-01-01
Image labeling is an essential task for evaluating and analyzing morphometric features in medical imaging data. Labels can be obtained by either human interaction or automated segmentation algorithms. However, both approaches for labeling suffer from inevitable error due to noise and artifact in the acquired data. The Simultaneous Truth And Performance Level Estimation (STAPLE) algorithm was developed to combine multiple rater decisions and simultaneously estimate unobserved true labels as well as each rater's level of performance (i.e., reliability). A generalization of STAPLE for the case of continuous-valued labels has also been proposed. In this paper, we first show that with the proposed Gaussian distribution assumption, this continuous STAPLE formulation yields equivalent likelihoods for the bias parameter, meaning that the bias parameter-one of the key performance indices-is actually indeterminate. We resolve this ambiguity by augmenting the STAPLE expectation maximization formulation to include a priori probabilities on the performance level parameters, which enables simultaneous, meaningful estimation of both the rater bias and variance performance measures. We evaluate and demonstrate the efficacy of this approach in simulations and also through a human rater experiment involving the identification the intersection points of the right ventricle to the left ventricle in CINE cardiac data.
Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.
Song, Xuegang; Zhang, Yuexin; Liang, Dakai
2017-10-10
This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.
NASA Technical Reports Server (NTRS)
Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.
1992-01-01
An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with analytical modeling of failure phenomena to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in analytical modeling, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which analytical models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. State-of-the-art analytical models currently employed for designs failure prediction, or performance analysis are used in this methodology. The rationale for the statistical approach taken in the PFA methodology is discussed, the PFA methodology is described, and examples of its application to structural failure modes are presented. The engineering models and computer software used in fatigue crack growth and fatigue crack initiation applications are thoroughly documented.
NASA Technical Reports Server (NTRS)
Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.
1992-01-01
An improved methodology for quantitatively evaluating failure risk of spaceflights systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with analytical modeling of failure phenomena to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in analytical modeling, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which analytical models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. State-of-the-art analytical models currently employed for design, failure prediction, or performance analysis are used in this methodology. The rationale for the statistical approach taken in the PFA methodology is discussed, the PFA methodology is described, and examples of its application to structural failure modes are presented. The engineering models and computer software used in fatigue crack growth and fatigue crack initiation applications are thoroughly documented.
NASA Technical Reports Server (NTRS)
Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.
1992-01-01
An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes, These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.
NASA Technical Reports Server (NTRS)
Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.
1992-01-01
An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.
Son, H S; Hong, Y S; Park, W M; Yu, M A; Lee, C H
2009-03-01
To estimate true Brix and alcoholic strength of must and wines without distillation, a novel approach using a refractometer and a hydrometer was developed. Initial Brix (I.B.), apparent refractometer Brix (A.R.), and apparent hydrometer Brix (A.H.) of must were measured by refractometer and hydrometer, respectively. Alcohol content (A) was determined with a hydrometer after distillation and true Brix (T.B.) was measured in distilled wines using a refractometer. Strong proportional correlations among A.R., A.H., T.B., and A in sugar solutions containing varying alcohol concentrations were observed in preliminary experiments. Similar proportional relationships among the parameters were also observed in must, which is a far more complex system than the sugar solution. To estimate T.B. and A of must during alcoholic fermentation, a total of 6 planar equations were empirically derived from the relationships among the experimental parameters. The empirical equations were then tested to estimate T.B. and A in 17 wine products, and resulted in good estimations of both quality factors. This novel approach was rapid, easy, and practical for use in routine analyses or for monitoring quality of must during fermentation and final wine products in a winery and/or laboratory.
NASA Astrophysics Data System (ADS)
Yu, Haiqing; Chen, Shuhang; Chen, Yunmei; Liu, Huafeng
2017-05-01
Dynamic positron emission tomography (PET) is capable of providing both spatial and temporal information of radio tracers in vivo. In this paper, we present a novel joint estimation framework to reconstruct temporal sequences of dynamic PET images and the coefficients characterizing the system impulse response function, from which the associated parametric images of the system macro parameters for tracer kinetics can be estimated. The proposed algorithm, which combines statistical data measurement and tracer kinetic models, integrates a dictionary sparse coding (DSC) into a total variational minimization based algorithm for simultaneous reconstruction of the activity distribution and parametric map from measured emission sinograms. DSC, based on the compartmental theory, provides biologically meaningful regularization, and total variation regularization is incorporated to provide edge-preserving guidance. We rely on techniques from minimization algorithms (the alternating direction method of multipliers) to first generate the estimated activity distributions with sub-optimal kinetic parameter estimates, and then recover the parametric maps given these activity estimates. These coupled iterative steps are repeated as necessary until convergence. Experiments with synthetic, Monte Carlo generated data, and real patient data have been conducted, and the results are very promising.
Kinetic modeling of the photocatalytic degradation of clofibric acid in a slurry reactor.
Manassero, Agustina; Satuf, María Lucila; Alfano, Orlando Mario
2015-01-01
A kinetic study of the photocatalytic degradation of the pharmaceutical clofibric acid is presented. Experiments were carried out under UV radiation employing titanium dioxide in water suspension. The main reaction intermediates were identified and quantified. Intrinsic expressions to represent the kinetics of clofibric acid and the main intermediates were derived. The modeling of the radiation field in the reactor was carried out by Monte Carlo simulation. Experimental runs were performed by varying the catalyst concentration and the incident radiation. Kinetic parameters were estimated from the experiments by applying a non-linear regression procedure. Good agreement was obtained between model predictions and experimental data, with an error of 5.9 % in the estimations of the primary pollutant concentration.
The use of auxiliary variables in capture-recapture and removal experiments
Pollock, K.H.; Hines, J.E.; Nichols, J.D.
1984-01-01
The dependence of animal capture probabilities on auxiliary variables is an important practical problem which has not been considered in the development of estimation procedures for capture-recapture and removal experiments. In this paper the linear logistic binary regression model is used to relate the probability of capture to continuous auxiliary variables. The auxiliary variables could be environmental quantities such as air or water temperature, or characteristics of individual animals, such as body length or weight. Maximum likelihood estimators of the population parameters are considered for a variety of models which all assume a closed population. Testing between models is also considered. The models can also be used when one auxiliary variable is a measure of the effort expended in obtaining the sample.
Near real-time estimation of the seismic source parameters in a compressed domain
NASA Astrophysics Data System (ADS)
Rodriguez, Ismael A. Vera
Seismic events can be characterized by its origin time, location and moment tensor. Fast estimations of these source parameters are important in areas of geophysics like earthquake seismology, and the monitoring of seismic activity produced by volcanoes, mining operations and hydraulic injections in geothermal and oil and gas reservoirs. Most available monitoring systems estimate the source parameters in a sequential procedure: first determining origin time and location (e.g., epicentre, hypocentre or centroid of the stress glut density), and then using this information to initialize the evaluation of the moment tensor. A more efficient estimation of the source parameters requires a concurrent evaluation of the three variables. The main objective of the present thesis is to address the simultaneous estimation of origin time, location and moment tensor of seismic events. The proposed method displays the benefits of being: 1) automatic, 2) continuous and, depending on the scale of application, 3) of providing results in real-time or near real-time. The inversion algorithm is based on theoretical results from sparse representation theory and compressive sensing. The feasibility of implementation is determined through the analysis of synthetic and real data examples. The numerical experiments focus on the microseismic monitoring of hydraulic fractures in oil and gas wells, however, an example using real earthquake data is also presented for validation. The thesis is complemented with a resolvability analysis of the moment tensor. The analysis targets common monitoring geometries employed in hydraulic fracturing in oil wells. Additionally, it is presented an application of sparse representation theory for the denoising of one-component and three-component microseismicity records, and an algorithm for improved automatic time-picking using non-linear inversion constraints.
Solution of the weighted symmetric similarity transformations based on quaternions
NASA Astrophysics Data System (ADS)
Mercan, H.; Akyilmaz, O.; Aydin, C.
2017-12-01
A new method through Gauss-Helmert model of adjustment is presented for the solution of the similarity transformations, either 3D or 2D, in the frame of errors-in-variables (EIV) model. EIV model assumes that all the variables in the mathematical model are contaminated by random errors. Total least squares estimation technique may be used to solve the EIV model. Accounting for the heteroscedastic uncertainty both in the target and the source coordinates, that is the more common and general case in practice, leads to a more realistic estimation of the transformation parameters. The presented algorithm can handle the heteroscedastic transformation problems, i.e., positions of the both target and the source points may have full covariance matrices. Therefore, there is no limitation such as the isotropic or the homogenous accuracy for the reference point coordinates. The developed algorithm takes the advantage of the quaternion definition which uniquely represents a 3D rotation matrix. The transformation parameters: scale, translations, and the quaternion (so that the rotation matrix) along with their covariances, are iteratively estimated with rapid convergence. Moreover, prior least squares (LS) estimation of the unknown transformation parameters is not required to start the iterations. We also show that the developed method can also be used to estimate the 2D similarity transformation parameters by simply treating the problem as a 3D transformation problem with zero (0) values assigned for the z-components of both target and source points. The efficiency of the new algorithm is presented with the numerical examples and comparisons with the results of the previous studies which use the same data set. Simulation experiments for the evaluation and comparison of the proposed and the conventional weighted LS (WLS) method is also presented.
Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.
Omer, Travis; Intes, Xavier; Hahn, Juergen
2015-01-01
Fluorescence lifetime imaging (FLIM) when paired with Förster resonance energy transfer (FLIM-FRET) enables the monitoring of nanoscale interactions in living biological samples. FLIM-FRET model-based estimation methods allow the quantitative retrieval of parameters such as the quenched (interacting) and unquenched (non-interacting) fractional populations of the donor fluorophore and/or the distance of the interactions. The quantitative accuracy of such model-based approaches is dependent on multiple factors such as signal-to-noise ratio and number of temporal points acquired when sampling the fluorescence decays. For high-throughput or in vivo applications of FLIM-FRET, it is desirable to acquire a limited number of temporal points for fast acquisition times. Yet, it is critical to acquire temporal data sets with sufficient information content to allow for accurate FLIM-FRET parameter estimation. Herein, an optimal experimental design approach based upon sensitivity analysis is presented in order to identify the time points that provide the best quantitative estimates of the parameters for a determined number of temporal sampling points. More specifically, the D-optimality criterion is employed to identify, within a sparse temporal data set, the set of time points leading to optimal estimations of the quenched fractional population of the donor fluorophore. Overall, a reduced set of 10 time points (compared to a typical complete set of 90 time points) was identified to have minimal impact on parameter estimation accuracy (≈5%), with in silico and in vivo experiment validations. This reduction of the number of needed time points by almost an order of magnitude allows the use of FLIM-FRET for certain high-throughput applications which would be infeasible if the entire number of time sampling points were used.
Li, Chen; Nagasaki, Masao; Koh, Chuan Hock; Miyano, Satoru
2011-05-01
Mathematical modeling and simulation studies are playing an increasingly important role in helping researchers elucidate how living organisms function in cells. In systems biology, researchers typically tune many parameters manually to achieve simulation results that are consistent with biological knowledge. This severely limits the size and complexity of simulation models built. In order to break this limitation, we propose a computational framework to automatically estimate kinetic parameters for a given network structure. We utilized an online (on-the-fly) model checking technique (which saves resources compared to the offline approach), with a quantitative modeling and simulation architecture named hybrid functional Petri net with extension (HFPNe). We demonstrate the applicability of this framework by the analysis of the underlying model for the neuronal cell fate decision model (ASE fate model) in Caenorhabditis elegans. First, we built a quantitative ASE fate model containing 3327 components emulating nine genetic conditions. Then, using our developed efficient online model checker, MIRACH 1.0, together with parameter estimation, we ran 20-million simulation runs, and were able to locate 57 parameter sets for 23 parameters in the model that are consistent with 45 biological rules extracted from published biological articles without much manual intervention. To evaluate the robustness of these 57 parameter sets, we run another 20 million simulation runs using different magnitudes of noise. Our simulation results concluded that among these models, one model is the most reasonable and robust simulation model owing to the high stability against these stochastic noises. Our simulation results provide interesting biological findings which could be used for future wet-lab experiments.
Impact of relativistic effects on cosmological parameter estimation
NASA Astrophysics Data System (ADS)
Lorenz, Christiane S.; Alonso, David; Ferreira, Pedro G.
2018-01-01
Future surveys will access large volumes of space and hence very long wavelength fluctuations of the matter density and gravitational field. It has been argued that the set of secondary effects that affect the galaxy distribution, relativistic in nature, will bring new, complementary cosmological constraints. We study this claim in detail by focusing on a subset of wide-area future surveys: Stage-4 cosmic microwave background experiments and photometric redshift surveys. In particular, we look at the magnification lensing contribution to galaxy clustering and general-relativistic corrections to all observables. We quantify the amount of information encoded in these effects in terms of the tightening of the final cosmological constraints as well as the potential bias in inferred parameters associated with neglecting them. We do so for a wide range of cosmological parameters, covering neutrino masses, standard dark-energy parametrizations and scalar-tensor gravity theories. Our results show that, while the effect of lensing magnification to number counts does not contain a significant amount of information when galaxy clustering is combined with cosmic shear measurements, this contribution does play a significant role in biasing estimates on a host of parameter families if unaccounted for. Since the amplitude of the magnification term is controlled by the slope of the source number counts with apparent magnitude, s (z ), we also estimate the accuracy to which this quantity must be known to avoid systematic parameter biases, finding that future surveys will need to determine s (z ) to the ˜5 %- 10 % level. On the contrary, large-scale general-relativistic corrections are irrelevant both in terms of information content and parameter bias for most cosmological parameters but significant for the level of primordial non-Gaussianity.
Temporal gravity field modeling based on least square collocation with short-arc approach
NASA Astrophysics Data System (ADS)
ran, jiangjun; Zhong, Min; Xu, Houze; Liu, Chengshu; Tangdamrongsub, Natthachet
2014-05-01
After the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002, several research centers have attempted to produce the finest gravity model based on different approaches. In this study, we present an alternative approach to derive the Earth's gravity field, and two main objectives are discussed. Firstly, we seek the optimal method to estimate the accelerometer parameters, and secondly, we intend to recover the monthly gravity model based on least square collocation method. The method has been paid less attention compared to the least square adjustment method because of the massive computational resource's requirement. The positions of twin satellites are treated as pseudo-observations and unknown parameters at the same time. The variance covariance matrices of the pseudo-observations and the unknown parameters are valuable information to improve the accuracy of the estimated gravity solutions. Our analyses showed that introducing a drift parameter as an additional accelerometer parameter, compared to using only a bias parameter, leads to a significant improvement of our estimated monthly gravity field. The gravity errors outside the continents are significantly reduced based on the selected set of the accelerometer parameters. We introduced the improved gravity model namely the second version of Institute of Geodesy and Geophysics, Chinese Academy of Sciences (IGG-CAS 02). The accuracy of IGG-CAS 02 model is comparable to the gravity solutions computed from the Geoforschungszentrum (GFZ), the Center for Space Research (CSR) and the NASA Jet Propulsion Laboratory (JPL). In term of the equivalent water height, the correlation coefficients over the study regions (the Yangtze River valley, the Sahara desert, and the Amazon) among four gravity models are greater than 0.80.
NASA Astrophysics Data System (ADS)
Chiu, Y.; Nishikawa, T.
2013-12-01
With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.
Characterization and simulation of cDNA microarray spots using a novel mathematical model
Kim, Hye Young; Lee, Seo Eun; Kim, Min Jung; Han, Jin Il; Kim, Bo Kyung; Lee, Yong Sung; Lee, Young Seek; Kim, Jin Hyuk
2007-01-01
Background The quality of cDNA microarray data is crucial for expanding its application to other research areas, such as the study of gene regulatory networks. Despite the fact that a number of algorithms have been suggested to increase the accuracy of microarray gene expression data, it is necessary to obtain reliable microarray images by improving wet-lab experiments. As the first step of a cDNA microarray experiment, spotting cDNA probes is critical to determining the quality of spot images. Results We developed a governing equation of cDNA deposition during evaporation of a drop in the microarray spotting process. The governing equation included four parameters: the surface site density on the support, the extrapolated equilibrium constant for the binding of cDNA molecules with surface sites on glass slides, the macromolecular interaction factor, and the volume constant of a drop of cDNA solution. We simulated cDNA deposition from the single model equation by varying the value of the parameters. The morphology of the resulting cDNA deposit can be classified into three types: a doughnut shape, a peak shape, and a volcano shape. The spot morphology can be changed into a flat shape by varying the experimental conditions while considering the parameters of the governing equation of cDNA deposition. The four parameters were estimated by fitting the governing equation to the real microarray images. With the results of the simulation and the parameter estimation, the phenomenon of the formation of cDNA deposits in each type was investigated. Conclusion This study explains how various spot shapes can exist and suggests which parameters are to be adjusted for obtaining a good spot. This system is able to explore the cDNA microarray spotting process in a predictable, manageable and descriptive manner. We hope it can provide a way to predict the incidents that can occur during a real cDNA microarray experiment, and produce useful data for several research applications involving cDNA microarrays. PMID:18096047
Dealing with gene expression missing data.
Brás, L P; Menezes, J C
2006-05-01
Compared evaluation of different methods is presented for estimating missing values in microarray data: weighted K-nearest neighbours imputation (KNNimpute), regression-based methods such as local least squares imputation (LLSimpute) and partial least squares imputation (PLSimpute) and Bayesian principal component analysis (BPCA). The influence in prediction accuracy of some factors, such as methods' parameters, type of data relationships used in the estimation process (i.e. row-wise, column-wise or both), missing rate and pattern and type of experiment [time series (TS), non-time series (NTS) or mixed (MIX) experiments] is elucidated. Improvements based on the iterative use of data (iterative LLS and PLS imputation--ILLSimpute and IPLSimpute), the need to perform initial imputations (modified PLS and Helland PLS imputation--MPLSimpute and HPLSimpute) and the type of relationships employed (KNNarray, LLSarray, HPLSarray and alternating PLS--APLSimpute) are proposed. Overall, it is shown that data set properties (type of experiment, missing rate and pattern) affect the data similarity structure, therefore influencing the methods' performance. LLSimpute and ILLSimpute are preferable in the presence of data with a stronger similarity structure (TS and MIX experiments), whereas PLS-based methods (MPLSimpute, IPLSimpute and APLSimpute) are preferable when estimating NTS missing data.
Confidence estimation for quantitative photoacoustic imaging
NASA Astrophysics Data System (ADS)
Gröhl, Janek; Kirchner, Thomas; Maier-Hein, Lena
2018-02-01
Quantification of photoacoustic (PA) images is one of the major challenges currently being addressed in PA research. Tissue properties can be quantified by correcting the recorded PA signal with an estimation of the corresponding fluence. Fluence estimation itself, however, is an ill-posed inverse problem which usually needs simplifying assumptions to be solved with state-of-the-art methods. These simplifications, as well as noise and artifacts in PA images reduce the accuracy of quantitative PA imaging (PAI). This reduction in accuracy is often localized to image regions where the assumptions do not hold true. This impedes the reconstruction of functional parameters when averaging over entire regions of interest (ROI). Averaging over a subset of voxels with a high accuracy would lead to an improved estimation of such parameters. To achieve this, we propose a novel approach to the local estimation of confidence in quantitative reconstructions of PA images. It makes use of conditional probability densities to estimate confidence intervals alongside the actual quantification. It encapsulates an estimation of the errors introduced by fluence estimation as well as signal noise. We validate the approach using Monte Carlo generated data in combination with a recently introduced machine learning-based approach to quantitative PAI. Our experiments show at least a two-fold improvement in quantification accuracy when evaluating on voxels with high confidence instead of thresholding signal intensity.
NASA Astrophysics Data System (ADS)
Klein, Ole; Cirpka, Olaf A.; Bastian, Peter; Ippisch, Olaf
2017-04-01
In the geostatistical inverse problem of subsurface hydrology, continuous hydraulic parameter fields, in most cases hydraulic conductivity, are estimated from measurements of dependent variables, such as hydraulic heads, under the assumption that the parameter fields are autocorrelated random space functions. Upon discretization, the continuous fields become large parameter vectors with O (104 -107) elements. While cokriging-like inversion methods have been shown to be efficient for highly resolved parameter fields when the number of measurements is small, they require the calculation of the sensitivity of each measurement with respect to all parameters, which may become prohibitive with large sets of measured data such as those arising from transient groundwater flow. We present a Preconditioned Conjugate Gradient method for the geostatistical inverse problem, in which a single adjoint equation needs to be solved to obtain the gradient of the objective function. Using the autocovariance matrix of the parameters as preconditioning matrix, expensive multiplications with its inverse can be avoided, and the number of iterations is significantly reduced. We use a randomized spectral decomposition of the posterior covariance matrix of the parameters to perform a linearized uncertainty quantification of the parameter estimate. The feasibility of the method is tested by virtual examples of head observations in steady-state and transient groundwater flow. These synthetic tests demonstrate that transient data can reduce both parameter uncertainty and time spent conducting experiments, while the presented methods are able to handle the resulting large number of measurements.
Analysis of Air Traffic Track Data with the AutoBayes Synthesis System
NASA Technical Reports Server (NTRS)
Schumann, Johann Martin Philip; Cate, Karen; Lee, Alan G.
2010-01-01
The Next Generation Air Traffic System (NGATS) is aiming to provide substantial computer support for the air traffic controllers. Algorithms for the accurate prediction of aircraft movements are of central importance for such software systems but trajectory prediction has to work reliably in the presence of unknown parameters and uncertainties. We are using the AutoBayes program synthesis system to generate customized data analysis algorithms that process large sets of aircraft radar track data in order to estimate parameters and uncertainties. In this paper, we present, how the tasks of finding structure in track data, estimation of important parameters in climb trajectories, and the detection of continuous descent approaches can be accomplished with compact task-specific AutoBayes specifications. We present an overview of the AutoBayes architecture and describe, how its schema-based approach generates customized analysis algorithms, documented C/C++ code, and detailed mathematical derivations. Results of experiments with actual air traffic control data are discussed.
Chen, Xiaojuan; Chen, Zhihua; Wang, Xun; Huo, Chan; Hu, Zhiquan; Xiao, Bo; Hu, Mian
2016-07-01
The present study focused on the application of anaerobic digestion model no. 1 (ADM1) to simulate biogas production from Hydrilla verticillata. Model simulation was carried out by implementing ADM1 in AQUASIM 2.0 software. Sensitivity analysis was used to select the most sensitive parameters for estimation using the absolute-relative sensitivity function. Among all the kinetic parameters, disintegration constant (kdis), hydrolysis constant of protein (khyd_pr), Monod maximum specific substrate uptake rate (km_aa, km_ac, km_h2) and half-saturation constants (Ks_aa, Ks_ac) affect biogas production significantly, which were optimized by fitting of the model equations to the data obtained from batch experiments. The ADM1 model after parameter estimation was able to well predict the experimental results of daily biogas production and biogas composition. The simulation results of evolution of organic acids, bacteria concentrations and inhibition effects also helped to get insight into the reaction mechanisms. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less
A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2003-01-01
An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.
Error estimation for CFD aeroheating prediction under rarefied flow condition
NASA Astrophysics Data System (ADS)
Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian
2014-12-01
Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Crago, Richard
1994-01-01
Parameterizations of the frontal area index and canopy area index of natural or randomly distributed plants are developed, and applied to the estimation of local aerodynamic roughness using satellite imagery. The formulas are expressed in terms of the subpixel fractional vegetation cover and one non-dimensional geometric parameter that characterizes the plant's shape. Geometrically similar plants and Poisson distributed plant centers are assumed. An appropriate averaging technique to extend satellite pixel-scale estimates to larger scales is provided. ne parameterization is applied to the estimation of aerodynamic roughness using satellite imagery for a 2.3 sq km coniferous portion of the Landes Forest near Lubbon, France, during the 1986 HAPEX-Mobilhy Experiment. The canopy area index is estimated first for each pixel in the scene based on previous estimates of fractional cover obtained using Landsat Thematic Mapper imagery. Next, the results are incorporated into Raupach's (1992, 1994) analytical formulas for momentum roughness and zero-plane displacement height. The estimates compare reasonably well to reference values determined from measurements taken during the experiment and to published literature values. The approach offers the potential for estimating regionally variable, vegetation aerodynamic roughness lengths over natural regions using satellite imagery when there exists only limited knowledge of the vegetated surface.
NASA Astrophysics Data System (ADS)
Courchesne, Samuel
Knowledge of the dynamic characteristics of a fixed-wing UAV is necessary to design flight control laws and to conceive a high quality flight simulator. The basic features of a flight mechanic model include the properties of mass, inertia and major aerodynamic terms. They respond to a complex process involving various numerical analysis techniques and experimental procedures. This thesis focuses on the analysis of estimation techniques applied to estimate problems of stability and control derivatives from flight test data provided by an experimental UAV. To achieve this objective, a modern identification methodology (Quad-M) is used to coordinate the processing tasks from multidisciplinary fields, such as parameter estimation modeling, instrumentation, the definition of flight maneuvers and validation. The system under study is a non-linear model with six degrees of freedom with a linear aerodynamic model. The time domain techniques are used for identification of the drone. The first technique, the equation error method is used to determine the structure of the aerodynamic model. Thereafter, the output error method and filter error method are used to estimate the aerodynamic coefficients values. The Matlab scripts for estimating the parameters obtained from the American Institute of Aeronautics and Astronautics (AIAA) are used and modified as necessary to achieve the desired results. A commendable effort in this part of research is devoted to the design of experiments. This includes an awareness of the system data acquisition onboard and the definition of flight maneuvers. The flight tests were conducted under stable flight conditions and with low atmospheric disturbance. Nevertheless, the identification results showed that the filter error method is most effective for estimating the parameters of the drone due to the presence of process noise and measurement. The aerodynamic coefficients are validated using a numerical analysis of the vortex method. In addition, a simulation model incorporating the estimated parameters is used to compare the behavior of states measured. Finally, a good correspondence between the results is demonstrated despite a limited number of flight data. Keywords: drone, identification, estimation, nonlinear, flight test, system, aerodynamic coefficient.
Ternary particle yields in 249Cf(nth,f)
NASA Astrophysics Data System (ADS)
Tsekhanovich, I.; Büyükmumcu, Z.; Davi, M.; Denschlag, H. O.; Gönnenwein, F.; Boulyga, S. F.
2003-03-01
An experiment measuring ternary particle yields in 249Cf(nth,f) was carried out at the high flux reactor of the Institut Laue-Langevin using the Lohengrin recoil mass separator. Parameters of energy distributions were determined for 27 ternary particles up to 30Mg and their yields were calculated. The yields of 17 further ternary particles were estimated on the basis of the systematics developed. The heaviest particles observed in the experiment are 37Si and 37S; their possible origin is discussed.
Thermospheric neutral density estimates from heater-induced ion up-flow at EISCAT
NASA Astrophysics Data System (ADS)
Kosch, Michael; Ogawa, Yasunobu; Yamazaki, Yosuke; Vickers, Hannah; Blagoveshchenskaya, Nataly
We exploit a recently-developed technique to estimate the upper thermospheric neutral density using measurements of ionospheric plasma parameters made by the EISCAT UHF radar during ionospheric modification experiments. Heating the electrons changes the balance between upward plasma pressure gradient and downward gravity, resulting in ion up-flow up to ~200 m/s. This field-aligned flow is retarded by collisions, which is directly related to the neutral density. Whilst the ion up-flow is consistent with the plasma pressure gradient, the estimated thermospheric neutral density depends on the assumed composition, which varies with altitude. Results in the topside ionosphere are presented.
Maximum-likelihood estimation of parameterized wavefronts from multifocal data
Sakamoto, Julia A.; Barrett, Harrison H.
2012-01-01
A method for determining the pupil phase distribution of an optical system is demonstrated. Coefficients in a wavefront expansion were estimated using likelihood methods, where the data consisted of multiple irradiance patterns near focus. Proof-of-principle results were obtained in both simulation and experiment. Large-aberration wavefronts were handled in the numerical study. Experimentally, we discuss the handling of nuisance parameters. Fisher information matrices, Cramér-Rao bounds, and likelihood surfaces are examined. ML estimates were obtained by simulated annealing to deal with numerous local extrema in the likelihood function. Rapid processing techniques were employed to reduce the computational time. PMID:22772282
NASA Astrophysics Data System (ADS)
Friedrich, Oliver; Eifler, Tim
2018-01-01
Computing the inverse covariance matrix (or precision matrix) of large data vectors is crucial in weak lensing (and multiprobe) analyses of the large-scale structure of the Universe. Analytically computed covariances are noise-free and hence straightforward to invert; however, the model approximations might be insufficient for the statistical precision of future cosmological data. Estimating covariances from numerical simulations improves on these approximations, but the sample covariance estimator is inherently noisy, which introduces uncertainties in the error bars on cosmological parameters and also additional scatter in their best-fitting values. For future surveys, reducing both effects to an acceptable level requires an unfeasibly large number of simulations. In this paper we describe a way to expand the precision matrix around a covariance model and show how to estimate the leading order terms of this expansion from simulations. This is especially powerful if the covariance matrix is the sum of two contributions, C = A+B, where A is well understood analytically and can be turned off in simulations (e.g. shape noise for cosmic shear) to yield a direct estimate of B. We test our method in mock experiments resembling tomographic weak lensing data vectors from the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST). For DES we find that 400 N-body simulations are sufficient to achieve negligible statistical uncertainties on parameter constraints. For LSST this is achieved with 2400 simulations. The standard covariance estimator would require >105 simulations to reach a similar precision. We extend our analysis to a DES multiprobe case finding a similar performance.
Graphical user interface for yield and dose estimations for cyclotron-produced technetium
NASA Astrophysics Data System (ADS)
Hou, X.; Vuckovic, M.; Buckley, K.; Bénard, F.; Schaffer, P.; Ruth, T.; Celler, A.
2014-07-01
The cyclotron-based 100Mo(p,2n)99mTc reaction has been proposed as an alternative method for solving the shortage of 99mTc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with 99mTc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced 99mTc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.
Graphical user interface for yield and dose estimations for cyclotron-produced technetium.
Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A
2014-07-07
The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.
Attitude determination and parameter estimation using vector observations - Theory
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1989-01-01
Procedures for attitude determination based on Wahba's loss function are generalized to include the estimation of parameters other than the attitude, such as sensor biases. Optimization with respect to the attitude is carried out using the q-method, which does not require an a priori estimate of the attitude. Optimization with respect to the other parameters employs an iterative approach, which does require an a priori estimate of these parameters. Conventional state estimation methods require a priori estimates of both the parameters and the attitude, while the algorithm presented in this paper always computes the exact optimal attitude for given values of the parameters. Expressions for the covariance of the attitude and parameter estimates are derived.
Restoration of acidic mine spoils with sewage sludge: II measurement of solids applied
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stucky, D.J.; Zoeller, A.L.
1980-01-01
Sewage sludge was incorporated in acidic strip mine spoils at rates equivalent to 0, 224, 336, and 448 dry metric tons (dmt)/ha and placed in pots in a greenhouse. Spoil parameters were determined 48 hours after sludge incorporation, Time Planting (P), and five months after orchardgrass (Dactylis glomerata L.) was planted, Time Harvest (H), in the pots. Parameters measured were: pH, organic matter content (OM), cation exchange capacity (CEC), electrical conductivity (EC) and yield. Values for each parameter were significantly different at the two sampling times. Correlation coefficient values were calculated for all parameters versus rates of applied sewage sludgemore » and all parameters versus each other. Multiple regressions were performed, stepwise, for all parameters versus rates of applied sewage sludge. Equations to predict amounts of sewage sludge incorporated in spoils were derived for individual and multiple parameters. Generally, measurements made at Time P achieved the highest correlation coefficient and multiple correlation coefficient values; therefore, the authors concluded data from Time P had the greatest predictability value. The most important value measured to predict rate of applied sewage sludge was pH and some additional accuracy was obtained by including CEC in equation. This experiment indicated that soil properties can be used to estimate amounts of sewage sludge solids required to reclaim acidic mine spoils and to estimate quantities incorporated.« less
Garcés-Vega, Francisco; Marks, Bradley P
2014-08-01
In the last 20 years, the use of microbial reduction models has expanded significantly, including inactivation (linear and nonlinear), survival, and transfer models. However, a major constraint for model development is the impossibility to directly quantify the number of viable microorganisms below the limit of detection (LOD) for a given study. Different approaches have been used to manage this challenge, including ignoring negative plate counts, using statistical estimations, or applying data transformations. Our objective was to illustrate and quantify the effect of negative plate count data management approaches on parameter estimation for microbial reduction models. Because it is impossible to obtain accurate plate counts below the LOD, we performed simulated experiments to generate synthetic data for both log-linear and Weibull-type microbial reductions. We then applied five different, previously reported data management practices and fit log-linear and Weibull models to the resulting data. The results indicated a significant effect (α = 0.05) of the data management practices on the estimated model parameters and performance indicators. For example, when the negative plate counts were replaced by the LOD for log-linear data sets, the slope of the subsequent log-linear model was, on average, 22% smaller than for the original data, the resulting model underpredicted lethality by up to 2.0 log, and the Weibull model was erroneously selected as the most likely correct model for those data. The results demonstrate that it is important to explicitly report LODs and related data management protocols, which can significantly affect model results, interpretation, and utility. Ultimately, we recommend using only the positive plate counts to estimate model parameters for microbial reduction curves and avoiding any data value substitutions or transformations when managing negative plate counts to yield the most accurate model parameters.
Educational Experiences of Embry-Riddle Students through NASA Research Collaboration
NASA Technical Reports Server (NTRS)
Schlee, Keith; Chatman, Yadira; Ristow, James; Gangadharan, Sathya; Sudermann, James; Walker, Charles
2007-01-01
NASA's educational programs benefit students while increasing the overall productivity of the organization. The NASA Graduate Student Research Program (GSRP) awards fellowships for graduate study leading to both masters and doctoral degrees in several technical fields, while the Cooperative Education program allows undergraduate and graduate students the chance to gain work experience in the field. The Mission Analysis Branch of the Expendable Launch Vehicles Division at NASA Kennedy Space Center has utilized these two programs with students from Embry-Riddle Aeronautical University to conduct research in modeling and developing a parameter estimation method for spacecraft fuel slosh using simple pendulum analogs. Simple pendulum models are used to understand complicated spacecraft fuel slosh behavior. A robust parameter estimation process will help to identiFy the parameters that will predict the response fairly accurately during the initial stages of design. NASA's Cooperative Education Program trains the next wave of new hires while allowing graduate and undergraduate college students to gain valuable "real-world" work experience. It gives NASA a no risk capability to evaluate the true performance of a prospective new hire without relying solely on a paper resume, while providing the students with a greater hiring potential upon graduation, at NASA or elsewhere. In addition, graduate students serve as mentors for undergrad students and provide a unique learning environment. Providing students with a unique opportunity to work on "real-world" aerospace problems ultimately reinforces their problem solving abilities and their communication skills (in terms of interviewing, resume writing, technical writing, presentation, and peer review) that are vital for the workforce to succeed.
NASA Astrophysics Data System (ADS)
Dewaele, Hélène; Munier, Simon; Albergel, Clément; Planque, Carole; Laanaia, Nabil; Carrer, Dominique; Calvet, Jean-Christophe
2017-09-01
Soil maximum available water content (MaxAWC) is a key parameter in land surface models (LSMs). However, being difficult to measure, this parameter is usually uncertain. This study assesses the feasibility of using a 15-year (1999-2013) time series of satellite-derived low-resolution observations of leaf area index (LAI) to estimate MaxAWC for rainfed croplands over France. LAI interannual variability is simulated using the CO2-responsive version of the Interactions between Soil, Biosphere and Atmosphere (ISBA) LSM for various values of MaxAWC. Optimal value is then selected by using (1) a simple inverse modelling technique, comparing simulated and observed LAI and (2) a more complex method consisting in integrating observed LAI in ISBA through a land data assimilation system (LDAS) and minimising LAI analysis increments. The evaluation of the MaxAWC estimates from both methods is done using simulated annual maximum above-ground biomass (Bag) and straw cereal grain yield (GY) values from the Agreste French agricultural statistics portal, for 45 administrative units presenting a high proportion of straw cereals. Significant correlations (p value < 0.01) between Bag and GY are found for up to 36 and 53 % of the administrative units for the inverse modelling and LDAS tuning methods, respectively. It is found that the LDAS tuning experiment gives more realistic values of MaxAWC and maximum Bag than the inverse modelling experiment. Using undisaggregated LAI observations leads to an underestimation of MaxAWC and maximum Bag in both experiments. Median annual maximum values of disaggregated LAI observations are found to correlate very well with MaxAWC.
NASA Astrophysics Data System (ADS)
Tyler, R.
2012-09-01
The tidal flow response generated in a satellite ocean depends strongly on the ocean configuration parameters as these parameters control the form and frequencies of the ocean's natural modes of oscillation; if there is a near match between the form and frequency of one of these natural modes and that of one of the available tidal forcing constituents, the ocean can be resonantly excited, producing a strong tidal response. The fundamental elements of the response are described by the tidal flow and surface fluctuations. Derivative elements of the response include the associated dissipative heat, stress, and forces/torques. The dissipative heat has received much previous attention as it may be important in explaining the heat budget on several of the satellites in the Outer Solar System. While these estimates will be reviewed and compared with the tidal dissipation estimates compiled in Hussman et al. (2010), the primary goal in this presentation is to extend the analysis to consider the tidally generated axial torque on the satellites and the potential consquences for rotation. Interestingly, even a synchronously rotating satellite will, if a global fluid layer is included, experience a complex set of opportunities for torques in both the prograde and retrograde sense. The amplitude and sense of the torque sensitively depends on the ocean parameters controlling the tidal response. This sensitivity, combined with expected feedbacks whereby the tides affect the orbital parameters, suggests that the evolution of the satellite system will experience phases of both prograde and retrograde tidal torques during its evolution. A related point is that parameters of the ocean might be inferred from inferences or observations of torque or rotational deviations. In the panels to the right we show the nondimensional tidal torques associated with obliquity (top) and eccentricity (bottom). The parameters described in the labeling are the fluid density ρ, surface gravity g, ocean surface area A, tidal equilibrium height ηF, dissipation quality factor Q,and c=(gh)1/2, cr=Ωa, with ocean thickness h, rotation rate Ω, and radius a. Torque due to tides forced by obliquity as a function of the parameters c/cr and Q. Retrograde ("Westward") and prograde ("Eastward") components shown in left and right panels, respectively. Log10 scale shown in colorbar.
NASA Technical Reports Server (NTRS)
Scott, Elaine P.
1993-01-01
Thermal stress analyses are an important aspect in the development of aerospace vehicles such as the National Aero-Space Plane (NASP) and the High-Speed Civil Transport (HSCT) at NASA-LaRC. These analyses require knowledge of the temperature within the structures which consequently necessitates the need for thermal property data. The initial goal of this research effort was to develop a methodology for the estimation of thermal properties of aerospace structural materials at room temperature and to develop a procedure to optimize the estimation process. The estimation procedure was implemented utilizing a general purpose finite element code. In addition, an optimization procedure was developed and implemented to determine critical experimental parameters to optimize the estimation procedure. Finally, preliminary experiments were conducted at the Aircraft Structures Branch (ASB) laboratory.
NASA Technical Reports Server (NTRS)
Burns, B. A.; Cavalieri, D. J.; Keller, M. R.
1986-01-01
Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.
NASA Astrophysics Data System (ADS)
Scott, Elaine P.
1993-12-01
Thermal stress analyses are an important aspect in the development of aerospace vehicles such as the National Aero-Space Plane (NASP) and the High-Speed Civil Transport (HSCT) at NASA-LaRC. These analyses require knowledge of the temperature within the structures which consequently necessitates the need for thermal property data. The initial goal of this research effort was to develop a methodology for the estimation of thermal properties of aerospace structural materials at room temperature and to develop a procedure to optimize the estimation process. The estimation procedure was implemented utilizing a general purpose finite element code. In addition, an optimization procedure was developed and implemented to determine critical experimental parameters to optimize the estimation procedure. Finally, preliminary experiments were conducted at the Aircraft Structures Branch (ASB) laboratory.
Effect of forward speed on the roll damping of three small fishing vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddara, M.R.; Zhang, S.
1994-05-01
An extensive experimental program has been carried out to estimate roll damping parameters for three models of fishing vessels having different hull shapes and moving with forward speed. Roll damping parameters are determined using a novel method. This method combines the energy method and the modulating function method. The effect of forward speed, initial heel angle and the natural frequency on damping is discussed. A modification of Ikeda's formula for lift damping prediction is suggested. The modified formula produces results which are in good agreement with the experiments.
Contribution Of The SWOT Mission To Large-Scale Hydrological Modeling Using Data Assimilation
NASA Astrophysics Data System (ADS)
Emery, C. M.; Biancamaria, S.; Boone, A. A.; Ricci, S. M.; Rochoux, M. C.; Garambois, P. A.; Paris, A.; Calmant, S.
2016-12-01
The purpose of this work is to improve water fluxes estimation on the continental surfaces, at interanual and interseasonal scale (from few years to decennial time period). More specifically, it studies contribution of the incoming SWOT satellite mission to improve hydrology model at global scale, and using the land surface model ISBA-TRIP. This model corresponds to the continental component of the CNRM (French meteorological research center)'s climatic model. This study explores the potential of satellite data to correct either input parameters of the river routing scheme TRIP or its state variables. To do so, a data assimilation platform (using an Ensemble Kalman Filter, EnKF) has been implemented to assimilate SWOT virtual observations as well as discharges estimated from real nadir altimetry data. A series of twin experiments is used to test and validate the parameter estimation module of the platform. SWOT virtual-observations of water heights along SWOT tracks (with a 10 cm white noise model error) are assimilated to correct the river routing model parameters. To begin with, we chose to focus exclusively on the river manning coefficient, with the possibility to easily extend to other parameters such as the river widths. First results show that the platform is able to recover the "true" Manning distribution assimilating SWOT-like water heights. The error on the coefficients goes from 35 % before assimilation to 9 % after four SWOT orbit repeat period of 21 days. In the state estimation mode, daily assimilation cycles are realized to correct TRIP river water storage initial state by assimilating ENVISAT-based discharge. Those observations are derived from ENVISAT water elevation measures, using rating curves from the MGB-IPH hydrological model (calibrated over the Amazon using in situ gages discharge). Using such kind of observation allows going beyond idealized twin experiments and also to test contribution of a remotely-sensed discharge product, which could prefigure the SWOT discharge product. The results show that discharge after assimilation are globally improved : the root-mean-square error between the analysis discharge ensemble mean and in situ discharges is reduced by 30 %, compared to the root-mean-square error between the free run and in situ discharges.
Advanced Method to Estimate Fuel Slosh Simulation Parameters
NASA Technical Reports Server (NTRS)
Schlee, Keith; Gangadharan, Sathya; Ristow, James; Sudermann, James; Walker, Charles; Hubert, Carl
2005-01-01
The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the estimation approach to a simple, accurately modeled system, its effectiveness and accuracy can be evaluated. The same experimental setup can then be used with fluid-filled tanks to further evaluate the effectiveness of the process. Ultimately, the proven process can be applied to the full-sized spinning experimental setup to quickly and accurately determine the slosh model parameters for a particular spacecraft mission. Automating the parameter identification process will save time, allow more changes to be made to proposed designs, and lower the cost in the initial design stages.
Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun
2017-01-01
This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1,L2,·) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method. PMID:28448431
Colored noise effects on batch attitude accuracy estimates
NASA Technical Reports Server (NTRS)
Bilanow, Stephen
1991-01-01
The effects of colored noise on the accuracy of batch least squares parameter estimates with applications to attitude determination cases are investigated. The standard approaches used for estimating the accuracy of a computed attitude commonly assume uncorrelated (white) measurement noise, while in actual flight experience measurement noise often contains significant time correlations and thus is colored. For example, horizon scanner measurements from low Earth orbit were observed to show correlations over many minutes in response to large scale atmospheric phenomena. A general approach to the analysis of the effects of colored noise is investigated, and interpretation of the resulting equations provides insight into the effects of any particular noise color and the worst case noise coloring for any particular parameter estimate. It is shown that for certain cases, the effects of relatively short term correlations can be accommodated by a simple correction factor. The errors in the predicted accuracy assuming white noise and the reduced accuracy due to the suboptimal nature of estimators that do not take into account the noise color characteristics are discussed. The appearance of a variety of sample noise color characteristics are demonstrated through simulation, and their effects are discussed for sample estimation cases. Based on the analysis, options for dealing with the effects of colored noise are discussed.
Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun
2017-04-27
This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · ) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method.
NASA Astrophysics Data System (ADS)
Liu, Di; Mishra, Ashok K.; Yu, Zhongbo
2016-07-01
This paper examines the combination of support vector machines (SVM) and the dual ensemble Kalman filter (EnKF) technique to estimate root zone soil moisture at different soil layers up to 100 cm depth. Multiple experiments are conducted in a data rich environment to construct and validate the SVM model and to explore the effectiveness and robustness of the EnKF technique. It was observed that the performance of SVM relies more on the initial length of training set than other factors (e.g., cost function, regularization parameter, and kernel parameters). The dual EnKF technique proved to be efficient to improve SVM with observed data either at each time step or at a flexible time steps. The EnKF technique can reach its maximum efficiency when the updating ensemble size approaches a certain threshold. It was observed that the SVM model performance for the multi-layer soil moisture estimation can be influenced by the rainfall magnitude (e.g., dry and wet spells).
Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.
2016-01-01
We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322