Sample records for parameter estimation techniques

  1. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  2. Comparison of stability and control parameters for a light, single-engine, high-winged aircraft using different flight test and parameter estimation techniques

    NASA Technical Reports Server (NTRS)

    Suit, W. T.; Cannaday, R. L.

    1979-01-01

    The longitudinal and lateral stability and control parameters for a high wing, general aviation, airplane are examined. Estimations using flight data obtained at various flight conditions within the normal range of the aircraft are presented. The estimations techniques, an output error technique (maximum likelihood) and an equation error technique (linear regression), are presented. The longitudinal static parameters are estimated from climbing, descending, and quasi steady state flight data. The lateral excitations involve a combination of rudder and ailerons. The sensitivity of the aircraft modes of motion to variations in the parameter estimates are discussed.

  3. Estimation of correlation functions by stochastic approximation.

    NASA Technical Reports Server (NTRS)

    Habibi, A.; Wintz, P. A.

    1972-01-01

    Consideration of the autocorrelation function of a zero-mean stationary random process. The techniques are applicable to processes with nonzero mean provided the mean is estimated first and subtracted. Two recursive techniques are proposed, both of which are based on the method of stochastic approximation and assume a functional form for the correlation function that depends on a number of parameters that are recursively estimated from successive records. One technique uses a standard point estimator of the correlation function to provide estimates of the parameters that minimize the mean-square error between the point estimates and the parametric function. The other technique provides estimates of the parameters that maximize a likelihood function relating the parameters of the function to the random process. Examples are presented.

  4. Improved Estimates of Thermodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1982-01-01

    Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.

  5. Parameter Estimation in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark; Colarco, Peter

    2004-01-01

    In this study the structure tensor technique is used to estimate dynamical parameters in atmospheric data sets. The structure tensor is a common tool for estimating motion in image sequences. This technique can be extended to estimate other dynamical parameters such as diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. As a test scenario this technique will be applied to modeled dust data. In this case vertically integrated dust concentrations were used to derive wind information. Those results can be compared to the wind vector fields which served as input to the model. Based on this analysis, a method to compute atmospheric data parameter fields will be presented. .

  6. A hybrid optimization approach to the estimation of distributed parameters in two-dimensional confined aquifers

    USGS Publications Warehouse

    Heidari, M.; Ranjithan, S.R.

    1998-01-01

    In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.

  7. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  8. Quantitative CT: technique dependence of volume estimation on pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Colsher, James; Amurao, Maxwell; Samei, Ehsan

    2012-03-01

    Current estimation of lung nodule size typically relies on uni- or bi-dimensional techniques. While new three-dimensional volume estimation techniques using MDCT have improved size estimation of nodules with irregular shapes, the effect of acquisition and reconstruction parameters on accuracy (bias) and precision (variance) of the new techniques has not been fully investigated. To characterize the volume estimation performance dependence on these parameters, an anthropomorphic chest phantom containing synthetic nodules was scanned and reconstructed with protocols across various acquisition and reconstruction parameters. Nodule volumes were estimated by a clinical lung analysis software package, LungVCAR. Precision and accuracy of the volume assessment were calculated across the nodules and compared between protocols via a generalized estimating equation analysis. Results showed that the precision and accuracy of nodule volume quantifications were dependent on slice thickness, with different dependences for different nodule characteristics. Other parameters including kVp, pitch, and reconstruction kernel had lower impact. Determining these technique dependences enables better volume quantification via protocol optimization and highlights the importance of consistent imaging parameters in sequential examinations.

  9. Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Boyle, Richard D.

    2014-01-01

    Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.

  10. Comparing Three Estimation Methods for the Three-Parameter Logistic IRT Model

    ERIC Educational Resources Information Center

    Lamsal, Sunil

    2015-01-01

    Different estimation procedures have been developed for the unidimensional three-parameter item response theory (IRT) model. These techniques include the marginal maximum likelihood estimation, the fully Bayesian estimation using Markov chain Monte Carlo simulation techniques, and the Metropolis-Hastings Robbin-Monro estimation. With each…

  11. Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique

    NASA Astrophysics Data System (ADS)

    Shrivastava, Akash; Mohanty, A. R.

    2018-03-01

    This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.

  12. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation applications such as model-based diagnostic, controls, and life usage calculations. The advantage of the innovation is the significant reduction in estimation errors that it can provide relative to the conventional approach of selecting a subset of health parameters to serve as the model tuning parameter vector. Because this technique needs only to be performed during the system design process, it places no additional computation burden on the onboard Kalman filter implementation. The technique has been developed for aircraft engine onboard estimation applications, as this application typically presents an under-determined estimation problem. However, this generic technique could be applied to other industries using gas turbine engine technology.

  13. Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics

    PubMed Central

    Zhang, Guanqun; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2011-01-01

    A useful model of the arterial system is the uniform, lossless tube with parametric load. This tube-load model is able to account for wave propagation and reflection (unlike lumped-parameter models such as the Windkessel) while being defined by only a few parameters (unlike comprehensive distributed-parameter models). As a result, the parameters may be readily estimated by accurate fitting of the model to available arterial pressure and flow waveforms so as to permit improved monitoring of arterial hemodynamics. In this paper, we review tube-load model parameter estimation techniques that have appeared in the literature for monitoring wave reflection, large artery compliance, pulse transit time, and central aortic pressure. We begin by motivating the use of the tube-load model for parameter estimation. We then describe the tube-load model, its assumptions and validity, and approaches for estimating its parameters. We next summarize the various techniques and their experimental results while highlighting their advantages over conventional techniques. We conclude the review by suggesting future research directions and describing potential applications. PMID:22053157

  14. Estimation of Dynamical Parameters in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark O.

    2004-01-01

    In this study a new technique is used to derive dynamical parameters out of atmospheric data sets. This technique, called the structure tensor technique, can be used to estimate dynamical parameters such as motion, source strengths, diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. The fundamental algorithm will be extended to the analysis of multi- channel (e.g. multi trace gas) image sequences and to provide solutions to the extended aperture problem. In this study sensitivity studies have been performed to determine the usability of this technique for data sets with different resolution in time and space and different dimensions.

  15. A Particle Smoother with Sequential Importance Resampling for soil hydraulic parameter estimation: A lysimeter experiment

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry

    2013-04-01

    An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.

  16. Signal detection theory and vestibular perception: III. Estimating unbiased fit parameters for psychometric functions.

    PubMed

    Chaudhuri, Shomesh E; Merfeld, Daniel M

    2013-03-01

    Psychophysics generally relies on estimating a subject's ability to perform a specific task as a function of an observed stimulus. For threshold studies, the fitted functions are called psychometric functions. While fitting psychometric functions to data acquired using adaptive sampling procedures (e.g., "staircase" procedures), investigators have encountered a bias in the spread ("slope" or "threshold") parameter that has been attributed to the serial dependency of the adaptive data. Using simulations, we confirm this bias for cumulative Gaussian parametric maximum likelihood fits on data collected via adaptive sampling procedures, and then present a bias-reduced maximum likelihood fit that substantially reduces the bias without reducing the precision of the spread parameter estimate and without reducing the accuracy or precision of the other fit parameters. As a separate topic, we explain how to implement this bias reduction technique using generalized linear model fits as well as other numeric maximum likelihood techniques such as the Nelder-Mead simplex. We then provide a comparison of the iterative bootstrap and observed information matrix techniques for estimating parameter fit variance from adaptive sampling procedure data sets. The iterative bootstrap technique is shown to be slightly more accurate; however, the observed information technique executes in a small fraction (0.005 %) of the time required by the iterative bootstrap technique, which is an advantage when a real-time estimate of parameter fit variance is required.

  17. Estimation of some transducer parameters in a broadband piezoelectric transmitter by using an artificial intelligence technique.

    PubMed

    Ruíz, A; Ramos, A; San Emeterio, J L

    2004-04-01

    An estimation procedure to efficiently find approximate values of internal parameters in ultrasonic transducers intended for broadband operation would be a valuable tool to discover internal construction data. This information is necessary in the modelling and simulation of acoustic and electrical behaviour related to ultrasonic systems containing commercial transducers. There is not a general solution for this generic problem of parameter estimation in the case of broadband piezoelectric probes. In this paper, this general problem is briefly analysed for broadband conditions. The viability of application in this field of an artificial intelligence technique supported on the modelling of the transducer internal components is studied. A genetic algorithm (GA) procedure is presented and applied to the estimation of different parameters, related to two transducers which are working as pulsed transmitters. The efficiency of this GA technique is studied, considering the influence of the number and variation range of the estimated parameters. Estimation results are experimentally ratified.

  18. Nonlinear regression method for estimating neutral wind and temperature from Fabry-Perot interferometer data.

    PubMed

    Harding, Brian J; Gehrels, Thomas W; Makela, Jonathan J

    2014-02-01

    The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation.

  19. Development of the One-Sided Nonlinear Adaptive Doppler Shift Estimation

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.; Serror, Judith A.

    2009-01-01

    The new development of a one-sided nonlinear adaptive shift estimation technique (NADSET) is introduced. The background of the algorithm and a brief overview of NADSET are presented. The new technique is applied to the wind parameter estimates from a 2-micron wavelength coherent Doppler lidar system called VALIDAR located in NASA Langley Research Center in Virginia. The new technique enhances wind parameters such as Doppler shift and power estimates in low Signal-To-Noise-Ratio (SNR) regimes using the estimates in high SNR regimes as the algorithm scans the range bins from low to high altitude. The original NADSET utilizes the statistics in both the lower and the higher range bins to refine the wind parameter estimates in between. The results of the two different approaches of NADSET are compared.

  20. Application of nonlinear least-squares regression to ground-water flow modeling, west-central Florida

    USGS Publications Warehouse

    Yobbi, D.K.

    2000-01-01

    A nonlinear least-squares regression technique for estimation of ground-water flow model parameters was applied to an existing model of the regional aquifer system underlying west-central Florida. The regression technique minimizes the differences between measured and simulated water levels. Regression statistics, including parameter sensitivities and correlations, were calculated for reported parameter values in the existing model. Optimal parameter values for selected hydrologic variables of interest are estimated by nonlinear regression. Optimal estimates of parameter values are about 140 times greater than and about 0.01 times less than reported values. Independently estimating all parameters by nonlinear regression was impossible, given the existing zonation structure and number of observations, because of parameter insensitivity and correlation. Although the model yields parameter values similar to those estimated by other methods and reproduces the measured water levels reasonably accurately, a simpler parameter structure should be considered. Some possible ways of improving model calibration are to: (1) modify the defined parameter-zonation structure by omitting and/or combining parameters to be estimated; (2) carefully eliminate observation data based on evidence that they are likely to be biased; (3) collect additional water-level data; (4) assign values to insensitive parameters, and (5) estimate the most sensitive parameters first, then, using the optimized values for these parameters, estimate the entire data set.

  1. Transit Project Planning Guidance : Estimation of Transit Supply Parameters

    DOT National Transportation Integrated Search

    1984-04-01

    This report discusses techniques applicable to the estimation of transit vehicle fleet requirements, vehicle-hours and vehicle-miles, and other related transit supply parameters. These parameters are used for estimating operating costs and certain ca...

  2. Time Domain Estimation of Arterial Parameters using the Windkessel Model and the Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Gostuski, Vladimir; Pastore, Ignacio; Rodriguez Palacios, Gaspar; Vaca Diez, Gustavo; Moscoso-Vasquez, H. Marcela; Risk, Marcelo

    2016-04-01

    Numerous parameter estimation techniques exist for characterizing the arterial system using electrical circuit analogs. However, they are often limited by their requirements and usually high computational burdain. Therefore, a new method for estimating arterial parameters based on Monte Carlo simulation is proposed. A three element Windkessel model was used to represent the arterial system. The approach was to reduce the error between the calculated and physiological aortic pressure by randomly generating arterial parameter values, while keeping constant the arterial resistance. This last value was obtained for each subject using the arterial flow, and was a necessary consideration in order to obtain a unique set of values for the arterial compliance and peripheral resistance. The estimation technique was applied to in vivo data containing steady beats in mongrel dogs, and it reliably estimated Windkessel arterial parameters. Further, this method appears to be computationally efficient for on-line time-domain estimation of these parameters.

  3. System health monitoring using multiple-model adaptive estimation techniques

    NASA Astrophysics Data System (ADS)

    Sifford, Stanley Ryan

    Monitoring system health for fault detection and diagnosis by tracking system parameters concurrently with state estimates is approached using a new multiple-model adaptive estimation (MMAE) method. This novel method is called GRid-based Adaptive Parameter Estimation (GRAPE). GRAPE expands existing MMAE methods by using new techniques to sample the parameter space. GRAPE expands on MMAE with the hypothesis that sample models can be applied and resampled without relying on a predefined set of models. GRAPE is initially implemented in a linear framework using Kalman filter models. A more generalized GRAPE formulation is presented using extended Kalman filter (EKF) models to represent nonlinear systems. GRAPE can handle both time invariant and time varying systems as it is designed to track parameter changes. Two techniques are presented to generate parameter samples for the parallel filter models. The first approach is called selected grid-based stratification (SGBS). SGBS divides the parameter space into equally spaced strata. The second approach uses Latin Hypercube Sampling (LHS) to determine the parameter locations and minimize the total number of required models. LHS is particularly useful when the parameter dimensions grow. Adding more parameters does not require the model count to increase for LHS. Each resample is independent of the prior sample set other than the location of the parameter estimate. SGBS and LHS can be used for both the initial sample and subsequent resamples. Furthermore, resamples are not required to use the same technique. Both techniques are demonstrated for both linear and nonlinear frameworks. The GRAPE framework further formalizes the parameter tracking process through a general approach for nonlinear systems. These additional methods allow GRAPE to either narrow the focus to converged values within a parameter range or expand the range in the appropriate direction to track the parameters outside the current parameter range boundary. Customizable rules define the specific resample behavior when the GRAPE parameter estimates converge. Convergence itself is determined from the derivatives of the parameter estimates using a simple moving average window to filter out noise. The system can be tuned to match the desired performance goals by making adjustments to parameters such as the sample size, convergence criteria, resample criteria, initial sampling method, resampling method, confidence in prior sample covariances, sample delay, and others.

  4. Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.

  5. A spline-based parameter and state estimation technique for static models of elastic surfaces

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Daniel, P. L.; Armstrong, E. S.

    1983-01-01

    Parameter and state estimation techniques for an elliptic system arising in a developmental model for the antenna surface in the Maypole Hoop/Column antenna are discussed. A computational algorithm based on spline approximations for the state and elastic parameters is given and numerical results obtained using this algorithm are summarized.

  6. Estimation variance bounds of importance sampling simulations in digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, D.; Yao, K.

    1991-01-01

    In practical applications of importance sampling (IS) simulation, two basic problems are encountered, that of determining the estimation variance and that of evaluating the proper IS parameters needed in the simulations. The authors derive new upper and lower bounds on the estimation variance which are applicable to IS techniques. The upper bound is simple to evaluate and may be minimized by the proper selection of the IS parameter. Thus, lower and upper bounds on the improvement ratio of various IS techniques relative to the direct Monte Carlo simulation are also available. These bounds are shown to be useful and computationally simple to obtain. Based on the proposed technique, one can readily find practical suboptimum IS parameters. Numerical results indicate that these bounding techniques are useful for IS simulations of linear and nonlinear communication systems with intersymbol interference in which bit error rate and IS estimation variances cannot be obtained readily using prior techniques.

  7. An Adaptive Kalman Filter Using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  8. A Systematic Approach to Sensor Selection for Aircraft Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2009-01-01

    A systematic approach for selecting an optimal suite of sensors for on-board aircraft gas turbine engine health estimation is presented. The methodology optimally chooses the engine sensor suite and the model tuning parameter vector to minimize the Kalman filter mean squared estimation error in the engine s health parameters or other unmeasured engine outputs. This technique specifically addresses the underdetermined estimation problem where there are more unknown system health parameters representing degradation than available sensor measurements. This paper presents the theoretical estimation error equations, and describes the optimization approach that is applied to select the sensors and model tuning parameters to minimize these errors. Two different model tuning parameter vector selection approaches are evaluated: the conventional approach of selecting a subset of health parameters to serve as the tuning parameters, and an alternative approach that selects tuning parameters as a linear combination of all health parameters. Results from the application of the technique to an aircraft engine simulation are presented, and compared to those from an alternative sensor selection strategy.

  9. Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Armstrong, Jeffrey B.; Garg, Sanjay

    2012-01-01

    An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specific-ally addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.

  10. The Inverse Problem for Confined Aquifer Flow: Identification and Estimation With Extensions

    NASA Astrophysics Data System (ADS)

    Loaiciga, Hugo A.; MariñO, Miguel A.

    1987-01-01

    The contributions of this work are twofold. First, a methodology for estimating the elements of parameter matrices in the governing equation of flow in a confined aquifer is developed. The estimation techniques for the distributed-parameter inverse problem pertain to linear least squares and generalized least squares methods. The linear relationship among the known heads and unknown parameters of the flow equation provides the background for developing criteria for determining the identifiability status of unknown parameters. Under conditions of exact or overidentification it is possible to develop statistically consistent parameter estimators and their asymptotic distributions. The estimation techniques, namely, two-stage least squares and three stage least squares, are applied to a specific groundwater inverse problem and compared between themselves and with an ordinary least squares estimator. The three-stage estimator provides the closer approximation to the actual parameter values, but it also shows relatively large standard errors as compared to the ordinary and two-stage estimators. The estimation techniques provide the parameter matrices required to simulate the unsteady groundwater flow equation. Second, a nonlinear maximum likelihood estimation approach to the inverse problem is presented. The statistical properties of maximum likelihood estimators are derived, and a procedure to construct confidence intervals and do hypothesis testing is given. The relative merits of the linear and maximum likelihood estimators are analyzed. Other topics relevant to the identification and estimation methodologies, i.e., a continuous-time solution to the flow equation, coping with noise-corrupted head measurements, and extension of the developed theory to nonlinear cases are also discussed. A simulation study is used to evaluate the methods developed in this study.

  11. Least-squares sequential parameter and state estimation for large space structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.; Eliazov, T.; Montgomery, R. C.

    1982-01-01

    This paper presents the formulation of simultaneous state and parameter estimation problems for flexible structures in terms of least-squares minimization problems. The approach combines an on-line order determination algorithm, with least-squares algorithms for finding estimates of modal approximation functions, modal amplitudes, and modal parameters. The approach combines previous results on separable nonlinear least squares estimation with a regression analysis formulation of the state estimation problem. The technique makes use of sequential Householder transformations. This allows for sequential accumulation of matrices required during the identification process. The technique is used to identify the modal prameters of a flexible beam.

  12. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest

    NASA Astrophysics Data System (ADS)

    Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.

    2017-08-01

    The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest AGB retrieval showed R2 value of 0.5, RMSE of 62.73 (t ha-1) and a percent accuracy of 51%. TSI based PolInSAR inversion modeling showed the most accurate result for forest height estimation. The correlation between the field measured forest height and the estimated tree height using TSI technique is 62% with an average accuracy of 91.56% and RMSE of 2.28 m. The study suggested that PolInSAR coherence based modeling approach has significant potential for retrieval of forest biophysical parameters.

  13. The Model Parameter Estimation Experiment (MOPEX): Its structure, connection to other international initiatives and future directions

    USGS Publications Warehouse

    Wagener, T.; Hogue, T.; Schaake, J.; Duan, Q.; Gupta, H.; Andreassian, V.; Hall, A.; Leavesley, G.

    2006-01-01

    The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrological models and in land surface parameterization schemes connected to atmospheric models. The MOPEX science strategy involves: database creation, a priori parameter estimation methodology development, parameter refinement or calibration, and the demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrological basins in the United States (US) and in other countries. This database is being continuously expanded to include basins from various hydroclimatic regimes throughout the world. MOPEX research has largely been driven by a series of international workshops that have brought interested hydrologists and land surface modellers together to exchange knowledge and experience in developing and applying parameter estimation techniques. With its focus on parameter estimation, MOPEX plays an important role in the international context of other initiatives such as GEWEX, HEPEX, PUB and PILPS. This paper outlines the MOPEX initiative, discusses its role in the scientific community, and briefly states future directions.

  14. Space Shuttle propulsion parameter estimation using optimal estimation techniques, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The mathematical developments and their computer program implementation for the Space Shuttle propulsion parameter estimation project are summarized. The estimation approach chosen is the extended Kalman filtering with a modified Bryson-Frazier smoother. Its use here is motivated by the objective of obtaining better estimates than those available from filtering and to eliminate the lag associated with filtering. The estimation technique uses as the dynamical process the six degree equations-of-motion resulting in twelve state vector elements. In addition to these are mass and solid propellant burn depth as the ""system'' state elements. The ""parameter'' state elements can include aerodynamic coefficient, inertia, center-of-gravity, atmospheric wind, etc. deviations from referenced values. Propulsion parameter state elements have been included not as options just discussed but as the main parameter states to be estimated. The mathematical developments were completed for all these parameters. Since the systems dynamics and measurement processes are non-linear functions of the states, the mathematical developments are taken up almost entirely by the linearization of these equations as required by the estimation algorithms.

  15. Assessing statistical differences between parameters estimates in Partial Least Squares path modeling.

    PubMed

    Rodríguez-Entrena, Macario; Schuberth, Florian; Gelhard, Carsten

    2018-01-01

    Structural equation modeling using partial least squares (PLS-SEM) has become a main-stream modeling approach in various disciplines. Nevertheless, prior literature still lacks a practical guidance on how to properly test for differences between parameter estimates. Whereas existing techniques such as parametric and non-parametric approaches in PLS multi-group analysis solely allow to assess differences between parameters that are estimated for different subpopulations, the study at hand introduces a technique that allows to also assess whether two parameter estimates that are derived from the same sample are statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a reduced version of the well-established technology acceptance model.

  16. Trends in shuttle entry heating from the correction of flight test maneuvers

    NASA Technical Reports Server (NTRS)

    Hodge, J. K.

    1983-01-01

    A new technique was developed to systematically expand the aerothermodynamic envelope of the Space Shuttle Protection System (TPS). The technique required transient flight test maneuvers which were performed on the second, fourth, and fifth Shuttle reentries. Kalman filtering and parameter estimation were used for the reduction of embedded thermocouple data to obtain best estimates of aerothermal parameters. Difficulties in reducing the data were overcome or minimized. Thermal parameters were estimated to minimize uncertainties, and heating rate parameters were estimated to correlate with angle of attack, sideslip, deflection angle, and Reynolds number changes. Heating trends from the maneuvers allow for rapid and safe envelope expansion needed for future missions, except for some local areas.

  17. Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models

    NASA Astrophysics Data System (ADS)

    Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.

    2018-05-01

    Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.

  18. Adaptive Elastic Net for Generalized Methods of Moments.

    PubMed

    Caner, Mehmet; Zhang, Hao Helen

    2014-01-30

    Model selection and estimation are crucial parts of econometrics. This paper introduces a new technique that can simultaneously estimate and select the model in generalized method of moments (GMM) context. The GMM is particularly powerful for analyzing complex data sets such as longitudinal and panel data, and it has wide applications in econometrics. This paper extends the least squares based adaptive elastic net estimator of Zou and Zhang (2009) to nonlinear equation systems with endogenous variables. The extension is not trivial and involves a new proof technique due to estimators lack of closed form solutions. Compared to Bridge-GMM of Caner (2009), we allow for the number of parameters to diverge to infinity as well as collinearity among a large number of variables, also the redundant parameters set to zero via a data dependent technique. This method has the oracle property, meaning that we can estimate nonzero parameters with their standard limit and the redundant parameters are dropped from the equations simultaneously. Numerical examples are used to illustrate the performance of the new method.

  19. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  20. Quantitative body DW-MRI biomarkers uncertainty estimation using unscented wild-bootstrap.

    PubMed

    Freiman, M; Voss, S D; Mulkern, R V; Perez-Rossello, J M; Warfield, S K

    2011-01-01

    We present a new method for the uncertainty estimation of diffusion parameters for quantitative body DW-MRI assessment. Diffusion parameters uncertainty estimation from DW-MRI is necessary for clinical applications that use these parameters to assess pathology. However, uncertainty estimation using traditional techniques requires repeated acquisitions, which is undesirable in routine clinical use. Model-based bootstrap techniques, for example, assume an underlying linear model for residuals rescaling and cannot be utilized directly for body diffusion parameters uncertainty estimation due to the non-linearity of the body diffusion model. To offset this limitation, our method uses the Unscented transform to compute the residuals rescaling parameters from the non-linear body diffusion model, and then applies the wild-bootstrap method to infer the body diffusion parameters uncertainty. Validation through phantom and human subject experiments shows that our method identify the regions with higher uncertainty in body DWI-MRI model parameters correctly with realtive error of -36% in the uncertainty values.

  1. Development of advanced techniques for rotorcraft state estimation and parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.

    1980-01-01

    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.

  2. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2007-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine's performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  3. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2007-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least-squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  4. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2005-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends upon knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined which accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  5. The augmented Lagrangian method for parameter estimation in elliptic systems

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Kunisch, Karl

    1990-01-01

    In this paper a new technique for the estimation of parameters in elliptic partial differential equations is developed. It is a hybrid method combining the output-least-squares and the equation error method. The new method is realized by an augmented Lagrangian formulation, and convergence as well as rate of convergence proofs are provided. Technically the critical step is the verification of a coercivity estimate of an appropriately defined Lagrangian functional. To obtain this coercivity estimate a seminorm regularization technique is used.

  6. Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-07-01

    The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.

  7. Optimum data weighting and error calibration for estimation of gravitational parameters

    NASA Technical Reports Server (NTRS)

    Lerch, Francis J.

    1989-01-01

    A new technique was developed for the weighting of data from satellite tracking systems in order to obtain an optimum least-squares solution and an error calibration for the solution parameters. Data sets from optical, electronic, and laser systems on 17 satellites in GEM-T1 Goddard Earth Model-T1 (GEM-T1) were employed toward application of this technique for gravity field parameters. Also GEM-T2 (31 satellites) was recently computed as a direct application of the method and is summarized. The method employs subset solutions of the data associated with the complete solution to agree with their error estimates. With the adjusted weights the process provides for an automatic calibration of the error estimates for the solution parameters. The data weights derived are generally much smaller than corresponding weights obtained from nominal values of observation accuracy or residuals. Independent tests show significant improvement for solutions with optimal weighting. The technique is general and may be applied to orbit parameters, station coordinates, or other parameters than the gravity model.

  8. Linear least squares approach for evaluating crack tip fracture parameters using isochromatic and isoclinic data from digital photoelasticity

    NASA Astrophysics Data System (ADS)

    Patil, Prataprao; Vyasarayani, C. P.; Ramji, M.

    2017-06-01

    In this work, digital photoelasticity technique is used to estimate the crack tip fracture parameters for different crack configurations. Conventionally, only isochromatic data surrounding the crack tip is used for SIF estimation, but with the advent of digital photoelasticity, pixel-wise availability of both isoclinic and isochromatic data could be exploited for SIF estimation in a novel way. A linear least square approach is proposed to estimate the mixed-mode crack tip fracture parameters by solving the multi-parameter stress field equation. The stress intensity factor (SIF) is extracted from those estimated fracture parameters. The isochromatic and isoclinic data around the crack tip is estimated using the ten-step phase shifting technique. To get the unwrapped data, the adaptive quality guided phase unwrapping algorithm (AQGPU) has been used. The mixed mode fracture parameters, especially SIF are estimated for specimen configurations like single edge notch (SEN), center crack and straight crack ahead of inclusion using the proposed algorithm. The experimental SIF values estimated using the proposed method are compared with analytical/finite element analysis (FEA) results, and are found to be in good agreement.

  9. Computing maximum-likelihood estimates for parameters of the National Descriptive Model of Mercury in Fish

    USGS Publications Warehouse

    Donato, David I.

    2012-01-01

    This report presents the mathematical expressions and the computational techniques required to compute maximum-likelihood estimates for the parameters of the National Descriptive Model of Mercury in Fish (NDMMF), a statistical model used to predict the concentration of methylmercury in fish tissue. The expressions and techniques reported here were prepared to support the development of custom software capable of computing NDMMF parameter estimates more quickly and using less computer memory than is currently possible with available general-purpose statistical software. Computation of maximum-likelihood estimates for the NDMMF by numerical solution of a system of simultaneous equations through repeated Newton-Raphson iterations is described. This report explains the derivation of the mathematical expressions required for computational parameter estimation in sufficient detail to facilitate future derivations for any revised versions of the NDMMF that may be developed.

  10. Parameter estimation in a structural acoustic system with fully nonlinear coupling conditions

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.

    1994-01-01

    A methodology for estimating physical parameters in a class of structural acoustic systems is presented. The general model under consideration consists of an interior cavity which is separated from an exterior noise source by an enclosing elastic structure. Piezoceramic patches are bonded to or embedded in the structure; these can be used both as actuators and sensors in applications ranging from the control of interior noise levels to the determination of structural flaws through nondestructive evaluation techniques. The presence and excitation of patches, however, changes the geometry and material properties of the structure as well as involves unknown patch parameters, thus necessitating the development of parameter estimation techniques which are applicable in this coupled setting. In developing a framework for approximation, parameter estimation and implementation, strong consideration is given to the fact that the input operator is unbonded due to the discrete nature of the patches. Moreover, the model is weakly nonlinear. As a result of the coupling mechanism between the structural vibrations and the interior acoustic dynamics. Within this context, an illustrating model is given, well-posedness and approximations results are discussed and an applicable parameter estimation methodology is presented. The scheme is then illustrated through several numerical examples with simulations modeling a variety of commonly used structural acoustic techniques for systems excitations and data collection.

  11. AMT-200S Motor Glider Parameter and Performance Estimation

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2011-01-01

    Parameter and performance estimation of an instrumented motor glider was conducted at the National Aeronautics and Space Administration Dryden Flight Research Center in order to provide the necessary information to create a simulation of the aircraft. An output-error technique was employed to generate estimates from doublet maneuvers, and performance estimates were compared with results from a well-known flight-test evaluation of the aircraft in order to provide a complete set of data. Aircraft specifications are given along with information concerning instrumentation, flight-test maneuvers flown, and the output-error technique. Discussion of Cramer-Rao bounds based on both white noise and colored noise assumptions is given. Results include aerodynamic parameter and performance estimates for a range of angles of attack.

  12. Precision Parameter Estimation and Machine Learning

    NASA Astrophysics Data System (ADS)

    Wandelt, Benjamin D.

    2008-12-01

    I discuss the strategy of ``Acceleration by Parallel Precomputation and Learning'' (AP-PLe) that can vastly accelerate parameter estimation in high-dimensional parameter spaces and costly likelihood functions, using trivially parallel computing to speed up sequential exploration of parameter space. This strategy combines the power of distributed computing with machine learning and Markov-Chain Monte Carlo techniques efficiently to explore a likelihood function, posterior distribution or χ2-surface. This strategy is particularly successful in cases where computing the likelihood is costly and the number of parameters is moderate or large. We apply this technique to two central problems in cosmology: the solution of the cosmological parameter estimation problem with sufficient accuracy for the Planck data using PICo; and the detailed calculation of cosmological helium and hydrogen recombination with RICO. Since the APPLe approach is designed to be able to use massively parallel resources to speed up problems that are inherently serial, we can bring the power of distributed computing to bear on parameter estimation problems. We have demonstrated this with the CosmologyatHome project.

  13. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter-based estimation applications.

  14. Single Tracking Location Acoustic Radiation Force Impulse Viscoelasticity Estimation (STL-VE): A Method for Measuring Tissue Viscoelastic Parameters

    PubMed Central

    Langdon, Jonathan H; Elegbe, Etana; McAleavey, Stephen A

    2015-01-01

    Single Tracking Location (STL) Shear wave Elasticity Imaging (SWEI) is a method for detecting elastic differences between tissues. It has the advantage of intrinsic speckle bias suppression compared to Multiple Tracking Location (MTL) variants of SWEI. However, the assumption of a linear model leads to an overestimation of the shear modulus in viscoelastic media. A new reconstruction technique denoted Single Tracking Location Viscosity Estimation (STL-VE) is introduced to correct for this overestimation. This technique utilizes the same raw data generated in STL-SWEI imaging. Here, the STL-VE technique is developed by way of a Maximum Likelihood Estimation (MLE) for general viscoelastic materials. The method is then implemented for the particular case of the Kelvin-Voigt Model. Using simulation data, the STL-VE technique is demonstrated and the performance of the estimator is characterized. Finally, the STL-VE method is used to estimate the viscoelastic parameters of ex-vivo bovine liver. We find good agreement between the STL-VE results and the simulation parameters as well as between the liver shear wave data and the modeled data fit. PMID:26168170

  15. Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    A technique for designing optimal inputs for aerodynamic parameter estimation was flight tested on the F-18 High Angle of Attack Research Vehicle (HARV). Model parameter accuracies calculated from flight test data were compared on an equal basis for optimal input designs and conventional inputs at the same flight condition. In spite of errors in the a priori input design models and distortions of the input form by the feedback control system, the optimal inputs increased estimated parameter accuracies compared to conventional 3-2-1-1 and doublet inputs. In addition, the tests using optimal input designs demonstrated enhanced design flexibility, allowing the optimal input design technique to use a larger input amplitude to achieve further increases in estimated parameter accuracy without departing from the desired flight test condition. This work validated the analysis used to develop the optimal input designs, and demonstrated the feasibility and practical utility of the optimal input design technique.

  16. An Adaptive Kalman Filter using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  17. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    NASA Astrophysics Data System (ADS)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification techniques for model calibration. For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct densities for input parameters in the heat model and the HIV model. To quantify the uncertainty in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities obtained using these methods are compared to those obtained through the direct numerical evaluation of the Bayes' formula. We also combine uncertainties in input parameters and measurement errors to construct predictive estimates for a model response. A significant emphasis is on the development and illustration of techniques to verify the accuracy of sampling-based Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains, densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes formula. We also perform similar analysis for credible and prediction intervals for responses. Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the densities obtained by different methods for the HIV model. The energy statistics are used to test the equality of distributions. We also consider parameter selection and verification techniques for models having one or more parameters that are noninfluential in the sense that they minimally impact model outputs. We illustrate these techniques for a dynamic HIV model but note that the parameter selection and verification framework is applicable to a wide range of biological and physical models. To accommodate the nonlinear input to output relations, which are typical for such models, we focus on global sensitivity analysis techniques, including those based on partial correlations, Sobol indices based on second-order model representations, and Morris indices, as well as a parameter selection technique based on standard errors. A significant objective is to provide verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.

  18. Two biased estimation techniques in linear regression: Application to aircraft

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav

    1988-01-01

    Several ways for detection and assessment of collinearity in measured data are discussed. Because data collinearity usually results in poor least squares estimates, two estimation techniques which can limit a damaging effect of collinearity are presented. These two techniques, the principal components regression and mixed estimation, belong to a class of biased estimation techniques. Detection and assessment of data collinearity and the two biased estimation techniques are demonstrated in two examples using flight test data from longitudinal maneuvers of an experimental aircraft. The eigensystem analysis and parameter variance decomposition appeared to be a promising tool for collinearity evaluation. The biased estimators had far better accuracy than the results from the ordinary least squares technique.

  19. Estimation of hysteretic damping of structures by stochastic subspace identification

    NASA Astrophysics Data System (ADS)

    Bajrić, Anela; Høgsberg, Jan

    2018-05-01

    Output-only system identification techniques can estimate modal parameters of structures represented by linear time-invariant systems. However, the extension of the techniques to structures exhibiting non-linear behavior has not received much attention. This paper presents an output-only system identification method suitable for random response of dynamic systems with hysteretic damping. The method applies the concept of Stochastic Subspace Identification (SSI) to estimate the model parameters of a dynamic system with hysteretic damping. The restoring force is represented by the Bouc-Wen model, for which an equivalent linear relaxation model is derived. Hysteretic properties can be encountered in engineering structures exposed to severe cyclic environmental loads, as well as in vibration mitigation devices, such as Magneto-Rheological (MR) dampers. The identification technique incorporates the equivalent linear damper model in the estimation procedure. Synthetic data, representing the random vibrations of systems with hysteresis, validate the estimated system parameters by the presented identification method at low and high-levels of excitation amplitudes.

  20. New fast least-squares algorithm for estimating the best-fitting parameters due to simple geometric-structures from gravity anomalies.

    PubMed

    Essa, Khalid S

    2014-01-01

    A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values.

  1. New fast least-squares algorithm for estimating the best-fitting parameters due to simple geometric-structures from gravity anomalies

    PubMed Central

    Essa, Khalid S.

    2013-01-01

    A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values. PMID:25685472

  2. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  3. Center of pressure based segment inertial parameters validation

    PubMed Central

    Rezzoug, Nasser; Gorce, Philippe; Isableu, Brice; Venture, Gentiane

    2017-01-01

    By proposing efficient methods for estimating Body Segment Inertial Parameters’ (BSIP) estimation and validating them with a force plate, it is possible to improve the inverse dynamic computations that are necessary in multiple research areas. Until today a variety of studies have been conducted to improve BSIP estimation but to our knowledge a real validation has never been completely successful. In this paper, we propose a validation method using both kinematic and kinetic parameters (contact forces) gathered from optical motion capture system and a force plate respectively. To compare BSIPs, we used the measured contact forces (Force plate) as the ground truth, and reconstructed the displacements of the Center of Pressure (COP) using inverse dynamics from two different estimation techniques. Only minor differences were seen when comparing the estimated segment masses. Their influence on the COP computation however is large and the results show very distinguishable patterns of the COP movements. Improving BSIP techniques is crucial and deviation from the estimations can actually result in large errors. This method could be used as a tool to validate BSIP estimation techniques. An advantage of this approach is that it facilitates the comparison between BSIP estimation methods and more specifically it shows the accuracy of those parameters. PMID:28662090

  4. Resimulation of noise: a precision estimator for least square error curve-fitting tested for axial strain time constant imaging

    NASA Astrophysics Data System (ADS)

    Nair, S. P.; Righetti, R.

    2015-05-01

    Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.

  5. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  6. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations

    PubMed Central

    Simon, Aaron B.; Dubowitz, David J.; Blockley, Nicholas P.; Buxton, Richard B.

    2016-01-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2′ as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2′, we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2′-based estimate of the metabolic response to CO2 of 1.4%, and R2′- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2′-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. PMID:26790354

  7. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations.

    PubMed

    Simon, Aaron B; Dubowitz, David J; Blockley, Nicholas P; Buxton, Richard B

    2016-04-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2' as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2', we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2'-based estimate of the metabolic response to CO2 of 1.4%, and R2'- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2'-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Mammalian cell culture process for monoclonal antibody production: nonlinear modelling and parameter estimation.

    PubMed

    Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad; Roman, Monica

    2015-01-01

    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies.

  9. Mammalian Cell Culture Process for Monoclonal Antibody Production: Nonlinear Modelling and Parameter Estimation

    PubMed Central

    Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad

    2015-01-01

    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies. PMID:25685797

  10. Estimation of Pulse Transit Time as a Function of Blood Pressure Using a Nonlinear Arterial Tube-Load Model.

    PubMed

    Gao, Mingwu; Cheng, Hao-Min; Sung, Shih-Hsien; Chen, Chen-Huan; Olivier, Nicholas Bari; Mukkamala, Ramakrishna

    2017-07-01

    pulse transit time (PTT) varies with blood pressure (BP) throughout the cardiac cycle, yet, because of wave reflection, only one PTT value at the diastolic BP level is conventionally estimated from proximal and distal BP waveforms. The objective was to establish a technique to estimate multiple PTT values at different BP levels in the cardiac cycle. a technique was developed for estimating PTT as a function of BP (to indicate the PTT value for every BP level) from proximal and distal BP waveforms. First, a mathematical transformation from one waveform to the other is defined in terms of the parameters of a nonlinear arterial tube-load model accounting for BP-dependent arterial compliance and wave reflection. Then, the parameters are estimated by optimally fitting the waveforms to each other via the model-based transformation. Finally, PTT as a function of BP is specified by the parameters. The technique was assessed in animals and patients in several ways including the ability of its estimated PTT-BP function to serve as a subject-specific curve for calibrating PTT to BP. the calibration curve derived by the technique during a baseline period yielded bias and precision errors in mean BP of 5.1 ± 0.9 and 6.6 ± 1.0 mmHg, respectively, during hemodynamic interventions that varied mean BP widely. the new technique may permit, for the first time, estimation of PTT values throughout the cardiac cycle from proximal and distal waveforms. the technique could potentially be applied to improve arterial stiffness monitoring and help realize cuff-less BP monitoring.

  11. Optimum data weighting and error calibration for estimation of gravitational parameters

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.

    1989-01-01

    A new technique was developed for the weighting of data from satellite tracking systems in order to obtain an optimum least squares solution and an error calibration for the solution parameters. Data sets from optical, electronic, and laser systems on 17 satellites in GEM-T1 (Goddard Earth Model, 36x36 spherical harmonic field) were employed toward application of this technique for gravity field parameters. Also, GEM-T2 (31 satellites) was recently computed as a direct application of the method and is summarized here. The method employs subset solutions of the data associated with the complete solution and uses an algorithm to adjust the data weights by requiring the differences of parameters between solutions to agree with their error estimates. With the adjusted weights the process provides for an automatic calibration of the error estimates for the solution parameters. The data weights derived are generally much smaller than corresponding weights obtained from nominal values of observation accuracy or residuals. Independent tests show significant improvement for solutions with optimal weighting as compared to the nominal weighting. The technique is general and may be applied to orbit parameters, station coordinates, or other parameters than the gravity model.

  12. Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick; Klein, Vladislav

    2011-01-01

    Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.

  13. Brute force meets Bruno force in parameter optimisation: introduction of novel constraints for parameter accuracy improvement by symbolic computation.

    PubMed

    Nakatsui, M; Horimoto, K; Lemaire, F; Ürgüplü, A; Sedoglavic, A; Boulier, F

    2011-09-01

    Recent remarkable advances in computer performance have enabled us to estimate parameter values by the huge power of numerical computation, the so-called 'Brute force', resulting in the high-speed simultaneous estimation of a large number of parameter values. However, these advancements have not been fully utilised to improve the accuracy of parameter estimation. Here the authors review a novel method for parameter estimation using symbolic computation power, 'Bruno force', named after Bruno Buchberger, who found the Gröbner base. In the method, the objective functions combining the symbolic computation techniques are formulated. First, the authors utilise a symbolic computation technique, differential elimination, which symbolically reduces an equivalent system of differential equations to a system in a given model. Second, since its equivalent system is frequently composed of large equations, the system is further simplified by another symbolic computation. The performance of the authors' method for parameter accuracy improvement is illustrated by two representative models in biology, a simple cascade model and a negative feedback model in comparison with the previous numerical methods. Finally, the limits and extensions of the authors' method are discussed, in terms of the possible power of 'Bruno force' for the development of a new horizon in parameter estimation.

  14. X-31 aerodynamic characteristics determined from flight data

    NASA Technical Reports Server (NTRS)

    Kokolios, Alex

    1993-01-01

    The lateral aerodynamic characteristics of the X-31 were determined at angles of attack ranging from 20 to 45 deg. Estimates of the lateral stability and control parameters were obtained by applying two parameter estimation techniques, linear regression, and the extended Kalman filter to flight test data. An attempt to apply maximum likelihood to extract parameters from the flight data was also made but failed for the reasons presented. An overview of the System Identification process is given. The overview includes a listing of the more important properties of all three estimation techniques that were applied to the data. A comparison is given of results obtained from flight test data and wind tunnel data for four important lateral parameters. Finally, future research to be conducted in this area is discussed.

  15. Global parameter estimation for thermodynamic models of transcriptional regulation.

    PubMed

    Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N

    2013-07-15

    Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Optimization of spatial frequency domain imaging technique for estimating optical properties of food and biological materials

    USDA-ARS?s Scientific Manuscript database

    Spatial frequency domain imaging technique has recently been developed for determination of the optical properties of food and biological materials. However, accurate estimation of the optical property parameters by the technique is challenging due to measurement errors associated with signal acquis...

  17. Determining the accuracy of maximum likelihood parameter estimates with colored residuals

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1994-01-01

    An important part of building high fidelity mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of the accuracy of parameter estimates, the estimates themselves have limited value. In this work, an expression based on theoretical analysis was developed to properly compute parameter accuracy measures for maximum likelihood estimates with colored residuals. This result is important because experience from the analysis of measured data reveals that the residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Simulated data runs were used to show that the parameter accuracy measures computed with this technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for analysis of the output residuals in the frequency domain or heuristically determined multiplication factors. The result is general, although the application studied here is maximum likelihood estimation of aerodynamic model parameters from flight test data.

  18. Task-oriented comparison of power spectral density estimation methods for quantifying acoustic attenuation in diagnostic ultrasound using a reference phantom method.

    PubMed

    Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A

    2013-07-01

    Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.

  19. A method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1971-01-01

    A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

  20. A new adaptive algorithm for automated feature extraction in exponentially damped signals for health monitoring of smart structures

    NASA Astrophysics Data System (ADS)

    Qarib, Hossein; Adeli, Hojjat

    2015-12-01

    In this paper authors introduce a new adaptive signal processing technique for feature extraction and parameter estimation in noisy exponentially damped signals. The iterative 3-stage method is based on the adroit integration of the strengths of parametric and nonparametric methods such as multiple signal categorization, matrix pencil, and empirical mode decomposition algorithms. The first stage is a new adaptive filtration or noise removal scheme. The second stage is a hybrid parametric-nonparametric signal parameter estimation technique based on an output-only system identification technique. The third stage is optimization of estimated parameters using a combination of the primal-dual path-following interior point algorithm and genetic algorithm. The methodology is evaluated using a synthetic signal and a signal obtained experimentally from transverse vibrations of a steel cantilever beam. The method is successful in estimating the frequencies accurately. Further, it estimates the damping exponents. The proposed adaptive filtration method does not include any frequency domain manipulation. Consequently, the time domain signal is not affected as a result of frequency domain and inverse transformations.

  1. ASCAL: A Microcomputer Program for Estimating Logistic IRT Item Parameters.

    ERIC Educational Resources Information Center

    Vale, C. David; Gialluca, Kathleen A.

    ASCAL is a microcomputer-based program for calibrating items according to the three-parameter logistic model of item response theory. It uses a modified multivariate Newton-Raphson procedure for estimating item parameters. This study evaluated this procedure using Monte Carlo Simulation Techniques. The current version of ASCAL was then compared to…

  2. Computational methods for estimation of parameters in hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.; Murphy, K. A.

    1983-01-01

    Approximation techniques for estimating spatially varying coefficients and unknown boundary parameters in second order hyperbolic systems are discussed. Methods for state approximation (cubic splines, tau-Legendre) and approximation of function space parameters (interpolatory splines) are outlined and numerical findings for use of the resulting schemes in model "one dimensional seismic inversion' problems are summarized.

  3. Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.

    2005-01-01

    An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.

  4. Approximation techniques for parameter estimation and feedback control for distributed models of large flexible structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1984-01-01

    Approximation ideas are discussed that can be used in parameter estimation and feedback control for Euler-Bernoulli models of elastic systems. Focusing on parameter estimation problems, ways by which one can obtain convergence results for cubic spline based schemes for hybrid models involving an elastic cantilevered beam with tip mass and base acceleration are outlined. Sample numerical findings are also presented.

  5. Estimation and identification study for flexible vehicles

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Englar, T. S., Jr.

    1973-01-01

    Techniques are studied for the estimation of rigid body and bending states and the identification of model parameters associated with the single-axis attitude dynamics of a flexible vehicle. This problem is highly nonlinear but completely observable provided sufficient attitude and attitude rate data is available and provided all system bending modes are excited in the observation interval. A sequential estimator tracks the system states in the presence of model parameter errors. A batch estimator identifies all model parameters with high accuracy.

  6. Parameter estimating state reconstruction

    NASA Technical Reports Server (NTRS)

    George, E. B.

    1976-01-01

    Parameter estimation is considered for systems whose entire state cannot be measured. Linear observers are designed to recover the unmeasured states to a sufficient accuracy to permit the estimation process. There are three distinct dynamics that must be accommodated in the system design: the dynamics of the plant, the dynamics of the observer, and the system updating of the parameter estimation. The latter two are designed to minimize interaction of the involved systems. These techniques are extended to weakly nonlinear systems. The application to a simulation of a space shuttle POGO system test is of particular interest. A nonlinear simulation of the system is developed, observers designed, and the parameters estimated.

  7. Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops

    USGS Publications Warehouse

    Duan, Q.; Schaake, J.; Andreassian, V.; Franks, S.; Goteti, G.; Gupta, H.V.; Gusev, Y.M.; Habets, F.; Hall, A.; Hay, L.; Hogue, T.; Huang, M.; Leavesley, G.; Liang, X.; Nasonova, O.N.; Noilhan, J.; Oudin, L.; Sorooshian, S.; Wagener, T.; Wood, E.F.

    2006-01-01

    The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrologic models and in land surface parameterization schemes of atmospheric models. The MOPEX science strategy involves three major steps: data preparation, a priori parameter estimation methodology development, and demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrologic basins in the United States (US) and in other countries. This database is being continuously expanded to include more basins in all parts of the world. A number of international MOPEX workshops have been convened to bring together interested hydrologists and land surface modelers from all over world to exchange knowledge and experience in developing a priori parameter estimation techniques. This paper describes the results from the second and third MOPEX workshops. The specific objective of these workshops is to examine the state of a priori parameter estimation techniques and how they can be potentially improved with observations from well-monitored hydrologic basins. Participants of the second and third MOPEX workshops were provided with data from 12 basins in the southeastern US and were asked to carry out a series of numerical experiments using a priori parameters as well as calibrated parameters developed for their respective hydrologic models. Different modeling groups carried out all the required experiments independently using eight different models, and the results from these models have been assembled for analysis in this paper. This paper presents an overview of the MOPEX experiment and its design. The main experimental results are analyzed. A key finding is that existing a priori parameter estimation procedures are problematic and need improvement. Significant improvement of these procedures may be achieved through model calibration of well-monitored hydrologic basins. This paper concludes with a discussion of the lessons learned, and points out further work and future strategy. ?? 2005 Elsevier Ltd. All rights reserved.

  8. Practical input optimization for aircraft parameter estimation experiments. Ph.D. Thesis, 1990

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1993-01-01

    The object of this research was to develop an algorithm for the design of practical, optimal flight test inputs for aircraft parameter estimation experiments. A general, single pass technique was developed which allows global optimization of the flight test input design for parameter estimation using the principles of dynamic programming with the input forms limited to square waves only. Provision was made for practical constraints on the input, including amplitude constraints, control system dynamics, and selected input frequency range exclusions. In addition, the input design was accomplished while imposing output amplitude constraints required by model validity and considerations of safety during the flight test. The algorithm has multiple input design capability, with optional inclusion of a constraint that only one control move at a time, so that a human pilot can implement the inputs. It is shown that the technique can be used to design experiments for estimation of open loop model parameters from closed loop flight test data. The report includes a new formulation of the optimal input design problem, a description of a new approach to the solution, and a summary of the characteristics of the algorithm, followed by three example applications of the new technique which demonstrate the quality and expanded capabilities of the input designs produced by the new technique. In all cases, the new input design approach showed significant improvement over previous input design methods in terms of achievable parameter accuracies.

  9. A Rapid Screen Technique for Estimating Nanoparticle Transport in Porous Media

    EPA Science Inventory

    Quantifying the mobility of engineered nanoparticles in hydrologic pathways from point of release to human or ecological receptors is essential for assessing environmental exposures. Column transport experiments are a widely used technique to estimate the transport parameters of ...

  10. An adaptive technique for estimating the atmospheric density profile during the AE mission

    NASA Technical Reports Server (NTRS)

    Argentiero, P.

    1973-01-01

    A technique is presented for processing accelerometer data obtained during the AE missions in order to estimate the atmospheric density profile. A minimum variance, adaptive filter is utilized. The trajectory of the probe and probe parameters are in a consider mode where their estimates are unimproved but their associated uncertainties are permitted an impact on filter behavior. Simulations indicate that the technique is effective in estimating a density profile to within a few percentage points.

  11. Time-Varying Delay Estimation Applied to the Surface Electromyography Signals Using the Parametric Approach

    NASA Astrophysics Data System (ADS)

    Luu, Gia Thien; Boualem, Abdelbassit; Duy, Tran Trung; Ravier, Philippe; Butteli, Olivier

    Muscle Fiber Conduction Velocity (MFCV) can be calculated from the time delay between the surface electromyographic (sEMG) signals recorded by electrodes aligned with the fiber direction. In order to take into account the non-stationarity during the dynamic contraction (the most daily life situation) of the data, the developed methods have to consider that the MFCV changes over time, which induces time-varying delays and the data is non-stationary (change of Power Spectral Density (PSD)). In this paper, the problem of TVD estimation is considered using a parametric method. First, the polynomial model of TVD has been proposed. Then, the TVD model parameters are estimated by using a maximum likelihood estimation (MLE) strategy solved by a deterministic optimization technique (Newton) and stochastic optimization technique, called simulated annealing (SA). The performance of the two techniques is also compared. We also derive two appropriate Cramer-Rao Lower Bounds (CRLB) for the estimated TVD model parameters and for the TVD waveforms. Monte-Carlo simulation results show that the estimation of both the model parameters and the TVD function is unbiased and that the variance obtained is close to the derived CRBs. A comparison with non-parametric approaches of the TVD estimation is also presented and shows the superiority of the method proposed.

  12. Effects of control inputs on the estimation of stability and control parameters of a light airplane

    NASA Technical Reports Server (NTRS)

    Cannaday, R. L.; Suit, W. T.

    1977-01-01

    The maximum likelihood parameter estimation technique was used to determine the values of stability and control derivatives from flight test data for a low-wing, single-engine, light airplane. Several input forms were used during the tests to investigate the consistency of parameter estimates as it relates to inputs. These consistencies were compared by using the ensemble variance and estimated Cramer-Rao lower bound. In addition, the relationship between inputs and parameter correlations was investigated. Results from the stabilator inputs are inconclusive but the sequence of rudder input followed by aileron input or aileron followed by rudder gave more consistent estimates than did rudder or ailerons individually. Also, square-wave inputs appeared to provide slightly improved consistency in the parameter estimates when compared to sine-wave inputs.

  13. Optimized tuner selection for engine performance estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L. (Inventor); Garg, Sanjay (Inventor)

    2013-01-01

    A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.

  14. Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors

    USGS Publications Warehouse

    Langbein, John O.

    2017-01-01

    Most time series of geophysical phenomena have temporally correlated errors. From these measurements, various parameters are estimated. For instance, from geodetic measurements of positions, the rates and changes in rates are often estimated and are used to model tectonic processes. Along with the estimates of the size of the parameters, the error in these parameters needs to be assessed. If temporal correlations are not taken into account, or each observation is assumed to be independent, it is likely that any estimate of the error of these parameters will be too low and the estimated value of the parameter will be biased. Inclusion of better estimates of uncertainties is limited by several factors, including selection of the correct model for the background noise and the computational requirements to estimate the parameters of the selected noise model for cases where there are numerous observations. Here, I address the second problem of computational efficiency using maximum likelihood estimates (MLE). Most geophysical time series have background noise processes that can be represented as a combination of white and power-law noise, 1/fα">1/fα1/fα with frequency, f. With missing data, standard spectral techniques involving FFTs are not appropriate. Instead, time domain techniques involving construction and inversion of large data covariance matrices are employed. Bos et al. (J Geod, 2013. doi:10.1007/s00190-012-0605-0) demonstrate one technique that substantially increases the efficiency of the MLE methods, yet is only an approximate solution for power-law indices >1.0 since they require the data covariance matrix to be Toeplitz. That restriction can be removed by simply forming a data filter that adds noise processes rather than combining them in quadrature. Consequently, the inversion of the data covariance matrix is simplified yet provides robust results for a wider range of power-law indices.

  15. Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors

    NASA Astrophysics Data System (ADS)

    Langbein, John

    2017-08-01

    Most time series of geophysical phenomena have temporally correlated errors. From these measurements, various parameters are estimated. For instance, from geodetic measurements of positions, the rates and changes in rates are often estimated and are used to model tectonic processes. Along with the estimates of the size of the parameters, the error in these parameters needs to be assessed. If temporal correlations are not taken into account, or each observation is assumed to be independent, it is likely that any estimate of the error of these parameters will be too low and the estimated value of the parameter will be biased. Inclusion of better estimates of uncertainties is limited by several factors, including selection of the correct model for the background noise and the computational requirements to estimate the parameters of the selected noise model for cases where there are numerous observations. Here, I address the second problem of computational efficiency using maximum likelihood estimates (MLE). Most geophysical time series have background noise processes that can be represented as a combination of white and power-law noise, 1/f^{α } with frequency, f. With missing data, standard spectral techniques involving FFTs are not appropriate. Instead, time domain techniques involving construction and inversion of large data covariance matrices are employed. Bos et al. (J Geod, 2013. doi: 10.1007/s00190-012-0605-0) demonstrate one technique that substantially increases the efficiency of the MLE methods, yet is only an approximate solution for power-law indices >1.0 since they require the data covariance matrix to be Toeplitz. That restriction can be removed by simply forming a data filter that adds noise processes rather than combining them in quadrature. Consequently, the inversion of the data covariance matrix is simplified yet provides robust results for a wider range of power-law indices.

  16. Aerodynamic parameter estimation via Fourier modulating function techniques

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1995-01-01

    Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.

  17. Parameter estimation using meta-heuristics in systems biology: a comprehensive review.

    PubMed

    Sun, Jianyong; Garibaldi, Jonathan M; Hodgman, Charlie

    2012-01-01

    This paper gives a comprehensive review of the application of meta-heuristics to optimization problems in systems biology, mainly focussing on the parameter estimation problem (also called the inverse problem or model calibration). It is intended for either the system biologist who wishes to learn more about the various optimization techniques available and/or the meta-heuristic optimizer who is interested in applying such techniques to problems in systems biology. First, the parameter estimation problems emerging from different areas of systems biology are described from the point of view of machine learning. Brief descriptions of various meta-heuristics developed for these problems follow, along with outlines of their advantages and disadvantages. Several important issues in applying meta-heuristics to the systems biology modelling problem are addressed, including the reliability and identifiability of model parameters, optimal design of experiments, and so on. Finally, we highlight some possible future research directions in this field.

  18. System Identification Applied to Dynamic CFD Simulation and Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.; Vicroy, Dan D.

    2011-01-01

    Demanding aerodynamic modeling requirements for military and civilian aircraft have provided impetus for researchers to improve computational and experimental techniques. Model validation is a key component for these research endeavors so this study is an initial effort to extend conventional time history comparisons by comparing model parameter estimates and their standard errors using system identification methods. An aerodynamic model of an aircraft performing one-degree-of-freedom roll oscillatory motion about its body axes is developed. The model includes linear aerodynamics and deficiency function parameters characterizing an unsteady effect. For estimation of unknown parameters two techniques, harmonic analysis and two-step linear regression, were applied to roll-oscillatory wind tunnel data and to computational fluid dynamics (CFD) simulated data. The model used for this study is a highly swept wing unmanned aerial combat vehicle. Differences in response prediction, parameters estimates, and standard errors are compared and discussed

  19. Estimation of discontinuous coefficients in parabolic systems: Applications to reservoir simulation

    NASA Technical Reports Server (NTRS)

    Lamm, P. D.

    1984-01-01

    Spline based techniques for estimating spatially varying parameters that appear in parabolic distributed systems (typical of those found in reservoir simulation problems) are presented. The problem of determining discontinuous coefficients, estimating both the functional shape and points of discontinuity for such parameters is discussed. Convergence results and a summary of numerical performance of the resulting algorithms are given.

  20. Parameter Estimation in Epidemiology: from Simple to Complex Dynamics

    NASA Astrophysics Data System (ADS)

    Aguiar, Maíra; Ballesteros, Sebastién; Boto, João Pedro; Kooi, Bob W.; Mateus, Luís; Stollenwerk, Nico

    2011-09-01

    We revisit the parameter estimation framework for population biological dynamical systems, and apply it to calibrate various models in epidemiology with empirical time series, namely influenza and dengue fever. When it comes to more complex models like multi-strain dynamics to describe the virus-host interaction in dengue fever, even most recently developed parameter estimation techniques, like maximum likelihood iterated filtering, come to their computational limits. However, the first results of parameter estimation with data on dengue fever from Thailand indicate a subtle interplay between stochasticity and deterministic skeleton. The deterministic system on its own already displays complex dynamics up to deterministic chaos and coexistence of multiple attractors.

  1. Kalman filter estimation of human pilot-model parameters

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.

    1975-01-01

    The parameters of a human pilot-model transfer function are estimated by applying the extended Kalman filter to the corresponding retarded differential-difference equations in the time domain. Use of computer-generated data indicates that most of the parameters, including the implicit time delay, may be reasonably estimated in this way. When applied to two sets of experimental data obtained from a closed-loop tracking task performed by a human, the Kalman filter generated diverging residuals for one of the measurement types, apparently because of model assumption errors. Application of a modified adaptive technique was found to overcome the divergence and to produce reasonable estimates of most of the parameters.

  2. Optimal estimation of parameters and states in stochastic time-varying systems with time delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-08-01

    In this study estimation of parameters and states in stochastic linear and nonlinear delay differential systems with time-varying coefficients and constant delay is explored. The approach consists of first employing a continuous time approximation to approximate the stochastic delay differential equation with a set of stochastic ordinary differential equations. Then the problem of parameter estimation in the resulting stochastic differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the resulting system, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states.

  3. Boundary methods for mode estimation

    NASA Astrophysics Data System (ADS)

    Pierson, William E., Jr.; Ulug, Batuhan; Ahalt, Stanley C.

    1999-08-01

    This paper investigates the use of Boundary Methods (BMs), a collection of tools used for distribution analysis, as a method for estimating the number of modes associated with a given data set. Model order information of this type is required by several pattern recognition applications. The BM technique provides a novel approach to this parameter estimation problem and is comparable in terms of both accuracy and computations to other popular mode estimation techniques currently found in the literature and automatic target recognition applications. This paper explains the methodology used in the BM approach to mode estimation. Also, this paper quickly reviews other common mode estimation techniques and describes the empirical investigation used to explore the relationship of the BM technique to other mode estimation techniques. Specifically, the accuracy and computational efficiency of the BM technique are compared quantitatively to the a mixture of Gaussian (MOG) approach and a k-means approach to model order estimation. The stopping criteria of the MOG and k-means techniques is the Akaike Information Criteria (AIC).

  4. CosmoSIS: A system for MC parameter estimation

    DOE PAGES

    Bridle, S.; Dodelson, S.; Jennings, E.; ...

    2015-12-23

    CosmoSIS is a modular system for cosmological parameter estimation, based on Markov Chain Monte Carlo and related techniques. It provides a series of samplers, which drive the exploration of the parameter space, and a series of modules, which calculate the likelihood of the observed data for a given physical model, determined by the location of a sample in the parameter space. While CosmoSIS ships with a set of modules that calculate quantities of interest to cosmologists, there is nothing about the framework itself, nor in the Markov Chain Monte Carlo technique, that is specific to cosmology. Thus CosmoSIS could bemore » used for parameter estimation problems in other fields, including HEP. This paper describes the features of CosmoSIS and show an example of its use outside of cosmology. Furthermore, it also discusses how collaborative development strategies differ between two different communities: that of HEP physicists, accustomed to working in large collaborations, and that of cosmologists, who have traditionally not worked in large groups.« less

  5. Noise parameter estimation for poisson corrupted images using variance stabilization transforms.

    PubMed

    Jin, Xiaodan; Xu, Zhenyu; Hirakawa, Keigo

    2014-03-01

    Noise is present in all images captured by real-world image sensors. Poisson distribution is said to model the stochastic nature of the photon arrival process and agrees with the distribution of measured pixel values. We propose a method for estimating unknown noise parameters from Poisson corrupted images using properties of variance stabilization. With a significantly lower computational complexity and improved stability, the proposed estimation technique yields noise parameters that are comparable in accuracy to the state-of-art methods.

  6. An assessment of the Nguyen and Pinder method for slug test analysis. [In situ estimates of ground water contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, J.J. Jr.; Hyder, Z.

    The Nguyen and Pinder method is one of four techniques commonly used for analysis of response data from slug tests. Limited field research has raised questions about the reliability of the parameter estimates obtained with this method. A theoretical evaluation of this technique reveals that errors were made in the derivation of the analytical solution upon which the technique is based. Simulation and field examples show that the errors result in parameter estimates that can differ from actual values by orders of magnitude. These findings indicate that the Nguyen and Pinder method should no longer be a tool in themore » repertoire of the field hydrogeologist. If data from a slug test performed in a partially penetrating well in a confined aquifer need to be analyzed, recent work has shown that the Hvorslev method is the best alternative among the commonly used techniques.« less

  7. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  8. Minimization of model representativity errors in identification of point source emission from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Sharan, Maithili; Singh, Amit Kumar; Singh, Sarvesh Kumar

    2017-11-01

    Estimation of an unknown atmospheric release from a finite set of concentration measurements is considered an ill-posed inverse problem. Besides ill-posedness, the estimation process is influenced by the instrumental errors in the measured concentrations and model representativity errors. The study highlights the effect of minimizing model representativity errors on the source estimation. This is described in an adjoint modelling framework and followed in three steps. First, an estimation of point source parameters (location and intensity) is carried out using an inversion technique. Second, a linear regression relationship is established between the measured concentrations and corresponding predicted using the retrieved source parameters. Third, this relationship is utilized to modify the adjoint functions. Further, source estimation is carried out using these modified adjoint functions to analyse the effect of such modifications. The process is tested for two well known inversion techniques, called renormalization and least-square. The proposed methodology and inversion techniques are evaluated for a real scenario by using concentrations measurements from the Idaho diffusion experiment in low wind stable conditions. With both the inversion techniques, a significant improvement is observed in the retrieval of source estimation after minimizing the representativity errors.

  9. Estimating rainfall time series and model parameter distributions using model data reduction and inversion techniques

    NASA Astrophysics Data System (ADS)

    Wright, Ashley J.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.

    2017-08-01

    Floods are devastating natural hazards. To provide accurate, precise, and timely flood forecasts, there is a need to understand the uncertainties associated within an entire rainfall time series, even when rainfall was not observed. The estimation of an entire rainfall time series and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of entire rainfall input time series to be considered when estimating model parameters, and provides the ability to improve rainfall estimates from poorly gauged catchments. Current methods to estimate entire rainfall time series from streamflow records are unable to adequately invert complex nonlinear hydrologic systems. This study aims to explore the use of wavelets in the estimation of rainfall time series from streamflow records. Using the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia, it is shown that model parameter distributions and an entire rainfall time series can be estimated. Including rainfall in the estimation process improves streamflow simulations by a factor of up to 1.78. This is achieved while estimating an entire rainfall time series, inclusive of days when none was observed. It is shown that the choice of wavelet can have a considerable impact on the robustness of the inversion. Combining the use of a likelihood function that considers rainfall and streamflow errors with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.

  10. Kalman filter data assimilation: targeting observations and parameter estimation.

    PubMed

    Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex

    2014-06-01

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.

  11. Kalman filter data assimilation: Targeting observations and parameter estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellsky, Thomas, E-mail: bellskyt@asu.edu; Kostelich, Eric J.; Mahalov, Alex

    2014-06-15

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly locatedmore » observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.« less

  12. Estimation of end point foot clearance points from inertial sensor data.

    PubMed

    Santhiranayagam, Braveena K; Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2011-01-01

    Foot clearance parameters provide useful insight into tripping risks during walking. This paper proposes a technique for the estimate of key foot clearance parameters using inertial sensor (accelerometers and gyroscopes) data. Fifteen features were extracted from raw inertial sensor measurements, and a regression model was used to estimate two key foot clearance parameters: First maximum vertical clearance (m x 1) after toe-off and the Minimum Toe Clearance (MTC) of the swing foot. Comparisons are made against measurements obtained using an optoelectronic motion capture system (Optotrak), at 4 different walking speeds. General Regression Neural Networks (GRNN) were used to estimate the desired parameters from the sensor features. Eight subjects foot clearance data were examined and a Leave-one-subject-out (LOSO) method was used to select the best model. The best average Root Mean Square Errors (RMSE) across all subjects obtained using all sensor features at the maximum speed for m x 1 was 5.32 mm and for MTC was 4.04 mm. Further application of a hill-climbing feature selection technique resulted in 0.54-21.93% improvement in RMSE and required fewer input features. The results demonstrated that using raw inertial sensor data with regression models and feature selection could accurately estimate key foot clearance parameters.

  13. Lateral-Directional Parameter Estimation on the X-48B Aircraft Using an Abstracted, Multi-Objective Effector Model

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin A.; Waggoner, Erin R.; Taylor, Brian R.

    2011-01-01

    The problem of parameter estimation on hybrid-wing-body aircraft is complicated by the fact that many design candidates for such aircraft involve a large number of aerodynamic control effectors that act in coplanar motion. This adds to the complexity already present in the parameter estimation problem for any aircraft with a closed-loop control system. Decorrelation of flight and simulation data must be performed in order to ascertain individual surface derivatives with any sort of mathematical confidence. Non-standard control surface configurations, such as clamshell surfaces and drag-rudder modes, further complicate the modeling task. In this paper, time-decorrelation techniques are applied to a model structure selected through stepwise regression for simulated and flight-generated lateral-directional parameter estimation data. A virtual effector model that uses mathematical abstractions to describe the multi-axis effects of clamshell surfaces is developed and applied. Comparisons are made between time history reconstructions and observed data in order to assess the accuracy of the regression model. The Cram r-Rao lower bounds of the estimated parameters are used to assess the uncertainty of the regression model relative to alternative models. Stepwise regression was found to be a useful technique for lateral-directional model design for hybrid-wing-body aircraft, as suggested by available flight data. Based on the results of this study, linear regression parameter estimation methods using abstracted effectors are expected to perform well for hybrid-wing-body aircraft properly equipped for the task.

  14. A different approach to estimate nonlinear regression model using numerical methods

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].

  15. Comparative Analyses of MIRT Models and Software (BMIRT and flexMIRT)

    ERIC Educational Resources Information Center

    Yavuz, Guler; Hambleton, Ronald K.

    2017-01-01

    Application of MIRT modeling procedures is dependent on the quality of parameter estimates provided by the estimation software and techniques used. This study investigated model parameter recovery of two popular MIRT packages, BMIRT and flexMIRT, under some common measurement conditions. These packages were specifically selected to investigate the…

  16. Accelerated Bayesian model-selection and parameter-estimation in continuous gravitational-wave searches with pulsar-timing arrays

    NASA Astrophysics Data System (ADS)

    Taylor, Stephen; Ellis, Justin; Gair, Jonathan

    2014-11-01

    We describe several new techniques which accelerate Bayesian searches for continuous gravitational-wave emission from supermassive black-hole binaries using pulsar-timing arrays. These techniques mitigate the problematic increase of search dimensionality with the size of the pulsar array which arises from having to include an extra parameter per pulsar as the array is expanded. This extra parameter corresponds to searching over the phase of the gravitational wave as it propagates past each pulsar so that we can coherently include the pulsar term in our search strategies. Our techniques make the analysis tractable with powerful evidence-evaluation packages like MultiNest. We find good agreement of our techniques with the parameter-estimation and Bayes factor evaluation performed with full signal templates and conclude that these techniques make excellent first-cut tools for detection and characterization of continuous gravitational-wave signals with pulsar-timing arrays. Crucially, at low to moderate signal-to-noise ratios the factor by which the analysis is sped up can be ≳100 , permitting rigorous programs of systematic injection and recovery of signals to establish robust detection criteria within a Bayesian formalism.

  17. Bayesian Estimation in the One-Parameter Latent Trait Model.

    DTIC Science & Technology

    1980-03-01

    Journal of Mathematical and Statistical Psychology , 1973, 26, 31-44. (a) Andersen, E. B. A goodness of fit test for the Rasch model. Psychometrika, 1973, 28...technique for estimating latent trait mental test parameters. Educational and Psychological Measurement, 1976, 36, 705-715. Lindley, D. V. The...Lord, F. M. An analysis of verbal Scholastic Aptitude Test using Birnbaum’s three-parameter logistic model. Educational and Psychological

  18. Estimating free-body modal parameters from tests of a constrained structure

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    1993-01-01

    Hardware advances in suspension technology for ground tests of large space structures provide near on-orbit boundary conditions for modal testing. Further advances in determining free-body modal properties of constrained large space structures have been made, on the analysis side, by using time domain parameter estimation and perturbing the stiffness of the constraints over multiple sub-tests. In this manner, passive suspension constraint forces, which are fully correlated and therefore not usable for spectral averaging techniques, are made effectively uncorrelated. The technique is demonstrated with simulated test data.

  19. Design and parameter estimation of hybrid magnetic bearings for blood pump applications

    NASA Astrophysics Data System (ADS)

    Lim, Tau Meng; Zhang, Dongsheng; Yang, Juanjuan; Cheng, Shanbao; Low, Sze Hsien; Chua, Leok Poh; Wu, Xiaowei

    2009-10-01

    This paper discusses the design and parameter estimation of the dynamics characteristics of a high-speed hybrid magnetic bearings (HMBs) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet (PM) brushless and sensorless DC motor. It is levitated by two HMBs at both ends in five-degree-of-freedom with proportional-integral-derivative (PID) controllers; among which four radial directions are actively controlled and one axial direction is passively controlled. Test results show that the rotor can be stably supported to speeds of 14,000 rpm. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMBs system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air—in both the radial and axial directions. The radial stiffness of the HMBs is compared to the Ansoft's Maxwell 2D/3D finite element magnetostatic results. Experimental estimation showed that the dynamics characteristics of the HMBs system are dominated by the frequency-dependent stiffness coefficients. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamics properties under normal operating conditions with fluid.

  20. Application of a parameter-estimation technique to modeling the regional aquifer underlying the eastern Snake River plain, Idaho

    USGS Publications Warehouse

    Garabedian, Stephen P.

    1986-01-01

    A nonlinear, least-squares regression technique for the estimation of ground-water flow model parameters was applied to the regional aquifer underlying the eastern Snake River Plain, Idaho. The technique uses a computer program to simulate two-dimensional, steady-state ground-water flow. Hydrologic data for the 1980 water year were used to calculate recharge rates, boundary fluxes, and spring discharges. Ground-water use was estimated from irrigated land maps and crop consumptive-use figures. These estimates of ground-water withdrawal, recharge rates, and boundary flux, along with leakance, were used as known values in the model calibration of transmissivity. Leakance values were adjusted between regression solutions by comparing model-calculated to measured spring discharges. In other simulations, recharge and leakance also were calibrated as prior-information regression parameters, which limits the variation of these parameters using a normalized standard error of estimate. Results from a best-fit model indicate a wide areal range in transmissivity from about 0.05 to 44 feet squared per second and in leakance from about 2.2x10 -9 to 6.0 x 10 -8 feet per second per foot. Along with parameter values, model statistics also were calculated, including the coefficient of correlation between calculated and observed head (0.996), the standard error of the estimates for head (40 feet), and the parameter coefficients of variation (about 10-40 percent). Additional boundary flux was added in some areas during calibration to achieve proper fit to ground-water flow directions. Model fit improved significantly when areas that violated model assumptions were removed. It also improved slightly when y-direction (northwest-southeast) transmissivity values were larger than x-direction (northeast-southwest) transmissivity values. The model was most sensitive to changes in recharge, and in some areas, to changes in transmissivity, particularly near the spring discharge area from Milner Dam to King Hill.

  1. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  2. Joint inversion of regional and teleseismic earthquake waveforms

    NASA Astrophysics Data System (ADS)

    Baker, Mark R.; Doser, Diane I.

    1988-03-01

    A least squares joint inversion technique for regional and teleseismic waveforms is presented. The mean square error between seismograms and synthetics is minimized using true amplitudes. Matching true amplitudes in modeling requires meaningful estimates of modeling uncertainties and of seismogram signal-to-noise ratios. This also permits calculating linearized uncertainties on the solution based on accuracy and resolution. We use a priori estimates of earthquake parameters to stabilize unresolved parameters, and for comparison with a posteriori uncertainties. We verify the technique on synthetic data, and on the 1983 Borah Peak, Idaho (M = 7.3), earthquake. We demonstrate the inversion on the August 1954 Rainbow Mountain, Nevada (M = 6.8), earthquake and find parameters consistent with previous studies.

  3. DUAL STATE-PARAMETER UPDATING SCHEME ON A CONCEPTUAL HYDROLOGIC MODEL USING SEQUENTIAL MONTE CARLO FILTERS

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; Tachikawa, Yasuto; Shiiba, Michiharu; Kim, Sunmin

    Applications of data assimilation techniques have been widely used to improve upon the predictability of hydrologic modeling. Among various data assimilation techniques, sequential Monte Carlo (SMC) filters, known as "particle filters" provide the capability to handle non-linear and non-Gaussian state-space models. This paper proposes a dual state-parameter updating scheme (DUS) based on SMC methods to estimate both state and parameter variables of a hydrologic model. We introduce a kernel smoothing method for the robust estimation of uncertain model parameters in the DUS. The applicability of the dual updating scheme is illustrated using the implementation of the storage function model on a middle-sized Japanese catchment. We also compare performance results of DUS combined with various SMC methods, such as SIR, ASIR and RPF.

  4. Toward quantitative estimation of material properties with dynamic mode atomic force microscopy: a comparative study.

    PubMed

    Ghosal, Sayan; Gannepalli, Anil; Salapaka, Murti

    2017-08-11

    In this article, we explore methods that enable estimation of material properties with the dynamic mode atomic force microscopy suitable for soft matter investigation. The article presents the viewpoint of casting the system, comprising of a flexure probe interacting with the sample, as an equivalent cantilever system and compares a steady-state analysis based method with a recursive estimation technique for determining the parameters of the equivalent cantilever system in real time. The steady-state analysis of the equivalent cantilever model, which has been implicitly assumed in studies on material property determination, is validated analytically and experimentally. We show that the steady-state based technique yields results that quantitatively agree with the recursive method in the domain of its validity. The steady-state technique is considerably simpler to implement, however, slower compared to the recursive technique. The parameters of the equivalent system are utilized to interpret storage and dissipative properties of the sample. Finally, the article identifies key pitfalls that need to be avoided toward the quantitative estimation of material properties.

  5. Nonlinear, discrete flood event models, 1. Bayesian estimation of parameters

    NASA Astrophysics Data System (ADS)

    Bates, Bryson C.; Townley, Lloyd R.

    1988-05-01

    In this paper (Part 1), a Bayesian procedure for parameter estimation is applied to discrete flood event models. The essence of the procedure is the minimisation of a sum of squares function for models in which the computed peak discharge is nonlinear in terms of the parameters. This objective function is dependent on the observed and computed peak discharges for several storms on the catchment, information on the structure of observation error, and prior information on parameter values. The posterior covariance matrix gives a measure of the precision of the estimated parameters. The procedure is demonstrated using rainfall and runoff data from seven Australian catchments. It is concluded that the procedure is a powerful alternative to conventional parameter estimation techniques in situations where a number of floods are available for parameter estimation. Parts 2 and 3 will discuss the application of statistical nonlinearity measures and prediction uncertainty analysis to calibrated flood models. Bates (this volume) and Bates and Townley (this volume).

  6. Novel SVM-based technique to improve rainfall estimation over the Mediterranean region (north of Algeria) using the multispectral MSG SEVIRI imagery

    NASA Astrophysics Data System (ADS)

    Sehad, Mounir; Lazri, Mourad; Ameur, Soltane

    2017-03-01

    In this work, a new rainfall estimation technique based on the high spatial and temporal resolution of the Spinning Enhanced Visible and Infra Red Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) is presented. This work proposes efficient scheme rainfall estimation based on two multiclass support vector machine (SVM) algorithms: SVM_D for daytime and SVM_N for night time rainfall estimations. Both SVM models are trained using relevant rainfall parameters based on optical, microphysical and textural cloud proprieties. The cloud parameters are derived from the Spectral channels of the SEVIRI MSG radiometer. The 3-hourly and daily accumulated rainfall are derived from the 15 min-rainfall estimation given by the SVM classifiers for each MSG observation image pixel. The SVMs were trained with ground meteorological radar precipitation scenes recorded from November 2006 to March 2007 over the north of Algeria located in the Mediterranean region. Further, the SVM_D and SVM_N models were used to estimate 3-hourly and daily rainfall using data set gathered from November 2010 to March 2011 over north Algeria. The results were validated against collocated rainfall observed by rain gauge network. Indeed, the statistical scores given by correlation coefficient, bias, root mean square error and mean absolute error, showed good accuracy of rainfall estimates by the present technique. Moreover, rainfall estimates of our technique were compared with two high accuracy rainfall estimates methods based on MSG SEVIRI imagery namely: random forests (RF) based approach and an artificial neural network (ANN) based technique. The findings of the present technique indicate higher correlation coefficient (3-hourly: 0.78; daily: 0.94), and lower mean absolute error and root mean square error values. The results show that the new technique assign 3-hourly and daily rainfall with good and better accuracy than ANN technique and (RF) model.

  7. Estimation et validation des derivees de stabilite et controle du modele dynamique non-lineaire d'un drone a voilure fixe

    NASA Astrophysics Data System (ADS)

    Courchesne, Samuel

    Knowledge of the dynamic characteristics of a fixed-wing UAV is necessary to design flight control laws and to conceive a high quality flight simulator. The basic features of a flight mechanic model include the properties of mass, inertia and major aerodynamic terms. They respond to a complex process involving various numerical analysis techniques and experimental procedures. This thesis focuses on the analysis of estimation techniques applied to estimate problems of stability and control derivatives from flight test data provided by an experimental UAV. To achieve this objective, a modern identification methodology (Quad-M) is used to coordinate the processing tasks from multidisciplinary fields, such as parameter estimation modeling, instrumentation, the definition of flight maneuvers and validation. The system under study is a non-linear model with six degrees of freedom with a linear aerodynamic model. The time domain techniques are used for identification of the drone. The first technique, the equation error method is used to determine the structure of the aerodynamic model. Thereafter, the output error method and filter error method are used to estimate the aerodynamic coefficients values. The Matlab scripts for estimating the parameters obtained from the American Institute of Aeronautics and Astronautics (AIAA) are used and modified as necessary to achieve the desired results. A commendable effort in this part of research is devoted to the design of experiments. This includes an awareness of the system data acquisition onboard and the definition of flight maneuvers. The flight tests were conducted under stable flight conditions and with low atmospheric disturbance. Nevertheless, the identification results showed that the filter error method is most effective for estimating the parameters of the drone due to the presence of process noise and measurement. The aerodynamic coefficients are validated using a numerical analysis of the vortex method. In addition, a simulation model incorporating the estimated parameters is used to compare the behavior of states measured. Finally, a good correspondence between the results is demonstrated despite a limited number of flight data. Keywords: drone, identification, estimation, nonlinear, flight test, system, aerodynamic coefficient.

  8. A variational approach to parameter estimation in ordinary differential equations.

    PubMed

    Kaschek, Daniel; Timmer, Jens

    2012-08-14

    Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields.

  9. Parameter estimation in linear models of the human operator in a closed loop with application of deterministic test signals

    NASA Technical Reports Server (NTRS)

    Vanlunteren, A.; Stassen, H. G.

    1973-01-01

    Parameter estimation techniques are discussed with emphasis on unbiased estimates in the presence of noise. A distinction between open and closed loop systems is made. A method is given based on the application of external forcing functions consisting of a sun of sinusoids; this method is thus based on the estimation of Fourier coefficients and is applicable for models with poles and zeros in open and closed loop systems.

  10. Challenges of model transferability to data-scarce regions (Invited)

    NASA Astrophysics Data System (ADS)

    Samaniego, L. E.

    2013-12-01

    Developing the ability to globally predict the movement of water on the land surface at spatial scales from 1 to 5 km constitute one of grand challenges in land surface modelling. Copying with this grand challenge implies that land surface models (LSM) should be able to make reliable predictions across locations and/or scales other than those used for parameter estimation. In addition to that, data scarcity and quality impose further difficulties in attaining reliable predictions of water and energy fluxes at the scales of interest. Current computational limitations impose also seriously limitations to exhaustively investigate the parameter space of LSM over large domains (e.g. greater than half a million square kilometers). Addressing these challenges require holistic approaches that integrate the best techniques available for parameter estimation, field measurements and remotely sensed data at their native resolutions. An attempt to systematically address these issues is the multiscale parameterisation technique (MPR) that links high resolution land surface characteristics with effective model parameters. This technique requires a number of pedo-transfer functions and a much fewer global parameters (i.e. coefficients) to be inferred by calibration in gauged basins. The key advantage of this technique is the quasi-scale independence of the global parameters which enables to estimate global parameters at coarser spatial resolutions and then to transfer them to (ungauged) areas and scales of interest. In this study we show the ability of this technique to reproduce the observed water fluxes and states over a wide range of climate and land surface conditions ranging from humid to semiarid and from sparse to dense forested regions. Results of transferability of global model parameters in space (from humid to semi-arid basins) and across scales (from coarser to finer) clearly indicate the robustness of this technique. Simulations with coarse data sets (e.g. EOBS forcing 25x25 km2, FAO soil map 1:5000000) using parameters obtained with high resolution information (REGNIE forcing 1x1 km2, BUEK soil map 1:1000000) in different climatic regions indicate the potential of MPR for prediction in data-scarce regions. In this presentation, we will also discuss how the transferability of global model parameters across scales and locations helps to identify deficiencies in model structure and regionalization functions.

  11. Investigation to realize a computationally efficient implementation of the high-order instantaneous-moments-based fringe analysis method

    NASA Astrophysics Data System (ADS)

    Gorthi, Sai Siva; Rajshekhar, Gannavarpu; Rastogi, Pramod

    2010-06-01

    Recently, a high-order instantaneous moments (HIM)-operator-based method was proposed for accurate phase estimation in digital holographic interferometry. The method relies on piece-wise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients from the HIM operator using single-tone frequency estimation. The work presents a comparative analysis of the performance of different single-tone frequency estimation techniques, like Fourier transform followed by optimization, estimation of signal parameters by rotational invariance technique (ESPRIT), multiple signal classification (MUSIC), and iterative frequency estimation by interpolation on Fourier coefficients (IFEIF) in HIM-operator-based methods for phase estimation. Simulation and experimental results demonstrate the potential of the IFEIF technique with respect to computational efficiency and estimation accuracy.

  12. Applying spectral data analysis techniques to aquifer monitoring data in Belvoir Ranch, Wyoming

    NASA Astrophysics Data System (ADS)

    Gao, F.; He, S.; Zhang, Y.

    2017-12-01

    This study uses spectral data analysis techniques to estimate the hydraulic parameters from water level fluctuation due to tide effect and barometric effect. All water level data used in this study are collected in Belvoir Ranch, Wyoming. Tide effect can be not only observed in coastal areas, but also in inland confined aquifers. The force caused by changing positions of sun and moon affects not only ocean but also solid earth. The tide effect has an oscillatory pumping or injection sequence to the aquifer, and can be observed from dense water level monitoring. Belvoir Ranch data are collected once per hour, thus is dense enough to capture the tide effect. First, transforming de-trended data from temporal domain to frequency domain with Fourier transform method. Then, the storage coefficient can be estimated using Bredehoeft-Jacob model. After this, analyze the gain function, which expresses the amplification and attenuation of the output signal, and derive barometric efficiency. Next, find effective porosity with storage coefficient and barometric efficiency with Jacob's model. Finally, estimate aquifer transmissivity and hydraulic conductivity using Paul Hsieh's method. The estimated hydraulic parameters are compared with those from traditional pumping data estimation. This study proves that hydraulic parameter can be estimated by only analyze water level data in frequency domain. It has the advantages of low cost and environmental friendly, thus should be considered for future use of hydraulic parameter estimations.

  13. Real-Time Stability and Control Derivative Extraction From F-15 Flight Data

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.; Moes, Timothy R.; Morelli, Eugene A.

    2003-01-01

    A real-time, frequency-domain, equation-error parameter identification (PID) technique was used to estimate stability and control derivatives from flight data. This technique is being studied to support adaptive control system concepts currently being developed by NASA (National Aeronautics and Space Administration), academia, and industry. This report describes the basic real-time algorithm used for this study and implementation issues for onboard usage as part of an indirect-adaptive control system. A confidence measures system for automated evaluation of PID results is discussed. Results calculated using flight data from a modified F-15 aircraft are presented. Test maneuvers included pilot input doublets and automated inputs at several flight conditions. Estimated derivatives are compared to aerodynamic model predictions. Data indicate that the real-time PID used for this study performs well enough to be used for onboard parameter estimation. For suitable test inputs, the parameter estimates converged rapidly to sufficient levels of accuracy. The devised confidence measures used were moderately successful.

  14. Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique

    USGS Publications Warehouse

    Šimůnek, Jirka; Nimmo, John R.

    2005-01-01

    A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time‐variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field.

  15. Profile-likelihood Confidence Intervals in Item Response Theory Models.

    PubMed

    Chalmers, R Philip; Pek, Jolynn; Liu, Yang

    2017-01-01

    Confidence intervals (CIs) are fundamental inferential devices which quantify the sampling variability of parameter estimates. In item response theory, CIs have been primarily obtained from large-sample Wald-type approaches based on standard error estimates, derived from the observed or expected information matrix, after parameters have been estimated via maximum likelihood. An alternative approach to constructing CIs is to quantify sampling variability directly from the likelihood function with a technique known as profile-likelihood confidence intervals (PL CIs). In this article, we introduce PL CIs for item response theory models, compare PL CIs to classical large-sample Wald-type CIs, and demonstrate important distinctions among these CIs. CIs are then constructed for parameters directly estimated in the specified model and for transformed parameters which are often obtained post-estimation. Monte Carlo simulation results suggest that PL CIs perform consistently better than Wald-type CIs for both non-transformed and transformed parameters.

  16. JuPOETs: a constrained multiobjective optimization approach to estimate biochemical model ensembles in the Julia programming language.

    PubMed

    Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D

    2017-01-25

    Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open source, available under an MIT license, and can be installed using the Julia package manager from the JuPOETs GitHub repository.

  17. Evaluating uncertainties in multi-layer soil moisture estimation with support vector machines and ensemble Kalman filtering

    NASA Astrophysics Data System (ADS)

    Liu, Di; Mishra, Ashok K.; Yu, Zhongbo

    2016-07-01

    This paper examines the combination of support vector machines (SVM) and the dual ensemble Kalman filter (EnKF) technique to estimate root zone soil moisture at different soil layers up to 100 cm depth. Multiple experiments are conducted in a data rich environment to construct and validate the SVM model and to explore the effectiveness and robustness of the EnKF technique. It was observed that the performance of SVM relies more on the initial length of training set than other factors (e.g., cost function, regularization parameter, and kernel parameters). The dual EnKF technique proved to be efficient to improve SVM with observed data either at each time step or at a flexible time steps. The EnKF technique can reach its maximum efficiency when the updating ensemble size approaches a certain threshold. It was observed that the SVM model performance for the multi-layer soil moisture estimation can be influenced by the rainfall magnitude (e.g., dry and wet spells).

  18. Gravitational waves: search results, data analysis and parameter estimation: Amaldi 10 Parallel session C2.

    PubMed

    Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michał; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi; Robinet, Florent; Schmidt, Patricia; Smith, Rory; Veitch, John; Wade, Madeline; Aoudia, Sofiane; Bose, Sukanta; Calderon Bustillo, Juan; Canizares, Priscilla; Capano, Colin; Clark, James; Colla, Alberto; Cuoco, Elena; Da Silva Costa, Carlos; Dal Canton, Tito; Evangelista, Edgar; Goetz, Evan; Gupta, Anuradha; Hannam, Mark; Keitel, David; Lackey, Benjamin; Logue, Joshua; Mohapatra, Satyanarayan; Piergiovanni, Francesco; Privitera, Stephen; Prix, Reinhard; Pürrer, Michael; Re, Virginia; Serafinelli, Roberto; Wade, Leslie; Wen, Linqing; Wette, Karl; Whelan, John; Palomba, C; Prodi, G

    The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.

  19. Gravitational Waves: Search Results, Data Analysis and Parameter Estimation. Amaldi 10 Parallel Session C2

    NASA Technical Reports Server (NTRS)

    Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michal; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi

    2015-01-01

    The Amaldi 10 Parallel Session C2 on gravitational wave(GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.

  20. Hydrological parameter estimations from a conservative tracer test with variable-density effects at the Boise Hydrogeophysical Research Site

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Barrash, W.; Cardiff, M.; Johnson, T. C.

    2011-12-01

    Reliable predictions of groundwater flow and solute transport require an estimation of the detailed distribution of the parameters (e.g., hydraulic conductivity, effective porosity) controlling these processes. However, such parameters are difficult to estimate because of the inaccessibility and complexity of the subsurface. In this regard, developments in parameter estimation techniques and investigations of field experiments are still challenging and necessary to improve our understanding and the prediction of hydrological processes. Here we analyze a conservative tracer test conducted at the Boise Hydrogeophysical Research Site in 2001 in a heterogeneous unconfined fluvial aquifer. Some relevant characteristics of this test include: variable-density (sinking) effects because of the injection concentration of the bromide tracer, the relatively small size of the experiment, and the availability of various sources of geophysical and hydrological information. The information contained in this experiment is evaluated through several parameter estimation approaches, including a grid-search-based strategy, stochastic simulation of hydrological property distributions, and deterministic inversion using regularization and pilot-point techniques. Doing this allows us to investigate hydraulic conductivity and effective porosity distributions and to compare the effects of assumptions from several methods and parameterizations. Our results provide new insights into the understanding of variable-density transport processes and the hydrological relevance of incorporating various sources of information in parameter estimation approaches. Among others, the variable-density effect and the effective porosity distribution, as well as their coupling with the hydraulic conductivity structure, are seen to be significant in the transport process. The results also show that assumed prior information can strongly influence the estimated distributions of hydrological properties.

  1. Results and Error Estimates from GRACE Forward Modeling over Greenland, Canada, and Alaska

    NASA Astrophysics Data System (ADS)

    Bonin, J. A.; Chambers, D. P.

    2012-12-01

    Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Greenland and Antarctica. However, the accuracy of the forward model technique has not been determined, nor is it known how the distribution of the local basins affects the results. We use a "truth" model composed of hydrology and ice-melt slopes as an example case, to estimate the uncertainties of this forward modeling method and expose those design parameters which may result in an incorrect high-resolution mass distribution. We then apply these optimal parameters in a forward model estimate created from RL05 GRACE data. We compare the resulting mass slopes with the expected systematic errors from the simulation, as well as GIA and basic trend-fitting uncertainties. We also consider whether specific regions (such as Ellesmere Island and Baffin Island) can be estimated reliably using our optimal basin layout.

  2. Estimating representative background PM2.5 concentration in heavily polluted areas using baseline separation technique and chemical mass balance model

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Yang, Wen; Zhang, Hui; Sun, Yanling; Mao, Jian; Ma, Zhenxing; Cong, Zhiyuan; Zhang, Xian; Tian, Shasha; Azzi, Merched; Chen, Li; Bai, Zhipeng

    2018-02-01

    The determination of background concentration of PM2.5 is important to understand the contribution of local emission sources to total PM2.5 concentration. The purpose of this study was to exam the performance of baseline separation techniques to estimate PM2.5 background concentration. Five separation methods, which included recursive digital filters (Lyne-Hollick, one-parameter algorithm, and Boughton two-parameter algorithm), sliding interval and smoothed minima, were applied to one-year PM2.5 time-series data in two heavily polluted cities, Tianjin and Jinan. To obtain the proper filter parameters and recession constants for the separation techniques, we conducted regression analysis at a background site during the emission reduction period enforced by the Government for the 2014 Asia-Pacific Economic Cooperation (APEC) meeting in Beijing. Background concentrations in Tianjin and Jinan were then estimated by applying the determined filter parameters and recession constants. The chemical mass balance (CMB) model was also applied to ascertain the effectiveness of the new approach. Our results showed that the contribution of background PM concentration to ambient pollution was at a comparable level to the contribution obtained from the previous study. The best performance was achieved using the Boughton two-parameter algorithm. The background concentrations were estimated at (27 ± 2) μg/m3 for the whole year, (34 ± 4) μg/m3 for the heating period (winter), (21 ± 2) μg/m3 for the non-heating period (summer), and (25 ± 2) μg/m3 for the sandstorm period in Tianjin. The corresponding values in Jinan were (30 ± 3) μg/m3, (40 ± 4) μg/m3, (24 ± 5) μg/m3, and (26 ± 2) μg/m3, respectively. The study revealed that these baseline separation techniques are valid for estimating levels of PM2.5 air pollution, and that our proposed method has great potential for estimating the background level of other air pollutants.

  3. Estimating abundance of Sitka black-tailed deer using DNA from fecal pellets

    Treesearch

    Todd J. Brinkman; David K. Person; F. Stuart Chapin; Winston Smith; Kris J. Hundertmark

    2011-01-01

    Densely vegetated environments have hindered collection of basic population parameters on forest-dwelling ungulates. Our objective was to develop a mark-recapture technique that used DNA from fecal pellets to overcome constraints associated with estimating abundance of ungulates in landscapes where direct observation is difficult. We tested our technique on Sitka black...

  4. Efficient Ensemble State-Parameters Estimation Techniques in Ocean Ecosystem Models: Application to the North Atlantic

    NASA Astrophysics Data System (ADS)

    El Gharamti, M.; Bethke, I.; Tjiputra, J.; Bertino, L.

    2016-02-01

    Given the recent strong international focus on developing new data assimilation systems for biological models, we present in this comparative study the application of newly developed state-parameters estimation tools to an ocean ecosystem model. It is quite known that the available physical models are still too simple compared to the complexity of the ocean biology. Furthermore, various biological parameters remain poorly unknown and hence wrong specifications of such parameters can lead to large model errors. Standard joint state-parameters augmentation technique using the ensemble Kalman filter (Stochastic EnKF) has been extensively tested in many geophysical applications. Some of these assimilation studies reported that jointly updating the state and the parameters might introduce significant inconsistency especially for strongly nonlinear models. This is usually the case for ecosystem models particularly during the period of the spring bloom. A better handling of the estimation problem is often carried out by separating the update of the state and the parameters using the so-called Dual EnKF. The dual filter is computationally more expensive than the Joint EnKF but is expected to perform more accurately. Using a similar separation strategy, we propose a new EnKF estimation algorithm in which we apply a one-step-ahead smoothing to the state. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. Unlike the classical filtering path, the new scheme starts with an update step and later a model propagation step is performed. We test the performance of the new smoothing-based schemes against the standard EnKF in a one-dimensional configuration of the Norwegian Earth System Model (NorESM) in the North Atlantic. We use nutrients profile (up to 2000 m deep) data and surface partial CO2 measurements from Mike weather station (66o N, 2o E) to estimate different biological parameters of phytoplanktons and zooplanktons. We analyze the performance of the filters in terms of complexity and accuracy of the state and parameters estimates.

  5. Parameter Estimation for Geoscience Applications Using a Measure-Theoretic Approach

    NASA Astrophysics Data System (ADS)

    Dawson, C.; Butler, T.; Mattis, S. A.; Graham, L.; Westerink, J. J.; Vesselinov, V. V.; Estep, D.

    2016-12-01

    Effective modeling of complex physical systems arising in the geosciences is dependent on knowing parameters which are often difficult or impossible to measure in situ. In this talk we focus on two such problems, estimating parameters for groundwater flow and contaminant transport, and estimating parameters within a coastal ocean model. The approach we will describe, proposed by collaborators D. Estep, T. Butler and others, is based on a novel stochastic inversion technique based on measure theory. In this approach, given a probability space on certain observable quantities of interest, one searches for the sets of highest probability in parameter space which give rise to these observables. When viewed as mappings between sets, the stochastic inversion problem is well-posed in certain settings, but there are computational challenges related to the set construction. We will focus the talk on estimating scalar parameters and fields in a contaminant transport setting, and in estimating bottom friction in a complicated near-shore coastal application.

  6. Estimation of accuracy of earth-rotation parameters in different frequency bands

    NASA Astrophysics Data System (ADS)

    Vondrak, J.

    1986-11-01

    The accuracies of earth-rotation parameters as determined by five different observational techniques now available (i.e., optical astrometry /OA/, Doppler tracking of satellites /DTS/, satellite laser ranging /SLR/, very long-base interferometry /VLBI/ and lunar laser ranging /LLR/) are estimated. The differences between the individual techniques in all possible combinations, separated by appropriate filters into three frequency bands, were used to estimate the accuracies of the techniques for periods from 0 to 200 days, from 200 to 1000 days and longer than 1000 days. It is shown that for polar motion the most accurate results are obtained with VLBI anad SLR, especially in the short-period region; OA and DTS are less accurate, but with longer periods the differences in accuracy are less pronounced. The accuracies of UTI-UTC as determined by OA, VLBI and LLR are practically equivalent, the differences being less than 40 percent.

  7. Simplified Estimation and Testing in Unbalanced Repeated Measures Designs.

    PubMed

    Spiess, Martin; Jordan, Pascal; Wendt, Mike

    2018-05-07

    In this paper we propose a simple estimator for unbalanced repeated measures design models where each unit is observed at least once in each cell of the experimental design. The estimator does not require a model of the error covariance structure. Thus, circularity of the error covariance matrix and estimation of correlation parameters and variances are not necessary. Together with a weak assumption about the reason for the varying number of observations, the proposed estimator and its variance estimator are unbiased. As an alternative to confidence intervals based on the normality assumption, a bias-corrected and accelerated bootstrap technique is considered. We also propose the naive percentile bootstrap for Wald-type tests where the standard Wald test may break down when the number of observations is small relative to the number of parameters to be estimated. In a simulation study we illustrate the properties of the estimator and the bootstrap techniques to calculate confidence intervals and conduct hypothesis tests in small and large samples under normality and non-normality of the errors. The results imply that the simple estimator is only slightly less efficient than an estimator that correctly assumes a block structure of the error correlation matrix, a special case of which is an equi-correlation matrix. Application of the estimator and the bootstrap technique is illustrated using data from a task switch experiment based on an experimental within design with 32 cells and 33 participants.

  8. An Indirect System Identification Technique for Stable Estimation of Continuous-Time Parameters of the Vestibulo-Ocular Reflex (VOR)

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Wallin, Ragnar; Boyle, Richard D.

    2013-01-01

    The vestibulo-ocular reflex (VOR) is a well-known dual mode bifurcating system that consists of slow and fast modes associated with nystagmus and saccade, respectively. Estimation of continuous-time parameters of nystagmus and saccade models are known to be sensitive to estimation methodology, noise and sampling rate. The stable and accurate estimation of these parameters are critical for accurate disease modelling, clinical diagnosis, robotic control strategies, mission planning for space exploration and pilot safety, etc. This paper presents a novel indirect system identification method for the estimation of continuous-time parameters of VOR employing standardised least-squares with dual sampling rates in a sparse structure. This approach permits the stable and simultaneous estimation of both nystagmus and saccade data. The efficacy of this approach is demonstrated via simulation of a continuous-time model of VOR with typical parameters found in clinical studies and in the presence of output additive noise.

  9. A unified framework for approximation in inverse problems for distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1988-01-01

    A theoretical framework is presented that can be used to treat approximation techniques for very general classes of parameter estimation problems involving distributed systems that are either first or second order in time. Using the approach developed, one can obtain both convergence and stability (continuous dependence of parameter estimates with respect to the observations) under very weak regularity and compactness assumptions on the set of admissible parameters. This unified theory can be used for many problems found in the recent literature and in many cases offers significant improvements to existing results.

  10. The effects of ionic strength and organic matter on virus inactivation at low temperatures: general likelihood uncertainty estimation (GLUE) as an alternative to least-squares parameter optimization for the fitting of virus inactivation models

    NASA Astrophysics Data System (ADS)

    Mayotte, Jean-Marc; Grabs, Thomas; Sutliff-Johansson, Stacy; Bishop, Kevin

    2017-06-01

    This study examined how the inactivation of bacteriophage MS2 in water was affected by ionic strength (IS) and dissolved organic carbon (DOC) using static batch inactivation experiments at 4 °C conducted over a period of 2 months. Experimental conditions were characteristic of an operational managed aquifer recharge (MAR) scheme in Uppsala, Sweden. Experimental data were fit with constant and time-dependent inactivation models using two methods: (1) traditional linear and nonlinear least-squares techniques; and (2) a Monte-Carlo based parameter estimation technique called generalized likelihood uncertainty estimation (GLUE). The least-squares and GLUE methodologies gave very similar estimates of the model parameters and their uncertainty. This demonstrates that GLUE can be used as a viable alternative to traditional least-squares parameter estimation techniques for fitting of virus inactivation models. Results showed a slight increase in constant inactivation rates following an increase in the DOC concentrations, suggesting that the presence of organic carbon enhanced the inactivation of MS2. The experiment with a high IS and a low DOC was the only experiment which showed that MS2 inactivation may have been time-dependent. However, results from the GLUE methodology indicated that models of constant inactivation were able to describe all of the experiments. This suggested that inactivation time-series longer than 2 months were needed in order to provide concrete conclusions regarding the time-dependency of MS2 inactivation at 4 °C under these experimental conditions.

  11. Experimental design and efficient parameter estimation in preclinical pharmacokinetic studies.

    PubMed

    Ette, E I; Howie, C A; Kelman, A W; Whiting, B

    1995-05-01

    Monte Carlo simulation technique used to evaluate the effect of the arrangement of concentrations on the efficiency of estimation of population pharmacokinetic parameters in the preclinical setting is described. Although the simulations were restricted to the one compartment model with intravenous bolus input, they provide the basis of discussing some structural aspects involved in designing a destructive ("quantic") preclinical population pharmacokinetic study with a fixed sample size as is usually the case in such studies. The efficiency of parameter estimation obtained with sampling strategies based on the three and four time point designs were evaluated in terms of the percent prediction error, design number, individual and joint confidence intervals coverage for parameter estimates approaches, and correlation analysis. The data sets contained random terms for both inter- and residual intra-animal variability. The results showed that the typical population parameter estimates for clearance and volume were efficiently (accurately and precisely) estimated for both designs, while interanimal variability (the only random effect parameter that could be estimated) was inefficiently (inaccurately and imprecisely) estimated with most sampling schedules of the two designs. The exact location of the third and fourth time point for the three and four time point designs, respectively, was not critical to the efficiency of overall estimation of all population parameters of the model. However, some individual population pharmacokinetic parameters were sensitive to the location of these times.

  12. State and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-Bénard convection.

    PubMed

    Cornick, Matthew; Hunt, Brian; Ott, Edward; Kurtuldu, Huseyin; Schatz, Michael F

    2009-03-01

    Data assimilation refers to the process of estimating a system's state from a time series of measurements (which may be noisy or incomplete) in conjunction with a model for the system's time evolution. Here we demonstrate the applicability of a recently developed data assimilation method, the local ensemble transform Kalman filter, to nonlinear, high-dimensional, spatiotemporally chaotic flows in Rayleigh-Bénard convection experiments. Using this technique we are able to extract the full temperature and velocity fields from a time series of shadowgraph measurements. In addition, we describe extensions of the algorithm for estimating model parameters. Our results suggest the potential usefulness of our data assimilation technique to a broad class of experimental situations exhibiting spatiotemporal chaos.

  13. A new Bayesian recursive technique for parameter estimation

    NASA Astrophysics Data System (ADS)

    Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis

    2006-08-01

    The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.

  14. Time-reversal imaging for classification of submerged elastic targets via Gibbs sampling and the Relevance Vector Machine.

    PubMed

    Dasgupta, Nilanjan; Carin, Lawrence

    2005-04-01

    Time-reversal imaging (TRI) is analogous to matched-field processing, although TRI is typically very wideband and is appropriate for subsequent target classification (in addition to localization). Time-reversal techniques, as applied to acoustic target classification, are highly sensitive to channel mismatch. Hence, it is crucial to estimate the channel parameters before time-reversal imaging is performed. The channel-parameter statistics are estimated here by applying a geoacoustic inversion technique based on Gibbs sampling. The maximum a posteriori (MAP) estimate of the channel parameters are then used to perform time-reversal imaging. Time-reversal implementation requires a fast forward model, implemented here by a normal-mode framework. In addition to imaging, extraction of features from the time-reversed images is explored, with these applied to subsequent target classification. The classification of time-reversed signatures is performed by the relevance vector machine (RVM). The efficacy of the technique is analyzed on simulated in-channel data generated by a free-field finite element method (FEM) code, in conjunction with a channel propagation model, wherein the final classification performance is demonstrated to be relatively insensitive to the associated channel parameters. The underlying theory of Gibbs sampling and TRI are presented along with the feature extraction and target classification via the RVM.

  15. Parameter estimation for groundwater models under uncertain irrigation data

    USGS Publications Warehouse

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  16. Sensitivity analysis of pars-tensa young's modulus estimation using inverse finite-element modeling

    NASA Astrophysics Data System (ADS)

    Rohani, S. Alireza; Elfarnawany, Mai; Agrawal, Sumit K.; Ladak, Hanif M.

    2018-05-01

    Accurate estimates of the pars-tensa (PT) Young's modulus (EPT) are required in finite-element (FE) modeling studies of the middle ear. Previously, we introduced an in-situ EPT estimation technique by optimizing a sample-specific FE model to match experimental eardrum pressurization data. This optimization process requires choosing some modeling assumptions such as PT thickness and boundary conditions. These assumptions are reported with a wide range of variation in the literature, hence affecting the reliability of the models. In addition, the sensitivity of the estimated EPT to FE modeling assumptions has not been studied. Therefore, the objective of this study is to identify the most influential modeling assumption on EPT estimates. The middle-ear cavity extracted from a cadaveric temporal bone was pressurized to 500 Pa. The deformed shape of the eardrum after pressurization was measured using a Fourier transform profilometer (FTP). A base-line FE model of the unpressurized middle ear was created. The EPT was estimated using golden section optimization method, which minimizes the cost function comparing the deformed FE model shape to the measured shape after pressurization. The effect of varying the modeling assumptions on EPT estimates were investigated. This included the change in PT thickness, pars flaccida Young's modulus and possible FTP measurement error. The most influential parameter on EPT estimation was PT thickness and the least influential parameter was pars flaccida Young's modulus. The results of this study provide insight into how different parameters affect the results of EPT optimization and which parameters' uncertainties require further investigation to develop robust estimation techniques.

  17. Reconstructing the hidden states in time course data of stochastic models.

    PubMed

    Zimmer, Christoph

    2015-11-01

    Parameter estimation is central for analyzing models in Systems Biology. The relevance of stochastic modeling in the field is increasing. Therefore, the need for tailored parameter estimation techniques is increasing as well. Challenges for parameter estimation are partial observability, measurement noise, and the computational complexity arising from the dimension of the parameter space. This article extends the multiple shooting for stochastic systems' method, developed for inference in intrinsic stochastic systems. The treatment of extrinsic noise and the estimation of the unobserved states is improved, by taking into account the correlation between unobserved and observed species. This article demonstrates the power of the method on different scenarios of a Lotka-Volterra model, including cases in which the prey population dies out or explodes, and a Calcium oscillation system. Besides showing how the new extension improves the accuracy of the parameter estimates, this article analyzes the accuracy of the state estimates. In contrast to previous approaches, the new approach is well able to estimate states and parameters for all the scenarios. As it does not need stochastic simulations, it is of the same order of speed as conventional least squares parameter estimation methods with respect to computational time. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Comparison of Forest Parameter Estimation Techniques Using SAR Data

    NASA Technical Reports Server (NTRS)

    Kim, Y.; Zyl, J. van

    2001-01-01

    It is important to monitor forests in order to understand the impacts of global climate changes on terrestrial ecosystems. To characterize the forest changes, it is useful to parameterize a forest using several parameters.

  19. Space shuttle propulsion parameter estimation using optimal estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The first twelve system state variables are presented with the necessary mathematical developments for incorporating them into the filter/smoother algorithm. Other state variables, i.e., aerodynamic coefficients can be easily incorporated into the estimation algorithm, representing uncertain parameters, but for initial checkout purposes are treated as known quantities. An approach for incorporating the NASA propulsion predictive model results into the optimal estimation algorithm was identified. This approach utilizes numerical derivatives and nominal predictions within the algorithm with global iterations of the algorithm. The iterative process is terminated when the quality of the estimates provided no longer significantly improves.

  20. Flight Investigation of Prescribed Simultaneous Independent Surface Excitations for Real-Time Parameter Identification

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Smith, Mark S.; Morelli, Eugene A.

    2003-01-01

    Near real-time stability and control derivative extraction is required to support flight demonstration of Intelligent Flight Control System (IFCS) concepts being developed by NASA, academia, and industry. Traditionally, flight maneuvers would be designed and flown to obtain stability and control derivative estimates using a postflight analysis technique. The goal of the IFCS concept is to be able to modify the control laws in real time for an aircraft that has been damaged in flight. In some IFCS implementations, real-time parameter identification (PID) of the stability and control derivatives of the damaged aircraft is necessary for successfully reconfiguring the control system. This report investigates the usefulness of Prescribed Simultaneous Independent Surface Excitations (PreSISE) to provide data for rapidly obtaining estimates of the stability and control derivatives. Flight test data were analyzed using both equation-error and output-error PID techniques. The equation-error PID technique is known as Fourier Transform Regression (FTR) and is a frequency-domain real-time implementation. Selected results were compared with a time-domain output-error technique. The real-time equation-error technique combined with the PreSISE maneuvers provided excellent derivative estimation in the longitudinal axis. However, the PreSISE maneuvers as presently defined were not adequate for accurate estimation of the lateral-directional derivatives.

  1. Achieving metrological precision limits through postselection

    NASA Astrophysics Data System (ADS)

    Alves, G. Bié; Pimentel, A.; Hor-Meyll, M.; Walborn, S. P.; Davidovich, L.; Filho, R. L. de Matos

    2017-01-01

    Postselection strategies have been proposed with the aim of amplifying weak signals, which may help to overcome detection thresholds associated with technical noise in high-precision measurements. Here we use an optical setup to experimentally explore two different postselection protocols for the estimation of a small parameter: a weak-value amplification procedure and an alternative method that does not provide amplification but nonetheless is shown to be more robust for the sake of parameter estimation. Each technique leads approximately to the saturation of quantum limits for the estimation precision, expressed by the Cramér-Rao bound. For both situations, we show that parameter estimation is improved when the postselection statistics are considered together with the measurement device.

  2. Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problem

    NASA Astrophysics Data System (ADS)

    Bazán, Fermín S. V.; Bedin, Luciano; Borges, Leonardo S.

    2017-05-01

    In this work, a method for estimating the space-dependent perfusion coefficient parameter in a 2D bioheat transfer model is presented. In the method, the bioheat transfer model is transformed into a time-dependent semidiscrete system of ordinary differential equations involving perfusion coefficient values as parameters, and the estimation problem is solved through a nonlinear least squares technique. In particular, the bioheat problem is solved by the method of lines based on a highly accurate pseudospectral approach, and perfusion coefficient values are estimated by the regularized Gauss-Newton method coupled with a proper regularization parameter. The performance of the method on several test problems is illustrated numerically.

  3. Two-dimensional advective transport in ground-water flow parameter estimation

    USGS Publications Warehouse

    Anderman, E.R.; Hill, M.C.; Poeter, E.P.

    1996-01-01

    Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of regression and related techniques produced significant insight into the physical system.

  4. Regional distribution of forest height and biomass from multisensor data fusion

    Treesearch

    Yifan Yu; Sassan Saatch; Linda S. Heath; Elizabeth LaPoint; Ranga Myneni; Yuri Knyazikhin

    2010-01-01

    Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM...

  5. Linear theory for filtering nonlinear multiscale systems with model error

    PubMed Central

    Berry, Tyrus; Harlim, John

    2014-01-01

    In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure, simultaneously produce accurate filtering and equilibrium statistical prediction. In contrast, an offline estimation technique based on a linear regression, which fits the parameters to a training dataset without using the filter, yields filter estimates which are worse than the observations or even divergent when the slow variables are not fully observed. This finding does not imply that all offline methods are inherently inferior to the online method for nonlinear estimation problems, it only suggests that an ideal estimation technique should estimate all parameters simultaneously whether it is online or offline. PMID:25002829

  6. Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.

    PubMed

    Diwaker, Chander; Tomar, Pradeep; Poonia, Ramesh C; Singh, Vijander

    2018-04-10

    A lot of models have been made for predicting software reliability. The reliability models are restricted to using particular types of methodologies and restricted number of parameters. There are a number of techniques and methodologies that may be used for reliability prediction. There is need to focus on parameters consideration while estimating reliability. The reliability of a system may increase or decreases depending on the selection of different parameters used. Thus there is need to identify factors that heavily affecting the reliability of the system. In present days, reusability is mostly used in the various area of research. Reusability is the basis of Component-Based System (CBS). The cost, time and human skill can be saved using Component-Based Software Engineering (CBSE) concepts. CBSE metrics may be used to assess those techniques which are more suitable for estimating system reliability. Soft computing is used for small as well as large-scale problems where it is difficult to find accurate results due to uncertainty or randomness. Several possibilities are available to apply soft computing techniques in medicine related problems. Clinical science of medicine using fuzzy-logic, neural network methodology significantly while basic science of medicine using neural-networks-genetic algorithm most frequently and preferably. There is unavoidable interest shown by medical scientists to use the various soft computing methodologies in genetics, physiology, radiology, cardiology and neurology discipline. CBSE boost users to reuse the past and existing software for making new products to provide quality with a saving of time, memory space, and money. This paper focused on assessment of commonly used soft computing technique like Genetic Algorithm (GA), Neural-Network (NN), Fuzzy Logic, Support Vector Machine (SVM), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC). This paper presents working of soft computing techniques and assessment of soft computing techniques to predict reliability. The parameter considered while estimating and prediction of reliability are also discussed. This study can be used in estimation and prediction of the reliability of various instruments used in the medical system, software engineering, computer engineering and mechanical engineering also. These concepts can be applied to both software and hardware, to predict the reliability using CBSE.

  7. Satellite angular velocity estimation based on star images and optical flow techniques.

    PubMed

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-09-25

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  8. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    PubMed Central

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-01-01

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023

  9. Simulation studies of wide and medium field of view earth radiation data analysis

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1978-01-01

    A parameter estimation technique is presented to estimate the radiative flux distribution over the earth from radiometer measurements at satellite altitude. The technique analyzes measurements from a wide field of view (WFOV), horizon to horizon, nadir pointing sensor with a mathematical technique to derive the radiative flux estimates at the top of the atmosphere for resolution elements smaller than the sensor field of view. A computer simulation of the data analysis technique is presented for both earth-emitted and reflected radiation. Zonal resolutions are considered as well as the global integration of plane flux. An estimate of the equator-to-pole gradient is obtained from the zonal estimates. Sensitivity studies of the derived flux distribution to directional model errors are also presented. In addition to the WFOV results, medium field of view results are presented.

  10. Determining wave direction using curvature parameters.

    PubMed

    de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista

    2016-01-01

    The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results.

  11. Motor unit size estimation: confrontation of surface EMG with macro EMG.

    PubMed

    Roeleveld, K; Stegeman, D F; Falck, B; Stålberg, E V

    1997-06-01

    Surface EMG (SEMG) is little used for diagnostic purposes in clinical neurophysiology, mainly because it provides little direct information on individual motor units (MUs). One of the techniques to estimate the MU size is intra-muscular Macro EMG. The present study compares SEMG with Macro EMG. Fifty-eight channel SEMG was recorded simultaneously with Macro EMG. Individual MUPs were obtained by single fiber triggered averaging. All recordings were made from the biceps brachii of healthy subjects during voluntary contraction at low force. High positive correlations were found between all Macro and Surface motor unit potential (MUP) parameters: area, peak-to-peak amplitude, negative peak amplitude and positive peak amplitude. The MUPs recorded with SEMG were dependent on the distance between the MU and the skin surface. Normalizing the SEMG parameters for MU location did not improve the correlation coefficient between the parameters of both techniques. The two measurement techniques had almost the same relative range in MUP parameters in any individual subject compared to the others, especially after normalizing the surface MUP parameters for MU location. MUPs recorded with this type of SEMG provide useful information about the MU size.

  12. Estimation of Gravity Parameters Related to Simple Geometrical Structures by Developing an Approach Based on Deconvolution and Linear Optimization Techniques

    NASA Astrophysics Data System (ADS)

    Asfahani, J.; Tlas, M.

    2015-10-01

    An easy and practical method for interpreting residual gravity anomalies due to simple geometrically shaped models such as cylinders and spheres has been proposed in this paper. This proposed method is based on both the deconvolution technique and the simplex algorithm for linear optimization to most effectively estimate the model parameters, e.g., the depth from the surface to the center of a buried structure (sphere or horizontal cylinder) or the depth from the surface to the top of a buried object (vertical cylinder), and the amplitude coefficient from the residual gravity anomaly profile. The method was tested on synthetic data sets corrupted by different white Gaussian random noise levels to demonstrate the capability and reliability of the method. The results acquired show that the estimated parameter values derived by this proposed method are close to the assumed true parameter values. The validity of this method is also demonstrated using real field residual gravity anomalies from Cuba and Sweden. Comparable and acceptable agreement is shown between the results derived by this method and those derived from real field data.

  13. Comparison of data inversion techniques for remotely sensed wide-angle observations of Earth emitted radiation

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1981-01-01

    The shape factor, parameter estimation, and deconvolution data analysis techniques were applied to the same set of Earth emitted radiation measurements to determine the effects of different techniques on the estimated radiation field. All three techniques are defined and their assumptions, advantages, and disadvantages are discussed. Their results are compared globally, zonally, regionally, and on a spatial spectrum basis. The standard deviations of the regional differences in the derived radiant exitance varied from 7.4 W-m/2 to 13.5 W-m/2.

  14. Computing ordinary least-squares parameter estimates for the National Descriptive Model of Mercury in Fish

    USGS Publications Warehouse

    Donato, David I.

    2013-01-01

    A specialized technique is used to compute weighted ordinary least-squares (OLS) estimates of the parameters of the National Descriptive Model of Mercury in Fish (NDMMF) in less time using less computer memory than general methods. The characteristics of the NDMMF allow the two products X'X and X'y in the normal equations to be filled out in a second or two of computer time during a single pass through the N data observations. As a result, the matrix X does not have to be stored in computer memory and the computationally expensive matrix multiplications generally required to produce X'X and X'y do not have to be carried out. The normal equations may then be solved to determine the best-fit parameters in the OLS sense. The computational solution based on this specialized technique requires O(8p2+16p) bytes of computer memory for p parameters on a machine with 8-byte double-precision numbers. This publication includes a reference implementation of this technique and a Gaussian-elimination solver in preliminary custom software.

  15. Quantifying cell turnover using CFSE data.

    PubMed

    Ganusov, Vitaly V; Pilyugin, Sergei S; de Boer, Rob J; Murali-Krishna, Kaja; Ahmed, Rafi; Antia, Rustom

    2005-03-01

    The CFSE dye dilution assay is widely used to determine the number of divisions a given CFSE labelled cell has undergone in vitro and in vivo. In this paper, we consider how the data obtained with the use of CFSE (CFSE data) can be used to estimate the parameters determining cell division and death. For a homogeneous cell population (i.e., a population with the parameters for cell division and death being independent of time and the number of divisions cells have undergone), we consider a specific biologically based "Smith-Martin" model of cell turnover and analyze three different techniques for estimation of its parameters: direct fitting, indirect fitting and rescaling method. We find that using only CFSE data, the duration of the division phase (i.e., approximately the S+G2+M phase of the cell cycle) can be estimated with the use of either technique. In some cases, the average division or cell cycle time can be estimated using the direct fitting of the model solution to the data or by using the Gett-Hodgkin method [Gett A. and Hodgkin, P. 2000. A cellular calculus for signal integration by T cells. Nat. Immunol. 1:239-244]. Estimation of the death rates during commitment to division (i.e., approximately the G1 phase of the cell cycle) and during the division phase may not be feasible with the use of only CFSE data. We propose that measuring an additional parameter, the fraction of cells in division, may allow estimation of all model parameters including the death rates during different stages of the cell cycle.

  16. Statistical techniques for the characterization of partially observed epidemics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safta, Cosmin; Ray, Jaideep; Crary, David

    Techniques appear promising to construct and integrate automated detect-and-characterize technique for epidemics - Working off biosurveillance data, and provides information on the particular/ongoing outbreak. Potential use - in crisis management and planning, resource allocation - Parameter estimation capability ideal for providing the input parameters into an agent-based model, Index Cases, Time of Infection, infection rate. Non-communicable diseases are easier than communicable ones - Small anthrax can be characterized well with 7-10 days of data, post-detection; plague takes longer, Large attacks are very easy.

  17. Effects of wing modification on an aircraft's aerodynamic parameters as determined from flight data

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1986-01-01

    A study of the effects of four wing-leading-edge modifications on a general aviation aircraft's stability and control parameters is presented. Flight data from the basic aircraft configuration and configurations with wing modifications are analyzed to determine each wing geometry's stability and control parameters. The parameter estimates and aerodynamic model forms are obtained using the stepwise regression and maximum likelihood techniques. The resulting parameter estimates and aerodynamic models are verified using vortex-lattice theory and by analysis of each model's ability to predict aircraft behavior. Comparisons of the stability and control derivative estimates from the basic wing and the four leading-edge modifications are accomplished so that the effects of each modification on aircraft stability and control derivatives can be determined.

  18. Optimization of the lithium/thionyl chloride battery

    NASA Technical Reports Server (NTRS)

    White, Ralph E.

    1989-01-01

    A 1-D math model for the lithium/thionyl chloride primary cell is used in conjunction with a parameter estimation technique in order to estimate the electro-kinetic parameters of this electrochemical system. The electro-kinetic parameters include the anodic transfer coefficient and exchange current density of the lithium oxidation, alpha sub a,1 and i sub o,i,ref, the cathodic transfer coefficient and the effective exchange current density of the thionyl chloride reduction, alpha sub c,2 and a sup o i sub o,2,ref, and a morphology parameter, Xi. The parameter estimation is performed on simulated data first in order to gain confidence in the method. Data, reported in the literature, for a high rate discharge of an experimental lithium/thionyl chloride cell is used for an analysis.

  19. Flight data acquisition methodology for validation of passive ranging algorithms for obstacle avoidance

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.

    1990-01-01

    The automation of low-altitude rotorcraft flight depends on the ability to detect, locate, and navigate around obstacles lying in the rotorcraft's intended flightpath. Computer vision techniques provide a passive method of obstacle detection and range estimation, for obstacle avoidance. Several algorithms based on computer vision methods have been developed for this purpose using laboratory data; however, further development and validation of candidate algorithms require data collected from rotorcraft flight. A data base containing low-altitude imagery augmented with the rotorcraft and sensor parameters required for passive range estimation is not readily available. Here, the emphasis is on the methodology used to develop such a data base from flight-test data consisting of imagery, rotorcraft and sensor parameters, and ground-truth range measurements. As part of the data preparation, a technique for obtaining the sensor calibration parameters is described. The data base will enable the further development of algorithms for computer vision-based obstacle detection and passive range estimation, as well as provide a benchmark for verification of range estimates against ground-truth measurements.

  20. Rotorcraft Blade Mode Damping Identification from Random Responses Using a Recursive Maximum Likelihood Algorithm

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.

    1982-01-01

    An on line technique is presented for the identification of rotor blade modal damping and frequency from rotorcraft random response test data. The identification technique is based upon a recursive maximum likelihood (RML) algorithm, which is demonstrated to have excellent convergence characteristics in the presence of random measurement noise and random excitation. The RML technique requires virtually no user interaction, provides accurate confidence bands on the parameter estimates, and can be used for continuous monitoring of modal damping during wind tunnel or flight testing. Results are presented from simulation random response data which quantify the identified parameter convergence behavior for various levels of random excitation. The data length required for acceptable parameter accuracy is shown to depend upon the amplitude of random response and the modal damping level. Random response amplitudes of 1.25 degrees to .05 degrees are investigated. The RML technique is applied to hingeless rotor test data. The inplane lag regressing mode is identified at different rotor speeds. The identification from the test data is compared with the simulation results and with other available estimates of frequency and damping.

  1. Polarimetric image reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Valenzuela, John R.

    In the field of imaging polarimetry Stokes parameters are sought and must be inferred from noisy and blurred intensity measurements. Using a penalized-likelihood estimation framework we investigate reconstruction quality when estimating intensity images and then transforming to Stokes parameters (traditional estimator), and when estimating Stokes parameters directly (Stokes estimator). We define our cost function for reconstruction by a weighted least squares data fit term and a regularization penalty. It is shown that under quadratic regularization, the traditional and Stokes estimators can be made equal by appropriate choice of regularization parameters. It is empirically shown that, when using edge preserving regularization, estimating the Stokes parameters directly leads to lower RMS error in reconstruction. Also, the addition of a cross channel regularization term further lowers the RMS error for both methods especially in the case of low SNR. The technique of phase diversity has been used in traditional incoherent imaging systems to jointly estimate an object and optical system aberrations. We extend the technique of phase diversity to polarimetric imaging systems. Specifically, we describe penalized-likelihood methods for jointly estimating Stokes images and optical system aberrations from measurements that contain phase diversity. Jointly estimating Stokes images and optical system aberrations involves a large parameter space. A closed-form expression for the estimate of the Stokes images in terms of the aberration parameters is derived and used in a formulation that reduces the dimensionality of the search space to the number of aberration parameters only. We compare the performance of the joint estimator under both quadratic and edge-preserving regularization. The joint estimator with edge-preserving regularization yields higher fidelity polarization estimates than with quadratic regularization. Under quadratic regularization, using the reduced-parameter search strategy, accurate aberration estimates can be obtained without recourse to regularization "tuning". Phase-diverse wavefront sensing is emerging as a viable candidate wavefront sensor for adaptive-optics systems. In a quadratically penalized weighted least squares estimation framework a closed form expression for the object being imaged in terms of the aberrations in the system is available. This expression offers a dramatic reduction of the dimensionality of the estimation problem and thus is of great interest for practical applications. We have derived an expression for an approximate joint covariance matrix for object and aberrations in the phase diversity context. Our expression for the approximate joint covariance is compared with the "known-object" Cramer-Rao lower bound that is typically used for system parameter optimization. Estimates of the optimal amount of defocus in a phase-diverse wavefront sensor derived from the joint-covariance matrix, the known-object Cramer-Rao bound, and Monte Carlo simulations are compared for an extended scene and a point object. It is found that our variance approximation, that incorporates the uncertainty of the object, leads to an improvement in predicting the optimal amount of defocus to use in a phase-diverse wavefront sensor.

  2. Estimation of distances to stars with stellar parameters from LAMOST

    DOE PAGES

    Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo; ...

    2015-06-05

    Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less

  3. Estimation of distances to stars with stellar parameters from LAMOST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo

    Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less

  4. A methodology for airplane parameter estimation and confidence interval determination in nonlinear estimation problems. Ph.D. Thesis - George Washington Univ., Apr. 1985

    NASA Technical Reports Server (NTRS)

    Murphy, P. C.

    1986-01-01

    An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. With the fitted surface, sensitivity information can be updated at each iteration with less computational effort than that required by either a finite-difference method or integration of the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, and thus provides flexibility to use model equations in any convenient format. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. The degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels and to predict the degree of agreement between CR bounds and search estimates.

  5. Graphical Evaluation of the Ridge-Type Robust Regression Estimators in Mixture Experiments

    PubMed Central

    Erkoc, Ali; Emiroglu, Esra

    2014-01-01

    In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set. PMID:25202738

  6. Graphical evaluation of the ridge-type robust regression estimators in mixture experiments.

    PubMed

    Erkoc, Ali; Emiroglu, Esra; Akay, Kadri Ulas

    2014-01-01

    In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set.

  7. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  8. Aerodynamic parameters of High-Angle-of attack Research Vehicle (HARV) estimated from flight data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Ratvasky, Thomas R.; Cobleigh, Brent R.

    1990-01-01

    Aerodynamic parameters of the High-Angle-of-Attack Research Aircraft (HARV) were estimated from flight data at different values of the angle of attack between 10 degrees and 50 degrees. The main part of the data was obtained from small amplitude longitudinal and lateral maneuvers. A small number of large amplitude maneuvers was also used in the estimation. The measured data were first checked for their compatibility. It was found that the accuracy of air data was degraded by unexplained bias errors. Then, the data were analyzed by a stepwise regression method for obtaining a structure of aerodynamic model equations and least squares parameter estimates. Because of high data collinearity in several maneuvers, some of the longitudinal and all lateral maneuvers were reanalyzed by using two biased estimation techniques, the principal components regression and mixed estimation. The estimated parameters in the form of stability and control derivatives, and aerodynamic coefficients were plotted against the angle of attack and compared with the wind tunnel measurements. The influential parameters are, in general, estimated with acceptable accuracy and most of them are in agreement with wind tunnel results. The simulated responses of the aircraft showed good prediction capabilities of the resulting model.

  9. OPTIMAL EXPERIMENT DESIGN FOR MAGNETIC RESONANCE FINGERPRINTING

    PubMed Central

    Zhao, Bo; Haldar, Justin P.; Setsompop, Kawin; Wald, Lawrence L.

    2017-01-01

    Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance. PMID:28268369

  10. Optimal experiment design for magnetic resonance fingerprinting.

    PubMed

    Bo Zhao; Haldar, Justin P; Setsompop, Kawin; Wald, Lawrence L

    2016-08-01

    Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance.

  11. A Radial Basis Function Approach to Financial Time Series Analysis

    DTIC Science & Technology

    1993-12-01

    including efficient methods for parameter estimation and pruning, a pointwise prediction error estimator, and a methodology for controlling the "data...collection of practical techniques to address these issues for a modeling methodology . Radial Basis Function networks. These techniques in- clude efficient... methodology often then amounts to a careful consideration of the interplay between model complexity and reliability. These will be recurrent themes

  12. PERIODIC AUTOREGRESSIVE-MOVING AVERAGE (PARMA) MODELING WITH APPLICATIONS TO WATER RESOURCES.

    USGS Publications Warehouse

    Vecchia, A.V.

    1985-01-01

    Results involving correlation properties and parameter estimation for autogressive-moving average models with periodic parameters are presented. A multivariate representation of the PARMA model is used to derive parameter space restrictions and difference equations for the periodic autocorrelations. Close approximation to the likelihood function for Gaussian PARMA processes results in efficient maximum-likelihood estimation procedures. Terms in the Fourier expansion of the parameters are sequentially included, and a selection criterion is given for determining the optimal number of harmonics to be included. Application of the techniques is demonstrated through analysis of a monthly streamflow time series.

  13. Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares

    NASA Astrophysics Data System (ADS)

    Heidari, Manoutchehr; Wench, Allen

    1997-05-01

    Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.

  14. Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares

    USGS Publications Warehouse

    Heidari, M.; Moench, A.

    1997-01-01

    Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.

  15. Estimating A Reference Standard Segmentation With Spatially Varying Performance Parameters: Local MAP STAPLE

    PubMed Central

    Commowick, Olivier; Akhondi-Asl, Alireza; Warfield, Simon K.

    2012-01-01

    We present a new algorithm, called local MAP STAPLE, to estimate from a set of multi-label segmentations both a reference standard segmentation and spatially varying performance parameters. It is based on a sliding window technique to estimate the segmentation and the segmentation performance parameters for each input segmentation. In order to allow for optimal fusion from the small amount of data in each local region, and to account for the possibility of labels not being observed in a local region of some (or all) input segmentations, we introduce prior probabilities for the local performance parameters through a new Maximum A Posteriori formulation of STAPLE. Further, we propose an expression to compute confidence intervals in the estimated local performance parameters. We carried out several experiments with local MAP STAPLE to characterize its performance and value for local segmentation evaluation. First, with simulated segmentations with known reference standard segmentation and spatially varying performance, we show that local MAP STAPLE performs better than both STAPLE and majority voting. Then we present evaluations with data sets from clinical applications. These experiments demonstrate that spatial adaptivity in segmentation performance is an important property to capture. We compared the local MAP STAPLE segmentations to STAPLE, and to previously published fusion techniques and demonstrate the superiority of local MAP STAPLE over other state-of-the- art algorithms. PMID:22562727

  16. A modal parameter extraction procedure applicable to linear time-invariant dynamic systems

    NASA Technical Reports Server (NTRS)

    Kurdila, A. J.; Craig, R. R., Jr.

    1985-01-01

    Modal analysis has emerged as a valuable tool in many phases of the engineering design process. Complex vibration and acoustic problems in new designs can often be remedied through use of the method. Moreover, the technique has been used to enhance the conceptual understanding of structures by serving to verify analytical models. A new modal parameter estimation procedure is presented. The technique is applicable to linear, time-invariant systems and accommodates multiple input excitations. In order to provide a background for the derivation of the method, some modal parameter extraction procedures currently in use are described. Key features implemented in the new technique are elaborated upon.

  17. Development of a laboratory prototype water quality monitoring system suitable for use in zero gravity

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Witz, S.; Hartung, W. H.

    1973-01-01

    The development of a laboratory prototype water quality monitoring system for use in the evaluation of candidate water recovery systems and for study of techniques for measuring potability parameters is reported. Sensing techniques for monitoring of the most desirable parameters are reviewed in terms of their sensitivities and complexities, and their recommendations for sensing techniques are presented. Rationale for selection of those parameters to be monitored (pH, specific conductivity, Cr(+6), I2, total carbon, and bacteria) in a next generation water monitor is presented along with an estimate of flight system specifications. A master water monitor development schedule is included.

  18. Space Shuttle propulsion parameter estimation using optimal estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The fifth monthly progress report includes corrections and additions to the previously submitted reports. The addition of the SRB propellant thickness as a state variable is included with the associated partial derivatives. During this reporting period, preliminary results of the estimation program checkout was presented to NASA technical personnel.

  19. Modeling, estimation and identification methods for static shape determination of flexible structures. [for large space structure design

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, R. E., Jr.

    1986-01-01

    This paper outlines methods for modeling, identification and estimation for static determination of flexible structures. The shape estimation schemes are based on structural models specified by (possibly interconnected) elliptic partial differential equations. The identification techniques provide approximate knowledge of parameters in elliptic systems. The techniques are based on the method of maximum-likelihood that finds parameter values such that the likelihood functional associated with the system model is maximized. The estimation methods are obtained by means of a function-space approach that seeks to obtain the conditional mean of the state given the data and a white noise characterization of model errors. The solutions are obtained in a batch-processing mode in which all the data is processed simultaneously. After methods for computing the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the related estimation error is conducted. In addition to outlining the above theoretical results, the paper presents typical flexible structure simulations illustrating performance of the shape determination methods.

  20. Application of the Strong Scatter Theory to the Interpretation of Ionospheric Scintillation Measurements along Geostationary Satellite Links at VHF and L-band

    NASA Astrophysics Data System (ADS)

    Carrano, C. S.; Groves, K. M.; Basu, S.; Mackenzie, E.; Sheehan, R. E.

    2013-12-01

    In a previous work, we demonstrated that ionospheric turbulence parameters may be inferred from amplitude scintillations well into in the strong scatter regime [Carrano et al., International Journal of Geophysics, 2012]. This technique, called Iterative Parameter Estimation (IPE), uses the strong scatter theory and numerical inversion to estimate the parameters of an ionospheric phase screen (turbulent intensity, phase spectral index, and irregularity zonal drift) consistent with the observed scintillations. The optimal screen parameters are determined such that the theoretical intensity spectrum on the ground best matches the measured intensity spectrum in a least squares sense. We use this technique to interpret scintillation measurements collected during a campaign at Ascension Island (7.96°S, 14.41°W) in March 2000, led by Santimay Basu and his collaborators from Air Force Research Laboratory. Geostationary satellites broadcasting radio signals at VHF and L-band were monitored along nearly co-linear links, enabling a multi-frequency analysis of scintillations with the same propagation geometry. The VHF data were acquired using antennas spaced in the magnetic east-west direction, which enabled direct measurement of the zonal irregularity drift. We show that IPE analysis of the VHF and L-Band scintillations, which exhibited very different statistics due to the wide frequency separation, yields similar estimates of the phase screen parameters that specify the disturbed ionospheric medium. This agreement provides confidence in our phase screen parameter estimates. It also suggests a technique for extrapolating scintillation measurements to frequencies other than those observed that is valid in the case of strong scatter. We find that IPE estimates of the zonal irregularity drift, made using scintillation observations along single space-to-ground link, are consistent with those measured independently using the spaced antenna technique. This encouraging result suggests one may measure the zonal irregularity drift at scintillation monitoring stations equipped with only a single channel receiver, so that the spaced-antenna technique cannot be employed. We noted that the scintillation index (S4) at L-band commonly exceeded that at VHF early in the evening when the irregularities were most intense, followed by one or more reversals of this trend at later local times as aging irregularities decayed and newly formed bubbles drifted over the station. We use the strong scatter theory to explain this perhaps counter-intuitive situation (one would normally expect a higher S4 at the lower frequency) in terms of strong refractive focusing.

  1. Parameter Estimation of Partial Differential Equation Models.

    PubMed

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab

    2013-01-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.

  2. Scene-based nonuniformity correction technique for infrared focal-plane arrays.

    PubMed

    Liu, Yong-Jin; Zhu, Hong; Zhao, Yi-Gong

    2009-04-20

    A scene-based nonuniformity correction algorithm is presented to compensate for the gain and bias nonuniformity in infrared focal-plane array sensors, which can be separated into three parts. First, an interframe-prediction method is used to estimate the true scene, since nonuniformity correction is a typical blind-estimation problem and both scene values and detector parameters are unavailable. Second, the estimated scene, along with its corresponding observed data obtained by detectors, is employed to update the gain and the bias by means of a line-fitting technique. Finally, with these nonuniformity parameters, the compensated output of each detector is obtained by computing a very simple formula. The advantages of the proposed algorithm lie in its low computational complexity and storage requirements and ability to capture temporal drifts in the nonuniformity parameters. The performance of every module is demonstrated with simulated and real infrared image sequences. Experimental results indicate that the proposed algorithm exhibits a superior correction effect.

  3. Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice

    2018-05-01

    In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.

  4. Retrieval of Spatio-temporal Distributions of Particle Parameters from Multiwavelength Lidar Measurements Using the Linear Estimation Technique and Comparison with AERONET

    NASA Technical Reports Server (NTRS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Kolgotin, A.; Dubovik, O.; Perez-Ramirez, D.; Suvorina, A.

    2013-01-01

    The results of the application of the linear estimation technique to multiwavelength Raman lidar measurements performed during the summer of 2011 in Greenbelt, MD, USA, are presented. We demonstrate that multiwavelength lidars are capable not only of providing vertical profiles of particle properties but also of revealing the spatio-temporal evolution of aerosol features. The nighttime 3 Beta + 1 alpha lidar measurements on 21 and 22 July were inverted to spatio-temporal distributions of particle microphysical parameters, such as volume, number density, effective radius and the complex refractive index. The particle volume and number density show strong variation during the night, while the effective radius remains approximately constant. The real part of the refractive index demonstrates a slight decreasing tendency in a region of enhanced extinction coefficient. The linear estimation retrievals are stable and provide time series of particle parameters as a function of height at 4 min resolution. AERONET observations are compared with multiwavelength lidar retrievals showing good agreement.

  5. On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models part 2. Parameter and state estimation

    NASA Astrophysics Data System (ADS)

    Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe

    2014-09-01

    Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored. These include: battery state of charge (SoC), battery state of health (capacity fade determination, SoH), and state of function (power fade determination, SoF). The second paper concludes the series by presenting a multi-stage online parameter identification technique based on a weighted recursive least quadratic squares parameter estimator to determine the parameters of the proposed battery model from the first paper during operation. A novel mutation based algorithm is developed to determine the nonlinear current dependency of the charge-transfer resistance. The influence of diffusion is determined by an on-line identification technique and verified on several batteries at different operation conditions. This method guarantees a short response time and, together with its fully recursive structure, assures a long-term stable monitoring of the battery parameters. The relative dynamic voltage prediction error of the algorithm is reduced to 2%. The changes of parameters are used to determine the states of the battery. The algorithm is real-time capable and can be implemented on embedded systems.

  6. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL.

    PubMed

    Su, Pan; Mao, Deng; Liu, Peiying; Li, Yang; Pinho, Marco C; Welch, Babu G; Lu, Hanzhang

    2017-11-01

    Assessment of brain hemodynamics without exogenous contrast agents is of increasing importance in clinical applications. This study aims to develop an MR perfusion technique that can provide noncontrast and multiparametric estimation of hemodynamic markers. We devised an arterial spin labeling (ASL) method based on the principle of MR fingerprinting (MRF), referred to as MRF-ASL. By taking advantage of the rich information contained in MRF sequence, up to seven hemodynamic parameters can be estimated concomitantly. Feasibility demonstration, flip angle optimization, comparison with Look-Locker ASL, reproducibility test, sensitivity to hypercapnia challenge, and initial clinical application in an intracranial steno-occlusive process, Moyamoya disease, were performed to evaluate this technique. Magnetic resonance fingerprinting ASL provided estimation of up to seven parameters, including B1+, tissue T 1 , cerebral blood flow (CBF), tissue bolus arrival time (BAT), pass-through arterial BAT, pass-through blood volume, and pass-through blood travel time. Coefficients of variation of the estimated parameters ranged from 0.2 to 9.6%. Hypercapnia resulted in an increase in CBF by 57.7%, and a decrease in BAT by 13.7 and 24.8% in tissue and vessels, respectively. Patients with Moyamoya disease showed diminished CBF and lengthened BAT that could not be detected with regular ASL. Magnetic resonance fingerprinting ASL is a promising technique for noncontrast, multiparametric perfusion assessment. Magn Reson Med 78:1812-1823, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. An Algorithm for Efficient Maximum Likelihood Estimation and Confidence Interval Determination in Nonlinear Estimation Problems

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick Charles

    1985-01-01

    An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The algorithm was developed for airplane parameter estimation problems but is well suited for most nonlinear, multivariable, dynamic systems. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. The fitted surface allows sensitivity information to be updated at each iteration with a significant reduction in computational effort. MNRES determines the sensitivities with less computational effort than using either a finite-difference method or integrating the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, thus eliminating algorithm reformulation with each new model and providing flexibility to use model equations in any format that is convenient. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. It is observed that the degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. The CR bounds were found to be close to the bounds determined by the search when the degree of nonlinearity was small. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels for the parameter confidence limits. The primary utility of the measure, however, was found to be in predicting the degree of agreement between Cramer-Rao bounds and search estimates.

  8. Scatter and veiling glare corrections for quantitative digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Ersahin, Atila; Molloi, Sabee Y.; Qian, Yao-Jin

    1994-05-01

    In order to quantitate anatomical and physiological parameters such as vessel dimensions and volumetric blood flow, it is necessary to make corrections for scatter and veiling glare (SVG), which are the major sources of nonlinearities in videodensitometric digital subtraction angiography (DSA). A convolution filtering technique has been investigated to estimate SVG distribution in DSA images without the need to sample the SVG for each patient. This technique utilizes exposure parameters and image gray levels to estimate SVG intensity by predicting the total thickness for every pixel in the image. At this point, corrections were also made for variation of SVG fraction with beam energy and field size. To test its ability to estimate SVG intensity, the correction technique was applied to images of a Lucite step phantom, anthropomorphic chest phantom, head phantom, and animal models at different thicknesses, projections, and beam energies. The root-mean-square (rms) percentage error of these estimates were obtained by comparison with direct SVG measurements made behind a lead strip. The average rms percentage errors in the SVG estimate for the 25 phantom studies and for the 17 animal studies were 6.22% and 7.96%, respectively. These results indicate that the SVG intensity can be estimated for a wide range of thicknesses, projections, and beam energies.

  9. A Full Dynamic Compound Inverse Method for output-only element-level system identification and input estimation from earthquake response signals

    NASA Astrophysics Data System (ADS)

    Pioldi, Fabio; Rizzi, Egidio

    2016-08-01

    This paper proposes a new output-only element-level system identification and input estimation technique, towards the simultaneous identification of modal parameters, input excitation time history and structural features at the element-level by adopting earthquake-induced structural response signals. The method, named Full Dynamic Compound Inverse Method (FDCIM), releases strong assumptions of earlier element-level techniques, by working with a two-stage iterative algorithm. Jointly, a Statistical Average technique, a modification process and a parameter projection strategy are adopted at each stage to achieve stronger convergence for the identified estimates. The proposed method works in a deterministic way and is completely developed in State-Space form. Further, it does not require continuous- to discrete-time transformations and does not depend on initialization conditions. Synthetic earthquake-induced response signals from different shear-type buildings are generated to validate the implemented procedure, also with noise-corrupted cases. The achieved results provide a necessary condition to demonstrate the effectiveness of the proposed identification method.

  10. Using remote sensing and GIS techniques to estimate discharge and recharge fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.; ,

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.

  11. Reduced-rank technique for joint channel estimation in TD-SCDMA systems

    NASA Astrophysics Data System (ADS)

    Kamil Marzook, Ali; Ismail, Alyani; Mohd Ali, Borhanuddin; Sali, Adawati; Khatun, Sabira

    2013-02-01

    In time division-synchronous code division multiple access systems, increasing the system capacity by exploiting the inserting of the largest number of users in one time slot (TS) requires adding more estimation processes to estimate the joint channel matrix for the whole system. The increase in the number of channel parameters due the increase in the number of users in one TS directly affects the precision of the estimator's performance. This article presents a novel channel estimation with low complexity, which relies on reducing the rank order of the total channel matrix H. The proposed method exploits the rank deficiency of H to reduce the number of parameters that characterise this matrix. The adopted reduced-rank technique is based on truncated singular value decomposition algorithm. The algorithms for reduced-rank joint channel estimation (JCE) are derived and compared against traditional full-rank JCEs: least squares (LS) or Steiner and enhanced (LS or MMSE) algorithms. Simulation results of the normalised mean square error showed the superiority of reduced-rank estimators. In addition, the channel impulse responses founded by reduced-rank estimator for all active users offers considerable performance improvement over the conventional estimator along the channel window length.

  12. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping

    2016-09-01

    Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.

  13. Calculation of Weibull strength parameters and Batdorf flow-density constants for volume- and surface-flaw-induced fracture in ceramics

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Gyekenyesi, John P.

    1988-01-01

    The calculation of shape and scale parameters of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by uing the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded. The techniques described were verified with several example problems from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.

  14. GGOS and the EOP - the key role of SLR for a stable estimation of highly accurate Earth orientation parameters

    NASA Astrophysics Data System (ADS)

    Bloßfeld, Mathis; Panzetta, Francesca; Müller, Horst; Gerstl, Michael

    2016-04-01

    The GGOS vision is to integrate geometric and gravimetric observation techniques to estimate consistent geodetic-geophysical parameters. In order to reach this goal, the common estimation of station coordinates, Stokes coefficients and Earth Orientation Parameters (EOP) is necessary. Satellite Laser Ranging (SLR) provides the ability to study correlations between the different parameter groups since the observed satellite orbit dynamics are sensitive to the above mentioned geodetic parameters. To decrease the correlations, SLR observations to multiple satellites have to be combined. In this paper, we compare the estimated EOP of (i) single satellite SLR solutions and (ii) multi-satellite SLR solutions. Therefore, we jointly estimate station coordinates, EOP, Stokes coefficients and orbit parameters using different satellite constellations. A special focus in this investigation is put on the de-correlation of different geodetic parameter groups due to the combination of SLR observations. Besides SLR observations to spherical satellites (commonly used), we discuss the impact of SLR observations to non-spherical satellites such as, e.g., the JASON-2 satellite. The goal of this study is to discuss the existing parameter interactions and to present a strategy how to obtain reliable estimates of station coordinates, EOP, orbit parameter and Stokes coefficients in one common adjustment. Thereby, the benefits of a multi-satellite SLR solution are evaluated.

  15. Weak value amplification considered harmful

    NASA Astrophysics Data System (ADS)

    Ferrie, Christopher; Combes, Joshua

    2014-03-01

    We show using statistically rigorous arguments that the technique of weak value amplification does not perform better than standard statistical techniques for the tasks of parameter estimation and signal detection. We show that using all data and considering the joint distribution of all measurement outcomes yields the optimal estimator. Moreover, we show estimation using the maximum likelihood technique with weak values as small as possible produces better performance for quantum metrology. In doing so, we identify the optimal experimental arrangement to be the one which reveals the maximal eigenvalue of the square of system observables. We also show these conclusions do not change in the presence of technical noise.

  16. Parmeterization of spectra

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    Following reception and analog to digital conversion (A/D) conversion, atmospheric radar backscatter echoes need to be processed so as to obtain desired information about atmospheric processes and to eliminate or minimize contaminating contributions from other sources. Various signal processing techniques have been implemented at mesosphere-stratosphere-troposphere (MST) radar facilities to estimate parameters of interest from received spectra. Such estimation techniques need to be both accurate and sufficiently efficient to be within the capabilities of the particular data-processing system. The various techniques used to parameterize the spectra of received signals are reviewed herein. Noise estimation, electromagnetic interference, data smoothing, correlation, and the Doppler effect are among the specific points addressed.

  17. Performance Evaluation of EnKF-based Hydrogeological Site Characterization using Color Coherent Vectors

    NASA Astrophysics Data System (ADS)

    Moslehi, M.; de Barros, F.

    2017-12-01

    Complexity of hydrogeological systems arises from the multi-scale heterogeneity and insufficient measurements of their underlying parameters such as hydraulic conductivity and porosity. An inadequate characterization of hydrogeological properties can significantly decrease the trustworthiness of numerical models that predict groundwater flow and solute transport. Therefore, a variety of data assimilation methods have been proposed in order to estimate hydrogeological parameters from spatially scarce data by incorporating the governing physical models. In this work, we propose a novel framework for evaluating the performance of these estimation methods. We focus on the Ensemble Kalman Filter (EnKF) approach that is a widely used data assimilation technique. It reconciles multiple sources of measurements to sequentially estimate model parameters such as the hydraulic conductivity. Several methods have been used in the literature to quantify the accuracy of the estimations obtained by EnKF, including Rank Histograms, RMSE and Ensemble Spread. However, these commonly used methods do not regard the spatial information and variability of geological formations. This can cause hydraulic conductivity fields with very different spatial structures to have similar histograms or RMSE. We propose a vision-based approach that can quantify the accuracy of estimations by considering the spatial structure embedded in the estimated fields. Our new approach consists of adapting a new metric, Color Coherent Vectors (CCV), to evaluate the accuracy of estimated fields achieved by EnKF. CCV is a histogram-based technique for comparing images that incorporate spatial information. We represent estimated fields as digital three-channel images and use CCV to compare and quantify the accuracy of estimations. The sensitivity of CCV to spatial information makes it a suitable metric for assessing the performance of spatial data assimilation techniques. Under various factors of data assimilation methods such as number, layout, and type of measurements, we compare the performance of CCV with other metrics such as RMSE. By simulating hydrogeological processes using estimated and true fields, we observe that CCV outperforms other existing evaluation metrics.

  18. On robust parameter estimation in brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert

    2017-12-01

    Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.

  19. Accounting for uncertainty in model-based prevalence estimation: paratuberculosis control in dairy herds.

    PubMed

    Davidson, Ross S; McKendrick, Iain J; Wood, Joanna C; Marion, Glenn; Greig, Alistair; Stevenson, Karen; Sharp, Michael; Hutchings, Michael R

    2012-09-10

    A common approach to the application of epidemiological models is to determine a single (point estimate) parameterisation using the information available in the literature. However, in many cases there is considerable uncertainty about parameter values, reflecting both the incomplete nature of current knowledge and natural variation, for example between farms. Furthermore model outcomes may be highly sensitive to different parameter values. Paratuberculosis is an infection for which many of the key parameter values are poorly understood and highly variable, and for such infections there is a need to develop and apply statistical techniques which make maximal use of available data. A technique based on Latin hypercube sampling combined with a novel reweighting method was developed which enables parameter uncertainty and variability to be incorporated into a model-based framework for estimation of prevalence. The method was evaluated by applying it to a simulation of paratuberculosis in dairy herds which combines a continuous time stochastic algorithm with model features such as within herd variability in disease development and shedding, which have not been previously explored in paratuberculosis models. Generated sample parameter combinations were assigned a weight, determined by quantifying the model's resultant ability to reproduce prevalence data. Once these weights are generated the model can be used to evaluate other scenarios such as control options. To illustrate the utility of this approach these reweighted model outputs were used to compare standard test and cull control strategies both individually and in combination with simple husbandry practices that aim to reduce infection rates. The technique developed has been shown to be applicable to a complex model incorporating realistic control options. For models where parameters are not well known or subject to significant variability, the reweighting scheme allowed estimated distributions of parameter values to be combined with additional sources of information, such as that available from prevalence distributions, resulting in outputs which implicitly handle variation and uncertainty. This methodology allows for more robust predictions from modelling approaches by allowing for parameter uncertainty and combining different sources of information, and is thus expected to be useful in application to a large number of disease systems.

  20. Parameter estimation techniques based on optimizing goodness-of-fit statistics for structural reliability

    NASA Technical Reports Server (NTRS)

    Starlinger, Alois; Duffy, Stephen F.; Palko, Joseph L.

    1993-01-01

    New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm.

  1. A comparison of minimum distance and maximum likelihood techniques for proportion estimation

    NASA Technical Reports Server (NTRS)

    Woodward, W. A.; Schucany, W. R.; Lindsey, H.; Gray, H. L.

    1982-01-01

    The estimation of mixing proportions P sub 1, P sub 2,...P sub m in the mixture density f(x) = the sum of the series P sub i F sub i(X) with i = 1 to M is often encountered in agricultural remote sensing problems in which case the p sub i's usually represent crop proportions. In these remote sensing applications, component densities f sub i(x) have typically been assumed to be normally distributed, and parameter estimation has been accomplished using maximum likelihood (ML) techniques. Minimum distance (MD) estimation is examined as an alternative to ML where, in this investigation, both procedures are based upon normal components. Results indicate that ML techniques are superior to MD when component distributions actually are normal, while MD estimation provides better estimates than ML under symmetric departures from normality. When component distributions are not symmetric, however, it is seen that neither of these normal based techniques provides satisfactory results.

  2. Flight Test of Orthogonal Square Wave Inputs for Hybrid-Wing-Body Parameter Estimation

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2011-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will use distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. The research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique in order to determine individual control surface effectiveness. This technique was validated through flight-testing an 8.5-percent-scale hybrid-wing-body aircraft demonstrator at the NASA Dryden Flight Research Center (Edwards, California). An input design technique that uses mutually orthogonal square wave inputs for de-correlation of control surfaces is proposed. Flight-test results are compared with prior flight-test results for a different maneuver style.

  3. Estimation of parameters of dose volume models and their confidence limits

    NASA Astrophysics Data System (ADS)

    van Luijk, P.; Delvigne, T. C.; Schilstra, C.; Schippers, J. M.

    2003-07-01

    Predictions of the normal-tissue complication probability (NTCP) for the ranking of treatment plans are based on fits of dose-volume models to clinical and/or experimental data. In the literature several different fit methods are used. In this work frequently used methods and techniques to fit NTCP models to dose response data for establishing dose-volume effects, are discussed. The techniques are tested for their usability with dose-volume data and NTCP models. Different methods to estimate the confidence intervals of the model parameters are part of this study. From a critical-volume (CV) model with biologically realistic parameters a primary dataset was generated, serving as the reference for this study and describable by the NTCP model. The CV model was fitted to this dataset. From the resulting parameters and the CV model, 1000 secondary datasets were generated by Monte Carlo simulation. All secondary datasets were fitted to obtain 1000 parameter sets of the CV model. Thus the 'real' spread in fit results due to statistical spreading in the data is obtained and has been compared with estimates of the confidence intervals obtained by different methods applied to the primary dataset. The confidence limits of the parameters of one dataset were estimated using the methods, employing the covariance matrix, the jackknife method and directly from the likelihood landscape. These results were compared with the spread of the parameters, obtained from the secondary parameter sets. For the estimation of confidence intervals on NTCP predictions, three methods were tested. Firstly, propagation of errors using the covariance matrix was used. Secondly, the meaning of the width of a bundle of curves that resulted from parameters that were within the one standard deviation region in the likelihood space was investigated. Thirdly, many parameter sets and their likelihood were used to create a likelihood-weighted probability distribution of the NTCP. It is concluded that for the type of dose response data used here, only a full likelihood analysis will produce reliable results. The often-used approximations, such as the usage of the covariance matrix, produce inconsistent confidence limits on both the parameter sets and the resulting NTCP values.

  4. Adaptive statistical pattern classifiers for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Gonzalez, R. C.; Pace, M. O.; Raulston, H. S.

    1975-01-01

    A technique for the adaptive estimation of nonstationary statistics necessary for Bayesian classification is developed. The basic approach to the adaptive estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest and (2) a projection of the parameters in time or position. A divergence criterion is developed to monitor algorithm performance. Comparative results of adaptive and nonadaptive classifier tests are presented for simulated four dimensional spectral scan data.

  5. Identification and feedback control in structures with piezoceramic actuators

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.; Wang, Y.

    1992-01-01

    In this lecture we give fundamental well-posedness results for a variational formulation of a class of damped second order partial differential equations with unbounded input or control coefficients. Included as special cases in this class are structures with piezoceramic actuators. We consider approximation techniques leading to computational methods in the context of both parameter estimation and feedback control problems for these systems. Rigorous convergence results for parameter estimates and feedback gains are discussed.

  6. Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1979-01-01

    Many problems in the experimental estimation of parameters for models can be solved through use of the likelihood ratio test. Applications of the likelihood ratio, with particular attention to photon counting experiments, are discussed. The procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply. The procedures are proved analytically, and examples from current problems in astronomy are discussed.

  7. Noncoherent sampling technique for communications parameter estimations

    NASA Technical Reports Server (NTRS)

    Su, Y. T.; Choi, H. J.

    1985-01-01

    This paper presents a method of noncoherent demodulation of the PSK signal for signal distortion analysis at the RF interface. The received RF signal is downconverted and noncoherently sampled for further off-line processing. Any mismatch in phase and frequency is then compensated for by the software using the estimation techniques to extract the baseband waveform, which is needed in measuring various signal parameters. In this way, various kinds of modulated signals can be treated uniformly, independent of modulation format, and additional distortions introduced by the receiver or the hardware measurement instruments can thus be eliminated. Quantization errors incurred by digital sampling and ensuing software manipulations are analyzed and related numerical results are presented also.

  8. The Efficacy of Galaxy Shape Parameters in Photometric Redshift Estimation: A Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Singal, J.; Shmakova, M.; Gerke, B.; Griffith, R. L.; Lotz, J.

    2011-05-01

    We present a determination of the effects of including galaxy morphological parameters in photometric redshift estimation with an artificial neural network method. Neural networks, which recognize patterns in the information content of data in an unbiased way, can be a useful estimator of the additional information contained in extra parameters, such as those describing morphology, if the input data are treated on an equal footing. We use imaging and five band photometric magnitudes from the All-wavelength Extended Groth Strip International Survey (AEGIS). It is shown that certain principal components of the morphology information are correlated with galaxy type. However, we find that for the data used the inclusion of morphological information does not have a statistically significant benefit for photometric redshift estimation with the techniques employed here. The inclusion of these parameters may result in a tradeoff between extra information and additional noise, with the additional noise becoming more dominant as more parameters are added.

  9. A statistical methodology for estimating transport parameters: Theory and applications to one-dimensional advectivec-dispersive systems

    USGS Publications Warehouse

    Wagner, Brian J.; Gorelick, Steven M.

    1986-01-01

    A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference contaminant transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2–3 times more reliable than estimates based on temporal data for all parameters except velocity. Comparison of estimated linear and nonlinear confidence intervals based upon Monte Carlo analysis showed that the linear approximation is poor for dispersion coefficient and zero-order production coefficient when data are collected over time. In addition, examples demonstrate transport parameter estimation for two real one-dimensional systems. First, the longitudinal dispersivity and effective porosity of an unsaturated soil are estimated using laboratory column data. We compare the reliability of estimates based upon data from individual laboratory experiments versus estimates based upon pooled data from several experiments. Second, the simulation nonlinear regression procedure is extended to include an additional governing equation that describes delayed storage during contaminant transport. The model is applied to analyze the trends, variability, and interrelationship of parameters in a mourtain stream in northern California.

  10. Analysis Test of Understanding of Vectors with the Three-Parameter Logistic Model of Item Response Theory and Item Response Curves Technique

    ERIC Educational Resources Information Center

    Rakkapao, Suttida; Prasitpong, Singha; Arayathanitkul, Kwan

    2016-01-01

    This study investigated the multiple-choice test of understanding of vectors (TUV), by applying item response theory (IRT). The difficulty, discriminatory, and guessing parameters of the TUV items were fit with the three-parameter logistic model of IRT, using the parscale program. The TUV ability is an ability parameter, here estimated assuming…

  11. Identification of modal parameters including unmeasured forces and transient effects

    NASA Astrophysics Data System (ADS)

    Cauberghe, B.; Guillaume, P.; Verboven, P.; Parloo, E.

    2003-08-01

    In this paper, a frequency-domain method to estimate modal parameters from short data records with known input (measured) forces and unknown input forces is presented. The method can be used for an experimental modal analysis, an operational modal analysis (output-only data) and the combination of both. A traditional experimental and operational modal analysis in the frequency domain starts respectively, from frequency response functions and spectral density functions. To estimate these functions accurately sufficient data have to be available. The technique developed in this paper estimates the modal parameters directly from the Fourier spectra of the outputs and the known input. Instead of using Hanning windows on these short data records the transient effects are estimated simultaneously with the modal parameters. The method is illustrated, tested and validated by Monte Carlo simulations and experiments. The presented method to process short data sequences leads to unbiased estimates with a small variance in comparison to the more traditional approaches.

  12. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    PubMed

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  13. Sensitivity analysis of add-on price estimate for select silicon wafering technologies

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.

    1982-01-01

    The cost of producing wafers from silicon ingots is a major component of the add-on price of silicon sheet. Economic analyses of the add-on price estimates and their sensitivity internal-diameter (ID) sawing, multiblade slurry (MBS) sawing and fixed-abrasive slicing technique (FAST) are presented. Interim price estimation guidelines (IPEG) are used for estimating a process add-on price. Sensitivity analysis of price is performed with respect to cost parameters such as equipment, space, direct labor, materials (blade life) and utilities, and the production parameters such as slicing rate, slices per centimeter and process yield, using a computer program specifically developed to do sensitivity analysis with IPEG. The results aid in identifying the important cost parameters and assist in deciding the direction of technology development efforts.

  14. Estimation of groundwater recharge parameters by time series analysis

    USGS Publications Warehouse

    Naff, Richard L.; Gutjahr, Allan L.

    1983-01-01

    A model is proposed that relates water level fluctuations in a Dupuit aquifer to effective precipitaton at the top of the unsaturated zone. Effective precipitation, defined herein as that portion of precipitation which becomes recharge, is related to precipitation measured in a nearby gage by a two-parameter function. A second-order stationary assumption is used to connect the spectra of effective precipitation and water level fluctuations. Measured precipitation is assumed to be Gaussian, in order to develop a transfer function that relates the spectra of measured and effective precipitation. A nonlinear least squares technique is proposed for estimating parameters of the effective-precipitation function. Although sensitivity analyses indicate difficulties that may be encountered in the estimation procedure, the methods developed did yield convergent estimates for two case studies.

  15. Novel Method for Incorporating Model Uncertainties into Gravitational Wave Parameter Estimates

    NASA Astrophysics Data System (ADS)

    Moore, Christopher J.; Gair, Jonathan R.

    2014-12-01

    Posterior distributions on parameters computed from experimental data using Bayesian techniques are only as accurate as the models used to construct them. In many applications, these models are incomplete, which both reduces the prospects of detection and leads to a systematic error in the parameter estimates. In the analysis of data from gravitational wave detectors, for example, accurate waveform templates can be computed using numerical methods, but the prohibitive cost of these simulations means this can only be done for a small handful of parameters. In this Letter, a novel method to fold model uncertainties into data analysis is proposed; the waveform uncertainty is analytically marginalized over using with a prior distribution constructed by using Gaussian process regression to interpolate the waveform difference from a small training set of accurate templates. The method is well motivated, easy to implement, and no more computationally expensive than standard techniques. The new method is shown to perform extremely well when applied to a toy problem. While we use the application to gravitational wave data analysis to motivate and illustrate the technique, it can be applied in any context where model uncertainties exist.

  16. New technique for ensemble dressing combining Multimodel SuperEnsemble and precipitation PDF

    NASA Astrophysics Data System (ADS)

    Cane, D.; Milelli, M.

    2009-09-01

    The Multimodel SuperEnsemble technique (Krishnamurti et al., Science 285, 1548-1550, 1999) is a postprocessing method for the estimation of weather forecast parameters reducing direct model output errors. It differs from other ensemble analysis techniques by the use of an adequate weighting of the input forecast models to obtain a combined estimation of meteorological parameters. Weights are calculated by least-square minimization of the difference between the model and the observed field during a so-called training period. Although it can be applied successfully on the continuous parameters like temperature, humidity, wind speed and mean sea level pressure (Cane and Milelli, Meteorologische Zeitschrift, 15, 2, 2006), the Multimodel SuperEnsemble gives good results also when applied on the precipitation, a parameter quite difficult to handle with standard post-processing methods. Here we present our methodology for the Multimodel precipitation forecasts applied on a wide spectrum of results over Piemonte very dense non-GTS weather station network. We will focus particularly on an accurate statistical method for bias correction and on the ensemble dressing in agreement with the observed precipitation forecast-conditioned PDF. Acknowledgement: this work is supported by the Italian Civil Defence Department.

  17. Quantitative estimation of climatic parameters from vegetation data in North America by the mutual climatic range technique

    USGS Publications Warehouse

    Anderson, Katherine H.; Bartlein, Patrick J.; Strickland, Laura E.; Pelltier, Richard T.; Thompson, Robert S.; Shafer, Sarah L.

    2012-01-01

    The mutual climatic range (MCR) technique is perhaps the most widely used method for estimating past climatic parameters from fossil assemblages, largely because it can be conducted on a simple list of the taxa present in an assemblage. When applied to plant macrofossil data, this unweighted approach (MCRun) will frequently identify a large range for a given climatic parameter where the species in an assemblage can theoretically live together. To narrow this range, we devised a new weighted approach (MCRwt) that employs information from the modern relations between climatic parameters and plant distributions to lessen the influence of the "tails" of the distributions of the climatic data associated with the taxa in an assemblage. To assess the performance of the MCR approaches, we applied them to a set of modern climatic data and plant distributions on a 25-km grid for North America, and compared observed and estimated climatic values for each grid point. In general, MCRwt was superior to MCRun in providing smaller anomalies, less bias, and better correlations between observed and estimated values. However, by the same measures, the results of Modern Analog Technique (MAT) approaches were superior to MCRwt. Although this might be reason to favor MAT approaches, they are based on assumptions that may not be valid for paleoclimatic reconstructions, including that: 1) the absence of a taxon from a fossil sample is meaningful, 2) plant associations were largely unaffected by past changes in either levels of atmospheric carbon dioxide or in the seasonal distributions of solar radiation, and 3) plant associations of the past are adequately represented on the modern landscape. To illustrate the application of these MCR and MAT approaches to paleoclimatic reconstructions, we applied them to a Pleistocene paleobotanical assemblage from the western United States. From our examinations of the estimates of modern and past climates from vegetation assemblages, we conclude that the MCRun technique provides reliable and unbiased estimates of the ranges of possible climatic conditions that can reasonably be associated with these assemblages. The application of MCRwt and MAT approaches can further constrain these estimates and may provide a systematic way to assess uncertainty. The data sets required for MCR analyses in North America are provided in a parallel publication.

  18. Methods and Tools for Evaluating Uncertainty in Ecological Models: A Survey

    EPA Science Inventory

    Poster presented at the Ecological Society of America Meeting. Ecologists are familiar with a variety of uncertainty techniques, particularly in the intersection of maximum likelihood parameter estimation and Monte Carlo analysis techniques, as well as a recent increase in Baye...

  19. Tumor response estimation in radar-based microwave breast cancer detection.

    PubMed

    Kurrant, Douglas J; Fear, Elise C; Westwick, David T

    2008-12-01

    Radar-based microwave imaging techniques have been proposed for early stage breast cancer detection. A considerable challenge for the successful implementation of these techniques is the reduction of clutter, or components of the signal originating from objects other than the tumor. In particular, the reduction of clutter from the late-time scattered fields is required in order to detect small (subcentimeter diameter) tumors. In this paper, a method to estimate the tumor response contained in the late-time scattered fields is presented. The method uses a parametric function to model the tumor response. A maximum a posteriori estimation approach is used to evaluate the optimal values for the estimates of the parameters. A pattern classification technique is then used to validate the estimation. The ability of the algorithm to estimate a tumor response is demonstrated by using both experimental and simulated data obtained with a tissue sensing adaptive radar system.

  20. Multi-technique combination of space geodesy observations

    NASA Astrophysics Data System (ADS)

    Zoulida, Myriam; Pollet, Arnaud; Coulot, David; Biancale, Richard; Rebischung, Paul; Collilieux, Xavier

    2014-05-01

    Over the last few years, combination at the observation level (COL) of the different space geodesy techniques has been thoroughly studied. Various studies have shown that this type of combination can take advantage of common parameters. Some of these parameters, such as Zenithal Tropospheric Delays (ZTD), are available on co-location sites, where more than one technique is present. Local ties (LT) are provided for these sites, and act as intra-technique links and allow resulting terrestrial reference frames (TRF) to be homogeneous. However the use of LT can be problematic on weekly calculations, where their geographical distribution can be poor, and there are often differences observed between available LTs and space geodesy results. Similar co-locations can be found on multi-technique satellites, where more than one technique receiver is featured. A great advantage of these space ties (STs) is the densification of co-locations as the orbiting satellite acts as a moving station. The challenge of using space ties relies in the accurate knowledge or estimation of their values, as officially provided values are sometimes not reaching the required level of precision for the solution, due to receivers' or acting forces mismodelings and other factors. Thus, the necessity of an estimation and/or weighting strategy for the STs is introduced. To this day, on subsets of available data, using STs has shown promising results regarding the TRF determination through the stations' positions estimation, on the orbit determination of the GPS constellation and on the GPS antenna Phase Center Offsets and Variations (PCO and PCV) . In this study, results from a multi-technique combination including the Jason-2 satellite and its effect on the GNSS orbit determination during the CONT2011 period are presented, as well as some preliminary results on station positions' determination. Comparing resulting orbits with official solutions provides an assessment of the effect on the orbit calculation by introducing orbiting stations' observations. Moreover, simulated solutions will be presented, showing the effect of adding multi-technique observations on the estimation of STs parameters errors, such as Laser Retroreflector Offsets (LROs) or GNSS antennae Phase Center Offsets (PCOs).

  1. A fluidized bed technique for estimating soil critical shear stress

    USDA-ARS?s Scientific Manuscript database

    Soil erosion models, depending on how they are formulated, always have erodibilitiy parameters in the erosion equations. For a process-based model like the Water Erosion Prediction Project (WEPP) model, the erodibility parameters include rill and interrill erodibility and critical shear stress. Thes...

  2. Estimating procedure times for surgeries by determining location parameters for the lognormal model.

    PubMed

    Spangler, William E; Strum, David P; Vargas, Luis G; May, Jerrold H

    2004-05-01

    We present an empirical study of methods for estimating the location parameter of the lognormal distribution. Our results identify the best order statistic to use, and indicate that using the best order statistic instead of the median may lead to less frequent incorrect rejection of the lognormal model, more accurate critical value estimates, and higher goodness-of-fit. Using simulation data, we constructed and compared two models for identifying the best order statistic, one based on conventional nonlinear regression and the other using a data mining/machine learning technique. Better surgical procedure time estimates may lead to improved surgical operations.

  3. Variational Bayesian Parameter Estimation Techniques for the General Linear Model

    PubMed Central

    Starke, Ludger; Ostwald, Dirk

    2017-01-01

    Variational Bayes (VB), variational maximum likelihood (VML), restricted maximum likelihood (ReML), and maximum likelihood (ML) are cornerstone parametric statistical estimation techniques in the analysis of functional neuroimaging data. However, the theoretical underpinnings of these model parameter estimation techniques are rarely covered in introductory statistical texts. Because of the widespread practical use of VB, VML, ReML, and ML in the neuroimaging community, we reasoned that a theoretical treatment of their relationships and their application in a basic modeling scenario may be helpful for both neuroimaging novices and practitioners alike. In this technical study, we thus revisit the conceptual and formal underpinnings of VB, VML, ReML, and ML and provide a detailed account of their mathematical relationships and implementational details. We further apply VB, VML, ReML, and ML to the general linear model (GLM) with non-spherical error covariance as commonly encountered in the first-level analysis of fMRI data. To this end, we explicitly derive the corresponding free energy objective functions and ensuing iterative algorithms. Finally, in the applied part of our study, we evaluate the parameter and model recovery properties of VB, VML, ReML, and ML, first in an exemplary setting and then in the analysis of experimental fMRI data acquired from a single participant under visual stimulation. PMID:28966572

  4. An extended Kalman filter approach to non-stationary Bayesian estimation of reduced-order vocal fold model parameters.

    PubMed

    Hadwin, Paul J; Peterson, Sean D

    2017-04-01

    The Bayesian framework for parameter inference provides a basis from which subject-specific reduced-order vocal fold models can be generated. Previously, it has been shown that a particle filter technique is capable of producing estimates and associated credibility intervals of time-varying reduced-order vocal fold model parameters. However, the particle filter approach is difficult to implement and has a high computational cost, which can be barriers to clinical adoption. This work presents an alternative estimation strategy based upon Kalman filtering aimed at reducing the computational cost of subject-specific model development. The robustness of this approach to Gaussian and non-Gaussian noise is discussed. The extended Kalman filter (EKF) approach is found to perform very well in comparison with the particle filter technique at dramatically lower computational cost. Based upon the test cases explored, the EKF is comparable in terms of accuracy to the particle filter technique when greater than 6000 particles are employed; if less particles are employed, the EKF actually performs better. For comparable levels of accuracy, the solution time is reduced by 2 orders of magnitude when employing the EKF. By virtue of the approximations used in the EKF, however, the credibility intervals tend to be slightly underpredicted.

  5. Correlation of echocardiographic and hemodynamic parameters in pulmonary hypertension assessment prior to heart transplantation.

    PubMed

    Mogollón Jiménez, M V; Escoresca Ortega, A M; Cabeza Letrán, M L; Hinojosa Pérez, R; Lage Gallé, E; Sobrino Márquez, J M; Herruzo Avilés, A; Romero Rodríguez, N; Frutos López, M; Pérez de la Yglesia, R; Martínez Martínez, A

    2008-11-01

    Invasive assessment of pulmonary artery pressure (PAP), via right heart catheterization, is part of the usual protocol prior to heart transplantation. Echocardiography is considered a valuable technique to evaluate PAP. We sought to determine the reliability of measurements of PAP via a noninvasive technique, echocardiography, in relation to the estimated PAP via right catheterization. We also determined its safety when invasive procedures are restricted to just patients with pulmonary hypertension (PHT) according to echocardiographic parameters. We performed a retrospective study of 67 right catheterizations performed in our hospital, within the heart transplant study protocol, from January 2000 to December 2006. PAP parameters were estimated by echocardiography and right catheterization. Hemodynamically, 57.1% of the patients had severe PHT (more than 45 mm Hg mean PAP); 13.2% moderate PHT (between 35 and 45 mm Hg mean PAP); 12.1% had mild PHT (between 25 and 35 mm Hg mean PAP); and 17.6% of patients showed no PHT. Pearson correlation index with systolic PAP (estimated via echocardiography) and mean PAP (calculated via invasive method) was 0.69 (P < .001). PHT was considered significant when systolic PAP estimated via echocardiography reached more than 40 mm Hg and mean PAP estimated via right catheterization reached more than 35 mm Hg, the value from which the vasodilator test was carried out. According to these parameters, echocardiography showed a sensitivity of 89% to diagnose significant PHT and 46% specificity, with positive and negative predictive values of 70% and 76%, respectively.

  6. Parameter estimation and actuator characteristics of hybrid magnetic bearings for axial flow blood pump applications.

    PubMed

    Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh

    2009-07-01

    Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid.

  7. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  8. Technical note: Alternatives to reduce adipose tissue sampling bias.

    PubMed

    Cruz, G D; Wang, Y; Fadel, J G

    2014-10-01

    Understanding the mechanisms by which nutritional and pharmaceutical factors can manipulate adipose tissue growth and development in production animals has direct and indirect effects in the profitability of an enterprise. Adipocyte cellularity (number and size) is a key biological response that is commonly measured in animal science research. The variability and sampling of adipocyte cellularity within a muscle has been addressed in previous studies, but no attempt to critically investigate these issues has been proposed in the literature. The present study evaluated 2 sampling techniques (random and systematic) in an attempt to minimize sampling bias and to determine the minimum number of samples from 1 to 15 needed to represent the overall adipose tissue in the muscle. Both sampling procedures were applied on adipose tissue samples dissected from 30 longissimus muscles from cattle finished either on grass or grain. Briefly, adipose tissue samples were fixed with osmium tetroxide, and size and number of adipocytes were determined by a Coulter Counter. These results were then fit in a finite mixture model to obtain distribution parameters of each sample. To evaluate the benefits of increasing number of samples and the advantage of the new sampling technique, the concept of acceptance ratio was used; simply stated, the higher the acceptance ratio, the better the representation of the overall population. As expected, a great improvement on the estimation of the overall adipocyte cellularity parameters was observed using both sampling techniques when sample size number increased from 1 to 15 samples, considering both techniques' acceptance ratio increased from approximately 3 to 25%. When comparing sampling techniques, the systematic procedure slightly improved parameters estimation. The results suggest that more detailed research using other sampling techniques may provide better estimates for minimum sampling.

  9. Dual ant colony operational modal analysis parameter estimation method

    NASA Astrophysics Data System (ADS)

    Sitarz, Piotr; Powałka, Bartosz

    2018-01-01

    Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.

  10. Results and Error Estimates from GRACE Forward Modeling over Antarctica

    NASA Astrophysics Data System (ADS)

    Bonin, Jennifer; Chambers, Don

    2013-04-01

    Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Antarctica. However when tested previously, the least squares technique has required constraints in the form of added process noise in order to be reliable. Poor choice of local basin layout has also adversely affected results, as has the choice of spatial smoothing used with GRACE. To develop design parameters which will result in correct high-resolution mass detection and to estimate the systematic errors of the method over Antarctica, we use a "truth" simulation of the Antarctic signal. We apply the optimal parameters found from the simulation to RL05 GRACE data across Antarctica and the surrounding ocean. We particularly focus on separating the Antarctic peninsula's mass signal from that of the rest of western Antarctica. Additionally, we characterize how well the technique works for removing land leakage signal from the nearby ocean, particularly that near the Drake Passage.

  11. A two-thermocouple probe technique for estimating thermocouple time constants in flows with combustion: In situ parameter identification of a first-order lag system

    NASA Astrophysics Data System (ADS)

    Tagawa, M.; Shimoji, T.; Ohta, Y.

    1998-09-01

    A two-thermocouple probe, composed of two fine-wire thermocouples of unequal diameters, is a novel technique for estimating thermocouple time constants without any dynamic calibration of the thermocouple response. This technique is most suitable for measuring fluctuating temperatures in turbulent combustion. In the present study, the reliability and applicability of this technique are appraised in a turbulent wake of a heated cylinder (without combustion). A fine-wire resistance thermometer (cold wire) of fast response is simultaneously used to provide a reference temperature. A quantitative and detailed comparison between the cold-wire measurement and the compensated thermocouple ones shows that a previous estimation scheme gives thermocouple time constants smaller than appropriate values, unless the noise in the thermocouple signals is negligible and/or the spatial resolution of the two-thermocouple probe is sufficiently high. The scheme has been improved so as to maximize the correlation coefficient between the two compensated-thermocouple outputs. The improved scheme offers better compensation of the thermocouple response. The present approach is generally applicable to in situ parameter identification of a first-order lag system.

  12. Significant wave heights from Sentinel-1 SAR: Validation and applications

    NASA Astrophysics Data System (ADS)

    Stopa, J. E.; Mouche, A.

    2017-03-01

    Two empirical algorithms are developed for wave mode images measured from the synthetic aperture radar aboard Sentinel-1 A. The first method, called CWAVE_S1A, is an extension of previous efforts developed for ERS2 and the second method, called Fnn, uses the azimuth cutoff among other parameters to estimate significant wave heights (Hs) and average wave periods without using a modulation transfer function. Neural networks are trained using colocated data generated from WAVEWATCH III and independently verified with data from altimeters and in situ buoys. We use neural networks to relate the nonlinear relationships between the input SAR image parameters and output geophysical wave parameters. CWAVE_S1A performs well and has reduced precision compared to Fnn with Hs root mean square errors within 0.5 and 0.6 m, respectively. The developed neural networks extend the SAR's ability to retrieve useful wave information under a large range of environmental conditions including extratropical and tropical cyclones in which Hs estimation is traditionally challenging.Plain Language SummaryTwo empirical algorithms are developed to estimate integral wave parameters from high resolution synthetic aperture radar (SAR) ocean images measured from recently launched the Sentinel 1 satellite. These methods avoid the use of the complicated image to wave mapping typically used to estimate sea state parameters. In addition, we are able to estimate wave parameters that are not able to be measured using existing techniques for the Sentinel 1 satellite. We use a machine learning technique to create a model that relates the ocean image properties to geophysical wave parameters. The models are developed using data from a numerical model because of the sufficiently large sample of global ocean conditions. We then verify that our developed models perform well with respect to independently measured wave observations from other satellite sensors and buoys. We successfully created models that estimate integrated wave parameters, like the commonly used significant wave height, accurately in a large range of sea states (up to 13 m). This allows the data from the SAR technology to be applied under a large range of environmental conditions including extra-tropical and tropical cyclones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110012939','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110012939"><span>Estimation of Stability and Control Derivatives of an F-15</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Mark; Moes, Tim</p> <p>2006-01-01</p> <p>A technique for real-time estimation of stability and control derivatives (derivatives of moment coefficients with respect to control-surface deflection angles) was used to support a flight demonstration of a concept of an indirect-adaptive intelligent flight control system (IFCS). Traditionally, parameter identification, including estimation of stability and control derivatives, is done post-flight. However, for the indirect-adaptive IFCS concept, parameter identification is required during flight so that the system can modify control laws for a damaged aircraft. The flight demonstration was carried out on a highly modified F-15 airplane (see Figure 1). The main objective was to estimate the stability and control derivatives of the airplane in nearly real time. A secondary goal was to develop a system to automatically assess the quality of the results, so as to be able to tell a learning neural network which data to use. Parameter estimation was performed by use of Fourier-transform regression (FTR) a technique developed at NASA Langley Research Center. FTR is an equation- error technique that operates in the frequency domain. Data are put into the frequency domain by use of a recursive Fourier transform for a discrete frequency set. This calculation simplifies many subsequent calculations, removes biases, and automatically filters out data beyond the chosen frequency range. FTR as applied here was tailored to work with pilot inputs, which produce correlated surface positions that prevent accurate parameter estimates, by replacing half the derivatives with predicted values. FTR was also set up to work only on a recent window of data, to accommodate changes in flight condition. A system of confidence measures was developed to identify quality-parameter estimates that a learning neural network could use. This system judged the estimates primarily on the basis of their estimated variances and of the level of aircraft response. The resulting FTR system was implemented in the Simulink software system and auto-coded in the C programming language for use on the Airborne Research Test System (ARTS II) computer installed in the F-15 airplane. The Simulink model was also used in a control room that utilizes the Ring Buffered Network Bus hardware and software, making it possible to evaluate test points during flights. In-flight parameter estimation was done for piloted and automated maneuvers, primarily at three test conditions. Figure 2 shows results for pitching moment due to symmetric stabilator actuations for a series of three pitch doublet maneuvers (in a doublet maneuver, a command to change attitude in a given direction by a given amount is followed immediately by a command to change attitude in the opposite direction by the same amount). A time window of 5 seconds was used. The portions of the curves shown in red are those that passed the confidence tests. The technique showed good convergence for most derivatives for both kinds of maneuvers - typically within a few seconds. The confidence tests were marginally successful, and it would be necessary to refine them for use in an IFCS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AcMSn..28..854R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AcMSn..28..854R"><span>A-posteriori error estimation for second order mechanical systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruiner, Thomas; Fehr, Jörg; Haasdonk, Bernard; Eberhard, Peter</p> <p>2012-06-01</p> <p>One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988ITASS..36.1313K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988ITASS..36.1313K"><span>Robust image modeling techniques with an image restoration application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kashyap, Rangasami L.; Eom, Kie-Bum</p> <p>1988-08-01</p> <p>A robust parameter-estimation algorithm for a nonsymmetric half-plane (NSHP) autoregressive model, where the driving noise is a mixture of a Gaussian and an outlier process, is presented. The convergence of the estimation algorithm is proved. An algorithm to estimate parameters and original image intensity simultaneously from the impulse-noise-corrupted image, where the model governing the image is not available, is also presented. The robustness of the parameter estimates is demonstrated by simulation. Finally, an algorithm to restore realistic images is presented. The entire image generally does not obey a simple image model, but a small portion (e.g., 8 x 8) of the image is assumed to obey an NSHP model. The original image is divided into windows and the robust estimation algorithm is applied for each window. The restoration algorithm is tested by comparing it to traditional methods on several different images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031314&hterms=ambiguity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dambiguity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031314&hterms=ambiguity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dambiguity"><span>Doppler centroid estimation ambiguity for synthetic aperture radars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chang, C. Y.; Curlander, J. C.</p> <p>1989-01-01</p> <p>A technique for estimation of the Doppler centroid of an SAR in the presence of large uncertainty in antenna boresight pointing is described. Also investigated is the image degradation resulting from data processing that uses an ambiguous centroid. Two approaches for resolving ambiguities in Doppler centroid estimation (DCE) are presented: the range cross-correlation technique and the multiple-PRF (pulse repetition frequency) technique. Because other design factors control the PRF selection for SAR, a generalized algorithm is derived for PRFs not containing a common divisor. An example using the SIR-C parameters illustrates that this algorithm is capable of resolving the C-band DCE ambiguities for antenna pointing uncertainties of about 2-3 deg.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28157929','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28157929"><span>Estimation of position and velocity for a low dynamic vehicle in near space using nonresolved photometric and astrometric data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jing, Nan; Li, Chuang; Chong, Yaqin</p> <p>2017-01-20</p> <p>An estimation method for indirectly observable parameters for a typical low dynamic vehicle (LDV) is presented. The estimation method utilizes apparent magnitude, azimuth angle, and elevation angle to estimate the position and velocity of a typical LDV, such as a high altitude balloon (HAB). In order to validate the accuracy of the estimated parameters gained from an unscented Kalman filter, two sets of experiments are carried out to obtain the nonresolved photometric and astrometric data. In the experiments, a HAB launch is planned; models of the HAB dynamics and kinematics and observation models are built to use as time update and measurement update functions, respectively. When the HAB is launched, a ground-based optoelectronic detector is used to capture the object images, which are processed using aperture photometry technology to obtain the time-varying apparent magnitude of the HAB. Two sets of actual and estimated parameters are given to clearly indicate the parameter differences. Two sets of errors between the actual and estimated parameters are also given to show how the estimated position and velocity differ with respect to the observation time. The similar distribution curve results from the two scenarios, which agree within 3σ, verify that nonresolved photometric and astrometric data can be used to estimate the indirectly observable state parameters (position and velocity) for a typical LDV. This technique can be applied to small and dim space objects in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApPhB.122....1H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApPhB.122....1H"><span>Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hadwin, Paul J.; Sipkens, T. A.; Thomson, K. A.; Liu, F.; Daun, K. J.</p> <p>2016-01-01</p> <p>Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional "nuisance" model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/40544','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/40544"><span>Estimating forest attribute parameters for small areas using nearest neighbors techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Ronald E. McRoberts</p> <p>2012-01-01</p> <p>Nearest neighbors techniques have become extremely popular, particularly for use with forest inventory data. With these techniques, a population unit prediction is calculated as a linear combination of observations for a selected number of population units in a sample that are most similar, or nearest, in a space of ancillary variables to the population unit requiring...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SoSyR..50..352Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SoSyR..50..352Z"><span>A technique for processing of planetary images with heterogeneous characteristics for estimating geodetic parameters of celestial bodies with the example of Ganymede</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zubarev, A. E.; Nadezhdina, I. E.; Brusnikin, E. S.; Karachevtseva, I. P.; Oberst, J.</p> <p>2016-09-01</p> <p>The new technique for generation of coordinate control point networks based on photogrammetric processing of heterogeneous planetary images (obtained at different time, scale, with different illumination or oblique view) is developed. The technique is verified with the example for processing the heterogeneous information obtained by remote sensing of Ganymede by the spacecraft Voyager-1, -2 and Galileo. Using this technique the first 3D control point network for Ganymede is formed: the error of the altitude coordinates obtained as a result of adjustment is less than 5 km. The new control point network makes it possible to obtain basic geodesic parameters of the body (axes size) and to estimate forced librations. On the basis of the control point network, digital terrain models (DTMs) with different resolutions are generated and used for mapping the surface of Ganymede with different levels of detail (Zubarev et al., 2015b).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGE....14.1358M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGE....14.1358M"><span>Determination techniques of Archie’s parameters: a, m and n in heterogeneous reservoirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohamad, A. M.; Hamada, G. M.</p> <p>2017-12-01</p> <p>The determination of water saturation in a heterogeneous reservoir is becoming more challenging, as Archie’s equation is only suitable for clean homogeneous formation and Archie’s parameters are highly dependent on the properties of the rock. This study focuses on the measurement of Archie’s parameters in carbonate and sandstone core samples around Malaysian heterogeneous carbonate and sandstone reservoirs. Three techniques for the determination of Archie’s parameters a, m and n will be implemented: the conventional technique, core Archie parameter estimation (CAPE) and the three-dimensional regression technique (3D). By using the results obtained by the three different techniques, water saturation graphs were produced to observe the symbolic difference of Archie’s parameter and its relevant impact on water saturation values. The difference in water saturation values can be primarily attributed to showing the uncertainty level of Archie’s parameters, mainly in carbonate and sandstone rock samples. It is obvious that the accuracy of Archie’s parameters has a profound impact on the calculated water saturation values in carbonate sandstone reservoirs due to regions of high stress reducing electrical conduction resulting from the raised electrical heterogeneity of the heterogeneous carbonate core samples. Due to the unrealistic assumptions involved in the conventional method, it is better to use either the CAPE or 3D method to accurately determine Archie’s parameters in heterogeneous as well as homogeneous reservoirs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634428','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634428"><span>Dynamic Strain Measurements on Automotive and Aeronautic Composite Components by Means of Embedded Fiber Bragg Grating Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lamberti, Alfredo; Chiesura, Gabriele; Luyckx, Geert; Degrieck, Joris; Kaufmann, Markus; Vanlanduit, Steve</p> <p>2015-01-01</p> <p>The measurement of the internal deformations occurring in real-life composite components is a very challenging task, especially for those components that are rather difficult to access. Optical fiber sensors can overcome such a problem, since they can be embedded in the composite materials and serve as in situ sensors. In this article, embedded optical fiber Bragg grating (FBG) sensors are used to analyze the vibration characteristics of two real-life composite components. The first component is a carbon fiber-reinforced polymer automotive control arm; the second is a glass fiber-reinforced polymer aeronautic hinge arm. The modal parameters of both components were estimated by processing the FBG signals with two interrogation techniques: the maximum detection and fast phase correlation algorithms were employed for the demodulation of the FBG signals; the Peak-Picking and PolyMax techniques were instead used for the parameter estimation. To validate the FBG outcomes, reference measurements were performed by means of a laser Doppler vibrometer. The analysis of the results showed that the FBG sensing capabilities were enhanced when the recently-introduced fast phase correlation algorithm was combined with the state-of-the-art PolyMax estimator curve fitting method. In this case, the FBGs provided the most accurate results, i.e., it was possible to fully characterize the vibration behavior of both composite components. When using more traditional interrogation algorithms (maximum detection) and modal parameter estimation techniques (Peak-Picking), some of the modes were not successfully identified. PMID:26516854</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...10611217C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...10611217C"><span>Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cervelli, P.; Murray, M. H.; Segall, P.; Aoki, Y.; Kato, T.</p> <p>2001-06-01</p> <p>We have applied two Monte Carlo optimization techniques, simulated annealing and random cost, to the inversion of deformation data for fault and magma chamber geometry. These techniques involve an element of randomness that permits them to escape local minima and ultimately converge to the global minimum of misfit space. We have tested the Monte Carlo algorithms on two synthetic data sets. We have also compared them to one another in terms of their efficiency and reliability. We have applied the bootstrap method to estimate confidence intervals for the source parameters, including the correlations inherent in the data. Additionally, we present methods that use the information from the bootstrapping procedure to visualize the correlations between the different model parameters. We have applied these techniques to GPS, tilt, and leveling data from the March 1997 earthquake swarm off of the Izu Peninsula, Japan. Using the two Monte Carlo algorithms, we have inferred two sources, a dike and a fault, that fit the deformation data and the patterns of seismicity and that are consistent with the regional stress field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://il.water.usgs.gov/pubs/wri82_22.pdf','USGSPUBS'); return false;" href="http://il.water.usgs.gov/pubs/wri82_22.pdf"><span>A technique for estimating time of concentration and storage coefficient values for Illinois streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Graf, Julia B.; Garklavs, George; Oberg, Kevin A.</p> <p>1982-01-01</p> <p>Values of the unit hydrograph parameters time of concentration (TC) and storage coefficient (R) can be estimated for streams in Illinois by a two-step technique developed from data for 98 gaged basins in the State. The sum of TC and R is related to stream length (L) and main channel slope (S) by the relation (TC + R)e = 35.2L0.39S-0.78. The variable R/(TC + R) is not significantly correlated with drainage area, slope, or length, but does exhibit a regional trend. Regional values of R/(TC + R) are used with the computed values of (TC + R)e to solve for estimated values of time of concentration (TCe) and storage coefficient (Re). The use of the variable R/(TC + R) is thought to account for variations in unit hydrograph parameters caused by physiographic variables such as basin topography, flood-plain development, and basin storage characteristics. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840004495&hterms=Bayes&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DBayes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840004495&hterms=Bayes&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DBayes"><span>An Empirical Bayes Approach to Spatial Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morris, C. N.; Kostal, H.</p> <p>1983-01-01</p> <p>Multi-channel LANDSAT data are collected in several passes over agricultural areas during the growing season. How empirical Bayes modeling can be used to develop crop identification and discrimination techniques that account for spatial correlation in such data is considered. The approach models the unobservable parameters and the data separately, hoping to take advantage of the fact that the bulk of spatial correlation lies in the parameter process. The problem is then framed in terms of estimating posterior probabilities of crop types for each spatial area. Some empirical Bayes spatial estimation methods are used to estimate the logits of these probabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029785','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029785"><span>L-moments and TL-moments of the generalized lambda distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Asquith, W.H.</p> <p>2007-01-01</p> <p>The 4-parameter generalized lambda distribution (GLD) is a flexible distribution capable of mimicking the shapes of many distributions and data samples including those with heavy tails. The method of L-moments and the recently developed method of trimmed L-moments (TL-moments) are attractive techniques for parameter estimation for heavy-tailed distributions for which the L- and TL-moments have been defined. Analytical solutions for the first five L- and TL-moments in terms of GLD parameters are derived. Unfortunately, numerical methods are needed to compute the parameters from the L- or TL-moments. Algorithms are suggested for parameter estimation. Application of the GLD using both L- and TL-moment parameter estimates from example data is demonstrated, and comparison of the L-moment fit of the 4-parameter kappa distribution is made. A small simulation study of the 98th percentile (far-right tail) is conducted for a heavy-tail GLD with high-outlier contamination. The simulations show, with respect to estimation of the 98th-percent quantile, that TL-moments are less biased (more robost) in the presence of high-outlier contamination. However, the robustness comes at the expense of considerably more sampling variability. ?? 2006 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyA..491..167M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyA..491..167M"><span>Estimation of stochastic volatility by using Ornstein-Uhlenbeck type models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mariani, Maria C.; Bhuiyan, Md Al Masum; Tweneboah, Osei K.</p> <p>2018-02-01</p> <p>In this study, we develop a technique for estimating the stochastic volatility (SV) of a financial time series by using Ornstein-Uhlenbeck type models. Using the daily closing prices from developed and emergent stock markets, we conclude that the incorporation of stochastic volatility into the time varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. Furthermore, our estimation algorithm is feasible with large data sets and have good convergence properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000551','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000551"><span>Real-Time Parameter Estimation Using Output Error</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grauer, Jared A.</p> <p>2014-01-01</p> <p>Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740055161&hterms=function+Renal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfunction%2BRenal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740055161&hterms=function+Renal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfunction%2BRenal"><span>Renal parameter estimates in unrestrained dogs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rader, R. D.; Stevens, C. M.</p> <p>1974-01-01</p> <p>A mathematical formulation has been developed to describe the hemodynamic parameters of a conceptualized kidney model. The model was developed by considering regional pressure drops and regional storage capacities within the renal vasculature. Estimation of renal artery compliance, pre- and postglomerular resistance, and glomerular filtration pressure is feasible by considering mean levels and time derivatives of abdominal aortic pressure and renal artery flow. Changes in the smooth muscle tone of the renal vessels induced by exogenous angiotensin amide, acetylcholine, and by the anaesthetic agent halothane were estimated by use of the model. By employing totally implanted telemetry, the technique was applied on unrestrained dogs to measure renal resistive and compliant parameters while the dogs were being subjected to obedience training, to avoidance reaction, and to unrestrained caging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014bpt..book.....V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014bpt..book.....V"><span>Bayesian Probability Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo</p> <p>2014-06-01</p> <p>Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JTePh..63..680F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JTePh..63..680F"><span>Estimation of Qualitative and Quantitative Parameters of Air Cleaning by a Pulsed Corona Discharge Using Multicomponent Standard Mixtures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Filatov, I. E.; Uvarin, V. V.; Kuznetsov, D. L.</p> <p>2018-05-01</p> <p>The efficiency of removal of volatile organic impurities in air by a pulsed corona discharge is investigated using model mixtures. Based on the method of competing reactions, an approach to estimating the qualitative and quantitative parameters of the employed electrophysical technique is proposed. The concept of the "toluene coefficient" characterizing the relative reactivity of a component as compared to toluene is introduced. It is proposed that the energy efficiency of the electrophysical method be estimated using the concept of diversified yield of the removal process. Such an approach makes it possible to substantially intensify the determination of energy parameters of removal of impurities and can also serve as a criterion for estimating the effectiveness of various methods in which a nonequilibrium plasma is used for air cleaning from volatile impurities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003SPIE.5110..271B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003SPIE.5110..271B"><span>Cardiovascular oscillations: in search of a nonlinear parametric model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bandrivskyy, Andriy; Luchinsky, Dmitry; McClintock, Peter V.; Smelyanskiy, Vadim; Stefanovska, Aneta; Timucin, Dogan</p> <p>2003-05-01</p> <p>We suggest a fresh approach to the modeling of the human cardiovascular system. Taking advantage of a new Bayesian inference technique, able to deal with stochastic nonlinear systems, we show that one can estimate parameters for models of the cardiovascular system directly from measured time series. We present preliminary results of inference of parameters of a model of coupled oscillators from measured cardiovascular data addressing cardiorespiratory interaction. We argue that the inference technique offers a very promising tool for the modeling, able to contribute significantly towards the solution of a long standing challenge -- development of new diagnostic techniques based on noninvasive measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870004624','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870004624"><span>A spline-based parameter estimation technique for static models of elastic structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dutt, P.; Taasan, S.</p> <p>1986-01-01</p> <p>The problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem is considered. Under appropriate conditions this problem can be treated as a first order hyperbolic equation in the unknown coefficient. Some continuous dependence results are developed for this problem and a spline-based technique is proposed for approximating the unknown coefficient, based on these results. The convergence of the numerical scheme is established and error estimates obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850002588','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850002588"><span>Estimating sunspot number</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, R. M.; Reichmann, E. J.; Teuber, D. L.</p> <p>1984-01-01</p> <p>An empirical method is developed to predict certain parameters of future solar activity cycles. Sunspot cycle statistics are examined, and curve fitting and linear regression analysis techniques are utilized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985anch.conf.....B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985anch.conf.....B"><span>Detecting isotopic ratio outliers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bayne, C. K.; Smith, D. H.</p> <p></p> <p>An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800015230','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800015230"><span>Development of a winter wheat adjustable crop calendar model. [Colorado, Idaho, Oklahoma, Montana, Kansas, Missouri, North Dakota and Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baker, J. R. (Principal Investigator)</p> <p>1979-01-01</p> <p>The author has identified the following significant results. Least squares techniques were applied for parameter estimation of functions to predict winter wheat phenological stage with daily maximum temperature, minimum temperature, daylength, and precipitation as independent variables. After parameter estimation, tests were conducted using independent data. It may generally be concluded that exponential functions have little advantage over polynomials. Precipitation was not found to significantly affect the fits. The Robertson triquadratic form, in general use for spring wheat, yielded good results, but special techniques and care are required. In most instances, equations with nonlinear effects were found to yield erratic results when utilized with averaged daily environmental values as independent variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JIEIA.tmp...59B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JIEIA.tmp...59B"><span>A Modified Penalty Parameter Approach for Optimal Estimation of UH with Simultaneous Estimation of Infiltration Parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhattacharjya, Rajib Kumar</p> <p>2018-05-01</p> <p>The unit hydrograph and the infiltration parameters of a watershed can be obtained from observed rainfall-runoff data by using inverse optimization technique. This is a two-stage optimization problem. In the first stage, the infiltration parameters are obtained and the unit hydrograph ordinates are estimated in the second stage. In order to combine this two-stage method into a single stage one, a modified penalty parameter approach is proposed for converting the constrained optimization problem to an unconstrained one. The proposed approach is designed in such a way that the model initially obtains the infiltration parameters and then searches the optimal unit hydrograph ordinates. The optimization model is solved using Genetic Algorithms. A reduction factor is used in the penalty parameter approach so that the obtained optimal infiltration parameters are not destroyed during subsequent generation of genetic algorithms, required for searching optimal unit hydrograph ordinates. The performance of the proposed methodology is evaluated by using two example problems. The evaluation shows that the model is superior, simple in concept and also has the potential for field application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740017456','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740017456"><span>Parameter estimation techniques and application in aircraft flight testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1974-01-01</p> <p>Technical papers presented at the symposium by selected representatives from industry, universities, and various Air Force, Navy, and NASA installations are given. The topics covered include the newest developments in identification techniques, the most recent flight-test experience, and the projected potential for the near future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750023773','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750023773"><span>Sequential Least-Squares Using Orthogonal Transformations. [spacecraft communication/spacecraft tracking-data smoothing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bierman, G. J.</p> <p>1975-01-01</p> <p>Square root information estimation, starting from its beginnings in least-squares parameter estimation, is considered. Special attention is devoted to discussions of sensitivity and perturbation matrices, computed solutions and their formal statistics, consider-parameters and consider-covariances, and the effects of a priori statistics. The constant-parameter model is extended to include time-varying parameters and process noise, and the error analysis capabilities are generalized. Efficient and elegant smoothing results are obtained as easy consequences of the filter formulation. The value of the techniques is demonstrated by the navigation results that were obtained for the Mariner Venus-Mercury (Mariner 10) multiple-planetary space probe and for the Viking Mars space mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22319345','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22319345"><span>FPGA-based fused smart sensor for dynamic and vibration parameter extraction in industrial robot links.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene</p> <p>2010-01-01</p> <p>Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3274264','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3274264"><span>FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene</p> <p>2010-01-01</p> <p>Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18255545','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18255545"><span>Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nguyen, N; Milanfar, P; Golub, G</p> <p>2001-01-01</p> <p>In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters. We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cross-validation method (GCV). We propose efficient approximation techniques based on the Lanczos algorithm and Gauss quadrature theory, reducing the computational complexity of the GCV. Data-driven PSF and regularization parameter estimation experiments with synthetic and real image sequences are presented to demonstrate the effectiveness and robustness of our method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014MeScR..14...78A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014MeScR..14...78A"><span>A Model Parameter Extraction Method for Dielectric Barrier Discharge Ozone Chamber using Differential Evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amjad, M.; Salam, Z.; Ishaque, K.</p> <p>2014-04-01</p> <p>In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B13A1763K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B13A1763K"><span>Spaceborne SAR Data for Aboveground-Biomass Retrieval of Indian Tropical Forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khati, U.; Singh, G.; Musthafa, M.</p> <p>2017-12-01</p> <p>Forests are important and indispensable part of the terrestrial ecosystems, and have a direct impact on the global carbon cycle. Forest biophysical parameters such as forest stand height and forest above-ground biomass (AGB) are forest health indicators. Measuring the forest biomass using traditional ground survey techniques are man-power consuming and have very low spatial coverage. Satellite based remote sensing techniques provide synoptic view of the earth with continuous measurements over large, inaccessible forest regions. Satellite Synthetic Aperture Radar (SAR) data has been shown to be sensitive to these forest bio-physical parameters and have been extensively utilized over boreal and tropical forests. However, there are limited studies over Indian tropical forests due to lack of auxiliary airborne data and difficulties in manual in situ data collection. In this research work we utilize spaceborne data from TerraSAR-X/TanDEM-X and ALOS-2/PALSAR-2 and implement both Polarimetric SAR and PolInSAR techniques for retrieval of AGB of a managed tropical forest in India. The TerraSAR-X/TanDEM-X provide a single-baseline PolInSAR data robust to temporal decorrelation. This would be used to accurately estimate the forest stand height. The retrieved height would be an input parameter for modelling AGB using the L-band ALOS-2/PALSAR-2 data. The IWCM model is extensively utilized to estimate AGB from SAR observations. In this research we utilize the six component scattering power decomposition (6SD) parameters and modify the IWCM based technique for a better retrieval of forest AGB. PolInSAR data shows a high estimation accuracy with r2 of 0.8 and a RMSE of 2 m. With this accurate height provided as input to the modified model along with 6SD parameters shows promising results. The results are validated with extensive field based measurements, and are further analysed in detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989SPIE.1152..146O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989SPIE.1152..146O"><span>Asymptotic Analysis Of The Total Least Squares ESPRIT Algorithm'</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ottersten, B. E.; Viberg, M.; Kailath, T.</p> <p>1989-11-01</p> <p>This paper considers the problem of estimating the parameters of multiple narrowband signals arriving at an array of sensors. Modern approaches to this problem often involve costly procedures for calculating the estimates. The ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm was recently proposed as a means for obtaining accurate estimates without requiring a costly search of the parameter space. This method utilizes an array invariance to arrive at a computationally efficient multidimensional estimation procedure. Herein, the asymptotic distribution of the estimation error is derived for the Total Least Squares (TLS) version of ESPRIT. The Cramer-Rao Bound (CRB) for the ESPRIT problem formulation is also derived and found to coincide with the variance of the asymptotic distribution through numerical examples. The method is also compared to least squares ESPRIT and MUSIC as well as to the CRB for a calibrated array. Simulations indicate that the theoretic expressions can be used to accurately predict the performance of the algorithm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17694157','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17694157"><span>Estimation of laser beam pointing parameters in the presence of atmospheric turbulence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Borah, Deva K; Voelz, David G</p> <p>2007-08-10</p> <p>The problem of estimating mechanical boresight and jitter performance of a laser pointing system in the presence of atmospheric turbulence is considered. A novel estimator based on maximizing an average probability density function (pdf) of the received signal is presented. The proposed estimator uses a Gaussian far-field mean irradiance profile, and the irradiance pdf is assumed to be lognormal. The estimates are obtained using a sequence of return signal values from the intended target. Alternatively, one can think of the estimates being made by a cooperative target using the received signal samples directly. The estimator does not require sample-to-sample atmospheric turbulence parameter information. The approach is evaluated using wave optics simulation for both weak and strong turbulence conditions. Our results show that very good boresight and jitter estimation performance can be obtained under the weak turbulence regime. We also propose a novel technique to include the effect of very low received intensity values that cannot be measured well by the receiving device. The proposed technique provides significant improvement over a conventional approach where such samples are simply ignored. Since our method is derived from the lognormal irradiance pdf, the performance under strong turbulence is degraded. However, the ideas can be extended with appropriate pdf models to obtain more accurate results under strong turbulence conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880018796&hterms=digital+phase+locked+loop&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddigital%2Bphase%2Blocked%2Bloop','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880018796&hterms=digital+phase+locked+loop&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddigital%2Bphase%2Blocked%2Bloop"><span>Spectral estimation of received phase in the presence of amplitude scintillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vilnrotter, V. A.; Brown, D. H.; Hurd, W. J.</p> <p>1988-01-01</p> <p>A technique is demonstrated for obtaining the spectral parameters of the received carrier phase in the presence of carrier amplitude scintillation, by means of a digital phased locked loop. Since the random amplitude fluctuations generate time-varying loop characteristics, straightforward processing of the phase detector output does not provide accurate results. The method developed here performs a time-varying inverse filtering operation on the corrupted observables, thus recovering the original phase process and enabling accurate estimation of its underlying parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712670H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712670H"><span>Atmospheric gradients from GNSS, VLBI, and DORIS analyses and from Numerical Weather Models during CONT14</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heinkelmann, Robert; Dick, Galina; Nilsson, Tobias; Soja, Benedikt; Wickert, Jens; Zus, Florian; Schuh, Harald</p> <p>2015-04-01</p> <p>Observations from space-geodetic techniques are nowadays increasingly used to derive atmospheric information for various commercial and scientific applications. A prominent example is the operational use of GNSS data to improve global and regional weather forecasts, which was started in 2006. Atmosphere gradients describe the azimuthal asymmetry of zenith delays. Estimates of geodetic and other parameters significantly improve when atmosphere gradients are determined in addition. Here we assess the capability of several space geodetic techniques (GNSS, VLBI, DORIS) to determine atmosphere gradients of refractivity. For this purpose we implement and compare various strategies for gradient estimation, such as different values for the temporal resolution and the corresponding parameter constraints. Applying least squares estimation the gradients are usually deterministically modelled as constants or piece-wise linear functions. In our study we compare this approach with a stochastic approach modelling atmosphere gradients as random walk processes and applying a Kalman Filter for parameter estimation. The gradients, derived from space geodetic techniques are verified by comparison with those derived from Numerical Weather Models (NWM). These model data were generated using raytracing calculations based on European Centre for Medium-Range Weather Forecast (ECMWF) and National Centers for Environmental Prediction (NCEP) analyses with different spatial resolutions. The investigation of the differences between the ECMWF and NCEP gradients hereby in addition allow for an empirical assessment of the quality of model gradients and how suitable the NWM data are for verification. CONT14 (2014-05-06 until 2014-05-20) is the youngest two week long continuous VLBI campaign carried out by IVS (International VLBI Service for Geodesy and Astrometry). It presents the state-of-the-art VLBI performance in terms of number of stations and number of observations and presents thus an excellent test period for comparisons with other space geodetic techniques. During the VLBI campaign CONT14 the HOBART12 and HOBART26 (Hobart, Tasmania, Australia) VLBI antennas were involved that co-locate with each other. The investigation of the gradient estimate differences from these co-located antennas allows for a valuable empirical quality assessment. Another quality criterion for gradient estimates are the differences of parameters at the borders of adjacent 24h-sessions. Both are investigated in our study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780008726','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780008726"><span>Relationships between digital signal processing and control and estimation theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Willsky, A. S.</p> <p>1978-01-01</p> <p>Research directions in the fields of digital signal processing and modern control and estimation theory are discussed. Stability theory, linear prediction and parameter identification, system synthesis and implementation, two-dimensional filtering, decentralized control and estimation, and image processing are considered in order to uncover some of the basic similarities and differences in the goals, techniques, and philosophy of the disciplines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009IEITC..92.2131W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009IEITC..92.2131W"><span>A Space-Time Signal Decomposition Algorithm for Downlink MIMO DS-CDMA Receivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yung-Yi; Fang, Wen-Hsien; Chen, Jiunn-Tsair</p> <p></p> <p>We propose a dimension reduction algorithm for the receiver of the downlink of direct-sequence code-division multiple access (DS-CDMA) systems in which both the transmitters and the receivers employ antenna arrays of multiple elements. To estimate the high order channel parameters, we develop a layered architecture using dimension-reduced parameter estimation algorithms to estimate the frequency-selective multipath channels. In the proposed architecture, to exploit the space-time geometric characteristics of multipath channels, spatial beamformers and constrained (or unconstrained) temporal filters are adopted for clustered-multipath grouping and path isolation. In conjunction with the multiple access interference (MAI) suppression techniques, the proposed architecture jointly estimates the direction of arrivals, propagation delays, and fading amplitudes of the downlink fading multipaths. With the outputs of the proposed architecture, the signals of interest can then be naturally detected by using path-wise maximum ratio combining. Compared to the traditional techniques, such as the Joint-Angle-and-Delay-Estimation (JADE) algorithm for DOA-delay joint estimation and the space-time minimum mean square error (ST-MMSE) algorithm for signal detection, computer simulations show that the proposed algorithm substantially mitigate the computational complexity at the expense of only slight performance degradation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29278764','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29278764"><span>Robust and efficient pharmacokinetic parameter non-linear least squares estimation for dynamic contrast enhanced MRI of the prostate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kargar, Soudabeh; Borisch, Eric A; Froemming, Adam T; Kawashima, Akira; Mynderse, Lance A; Stinson, Eric G; Trzasko, Joshua D; Riederer, Stephen J</p> <p>2018-05-01</p> <p>To describe an efficient numerical optimization technique using non-linear least squares to estimate perfusion parameters for the Tofts and extended Tofts models from dynamic contrast enhanced (DCE) MRI data and apply the technique to prostate cancer. Parameters were estimated by fitting the two Tofts-based perfusion models to the acquired data via non-linear least squares. We apply Variable Projection (VP) to convert the fitting problem from a multi-dimensional to a one-dimensional line search to improve computational efficiency and robustness. Using simulation and DCE-MRI studies in twenty patients with suspected prostate cancer, the VP-based solver was compared against the traditional Levenberg-Marquardt (LM) strategy for accuracy, noise amplification, robustness to converge, and computation time. The simulation demonstrated that VP and LM were both accurate in that the medians closely matched assumed values across typical signal to noise ratio (SNR) levels for both Tofts models. VP and LM showed similar noise sensitivity. Studies using the patient data showed that the VP method reliably converged and matched results from LM with approximate 3× and 2× reductions in computation time for the standard (two-parameter) and extended (three-parameter) Tofts models. While LM failed to converge in 14% of the patient data, VP converged in the ideal 100%. The VP-based method for non-linear least squares estimation of perfusion parameters for prostate MRI is equivalent in accuracy and robustness to noise, while being more reliably (100%) convergent and computationally about 3× (TM) and 2× (ETM) faster than the LM-based method. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGeod..87..813B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGeod..87..813B"><span>A technique for routinely updating the ITU-R database using radio occultation electron density profiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brunini, Claudio; Azpilicueta, Francisco; Nava, Bruno</p> <p>2013-09-01</p> <p>Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,, and the height, . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve and values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between and elec/m for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (2 %).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGeod.tmp...28K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGeod.tmp...28K"><span>Consistent realization of Celestial and Terrestrial Reference Frames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwak, Younghee; Bloßfeld, Mathis; Schmid, Ralf; Angermann, Detlef; Gerstl, Michael; Seitz, Manuela</p> <p>2018-03-01</p> <p>The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005-2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of Δ UT1 results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several μas. Moreover, the CRF is influenced by up to 50 μas if the station coordinates and EOP are dominated by the satellite techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16267082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16267082"><span>libSRES: a C library for stochastic ranking evolution strategy for parameter estimation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ji, Xinglai; Xu, Ying</p> <p>2006-01-01</p> <p>Estimation of kinetic parameters in a biochemical pathway or network represents a common problem in systems studies of biological processes. We have implemented a C library, named libSRES, to facilitate a fast implementation of computer software for study of non-linear biochemical pathways. This library implements a (mu, lambda)-ES evolutionary optimization algorithm that uses stochastic ranking as the constraint handling technique. Considering the amount of computing time it might require to solve a parameter-estimation problem, an MPI version of libSRES is provided for parallel implementation, as well as a simple user interface. libSRES is freely available and could be used directly in any C program as a library function. We have extensively tested the performance of libSRES on various pathway parameter-estimation problems and found its performance to be satisfactory. The source code (in C) is free for academic users at http://csbl.bmb.uga.edu/~jix/science/libSRES/</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=51010&Lab=NERL&keyword=K2&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=51010&Lab=NERL&keyword=K2&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>PROPOSED MODIFICATIONS OF K2-TEMPERATURE RELATION AND LEAST SQUARES ESTIMATES OF BOD (BIOCHEMICAL OXYGEN DEMAND) PARAMETERS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A technique is presented for finding the least squares estimates for the ultimate biochemical oxygen demand (BOD) and rate coefficient for the BOD reaction without resorting to complicated computer algorithms or subjective graphical methods. This may be used in stream water quali...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=standard+AND+model&pg=7&id=EJ1166276','ERIC'); return false;" href="https://eric.ed.gov/?q=standard+AND+model&pg=7&id=EJ1166276"><span>On the Estimation of Standard Errors in Cognitive Diagnosis Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Philipp, Michel; Strobl, Carolin; de la Torre, Jimmy; Zeileis, Achim</p> <p>2018-01-01</p> <p>Cognitive diagnosis models (CDMs) are an increasingly popular method to assess mastery or nonmastery of a set of fine-grained abilities in educational or psychological assessments. Several inference techniques are available to quantify the uncertainty of model parameter estimates, to compare different versions of CDMs, or to check model…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830019026','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830019026"><span>Establishment of a center of excellence for applied mathematical and statistical research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Woodward, W. A.; Gray, H. L.</p> <p>1983-01-01</p> <p>The state of the art was assessed with regards to efforts in support of the crop production estimation problem and alternative generic proportion estimation techniques were investigated. Topics covered include modeling the greeness profile (Badhwarmos model), parameter estimation using mixture models such as CLASSY, and minimum distance estimation as an alternative to maximum likelihood estimation. Approaches to the problem of obtaining proportion estimates when the underlying distributions are asymmetric are examined including the properties of Weibull distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10136E..0KM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10136E..0KM"><span>Regression without truth with Markov chain Monte-Carlo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madan, Hennadii; Pernuš, Franjo; Likar, Boštjan; Å piclin, Žiga</p> <p>2017-03-01</p> <p>Regression without truth (RWT) is a statistical technique for estimating error model parameters of each method in a group of methods used for measurement of a certain quantity. A very attractive aspect of RWT is that it does not rely on a reference method or "gold standard" data, which is otherwise difficult RWT was used for a reference-free performance comparison of several methods for measuring left ventricular ejection fraction (EF), i.e. a percentage of blood leaving the ventricle each time the heart contracts, and has since been applied for various other quantitative imaging biomarkerss (QIBs). Herein, we show how Markov chain Monte-Carlo (MCMC), a computational technique for drawing samples from a statistical distribution with probability density function known only up to a normalizing coefficient, can be used to augment RWT to gain a number of important benefits compared to the original approach based on iterative optimization. For instance, the proposed MCMC-based RWT enables the estimation of joint posterior distribution of the parameters of the error model, straightforward quantification of uncertainty of the estimates, estimation of true value of the measurand and corresponding credible intervals (CIs), does not require a finite support for prior distribution of the measureand generally has a much improved robustness against convergence to non-global maxima. The proposed approach is validated using synthetic data that emulate the EF data for 45 patients measured with 8 different methods. The obtained results show that 90% CI of the corresponding parameter estimates contain the true values of all error model parameters and the measurand. A potential real-world application is to take measurements of a certain QIB several different methods and then use the proposed framework to compute the estimates of the true values and their uncertainty, a vital information for diagnosis based on QIB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1322501-applicability-surrogate-based-markov-chain-monte-carlo-bayesian-inversion-community-land-model-case-studies-flux-tower-sites-surrogate-based-mcmc-clm','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1322501-applicability-surrogate-based-markov-chain-monte-carlo-bayesian-inversion-community-land-model-case-studies-flux-tower-sites-surrogate-based-mcmc-clm"><span>On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites: SURROGATE-BASED MCMC FOR CLM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan</p> <p>2016-07-04</p> <p>The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically-average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1259834-applicability-surrogate-based-mcmc-bayesian-inversion-community-land-model-case-studies-flux-tower-sites','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1259834-applicability-surrogate-based-mcmc-bayesian-inversion-community-land-model-case-studies-flux-tower-sites"><span>On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; ...</p> <p>2016-06-01</p> <p>The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. As a result, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1259834','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1259834"><span>On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan</p> <p></p> <p>The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. As a result, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRD..121.7548H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRD..121.7548H"><span>On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; Ren, Huiying; Liu, Ying; Swiler, Laura</p> <p>2016-07-01</p> <p>The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesian model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22407666-poster-thur-eve-linearization-compartmental-models-more-robust-estimates-regional-hemodynamic-metabolic-functional-parameters-using-dce-ct-pet-imaging','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22407666-poster-thur-eve-linearization-compartmental-models-more-robust-estimates-regional-hemodynamic-metabolic-functional-parameters-using-dce-ct-pet-imaging"><span>Poster — Thur Eve — 44: Linearization of Compartmental Models for More Robust Estimates of Regional Hemodynamic, Metabolic and Functional Parameters using DCE-CT/PET Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Blais, AR; Dekaban, M; Lee, T-Y</p> <p>2014-08-15</p> <p>Quantitative analysis of dynamic positron emission tomography (PET) data usually involves minimizing a cost function with nonlinear regression, wherein the choice of starting parameter values and the presence of local minima affect the bias and variability of the estimated kinetic parameters. These nonlinear methods can also require lengthy computation time, making them unsuitable for use in clinical settings. Kinetic modeling of PET aims to estimate the rate parameter k{sub 3}, which is the binding affinity of the tracer to a biological process of interest and is highly susceptible to noise inherent in PET image acquisition. We have developed linearized kineticmore » models for kinetic analysis of dynamic contrast enhanced computed tomography (DCE-CT)/PET imaging, including a 2-compartment model for DCE-CT and a 3-compartment model for PET. Use of kinetic parameters estimated from DCE-CT can stabilize the kinetic analysis of dynamic PET data, allowing for more robust estimation of k{sub 3}. Furthermore, these linearized models are solved with a non-negative least squares algorithm and together they provide other advantages including: 1) only one possible solution and they do not require a choice of starting parameter values, 2) parameter estimates are comparable in accuracy to those from nonlinear models, 3) significantly reduced computational time. Our simulated data show that when blood volume and permeability are estimated with DCE-CT, the bias of k{sub 3} estimation with our linearized model is 1.97 ± 38.5% for 1,000 runs with a signal-to-noise ratio of 10. In summary, we have developed a computationally efficient technique for accurate estimation of k{sub 3} from noisy dynamic PET data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JHyd..399..201J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JHyd..399..201J"><span>Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jana, Raghavendra B.; Mohanty, Binayak P.</p> <p>2011-03-01</p> <p>SummaryUse of remotely sensed data products in the earth science and water resources fields is growing due to increasingly easy availability of the data. Traditionally, pedotransfer functions (PTFs) employed for soil hydraulic parameter estimation from other easily available data have used basic soil texture and structure information as inputs. Inclusion of surrogate/supplementary data such as topography and vegetation information has shown some improvement in the PTF's ability to estimate more accurate soil hydraulic parameters. Artificial neural networks (ANNs) are a popular tool for PTF development, and are usually applied across matching spatial scales of inputs and outputs. However, different hydrologic, hydro-climatic, and contaminant transport models require input data at different scales, all of which may not be easily available from existing databases. In such a scenario, it becomes necessary to scale the soil hydraulic parameter values estimated by PTFs to suit the model requirements. Also, uncertainties in the predictions need to be quantified to enable users to gauge the suitability of a particular dataset in their applications. Bayesian Neural Networks (BNNs) inherently provide uncertainty estimates for their outputs due to their utilization of Markov Chain Monte Carlo (MCMC) techniques. In this paper, we present a PTF methodology to estimate soil water retention characteristics built on a Bayesian framework for training of neural networks and utilizing several in situ and remotely sensed datasets jointly. The BNN is also applied across spatial scales to provide fine scale outputs when trained with coarse scale data. Our training data inputs include ground/remotely sensed soil texture, bulk density, elevation, and Leaf Area Index (LAI) at 1 km resolutions, while similar properties measured at a point scale are used as fine scale inputs. The methodology was tested at two different hydro-climatic regions. We also tested the effect of varying the support scale of the training data for the BNNs by sequentially aggregating finer resolution training data to coarser resolutions, and the applicability of the technique to upscaling problems. The BNN outputs are corrected for bias using a non-linear CDF-matching technique. Final results show good promise of the suitability of this Bayesian Neural Network approach for soil hydraulic parameter estimation across spatial scales using ground-, air-, or space-based remotely sensed geophysical parameters. Inclusion of remotely sensed data such as elevation and LAI in addition to in situ soil physical properties improved the estimation capabilities of the BNN-based PTF in certain conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014951','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014951"><span>Estimation of distributional parameters for censored trace level water quality data: 1. Estimation techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gilliom, Robert J.; Helsel, Dennis R.</p> <p>1986-01-01</p> <p>A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations, for determining the best performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5394352-estimation-distributional-parameters-censored-trace-level-water-quality-data-estimation-techniques','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5394352-estimation-distributional-parameters-censored-trace-level-water-quality-data-estimation-techniques"><span>Estimation of distributional parameters for censored trace level water quality data. 1. Estimation Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gilliom, R.J.; Helsel, D.R.</p> <p>1986-02-01</p> <p>A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensoredmore » observations, for determining the best performing parameter estimation method for any particular data det. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H51F1549W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H51F1549W"><span>Temporal rainfall estimation using input data reduction and model inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.</p> <p>2016-12-01</p> <p>Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a demonstration of equifinality. The use of a likelihood function that considers both rainfall and streamflow error combined with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.C31A0472H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.C31A0472H"><span>Sensitivity Analysis of Repeat Track Estimation Techniques for Detection of Elevation Change in Polar Ice Sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harpold, R. E.; Urban, T. J.; Schutz, B. E.</p> <p>2008-12-01</p> <p>Interest in elevation change detection in the polar regions has increased recently due to concern over the potential sea level rise from the melting of the polar ice caps. Repeat track analysis can be used to estimate elevation change rate by fitting elevation data to model parameters. Several aspects of this method have been tested to improve the recovery of the model parameters. Elevation data from ICESat over Antarctica and Greenland from 2003-2007 are used to test several grid sizes and types, such as grids based on latitude and longitude and grids centered on the ICESat reference groundtrack. Different sets of parameters are estimated, some of which include seasonal terms or alternate types of slopes (linear, quadratic, etc.). In addition, the effects of including crossovers and other solution constraints are evaluated. Simulated data are used to infer potential errors due to unmodeled parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/415604-inverse-estimation-parameters-estuarine-eutrophication-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/415604-inverse-estimation-parameters-estuarine-eutrophication-model"><span>Inverse estimation of parameters for an estuarine eutrophication model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shen, J.; Kuo, A.Y.</p> <p>1996-11-01</p> <p>An inverse model of an estuarine eutrophication model with eight state variables is developed. It provides a framework to estimate parameter values of the eutrophication model by assimilation of concentration data of these state variables. The inverse model using the variational technique in conjunction with a vertical two-dimensional eutrophication model is general enough to be applicable to aid model calibration. The formulation is illustrated by conducting a series of numerical experiments for the tidal Rappahannock River, a western shore tributary of the Chesapeake Bay. The numerical experiments of short-period model simulations with different hypothetical data sets and long-period model simulationsmore » with limited hypothetical data sets demonstrated that the inverse model can be satisfactorily used to estimate parameter values of the eutrophication model. The experiments also showed that the inverse model is useful to address some important questions, such as uniqueness of the parameter estimation and data requirements for model calibration. Because of the complexity of the eutrophication system, degrading of speed of convergence may occur. Two major factors which cause degradation of speed of convergence are cross effects among parameters and the multiple scales involved in the parameter system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018640','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018640"><span>Using remote sensing and GIS techniques to estimate discharge and recharge. fluxes for the Death Valley regional groundwater flow system, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>D'Agnese, F. A.; Faunt, C.C.; Keith, Turner A.</p> <p>1996-01-01</p> <p>The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26721666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26721666"><span>Examining the effect of initialization strategies on the performance of Gaussian mixture modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shireman, Emilie; Steinley, Douglas; Brusco, Michael J</p> <p>2017-02-01</p> <p>Mixture modeling is a popular technique for identifying unobserved subpopulations (e.g., components) within a data set, with Gaussian (normal) mixture modeling being the form most widely used. Generally, the parameters of these Gaussian mixtures cannot be estimated in closed form, so estimates are typically obtained via an iterative process. The most common estimation procedure is maximum likelihood via the expectation-maximization (EM) algorithm. Like many approaches for identifying subpopulations, finite mixture modeling can suffer from locally optimal solutions, and the final parameter estimates are dependent on the initial starting values of the EM algorithm. Initial values have been shown to significantly impact the quality of the solution, and researchers have proposed several approaches for selecting the set of starting values. Five techniques for obtaining starting values that are implemented in popular software packages are compared. Their performances are assessed in terms of the following four measures: (1) the ability to find the best observed solution, (2) settling on a solution that classifies observations correctly, (3) the number of local solutions found by each technique, and (4) the speed at which the start values are obtained. On the basis of these results, a set of recommendations is provided to the user.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JBO....19l7001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JBO....19l7001C"><span>Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Shuo; Lin, Xiaoqian; Zhu, Caigang; Liu, Quan</p> <p>2014-12-01</p> <p>Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the examination of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemoglobin concentration and oxygenation can be estimated from color measurements with the assumption of known scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scatterer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize the contribution of those color measurements likely to generate correct results in WE. The method was evaluated on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agreement between the estimated tissue parameters and the corresponding reference values. Compared with traditional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method could be used to monitor tissue parameters in an imaging setup in real time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2459K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2459K"><span>Model Parameter Estimation Using Ensemble Data Assimilation: A Case with the Nonhydrostatic Icosahedral Atmospheric Model NICAM and the Global Satellite Mapping of Precipitation Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kotsuki, Shunji; Terasaki, Koji; Yashiro, Hasashi; Tomita, Hirofumi; Satoh, Masaki; Miyoshi, Takemasa</p> <p>2017-04-01</p> <p>This study aims to improve precipitation forecasts from numerical weather prediction (NWP) models through effective use of satellite-derived precipitation data. Kotsuki et al. (2016, JGR-A) successfully improved the precipitation forecasts by assimilating the Japan Aerospace eXploration Agency (JAXA)'s Global Satellite Mapping of Precipitation (GSMaP) data into the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) at 112-km horizontal resolution. Kotsuki et al. mitigated the non-Gaussianity of the precipitation variables by the Gaussian transform method for observed and forecasted precipitation using the previous 30-day precipitation data. This study extends the previous study by Kotsuki et al. and explores an online estimation of model parameters using ensemble data assimilation. We choose two globally-uniform parameters, one is the cloud-to-rain auto-conversion parameter of the Berry's scheme for large scale condensation and the other is the relative humidity threshold of the Arakawa-Schubert cumulus parameterization scheme. We perform the online-estimation of the two model parameters with an ensemble transform Kalman filter by assimilating the GSMaP precipitation data. The estimated parameters improve the analyzed and forecasted mixing ratio in the lower troposphere. Therefore, the parameter estimation would be a useful technique to improve the NWP models and their forecasts. This presentation will include the most recent progress up to the time of the symposium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70143992','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70143992"><span>Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Plumb, John M.; Moffitt, Christine M.</p> <p>2015-01-01</p> <p>Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900002897','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900002897"><span>Parallel implementation and evaluation of motion estimation system algorithms on a distributed memory multiprocessor using knowledge based mappings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.</p> <p>1989-01-01</p> <p>Several techniques to perform static and dynamic load balancing techniques for vision systems are presented. These techniques are novel in the sense that they capture the computational requirements of a task by examining the data when it is produced. Furthermore, they can be applied to many vision systems because many algorithms in different systems are either the same, or have similar computational characteristics. These techniques are evaluated by applying them on a parallel implementation of the algorithms in a motion estimation system on a hypercube multiprocessor system. The motion estimation system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from different time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters. It is shown that the performance gains when these data decomposition and load balancing techniques are used are significant and the overhead of using these techniques is minimal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720014931','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720014931"><span>Systems identification using a modified Newton-Raphson method: A FORTRAN program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, L. W., Jr.; Iliff, K. W.</p> <p>1972-01-01</p> <p>A FORTRAN program is offered which computes a maximum likelihood estimate of the parameters of any linear, constant coefficient, state space model. For the case considered, the maximum likelihood estimate can be identical to that which minimizes simultaneously the weighted mean square difference between the computed and measured response of a system and the weighted square of the difference between the estimated and a priori parameter values. A modified Newton-Raphson or quasilinearization method is used to perform the minimization which typically requires several iterations. A starting technique is used which insures convergence for any initial values of the unknown parameters. The program and its operation are described in sufficient detail to enable the user to apply the program to his particular problem with a minimum of difficulty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750035851&hterms=vietnamese&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvietnamese','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750035851&hterms=vietnamese&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvietnamese"><span>Modern control concepts in hydrology. [parameter identification in adaptive stochastic control approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Duong, N.; Winn, C. B.; Johnson, G. R.</p> <p>1975-01-01</p> <p>Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29889553','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29889553"><span>Adaptive Local Realignment of Protein Sequences.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>DeBlasio, Dan; Kececioglu, John</p> <p>2018-06-11</p> <p>While mutation rates can vary markedly over the residues of a protein, multiple sequence alignment tools typically use the same values for their scoring-function parameters across a protein's entire length. We present a new approach, called adaptive local realignment, that in contrast automatically adapts to the diversity of mutation rates along protein sequences. This builds upon a recent technique known as parameter advising, which finds global parameter settings for an aligner, to now adaptively find local settings. Our approach in essence identifies local regions with low estimated accuracy, constructs a set of candidate realignments using a carefully-chosen collection of parameter settings, and replaces the region if a realignment has higher estimated accuracy. This new method of local parameter advising, when combined with prior methods for global advising, boosts alignment accuracy as much as 26% over the best default setting on hard-to-align protein benchmarks, and by 6.4% over global advising alone. Adaptive local realignment has been implemented within the Opal aligner using the Facet accuracy estimator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24377740','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24377740"><span>Rapid determination of thermodynamic parameters from one-dimensional programmed-temperature gas chromatography for use in retention time prediction in comprehensive multidimensional chromatography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McGinitie, Teague M; Ebrahimi-Najafabadi, Heshmatollah; Harynuk, James J</p> <p>2014-01-17</p> <p>A new method for estimating the thermodynamic parameters of ΔH(T0), ΔS(T0), and ΔCP for use in thermodynamic modeling of GC×GC separations has been developed. The method is an alternative to the traditional isothermal separations required to fit a three-parameter thermodynamic model to retention data. Herein, a non-linear optimization technique is used to estimate the parameters from a series of temperature-programmed separations using the Nelder-Mead simplex algorithm. With this method, the time required to obtain estimates of thermodynamic parameters a series of analytes is significantly reduced. This new method allows for precise predictions of retention time with the average error being only 0.2s for 1D separations. Predictions for GC×GC separations were also in agreement with experimental measurements; having an average relative error of 0.37% for (1)tr and 2.1% for (2)tr. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20556240','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20556240"><span>ESTIMATION OF CONSTANT AND TIME-VARYING DYNAMIC PARAMETERS OF HIV INFECTION IN A NONLINEAR DIFFERENTIAL EQUATION MODEL.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liang, Hua; Miao, Hongyu; Wu, Hulin</p> <p>2010-03-01</p> <p>Modeling viral dynamics in HIV/AIDS studies has resulted in deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper, we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies. We applied the proposed techniques to estimate the key HIV viral dynamic parameters for two individual AIDS patients treated with antiretroviral therapies. We demonstrate that HIV viral dynamics can be well characterized and quantified for individual patients. As a result, personalized treatment decision based on viral dynamic models is possible.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26516854','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26516854"><span>Dynamic Strain Measurements on Automotive and Aeronautic Composite Components by Means of Embedded Fiber Bragg Grating Sensors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lamberti, Alfredo; Chiesura, Gabriele; Luyckx, Geert; Degrieck, Joris; Kaufmann, Markus; Vanlanduit, Steve</p> <p>2015-10-26</p> <p>The measurement of the internal deformations occurring in real-life composite components is a very challenging task, especially for those components that are rather difficult to access. Optical fiber sensors can overcome such a problem, since they can be embedded in the composite materials and serve as in situ sensors. In this article, embedded optical fiber Bragg grating (FBG) sensors are used to analyze the vibration characteristics of two real-life composite components. The first component is a carbon fiber-reinforced polymer automotive control arm; the second is a glass fiber-reinforced polymer aeronautic hinge arm. The modal parameters of both components were estimated by processing the FBG signals with two interrogation techniques: the maximum detection and fast phase correlation algorithms were employed for the demodulation of the FBG signals; the Peak-Picking and PolyMax techniques were instead used for the parameter estimation. To validate the FBG outcomes, reference measurements were performed by means of a laser Doppler vibrometer. Sensors 2015, 15 27175 The analysis of the results showed that the FBG sensing capabilities were enhanced when the recently-introduced fast phase correlation algorithm was combined with the state-of-the-art PolyMax estimator curve fitting method. In this case, the FBGs provided the most accurate results, i.e. it was possible to fully characterize the vibration behavior of both composite components. When using more traditional interrogation algorithms (maximum detection) and modal parameter estimation techniques (Peak-Picking), some of the modes were not successfully identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27583802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27583802"><span>Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zimmer, Christoph</p> <p>2016-01-01</p> <p>Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820014643','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820014643"><span>Modal vector estimation for closely spaced frequency modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Craig, R. R., Jr.; Chung, Y. T.; Blair, M.</p> <p>1982-01-01</p> <p>Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. The more complex the structure, the more likely it is to have closely spaced frequencies. This makes it difficult to determine valid mode shapes using single shaker test methods. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom (MDOF) curve fit procedure, the usefulness of the single shaker approach can be extended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810016584','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810016584"><span>NOSS/ALDCS analysis and system requirements definition. [national oceanic satellite system data collection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reed, D. L.; Wallace, R. G.</p> <p>1981-01-01</p> <p>The results of system analyses and implementation studies of an advanced location and data collection system (ALDCS) , proposed for inclusion on the National Oceanic Satellite System (NOSS) spacecraft are reported. The system applies Doppler processing and radiofrequency interferometer position location technqiues both alone and in combination. Aspects analyzed include: the constraints imposed by random access to the system by platforms, the RF link parameters, geometric concepts of position and velocity estimation by the two techniques considered, and the effects of electrical measurement errors, spacecraft attitude errors, and geometric parameters on estimation accuracy. Hardware techniques and trade-offs for interferometric phase measurement, ambiguity resolution and calibration are considered. A combined Doppler-interferometer ALDCS intended to fulfill the NOSS data validation and oceanic research support mission is also described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/936609','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/936609"><span>The link between a negative high resolution resist contrast/developer performance and the Flory-Huggins parameter estimated from the Hansen solubility sphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>StCaire, Lorri; Olynick, Deirdre L.; Chao, Weilun L.</p> <p></p> <p>We have implemented a technique to identify candidate polymer solvents for spinning, developing, and rinsing for a high resolution, negative electron beam resist hexa-methyl acetoxy calix(6)arene to elicit the optimum pattern development performance. Using the three dimensional Hansen solubility parameters for over 40 solvents, we have constructed a Hansen solubility sphere. From this sphere, we have estimated the Flory Huggins interaction parameter for solvents with hexa-methyl acetoxy calix(6)arene and found a correlation between resist development contrast and the Flory-Huggins parameter. This provides new insights into the development behavior of resist materials which are necessary for obtaining the ultimate lithographic resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10474157','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10474157"><span>On non-parametric maximum likelihood estimation of the bivariate survivor function.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prentice, R L</p> <p></p> <p>The likelihood function for the bivariate survivor function F, under independent censorship, is maximized to obtain a non-parametric maximum likelihood estimator &Fcirc;. &Fcirc; may or may not be unique depending on the configuration of singly- and doubly-censored pairs. The likelihood function can be maximized by placing all mass on the grid formed by the uncensored failure times, or half lines beyond the failure time grid, or in the upper right quadrant beyond the grid. By accumulating the mass along lines (or regions) where the likelihood is flat, one obtains a partially maximized likelihood as a function of parameters that can be uniquely estimated. The score equations corresponding to these point mass parameters are derived, using a Lagrange multiplier technique to ensure unit total mass, and a modified Newton procedure is used to calculate the parameter estimates in some limited simulation studies. Some considerations for the further development of non-parametric bivariate survivor function estimators are briefly described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S23A0779H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S23A0779H"><span>Uncertainty Estimation in Elastic Full Waveform Inversion by Utilising the Hessian Matrix</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hagen, V. S.; Arntsen, B.; Raknes, E. B.</p> <p>2017-12-01</p> <p>Elastic Full Waveform Inversion (EFWI) is a computationally intensive iterative method for estimating elastic model parameters. A key element of EFWI is the numerical solution of the elastic wave equation which lies as a foundation to quantify the mismatch between synthetic (modelled) and true (real) measured seismic data. The misfit between the modelled and true receiver data is used to update the parameter model to yield a better fit between the modelled and true receiver signal. A common approach to the EFWI model update problem is to use a conjugate gradient search method. In this approach the resolution and cross-coupling for the estimated parameter update can be found by computing the full Hessian matrix. Resolution of the estimated model parameters depend on the chosen parametrisation, acquisition geometry, and temporal frequency range. Although some understanding has been gained, it is still not clear which elastic parameters can be reliably estimated under which conditions. With few exceptions, previous analyses have been based on arguments using radiation pattern analysis. We use the known adjoint-state technique with an expansion to compute the Hessian acting on a model perturbation to conduct our study. The Hessian is used to infer parameter resolution and cross-coupling for different selections of models, acquisition geometries, and data types, including streamer and ocean bottom seismic recordings. Information about the model uncertainty is obtained from the exact Hessian, and is essential when evaluating the quality of estimated parameters due to the strong influence of source-receiver geometry and frequency content. Investigation is done on both a homogeneous model and the Gullfaks model where we illustrate the influence of offset on parameter resolution and cross-coupling as a way of estimating uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS21B1753A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS21B1753A"><span>Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardani, S.; Kaihatu, J. M.</p> <p>2012-12-01</p> <p>Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques, MCMC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140009602','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140009602"><span>Linear Estimation of Particle Bulk Parameters from Multi-Wavelength Lidar Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Veselovskii, Igor; Dubovik, Oleg; Kolgotin, A.; Korenskiy, M.; Whiteman, D. N.; Allakhverdiev, K.; Huseyinoglu, F.</p> <p>2012-01-01</p> <p>An algorithm for linear estimation of aerosol bulk properties such as particle volume, effective radius and complex refractive index from multiwavelength lidar measurements is presented. The approach uses the fact that the total aerosol concentration can well be approximated as a linear combination of aerosol characteristics measured by multiwavelength lidar. Therefore, the aerosol concentration can be estimated from lidar measurements without the need to derive the size distribution, which entails more sophisticated procedures. The definition of the coefficients required for the linear estimates is based on an expansion of the particle size distribution in terms of the measurement kernels. Once the coefficients are established, the approach permits fast retrieval of aerosol bulk properties when compared with the full regularization technique. In addition, the straightforward estimation of bulk properties stabilizes the inversion making it more resistant to noise in the optical data. Numerical tests demonstrate that for data sets containing three aerosol backscattering and two extinction coefficients (so called 3 + 2 ) the uncertainties in the retrieval of particle volume and surface area are below 45% when input data random uncertainties are below 20 %. Moreover, using linear estimates allows reliable retrievals even when the number of input data is reduced. To evaluate the approach, the results obtained using this technique are compared with those based on the previously developed full inversion scheme that relies on the regularization procedure. Both techniques were applied to the data measured by multiwavelength lidar at NASA/GSFC. The results obtained with both methods using the same observations are in good agreement. At the same time, the high speed of the retrieval using linear estimates makes the method preferable for generating aerosol information from extended lidar observations. To demonstrate the efficiency of the method, an extended time series of observations acquired in Turkey in May 2010 was processed using the linear estimates technique permitting, for what we believe to be the first time, temporal-height distributions of particle parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9909E..1KZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9909E..1KZ"><span>Review of the outer scale of the atmospheric turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ziad, Aziz</p> <p>2016-07-01</p> <p>Outer scale is a relevant parameter for the experimental performance evaluation of large telescopes. Different techniques have been used for the outer scale estimation. In situ measurements with radiosounding balloons have given very small values of outer scale. This latter has also been estimated directly at the ground level from the wavefront analysis with High Angular Resolution (HAR) techniques using interferometric or Shack-Hartmann or more generally AO systems data. Dedicated instruments have been also developed for the outer scale monitoring such as the Generalized Seeing Monitor (GSM) and the Monitor of Outer Scale Profile (MOSP). The measured values of outer scale from HAR techniques, GSM and MOSP are somewhat coherent and are larger than the in situ results. The main explanation of this difference comes from the definition of the outer scale itself. This paper aims to give a review in a non-exhaustive way of different techniques and instruments for the measurement of the outer scale. Comparisons of outer scale measurements will be discussed in the light of the different definitions of this parameter, the associated observable quantities and the atmospheric turbulence model as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980047378','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980047378"><span>Application of Model Based Parameter Estimation for Fast Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using Hybrid FEM/MoM Technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reddy C. J.</p> <p>1998-01-01</p> <p>Model Based Parameter Estimation (MBPE) is presented in conjunction with the hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique for fast computation of the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FENI/MoM technique is used to form an integro-partial- differential equation to compute the electric field distribution of a cavity-backed aperture antenna. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency derivatives of the integro-partial-differential equation formed by the hybrid FEM/ MoM technique. Using the rational function approximation, the electric field is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency range. Numerical results for an open coaxial line, probe-fed coaxial cavity and cavity-backed microstrip patch antennas are presented. Good agreement between MBPE and the solutions over individual frequencies is observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPS...296..383N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPS...296..383N"><span>Energy awareness for supercapacitors using Kalman filter state-of-charge tracking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nadeau, Andrew; Hassanalieragh, Moeen; Sharma, Gaurav; Soyata, Tolga</p> <p>2015-11-01</p> <p>Among energy buffering alternatives, supercapacitors can provide unmatched efficiency and durability. Additionally, the direct relation between a supercapacitor's terminal voltage and stored energy can improve energy awareness. However, a simple capacitive approximation cannot adequately represent the stored energy in a supercapacitor. It is shown that the three branch equivalent circuit model provides more accurate energy awareness. This equivalent circuit uses three capacitances and associated resistances to represent the supercapacitor's internal SOC (state-of-charge). However, the SOC cannot be determined from one observation of the terminal voltage, and must be tracked over time using inexact measurements. We present: 1) a Kalman filtering solution for tracking the SOC; 2) an on-line system identification procedure to efficiently estimate the equivalent circuit's parameters; and 3) experimental validation of both parameter estimation and SOC tracking for 5 F, 10 F, 50 F, and 350 F supercapacitors. Validation is done within the operating range of a solar powered application and the associated power variability due to energy harvesting. The proposed techniques are benchmarked against the simple capacitive model and prior parameter estimation techniques, and provide a 67% reduction in root-mean-square error for predicting usable buffered energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MSSP...62..324S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MSSP...62..324S"><span>Experimental verification of a GPC-LPV method with RLS and P1-TS fuzzy-based estimation for limiting the transient and residual vibration of a crane system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smoczek, Jaroslaw</p> <p>2015-10-01</p> <p>The paper deals with the problem of reducing the residual vibration and limiting the transient oscillations of a flexible and underactuated system with respect to the variation of operating conditions. The comparative study of generalized predictive control (GPC) and fuzzy scheduling scheme developed based on the P1-TS fuzzy theory, local pole placement method and interval analysis of closed-loop system polynomial coefficients is addressed to the problem of flexible crane control. The two alternatives of a GPC-based method are proposed that enable to realize this technique either with or without a sensor of payload deflection. The first control technique is based on the recursive least squares (RLS) method applied to on-line estimate the parameters of a linear parameter varying (LPV) model of a crane dynamic system. The second GPC-based approach is based on a payload deflection feedback estimated using a pendulum model with the parameters interpolated using the P1-TS fuzzy system. Feasibility and applicability of the developed methods were confirmed through experimental verification performed on a laboratory scaled overhead crane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhRvA..88a2128G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhRvA..88a2128G"><span>Optimal parameter estimation with a fixed rate of abstention</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gendra, B.; Ronco-Bonvehi, E.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E.</p> <p>2013-07-01</p> <p>The problems of optimally estimating a phase, a direction, and the orientation of a Cartesian frame (or trihedron) with general pure states are addressed. Special emphasis is put on estimation schemes that allow for inconclusive answers or abstention. It is shown that such schemes enable drastic improvements, up to the extent of attaining the Heisenberg limit in some cases, and the required amount of abstention is quantified. A general mathematical framework to deal with the asymptotic limit of many qubits or large angular momentum is introduced and used to obtain analytical results for all the relevant cases under consideration. Parameter estimation with abstention is also formulated as a semidefinite programming problem, for which very efficient numerical optimization techniques exist.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ISPArXL15..141D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ISPArXL15..141D"><span>a Hybrid Method in Vegetation Height Estimation Using Polinsar Images of Campaign Biosar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dehnavi, S.; Maghsoudi, Y.</p> <p>2015-12-01</p> <p>Recently, there have been plenty of researches on the retrieval of forest height by PolInSAR data. This paper aims at the evaluation of a hybrid method in vegetation height estimation based on L-band multi-polarized air-borne SAR images. The SAR data used in this paper were collected by the airborne E-SAR system. The objective of this research is firstly to describe each interferometry cross correlation as a sum of contributions corresponding to single bounce, double bounce and volume scattering processes. Then, an ESPIRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm is implemented, to determine the interferometric phase of each local scatterer (ground and canopy). Secondly, the canopy height is estimated by phase differencing method, according to the RVOG (Random Volume Over Ground) concept. The applied model-based decomposition method is unrivaled, as it is not limited to specific type of vegetation, unlike the previous decomposition techniques. In fact, the usage of generalized probability density function based on the nth power of a cosine-squared function, which is characterized by two parameters, makes this method useful for different vegetation types. Experimental results show the efficiency of the approach for vegetation height estimation in the test site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23968051','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23968051"><span>Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rideout, Brendan P; Dosso, Stan E; Hannay, David E</p> <p>2013-09-01</p> <p>This paper develops and applies a linearized Bayesian localization algorithm based on acoustic arrival times of marine mammal vocalizations at spatially-separated receivers which provides three-dimensional (3D) location estimates with rigorous uncertainty analysis. To properly account for uncertainty in receiver parameters (3D hydrophone locations and synchronization times) and environmental parameters (water depth and sound-speed correction), these quantities are treated as unknowns constrained by prior estimates and prior uncertainties. Unknown scaling factors on both the prior and arrival-time uncertainties are estimated by minimizing Akaike's Bayesian information criterion (a maximum entropy condition). Maximum a posteriori estimates for sound source locations and times, receiver parameters, and environmental parameters are calculated simultaneously using measurements of arrival times for direct and interface-reflected acoustic paths. Posterior uncertainties for all unknowns incorporate both arrival time and prior uncertainties. Monte Carlo simulation results demonstrate that, for the cases considered here, linearization errors are small and the lack of an accurate sound-speed profile does not cause significant biases in the estimated locations. A sequence of Pacific walrus vocalizations, recorded in the Chukchi Sea northwest of Alaska, is localized using this technique, yielding a track estimate and uncertainties with an estimated speed comparable to normal walrus swim speeds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017784','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017784"><span>Reconstructing the Sky Location of Gravitational-Wave Detected Compact Binary Systems: Methodology for Testing and Comparison</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sidney, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140017784'); toggleEditAbsImage('author_20140017784_show'); toggleEditAbsImage('author_20140017784_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140017784_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140017784_hide"></p> <p>2014-01-01</p> <p>The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiralonly signals from compact binary systems with a total mass of equal to or less than 20M solar mass and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor approx. equals 20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor approx. equals 1000 longer processing time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvD..89h4060S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvD..89h4060S"><span>Reconstructing the sky location of gravitational-wave detected compact binary systems: Methodology for testing and comparison</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sidery, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; Kalogera, V.; Mandel, I.; O'Shaughnessy, R.; Pitkin, M.; Price, L.; Raymond, V.; Röver, C.; Singer, L.; van der Sluys, M.; Smith, R. J. E.; Vecchio, A.; Veitch, J.; Vitale, S.</p> <p>2014-04-01</p> <p>The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiral-only signals from compact binary systems with a total mass of ≤20M⊙ and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor ≈20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor ≈1000 longer processing time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23773521','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23773521"><span>Improved inference in Bayesian segmentation using Monte Carlo sampling: application to hippocampal subfield volumetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen</p> <p>2013-10-01</p> <p>Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take. Here we propose to incorporate this uncertainty into Bayesian segmentation methods in order to improve the inference process. In particular, we approximate the required marginalization over model parameters using computationally efficient Markov chain Monte Carlo techniques. We illustrate the proposed approach using a recently developed Bayesian method for the segmentation of hippocampal subfields in brain MRI scans, showing a significant improvement in an Alzheimer's disease classification task. As an additional benefit, the technique also allows one to compute informative "error bars" on the volume estimates of individual structures. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3719857','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3719857"><span>Improved Inference in Bayesian Segmentation Using Monte Carlo Sampling: Application to Hippocampal Subfield Volumetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Leemput, Koen Van</p> <p>2013-01-01</p> <p>Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take. Here we propose to incorporate this uncertainty into Bayesian segmentation methods in order to improve the inference process. In particular, we approximate the required marginalization over model parameters using computationally efficient Markov chain Monte Carlo techniques. We illustrate the proposed approach using a recently developed Bayesian method for the segmentation of hippocampal subfields in brain MRI scans, showing a significant improvement in an Alzheimer’s disease classification task. As an additional benefit, the technique also allows one to compute informative “error bars” on the volume estimates of individual structures. PMID:23773521</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29033134','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29033134"><span>Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Da Silva, C; Astals, S; Peces, M; Campos, J L; Guerrero, L</p> <p>2018-01-01</p> <p>Biochemical methane potential (BMP) test is a key analytical technique to assess the implementation and optimisation of anaerobic biotechnologies. However, this technique is characterised by long testing times (from 20 to >100days), which is not suitable for waste utilities, consulting companies or plants operators whose decision-making processes cannot be held for such a long time. This study develops a statistically robust mathematical strategy using sensitivity functions for early prediction of BMP first-order model parameters, i.e. methane yield (B 0 ) and kinetic constant rate (k). The minimum testing time for early parameter estimation showed a potential correlation with the k value, where (i) slowly biodegradable substrates (k≤0.1d -1 ) have a minimum testing times of ≥15days, (ii) moderately biodegradable substrates (0.1<k<0.2d -1 ) have a minimum testing times between 8 and 15 days, and (iii) rapidly biodegradable substrates (k≥0.2d -1 ) have testing times lower than 7days. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17155097','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17155097"><span>Impedance analysis of cultured cells: a mean-field electrical response model for electric cell-substrate impedance sensing technique.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Urdapilleta, E; Bellotti, M; Bonetto, F J</p> <p>2006-10-01</p> <p>In this paper we present a model to describe the electrical properties of a confluent cell monolayer cultured on gold microelectrodes to be used with electric cell-substrate impedance sensing technique. This model was developed from microscopic considerations (distributed effects), and by assuming that the monolayer is an element with mean electrical characteristics (specific lumped parameters). No assumptions were made about cell morphology. The model has only three adjustable parameters. This model and other models currently used for data analysis are compared with data we obtained from electrical measurements of confluent monolayers of Madin-Darby Canine Kidney cells. One important parameter is the cell-substrate height and we found that estimates of this magnitude strongly differ depending on the model used for the analysis. We analyze the origin of the discrepancies, concluding that the estimates from the different models can be considered as limits for the true value of the cell-substrate height.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/435713-quantitative-investigation-fracture-pump-flowback-test','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/435713-quantitative-investigation-fracture-pump-flowback-test"><span>A quantitative investigation of the fracture pump-in/flowback test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Plahn, S.V.; Nolte, K.G.; Thompson, L.G.</p> <p>1997-02-01</p> <p>Fracture-closure pressure is an important parameter for fracture treatment design and evaluation. The pump-in/flowback (PIFB) test is frequently used to estimate its magnitude. The test is attractive because bottomhole pressures (BHP`s) during flowback develop a distinct and repeatable signature. This is in contrast to the pump-in/shut-in test, where strong indications of fracture closure are rarely seen. Various techniques are used to extract closure pressure from the flowback-pressure response. Unfortunately, these techniques give different estimates for closure pressure, and their theoretical bases are not well established. The authors present results that place the PIFB test on a firmer foundation. A numericalmore » model is used to simulate the PIFB test and glean physical mechanisms contributing to the response. On the basis of their simulation results, they propose interpretation techniques that give better estimates of closure pressure than existing techniques.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870052975&hterms=rain+storm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drain%2Bstorm','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870052975&hterms=rain+storm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drain%2Bstorm"><span>The area-time-integral technique to estimate convective rain volumes over areas applied to satellite data - A preliminary investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Doneaud, Andre A.; Miller, James R., Jr.; Johnson, L. Ronald; Vonder Haar, Thomas H.; Laybe, Patrick</p> <p>1987-01-01</p> <p>The use of the area-time-integral (ATI) technique, based only on satellite data, to estimate convective rain volume over a moving target is examined. The technique is based on the correlation between the radar echo area coverage integrated over the lifetime of the storm and the radar estimated rain volume. The processing of the GOES and radar data collected in 1981 is described. The radar and satellite parameters for six convective clusters from storm events occurring on June 12 and July 2, 1981 are analyzed and compared in terms of time steps and cluster lifetimes. Rain volume is calculated by first using the regression analysis to generate the regression equation used to obtain the ATI; the ATI versus rain volume relation is then employed to compute rain volume. The data reveal that the ATI technique using satellite data is applicable to the calculation of rain volume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcGeo..65..765A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcGeo..65..765A"><span>Porosity and hydraulic conductivity estimation of the basaltic aquifer in Southern Syria by using nuclear and electrical well logging techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asfahani, Jamal</p> <p>2017-08-01</p> <p>An alternative approach using nuclear neutron-porosity and electrical resistivity well logging of long (64 inch) and short (16 inch) normal techniques is proposed to estimate the porosity and the hydraulic conductivity ( K) of the basaltic aquifers in Southern Syria. This method is applied on the available logs of Kodana well in Southern Syria. It has been found that the obtained K value by applying this technique seems to be reasonable and comparable with the hydraulic conductivity value of 3.09 m/day obtained by the pumping test carried out at Kodana well. The proposed alternative well logging methodology seems as promising and could be practiced in the basaltic environments for the estimation of hydraulic conductivity parameter. However, more detailed researches are still required to make this proposed technique very performed in basaltic environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.213.1334S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.213.1334S"><span>Estimating crustal thickness and Vp/Vs ratio with joint constraints of receiver function and gravity data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Lei; Guo, Lianghui; Ma, Yawei; Li, Yonghua; Wang, Weilai</p> <p>2018-05-01</p> <p>The technique of teleseismic receiver function H-κ stacking is popular for estimating the crustal thickness and Vp/Vs ratio. However, it has large uncertainty or ambiguity when the Moho multiples in receiver function are not easy to be identified. We present an improved technique to estimate the crustal thickness and Vp/Vs ratio by joint constraints of receiver function and gravity data. The complete Bouguer gravity anomalies, composed of the anomalies due to the relief of the Moho interface and the heterogeneous density distribution within the crust, are associated with the crustal thickness, density and Vp/Vs ratio. According to their relationship formulae presented by Lowry and Pérez-Gussinyé, we invert the complete Bouguer gravity anomalies by using a common algorithm of likelihood estimation to obtain the crustal thickness and Vp/Vs ratio, and then utilize them to constrain the receiver function H-κ stacking result. We verified the improved technique on three synthetic crustal models and evaluated the influence of selected parameters, the results of which demonstrated that the novel technique could reduce the ambiguity and enhance the accuracy of estimation. Real data test at two given stations in the NE margin of Tibetan Plateau illustrated that the improved technique provided reliable estimations of crustal thickness and Vp/Vs ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.H21D0832C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.H21D0832C"><span>Determination of Time Dependent Virus Inactivation Rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chrysikopoulos, C. V.; Vogler, E. T.</p> <p>2003-12-01</p> <p>A methodology is developed for estimating temporally variable virus inactivation rate coefficients from experimental virus inactivation data. The methodology consists of a technique for slope estimation of normalized virus inactivation data in conjunction with a resampling parameter estimation procedure. The slope estimation technique is based on a relatively flexible geostatistical method known as universal kriging. Drift coefficients are obtained by nonlinear fitting of bootstrap samples and the corresponding confidence intervals are obtained by bootstrap percentiles. The proposed methodology yields more accurate time dependent virus inactivation rate coefficients than those estimated by fitting virus inactivation data to a first-order inactivation model. The methodology is successfully applied to a set of poliovirus batch inactivation data. Furthermore, the importance of accurate inactivation rate coefficient determination on virus transport in water saturated porous media is demonstrated with model simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/m064index.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/m064index.php"><span>Industrial Demand Module - NEMS Documentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2014-01-01</p> <p>Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA504087','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA504087"><span>Statistical Constraints on Station Clock Parameters in the NRCAN PPP Estimation Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-12-01</p> <p>e.g., Two-Way Satellite Time and Frequency Transfer ( TWSTFT ), GPS Common View (CV), and GPS P3 [9]. Finally, PPP shows a 2- times improvement in...the collocated Two-Way Satellite Time and Frequency Technique ( TWSTFT ) estimates for the same baseline. The TWSTFT estimates are available every 2...periodicity is due to the thermal variations described in the previous section, while the divergence between both PPP solutions and TWSTFT estimates is due</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JEE....65..381K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JEE....65..381K"><span>Electron Beam Lithography Double Step Exposure Technique for Fabrication of Mushroom-Like Profile in Bilayer Resist System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kornelia, Indykiewicz; Bogdan, Paszkiewicz; Tomasz, Szymański; Regina, Paszkiewicz</p> <p>2015-01-01</p> <p>The Hi/Lo bilayer resist system exposure in e-beam lithography (EBL) process, intended for mushroom-like profile fabrication, was studied. Different exposure parameters and theirs influence on the resist layers were simulated in CASINO software and the obtained results were compared with the experimental data. The AFM technique was used for the estimation of the e-beam penetration depth in the resist stack. Performed numerical and experimental results allow us to establish the useful ranges of the exposure parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OptLE..75...95H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OptLE..75...95H"><span>A linear least squares approach for evaluation of crack tip stress field parameters using DIC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harilal, R.; Vyasarayani, C. P.; Ramji, M.</p> <p>2015-12-01</p> <p>In the present work, an experimental study is carried out to estimate the mixed-mode stress intensity factors (SIF) for different cracked specimen configurations using digital image correlation (DIC) technique. For the estimation of mixed-mode SIF's using DIC, a new algorithm is proposed for the extraction of crack tip location and coefficients in the multi-parameter displacement field equations. From those estimated coefficients, SIF could be extracted. The required displacement data surrounding the crack tip has been obtained using 2D-DIC technique. An open source 2D DIC software Ncorr is used for the displacement field extraction. The presented methodology has been used to extract mixed-mode SIF's for specimen configurations like single edge notch (SEN) specimen and centre slant crack (CSC) specimens made out of Al 2014-T6 alloy. The experimental results have been compared with the analytical values and they are found to be in good agreement, thereby confirming the accuracy of the algorithm being proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4927071','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4927071"><span>Robust Bayesian Fluorescence Lifetime Estimation, Decay Model Selection and Instrument Response Determination for Low-Intensity FLIM Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.</p> <p>2016-01-01</p> <p>We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28789268','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28789268"><span>Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khan, Faisal Nadeem; Zhong, Kangping; Zhou, Xian; Al-Arashi, Waled Hussein; Yu, Changyuan; Lu, Chao; Lau, Alan Pak Tao</p> <p>2017-07-24</p> <p>We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SPIE.6497E..0XJ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SPIE.6497E..0XJ"><span>Detecting background changes in environments with dynamic foreground by separating probability distribution function mixtures using Pearson's method of moments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jenkins, Colleen; Jordan, Jay; Carlson, Jeff</p> <p>2007-02-01</p> <p>This paper presents parameter estimation techniques useful for detecting background changes in a video sequence with extreme foreground activity. A specific application of interest is automated detection of the covert placement of threats (e.g., a briefcase bomb) inside crowded public facilities. We propose that a histogram of pixel intensity acquired from a fixed mounted camera over time for a series of images will be a mixture of two Gaussian functions: the foreground probability distribution function and background probability distribution function. We will use Pearson's Method of Moments to separate the two probability distribution functions. The background function can then be "remembered" and changes in the background can be detected. Subsequent comparisons of background estimates are used to detect changes. Changes are flagged to alert security forces to the presence and location of potential threats. Results are presented that indicate the significant potential for robust parameter estimation techniques as applied to video surveillance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840039598&hterms=Corn&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DCorn','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840039598&hterms=Corn&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DCorn"><span>Automatic corn-soybean classification using Landsat MSS data. I - Near-harvest crop proportion estimation. II - Early season crop proportion estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Badhwar, G. D.</p> <p>1984-01-01</p> <p>The techniques used initially for the identification of cultivated crops from Landsat imagery depended greatly on the iterpretation of film products by a human analyst. This approach was not very effective and objective. Since 1978, new methods for crop identification are being developed. Badhwar et al. (1982) showed that multitemporal-multispectral data could be reduced to a simple feature space of alpha and beta and that these features would separate corn and soybean very well. However, there are disadvantages related to the use of alpha and beta parameters. The present investigation is concerned with a suitable method for extracting the required features. Attention is given to a profile model for crop discrimination, corn-soybean separation using profile parameters, and an automatic labeling (target recognition) method. The developed technique is extended to obtain a procedure which makes it possible to estimate the crop proportion of corn and soybean from Landsat data early in the growing season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28510459','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28510459"><span>Efficient Round-Trip Time Optimization for Replica-Exchange Enveloping Distribution Sampling (RE-EDS).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sidler, Dominik; Cristòfol-Clough, Michael; Riniker, Sereina</p> <p>2017-06-13</p> <p>Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080040183','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080040183"><span>Approximation of Failure Probability Using Conditional Sampling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Giesy. Daniel P.; Crespo, Luis G.; Kenney, Sean P.</p> <p>2008-01-01</p> <p>In analyzing systems which depend on uncertain parameters, one technique is to partition the uncertain parameter domain into a failure set and its complement, and judge the quality of the system by estimating the probability of failure. If this is done by a sampling technique such as Monte Carlo and the probability of failure is small, accurate approximation can require so many sample points that the computational expense is prohibitive. Previous work of the authors has shown how to bound the failure event by sets of such simple geometry that their probabilities can be calculated analytically. In this paper, it is shown how to make use of these failure bounding sets and conditional sampling within them to substantially reduce the computational burden of approximating failure probability. It is also shown how the use of these sampling techniques improves the confidence intervals for the failure probability estimate for a given number of sample points and how they reduce the number of sample point analyses needed to achieve a given level of confidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980137507&hterms=comparative+study&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcomparative%2Bstudy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980137507&hterms=comparative+study&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcomparative%2Bstudy"><span>A Comparative Study of Co-Channel Interference Suppression Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hamkins, Jon; Satorius, Ed; Paparisto, Gent; Polydoros, Andreas</p> <p>1997-01-01</p> <p>We describe three methods of combatting co-channel interference (CCI): a cross-coupled phase-locked loop (CCPLL); a phase-tracking circuit (PTC), and joint Viterbi estimation based on the maximum likelihood principle. In the case of co-channel FM-modulated voice signals, the CCPLL and PTC methods typically outperform the maximum likelihood estimators when the modulation parameters are dissimilar. However, as the modulation parameters become identical, joint Viterbi estimation provides for a more robust estimate of the co-channel signals and does not suffer as much from "signal switching" which especially plagues the CCPLL approach. Good performance for the PTC requires both dissimilar modulation parameters and a priori knowledge of the co-channel signal amplitudes. The CCPLL and joint Viterbi estimators, on the other hand, incorporate accurate amplitude estimates. In addition, application of the joint Viterbi algorithm to demodulating co-channel digital (BPSK) signals in a multipath environment is also discussed. It is shown in this case that if the interference is sufficiently small, a single trellis model is most effective in demodulating the co-channel signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPS...365..308W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPS...365..308W"><span>On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai</p> <p>2017-10-01</p> <p>With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/tm/tm7c5/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/tm/tm7c5/"><span>Approaches in highly parameterized inversion - PEST++, a Parameter ESTimation code optimized for large environmental models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Welter, David E.; Doherty, John E.; Hunt, Randall J.; Muffels, Christopher T.; Tonkin, Matthew J.; Schreuder, Willem A.</p> <p>2012-01-01</p> <p>An object-oriented parameter estimation code was developed to incorporate benefits of object-oriented programming techniques for solving large parameter estimation modeling problems. The code is written in C++ and is a formulation and expansion of the algorithms included in PEST, a widely used parameter estimation code written in Fortran. The new code is called PEST++ and is designed to lower the barriers of entry for users and developers while providing efficient algorithms that can accommodate large, highly parameterized problems. This effort has focused on (1) implementing the most popular features of PEST in a fashion that is easy for novice or experienced modelers to use and (2) creating a software design that is easy to extend; that is, this effort provides a documented object-oriented framework designed from the ground up to be modular and extensible. In addition, all PEST++ source code and its associated libraries, as well as the general run manager source code, have been integrated in the Microsoft Visual Studio® 2010 integrated development environment. The PEST++ code is designed to provide a foundation for an open-source development environment capable of producing robust and efficient parameter estimation tools for the environmental modeling community into the future.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1005983','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1005983"><span>Microspoiler Actuation for Guided Projectiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-01-06</p> <p>and be hardened to gun -launch. Several alternative designs will be explored using various actuation techniques, and downselection to an optimal design...aerodynamic optimization of the microspoiler mechanism, mechanical design/ gun hardening, and parameter estimation from experimental data. These...performed using the aerodynamic parameters in Table 2. Projectile trajectories were simulated without gravity at zero gun elevation. The standard 30mm</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830027784','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830027784"><span>Space Shuttle propulsion parameter estimation using optimal estimation techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1983-01-01</p> <p>This fourth monthly progress report again contains corrections and additions to the previously submitted reports. The additions include a simplified SRB model that is directly incorporated into the estimation algorithm and provides the required partial derivatives. The resulting partial derivatives are analytical rather than numerical as would be the case using the SOBER routines. The filter and smoother routine developments have continued. These routines are being checked out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA581024','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA581024"><span>Navigation in Difficult Environments: Multi-Sensor Fusion Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-03-01</p> <p>Hwang , Introduction to Random Signals and Applied Kalman Filtering, 3rd ed., John Wiley & Sons, Inc., New York, 1997. [17] J. L. Farrell, “GPS/INS...nav solution Navigation outputs Estimation of inertial errors ( Kalman filter) Error estimates Core sensor Incoming signal INS Estimates of signal...the INS drift terms is performed using the mechanism of a complementary Kalman filter. The idea is that a signal parameter can be generally</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7629E..0XM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7629E..0XM"><span>Global optimization for motion estimation with applications to ultrasound videos of carotid artery plaques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.</p> <p>2010-03-01</p> <p>Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22306561','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22306561"><span>Invited commentary: Lost in estimation--searching for alternatives to markov chains to fit complex Bayesian models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Molitor, John</p> <p>2012-03-01</p> <p>Bayesian methods have seen an increase in popularity in a wide variety of scientific fields, including epidemiology. One of the main reasons for their widespread application is the power of the Markov chain Monte Carlo (MCMC) techniques generally used to fit these models. As a result, researchers often implicitly associate Bayesian models with MCMC estimation procedures. However, Bayesian models do not always require Markov-chain-based methods for parameter estimation. This is important, as MCMC estimation methods, while generally quite powerful, are complex and computationally expensive and suffer from convergence problems related to the manner in which they generate correlated samples used to estimate probability distributions for parameters of interest. In this issue of the Journal, Cole et al. (Am J Epidemiol. 2012;175(5):368-375) present an interesting paper that discusses non-Markov-chain-based approaches to fitting Bayesian models. These methods, though limited, can overcome some of the problems associated with MCMC techniques and promise to provide simpler approaches to fitting Bayesian models. Applied researchers will find these estimation approaches intuitively appealing and will gain a deeper understanding of Bayesian models through their use. However, readers should be aware that other non-Markov-chain-based methods are currently in active development and have been widely published in other fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..271A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..271A"><span>Effect of the curvature parameter on least-squares prediction within poor data coverage: case study for Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abd-Elmotaal, Hussein; Kühtreiber, Norbert</p> <p>2016-04-01</p> <p>In the framework of the IAG African Geoid Project, there are a lot of large data gaps in its gravity database. These gaps are filled initially using unequal weight least-squares prediction technique. This technique uses a generalized Hirvonen covariance function model to replace the empirically determined covariance function. The generalized Hirvonen covariance function model has a sensitive parameter which is related to the curvature parameter of the covariance function at the origin. This paper studies the effect of the curvature parameter on the least-squares prediction results, especially in the large data gaps as appearing in the African gravity database. An optimum estimation of the curvature parameter has also been carried out. A wide comparison among the results obtained in this research along with their obtained accuracy is given and thoroughly discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25519889','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25519889"><span>Poisson and negative binomial item count techniques for surveys with sensitive question.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tian, Guo-Liang; Tang, Man-Lai; Wu, Qin; Liu, Yin</p> <p>2017-04-01</p> <p>Although the item count technique is useful in surveys with sensitive questions, privacy of those respondents who possess the sensitive characteristic of interest may not be well protected due to a defect in its original design. In this article, we propose two new survey designs (namely the Poisson item count technique and negative binomial item count technique) which replace several independent Bernoulli random variables required by the original item count technique with a single Poisson or negative binomial random variable, respectively. The proposed models not only provide closed form variance estimate and confidence interval within [0, 1] for the sensitive proportion, but also simplify the survey design of the original item count technique. Most importantly, the new designs do not leak respondents' privacy. Empirical results show that the proposed techniques perform satisfactorily in the sense that it yields accurate parameter estimate and confidence interval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25140636','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25140636"><span>Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil</p> <p>2014-08-20</p> <p>In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014921','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014921"><span>Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Douglas, Freddie; Bourgeois, Edit Kaminsky</p> <p>2005-01-01</p> <p>The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRB..11610404G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRB..11610404G"><span>Error estimation in multitemporal InSAR deformation time series, with application to Lanzarote, Canary Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>GonzáLez, Pablo J.; FernáNdez, José</p> <p>2011-10-01</p> <p>Interferometric Synthetic Aperture Radar (InSAR) is a reliable technique for measuring crustal deformation. However, despite its long application in geophysical problems, its error estimation has been largely overlooked. Currently, the largest problem with InSAR is still the atmospheric propagation errors, which is why multitemporal interferometric techniques have been successfully developed using a series of interferograms. However, none of the standard multitemporal interferometric techniques, namely PS or SB (Persistent Scatterers and Small Baselines, respectively) provide an estimate of their precision. Here, we present a method to compute reliable estimates of the precision of the deformation time series. We implement it for the SB multitemporal interferometric technique (a favorable technique for natural terrains, the most usual target of geophysical applications). We describe the method that uses a properly weighted scheme that allows us to compute estimates for all interferogram pixels, enhanced by a Montecarlo resampling technique that properly propagates the interferogram errors (variance-covariances) into the unknown parameters (estimated errors for the displacements). We apply the multitemporal error estimation method to Lanzarote Island (Canary Islands), where no active magmatic activity has been reported in the last decades. We detect deformation around Timanfaya volcano (lengthening of line-of-sight ˜ subsidence), where the last eruption in 1730-1736 occurred. Deformation closely follows the surface temperature anomalies indicating that magma crystallization (cooling and contraction) of the 300-year shallow magmatic body under Timanfaya volcano is still ongoing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910000342&hterms=quality+life&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dquality%2Blife','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910000342&hterms=quality+life&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dquality%2Blife"><span>Probabilistic/Fracture-Mechanics Model For Service Life</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Watkins, T., Jr.; Annis, C. G., Jr.</p> <p>1991-01-01</p> <p>Computer program makes probabilistic estimates of lifetime of engine and components thereof. Developed to fill need for more accurate life-assessment technique that avoids errors in estimated lives and provides for statistical assessment of levels of risk created by engineering decisions in designing system. Implements mathematical model combining techniques of statistics, fatigue, fracture mechanics, nondestructive analysis, life-cycle cost analysis, and management of engine parts. Used to investigate effects of such engine-component life-controlling parameters as return-to-service intervals, stresses, capabilities for nondestructive evaluation, and qualities of materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23527607','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23527607"><span>Mixture class recovery in GMM under varying degrees of class separation: frequentist versus Bayesian estimation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Depaoli, Sarah</p> <p>2013-06-01</p> <p>Growth mixture modeling (GMM) represents a technique that is designed to capture change over time for unobserved subgroups (or latent classes) that exhibit qualitatively different patterns of growth. The aim of the current article was to explore the impact of latent class separation (i.e., how similar growth trajectories are across latent classes) on GMM performance. Several estimation conditions were compared: maximum likelihood via the expectation maximization (EM) algorithm and the Bayesian framework implementing diffuse priors, "accurate" informative priors, weakly informative priors, data-driven informative priors, priors reflecting partial-knowledge of parameters, and "inaccurate" (but informative) priors. The main goal was to provide insight about the optimal estimation condition under different degrees of latent class separation for GMM. Results indicated that optimal parameter recovery was obtained though the Bayesian approach using "accurate" informative priors, and partial-knowledge priors showed promise for the recovery of the growth trajectory parameters. Maximum likelihood and the remaining Bayesian estimation conditions yielded poor parameter recovery for the latent class proportions and the growth trajectories. (PsycINFO Database Record (c) 2013 APA, all rights reserved).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29221607','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29221607"><span>Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Zhijian; Zhang, Guoqing; Lu, Yu; Zhang, Weidong</p> <p>2018-01-01</p> <p>This paper studies the leader-follower formation control of underactuated surface vehicles with model uncertainties and environmental disturbances. A parameter estimation and upper bound estimation based sliding mode control scheme is proposed to solve the problem of the unknown plant parameters and environmental disturbances. For each of these leader-follower formation systems, the dynamic equations of position and attitude are analyzed using coordinate transformation with the aid of the backstepping technique. All the variables are guaranteed to be uniformly ultimately bounded stable in the closed-loop system, which is proven by the distribution design Lyapunov function synthesis. The main advantages of this approach are that: first, parameter estimation based sliding mode control can enhance the robustness of the closed-loop system in presence of model uncertainties and environmental disturbances; second, a continuous function is developed to replace the signum function in the design of sliding mode scheme, which devotes to reduce the chattering of the control system. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17535577','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17535577"><span>Estimating standard errors in feature network models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frank, Laurence E; Heiser, Willem J</p> <p>2007-05-01</p> <p>Feature network models are graphical structures that represent proximity data in a discrete space while using the same formalism that is the basis of least squares methods employed in multidimensional scaling. Existing methods to derive a network model from empirical data only give the best-fitting network and yield no standard errors for the parameter estimates. The additivity properties of networks make it possible to consider the model as a univariate (multiple) linear regression problem with positivity restrictions on the parameters. In the present study, both theoretical and empirical standard errors are obtained for the constrained regression parameters of a network model with known features. The performance of both types of standard error is evaluated using Monte Carlo techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870045384&hterms=functional+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfunctional%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870045384&hterms=functional+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfunctional%2Bstructure"><span>Static shape control for flexible structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rodriguez, G.; Scheid, R. E., Jr.</p> <p>1986-01-01</p> <p>An integrated methodology is described for defining static shape control laws for large flexible structures. The techniques include modeling, identifying and estimating the control laws of distributed systems characterized in terms of infinite dimensional state and parameter spaces. The models are expressed as interconnected elliptic partial differential equations governing a range of static loads, with the capability of analyzing electromagnetic fields around antenna systems. A second-order analysis is carried out for statistical errors, and model parameters are determined by maximizing an appropriate defined likelihood functional which adjusts the model to observational data. The parameter estimates are derived from the conditional mean of the observational data, resulting in a least squares superposition of shape functions obtained from the structural model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17852176','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17852176"><span>Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues - II: prediction of reaction force history of meniscal cartilage specimens.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Taylor, Zeike A; Kirk, Thomas B; Miller, Karol</p> <p>2007-10-01</p> <p>The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890037256&hterms=theoretical+framework&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtheoretical%2Bframework','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890037256&hterms=theoretical+framework&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtheoretical%2Bframework"><span>A theoretical framework for convergence and continuous dependence of estimates in inverse problems for distributed parameter systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Banks, H. T.; Ito, K.</p> <p>1988-01-01</p> <p>Numerical techniques for parameter identification in distributed-parameter systems are developed analytically. A general convergence and stability framework (for continuous dependence on observations) is derived for first-order systems on the basis of (1) a weak formulation in terms of sesquilinear forms and (2) the resolvent convergence form of the Trotter-Kato approximation. The extension of this framework to second-order systems is considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31G1588C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31G1588C"><span>Automated Land Cover Change Detection and Mapping from Hidden Parameter Estimates of Normalized Difference Vegetation Index (NDVI) Time-Series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.</p> <p>2017-12-01</p> <p>Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=image+AND+alignment&id=ED548001','ERIC'); return false;" href="https://eric.ed.gov/?q=image+AND+alignment&id=ED548001"><span>Error Estimation Techniques to Refine Overlapping Aerial Image Mosaic Processes via Detected Parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bond, William Glenn</p> <p>2012-01-01</p> <p>In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/55016','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/55016"><span>Dynamic N -occupancy models: estimating demographic rates and local abundance from detection-nondetection data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Sam Rossman; Charles B. Yackulic; Sarah P. Saunders; Janice Reid; Ray Davis; Elise F. Zipkin</p> <p>2016-01-01</p> <p>Occupancy modeling is a widely used analytical technique for assessing species distributions and range dynamics. However, occupancy analyses frequently ignore variation in abundance of occupied sites, even though site abundances affect many of the parameters being estimated (e.g., extinction, colonization, detection probability). We introduce a new model (“dynamic</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/ingm(2011)index.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/ingm(2011)index.php"><span>International Natural Gas Model 2011, Model Documentation Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2013-01-01</p> <p>This report documents the objectives, analytical approach and development of the International Natural Gas Model (INGM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920030688&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dplanetary%2Bboundaries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920030688&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dplanetary%2Bboundaries"><span>Flux estimation of the FIFE planetary boundary layer (PBL) with 10.6 micron Doppler lidar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gal-Chen, Tzvi; Xu, Mei; Eberhard, Wynn</p> <p>1990-01-01</p> <p>A method is devised for calculating wind, momentum, and other flux parameters that characterize the planetary boundary layer (PBL) and thereby facilitate the calibration of spaceborne vs. in situ flux estimates. Single Doppler lidar data are used to estimate the variance of the mean wind and the covariance related to the vertically pointing fluxes of horizontal momentum. The skewness of the vertical velocity and the range of kinetic energy dissipation are also estimated, and the surface heat flux is determined by means of a statistical Navier-Stokes equation. The conclusion shows that the PBL structure combines both 'bottom-up' and 'top-down' processes suggesting that the relevant parameters for the atmospheric boundary layer be revised. The conclusions are of significant interest to the modeling techniques used in General Circulation Models as well as to flux estimation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24d2902D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24d2902D"><span>Noise-induced errors in geophysical parameter estimation from retarding potential analyzers in low Earth orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Debchoudhury, Shantanab; Earle, Gregory</p> <p>2017-04-01</p> <p>Retarding Potential Analyzers (RPA) have a rich flight heritage. Standard curve-fitting analysis techniques exist that can infer state variables in the ionospheric plasma environment from RPA data, but the estimation process is prone to errors arising from a number of sources. Previous work has focused on the effects of grid geometry on uncertainties in estimation; however, no prior study has quantified the estimation errors due to additive noise. In this study, we characterize the errors in estimation of thermal plasma parameters by adding noise to the simulated data derived from the existing ionospheric models. We concentrate on low-altitude, mid-inclination orbits since a number of nano-satellite missions are focused on this region of the ionosphere. The errors are quantified and cross-correlated for varying geomagnetic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990051029','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990051029"><span>A Multi-Resolution Nonlinear Mapping Technique for Design and Analysis Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Phan, Minh Q.</p> <p>1998-01-01</p> <p>This report describes a nonlinear mapping technique where the unknown static or dynamic system is approximated by a sum of dimensionally increasing functions (one-dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions are synthesized from a set of multi-resolution basis functions, where the resolutions specify the level of details at which the nonlinear system is approximated. The basis functions also cause the parameter estimation step to become linear. This feature is taken advantage of to derive a systematic procedure to determine and eliminate basis functions that are less significant for the particular system under identification. The number of unknown parameters that must be estimated is thus reduced and compact models obtained. The lower dimensional functions (identified curves and surfaces) permit a kind of "visualization" into the complexity of the nonlinearity itself.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997SPIE.3034..346B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997SPIE.3034..346B"><span>3D tomographic reconstruction using geometrical models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Battle, Xavier L.; Cunningham, Gregory S.; Hanson, Kenneth M.</p> <p>1997-04-01</p> <p>We address the issue of reconstructing an object of constant interior density in the context of 3D tomography where there is prior knowledge about the unknown shape. We explore the direct estimation of the parameters of a chosen geometrical model from a set of radiographic measurements, rather than performing operations (segmentation for example) on a reconstructed volume. The inverse problem is posed in the Bayesian framework. A triangulated surface describes the unknown shape and the reconstruction is computed with a maximum a posteriori (MAP) estimate. The adjoint differentiation technique computes the derivatives needed for the optimization of the model parameters. We demonstrate the usefulness of the approach and emphasize the techniques of designing forward and adjoint codes. We use the system response of the University of Arizona Fast SPECT imager to illustrate this method by reconstructing the shape of a heart phantom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990049210','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990049210"><span>A Multi-Resolution Nonlinear Mapping Technique for Design and Analysis Application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Phan, Minh Q.</p> <p>1997-01-01</p> <p>This report describes a nonlinear mapping technique where the unknown static or dynamic system is approximated by a sum of dimensionally increasing functions (one-dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions are synthesized from a set of multi-resolution basis functions, where the resolutions specify the level of details at which the nonlinear system is approximated. The basis functions also cause the parameter estimation step to become linear. This feature is taken advantage of to derive a systematic procedure to determine and eliminate basis functions that are less significant for the particular system under identification. The number of unknown parameters that must be estimated is thus reduced and compact models obtained. The lower dimensional functions (identified curves and surfaces) permit a kind of "visualization" into the complexity of the nonlinearity itself.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC24B1085H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC24B1085H"><span>Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hesser, T.; Farthing, M. W.; Brodie, K.</p> <p>2016-02-01</p> <p>The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22536335','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22536335"><span>Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vaas, Lea A I; Sikorski, Johannes; Michael, Victoria; Göker, Markus; Klenk, Hans-Peter</p> <p>2012-01-01</p> <p>The Phenotype MicroArray (OmniLog® PM) system is able to simultaneously capture a large number of phenotypes by recording an organism's respiration over time on distinct substrates. This technique targets the object of natural selection itself, the phenotype, whereas previously addressed '-omics' techniques merely study components that finally contribute to it. The recording of respiration over time, however, adds a longitudinal dimension to the data. To optimally exploit this information, it must be extracted from the shapes of the recorded curves and displayed in analogy to conventional growth curves. The free software environment R was explored for both visualizing and fitting of PM respiration curves. Approaches using either a model fit (and commonly applied growth models) or a smoothing spline were evaluated. Their reliability in inferring curve parameters and confidence intervals was compared to the native OmniLog® PM analysis software. We consider the post-processing of the estimated parameters, the optimal classification of curve shapes and the detection of significant differences between them, as well as practically relevant questions such as detecting the impact of cultivation times and the minimum required number of experimental repeats. We provide a comprehensive framework for data visualization and parameter estimation according to user choices. A flexible graphical representation strategy for displaying the results is proposed, including 95% confidence intervals for the estimated parameters. The spline approach is less prone to irregular curve shapes than fitting any of the considered models or using the native PM software for calculating both point estimates and confidence intervals. These can serve as a starting point for the automated post-processing of PM data, providing much more information than the strict dichotomization into positive and negative reactions. Our results form the basis for a freely available R package for the analysis of PM data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3334903','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3334903"><span>Visualization and Curve-Parameter Estimation Strategies for Efficient Exploration of Phenotype Microarray Kinetics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vaas, Lea A. I.; Sikorski, Johannes; Michael, Victoria; Göker, Markus; Klenk, Hans-Peter</p> <p>2012-01-01</p> <p>Background The Phenotype MicroArray (OmniLog® PM) system is able to simultaneously capture a large number of phenotypes by recording an organism's respiration over time on distinct substrates. This technique targets the object of natural selection itself, the phenotype, whereas previously addressed ‘-omics’ techniques merely study components that finally contribute to it. The recording of respiration over time, however, adds a longitudinal dimension to the data. To optimally exploit this information, it must be extracted from the shapes of the recorded curves and displayed in analogy to conventional growth curves. Methodology The free software environment R was explored for both visualizing and fitting of PM respiration curves. Approaches using either a model fit (and commonly applied growth models) or a smoothing spline were evaluated. Their reliability in inferring curve parameters and confidence intervals was compared to the native OmniLog® PM analysis software. We consider the post-processing of the estimated parameters, the optimal classification of curve shapes and the detection of significant differences between them, as well as practically relevant questions such as detecting the impact of cultivation times and the minimum required number of experimental repeats. Conclusions We provide a comprehensive framework for data visualization and parameter estimation according to user choices. A flexible graphical representation strategy for displaying the results is proposed, including 95% confidence intervals for the estimated parameters. The spline approach is less prone to irregular curve shapes than fitting any of the considered models or using the native PM software for calculating both point estimates and confidence intervals. These can serve as a starting point for the automated post-processing of PM data, providing much more information than the strict dichotomization into positive and negative reactions. Our results form the basis for a freely available R package for the analysis of PM data. PMID:22536335</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AdSpR..53.1058S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AdSpR..53.1058S"><span>Impact of orbit modeling on DORIS station position and Earth rotation estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Štěpánek, Petr; Rodriguez-Solano, Carlos Javier; Hugentobler, Urs; Filler, Vratislav</p> <p>2014-04-01</p> <p>The high precision of estimated station coordinates and Earth rotation parameters (ERP) obtained from satellite geodetic techniques is based on the precise determination of the satellite orbit. This paper focuses on the analysis of the impact of different orbit parameterizations on the accuracy of station coordinates and the ERPs derived from DORIS observations. In a series of experiments the DORIS data from the complete year 2011 were processed with different orbit model settings. First, the impact of precise modeling of the non-conservative forces on geodetic parameters was compared with results obtained with an empirical-stochastic modeling approach. Second, the temporal spacing of drag scaling parameters was tested. Third, the impact of estimating once-per-revolution harmonic accelerations in cross-track direction was analyzed. And fourth, two different approaches for solar radiation pressure (SRP) handling were compared, namely adjusting SRP scaling parameter or fixing it on pre-defined values. Our analyses confirm that the empirical-stochastic orbit modeling approach, which does not require satellite attitude information and macro models, results for most of the monitored station parameters in comparable accuracy as the dynamical model that employs precise non-conservative force modeling. However, the dynamical orbit model leads to a reduction of the RMS values for the estimated rotation pole coordinates by 17% for x-pole and 12% for y-pole. The experiments show that adjusting atmospheric drag scaling parameters each 30 min is appropriate for DORIS solutions. Moreover, it was shown that the adjustment of cross-track once-per-revolution empirical parameter increases the RMS of the estimated Earth rotation pole coordinates. With recent data it was however not possible to confirm the previously known high annual variation in the estimated geocenter z-translation series as well as its mitigation by fixing the SRP parameters on pre-defined values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Fract..2650019H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Fract..2650019H"><span>a Comparison Between Two Ols-Based Approaches to Estimating Urban Multifractal Parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Lin-Shan; Chen, Yan-Guang</p> <p></p> <p>Multifractal theory provides a new spatial analytical tool for urban studies, but many basic problems remain to be solved. Among various pending issues, the most significant one is how to obtain proper multifractal dimension spectrums. If an algorithm is improperly used, the parameter spectrums will be abnormal. This paper is devoted to investigating two ordinary least squares (OLS)-based approaches for estimating urban multifractal parameters. Using empirical study and comparative analysis, we demonstrate how to utilize the adequate linear regression to calculate multifractal parameters. The OLS regression analysis has two different approaches. One is that the intercept is fixed to zero, and the other is that the intercept is not limited. The results of comparative study show that the zero-intercept regression yields proper multifractal parameter spectrums within certain scale range of moment order, while the common regression method often leads to abnormal multifractal parameter values. A conclusion can be reached that fixing the intercept to zero is a more advisable regression method for multifractal parameters estimation, and the shapes of spectral curves and value ranges of fractal parameters can be employed to diagnose urban problems. This research is helpful for scientists to understand multifractal models and apply a more reasonable technique to multifractal parameter calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11547984','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11547984"><span>Mass balance for on-line alphakLa estimation in activated sludge oxidation ditch.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chatellier, P; Audic, J M</p> <p>2001-01-01</p> <p>The capacity of an aeration system to transfer oxygen to a given activated sludge oxidation ditch is characterised by the alphakLa parameter. This parameter is difficult to measure under normal plant working conditions. Usually this measurement involves off-gas techniques or static mass balance. Therefore an on-line technique has been developed and tested in order to evaluate alphakLa. This technique deduces alphakLa from a data analysis of low cost sensor measurement: two flow meters and one oxygen probe. It involves a dynamic mass balance applied to aeration cycles selected according to given criteria. This technique has been applied to a wastewater treatment plant during four years. Significant variations of the alphakLa values have been detected while the number of blowers changes. This technique has been applied to another plant during two months.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970040741','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970040741"><span>Spectral Analysis and Experimental Modeling of Ice Accretion Roughness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.</p> <p>1996-01-01</p> <p>A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880037803&hterms=sampling+techniques&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsampling%2Btechniques','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880037803&hterms=sampling+techniques&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsampling%2Btechniques"><span>Improved importance sampling technique for efficient simulation of digital communication systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lu, Dingqing; Yao, Kung</p> <p>1988-01-01</p> <p>A new, improved importance sampling (IIS) approach to simulation is considered. Some basic concepts of IS are introduced, and detailed evolutions of simulation estimation variances for Monte Carlo (MC) and IS simulations are given. The general results obtained from these evolutions are applied to the specific previously known conventional importance sampling (CIS) technique and the new IIS technique. The derivation for a linear system with no signal random memory is considered in some detail. For the CIS technique, the optimum input scaling parameter is found, while for the IIS technique, the optimum translation parameter is found. The results are generalized to a linear system with memory and signals. Specific numerical and simulation results are given which show the advantages of CIS over MC and IIS over CIS for simulations of digital communications systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12230179','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12230179"><span>A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Choi, D J; Park, H</p> <p>2001-11-01</p> <p>For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDL33003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDL33003M"><span>Effect of random errors in planar PIV data on pressure estimation in vortex dominated flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McClure, Jeffrey; Yarusevych, Serhiy</p> <p>2015-11-01</p> <p>The sensitivity of pressure estimation techniques from Particle Image Velocimetry (PIV) measurements to random errors in measured velocity data is investigated using the flow over a circular cylinder as a test case. Direct numerical simulations are performed for ReD = 100, 300 and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A range of random errors typical for PIV measurements is applied to synthetic PIV data extracted from numerical results. A parametric study is then performed using a number of common pressure estimation techniques. Optimal temporal and spatial resolutions are derived based on the sensitivity of the estimated pressure fields to the simulated random error in velocity measurements, and the results are compared to an optimization model derived from error propagation theory. It is shown that the reductions in spatial and temporal scales at higher Reynolds numbers leads to notable changes in the optimal pressure evaluation parameters. The effect of smaller scale wake structures is also quantified. The errors in the estimated pressure fields are shown to depend significantly on the pressure estimation technique employed. The results are used to provide recommendations for the use of pressure and force estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr41B8..685K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr41B8..685K"><span>Uav-Based Automatic Tree Growth Measurement for Biomass Estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karpina, M.; Jarząbek-Rychard, M.; Tymków, P.; Borkowski, A.</p> <p>2016-06-01</p> <p>Manual in-situ measurements of geometric tree parameters for the biomass volume estimation are time-consuming and economically non-effective. Photogrammetric techniques can be deployed in order to automate the measurement procedure. The purpose of the presented work is an automatic tree growth estimation based on Unmanned Aircraft Vehicle (UAV) imagery. The experiment was conducted in an agriculture test field with scots pine canopies. The data was collected using a Leica Aibotix X6V2 platform equipped with a Nikon D800 camera. Reference geometric parameters of selected sample plants were measured manually each week. In situ measurements were correlated with the UAV data acquisition. The correlation aimed at the investigation of optimal conditions for a flight and parameter settings for image acquisition. The collected images are processed in a state of the art tool resulting in a generation of dense 3D point clouds. The algorithm is developed in order to estimate geometric tree parameters from 3D points. Stem positions and tree tops are identified automatically in a cross section, followed by the calculation of tree heights. The automatically derived height values are compared to the reference measurements performed manually. The comparison allows for the evaluation of automatic growth estimation process. The accuracy achieved using UAV photogrammetry for tree heights estimation is about 5cm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5008843','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5008843"><span>Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zimmer, Christoph</p> <p>2016-01-01</p> <p>Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models. PMID:27583802</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5751594','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5751594"><span>Blind Compensation of I/Q Impairments in Wireless Transceivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Aziz, Mohsin; Ghannouchi, Fadhel M.; Helaoui, Mohamed</p> <p>2017-01-01</p> <p>The majority of techniques that deal with the mitigation of in-phase and quadrature-phase (I/Q) imbalance at the transmitter (pre-compensation) require long training sequences, reducing the throughput of the system. These techniques also require a feedback path, which adds more complexity and cost to the transmitter architecture. Blind estimation techniques are attractive for avoiding the use of long training sequences. In this paper, we propose a blind frequency-independent I/Q imbalance compensation method based on the maximum likelihood (ML) estimation of the imbalance parameters of a transceiver. A closed-form joint probability density function (PDF) for the imbalanced I and Q signals is derived and validated. ML estimation is then used to estimate the imbalance parameters using the derived joint PDF of the output I and Q signals. Various figures of merit have been used to evaluate the efficacy of the proposed approach using extensive computer simulations and measurements. Additionally, the bit error rate curves show the effectiveness of the proposed method in the presence of the wireless channel and Additive White Gaussian Noise. Real-world experimental results show an image rejection of greater than 30 dB as compared to the uncompensated system. This method has also been found to be robust in the presence of practical system impairments, such as time and phase delay mismatches. PMID:29257081</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22106144','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22106144"><span>Sparse Poisson noisy image deblurring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carlavan, Mikael; Blanc-Féraud, Laure</p> <p>2012-04-01</p> <p>Deblurring noisy Poisson images has recently been a subject of an increasing amount of works in many areas such as astronomy and biological imaging. In this paper, we focus on confocal microscopy, which is a very popular technique for 3-D imaging of biological living specimens that gives images with a very good resolution (several hundreds of nanometers), although degraded by both blur and Poisson noise. Deconvolution methods have been proposed to reduce these degradations, and in this paper, we focus on techniques that promote the introduction of an explicit prior on the solution. One difficulty of these techniques is to set the value of the parameter, which weights the tradeoff between the data term and the regularizing term. Only few works have been devoted to the research of an automatic selection of this regularizing parameter when considering Poisson noise; therefore, it is often set manually such that it gives the best visual results. We present here two recent methods to estimate this regularizing parameter, and we first propose an improvement of these estimators, which takes advantage of confocal images. Following these estimators, we secondly propose to express the problem of the deconvolution of Poisson noisy images as the minimization of a new constrained problem. The proposed constrained formulation is well suited to this application domain since it is directly expressed using the antilog likelihood of the Poisson distribution and therefore does not require any approximation. We show how to solve the unconstrained and constrained problems using the recent alternating-direction technique, and we present results on synthetic and real data using well-known priors, such as total variation and wavelet transforms. Among these wavelet transforms, we specially focus on the dual-tree complex wavelet transform and on the dictionary composed of curvelets and an undecimated wavelet transform.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992rtce.work...25E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992rtce.work...25E"><span>Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of (239)Pu due to non-nuclear detonation of high explosive</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.</p> <p>1992-10-01</p> <p>The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ESASP.668E..14B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ESASP.668E..14B"><span>A New Approach to Estimate Forest Parameters Using Dual-Baseline Pol-InSAR Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bai, L.; Hong, W.; Cao, F.; Zhou, Y.</p> <p>2009-04-01</p> <p>In POL-InSAR applications using ESPRIT technique, it is assumed that there exist stable scattering centres in the forest. However, the observations in forest severely suffer from volume and temporal decorrelation. The forest scatters are not stable as assumed. The obtained interferometric information is not accurate as expected. Besides, ESPRIT techniques could not identify the interferometric phases corresponding to the ground and the canopy. It provides multiple estimations for the height between two scattering centers due to phase unwrapping. Therefore, estimation errors are introduced to the forest height results. To suppress the two types of errors, we use the dual-baseline POL-InSAR data to estimate forest height. Dual-baseline coherence optimization is applied to obtain interferometric information of stable scattering centers in the forest. From the interferometric phases for different baselines, estimation errors caused by phase unwrapping is solved. Other estimation errors can be suppressed, too. Experiments are done to the ESAR L band POL-InSAR data. Experimental results show the proposed methods provide more accurate forest height than ESPRIT technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhyA..419..698S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhyA..419..698S"><span>Characterizing Detrended Fluctuation Analysis of multifractional Brownian motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Setty, V. A.; Sharma, A. S.</p> <p>2015-02-01</p> <p>The Hurst exponent (H) is widely used to quantify long range dependence in time series data and is estimated using several well known techniques. Recognizing its ability to remove trends the Detrended Fluctuation Analysis (DFA) is used extensively to estimate a Hurst exponent in non-stationary data. Multifractional Brownian motion (mBm) broadly encompasses a set of models of non-stationary data exhibiting time varying Hurst exponents, H(t) as against a constant H. Recently, there has been a growing interest in time dependence of H(t) and sliding window techniques have been used to estimate a local time average of the exponent. This brought to fore the ability of DFA to estimate scaling exponents in systems with time varying H(t) , such as mBm. This paper characterizes the performance of DFA on mBm data with linearly varying H(t) and further test the robustness of estimated time average with respect to data and technique related parameters. Our results serve as a bench-mark for using DFA as a sliding window estimator to obtain H(t) from time series data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830025667','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830025667"><span>Space shuttle propulsion parameter estimation using optional estimation techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1983-01-01</p> <p>A regression analyses on tabular aerodynamic data provided. A representative aerodynamic model for coefficient estimation. It also reduced the storage requirements for the "normal' model used to check out the estimation algorithms. The results of the regression analyses are presented. The computer routines for the filter portion of the estimation algorithm and the :"bringing-up' of the SRB predictive program on the computer was developed. For the filter program, approximately 54 routines were developed. The routines were highly subsegmented to facilitate overlaying program segments within the partitioned storage space on the computer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770006100','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770006100"><span>Improvements in aircraft extraction programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Balakrishnan, A. V.; Maine, R. E.</p> <p>1976-01-01</p> <p>Flight data from an F-8 Corsair and a Cessna 172 was analyzed to demonstrate specific improvements in the LRC parameter extraction computer program. The Cramer-Rao bounds were shown to provide a satisfactory relative measure of goodness of parameter estimates. It was not used as an absolute measure due to an inherent uncertainty within a multiplicative factor, traced in turn to the uncertainty in the noise bandwidth in the statistical theory of parameter estimation. The measure was also derived on an entirely nonstatistical basis, yielding thereby also an interpretation of the significance of off-diagonal terms in the dispersion matrix. The distinction between coefficients as linear and non-linear was shown to be important in its implication to a recommended order of parameter iteration. Techniques of improving convergence generally, were developed, and tested out on flight data. In particular, an easily implemented modification incorporating a gradient search was shown to improve initial estimates and thus remove a common cause for lack of convergence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740010927','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740010927"><span>Modern control concepts in hydrology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Duong, N.; Johnson, G. R.; Winn, C. B.</p> <p>1974-01-01</p> <p>Two approaches to an identification problem in hydrology are presented based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time invariant or time dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and conform with results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second, by using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950012715','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950012715"><span>The Accuracy of Parameter Estimation in System Identification of Noisy Aircraft Load Measurement. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kong, Jeffrey</p> <p>1994-01-01</p> <p>This thesis focuses on the subject of the accuracy of parameter estimation and system identification techniques. Motivated by a complicated load measurement from NASA Dryden Flight Research Center, advanced system identification techniques are needed. The objective of this problem is to accurately predict the load experienced by the aircraft wing structure during flight determined from a set of calibrated load and gage response relationship. We can then model the problem as a black box input-output system identification from which the system parameter has to be estimated. Traditional LS (Least Square) techniques and the issues of noisy data and model accuracy are addressed. A statistical bound reflecting the change in residual is derived in order to understand the effects of the perturbations on the data. Due to the intrinsic nature of the LS problem, LS solution faces the dilemma of the trade off between model accuracy and noise sensitivity. A method of conflicting performance indices is presented, thus allowing us to improve the noise sensitivity while at the same time configuring the degredation of the model accuracy. SVD techniques for data reduction are studied and the equivalence of the Correspondence Analysis (CA) and Total Least Squares Criteria are proved. We also looked at nonlinear LS problems with NASA F-111 data set as an example. Conventional methods are neither easily applicable nor suitable for the specific load problem since the exact model of the system is unknown. Neural Network (NN) does not require prior information on the model of the system. This robustness motivated us to apply the NN techniques on our load problem. Simulation results for the NN methods used in both the single load and the 'warning signal' problems are both useful and encouraging. The performance of the NN (for single load estimate) is better than the LS approach, whereas no conventional approach was tried for the 'warning signals' problems. The NN design methodology is also presented. The use of SVD, CA and Collinearity Index methods are used to reduce the number of neurons in a layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvL.112d0406F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvL.112d0406F"><span>Weak Value Amplification is Suboptimal for Estimation and Detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferrie, Christopher; Combes, Joshua</p> <p>2014-01-01</p> <p>We show by using statistically rigorous arguments that the technique of weak value amplification does not perform better than standard statistical techniques for the tasks of single parameter estimation and signal detection. Specifically, we prove that postselection, a necessary ingredient for weak value amplification, decreases estimation accuracy and, moreover, arranging for anomalously large weak values is a suboptimal strategy. In doing so, we explicitly provide the optimal estimator, which in turn allows us to identify the optimal experimental arrangement to be the one in which all outcomes have equal weak values (all as small as possible) and the initial state of the meter is the maximal eigenvalue of the square of the system observable. Finally, we give precise quantitative conditions for when weak measurement (measurements without postselection or anomalously large weak values) can mitigate the effect of uncharacterized technical noise in estimation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGeod..85..377H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGeod..85..377H"><span>VLBI-derived troposphere parameters during CONT08</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heinkelmann, R.; Böhm, J.; Bolotin, S.; Engelhardt, G.; Haas, R.; Lanotte, R.; MacMillan, D. S.; Negusini, M.; Skurikhina, E.; Titov, O.; Schuh, H.</p> <p>2011-07-01</p> <p>Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays ( ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12-26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6 mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3 mm (unweighted), 4.4 mm (diagonal), 8.6 mm [variance component (VC) estimation], and 8.6 mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA557230','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA557230"><span>Target Classification of Canonical Scatterers Using Classical Estimation and Dictionary Based Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-03-22</p> <p>shapes tested , when the objective parameter set was confined to a dictionary’s de - fined parameter space. These physical characteristics included...8 2.3 Hypothesis Testing and Detection Theory . . . . . . . . . . . . . . . 8 2.4 3-D SAR Scattering Models...basis pursuit de -noising (BPDN) algorithm is chosen to perform extraction due to inherent efficiency and error tolerance. Multiple shape dictionaries</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010IJTIA.130..699Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010IJTIA.130..699Y"><span>Universal Parameter Measurement and Sensorless Vector Control of Induction and Permanent Magnet Synchronous Motors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, Shu; Ara, Takahiro</p> <p></p> <p>Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830041502&hterms=Dd&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DDd','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830041502&hterms=Dd&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DDd"><span>Real time estimation of ship motions using Kalman filtering techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Triantafyllou, M. S.; Bodson, M.; Athans, M.</p> <p>1983-01-01</p> <p>The estimation of the heave, pitch, roll, sway, and yaw motions of a DD-963 destroyer is studied, using Kalman filtering techniques, for application in VTOL aircraft landing. The governing equations are obtained from hydrodynamic considerations in the form of linear differential equations with frequency dependent coefficients. In addition, nonminimum phase characteristics are obtained due to the spatial integration of the water wave forces. The resulting transfer matrix function is irrational and nonminimum phase. The conditions for a finite-dimensional approximation are considered and the impact of the various parameters is assessed. A detailed numerical application for a DD-963 destroyer is presented and simulations of the estimations obtained from Kalman filters are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29410225','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29410225"><span>Evaluation of an S-system root-finding method for estimating parameters in a metabolic reaction model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Iwata, Michio; Miyawaki-Kuwakado, Atsuko; Yoshida, Erika; Komori, Soichiro; Shiraishi, Fumihide</p> <p>2018-02-02</p> <p>In a mathematical model, estimation of parameters from time-series data of metabolic concentrations in cells is a challenging task. However, it seems that a promising approach for such estimation has not yet been established. Biochemical Systems Theory (BST) is a powerful methodology to construct a power-law type model for a given metabolic reaction system and to then characterize it efficiently. In this paper, we discuss the use of an S-system root-finding method (S-system method) to estimate parameters from time-series data of metabolite concentrations. We demonstrate that the S-system method is superior to the Newton-Raphson method in terms of the convergence region and iteration number. We also investigate the usefulness of a translocation technique and a complex-step differentiation method toward the practical application of the S-system method. The results indicate that the S-system method is useful to construct mathematical models for a variety of metabolic reaction networks. Copyright © 2018 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/23247','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/23247"><span>Development of techniques to quantify effective impervious cover.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-09-01</p> <p>Practitioners responsible for the design and implementation of stormwater management practices rely : heavily on estimates of impervious area in a watershed. However, the most important parameter in determining : actual urban runoff is the effecti...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850007942','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850007942"><span>Proceedings of the Second Annual Symposium on Mathematical Pattern Recognition and Image Analysis Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guseman, L. F., Jr. (Principal Investigator)</p> <p>1984-01-01</p> <p>Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/m067index.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/m067index.php"><span>Residential Demand Module - NEMS Documentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2017-01-01</p> <p>Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MSSP..102..180M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MSSP..102..180M"><span>Estimation of beam material random field properties via sensitivity-based model updating using experimental frequency response functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Machado, M. R.; Adhikari, S.; Dos Santos, J. M. C.; Arruda, J. R. F.</p> <p>2018-03-01</p> <p>Structural parameter estimation is affected not only by measurement noise but also by unknown uncertainties which are present in the system. Deterministic structural model updating methods minimise the difference between experimentally measured data and computational prediction. Sensitivity-based methods are very efficient in solving structural model updating problems. Material and geometrical parameters of the structure such as Poisson's ratio, Young's modulus, mass density, modal damping, etc. are usually considered deterministic and homogeneous. In this paper, the distributed and non-homogeneous characteristics of these parameters are considered in the model updating. The parameters are taken as spatially correlated random fields and are expanded in a spectral Karhunen-Loève (KL) decomposition. Using the KL expansion, the spectral dynamic stiffness matrix of the beam is expanded as a series in terms of discretized parameters, which can be estimated using sensitivity-based model updating techniques. Numerical and experimental tests involving a beam with distributed bending rigidity and mass density are used to verify the proposed method. This extension of standard model updating procedures can enhance the dynamic description of structural dynamic models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014MNRAS.437.3918A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014MNRAS.437.3918A"><span>Comparison of sampling techniques for Bayesian parameter estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allison, Rupert; Dunkley, Joanna</p> <p>2014-02-01</p> <p>The posterior probability distribution for a set of model parameters encodes all that the data have to tell us in the context of a given model; it is the fundamental quantity for Bayesian parameter estimation. In order to infer the posterior probability distribution we have to decide how to explore parameter space. Here we compare three prescriptions for how parameter space is navigated, discussing their relative merits. We consider Metropolis-Hasting sampling, nested sampling and affine-invariant ensemble Markov chain Monte Carlo (MCMC) sampling. We focus on their performance on toy-model Gaussian likelihoods and on a real-world cosmological data set. We outline the sampling algorithms themselves and elaborate on performance diagnostics such as convergence time, scope for parallelization, dimensional scaling, requisite tunings and suitability for non-Gaussian distributions. We find that nested sampling delivers high-fidelity estimates for posterior statistics at low computational cost, and should be adopted in favour of Metropolis-Hastings in many cases. Affine-invariant MCMC is competitive when computing clusters can be utilized for massive parallelization. Affine-invariant MCMC and existing extensions to nested sampling naturally probe multimodal and curving distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AtmEn..40.7546S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AtmEn..40.7546S"><span>Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saylor, Rick D.; Edgerton, Eric S.; Hartsell, Benjamin E.</p> <p></p> <p>A variety of linear regression techniques and simple slope estimators are evaluated for use in the elemental carbon (EC) tracer method of secondary organic carbon (OC) estimation. Linear regression techniques based on ordinary least squares are not suitable for situations where measurement uncertainties exist in both regressed variables. In the past, regression based on the method of Deming [1943. Statistical Adjustment of Data. Wiley, London] has been the preferred choice for EC tracer method parameter estimation. In agreement with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], we find that in the limited case where primary non-combustion OC (OC non-comb) is assumed to be zero, the ratio of averages (ROA) approach provides a stable and reliable estimate of the primary OC-EC ratio, (OC/EC) pri. In contrast with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], however, we find that the optimal use of Deming regression (and the more general York et al. [2004. Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics 72, 367-375] regression) provides excellent results as well. For the more typical case where OC non-comb is allowed to obtain a non-zero value, we find that regression based on the method of York is the preferred choice for EC tracer method parameter estimation. In the York regression technique, detailed information on uncertainties in the measurement of OC and EC is used to improve the linear best fit to the given data. If only limited information is available on the relative uncertainties of OC and EC, then Deming regression should be used. On the other hand, use of ROA in the estimation of secondary OC, and thus the assumption of a zero OC non-comb value, generally leads to an overestimation of the contribution of secondary OC to total measured OC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.436D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.436D"><span>Probability Distribution Extraction from TEC Estimates based on Kernel Density Estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Demir, Uygar; Toker, Cenk; Çenet, Duygu</p> <p>2016-07-01</p> <p>Statistical analysis of the ionosphere, specifically the Total Electron Content (TEC), may reveal important information about its temporal and spatial characteristics. One of the core metrics that express the statistical properties of a stochastic process is its Probability Density Function (pdf). Furthermore, statistical parameters such as mean, variance and kurtosis, which can be derived from the pdf, may provide information about the spatial uniformity or clustering of the electron content. For example, the variance differentiates between a quiet ionosphere and a disturbed one, whereas kurtosis differentiates between a geomagnetic storm and an earthquake. Therefore, valuable information about the state of the ionosphere (and the natural phenomena that cause the disturbance) can be obtained by looking at the statistical parameters. In the literature, there are publications which try to fit the histogram of TEC estimates to some well-known pdf.s such as Gaussian, Exponential, etc. However, constraining a histogram to fit to a function with a fixed shape will increase estimation error, and all the information extracted from such pdf will continue to contain this error. In such techniques, it is highly likely to observe some artificial characteristics in the estimated pdf which is not present in the original data. In the present study, we use the Kernel Density Estimation (KDE) technique to estimate the pdf of the TEC. KDE is a non-parametric approach which does not impose a specific form on the TEC. As a result, better pdf estimates that almost perfectly fit to the observed TEC values can be obtained as compared to the techniques mentioned above. KDE is particularly good at representing the tail probabilities, and outliers. We also calculate the mean, variance and kurtosis of the measured TEC values. The technique is applied to the ionosphere over Turkey where the TEC values are estimated from the GNSS measurement from the TNPGN-Active (Turkish National Permanent GNSS Network) network. This study is supported by by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A13L3328C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A13L3328C"><span>Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.</p> <p>2014-12-01</p> <p>In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28946991','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28946991"><span>Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Soojeong; Chang, Joon-Hyuk</p> <p>2017-11-01</p> <p>This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements. This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage. The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57  mmHg, respectively. These indicate that the proposed method actually enhances the performance by 9.18% and 10.88% compared with the DBN-DNN single estimator. The proposed methodology improves the accuracy of BP estimation and reduces the uncertainty for BP estimation. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9613E..0XM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9613E..0XM"><span>Determining index of refraction from polarimetric hyperspectral radiance measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Jacob A.; Gross, Kevin C.</p> <p>2015-09-01</p> <p>Polarimetric hyperspectral imaging (P-HSI) combines two of the most common remote sensing modalities. This work leverages the combination of these techniques to improve material classification. Classifying and identifying materials requires parameters which are invariant to changing viewing conditions, and most often a material's reflectivity or emissivity is used. Measuring these most often requires assumptions be made about the material and atmospheric conditions. Combining both polarimetric and hyperspectral imaging, we propose a method to remotely estimate the index of refraction of a material. In general, this is an underdetermined problem because both the real and imaginary components of index of refraction are unknown at every spectral point. By modeling the spectral variation of the index of refraction using a few parameters, however, the problem can be made overdetermined. A number of different functions can be used to describe this spectral variation, and some are discussed here. Reducing the number of spectral parameters to fit allows us to add parameters which estimate atmospheric downwelling radiance and transmittance. Additionally, the object temperature is added as a fit parameter. The set of these parameters that best replicate the measured data is then found using a bounded Nelder-Mead simplex search algorithm. Other search algorithms are also examined and discussed. Results show that this technique has promise but also some limitations, which are the subject of ongoing work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9028M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9028M"><span>Method-independent, Computationally Frugal Convergence Testing for Sensitivity Analysis Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mai, Juliane; Tolson, Bryan</p> <p>2017-04-01</p> <p>The increasing complexity and runtime of environmental models lead to the current situation that the calibration of all model parameters or the estimation of all of their uncertainty is often computationally infeasible. Hence, techniques to determine the sensitivity of model parameters are used to identify most important parameters or model processes. All subsequent model calibrations or uncertainty estimation procedures focus then only on these subsets of parameters and are hence less computational demanding. While the examination of the convergence of calibration and uncertainty methods is state-of-the-art, the convergence of the sensitivity methods is usually not checked. If any, bootstrapping of the sensitivity results is used to determine the reliability of the estimated indexes. Bootstrapping, however, might as well become computationally expensive in case of large model outputs and a high number of bootstraps. We, therefore, present a Model Variable Augmentation (MVA) approach to check the convergence of sensitivity indexes without performing any additional model run. This technique is method- and model-independent. It can be applied either during the sensitivity analysis (SA) or afterwards. The latter case enables the checking of already processed sensitivity indexes. To demonstrate the method independency of the convergence testing method, we applied it to three widely used, global SA methods: the screening method known as Morris method or Elementary Effects (Morris 1991, Campolongo et al., 2000), the variance-based Sobol' method (Solbol' 1993, Saltelli et al. 2010) and a derivative-based method known as Parameter Importance index (Goehler et al. 2013). The new convergence testing method is first scrutinized using 12 analytical benchmark functions (Cuntz & Mai et al. 2015) where the true indexes of aforementioned three methods are known. This proof of principle shows that the method reliably determines the uncertainty of the SA results when different budgets are used for the SA. Subsequently, we focus on the model-independency by testing the frugal method using the hydrologic model mHM (www.ufz.de/mhm) with about 50 model parameters. The results show that the new frugal method is able to test the convergence and therefore the reliability of SA results in an efficient way. The appealing feature of this new technique is the necessity of no further model evaluation and therefore enables checking of already processed (and published) sensitivity results. This is one step towards reliable and transferable, published sensitivity results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22493015-accurate-determination-electronic-transport-properties-silicon-wafers-nonlinear-photocarrier-radiometry-multiple-pump-beam-sizes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22493015-accurate-determination-electronic-transport-properties-silicon-wafers-nonlinear-photocarrier-radiometry-multiple-pump-beam-sizes"><span>Accurate determination of electronic transport properties of silicon wafers by nonlinear photocarrier radiometry with multiple pump beam sizes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@uestc.ac.cn</p> <p>2015-12-07</p> <p>In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtainedmore » by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26974715','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26974715"><span>Dynamic Parameter Identification of Subject-Specific Body Segment Parameters Using Robotics Formalism: Case Study Head Complex.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Díaz-Rodríguez, Miguel; Valera, Angel; Page, Alvaro; Besa, Antonio; Mata, Vicente</p> <p>2016-05-01</p> <p>Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031672','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031672"><span>A comparison of conventional capture versus PIT reader techniques for estimating survival and capture probabilities of big brown bats (Eptesicus fuscus)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ellison, L.E.; O'Shea, T.J.; Neubaum, D.J.; Neubaum, M.A.; Pearce, R.D.; Bowen, R.A.</p> <p>2007-01-01</p> <p>We compared conventional capture (primarily mist nets and harp traps) and passive integrated transponder (PIT) tagging techniques for estimating capture and survival probabilities of big brown bats (Eptesicus fuscus) roosting in buildings in Fort Collins, Colorado. A total of 987 female adult and juvenile bats were captured and marked by subdermal injection of PIT tags during the summers of 2001-2005 at five maternity colonies in buildings. Openings to roosts were equipped with PIT hoop-style readers, and exit and entry of bats were passively monitored on a daily basis throughout the summers of 2002-2005. PIT readers 'recaptured' adult and juvenile females more often than conventional capture events at each roost. Estimates of annual capture probabilities for all five colonies were on average twice as high when estimated from PIT reader data (P?? = 0.93-1.00) than when derived from conventional techniques (P?? = 0.26-0.66), and as a consequence annual survival estimates were more precisely estimated when using PIT reader encounters. Short-term, daily capture estimates were also higher using PIT readers than conventional captures. We discuss the advantages and limitations of using PIT tags and passive encounters with hoop readers vs. conventional capture techniques for estimating these vital parameters in big brown bats. ?? Museum and Institute of Zoology PAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990104289','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990104289"><span>Recent Improvements in Estimating Convective and Stratiform Rainfall in Amazonia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Negri, Andrew J.</p> <p>1999-01-01</p> <p>In this paper we present results from the application of a satellite infrared (IR) technique for estimating rainfall over northern South America. Our main objectives are to examine the diurnal variability of rainfall and to investigate the relative contributions from the convective and stratiform components. We apply the technique of Anagnostou et al (1999). In simple functional form, the estimated rain area A(sub rain) may be expressed as: A(sub rain) = f(A(sub mode),T(sub mode)), where T(sub mode) is the mode temperature of a cloud defined by 253 K, and A(sub mode) is the area encompassed by T(sub mode). The technique was trained by a regression between coincident microwave estimates from the Goddard Profiling (GPROF) algorithm (Kummerow et al, 1996) applied to SSM/I data and GOES IR (11 microns) observations. The apportionment of the rainfall into convective and stratiform components is based on the microwave technique described by Anagnostou and Kummerow (1997). The convective area from this technique was regressed against an IR structure parameter (the Convective Index) defined by Anagnostou et al (1999). Finally, rainrates are assigned to the Am.de proportional to (253-temperature), with different rates for the convective and stratiform</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790019745','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790019745"><span>Local neighborhood transition probability estimation and its use in contextual classification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chittineni, C. B.</p> <p>1979-01-01</p> <p>The problem of incorporating spatial or contextual information into classifications is considered. A simple model that describes the spatial dependencies between the neighboring pixels with a single parameter, Theta, is presented. Expressions are derived for updating the posteriori probabilities of the states of nature of the pattern under consideration using information from the neighboring patterns, both for spatially uniform context and for Markov dependencies in terms of Theta. Techniques for obtaining the optimal value of the parameter Theta as a maximum likelihood estimate from the local neighborhood of the pattern under consideration are developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120014596','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120014596"><span>Using Indirect Turbulence Measurements for Real-Time Parameter Estimation in Turbulent Air</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Martos, Borja; Morelli, Eugene A.</p> <p>2012-01-01</p> <p>The use of indirect turbulence measurements for real-time estimation of parameters in a linear longitudinal dynamics model in atmospheric turbulence was studied. It is shown that measuring the atmospheric turbulence makes it possible to treat the turbulence as a measured explanatory variable in the parameter estimation problem. Commercial off-the-shelf sensors were researched and evaluated, then compared to air data booms. Sources of colored noise in the explanatory variables resulting from typical turbulence measurement techniques were identified and studied. A major source of colored noise in the explanatory variables was identified as frequency dependent upwash and time delay. The resulting upwash and time delay corrections were analyzed and compared to previous time shift dynamic modeling research. Simulation data as well as flight test data in atmospheric turbulence were used to verify the time delay behavior. Recommendations are given for follow on flight research and instrumentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5928923','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5928923"><span>ARMA models for earthquake ground motions. Seismic safety margins research program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.</p> <p>1981-02-01</p> <p>Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulatingmore » earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........38O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........38O"><span>Estimation of kinetic parameters from list-mode data using an indirect apporach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortiz, Joseph Christian</p> <p></p> <p>This dissertation explores the possibility of using an imaging approach to model classical pharmacokinetic (PK) problems. The kinetic parameters which describe the uptake rates of a drug within a biological system, are parameters of interest. Knowledge of the drug uptake in a system is useful in expediting the drug development process, as well as providing a dosage regimen for patients. Traditionally, the uptake rate of a drug in a system is obtained via sampling the concentration of the drug in a central compartment, usually the blood, and fitting the data to a curve. In a system consisting of multiple compartments, the number of kinetic parameters is proportional to the number of compartments, and in classical PK experiments, the number of identifiable parameters is less than the total number of parameters. Using an imaging approach to model classical PK problems, the support region of each compartment within the system will be exactly known, and all the kinetic parameters are uniquely identifiable. To solve for the kinetic parameters, an indirect approach, which is a two part process, was used. First the compartmental activity was obtained from data, and next the kinetic parameters were estimated. The novel aspect of the research is using listmode data to obtain the activity curves from a system as opposed to a traditional binned approach. Using techniques from information theoretic learning, particularly kernel density estimation, a non-parametric probability density function for the voltage outputs on each photo-multiplier tube, for each event, was generated on the fly, which was used in a least squares optimization routine to estimate the compartmental activity. The estimability of the activity curves for varying noise levels as well as time sample densities were explored. Once an estimate for the activity was obtained, the kinetic parameters were obtained using multiple cost functions, and the compared to each other using the mean squared error as the figure of merit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A21A0014S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A21A0014S"><span>Validation of estimation algorithm of dual frequency precipitation radar (DPR) onboard on the GPM satellite, using in situ data over the Mantaro valley, Peruvian Andes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silva, Y.; Villalobos, E.; Chavez, S. P.</p> <p>2016-12-01</p> <p>The measurement of precipitation by remote sensing requires comparison and validation with in situ observations. Therefore, in the present study we validate the estimation of precipitation from the dual frequency radar (DPR) onboard the Global Precipitation Measurement (GPM) core satellite, in particular the parameters a and b used by the empirical relationship between the measured reflectivity factor (Z) by the DPR and estimated rate rain (R) and we compare them with the parameters calculated from an optical disdrometer and filter paper technique. The product level is 2A from the DPR which consists of two radars of precipitation and cloud (Ku and Ka band) which provides three-dimensional information of hydrometers with high horizontal resolution (0.05 degrees). The analyzed data was from November 2014 to March 2015, the wet season in the study region. The rainfall measured by the filter paper constrain the analysis to the stratiform type, so we have selected the same type of rainfall for the DPR and the disdrometer, based in rainfall intensity less than 1 mm/h. The obteined parameter values are: for the Ku-band radar (a=0.200 and b=0.669), Ka-band radar (a=0.015 and b=0.675), for filter paper technique (a=0.017 and b=0.671) and disdrometer (a=0.027 and b=0.698). These results show that there are a slight differences in the b parameter, while the differences are greater for the a parameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4818102','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4818102"><span>Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Carmena, Jose M.</p> <p>2016-01-01</p> <p>Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.480...42F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.480...42F"><span>Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: Evaluation at Sakurajima Volcano, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn; Prata, Fred; Kazahaya, Ryunosuke; Nakamichi, Haruhisa; Iguchi, Masato</p> <p>2017-12-01</p> <p>Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Here we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan. Six infrasound stations deployed from 12-20 February 2015 recorded the explosions. We compute numerical Green's functions using 3-D Finite Difference Time Domain modeling and a high-resolution digital elevation model. The inversion, assuming a simple acoustic monopole source, provides realistic eruption masses and excellent fit to the data for the majority of the explosions. The inversion results are compared to independent eruption masses derived from ground-based ash collection and volcanic gas measurements. Assuming realistic flow densities, our infrasound-derived eruption masses for ash-rich eruptions compare favorably to the ground-based estimates, with agreement ranging from within a factor of two to one order of magnitude. Uncertainties in the time-dependent flow density and acoustic propagation likely contribute to the mismatch between the methods. Our results suggest that realistic and accurate infrasound-based eruption mass and mass flow rate estimates can be computed using the method employed here. If accurate volcanic flow parameters are known, application of this technique could be broadly applied to enable near real-time calculation of eruption mass flow rates and total masses. These critical input parameters for volcanic eruption modeling and monitoring are not currently available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/55205','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/55205"><span>Using genetic algorithms to optimize k-Nearest Neighbors configurations for use with airborne laser scanning data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Ronald E. McRoberts; Grant M. Domke; Qi Chen; Erik Næsset; Terje Gobakken</p> <p>2016-01-01</p> <p>The relatively small sampling intensities used by national forest inventories are often insufficient to produce the desired precision for estimates of population parameters unless the estimation process is augmented with auxiliary information, usually in the form of remotely sensed data. The k-Nearest Neighbors (k-NN) technique is a non-parametric,multivariate approach...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840059555&hterms=bases+data&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbases%2Bdata','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840059555&hterms=bases+data&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbases%2Bdata"><span>A program to form a multidisciplinary data base and analysis for dynamic systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, L. W.; Suit, W. T.; Mayo, M. H.</p> <p>1984-01-01</p> <p>Diverse sets of experimental data and analysis programs have been assembled for the purpose of facilitating research in systems identification, parameter estimation and state estimation techniques. The data base analysis programs are organized to make it easy to compare alternative approaches. Additional data and alternative forms of analysis will be included as they become available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Time+AND+series&pg=5&id=EJ857034','ERIC'); return false;" href="https://eric.ed.gov/?q=Time+AND+series&pg=5&id=EJ857034"><span>State-Space Modeling of Dynamic Psychological Processes via the Kalman Smoother Algorithm: Rationale, Finite Sample Properties, and Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Song, Hairong; Ferrer, Emilio</p> <p>2009-01-01</p> <p>This article presents a state-space modeling (SSM) technique for fitting process factor analysis models directly to raw data. The Kalman smoother via the expectation-maximization algorithm to obtain maximum likelihood parameter estimates is used. To examine the finite sample properties of the estimates in SSM when common factors are involved, a…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010002099','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010002099"><span>Results From F-18B Stability and Control Parameter Estimation Flight Tests at High Dynamic Pressures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moes, Timothy R.; Noffz, Gregory K.; Iliff, Kenneth W.</p> <p>2000-01-01</p> <p>A maximum-likelihood output-error parameter estimation technique has been used to obtain stability and control derivatives for the NASA F-18B Systems Research Aircraft. This work has been performed to support flight testing of the active aeroelastic wing (AAW) F-18A project. The goal of this research is to obtain baseline F-18 stability and control derivatives that will form the foundation of the aerodynamic model for the AAW aircraft configuration. Flight data have been obtained at Mach numbers between 0.85 and 1.30 and at dynamic pressures ranging between 600 and 1500 lbf/sq ft. At each test condition, longitudinal and lateral-directional doublets have been performed using an automated onboard excitation system. The doublet maneuver consists of a series of single-surface inputs so that individual control-surface motions cannot be correlated with other control-surface motions. Flight test results have shown that several stability and control derivatives are significantly different than prescribed by the F-18B aerodynamic model. This report defines the parameter estimation technique used, presents stability and control derivative results, compares the results with predictions based on the current F-18B aerodynamic model, and shows improvements to the nonlinear simulation using updated derivatives from this research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4239908','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4239908"><span>Estimation of Alpine Skier Posture Using Machine Learning Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nemec, Bojan; Petrič, Tadej; Babič, Jan; Supej, Matej</p> <p>2014-01-01</p> <p>High precision Global Navigation Satellite System (GNSS) measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier's neck. A key issue is how to estimate other more relevant parameters of the skier's body, like the center of mass (COM) and ski trajectories. Previously, these parameters were estimated by modeling the skier's body with an inverted-pendulum model that oversimplified the skier's body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier's body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing. PMID:25313492</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26236735','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26236735"><span>Echocardiographic Evaluation of Left Atrial Mechanics: Function, History, Novel Techniques, Advantages, and Pitfalls.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leischik, Roman; Littwitz, Henning; Dworrak, Birgit; Garg, Pankaj; Zhu, Meihua; Sahn, David J; Horlitz, Marc</p> <p>2015-01-01</p> <p>Left atrial (LA) functional analysis has an established role in assessing left ventricular diastolic function. The current standard echocardiographic parameters used to study left ventricular diastolic function include pulsed-wave Doppler mitral inflow analysis, tissue Doppler imaging measurements, and LA dimension estimation. However, the above-mentioned parameters do not directly quantify LA performance. Deformation studies using strain and strain-rate imaging to assess LA function were validated in previous research, but this technique is not currently used in routine clinical practice. This review discusses the history, importance, and pitfalls of strain technology for the analysis of LA mechanics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JARS...11d6008S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JARS...11d6008S"><span>Estimation of both optical and nonoptical surface water quality parameters using Landsat 8 OLI imagery and statistical techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharaf El Din, Essam; Zhang, Yun</p> <p>2017-10-01</p> <p>Traditional surface water quality assessment is costly, labor intensive, and time consuming; however, remote sensing has the potential to assess surface water quality because of its spatiotemporal consistency. Therefore, estimating concentrations of surface water quality parameters (SWQPs) from satellite imagery is essential. Remote sensing estimation of nonoptical SWQPs, such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), and dissolved oxygen (DO), has not yet been performed because they are less likely to affect signals measured by satellite sensors. However, concentrations of nonoptical variables may be correlated with optical variables, such as turbidity and total suspended sediments, which do affect the reflected radiation. In this context, an indirect relationship between satellite multispectral data and COD, BOD, and DO can be assumed. Therefore, this research attempts to develop an integrated Landsat 8 band ratios and stepwise regression to estimate concentrations of both optical and nonoptical SWQPs. Compared with previous studies, a significant correlation between Landsat 8 surface reflectance and concentrations of SWQPs was achieved and the obtained coefficient of determination (R2)>0.85. These findings demonstrated the possibility of using our technique to develop models to estimate concentrations of SWQPs and to generate spatiotemporal maps of SWQPs from Landsat 8 imagery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4452010','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4452010"><span>Semiparametric Estimation of the Impacts of Longitudinal Interventions on Adolescent Obesity using Targeted Maximum-Likelihood: Accessible Estimation with the ltmle Package</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Decker, Anna L.; Hubbard, Alan; Crespi, Catherine M.; Seto, Edmund Y.W.; Wang, May C.</p> <p>2015-01-01</p> <p>While child and adolescent obesity is a serious public health concern, few studies have utilized parameters based on the causal inference literature to examine the potential impacts of early intervention. The purpose of this analysis was to estimate the causal effects of early interventions to improve physical activity and diet during adolescence on body mass index (BMI), a measure of adiposity, using improved techniques. The most widespread statistical method in studies of child and adolescent obesity is multi-variable regression, with the parameter of interest being the coefficient on the variable of interest. This approach does not appropriately adjust for time-dependent confounding, and the modeling assumptions may not always be met. An alternative parameter to estimate is one motivated by the causal inference literature, which can be interpreted as the mean change in the outcome under interventions to set the exposure of interest. The underlying data-generating distribution, upon which the estimator is based, can be estimated via a parametric or semi-parametric approach. Using data from the National Heart, Lung, and Blood Institute Growth and Health Study, a 10-year prospective cohort study of adolescent girls, we estimated the longitudinal impact of physical activity and diet interventions on 10-year BMI z-scores via a parameter motivated by the causal inference literature, using both parametric and semi-parametric estimation approaches. The parameters of interest were estimated with a recently released R package, ltmle, for estimating means based upon general longitudinal treatment regimes. We found that early, sustained intervention on total calories had a greater impact than a physical activity intervention or non-sustained interventions. Multivariable linear regression yielded inflated effect estimates compared to estimates based on targeted maximum-likelihood estimation and data-adaptive super learning. Our analysis demonstrates that sophisticated, optimal semiparametric estimation of longitudinal treatment-specific means via ltmle provides an incredibly powerful, yet easy-to-use tool, removing impediments for putting theory into practice. PMID:26046009</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910069004&hterms=binary+search&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbinary%2Bsearch','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910069004&hterms=binary+search&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbinary%2Bsearch"><span>Searches for millisecond pulsations in low-mass X-ray binaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wood, K. S.; Hertz, P.; Norris, J. P.; Vaughan, B. A.; Michelson, P. F.; Mitsuda, K.; Lewin, W. H. G.; Van Paradijs, J.; Penninx, W.; Van Der Klis, M.</p> <p>1991-01-01</p> <p>High-sensitivity search techniques for millisecond periods are presented and applied to data from the Japanese satellite Ginga and HEAO 1. The search is optimized for pulsed signals whose period, drift rate, and amplitude conform with what is expected for low-class X-ray binary (LMXB) sources. Consideration is given to how the current understanding of LMXBs guides the search strategy and sets these parameter limits. An optimized one-parameter coherence recovery technique (CRT) developed for recovery of phase coherence is presented. This technique provides a large increase in sensitivity over the method of incoherent summation of Fourier power spectra. The range of spin periods expected from LMXB phenomenology is discussed, the necessary constraints on the application of CRT are described in terms of integration time and orbital parameters, and the residual power unrecovered by the quadratic approximation for realistic cases is estimated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750009298','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750009298"><span>Input design for identification of aircraft stability and control derivatives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gupta, N. K.; Hall, W. E., Jr.</p> <p>1975-01-01</p> <p>An approach for designing inputs to identify stability and control derivatives from flight test data is presented. This approach is based on finding inputs which provide the maximum possible accuracy of derivative estimates. Two techniques of input specification are implemented for this objective - a time domain technique and a frequency domain technique. The time domain technique gives the control input time history and can be used for any allowable duration of test maneuver, including those where data lengths can only be of short duration. The frequency domain technique specifies the input frequency spectrum, and is best applied for tests where extended data lengths, much longer than the time constants of the modes of interest, are possible. These technqiues are used to design inputs to identify parameters in longitudinal and lateral linear models of conventional aircraft. The constraints of aircraft response limits, such as on structural loads, are realized indirectly through a total energy constraint on the input. Tests with simulated data and theoretical predictions show that the new approaches give input signals which can provide more accurate parameter estimates than can conventional inputs of the same total energy. Results obtained indicate that the approach has been brought to the point where it should be used on flight tests for further evaluation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27665084','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27665084"><span>Characterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feng, Yuan; Lee, Chung-Hao; Sun, Lining; Ji, Songbai; Zhao, Xuefeng</p> <p>2017-01-01</p> <p>Characterizing the mechanical properties of white matter is important to understand and model brain development and injury. With embedded aligned axonal fibers, white matter is typically modeled as a transversely isotropic material. However, most studies characterize the white matter tissue using models with a single anisotropic invariant or in a small-strain regime. In this study, we combined a single experimental procedure - asymmetric indentation - with inverse finite element (FE) modeling to estimate the nearly incompressible transversely isotropic material parameters of white matter. A minimal form comprising three parameters was employed to simulate indentation responses in the large-strain regime. The parameters were estimated using a global optimization procedure based on a genetic algorithm (GA). Experimental data from two indentation configurations of porcine white matter, parallel and perpendicular to the axonal fiber direction, were utilized to estimate model parameters. Results in this study confirmed a strong mechanical anisotropy of white matter in large strain. Further, our results suggested that both indentation configurations are needed to estimate the parameters with sufficient accuracy, and that the indenter-sample friction is important. Finally, we also showed that the estimated parameters were consistent with those previously obtained via a trial-and-error forward FE method in the small-strain regime. These findings are useful in modeling and parameterization of white matter, especially under large deformation, and demonstrate the potential of the proposed asymmetric indentation technique to characterize other soft biological tissues with transversely isotropic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16715146','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16715146"><span>Multimodel Kalman filtering for adaptive nonuniformity correction in infrared sensors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pezoa, Jorge E; Hayat, Majeed M; Torres, Sergio N; Rahman, Md Saifur</p> <p>2006-06-01</p> <p>We present an adaptive technique for the estimation of nonuniformity parameters of infrared focal-plane arrays that is robust with respect to changes and uncertainties in scene and sensor characteristics. The proposed algorithm is based on using a bank of Kalman filters in parallel. Each filter independently estimates state variables comprising the gain and the bias matrices of the sensor, according to its own dynamic-model parameters. The supervising component of the algorithm then generates the final estimates of the state variables by forming a weighted superposition of all the estimates rendered by each Kalman filter. The weights are computed and updated iteratively, according to the a posteriori-likelihood principle. The performance of the estimator and its ability to compensate for fixed-pattern noise is tested using both simulated and real data obtained from two cameras operating in the mid- and long-wave infrared regime.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21869326','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21869326"><span>Estimation of object motion parameters from noisy images.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Broida, T J; Chellappa, R</p> <p>1986-01-01</p> <p>An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860048843&hterms=hydraulic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhydraulic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860048843&hterms=hydraulic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhydraulic%2Benergy"><span>Estimation of soil hydraulic properties with microwave techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oneill, P. E.; Gurney, R. J.; Camillo, P. J.</p> <p>1985-01-01</p> <p>Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/m082(2011)index.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/m082(2011)index.php"><span>World Energy Projection System Plus Model Documentation: Coal Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2011-01-01</p> <p>This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Coal Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/wepstransportationindex.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/wepstransportationindex.php"><span>World Energy Projection System Plus Model Documentation: Transportation Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2017-01-01</p> <p>This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/wepsresidentialmoduleindex.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/wepsresidentialmoduleindex.php"><span>World Energy Projection System Plus Model Documentation: Residential Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2016-01-01</p> <p>This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Residential Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/refinerymoduleindex.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/refinerymoduleindex.php"><span>World Energy Projection System Plus Model Documentation: Refinery Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2016-01-01</p> <p>This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/wepsmainmoduleindex.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/wepsmainmoduleindex.php"><span>World Energy Projection System Plus Model Documentation: Main Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2016-01-01</p> <p>This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/m070index.php+','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/m070index.php+"><span>Transportation Sector Module - NEMS Documentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2017-01-01</p> <p>Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/wepselectricitymoduleindex.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/wepselectricitymoduleindex.php"><span>World Energy Projection System Plus Model Documentation: Electricity Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2017-01-01</p> <p>This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22370432-fully-bayesian-method-jointly-fitting-instrumental-calibration-ray-spectral-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22370432-fully-bayesian-method-jointly-fitting-instrumental-calibration-ray-spectral-models"><span>A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xu, Jin; Yu, Yaming; Van Dyk, David A.</p> <p>2014-10-20</p> <p>Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use amore » principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020079433','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020079433"><span>Statistical Properties of Maximum Likelihood Estimators of Power Law Spectra Information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Howell, L. W.</p> <p>2002-01-01</p> <p>A simple power law model consisting of a single spectral index, a is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at the knee energy, E(sub k), to a steeper spectral index alpha(sub 2) greater than alpha(sub 1) above E(sub k). The Maximum likelihood (ML) procedure was developed for estimating the single parameter alpha(sub 1) of a simple power law energy spectrum and generalized to estimate the three spectral parameters of the broken power law energy spectrum from simulated detector responses and real cosmic-ray data. The statistical properties of the ML estimator were investigated and shown to have the three desirable properties: (P1) consistency (asymptotically unbiased). (P2) efficiency asymptotically attains the Cramer-Rao minimum variance bound), and (P3) asymptotically normally distributed, under a wide range of potential detector response functions. Attainment of these properties necessarily implies that the ML estimation procedure provides the best unbiased estimator possible. While simulation studies can easily determine if a given estimation procedure provides an unbiased estimate of the spectra information, and whether or not the estimator is approximately normally distributed, attainment of the Cramer-Rao bound (CRB) can only he ascertained by calculating the CRB for an assumed energy spectrum-detector response function combination, which can be quite formidable in practice. However. the effort in calculating the CRB is very worthwhile because it provides the necessary means to compare the efficiency of competing estimation techniques and, furthermore, provides a stopping rule in the search for the best unbiased estimator. Consequently, the CRB for both the simple and broken power law energy spectra are derived herein and the conditions under which they are attained in practice are investigated. The ML technique is then extended to estimate spectra information from an arbitrary number of astrophysics data sets produced by vastly different science instruments. This theory and its successful implementation will facilitate the interpretation of spectral information from multiple astrophysics missions and thereby permit the derivation of superior spectral parameter estimates based on the combination of data sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032789','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032789"><span>An improved state-parameter analysis of ecosystem models using data assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chen, M.; Liu, S.; Tieszen, L.L.; Hollinger, D.Y.</p> <p>2008-01-01</p> <p>Much of the effort spent in developing data assimilation methods for carbon dynamics analysis has focused on estimating optimal values for either model parameters or state variables. The main weakness of estimating parameter values alone (i.e., without considering state variables) is that all errors from input, output, and model structure are attributed to model parameter uncertainties. On the other hand, the accuracy of estimating state variables may be lowered if the temporal evolution of parameter values is not incorporated. This research develops a smoothed ensemble Kalman filter (SEnKF) by combining ensemble Kalman filter with kernel smoothing technique. SEnKF has following characteristics: (1) to estimate simultaneously the model states and parameters through concatenating unknown parameters and state variables into a joint state vector; (2) to mitigate dramatic, sudden changes of parameter values in parameter sampling and parameter evolution process, and control narrowing of parameter variance which results in filter divergence through adjusting smoothing factor in kernel smoothing algorithm; (3) to assimilate recursively data into the model and thus detect possible time variation of parameters; and (4) to address properly various sources of uncertainties stemming from input, output and parameter uncertainties. The SEnKF is tested by assimilating observed fluxes of carbon dioxide and environmental driving factor data from an AmeriFlux forest station located near Howland, Maine, USA, into a partition eddy flux model. Our analysis demonstrates that model parameters, such as light use efficiency, respiration coefficients, minimum and optimum temperatures for photosynthetic activity, and others, are highly constrained by eddy flux data at daily-to-seasonal time scales. The SEnKF stabilizes parameter values quickly regardless of the initial values of the parameters. Potential ecosystem light use efficiency demonstrates a strong seasonality. Results show that the simultaneous parameter estimation procedure significantly improves model predictions. Results also show that the SEnKF can dramatically reduce the variance in state variables stemming from the uncertainty of parameters and driving variables. The SEnKF is a robust and effective algorithm in evaluating and developing ecosystem models and in improving the understanding and quantification of carbon cycle parameters and processes. ?? 2008 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817419S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817419S"><span>A Bayesian inverse modeling approach to estimate soil hydraulic properties of a toposequence in southeastern Amazonia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stucchi Boschi, Raquel; Qin, Mingming; Gimenez, Daniel; Cooper, Miguel</p> <p>2016-04-01</p> <p>Modeling is an important tool for better understanding and assessing land use impacts on landscape processes. A key point for environmental modeling is the knowledge of soil hydraulic properties. However, direct determination of soil hydraulic properties is difficult and costly, particularly in vast and remote regions such as one constituting the Amazon Biome. One way to overcome this problem is to extrapolate accurately estimated data to pedologically similar sites. The van Genuchten (VG) parametric equation is the most commonly used for modeling SWRC. The use of a Bayesian approach in combination with the Markov chain Monte Carlo to estimate the VG parameters has several advantages compared to the widely used global optimization techniques. The Bayesian approach provides posterior distributions of parameters that are independent from the initial values and allow for uncertainty analyses. The main objectives of this study were: i) to estimate hydraulic parameters from data of pasture and forest sites by the Bayesian inverse modeling approach; and ii) to investigate the extrapolation of the estimated VG parameters to a nearby toposequence with pedologically similar soils to those used for its estimate. The parameters were estimated from volumetric water content and tension observations obtained after rainfall events during a 207-day period from pasture and forest sites located in the southeastern Amazon region. These data were used to run HYDRUS-1D under a Differential Evolution Adaptive Metropolis (DREAM) scheme 10,000 times, and only the last 2,500 times were used to calculate the posterior distributions of each hydraulic parameter along with 95% confidence intervals (CI) of volumetric water content and tension time series. Then, the posterior distributions were used to generate hydraulic parameters for two nearby toposequences composed by six soil profiles, three are under forest and three are under pasture. The parameters of the nearby site were accepted when the predicted tension time series were within the 95% CI which is derived from the calibration site using DREAM scheme.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2306033','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2306033"><span>A theoretical description of arterial pressure-flow relationships with verification in the isolated hindlimb of the dog.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jackman, A P; Green, J F</p> <p>1990-01-01</p> <p>We developed and tested a new two-compartment serial model of the arterial vasculature which unifies the capacitance (downstream arterial compliance) and waterfall (constant downstream pressure load) theories of blood flow through the arteries. In this model, blood drains from an upstream compliance through a resistance into a downstream compliance which empties into the veins through a downstream resistance which terminates in a constant pressure load. Using transient arterial pressure data obtained from an isolated canine hindlimb preparation, we tested this model, using a stop-flow technique. Numerical parameter estimation techniques were used to estimate the physiologic parameters of the model. The downstream compliance was found to be more than ten times larger than the upstream compliance and the constant pressure load was significantly above venous pressures but decreased in response to vasodilation. Our results support the applicability of both the capacitance and waterfall theories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740008440','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740008440"><span>Design implementation in model-reference adaptive systems. [application and implementation on space shuttle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boland, J. S., III</p> <p>1973-01-01</p> <p>The derivation of an approximate error characteristic equation describing the transient system error response is given, along with a procedure for selecting adaptive gain parameters so as to relate to the transient error response. A detailed example of the application and implementation of these methods for a space shuttle type vehicle is included. An extension of the characteristic equation technique is used to provide an estimate of the magnitude of the maximum system error and an estimate of the time of occurrence of this maximum after a plant parameter disturbance. Techniques for relaxing certain stability requirements and the conditions under which this can be done and still guarantee asymptotic stability of the system error are discussed. Such conditions are possible because the Lyapunov methods used in the stability derivation allow for overconstraining a problem in the process of insuring stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850060313&hterms=treatment+water+used&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtreatment%2Bwater%2Bused','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850060313&hterms=treatment+water+used&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtreatment%2Bwater%2Bused"><span>A water-vapor radiometer error model. [for ionosphere in geodetic microwave techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beckman, B.</p> <p>1985-01-01</p> <p>The water-vapor radiometer (WVR) is used to calibrate unpredictable delays in the wet component of the troposphere in geodetic microwave techniques such as very-long-baseline interferometry (VLBI) and Global Positioning System (GPS) tracking. Based on experience with Jet Propulsion Laboratory (JPL) instruments, the current level of accuracy in wet-troposphere calibration limits the accuracy of local vertical measurements to 5-10 cm. The goal for the near future is 1-3 cm. Although the WVR is currently the best calibration method, many instruments are prone to systematic error. In this paper, a treatment of WVR data is proposed and evaluated. This treatment reduces the effect of WVR systematic errors by estimating parameters that specify an assumed functional form for the error. The assumed form of the treatment is evaluated by comparing the results of two similar WVR's operating near each other. Finally, the observability of the error parameters is estimated by covariance analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970013587','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970013587"><span>Computational Control of Flexible Aerospace Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sharpe, Lonnie, Jr.; Shen, Ji Yao</p> <p>1994-01-01</p> <p>The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years of the project. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed. A theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modelling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide a embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...419..302G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...419..302G"><span>Constitutive error based parameter estimation technique for plate structures using free vibration signatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guchhait, Shyamal; Banerjee, Biswanath</p> <p>2018-04-01</p> <p>In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18002034','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18002034"><span>Tracer kinetics of forearm endothelial function: comparison of an empirical method and a quantitative modeling technique.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Xueli; Arsenault, Andre; Lavoie, Kim L; Meloche, Bernard; Bacon, Simon L</p> <p>2007-01-01</p> <p>Forearm Endothelial Function (FEF) is a marker that has been shown to discriminate patients with cardiovascular disease (CVD). FEF has been assessed using several parameters: the Rate of Uptake Ratio (RUR), EWUR (Elbow-to-Wrist Uptake Ratio) and EWRUR (Elbow-to-Wrist Relative Uptake Ratio). However, the modeling functions of FEF require more robust models. The present study was designed to compare an empirical method with quantitative modeling techniques to better estimate the physiological parameters and understand the complex dynamic processes. The fitted time activity curves of the forearms, estimating blood and muscle components, were assessed using both an empirical method and a two-compartment model. Although correlational analyses suggested a good correlation between the methods for RUR (r=.90) and EWUR (r=.79), but not EWRUR (r=.34), Altman-Bland plots found poor agreement between the methods for all 3 parameters. These results indicate that there is a large discrepancy between the empirical and computational method for FEF. Further work is needed to establish the physiological and mathematical validity of the 2 modeling methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..297a2033T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..297a2033T"><span>Parametric system identification of catamaran for improving controller design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Timpitak, Surasak; Prempraneerach, Pradya; Pengwang, Eakkachai</p> <p>2018-01-01</p> <p>This paper presents an estimation of simplified dynamic model for only surge- and yaw- motions of catamaran by using system identification (SI) techniques to determine associated unknown parameters. These methods will enhance the performance of designing processes for the motion control system of Unmanned Surface Vehicle (USV). The simulation results demonstrate an effective way to solve for damping forces and to determine added masses by applying least-square and AutoRegressive Exogenous (ARX) methods. Both methods are then evaluated according to estimated parametric errors from the vehicle’s dynamic model. The ARX method, which yields better estimated accuracy, can then be applied to identify unknown parameters as well as to help improving a controller design of a real unmanned catamaran.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JHyd..331..293M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JHyd..331..293M"><span>Parameter estimation of an ARMA model for river flow forecasting using goal programming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohammadi, Kourosh; Eslami, H. R.; Kahawita, Rene</p> <p>2006-11-01</p> <p>SummaryRiver flow forecasting constitutes one of the most important applications in hydrology. Several methods have been developed for this purpose and one of the most famous techniques is the Auto regressive moving average (ARMA) model. In the research reported here, the goal was to minimize the error for a specific season of the year as well as for the complete series. Goal programming (GP) was used to estimate the ARMA model parameters. Shaloo Bridge station on the Karun River with 68 years of observed stream flow data was selected to evaluate the performance of the proposed method. The results when compared with the usual method of maximum likelihood estimation were favorable with respect to the new proposed algorithm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930070374&hterms=translation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dtranslation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930070374&hterms=translation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dtranslation"><span>Enhanced data reduction of the velocity data on CETA flight experiment. [Crew and Equipment Translation Aid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Finley, Tom D.; Wong, Douglas T.; Tripp, John S.</p> <p>1993-01-01</p> <p>A newly developed technique for enhanced data reduction provides an improved procedure that allows least squares minimization to become possible between data sets with an unequal number of data points. This technique was applied in the Crew and Equipment Translation Aid (CETA) experiment on the STS-37 Shuttle flight in April 1991 to obtain the velocity profile from the acceleration data. The new technique uses a least-squares method to estimate the initial conditions and calibration constants. These initial conditions are estimated by least-squares fitting the displacements indicated by the Hall-effect sensor data to the corresponding displacements obtained from integrating the acceleration data. The velocity and displacement profiles can then be recalculated from the corresponding acceleration data using the estimated parameters. This technique, which enables instantaneous velocities to be obtained from the test data instead of only average velocities at varying discrete times, offers more detailed velocity information, particularly during periods of large acceleration or deceleration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JPhD...46z5201M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JPhD...46z5201M"><span>A novel fast and flexible technique of radical kinetic behaviour investigation based on pallet for plasma evaluation structure and numerical analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malinowski, Arkadiusz; Takeuchi, Takuya; Chen, Shang; Suzuki, Toshiya; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru; Lukasiak, Lidia; Jakubowski, Andrzej</p> <p>2013-07-01</p> <p>This paper describes a new, fast, and case-independent technique for sticking coefficient (SC) estimation based on pallet for plasma evaluation (PAPE) structure and numerical analysis. Our approach does not require complicated structure, apparatus, or time-consuming measurements but offers high reliability of data and high flexibility. Thermal analysis is also possible. This technique has been successfully applied to estimation of very low value of SC of hydrogen radicals on chemically amplified ArF 193 nm photoresist (the main goal of this study). Upper bound of our technique has been determined by investigation of SC of fluorine radical on polysilicon (in elevated temperature). Sources of estimation error and ways of its reduction have been also discussed. Results of this study give an insight into the process kinetics, and not only they are helpful in better process understanding but additionally they may serve as parameters in a phenomenological model development for predictive modelling of etching for ultimate CMOS topography simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT........19F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT........19F"><span>Modeling, simulation, and estimation of optical turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Formwalt, Byron Paul</p> <p></p> <p>This dissertation documents three new contributions to simulation and modeling of optical turbulence. The first contribution is the formalization, optimization, and validation of a modeling technique called successively conditioned rendering (SCR). The SCR technique is empirically validated by comparing the statistical error of random phase screens generated with the technique. The second contribution is the derivation of the covariance delineation theorem, which provides theoretical bounds on the error associated with SCR. It is shown empirically that the theoretical bound may be used to predict relative algorithm performance. Therefore, the covariance delineation theorem is a powerful tool for optimizing SCR algorithms. For the third contribution, we introduce a new method for passively estimating optical turbulence parameters, and demonstrate the method using experimental data. The technique was demonstrated experimentally, using a 100 m horizontal path at 1.25 m above sun-heated tarmac on a clear afternoon. For this experiment, we estimated C2n ≈ 6.01 · 10-9 m-23 , l0 ≈ 17.9 mm, and L0 ≈ 15.5 m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27619559','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27619559"><span>Inverse modelling for real-time estimation of radiological consequences in the early stage of an accidental radioactivity release.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pecha, Petr; Šmídl, Václav</p> <p>2016-11-01</p> <p>A stepwise sequential assimilation algorithm is proposed based on an optimisation approach for recursive parameter estimation and tracking of radioactive plume propagation in the early stage of a radiation accident. Predictions of the radiological situation in each time step of the plume propagation are driven by an existing short-term meteorological forecast and the assimilation procedure manipulates the model parameters to match the observations incoming concurrently from the terrain. Mathematically, the task is a typical ill-posed inverse problem of estimating the parameters of the release. The proposed method is designated as a stepwise re-estimation of the source term release dynamics and an improvement of several input model parameters. It results in a more precise determination of the adversely affected areas in the terrain. The nonlinear least-squares regression methodology is applied for estimation of the unknowns. The fast and adequately accurate segmented Gaussian plume model (SGPM) is used in the first stage of direct (forward) modelling. The subsequent inverse procedure infers (re-estimates) the values of important model parameters from the actual observations. Accuracy and sensitivity of the proposed method for real-time forecasting of the accident propagation is studied. First, a twin experiment generating noiseless simulated "artificial" observations is studied to verify the minimisation algorithm. Second, the impact of the measurement noise on the re-estimated source release rate is examined. In addition, the presented method can be used as a proposal for more advanced statistical techniques using, e.g., importance sampling. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3798038','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3798038"><span>Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Chonggang; Gertner, George</p> <p>2013-01-01</p> <p>Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements. PMID:24143037</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24143037','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24143037"><span>Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Chonggang; Gertner, George</p> <p>2011-01-01</p> <p>Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15513993','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15513993"><span>Evolutionary optimization with data collocation for reverse engineering of biological networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsai, Kuan-Yao; Wang, Feng-Sheng</p> <p>2005-04-01</p> <p>Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1438238-ensemble-kalman-filter-dynamic-state-estimation-power-grids-stochastically-driven-time-correlated-mechanical-input-power','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1438238-ensemble-kalman-filter-dynamic-state-estimation-power-grids-stochastically-driven-time-correlated-mechanical-input-power"><span>Ensemble Kalman Filter for Dynamic State Estimation of Power Grids Stochastically Driven by Time-correlated Mechanical Input Power</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu</p> <p></p> <p>State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1438238-ensemble-kalman-filter-dynamic-state-estimation-power-grids-stochastically-driven-time-correlated-mechanical-input-power','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1438238-ensemble-kalman-filter-dynamic-state-estimation-power-grids-stochastically-driven-time-correlated-mechanical-input-power"><span>Ensemble Kalman Filter for Dynamic State Estimation of Power Grids Stochastically Driven by Time-correlated Mechanical Input Power</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu</p> <p>2017-10-31</p> <p>State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880003981','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880003981"><span>Full-envelope aerodynamic modeling of the Harrier aircraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcnally, B. David</p> <p>1986-01-01</p> <p>A project to identify a full-envelope model of the YAV-8B Harrier using flight-test and parameter identification techniques is described. As part of the research in advanced control and display concepts for V/STOL aircraft, a full-envelope aerodynamic model of the Harrier is identified, using mathematical model structures and parameter identification methods. A global-polynomial model structure is also used as a basis for the identification of the YAV-8B aerodynamic model. State estimation methods are used to ensure flight data consistency prior to parameter identification.Equation-error methods are used to identify model parameters. A fixed-base simulator is used extensively to develop flight test procedures and to validate parameter identification software. Using simple flight maneuvers, a simulated data set was created covering the YAV-8B flight envelope from about 0.3 to 0.7 Mach and about -5 to 15 deg angle of attack. A singular value decomposition implementation of the equation-error approach produced good parameter estimates based on this simulated data set.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900048407&hterms=surface+density&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsurface%2Bdensity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900048407&hterms=surface+density&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsurface%2Bdensity"><span>Calculation of Weibull strength parameters and Batdorf flow-density constants for volume- and surface-flaw-induced fracture in ceramics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shantaram, S. Pai; Gyekenyesi, John P.</p> <p>1989-01-01</p> <p>The calculation of shape and scale parametes of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by using the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654546-comparison-two-methods-estimating-black-hole-spin-active-galactic-nuclei','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654546-comparison-two-methods-estimating-black-hole-spin-active-galactic-nuclei"><span>A Comparison of Two Methods for Estimating Black Hole Spin in Active Galactic Nuclei</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Capellupo, Daniel M.; Haggard, Daryl; Wafflard-Fernandez, Gaylor, E-mail: danielc@physics.mcgill.ca</p> <p></p> <p>Angular momentum, or spin, is a fundamental property of black holes (BHs), yet it is much more difficult to estimate than mass or accretion rate (for actively accreting systems). In recent years, high-quality X-ray observations have allowed for detailed measurements of the Fe K α emission line, where relativistic line broadening allows constraints on the spin parameter (the X-ray reflection method). Another technique uses accretion disk models to fit the AGN continuum emission (the continuum-fitting, or CF, method). Although each technique has model-dependent uncertainties, these are the best empirical tools currently available and should be vetted in systems where bothmore » techniques can be applied. A detailed comparison of the two methods is also useful because neither method can be applied to all AGN. The X-ray reflection technique targets mostly local ( z ≲ 0.1) systems, while the CF method can be applied at higher redshift, up to and beyond the peak of AGN activity and growth. Here, we apply the CF method to two AGN with X-ray reflection measurements. For both the high-mass AGN, H1821+643, and the Seyfert 1, NGC 3783, we find a range in spin parameter consistent with the X-ray reflection measurements. However, the near-maximal spin favored by the reflection method for NGC 3783 is more probable if we add a disk wind to the model. Refinement of these techniques, together with improved X-ray measurements and tighter BH mass constraints, will permit this comparison in a larger sample of AGN and increase our confidence in these spin estimation techniques.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5552360','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5552360"><span>A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zaikin, Alexey; Míguez, Joaquín</p> <p>2017-01-01</p> <p>We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27070603','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27070603"><span>A Comprehensive Motion Estimation Technique for the Improvement of EIS Methods Based on the SURF Algorithm and Kalman Filter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Xuemin; Hao, Qun; Xie, Mengdi</p> <p>2016-04-07</p> <p>Video stabilization is an important technology for removing undesired motion in videos. This paper presents a comprehensive motion estimation method for electronic image stabilization techniques, integrating the speeded up robust features (SURF) algorithm, modified random sample consensus (RANSAC), and the Kalman filter, and also taking camera scaling and conventional camera translation and rotation into full consideration. Using SURF in sub-pixel space, feature points were located and then matched. The false matched points were removed by modified RANSAC. Global motion was estimated by using the feature points and modified cascading parameters, which reduced the accumulated errors in a series of frames and improved the peak signal to noise ratio (PSNR) by 8.2 dB. A specific Kalman filter model was established by considering the movement and scaling of scenes. Finally, video stabilization was achieved with filtered motion parameters using the modified adjacent frame compensation. The experimental results proved that the target images were stabilized even when the vibrating amplitudes of the video become increasingly large.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020057965','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020057965"><span>Stability and Control Estimation Flight Test Results for the SR-71 Aircraft With Externally Mounted Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moes, Timothy R.; Iliff, Kenneth</p> <p>2002-01-01</p> <p>A maximum-likelihood output-error parameter estimation technique is used to obtain stability and control derivatives for the NASA Dryden Flight Research Center SR-71A airplane and for configurations that include experiments externally mounted to the top of the fuselage. This research is being done as part of the envelope clearance for the new experiment configurations. Flight data are obtained at speeds ranging from Mach 0.4 to Mach 3.0, with an extensive amount of test points at approximately Mach 1.0. Pilot-input pitch and yaw-roll doublets are used to obtain the data. This report defines the parameter estimation technique used, presents stability and control derivative results, and compares the derivatives for the three configurations tested. The experimental configurations studied generally show acceptable stability, control, trim, and handling qualities throughout the Mach regimes tested. The reduction of directional stability for the experimental configurations is the most significant aerodynamic effect measured and identified as a design constraint for future experimental configurations. This report also shows the significant effects of aircraft flexibility on the stability and control derivatives.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28814154','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28814154"><span>A low-cost three-dimensional laser surface scanning approach for defining body segment parameters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pandis, Petros; Bull, Anthony Mj</p> <p>2017-11-01</p> <p>Body segment parameters are used in many different applications in ergonomics as well as in dynamic modelling of the musculoskeletal system. Body segment parameters can be defined using different methods, including techniques that involve time-consuming manual measurements of the human body, used in conjunction with models or equations. In this study, a scanning technique for measuring subject-specific body segment parameters in an easy, fast, accurate and low-cost way was developed and validated. The scanner can obtain the body segment parameters in a single scanning operation, which takes between 8 and 10 s. The results obtained with the system show a standard deviation of 2.5% in volumetric measurements of the upper limb of a mannequin and 3.1% difference between scanning volume and actual volume. Finally, the maximum mean error for the moment of inertia by scanning a standard-sized homogeneous object was 2.2%. This study shows that a low-cost system can provide quick and accurate subject-specific body segment parameter estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ivs..conf..283I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ivs..conf..283I"><span>Estimating the Celestial Reference Frame via Intra-Technique Combination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iddink, Andreas; Artz, Thomas; Halsig, Sebastian; Nothnagel, Axel</p> <p>2016-12-01</p> <p>One of the primary goals of Very Long Baseline Interferometry (VLBI) is the determination of the International Celestial Reference Frame (ICRF). Currently the third realization of the internationally adopted CRF, the ICRF3, is under preparation. In this process, various optimizations are planned to realize a CRF that does not benefit only from the increased number of observations since the ICRF2 was published. The new ICRF can also benefit from an intra-technique combination as is done for the Terrestrial Reference Frame (TRF). Here, we aim at estimating an optimized CRF by means of an intra-technique combination. The solutions are based on the input to the official combined product of the International VLBI Service for Geodesy and Astrometry (IVS), also providing the radio source parameters. We discuss the differences in the setup using a different number of contributions and investigate the impact on TRF and CRF as well as on the Earth Orientation Parameters (EOPs). Here, we investigate the differences between the combined CRF and the individual CRFs from the different analysis centers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007acim.book..207J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007acim.book..207J"><span>Using Diffraction Tomography to Estimate Marine Animal Size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaffe, J. S.; Roberts, P.</p> <p></p> <p>In this article we consider the development of acoustic methods which have the potential to size marine animals. The proposed technique uses scattered sound in order to invert for both animal size and shape. The technique uses the Distorted Wave Born Approximation (DWBA) in order to model sound scattered from these organisms. The use of the DWBA also provides a valuable context for formulating data analysis techniques in order to invert for parameters of the animal. Although 3-dimensional observations can be obtained from a complete set of views, due to the difficulty of collecting full 3-dimensional scatter, it is useful to simplify the inversion by approximating the animal by a few parameters. Here, the animals are modeled as 3-dimensional ellipsoids. This reduces the complexity of the problem to a determination of the 3 semi axes for the x, y and z dimensions from just a few radial spokes through the 3-dimensional Fourier Transform. In order to test the idea, simulated scatter data is taken from a 3-dimensional model of a marine animal and the resultant data are inverted in order to estimate animal shape</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16466842','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16466842"><span>Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hack, C Eric</p> <p>2006-04-17</p> <p>Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.G53B1153S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.G53B1153S"><span>Estimating the Earth's geometry, rotation and gravity field using a multi-satellite SLR solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stefka, V.; Blossfeld, M.; Mueller, H.; Gerstl, M.; Panafidina, N.</p> <p>2012-12-01</p> <p>Satellite Laser Ranging (SLR) is the unique technique to determine station coordinates, Earth Orientation Parameter (EOP) and Stokes coefficients of the Earth's gravity field in one common adjustment. These parameters form the so called "three pillars" (Plag & Pearlman, 2009) of the Global Geodetic Observing System (GGOS). In its function as official analysis center of the International Laser Ranging Service (ILRS), DGFI is developing and maintaining software to process SLR observations called "DGFI Orbit and Geodetic parameter estimation Software" (DOGS). The software is used to analyze SLR observations and to compute multi-satellite solutions. To take benefit of different orbit performances (e.g. inclination and altitude), a solution using ten different spherical satellites (ETALON1/2, LAGEOS1/2, STELLA, STARLETTE, AJISAI, LARETS, LARES, BLITS) covering the period of 12 years of observations is computed. The satellites are relatively weighted using a variance component estimation (VCE). The obtained weights are analyzed w.r.t. the potential of the satellite to monitor changes in the Earths geometry, rotation and gravity field. The estimated parameters (station coordinates and EOP) are validated w.r.t. official time series of the IERS. The Stokes coefficients are compared to recent gravity field solutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512785B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512785B"><span>Estimating the Earth's gravity field using a multi-satellite SLR solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bloßfeld, Mathis; Stefka, Vojtech; Müller, Horst; Gerstl, Michael</p> <p>2013-04-01</p> <p>Satellite Laser Ranging (SLR) is the unique technique to determine station coordinates, Earth Orientation Parameter (EOP) and Stokes coefficients of the Earth's gravity field in one common adjustment. These parameters form the so called "three pillars" (Plag & Pearlman, 2009) of the Global Geodetic Observing System (GGOS). In its function as official analysis center of the International Laser Ranging Service (ILRS), DGFI is developing and maintaining software to process SLR observations called "DGFI Orbit and Geodetic parameter estimation Software" (DOGS). The software is used to analyze SLR observations and to compute multi-satellite solutions. To take benefit of different orbit performances (e.g. inclination and altitude), a solution using ten different spherical satellites (ETALON1/2, LAGEOS1/2, STELLA, STARLETTE, AJISAI, LARETS, LARES, BLITS) covering 12 years of observations is computed. The satellites are relatively weighted using a variance component estimation (VCE). The obtained weights are analyzed w.r.t. the potential of the satellite to monitor changes in the Earths geometry, rotation and gravity field. The estimated parameters (station coordinates and EOP) are validated w.r.t. official time series of the IERS. The obtained Stokes coefficients are compared to recent gravity field solutions and discussed in detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5949052','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5949052"><span>Nonlinear Blind Compensation for Array Signal Processing Application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ma, Hong; Jin, Jiang; Zhang, Hua</p> <p>2018-01-01</p> <p>Recently, nonlinear blind compensation technique has attracted growing attention in array signal processing application. However, due to the nonlinear distortion stemming from array receiver which consists of multi-channel radio frequency (RF) front-ends, it is too difficult to estimate the parameters of array signal accurately. A novel nonlinear blind compensation algorithm aims at the nonlinearity mitigation of array receiver and its spurious-free dynamic range (SFDR) improvement, which will be more precise to estimate the parameters of target signals such as their two-dimensional directions of arrival (2-D DOAs). Herein, the suggested method is designed as follows: the nonlinear model parameters of any channel of RF front-end are extracted to synchronously compensate the nonlinear distortion of the entire receiver. Furthermore, a verification experiment on the array signal from a uniform circular array (UCA) is adopted to testify the validity of our approach. The real-world experimental results show that the SFDR of the receiver is enhanced, leading to a significant improvement of the 2-D DOAs estimation performance for weak target signals. And these results demonstrate that our nonlinear blind compensation algorithm is effective to estimate the parameters of weak array signal in concomitance with strong jammers. PMID:29690571</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770014950','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770014950"><span>Study of synthesis techniques for insensitive aircraft control systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Harvey, C. A.; Pope, R. E.</p> <p>1977-01-01</p> <p>Insensitive flight control system design criteria was defined in terms of maximizing performance (handling qualities, RMS gust response, transient response, stability margins) over a defined parameter range. Wing load alleviation for the C-5A was chosen as a design problem. The C-5A model was a 79-state, two-control structure with uncertainties assumed to exist in dynamic pressure, structural damping and frequency, and the stability derivative, M sub w. Five new techniques (mismatch estimation, uncertainty weighting, finite dimensional inverse, maximum difficulty, dual Lyapunov) were developed. Six existing techniques (additive noise, minimax, multiplant, sensitivity vector augmentation, state dependent noise, residualization) and the mismatch estimation and uncertainty weighting techniques were synthesized and evaluated on the design example. Evaluation and comparison of these six techniques indicated that the minimax and the uncertainty weighting techniques were superior to the other six, and of these two, uncertainty weighting has lower computational requirements. Techniques based on the three remaining new concepts appear promising and are recommended for further research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/m081(2011)index.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/m081(2011)index.php"><span>World Energy Projection System Plus Model Documentation: Greenhouse Gases Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2011-01-01</p> <p>This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/m083(2011)index.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/m083(2011)index.php"><span>World Energy Projection System Plus Model Documentation: Natural Gas Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2011-01-01</p> <p>This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/wepsdistrictheatmoduleindex.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/wepsdistrictheatmoduleindex.php"><span>World Energy Projection System Plus Model Documentation: District Heat Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2017-01-01</p> <p>This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.eia.gov/analysis/pdfpages/wepsindustrialmoduleindex.php','EIAPUBS'); return false;" href="https://www.eia.gov/analysis/pdfpages/wepsindustrialmoduleindex.php"><span>World Energy Projection System Plus Model Documentation: Industrial Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p></p> <p>2016-01-01</p> <p>This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=234379&keyword=sobol&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=234379&keyword=sobol&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Estimating Sobol Sensitivity Indices Using Correlations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Sensitivity analysis is a crucial tool in the development and evaluation of complex mathematical models. Sobol's method is a variance-based global sensitivity analysis technique that has been applied to computational models to assess the relative importance of input parameters on...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2005/5143/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2005/5143/"><span>Controls on the physical properties of gas-hydrate-bearing sediments because of the interaction between gas hydrate and porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, Myung W.; Collett, Timothy S.</p> <p>2005-01-01</p> <p>Physical properties of gas-hydrate-bearing sediments depend on the pore-scale interaction between gas hydrate and porous media as well as the amount of gas hydrate present. Well log measurements such as proton nuclear magnetic resonance (NMR) relaxation and electromagnetic propagation tool (EPT) techniques depend primarily on the bulk volume of gas hydrate in the pore space irrespective of the pore-scale interaction. However, elastic velocities or permeability depend on how gas hydrate is distributed in the pore space as well as the amount of gas hydrate. Gas-hydrate saturations estimated from NMR and EPT measurements are free of adjustable parameters; thus, the estimations are unbiased estimates of gas hydrate if the measurement is accurate. However, the amount of gas hydrate estimated from elastic velocities or electrical resistivities depends on many adjustable parameters and models related to the interaction of gas hydrate and porous media, so these estimates are model dependent and biased. NMR, EPT, elastic-wave velocity, electrical resistivity, and permeability measurements acquired in the Mallik 5L-38 well in the Mackenzie Delta, Canada, show that all of the well log evaluation techniques considered provide comparable gas-hydrate saturations in clean (low shale content) sandstone intervals with high gas-hydrate saturations. However, in shaly intervals, estimates from log measurement depending on the pore-scale interaction between gas hydrate and host sediments are higher than those estimates from measurements depending on the bulk volume of gas hydrate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9708E..1GP','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9708E..1GP"><span>Bayesian parameter estimation in spectral quantitative photoacoustic tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pulkkinen, Aki; Cox, Ben T.; Arridge, Simon R.; Kaipio, Jari P.; Tarvainen, Tanja</p> <p>2016-03-01</p> <p>Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gruneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006EJASP2007..338Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006EJASP2007..338Z"><span>Performance Analysis of Blind Subspace-Based Signature Estimation Algorithms for DS-CDMA Systems with Unknown Correlated Noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zarifi, Keyvan; Gershman, Alex B.</p> <p>2006-12-01</p> <p>We analyze the performance of two popular blind subspace-based signature waveform estimation techniques proposed by Wang and Poor and Buzzi and Poor for direct-sequence code division multiple-access (DS-CDMA) systems with unknown correlated noise. Using the first-order perturbation theory, analytical expressions for the mean-square error (MSE) of these algorithms are derived. We also obtain simple high SNR approximations of the MSE expressions which explicitly clarify how the performance of these techniques depends on the environmental parameters and how it is related to that of the conventional techniques that are based on the standard white noise assumption. Numerical examples further verify the consistency of the obtained analytical results with simulation results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JIEI...13..487H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JIEI...13..487H"><span>Determining production level under uncertainty using fuzzy simulation and bootstrap technique, a case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamidi, Mohammadreza; Shahanaghi, Kamran; Jabbarzadeh, Armin; Jahani, Ehsan; Pousti, Zahra</p> <p>2017-12-01</p> <p>In every production plant, it is necessary to have an estimation of production level. Sometimes there are many parameters affective in this estimation. In this paper, it tried to find an appropriate estimation of production level for an industrial factory called Barez in an uncertain environment. We have considered a part of production line, which has different production time for different kind of products, which means both environmental and system uncertainty. To solve the problem we have simulated the line and because of the uncertainty in the times, fuzzy simulation is considered. Required fuzzy numbers are estimated by the use of bootstrap technique. The results are used in production planning process by factory experts and have had satisfying consequences. Opinions of these experts about the efficiency of using this methodology, has been attached.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>