Sample records for parameter identification based

  1. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.

  2. Search-based model identification of smart-structure damage

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Macalou, A.

    1991-01-01

    This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.

  3. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    NASA Astrophysics Data System (ADS)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  4. An AI-based approach to structural damage identification by modal analysis

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Hanagud, S.

    1990-01-01

    Flexible-structure damage is presently addressed by a combined model- and parameter-identification approach which employs the AI methodologies of classification, heuristic search, and object-oriented model knowledge representation. The conditions for model-space search convergence to the best model are discussed in terms of search-tree organization and initial model parameter error. In the illustrative example of a truss structure presented, the use of both model and parameter identification is shown to lead to smaller parameter corrections than would be required by parameter identification alone.

  5. Adaptive Modal Identification for Flutter Suppression Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.

    2016-01-01

    In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.

  6. New results on finite-time parameter identification and synchronization of uncertain complex dynamical networks with perturbation

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zheng, Mingwen; Li, Shudong; Wang, Weiping

    2018-03-01

    Some existing papers focused on finite-time parameter identification and synchronization, but provided incomplete theoretical analyses. Such works incorporated conflicting constraints for parameter identification, therefore, the practical significance could not be fully demonstrated. To overcome such limitations, the underlying paper presents new results of parameter identification and synchronization for uncertain complex dynamical networks with impulsive effect and stochastic perturbation based on finite-time stability theory. Novel results of parameter identification and synchronization control criteria are obtained in a finite time by utilizing Lyapunov function and linear matrix inequality respectively. Finally, numerical examples are presented to illustrate the effectiveness of our theoretical results.

  7. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  8. Full-envelope aerodynamic modeling of the Harrier aircraft

    NASA Technical Reports Server (NTRS)

    Mcnally, B. David

    1986-01-01

    A project to identify a full-envelope model of the YAV-8B Harrier using flight-test and parameter identification techniques is described. As part of the research in advanced control and display concepts for V/STOL aircraft, a full-envelope aerodynamic model of the Harrier is identified, using mathematical model structures and parameter identification methods. A global-polynomial model structure is also used as a basis for the identification of the YAV-8B aerodynamic model. State estimation methods are used to ensure flight data consistency prior to parameter identification.Equation-error methods are used to identify model parameters. A fixed-base simulator is used extensively to develop flight test procedures and to validate parameter identification software. Using simple flight maneuvers, a simulated data set was created covering the YAV-8B flight envelope from about 0.3 to 0.7 Mach and about -5 to 15 deg angle of attack. A singular value decomposition implementation of the equation-error approach produced good parameter estimates based on this simulated data set.

  9. Identifying mechanical property parameters of planetary soil using in-situ data obtained from exploration rovers

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Gao, Haibo; Liu, Zhen; Deng, Zongquan; Liu, Guangjun

    2015-12-01

    Identifying the mechanical property parameters of planetary soil based on terramechanics models using in-situ data obtained from autonomous planetary exploration rovers is both an important scientific goal and essential for control strategy optimization and high-fidelity simulations of rovers. However, identifying all the terrain parameters is a challenging task because of the nonlinear and coupling nature of the involved functions. Three parameter identification methods are presented in this paper to serve different purposes based on an improved terramechanics model that takes into account the effects of slip, wheel lugs, etc. Parameter sensitivity and coupling of the equations are analyzed, and the parameters are grouped according to their sensitivity to the normal force, resistance moment and drawbar pull. An iterative identification method using the original integral model is developed first. In order to realize real-time identification, the model is then simplified by linearizing the normal and shearing stresses to derive decoupled closed-form analytical equations. Each equation contains one or two groups of soil parameters, making step-by-step identification of all the unknowns feasible. Experiments were performed using six different types of single-wheels as well as a four-wheeled rover moving on planetary soil simulant. All the unknown model parameters were identified using the measured data and compared with the values obtained by conventional experiments. It is verified that the proposed iterative identification method provides improved accuracy, making it suitable for scientific studies of soil properties, whereas the step-by-step identification methods based on simplified models require less calculation time, making them more suitable for real-time applications. The models have less than 10% margin of error comparing with the measured results when predicting the interaction forces and moments using the corresponding identified parameters.

  10. A study of parameter identification

    NASA Technical Reports Server (NTRS)

    Herget, C. J.; Patterson, R. E., III

    1978-01-01

    A set of definitions for deterministic parameter identification ability were proposed. Deterministic parameter identificability properties are presented based on four system characteristics: direct parameter recoverability, properties of the system transfer function, properties of output distinguishability, and uniqueness properties of a quadratic cost functional. Stochastic parameter identifiability was defined in terms of the existence of an estimation sequence for the unknown parameters which is consistent in probability. Stochastic parameter identifiability properties are presented based on the following characteristics: convergence properties of the maximum likelihood estimate, properties of the joint probability density functions of the observations, and properties of the information matrix.

  11. Construction and identification of a D-Vine model applied to the probability distribution of modal parameters in structural dynamics

    NASA Astrophysics Data System (ADS)

    Dubreuil, S.; Salaün, M.; Rodriguez, E.; Petitjean, F.

    2018-01-01

    This study investigates the construction and identification of the probability distribution of random modal parameters (natural frequencies and effective parameters) in structural dynamics. As these parameters present various types of dependence structures, the retained approach is based on pair copula construction (PCC). A literature review leads us to choose a D-Vine model for the construction of modal parameters probability distributions. Identification of this model is based on likelihood maximization which makes it sensitive to the dimension of the distribution, namely the number of considered modes in our context. To this respect, a mode selection preprocessing step is proposed. It allows the selection of the relevant random modes for a given transfer function. The second point, addressed in this study, concerns the choice of the D-Vine model. Indeed, D-Vine model is not uniquely defined. Two strategies are proposed and compared. The first one is based on the context of the study whereas the second one is purely based on statistical considerations. Finally, the proposed approaches are numerically studied and compared with respect to their capabilities, first in the identification of the probability distribution of random modal parameters and second in the estimation of the 99 % quantiles of some transfer functions.

  12. Identification and calibration of the structural model of historical masonry building damaged during the 2016 Italian earthquakes: The case study of Palazzo del Podestà in Montelupone

    NASA Astrophysics Data System (ADS)

    Catinari, Federico; Pierdicca, Alessio; Clementi, Francesco; Lenci, Stefano

    2017-11-01

    The results of an ambient-vibration based investigation conducted on the "Palazzo del Podesta" in Montelupone (Italy) is presented. The case study was damaged during the 20I6 Italian earthquakes that stroke the central part of the Italy. The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. A very good match between theoretical and experimental modal parameters was reached and the model updating has been performed identifying some structural parameters.

  13. Experimental parameter identification of a multi-scale musculoskeletal model controlled by electrical stimulation: application to patients with spinal cord injury.

    PubMed

    Benoussaad, Mourad; Poignet, Philippe; Hayashibe, Mitsuhiro; Azevedo-Coste, Christine; Fattal, Charles; Guiraud, David

    2013-06-01

    We investigated the parameter identification of a multi-scale physiological model of skeletal muscle, based on Huxley's formulation. We focused particularly on the knee joint controlled by quadriceps muscles under electrical stimulation (ES) in subjects with a complete spinal cord injury. A noninvasive and in vivo identification protocol was thus applied through surface stimulation in nine subjects and through neural stimulation in one ES-implanted subject. The identification protocol included initial identification steps, which are adaptations of existing identification techniques to estimate most of the parameters of our model. Then we applied an original and safer identification protocol in dynamic conditions, which required resolution of a nonlinear programming (NLP) problem to identify the serial element stiffness of quadriceps. Each identification step and cross validation of the estimated model in dynamic condition were evaluated through a quadratic error criterion. The results highlighted good accuracy, the efficiency of the identification protocol and the ability of the estimated model to predict the subject-specific behavior of the musculoskeletal system. From the comparison of parameter values between subjects, we discussed and explored the inter-subject variability of parameters in order to select parameters that have to be identified in each patient.

  14. Parameter identification for structural dynamics based on interval analysis algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Lu, Zixing; Yang, Zhenyu; Liang, Ke

    2018-04-01

    A parameter identification method using interval analysis algorithm for structural dynamics is presented in this paper. The proposed uncertain identification method is investigated by using central difference method and ARMA system. With the help of the fixed memory least square method and matrix inverse lemma, a set-membership identification technology is applied to obtain the best estimation of the identified parameters in a tight and accurate region. To overcome the lack of insufficient statistical description of the uncertain parameters, this paper treats uncertainties as non-probabilistic intervals. As long as we know the bounds of uncertainties, this algorithm can obtain not only the center estimations of parameters, but also the bounds of errors. To improve the efficiency of the proposed method, a time-saving algorithm is presented by recursive formula. At last, to verify the accuracy of the proposed method, two numerical examples are applied and evaluated by three identification criteria respectively.

  15. Identification of Bouc-Wen hysteretic parameters based on enhanced response sensitivity approach

    NASA Astrophysics Data System (ADS)

    Wang, Li; Lu, Zhong-Rong

    2017-05-01

    This paper aims to identify parameters of Bouc-Wen hysteretic model using time-domain measured data. It follows a general inverse identification procedure, that is, identifying model parameters is treated as an optimization problem with the nonlinear least squares objective function. Then, the enhanced response sensitivity approach, which has been shown convergent and proper for such kind of problems, is adopted to solve the optimization problem. Numerical tests are undertaken to verify the proposed identification approach.

  16. An adaptive optimal control for smart structures based on the subspace tracking identification technique

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele

    2014-04-01

    A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.

  17. Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic

    NASA Astrophysics Data System (ADS)

    Haag, T.; Herrmann, J.; Hanss, M.

    2010-10-01

    For the mathematical representation of systems with epistemic uncertainties, arising, for example, from simplifications in the modeling procedure, models with fuzzy-valued parameters prove to be a suitable and promising approach. In practice, however, the determination of these parameters turns out to be a non-trivial problem. The identification procedure to appropriately update these parameters on the basis of a reference output (measurement or output of an advanced model) requires the solution of an inverse problem. Against this background, an inverse method for the computation of the fuzzy-valued parameters of a model with epistemic uncertainties is presented. This method stands out due to the fact that it only uses feedforward simulations of the model, based on the transformation method of fuzzy arithmetic, along with the reference output. An inversion of the system equations is not necessary. The advancement of the method presented in this paper consists of the identification of multiple input parameters based on a single reference output or measurement. An optimization is used to solve the resulting underdetermined problems by minimizing the uncertainty of the identified parameters. Regions where the identification procedure is reliable are determined by the computation of a feasibility criterion which is also based on the output data of the transformation method only. For a frequency response function of a mechanical system, this criterion allows a restriction of the identification process to some special range of frequency where its solution can be guaranteed. Finally, the practicability of the method is demonstrated by covering the measured output of a fluid-filled piping system by the corresponding uncertain FE model in a conservative way.

  18. An improved wavelet-Galerkin method for dynamic response reconstruction and parameter identification of shear-type frames

    NASA Astrophysics Data System (ADS)

    Bu, Haifeng; Wang, Dansheng; Zhou, Pin; Zhu, Hongping

    2018-04-01

    An improved wavelet-Galerkin (IWG) method based on the Daubechies wavelet is proposed for reconstructing the dynamic responses of shear structures. The proposed method flexibly manages wavelet resolution level according to excitation, thereby avoiding the weakness of the wavelet-Galerkin multiresolution analysis (WGMA) method in terms of resolution and the requirement of external excitation. IWG is implemented by this work in certain case studies, involving single- and n-degree-of-freedom frame structures subjected to a determined discrete excitation. Results demonstrate that IWG performs better than WGMA in terms of accuracy and computation efficiency. Furthermore, a new method for parameter identification based on IWG and an optimization algorithm are also developed for shear frame structures, and a simultaneous identification of structural parameters and excitation is implemented. Numerical results demonstrate that the proposed identification method is effective for shear frame structures.

  19. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries

    PubMed Central

    Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing

    2017-01-01

    Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405

  20. Aerodynamic parameter estimation via Fourier modulating function techniques

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1995-01-01

    Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.

  1. Theoretic aspects of the identification of the parameters in the optimal control model

    NASA Technical Reports Server (NTRS)

    Vanwijk, R. A.; Kok, J. J.

    1977-01-01

    The identification of the parameters of the optimal control model from input-output data of the human operator is considered. Accepting the basic structure of the model as a cascade of a full-order observer and a feedback law, and suppressing the inherent optimality of the human controller, the parameters to be identified are the feedback matrix, the observer gain matrix, and the intensity matrices of the observation noise and the motor noise. The identification of the parameters is a statistical problem, because the system and output are corrupted by noise, and therefore the solution must be based on the statistics (probability density function) of the input and output data of the human operator. However, based on the statistics of the input-output data of the human operator, no distinction can be made between the observation and the motor noise, which shows that the model suffers from overparameterization.

  2. Teaching-learning-based Optimization Algorithm for Parameter Identification in the Design of IIR Filters

    NASA Astrophysics Data System (ADS)

    Singh, R.; Verma, H. K.

    2013-12-01

    This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.

  3. Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach

    NASA Astrophysics Data System (ADS)

    Vaz, Miguel; Luersen, Marco A.; Muñoz-Rojas, Pablo A.; Trentin, Robson G.

    2016-04-01

    Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.

  4. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    NASA Astrophysics Data System (ADS)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  5. Health monitoring system for transmission shafts based on adaptive parameter identification

    NASA Astrophysics Data System (ADS)

    Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.

    2018-05-01

    A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.

  6. A maximum power point prediction method for group control of photovoltaic water pumping systems based on parameter identification

    NASA Astrophysics Data System (ADS)

    Chen, B.; Su, J. H.; Guo, L.; Chen, J.

    2017-06-01

    This paper puts forward a maximum power estimation method based on the photovoltaic array (PVA) model to solve the optimization problems about group control of the PV water pumping systems (PVWPS) at the maximum power point (MPP). This method uses the improved genetic algorithm (GA) for model parameters estimation and identification in view of multi P-V characteristic curves of a PVA model, and then corrects the identification results through least square method. On this basis, the irradiation level and operating temperature under any condition are able to estimate so an accurate PVA model is established and the MPP none-disturbance estimation is achieved. The simulation adopts the proposed GA to determine parameters, and the results verify the accuracy and practicability of the methods.

  7. Approach to the problem of the parameters optimization of the shooting system

    NASA Astrophysics Data System (ADS)

    Demidova, L. A.; Sablina, V. A.; Sokolova, Y. S.

    2018-02-01

    The problem of the objects identification on the base of their hyperspectral features has been considered. It is offered to use the SVM classifiers’ ensembles, adapted to specifics of the problem of the objects identification on the base of their hyperspectral features. The results of the objects identification on the base of their hyperspectral features with using of the SVM classifiers have been presented.

  8. Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model

    NASA Astrophysics Data System (ADS)

    Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr

    2017-10-01

    Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations, gradient based and nature inspired optimization algorithms and experimental data, the latter of which take the form of a load-extension curve obtained from the evaluation of uniaxial tensile test results. The aim of this research was to obtain material model parameters corresponding to the quasi-static tensile loading which may be further used for the research involving dynamic and high-speed tensile loading. Based on the obtained results it can be concluded that the set goal has been reached.

  9. Study on Material Parameters Identification of Brain Tissue Considering Uncertainty of Friction Coefficient

    NASA Astrophysics Data System (ADS)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng

    2017-10-01

    Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.

  10. Identification of open quantum systems from observable time traces

    DOE PAGES

    Zhang, Jun; Sarovar, Mohan

    2015-05-27

    Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.

  11. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  12. Data pieces-based parameter identification for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zou, Yuan; Sun, Fengchun; Hu, Xiaosong; Yu, Yang; Feng, Sen

    2016-10-01

    Battery characteristics vary with temperature and aging, it is necessary to identify battery parameters periodically for electric vehicles to ensure reliable State-of-Charge (SoC) estimation, battery equalization and safe operation. Aiming for on-board applications, this paper proposes a data pieces-based parameter identification (DPPI) method to identify comprehensive battery parameters including capacity, OCV (open circuit voltage)-Ah relationship and impedance-Ah relationship simultaneously only based on battery operation data. First a vehicle field test was conducted and battery operation data was recorded, then the DPPI method is elaborated based on vehicle test data, parameters of all 97 cells of the battery package are identified and compared. To evaluate the adaptability of the proposed DPPI method, it is used to identify battery parameters of different aging levels and different temperatures based on battery aging experiment data. Then a concept of ;OCV-Ah aging database; is proposed, based on which battery capacity can be identified even though the battery was never fully charged or discharged. Finally, to further examine the effectiveness of the identified battery parameters, they are used to perform SoC estimation for the test vehicle with adaptive extended Kalman filter (AEKF). The result shows good accuracy and reliability.

  13. Identification-While-Scanning of a Multi-Aircraft Formation Based on Sparse Recovery for Narrowband Radar.

    PubMed

    Jiang, Yuan; Xu, Jia; Peng, Shi-Bao; Mao, Er-Ke; Long, Teng; Peng, Ying-Ning

    2016-11-23

    It is known that the identification performance of a multi-aircraft formation (MAF) of narrowband radar mainly depends on the time on target (TOT). To realize the identification task in one rotated scan with limited TOT, the paper proposes a novel identification-while-scanning (IWS) method based on sparse recovery to maintain high rotating speed and super-resolution for MAF identification, simultaneously. First, a multiple chirp signal model is established for MAF in a single scan, where different aircraft may have different Doppler centers and Doppler rates. Second, based on the sparsity of MAF in the Doppler parameter space, a novel hierarchical basis pursuit (HBP) method is proposed to obtain satisfactory sparse recovery performance as well as high computational efficiency. Furthermore, the parameter estimation performance of the proposed IWS identification method is analyzed with respect to recovery condition, signal-to-noise ratio and TOT. It is shown that an MAF can be effectively identified via HBP with a TOT of only about one hundred microseconds for IWS applications. Finally, some numerical experiment results are provided to demonstrate the effectiveness of the proposed method based on both simulated and real measured data.

  14. Gait Characteristic Analysis and Identification Based on the iPhone's Accelerometer and Gyrometer

    PubMed Central

    Sun, Bing; Wang, Yang; Banda, Jacob

    2014-01-01

    Gait identification is a valuable approach to identify humans at a distance. In this paper, gait characteristics are analyzed based on an iPhone's accelerometer and gyrometer, and a new approach is proposed for gait identification. Specifically, gait datasets are collected by the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets are processed to extract gait characteristic parameters which include gait frequency, symmetry coefficient, dynamic range and similarity coefficient of characteristic curves. Finally, a weighted voting scheme dependent upon the gait characteristic parameters is proposed for gait identification. Four experiments are implemented to validate the proposed scheme. The attitude and acceleration solutions are verified by simulation. Then the gait characteristics are analyzed by comparing two sets of actual data, and the performance of the weighted voting identification scheme is verified by 40 datasets of 10 subjects. PMID:25222034

  15. Modern control concepts in hydrology. [parameter identification in adaptive stochastic control approach

    NASA Technical Reports Server (NTRS)

    Duong, N.; Winn, C. B.; Johnson, G. R.

    1975-01-01

    Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.

  16. General hybrid projective complete dislocated synchronization with non-derivative and derivative coupling based on parameter identification in several chaotic and hyperchaotic systems

    NASA Astrophysics Data System (ADS)

    Sun, Jun-Wei; Shen, Yi; Zhang, Guo-Dong; Wang, Yan-Feng; Cui, Guang-Zhao

    2013-04-01

    According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.

  17. Finite-time master-slave synchronization and parameter identification for uncertain Lurie systems.

    PubMed

    Wang, Tianbo; Zhao, Shouwei; Zhou, Wuneng; Yu, Weiqin

    2014-07-01

    This paper investigates the finite-time master-slave synchronization and parameter identification problem for uncertain Lurie systems based on the finite-time stability theory and the adaptive control method. The finite-time master-slave synchronization means that the state of a slave system follows with that of a master system in finite time, which is more reasonable than the asymptotical synchronization in applications. The uncertainties include the unknown parameters and noise disturbances. An adaptive controller and update laws which ensures the synchronization and parameter identification to be realized in finite time are constructed. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Parameter Identification of Static Friction Based on An Optimal Exciting Trajectory

    NASA Astrophysics Data System (ADS)

    Tu, X.; Zhao, P.; Zhou, Y. F.

    2017-12-01

    In this paper, we focus on how to improve the identification efficiency of friction parameters in a robot joint. First, the static friction model that has only linear dependencies with respect to their parameters is adopted so that the servomotor dynamics can be linearized. In this case, the traditional exciting trajectory based on Fourier series is modified by replacing the constant term with quintic polynomial to ensure the boundary continuity of speed and acceleration. Then, the Fourier-related parameters are optimized by genetic algorithm(GA) in which the condition number of regression matrix is set as the fitness function. At last, compared with the constant-velocity tracking experiment, the friction parameters from the exciting trajectory experiment has the similar result with the advantage of time reduction.

  19. Motion capture based identification of the human body inertial parameters.

    PubMed

    Venture, Gentiane; Ayusawa, Ko; Nakamura, Yoshihiko

    2008-01-01

    Identification of body inertia, masses and center of mass is an important data to simulate, monitor and understand dynamics of motion, to personalize rehabilitation programs. This paper proposes an original method to identify the inertial parameters of the human body, making use of motion capture data and contact forces measurements. It allows in-vivo painless estimation and monitoring of the inertial parameters. The method is described and then obtained experimental results are presented and discussed.

  20. Utility of a novel error-stepping method to improve gradient-based parameter identification by increasing the smoothness of the local objective surface: a case-study of pulmonary mechanics.

    PubMed

    Docherty, Paul D; Schranz, Christoph; Chase, J Geoffrey; Chiew, Yeong Shiong; Möller, Knut

    2014-05-01

    Accurate model parameter identification relies on accurate forward model simulations to guide convergence. However, some forward simulation methodologies lack the precision required to properly define the local objective surface and can cause failed parameter identification. The role of objective surface smoothness in identification of a pulmonary mechanics model was assessed using forward simulation from a novel error-stepping method and a proprietary Runge-Kutta method. The objective surfaces were compared via the identified parameter discrepancy generated in a Monte Carlo simulation and the local smoothness of the objective surfaces they generate. The error-stepping method generated significantly smoother error surfaces in each of the cases tested (p<0.0001) and more accurate model parameter estimates than the Runge-Kutta method in three of the four cases tested (p<0.0001) despite a 75% reduction in computational cost. Of note, parameter discrepancy in most cases was limited to a particular oblique plane, indicating a non-intuitive multi-parameter trade-off was occurring. The error-stepping method consistently improved or equalled the outcomes of the Runge-Kutta time-integration method for forward simulations of the pulmonary mechanics model. This study indicates that accurate parameter identification relies on accurate definition of the local objective function, and that parameter trade-off can occur on oblique planes resulting prematurely halted parameter convergence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. A hybrid system identification methodology for wireless structural health monitoring systems based on dynamic substructuring

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-04-01

    System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.

  2. Parameter identification for nonlinear aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Pearson, Allan E.

    1990-01-01

    Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.

  3. Dynamic Parameter Identification of Subject-Specific Body Segment Parameters Using Robotics Formalism: Case Study Head Complex.

    PubMed

    Díaz-Rodríguez, Miguel; Valera, Angel; Page, Alvaro; Besa, Antonio; Mata, Vicente

    2016-05-01

    Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.

  4. Study on Parameter Identification of Assembly Robot based on Screw Theory

    NASA Astrophysics Data System (ADS)

    Yun, Shi; Xiaodong, Zhang

    2017-11-01

    The kinematic model of assembly robot is one of the most important factors affecting repetitive precision. In order to improve the accuracy of model positioning, this paper first establishes the exponential product model of ER16-1600 assembly robot on the basis of screw theory, and then based on iterative least squares method, using ER16-1600 model robot parameter identification. By comparing the experiment before and after the calibration, it is proved that the method has obvious improvement on the positioning accuracy of the assembly robot.

  5. The application of Legendre-tau approximation to parameter identification for delay and partial differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.

    1983-01-01

    Approximation schemes based on Legendre-tau approximation are developed for application to parameter identification problem for delay and partial differential equations. The tau method is based on representing the approximate solution as a truncated series of orthonormal functions. The characteristic feature of the Legendre-tau approach is that when the solution to a problem is infinitely differentiable, the rate of convergence is faster than any finite power of 1/N; higher accuracy is thus achieved, making the approach suitable for small N.

  6. Note: Model-based identification method of a cable-driven wearable device for arm rehabilitation

    NASA Astrophysics Data System (ADS)

    Cui, Xiang; Chen, Weihai; Zhang, Jianbin; Wang, Jianhua

    2015-09-01

    Cable-driven exoskeletons have used active cables to actuate the system and are worn on subjects to provide motion assistance. However, this kind of wearable devices usually contains uncertain kinematic parameters. In this paper, a model-based identification method has been proposed for a cable-driven arm exoskeleton to estimate its uncertainties. The identification method is based on the linearized error model derived from the kinematics of the exoskeleton. Experiment has been conducted to demonstrate the feasibility of the proposed model-based method in practical application.

  7. A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part II: Parameter identification and state of energy estimation for LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello

    2017-11-01

    State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.

  8. Codestream-Based Identification of JPEG 2000 Images with Different Coding Parameters

    NASA Astrophysics Data System (ADS)

    Watanabe, Osamu; Fukuhara, Takahiro; Kiya, Hitoshi

    A method of identifying JPEG 2000 images with different coding parameters, such as code-block sizes, quantization-step sizes, and resolution levels, is presented. It does not produce false-negative matches regardless of different coding parameters (compression rate, code-block size, and discrete wavelet transform (DWT) resolutions levels) or quantization step sizes. This feature is not provided by conventional methods. Moreover, the proposed approach is fast because it uses the number of zero-bit-planes that can be extracted from the JPEG 2000 codestream by only parsing the header information without embedded block coding with optimized truncation (EBCOT) decoding. The experimental results revealed the effectiveness of image identification based on the new method.

  9. Simultaneous Intrinsic and Extrinsic Parameter Identification of a Hand-Mounted Laser-Vision Sensor

    PubMed Central

    Lee, Jong Kwang; Kim, Kiho; Lee, Yongseok; Jeong, Taikyeong

    2011-01-01

    In this paper, we propose a simultaneous intrinsic and extrinsic parameter identification of a hand-mounted laser-vision sensor (HMLVS). A laser-vision sensor (LVS), consisting of a camera and a laser stripe projector, is used as a sensor component of the robotic measurement system, and it measures the range data with respect to the robot base frame using the robot forward kinematics and the optical triangulation principle. For the optimal estimation of the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. Best-fit parameters, including both the intrinsic and extrinsic parameters of the HMLVS, are simultaneously obtained based on the least-squares criterion. From the simulation and experimental results, it is shown that the parameter identification problem considered was characterized by a highly multimodal landscape; thus, the global optimization technique such as a particle swarm optimization can be a promising tool to identify the model parameters for a HMLVS, while the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum. The proposed optimization method does not require good initial guesses of the system parameters to converge at a very stable solution and it could be applied to a kinematically dissimilar robot system without loss of generality. PMID:22164104

  10. Synthesizing spatiotemporally sparse smartphone sensor data for bridge modal identification

    NASA Astrophysics Data System (ADS)

    Ozer, Ekin; Feng, Maria Q.

    2016-08-01

    Smartphones as vibration measurement instruments form a large-scale, citizen-induced, and mobile wireless sensor network (WSN) for system identification and structural health monitoring (SHM) applications. Crowdsourcing-based SHM is possible with a decentralized system granting citizens with operational responsibility and control. Yet, citizen initiatives introduce device mobility, drastically changing SHM results due to uncertainties in the time and the space domains. This paper proposes a modal identification strategy that fuses spatiotemporally sparse SHM data collected by smartphone-based WSNs. Multichannel data sampled with the time and the space independence is used to compose the modal identification parameters such as frequencies and mode shapes. Structural response time history can be gathered by smartphone accelerometers and converted into Fourier spectra by the processor units. Timestamp, data length, energy to power conversion address temporal variation, whereas spatial uncertainties are reduced by geolocation services or determining node identity via QR code labels. Then, parameters collected from each distributed network component can be extended to global behavior to deduce modal parameters without the need of a centralized and synchronous data acquisition system. The proposed method is tested on a pedestrian bridge and compared with a conventional reference monitoring system. The results show that the spatiotemporally sparse mobile WSN data can be used to infer modal parameters despite non-overlapping sensor operation schedule.

  11. Optimal Design of Material and Process Parameters in Powder Injection Molding

    NASA Astrophysics Data System (ADS)

    Ayad, G.; Barriere, T.; Gelin, J. C.; Song, J.; Liu, B.

    2007-04-01

    The paper is concerned with optimization and parametric identification for the different stages in Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders part by solid state diffusion. In the first part, one describes an original methodology to optimize the process and geometry parameters in injection stage based on the combination of design of experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometeric curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization of material and process parameters for manufacturing a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.

  12. A hybrid approach to parameter identification of linear delay differential equations involving multiple delays

    NASA Astrophysics Data System (ADS)

    Marzban, Hamid Reza

    2018-05-01

    In this paper, we are concerned with the parameter identification of linear time-invariant systems containing multiple delays. The approach is based upon a hybrid of block-pulse functions and Legendre's polynomials. The convergence of the proposed procedure is established and an upper error bound with respect to the L2-norm associated with the hybrid functions is derived. The problem under consideration is first transformed into a system of algebraic equations. The least squares technique is then employed for identification of the desired parameters. Several multi-delay systems of varying complexity are investigated to evaluate the performance and capability of the proposed approximation method. It is shown that the proposed approach is also applicable to a class of nonlinear multi-delay systems. It is demonstrated that the suggested procedure provides accurate results for the desired parameters.

  13. A Galerkin method for the estimation of parameters in hybrid systems governing the vibration of flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1985-01-01

    An approximation scheme is developed for the identification of hybrid systems describing the transverse vibrations of flexible beams with attached tip bodies. In particular, problems involving the estimation of functional parameters are considered. The identification problem is formulated as a least squares fit to data subject to the coupled system of partial and ordinary differential equations describing the transverse displacement of the beam and the motion of the tip bodies respectively. A cubic spline-based Galerkin method applied to the state equations in weak form and the discretization of the admissible parameter space yield a sequence of approximating finite dimensional identification problems. It is shown that each of the approximating problems admits a solution and that from the resulting sequence of optimal solutions a convergent subsequence can be extracted, the limit of which is a solution to the original identification problem. The approximating identification problems can be solved using standard techniques and readily available software.

  14. Modal parameter identification of a CMUT membrane using response data only

    NASA Astrophysics Data System (ADS)

    Lardiès, Joseph; Bourbon, Gilles; Moal, Patrice Le; Kacem, Najib; Walter, Vincent; Le, Thien-Phu

    2018-03-01

    Capacitive micromachined ultrasonic transducers (CMUTs) are microelectromechanical systems used for the generation of ultrasounds. The fundamental element of the transducer is a clamped thin metallized membrane that vibrates under voltage variations. To control such oscillations and to optimize its dynamic response it is necessary to know the modal parameters of the membrane such as resonance frequency, damping and stiffness coefficients. The purpose of this work is to identify these parameters using only the time data obtained from the membrane center displacement. Dynamic measurements are conducted in time domain and we use two methods to identify the modal parameters: a subspace method based on an innovation model of the state-space representation and the continuous wavelet transform method based on the use of the ridge of the wavelet transform of the displacement. Experimental results are presented showing the effectiveness of these two procedures in modal parameter identification.

  15. On the identification of cohesive parameters for printed metal-polymer interfaces

    NASA Astrophysics Data System (ADS)

    Heinrich, Felix; Langner, Hauke H.; Lammering, Rolf

    2017-05-01

    The mechanical behavior of printed electronics on fiber reinforced composites is investigated. A methodology based on cohesive zone models is employed, considering interfacial strengths, stiffnesses and critical strain energy release rates. A double cantilever beam test and an end notched flexure test are carried out to experimentally determine critical strain energy release rates under fracture modes I and II. Numerical simulations are performed in Abaqus 6.13 to model both tests. Applying the simulations, an inverse parameter identification is run to determine the full set of cohesive parameters.

  16. The relative pose estimation of aircraft based on contour model

    NASA Astrophysics Data System (ADS)

    Fu, Tai; Sun, Xiangyi

    2017-02-01

    This paper proposes a relative pose estimation approach based on object contour model. The first step is to obtain a two-dimensional (2D) projection of three-dimensional (3D)-model-based target, which will be divided into 40 forms by clustering and LDA analysis. Then we proceed by extracting the target contour in each image and computing their Pseudo-Zernike Moments (PZM), thus a model library is constructed in an offline mode. Next, we spot a projection contour that resembles the target silhouette most in the present image from the model library with reference of PZM; then similarity transformation parameters are generated as the shape context is applied to match the silhouette sampling location, from which the identification parameters of target can be further derived. Identification parameters are converted to relative pose parameters, in the premise that these values are the initial result calculated via iterative refinement algorithm, as the relative pose parameter is in the neighborhood of actual ones. At last, Distance Image Iterative Least Squares (DI-ILS) is employed to acquire the ultimate relative pose parameters.

  17. Incomplete data based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements

    NASA Astrophysics Data System (ADS)

    Kougioumtzoglou, Ioannis A.; dos Santos, Ketson R. M.; Comerford, Liam

    2017-09-01

    Various system identification techniques exist in the literature that can handle non-stationary measured time-histories, or cases of incomplete data, or address systems following a fractional calculus modeling. However, there are not many (if any) techniques that can address all three aforementioned challenges simultaneously in a consistent manner. In this paper, a novel multiple-input/single-output (MISO) system identification technique is developed for parameter identification of nonlinear and time-variant oscillators with fractional derivative terms subject to incomplete non-stationary data. The technique utilizes a representation of the nonlinear restoring forces as a set of parallel linear sub-systems. In this regard, the oscillator is transformed into an equivalent MISO system in the wavelet domain. Next, a recently developed L1-norm minimization procedure based on compressive sensing theory is applied for determining the wavelet coefficients of the available incomplete non-stationary input-output (excitation-response) data. Finally, these wavelet coefficients are utilized to determine appropriately defined time- and frequency-dependent wavelet based frequency response functions and related oscillator parameters. Several linear and nonlinear time-variant systems with fractional derivative elements are used as numerical examples to demonstrate the reliability of the technique even in cases of noise corrupted and incomplete data.

  18. Blind identification of the kinetic parameters in three-compartment models

    NASA Astrophysics Data System (ADS)

    Riabkov, Dmitri Y.; Di Bella, Edward V. R.

    2004-03-01

    Quantified knowledge of tissue kinetic parameters in the regions of the brain and other organs can offer information useful in clinical and research applications. Dynamic medical imaging with injection of radioactive or paramagnetic tracer can be used for this measurement. The kinetics of some widely used tracers such as [18F]2-fluoro-2-deoxy-D-glucose can be described by a three-compartment physiological model. The kinetic parameters of the tissue can be estimated from dynamically acquired images. Feasibility of estimation by blind identification, which does not require knowledge of the blood input, is considered analytically and numerically in this work for the three-compartment type of tissue response. The non-uniqueness of the two-region case for blind identification of kinetic parameters in three-compartment model is shown; at least three regions are needed for the blind identification to be unique. Numerical results for the accuracy of these blind identification methods in different conditions were considered. Both a separable variables least-squares (SLS) approach and an eigenvector-based algorithm for multichannel blind deconvolution approach were used. The latter showed poor accuracy. Modifications for non-uniform time sampling were also developed. Also, another method which uses a model for the blood input was compared. Results for the macroparameter K, which reflects the metabolic rate of glucose usage, using three regions with noise showed comparable accuracy for the separable variables least squares method and for the input model-based method, and slightly worse accuracy for SLS with the non-uniform sampling modification.

  19. Blind identification of the number of sub-carriers for orthogonal frequency division multiplexing-based elastic optical networking

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Xu, Hengying; Bai, Chenglin

    2018-03-01

    In orthogonal frequency division multiplexing (OFDM)-based elastic optical networking (EON), it is imperative to identify unknown parameters of OFDM-based EON signals quickly, intelligently and robustly. Because the number of sub-carriers determines the size of the sub-carriers spacing and then affects the symbol period of the OFDM and the anti-dispersion capability of the system, the identification of the number of sub-carriers has a profound effect on the identification of other key parameters of the system. In this paper, we proposed a method of number identification for sub-carriers of OFDM-based EON signals with help of high-order cyclic cumulant. The specific fourth-order cyclic cumulant exists only at the location of its sub-carriers frequencies. So the identification of the number of sub-carriers can be implemented by detecting the cyclic-frequencies. The proposed scheme in our study can be divided into three sub-stages, i.e. estimating the spectral range, calculating the high-order cyclic cumulant and identifying the number of sub-carriers. When the optical signal-to-noise ratios (OSNR) varied from 16dB to 22dB, the number of sub-carriers (64-512) was successfully identified in the experiment, and from the statistical point of view, the average identification absolute accuracy (IAAs) exceeded 94%.

  20. Dynamic model of production enterprises based on accounting registers and its identification

    NASA Astrophysics Data System (ADS)

    Sirazetdinov, R. T.; Samodurov, A. V.; Yenikeev, I. A.; Markov, D. S.

    2016-06-01

    The report focuses on the mathematical modeling of economic entities based on accounting registers. Developed the dynamic model of financial and economic activity of the enterprise as a system of differential equations. Created algorithms for identification of parameters of the dynamic model. Constructed and identified the model of Russian machine-building enterprises.

  1. A gradient based algorithm to solve inverse plane bimodular problems of identification

    NASA Astrophysics Data System (ADS)

    Ran, Chunjiang; Yang, Haitian; Zhang, Guoqing

    2018-02-01

    This paper presents a gradient based algorithm to solve inverse plane bimodular problems of identifying constitutive parameters, including tensile/compressive moduli and tensile/compressive Poisson's ratios. For the forward bimodular problem, a FE tangent stiffness matrix is derived facilitating the implementation of gradient based algorithms, for the inverse bimodular problem of identification, a two-level sensitivity analysis based strategy is proposed. Numerical verification in term of accuracy and efficiency is provided, and the impacts of initial guess, number of measurement points, regional inhomogeneity, and noisy data on the identification are taken into accounts.

  2. Provably secure identity-based identification and signature schemes from code assumptions

    PubMed Central

    Zhao, Yiming

    2017-01-01

    Code-based cryptography is one of few alternatives supposed to be secure in a post-quantum world. Meanwhile, identity-based identification and signature (IBI/IBS) schemes are two of the most fundamental cryptographic primitives, so several code-based IBI/IBS schemes have been proposed. However, with increasingly profound researches on coding theory, the security reduction and efficiency of such schemes have been invalidated and challenged. In this paper, we construct provably secure IBI/IBS schemes from code assumptions against impersonation under active and concurrent attacks through a provably secure code-based signature technique proposed by Preetha, Vasant and Rangan (PVR signature), and a security enhancement Or-proof technique. We also present the parallel-PVR technique to decrease parameter values while maintaining the standard security level. Compared to other code-based IBI/IBS schemes, our schemes achieve not only preferable public parameter size, private key size, communication cost and signature length due to better parameter choices, but also provably secure. PMID:28809940

  3. Provably secure identity-based identification and signature schemes from code assumptions.

    PubMed

    Song, Bo; Zhao, Yiming

    2017-01-01

    Code-based cryptography is one of few alternatives supposed to be secure in a post-quantum world. Meanwhile, identity-based identification and signature (IBI/IBS) schemes are two of the most fundamental cryptographic primitives, so several code-based IBI/IBS schemes have been proposed. However, with increasingly profound researches on coding theory, the security reduction and efficiency of such schemes have been invalidated and challenged. In this paper, we construct provably secure IBI/IBS schemes from code assumptions against impersonation under active and concurrent attacks through a provably secure code-based signature technique proposed by Preetha, Vasant and Rangan (PVR signature), and a security enhancement Or-proof technique. We also present the parallel-PVR technique to decrease parameter values while maintaining the standard security level. Compared to other code-based IBI/IBS schemes, our schemes achieve not only preferable public parameter size, private key size, communication cost and signature length due to better parameter choices, but also provably secure.

  4. Modal parameter identification using the log decrement method and band-pass filters

    NASA Astrophysics Data System (ADS)

    Liao, Yabin; Wells, Valana

    2011-10-01

    This paper presents a time-domain technique for identifying modal parameters of test specimens based on the log-decrement method. For lightly damped multidegree-of-freedom or continuous systems, the conventional method is usually restricted to identification of fundamental-mode parameters only. Implementation of band-pass filters makes it possible for the proposed technique to extract modal information of higher modes. The method has been applied to a polymethyl methacrylate (PMMA) beam for complex modulus identification in the frequency range 10-1100 Hz. Results compare well with those obtained using the Least Squares method, and with those previously published in literature. Then the accuracy of the proposed method has been further verified by experiments performed on a QuietSteel specimen with very low damping. The method is simple and fast. It can be used for a quick estimation of the modal parameters, or as a complementary approach for validation purposes.

  5. Improving substructure identification accuracy of shear structures using virtual control system

    NASA Astrophysics Data System (ADS)

    Zhang, Dongyu; Yang, Yang; Wang, Tingqiang; Li, Hui

    2018-02-01

    Substructure identification is a powerful tool to identify the parameters of a complex structure. Previously, the authors developed an inductive substructure identification method for shear structures. The identification error analysis showed that the identification accuracy of this method is significantly influenced by the magnitudes of two key structural responses near a certain frequency; if these responses are unfavorable, the method cannot provide accurate estimation results. In this paper, a novel method is proposed to improve the substructure identification accuracy by introducing a virtual control system (VCS) into the structure. A virtual control system is a self-balanced system, which consists of some control devices and a set of self-balanced forces. The self-balanced forces counterbalance the forces that the control devices apply on the structure. The control devices are combined with the structure to form a controlled structure used to replace the original structure in the substructure identification; and the self-balance forces are treated as known external excitations to the controlled structure. By optimally tuning the VCS’s parameters, the dynamic characteristics of the controlled structure can be changed such that the original structural responses become more favorable for the substructure identification and, thus, the identification accuracy is improved. A numerical example of 6-story shear structure is utilized to verify the effectiveness of the VCS based controlled substructure identification method. Finally, shake table tests are conducted on a 3-story structural model to verify the efficacy of the VCS to enhance the identification accuracy of the structural parameters.

  6. Integrated identification and control for nanosatellites reclaiming failed satellite

    NASA Astrophysics Data System (ADS)

    Han, Nan; Luo, Jianjun; Ma, Weihua; Yuan, Jianping

    2018-05-01

    Using nanosatellites to reclaim a failed satellite needs nanosatellites to attach to its surface to take over its attitude control function. This is challenging, since parameters including the inertia matrix of the combined spacecraft and the relative attitude information of attached nanosatellites with respect to the given body-fixed frame of the failed satellite are all unknown after the attachment. Besides, if the total control capacity needs to be increased during the reclaiming process by new nanosatellites, real-time parameters updating will be necessary. For these reasons, an integrated identification and control method is proposed in this paper, which enables the real-time parameters identification and attitude takeover control to be conducted concurrently. Identification of the inertia matrix of the combined spacecraft and the relative attitude information of attached nanosatellites are both considered. To guarantee sufficient excitation for the identification of the inertia matrix, a modified identification equation is established by filtering out sample points leading to ill-conditioned identification, and the identification performance of the inertia matrix is improved. Based on the real-time estimated inertia matrix, an attitude takeover controller is designed, the stability of the controller is analysed using Lyapunov method. The commanded control torques are allocated to each nanosatellite while the control saturation constraint being satisfied using the Quadratic Programming (QP) method. Numerical simulations are carried out to demonstrate the feasibility and effectiveness of the proposed integrated identification and control method.

  7. Fault Detection for Automotive Shock Absorber

    NASA Astrophysics Data System (ADS)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  8. Inertial parameter identification using contact force information for an unknown object captured by a space manipulator

    NASA Astrophysics Data System (ADS)

    Chu, Zhongyi; Ma, Ye; Hou, Yueyang; Wang, Fengwen

    2017-02-01

    This paper presents a novel identification method for the intact inertial parameters of an unknown object in space captured by a manipulator in a space robotic system. With strong dynamic and kinematic coupling existing in the robotic system, the inertial parameter identification of the unknown object is essential for the ideal control strategy based on changes in the attitude and trajectory of the space robot via capturing operations. Conventional studies merely refer to the principle and theory of identification, and an error analysis process of identification is deficient for a practical scenario. To solve this issue, an analysis of the effect of errors on identification is illustrated first, and the accumulation of measurement or estimation errors causing poor identification precision is demonstrated. Meanwhile, a modified identification equation incorporating the contact force, as well as the force/torque of the end-effector, is proposed to weaken the accumulation of errors and improve the identification accuracy. Furthermore, considering a severe disturbance condition caused by various measured noises, the hybrid immune algorithm, Recursive Least Squares and Affine Projection Sign Algorithm (RLS-APSA), is employed to decode the modified identification equation to ensure a stable identification property. Finally, to verify the validity of the proposed identification method, the co-simulation of ADAMS-MATLAB is implemented by multi-degree of freedom models of a space robotic system, and the numerical results show a precise and stable identification performance, which is able to guarantee the execution of aerospace operations and prevent failed control strategies.

  9. Computational system identification of continuous-time nonlinear systems using approximate Bayesian computation

    NASA Astrophysics Data System (ADS)

    Krishnanathan, Kirubhakaran; Anderson, Sean R.; Billings, Stephen A.; Kadirkamanathan, Visakan

    2016-11-01

    In this paper, we derive a system identification framework for continuous-time nonlinear systems, for the first time using a simulation-focused computational Bayesian approach. Simulation approaches to nonlinear system identification have been shown to outperform regression methods under certain conditions, such as non-persistently exciting inputs and fast-sampling. We use the approximate Bayesian computation (ABC) algorithm to perform simulation-based inference of model parameters. The framework has the following main advantages: (1) parameter distributions are intrinsically generated, giving the user a clear description of uncertainty, (2) the simulation approach avoids the difficult problem of estimating signal derivatives as is common with other continuous-time methods, and (3) as noted above, the simulation approach improves identification under conditions of non-persistently exciting inputs and fast-sampling. Term selection is performed by judging parameter significance using parameter distributions that are intrinsically generated as part of the ABC procedure. The results from a numerical example demonstrate that the method performs well in noisy scenarios, especially in comparison to competing techniques that rely on signal derivative estimation.

  10. Ares I-X In-Flight Modal Identification

    NASA Technical Reports Server (NTRS)

    Bartkowicz, Theodore J.; James, George H., III

    2011-01-01

    Operational modal analysis is a procedure that allows the extraction of modal parameters of a structure in its operating environment. It is based on the idealized premise that input to the structure is white noise. In some cases, when free decay responses are corrupted by unmeasured random disturbances, the response data can be processed into cross-correlation functions that approximate free decay responses. Modal parameters can be computed from these functions by time domain identification methods such as the Eigenvalue Realization Algorithm (ERA). The extracted modal parameters have the same characteristics as impulse response functions of the original system. Operational modal analysis is performed on Ares I-X in-flight data. Since the dynamic system is not stationary due to propellant mass loss, modal identification is only possible by analyzing the system as a series of linearized models over short periods of time via a sliding time-window of short time intervals. A time-domain zooming technique was also employed to enhance the modal parameter extraction. Results of this study demonstrate that free-decay time domain modal identification methods can be successfully employed for in-flight launch vehicle modal extraction.

  11. Parameters Identification of Interface Friction Model for Ceramic Matrix Composites Based on Stress-Strain Response

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Gao, Xiguang; Song, Yingdong

    2017-10-01

    An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.

  12. A stochastic global identification framework for aerospace structures operating under varying flight states

    NASA Astrophysics Data System (ADS)

    Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo

    2018-01-01

    In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing's aeroelastic response under the admissible flight states via a minimum number of estimated parameters compared to standard identification approaches. The obtained results demonstrate the high accuracy and effectiveness of the proposed global identification framework, thus constituting a first step towards the next generation of "fly-by-feel" aerospace vehicles with state awareness capabilities.

  13. Cluster synchronization transmission of different external signals in discrete uncertain network

    NASA Astrophysics Data System (ADS)

    Li, Chengren; Lü, Ling; Chen, Liansong; Hong, Yixuan; Zhou, Shuang; Yang, Yiming

    2018-07-01

    We research cluster synchronization transmissions of different external signals in discrete uncertain network. Based on the Lyapunov theorem, the network controller and the identification law of uncertain adjustment parameter are designed, and they are efficiently used to achieve the cluster synchronization and the identification of uncertain adjustment parameter. In our technical scheme, the network nodes in each cluster and the transmitted external signal can be different, and they allow the presence of uncertain parameters in the network. Especially, we are free to choose the clustering topologies, the cluster number and the node number in each cluster.

  14. Quantum Hamiltonian identification from measurement time traces.

    PubMed

    Zhang, Jun; Sarovar, Mohan

    2014-08-22

    Precise identification of parameters governing quantum processes is a critical task for quantum information and communication technologies. In this Letter, we consider a setting where system evolution is determined by a parametrized Hamiltonian, and the task is to estimate these parameters from temporal records of a restricted set of system observables (time traces). Based on the notion of system realization from linear systems theory, we develop a constructive algorithm that provides estimates of the unknown parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement noise by applying it to a one-dimensional spin chain model with variable couplings.

  15. Direct structural parameter identification by modal test results

    NASA Technical Reports Server (NTRS)

    Chen, J.-C.; Kuo, C.-P.; Garba, J. A.

    1983-01-01

    A direct identification procedure is proposed to obtain the mass and stiffness matrices based on the test measured eigenvalues and eigenvectors. The method is based on the theory of matrix perturbation in which the correct mass and stiffness matrices are expanded in terms of analytical values plus a modification matrix. The simplicity of the procedure enables real time operation during the structural testing.

  16. A Galerkin discretisation-based identification for parameters in nonlinear mechanical systems

    NASA Astrophysics Data System (ADS)

    Liu, Zuolin; Xu, Jian

    2018-04-01

    In the paper, a new parameter identification method is proposed for mechanical systems. Based on the idea of Galerkin finite-element method, the displacement over time history is approximated by piecewise linear functions, and the second-order terms in model equation are eliminated by integrating by parts. In this way, the lost function of integration form is derived. Being different with the existing methods, the lost function actually is a quadratic sum of integration over the whole time history. Then for linear or nonlinear systems, the optimisation of the lost function can be applied with traditional least-squares algorithm or the iterative one, respectively. Such method could be used to effectively identify parameters in linear and arbitrary nonlinear mechanical systems. Simulation results show that even under the condition of sparse data or low sampling frequency, this method could still guarantee high accuracy in identifying linear and nonlinear parameters.

  17. Normalized inverse characterization of sound absorbing rigid porous media.

    PubMed

    Zieliński, Tomasz G

    2015-06-01

    This paper presents a methodology for the inverse characterization of sound absorbing rigid porous media, based on standard measurements of the surface acoustic impedance of a porous sample. The model parameters need to be normalized to have a robust identification procedure which fits the model-predicted impedance curves with the measured ones. Such a normalization provides a substitute set of dimensionless (normalized) parameters unambiguously related to the original model parameters. Moreover, two scaling frequencies are introduced, however, they are not additional parameters and for different, yet reasonable, assumptions of their values, the identification procedure should eventually lead to the same solution. The proposed identification technique uses measured and computed impedance curves for a porous sample not only in the standard configuration, that is, set to the rigid termination piston in an impedance tube, but also with air gaps of known thicknesses between the sample and the piston. Therefore, all necessary analytical formulas for sound propagation in double-layered media are provided. The methodology is illustrated by one numerical test and by two examples based on the experimental measurements of the acoustic impedance and absorption of porous ceramic samples of different thicknesses and a sample of polyurethane foam.

  18. Methods for parameter identification in oscillatory networks and application to cortical and thalamic 600 Hz activity.

    PubMed

    Leistritz, L; Suesse, T; Haueisen, J; Hilgenfeld, B; Witte, H

    2006-01-01

    Directed information transfer in the human brain occurs presumably by oscillations. As of yet, most approaches for the analysis of these oscillations are based on time-frequency or coherence analysis. The present work concerns the modeling of cortical 600 Hz oscillations, localized within the Brodmann Areas 3b and 1 after stimulation of the nervus medianus, by means of coupled differential equations. This approach leads to the so-called parameter identification problem, where based on a given data set, a set of unknown parameters of a system of ordinary differential equations is determined by special optimization procedures. Some suitable algorithms for this task are presented in this paper. Finally an oscillatory network model is optimally fitted to the data taken from ten volunteers.

  19. Heart Sound Biometric System Based on Marginal Spectrum Analysis

    PubMed Central

    Zhao, Zhidong; Shen, Qinqin; Ren, Fangqin

    2013-01-01

    This work presents a heart sound biometric system based on marginal spectrum analysis, which is a new feature extraction technique for identification purposes. This heart sound identification system is comprised of signal acquisition, pre-processing, feature extraction, training, and identification. Experiments on the selection of the optimal values for the system parameters are conducted. The results indicate that the new spectrum coefficients result in a significant increase in the recognition rate of 94.40% compared with that of the traditional Fourier spectrum (84.32%) based on a database of 280 heart sounds from 40 participants. PMID:23429515

  20. An FEM-based AI approach to model parameter identification for low vibration modes of wind turbine composite rotor blades

    NASA Astrophysics Data System (ADS)

    Navadeh, N.; Goroshko, I. O.; Zhuk, Y. A.; Fallah, A. S.

    2017-11-01

    An approach to construction of a beam-type simplified model of a horizontal axis wind turbine composite blade based on the finite element method is proposed. The model allows effective and accurate description of low vibration bending modes taking into account the effects of coupling between flapwise and lead-lag modes of vibration transpiring due to the non-uniform distribution of twist angle in the blade geometry along its length. The identification of model parameters is carried out on the basis of modal data obtained by more detailed finite element simulations and subsequent adoption of the 'DIRECT' optimisation algorithm. Stable identification results were obtained using absolute deviations in frequencies and in modal displacements in the objective function and additional a priori information (boundedness and monotony) on the solution properties.

  1. Adaptive infinite impulse response system identification using modified-interior search algorithm with Lèvy flight.

    PubMed

    Kumar, Manjeet; Rawat, Tarun Kumar; Aggarwal, Apoorva

    2017-03-01

    In this paper, a new meta-heuristic optimization technique, called interior search algorithm (ISA) with Lèvy flight is proposed and applied to determine the optimal parameters of an unknown infinite impulse response (IIR) system for the system identification problem. ISA is based on aesthetics, which is commonly used in interior design and decoration processes. In ISA, composition phase and mirror phase are applied for addressing the nonlinear and multimodal system identification problems. System identification using modified-ISA (M-ISA) based method involves faster convergence, single parameter tuning and does not require derivative information because it uses a stochastic random search using the concepts of Lèvy flight. A proper tuning of control parameter has been performed in order to achieve a balance between intensification and diversification phases. In order to evaluate the performance of the proposed method, mean square error (MSE), computation time and percentage improvement are considered as the performance measure. To validate the performance of M-ISA based method, simulations has been carried out for three benchmarked IIR systems using same order and reduced order system. Genetic algorithm (GA), particle swarm optimization (PSO), cat swarm optimization (CSO), cuckoo search algorithm (CSA), differential evolution using wavelet mutation (DEWM), firefly algorithm (FFA), craziness based particle swarm optimization (CRPSO), harmony search (HS) algorithm, opposition based harmony search (OHS) algorithm, hybrid particle swarm optimization-gravitational search algorithm (HPSO-GSA) and ISA are also used to model the same examples and simulation results are compared. Obtained results confirm the efficiency of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Modal parameter identification based on combining transmissibility functions and blind source separation techniques

    NASA Astrophysics Data System (ADS)

    Araújo, Iván Gómez; Sánchez, Jesús Antonio García; Andersen, Palle

    2018-05-01

    Transmissibility-based operational modal analysis is a recent and alternative approach used to identify the modal parameters of structures under operational conditions. This approach is advantageous compared with traditional operational modal analysis because it does not make any assumptions about the excitation spectrum (i.e., white noise with a flat spectrum). However, common methodologies do not include a procedure to extract closely spaced modes with low signal-to-noise ratios. This issue is relevant when considering that engineering structures generally have closely spaced modes and that their measured responses present high levels of noise. Therefore, to overcome these problems, a new combined method for modal parameter identification is proposed in this work. The proposed method combines blind source separation (BSS) techniques and transmissibility-based methods. Here, BSS techniques were used to recover source signals, and transmissibility-based methods were applied to estimate modal information from the recovered source signals. To achieve this combination, a new method to define a transmissibility function was proposed. The suggested transmissibility function is based on the relationship between the power spectral density (PSD) of mixed signals and the PSD of signals from a single source. The numerical responses of a truss structure with high levels of added noise and very closely spaced modes were processed using the proposed combined method to evaluate its ability to identify modal parameters in these conditions. Colored and white noise excitations were used for the numerical example. The proposed combined method was also used to evaluate the modal parameters of an experimental test on a structure containing closely spaced modes. The results showed that the proposed combined method is capable of identifying very closely spaced modes in the presence of noise and, thus, may be potentially applied to improve the identification of damping ratios.

  3. Modal identification of dynamic mechanical systems

    NASA Astrophysics Data System (ADS)

    Srivastava, R. K.; Kundra, T. K.

    1992-07-01

    This paper reviews modal identification techniques which are now helping designers all over the world to improve the dynamic behavior of vibrating engineering systems. In this context the need to develop more accurate and faster parameter identification is ever increasing. A new dynamic stiffness matrix based identification method which is highly accurate, fast and system-dynamic-modification compatible is presented. The technique is applicable to all those multidegree-of-freedom systems where full receptance matrix can be experimentally measured.

  4. Numerical studies of identification in nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.

  5. Impact of the Parameter Identification of Plastic Potentials on the Finite Element Simulation of Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Rabahallah, M.; Bouvier, S.; Balan, T.; Bacroix, B.; Teodosiu, C.

    2007-04-01

    In this work, an implicit, backward Euler time integration scheme is developed for an anisotropic, elastic-plastic model based on strain-rate potentials. The constitutive algorithm includes a sub-stepping procedure to deal with the strong nonlinearity of the plastic potentials when applied to FCC materials. The algorithm is implemented in the static implicit version of the Abaqus finite element code. Several recent plastic potentials have been implemented in this framework. The most accurate potentials require the identification of about twenty material parameters. Both mechanical tests and micromechanical simulations have been used for their identification, for a number of BCC and FCC materials. The impact of the identification procedure on the prediction of ears in cup drawing is investigated.

  6. On the problem of modeling for parameter identification in distributed structures

    NASA Technical Reports Server (NTRS)

    Norris, Mark A.; Meirovitch, Leonard

    1988-01-01

    Structures are often characterized by parameters, such as mass and stiffness, that are spatially distributed. Parameter identification of distributed structures is subject to many of the difficulties involved in the modeling problem, and the choice of the model can greatly affect the results of the parameter identification process. Analogously to control spillover in the control of distributed-parameter systems, identification spillover is shown to exist as well and its effect is to degrade the parameter estimates. Moreover, as in modeling by the Rayleigh-Ritz method, it is shown that, for a Rayleigh-Ritz type identification algorithm, an inclusion principle exists in the identification of distributed-parameter systems as well, so that the identified natural frequencies approach the actual natural frequencies monotonically from above.

  7. An almost-parameter-free harmony search algorithm for groundwater pollution source identification.

    PubMed

    Jiang, Simin; Zhang, Yali; Wang, Pei; Zheng, Maohui

    2013-01-01

    The spatiotemporal characterization of unknown sources of groundwater pollution is frequently encountered in environmental problems. This study adopts a simulation-optimization approach that combines a contaminant transport simulation model with a heuristic harmony search algorithm to identify unknown pollution sources. In the proposed methodology, an almost-parameter-free harmony search algorithm is developed. The performance of this methodology is evaluated on an illustrative groundwater pollution source identification problem, and the identified results indicate that the proposed almost-parameter-free harmony search algorithm-based optimization model can give satisfactory estimations, even when the irregular geometry, erroneous monitoring data, and prior information shortage of potential locations are considered.

  8. Efficient Bayesian experimental design for contaminant source identification

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangjiang; Zeng, Lingzao; Chen, Cheng; Chen, Dingjiang; Wu, Laosheng

    2015-01-01

    In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameters identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from concentration measurements in identifying unknown parameters. In this approach, the sampling locations that give the maximum expected relative entropy are selected as the optimal design. After the sampling locations are determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport equation. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. It is shown that the methods can be used to assist in both single sampling location and monitoring network design for contaminant source identifications in groundwater.

  9. Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm.

    PubMed

    Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam

    2014-07-01

    This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Hybrid parameter identification of a multi-modal underwater soft robot.

    PubMed

    Giorgio-Serchi, F; Arienti, A; Corucci, F; Giorelli, M; Laschi, C

    2017-02-28

    We introduce an octopus-inspired, underwater, soft-bodied robot capable of performing waterborne pulsed-jet propulsion and benthic legged-locomotion. This vehicle consists for as much as 80% of its volume of rubber-like materials so that structural flexibility is exploited as a key element during both modes of locomotion. The high bodily softness, the unconventional morphology and the non-stationary nature of its propulsion mechanisms require dynamic characterization of this robot to be dealt with by ad hoc techniques. We perform parameter identification by resorting to a hybrid optimization approach where the characterization of the dual ambulatory strategies of the robot is performed in a segregated fashion. A least squares-based method coupled with a genetic algorithm-based method is employed for the swimming and the crawling phases, respectively. The outcomes bring evidence that compartmentalized parameter identification represents a viable protocol for multi-modal vehicles characterization. However, the use of static thrust recordings as the input signal in the dynamic determination of shape-changing self-propelled vehicles is responsible for the critical underestimation of the quadratic drag coefficient.

  11. Section-Based Tree Species Identification Using Airborne LIDAR Point Cloud

    NASA Astrophysics Data System (ADS)

    Yao, C.; Zhang, X.; Liu, H.

    2017-09-01

    The application of LiDAR data in forestry initially focused on mapping forest community, particularly and primarily intended for largescale forest management and planning. Then with the smaller footprint and higher sampling density LiDAR data available, detecting individual tree overstory, estimating crowns parameters and identifying tree species are demonstrated practicable. This paper proposes a section-based protocol of tree species identification taking palm tree as an example. Section-based method is to detect objects through certain profile among different direction, basically along X-axis or Y-axis. And this method improve the utilization of spatial information to generate accurate results. Firstly, separate the tree points from manmade-object points by decision-tree-based rules, and create Crown Height Mode (CHM) by subtracting the Digital Terrain Model (DTM) from the digital surface model (DSM). Then calculate and extract key points to locate individual trees, thus estimate specific tree parameters related to species information, such as crown height, crown radius, and cross point etc. Finally, with parameters we are able to identify certain tree species. Comparing to species information measured on ground, the portion correctly identified trees on all plots could reach up to 90.65 %. The identification result in this research demonstrate the ability to distinguish palm tree using LiDAR point cloud. Furthermore, with more prior knowledge, section-based method enable the process to classify trees into different classes.

  12. Modern control concepts in hydrology

    NASA Technical Reports Server (NTRS)

    Duong, N.; Johnson, G. R.; Winn, C. B.

    1974-01-01

    Two approaches to an identification problem in hydrology are presented based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time invariant or time dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and conform with results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second, by using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.

  13. Design of experiments for identification of complex biochemical systems with applications to mitochondrial bioenergetics.

    PubMed

    Vinnakota, Kalyan C; Beard, Daniel A; Dash, Ranjan K

    2009-01-01

    Identification of a complex biochemical system model requires appropriate experimental data. Models constructed on the basis of data from the literature often contain parameters that are not identifiable with high sensitivity and therefore require additional experimental data to identify those parameters. Here we report the application of a local sensitivity analysis to design experiments that will improve the identifiability of previously unidentifiable model parameters in a model of mitochondrial oxidative phosphorylation and tricaboxylic acid cycle. Experiments were designed based on measurable biochemical reactants in a dilute suspension of purified cardiac mitochondria with experimentally feasible perturbations to this system. Experimental perturbations and variables yielding the most number of parameters above a 5% sensitivity level are presented and discussed.

  14. System identification for modeling for control of flexible structures

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Milman, Mark

    1986-01-01

    The major components of a design and operational flight strategy for flexible structure control systems are presented. In this strategy an initial distributed parameter control design is developed and implemented from available ground test data and on-orbit identification using sophisticated modeling and synthesis techniques. The reliability of this high performance controller is directly linked to the accuracy of the parameters on which the design is based. Because uncertainties inevitably grow without system monitoring, maintaining the control system requires an active on-line system identification function to supply parameter updates and covariance information. Control laws can then be modified to improve performance when the error envelopes are decreased. In terms of system safety and stability the covariance information is of equal importance as the parameter values themselves. If the on-line system ID function detects an increase in parameter error covariances, then corresponding adjustments must be made in the control laws to increase robustness. If the error covariances exceed some threshold, an autonomous calibration sequence could be initiated to restore the error enveloped to an acceptable level.

  15. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  16. Cavity parameters identification for TESLA control system development

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan

    2005-08-01

    Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.

  17. Full-Field Strain Measurement On Titanium Welds And Local Elasto-Plastic Identification With The Virtual Fields Method

    NASA Astrophysics Data System (ADS)

    Tattoli, F.; Pierron, F.; Rotinat, R.; Casavola, C.; Pappalettere, C.

    2011-01-01

    One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto—plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.

  18. Automatic limb identification and sleeping parameters assessment for pressure ulcer prevention.

    PubMed

    Baran Pouyan, Maziyar; Birjandtalab, Javad; Nourani, Mehrdad; Matthew Pompeo, M D

    2016-08-01

    Pressure ulcers (PUs) are common among vulnerable patients such as elderly, bedridden and diabetic. PUs are very painful for patients and costly for hospitals and nursing homes. Assessment of sleeping parameters on at-risk limbs is critical for ulcer prevention. An effective assessment depends on automatic identification and tracking of at-risk limbs. An accurate limb identification can be used to analyze the pressure distribution and assess risk for each limb. In this paper, we propose a graph-based clustering approach to extract the body limbs from the pressure data collected by a commercial pressure map system. A robust signature-based technique is employed to automatically label each limb. Finally, an assessment technique is applied to evaluate the experienced stress by each limb over time. The experimental results indicate high performance and more than 94% average accuracy of the proposed approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An approximation theory for the identification of linear thermoelastic systems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Su, Chien-Hua Frank

    1990-01-01

    An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.

  20. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    NASA Astrophysics Data System (ADS)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes

    2014-06-01

    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCFmax, spatial registration position in x-y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States.

  1. Detection and identification of concealed weapons using matrix pencil

    NASA Astrophysics Data System (ADS)

    Adve, Raviraj S.; Thayaparan, Thayananthan

    2011-06-01

    The detection and identification of concealed weapons is an extremely hard problem due to the weak signature of the target buried within the much stronger signal from the human body. This paper furthers the automatic detection and identification of concealed weapons by proposing the use of an effective approach to obtain the resonant frequencies in a measurement. The technique, based on Matrix Pencil, a scheme for model based parameter estimation also provides amplitude information, hence providing a level of confidence in the results. Of specific interest is the fact that Matrix Pencil is based on a singular value decomposition, making the scheme robust against noise.

  2. Output-only modal parameter estimator of linear time-varying structural systems based on vector TAR model and least squares support vector machine

    NASA Astrophysics Data System (ADS)

    Zhou, Si-Da; Ma, Yuan-Chen; Liu, Li; Kang, Jie; Ma, Zhi-Sai; Yu, Lei

    2018-01-01

    Identification of time-varying modal parameters contributes to the structural health monitoring, fault detection, vibration control, etc. of the operational time-varying structural systems. However, it is a challenging task because there is not more information for the identification of the time-varying systems than that of the time-invariant systems. This paper presents a vector time-dependent autoregressive model and least squares support vector machine based modal parameter estimator for linear time-varying structural systems in case of output-only measurements. To reduce the computational cost, a Wendland's compactly supported radial basis function is used to achieve the sparsity of the Gram matrix. A Gamma-test-based non-parametric approach of selecting the regularization factor is adapted for the proposed estimator to replace the time-consuming n-fold cross validation. A series of numerical examples have illustrated the advantages of the proposed modal parameter estimator on the suppression of the overestimate and the short data. A laboratory experiment has further validated the proposed estimator.

  3. On parameters identification of computational models of vibrations during quiet standing of humans

    NASA Astrophysics Data System (ADS)

    Barauskas, R.; Krušinskienė, R.

    2007-12-01

    Vibration of the center of pressure (COP) of human body on the base of support during quiet standing is a very popular clinical research, which provides useful information about the physical and health condition of an individual. In this work, vibrations of COP of a human body in forward-backward direction during still standing are generated using controlled inverted pendulum (CIP) model with a single degree of freedom (dof) supplied with proportional, integral and differential (PID) controller, which represents the behavior of the central neural system of a human body and excited by cumulative disturbance vibration, generated within the body due to breathing or any other physical condition. The identification of the model and disturbance parameters is an important stage while creating a close-to-reality computational model able to evaluate features of disturbance. The aim of this study is to present the CIP model parameters identification approach based on the information captured by time series of the COP signal. The identification procedure is based on an error function minimization. Error function is formulated in terms of time laws of computed and experimentally measured COP vibrations. As an alternative, error function is formulated in terms of the stabilogram diffusion function (SDF). The minimization of error functions is carried out by employing methods based on sensitivity functions of the error with respect to model and excitation parameters. The sensitivity functions are obtained by using the variational techniques. The inverse dynamic problem approach has been employed in order to establish the properties of the disturbance time laws ensuring the satisfactory coincidence of measured and computed COP vibration laws. The main difficulty of the investigated problem is encountered during the model validation stage. Generally, neither the PID controller parameter set nor the disturbance time law are known in advance. In this work, an error function formulated in terms of time derivative of disturbance torque has been proposed in order to obtain PID controller parameters, as well as the reference time law of the disturbance. The disturbance torque is calculated from experimental data using the inverse dynamic approach. Experiments presented in this study revealed that vibrations of disturbance torque and PID controller parameters identified by the method may be qualified as feasible in humans. Presented approach may be easily extended to structural models with any number of dof or higher structural complexity.

  4. Inverse modeling of rainfall infiltration with a dual permeability approach using different matrix-fracture coupling variants.

    NASA Astrophysics Data System (ADS)

    Blöcher, Johanna; Kuraz, Michal

    2017-04-01

    In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.

  5. A novel model of magnetorheological damper with hysteresis division

    NASA Astrophysics Data System (ADS)

    Yu, Jianqiang; Dong, Xiaomin; Zhang, Zonglun

    2017-10-01

    Due to the complex nonlinearity of magnetorheological (MR) behavior, the modeling of MR dampers is a challenge. A simple and effective model of MR damper remains a work in progress. A novel model of MR damper is proposed with force-velocity hysteresis division method in this study. A typical hysteresis loop of MR damper can be simply divided into two novel curves with the division idea. One is the backbone curve and the other is the branch curve. The exponential-family functions which capturing the characteristics of the two curves can simplify the model and improve the identification efficiency. To illustrate and validate the novel phenomenological model with hysteresis division idea, a dual-end MR damper is designed and tested. Based on the experimental data, the characteristics of the novel curves are investigated. To simplify the parameters identification and obtain the reversibility, the maximum force part, the non-dimensional backbone part and the non-dimensional branch part are derived from the two curves. The maximum force part and the non-dimensional part are in multiplication type add-rule. The maximum force part is dependent on the current and maximum velocity. The non-dominated sorting genetic algorithm II (NSGA II) based on the design of experiments (DOE) is employed to identify the parameters of the normalized shape functions. Comparative analysis is conducted based on the identification results. The analysis shows that the novel model with few identification parameters has higher accuracy and better predictive ability.

  6. Flight test planning and parameter extraction for rotorcraft system identification

    NASA Technical Reports Server (NTRS)

    Wang, J. C.; Demiroz, M. Y.; Talbot, P. D.

    1986-01-01

    The present study is concerned with the mathematical modelling of aircraft dynamics on the basis of an investigation conducted with the aid of the Rotor System Research Aircraft (RSRA). The particular characteristics of RSRA make it possible to investigate aircraft properties which cannot be readily studied elsewhere, for example in the wind tunnel. The considered experiment had mainly the objective to develop an improved understanding of the physics of rotor flapping dynamics and rotor loads in maneuvers. The employed approach is based on a utilization of parameter identification methodology (PID) with application to helicopters. A better understanding of the contribution of the main rotor to the overall aircraft forces and moments is also to be obtained. Attention is given to the mathematical model of a rotorcraft system, an integrated identification method, flight data processing, and the identification of RSRA mathematical models.

  7. Experimental Identification and Characterization of Multirotor UAV Propulsion

    NASA Astrophysics Data System (ADS)

    Kotarski, Denis; Krznar, Matija; Piljek, Petar; Simunic, Nikola

    2017-07-01

    In this paper, an experimental procedure for the identification and characterization of multirotor Unmanned Aerial Vehicle (UAV) propulsion is presented. Propulsion configuration needs to be defined precisely in order to achieve required flight performance. Based on the accurate dynamic model and empirical measurements of multirotor propulsion physical parameters, it is possible to design diverse configurations with different characteristics for various purposes. As a case study, we investigated design considerations for a micro indoor multirotor which is suitable for control algorithm implementation in structured environment. It consists of open source autopilot, sensors for indoor flight, “take off the shelf” propulsion components and frame. The series of experiments were conducted to show the process of parameters identification and the procedure for analysis and propulsion characterization. Additionally, we explore battery performance in terms of mass and specific energy. Experimental results show identified and estimated propulsion parameters through which blade element theory is verified.

  8. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation.

    PubMed

    Suzuki, Ryo; Ito, Kohta; Lee, Taeyong; Ogihara, Naomichi

    2017-01-01

    Accurate identification of the material properties of the plantar soft tissue is important for computer-aided analysis of foot pathologies and design of therapeutic footwear interventions based on subject-specific models of the foot. However, parameter identification of the hyperelastic material properties of plantar soft tissues usually requires an inverse finite element analysis due to the lack of a practical contact model of the indentation test. In the present study, we derive an analytical contact model of a spherical indentation test in order to directly estimate the material properties of the plantar soft tissue. Force-displacement curves of the heel pads are obtained through an indentation experiment. The experimental data are fit to the analytical stress-strain solution of the spherical indentation in order to obtain the parameters. A spherical indentation approach successfully predicted the non-linear material properties of the heel pad without iterative finite element calculation. The force-displacement curve obtained in the present study was found to be situated lower than those identified in previous studies. The proposed framework for identifying the hyperelastic material parameters may facilitate the development of subject-specific FE modeling of the foot for possible clinical and ergonomic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A Review on Investigation and Assessment of Path Loss Models in Urban and Rural Environment

    NASA Astrophysics Data System (ADS)

    Maurya, G. R.; Kokate, P. A.; Lokhande, S. K.; Shrawankar, J. A.

    2017-08-01

    This paper aims at providing a clear knowledge of Path Loss (PL) to the researcher. The important data have been extracted from the papers and mentioned in clear and precise manner. The limited studies were based on identification of PL due to FM frequency. Majority of studies based on identification of PL considering telephonic frequency as a source. In this paper the PL in urban and rural areas of different places due to various factors like buildings, trees, antenna height, forest etc. have been studied. The common parameters like frequency, model and location based studies were done. The studies were segregated based on various parameters in tabular format and they were compared based on frequency, location and best fit model in that table. Scatter chart was drawn in order to make the things clearer and more understandable. However, location specific PL models are required to investigate the RF propagation in identified terrain.

  10. High frequency modal identification on noisy high-speed camera data

    NASA Astrophysics Data System (ADS)

    Javh, Jaka; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration measurements using optical full-field systems based on high-speed footage are typically heavily burdened by noise, as the displacement amplitudes of the vibrating structures are often very small (in the range of micrometers, depending on the structure). The modal information is troublesome to measure as the structure's response is close to, or below, the noise level of the camera-based measurement system. This paper demonstrates modal parameter identification for such noisy measurements. It is shown that by using the Least-Squares Complex-Frequency method combined with the Least-Squares Frequency-Domain method, identification at high-frequencies is still possible. By additionally incorporating a more precise sensor to identify the eigenvalues, a hybrid accelerometer/high-speed camera mode shape identification is possible even below the noise floor. An accelerometer measurement is used to identify the eigenvalues, while the camera measurement is used to produce the full-field mode shapes close to 10 kHz. The identified modal parameters improve the quality of the measured modal data and serve as a reduced model of the structure's dynamics.

  11. Effects of temporal and spatial resolution of calibration data on integrated hydrologic water quality model identification

    NASA Astrophysics Data System (ADS)

    Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Rode, Michael

    2014-05-01

    Hydrological water quality modeling is increasingly used for investigating runoff and nutrient transport processes as well as watershed management but it is mostly unclear how data availablity determins model identification. In this study, the HYPE (HYdrological Predictions for the Environment) model, which is a process-based, semi-distributed hydrological water quality model, was applied in two different mesoscale catchments (Selke (463 km2) and Weida (99 km2)) located in central Germany to simulate discharge and inorganic nitrogen (IN) transport. PEST and DREAM(ZS) were combined with the HYPE model to conduct parameter calibration and uncertainty analysis. Split-sample test was used for model calibration (1994-1999) and validation (1999-2004). IN concentration and daily IN load were found to be highly correlated with discharge, indicating that IN leaching is mainly controlled by runoff. Both dynamics and balances of water and IN load were well captured with NSE greater than 0.83 during validation period. Multi-objective calibration (calibrating hydrological and water quality parameters simultaneously) was found to outperform step-wise calibration in terms of model robustness. Multi-site calibration was able to improve model performance at internal sites, decrease parameter posterior uncertainty and prediction uncertainty. Nitrogen-process parameters calibrated using continuous daily averages of nitrate-N concentration observations produced better and more robust simulations of IN concentration and load, lower posterior parameter uncertainty and IN concentration prediction uncertainty compared to the calibration against uncontinuous biweekly nitrate-N concentration measurements. Both PEST and DREAM(ZS) are efficient in parameter calibration. However, DREAM(ZS) is more sound in terms of parameter identification and uncertainty analysis than PEST because of its capability to evolve parameter posterior distributions and estimate prediction uncertainty based on global search and Bayesian inference schemes.

  12. Parametric diagnosis of the adaptive gas path in the automatic control system of the aircraft engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2017-01-01

    The paper dwells on the adaptive multimode mathematical model of the gas-turbine aircraft engine (GTE) embedded in the automatic control system (ACS). The mathematical model is based on the throttle performances, and is characterized by high accuracy of engine parameters identification in stationary and dynamic modes. The proposed on-board engine model is the state space linearized low-level simulation. The engine health is identified by the influence of the coefficient matrix. The influence coefficient is determined by the GTE high-level mathematical model based on measurements of gas-dynamic parameters. In the automatic control algorithm, the sum of squares of the deviation between the parameters of the mathematical model and real GTE is minimized. The proposed mathematical model is effectively used for gas path defects detecting in on-line GTE health monitoring. The accuracy of the on-board mathematical model embedded in ACS determines the quality of adaptive control and reliability of the engine. To improve the accuracy of identification solutions and sustainability provision, the numerical method of Monte Carlo was used. The parametric diagnostic algorithm based on the LPτ - sequence was developed and tested. Analysis of the results suggests that the application of the developed algorithms allows achieving higher identification accuracy and reliability than similar models used in practice.

  13. Fluid identification based on P-wave anisotropy dispersion gradient inversion for fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Zhang, J. W.; Huang, H. D.; Zhu, B. H.; Liao, W.

    2017-10-01

    Fluid identification in fractured reservoirs is a challenging issue and has drawn increasing attentions. As aligned fractures in subsurface formations can induce anisotropy, we must choose parameters independent with azimuths to characterize fractures and fluid effects such as anisotropy parameters for fractured reservoirs. Anisotropy is often frequency dependent due to wave-induced fluid flow between pores and fractures. This property is conducive for identifying fluid type using azimuthal seismic data in fractured reservoirs. Through the numerical simulation based on Chapman model, we choose the P-wave anisotropy parameter dispersion gradient (PADG) as the new fluid factor. PADG is dependent both on average fracture radius and fluid type but independent on azimuths. When the aligned fractures in the reservoir are meter-scaled, gas-bearing layer could be accurately identified using PADG attribute. The reflection coefficient formula for horizontal transverse isotropy media by Rüger is reformulated and simplified according to frequency and the target function for inverting PADG based on frequency-dependent amplitude versus azimuth is derived. A spectral decomposition method combining Orthogonal Matching Pursuit and Wigner-Ville distribution is used to prepare the frequency-division data. Through application to synthetic data and real seismic data, the results suggest that the method is useful for gas identification in reservoirs with meter-scaled fractures using high-qualified seismic data.

  14. Confidence assignment for mass spectrometry based peptide identifications via the extreme value distribution.

    PubMed

    Alves, Gelio; Yu, Yi-Kuo

    2016-09-01

    There is a growing trend for biomedical researchers to extract evidence and draw conclusions from mass spectrometry based proteomics experiments, the cornerstone of which is peptide identification. Inaccurate assignments of peptide identification confidence thus may have far-reaching and adverse consequences. Although some peptide identification methods report accurate statistics, they have been limited to certain types of scoring function. The extreme value statistics based method, while more general in the scoring functions it allows, demands accurate parameter estimates and requires, at least in its original design, excessive computational resources. Improving the parameter estimate accuracy and reducing the computational cost for this method has two advantages: it provides another feasible route to accurate significance assessment, and it could provide reliable statistics for scoring functions yet to be developed. We have formulated and implemented an efficient algorithm for calculating the extreme value statistics for peptide identification applicable to various scoring functions, bypassing the need for searching large random databases. The source code, implemented in C ++ on a linux system, is available for download at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbp/qmbp_ms/RAId/RAId_Linux_64Bit yyu@ncbi.nlm.nih.gov Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  15. Dynamic parameter identification of robot arms with servo-controlled electrical motors

    NASA Astrophysics Data System (ADS)

    Jiang, Zhao-Hui; Senda, Hiroshi

    2005-12-01

    This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.

  16. Rotorcraft Blade Mode Damping Identification from Random Responses Using a Recursive Maximum Likelihood Algorithm

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.

    1982-01-01

    An on line technique is presented for the identification of rotor blade modal damping and frequency from rotorcraft random response test data. The identification technique is based upon a recursive maximum likelihood (RML) algorithm, which is demonstrated to have excellent convergence characteristics in the presence of random measurement noise and random excitation. The RML technique requires virtually no user interaction, provides accurate confidence bands on the parameter estimates, and can be used for continuous monitoring of modal damping during wind tunnel or flight testing. Results are presented from simulation random response data which quantify the identified parameter convergence behavior for various levels of random excitation. The data length required for acceptable parameter accuracy is shown to depend upon the amplitude of random response and the modal damping level. Random response amplitudes of 1.25 degrees to .05 degrees are investigated. The RML technique is applied to hingeless rotor test data. The inplane lag regressing mode is identified at different rotor speeds. The identification from the test data is compared with the simulation results and with other available estimates of frequency and damping.

  17. A photometric mode identification method, including an improved non-adiabatic treatment of the atmosphere

    NASA Astrophysics Data System (ADS)

    Dupret, M.-A.; De Ridder, J.; De Cat, P.; Aerts, C.; Scuflaire, R.; Noels, A.; Thoul, A.

    2003-02-01

    We present an improved version of the method of photometric mode identification of Heynderickx et al. (\\cite{hey}). Our new version is based on the inclusion of precise non-adiabatic eigenfunctions determined in the outer stellar atmosphere according to the formalism recently proposed by Dupret et al. (\\cite{dup}). Our improved photometric mode identification technique is therefore no longer dependent on ad hoc parameters for the non-adiabatic effects. It contains the complete physical conditions of the outer atmosphere of the star, provided that rotation does not play a key role. We apply our method to the two slowly pulsating B stars HD 74560 and HD 138764 and to the beta Cephei star EN (16) Lac. Besides identifying the degree l of the pulsating stars, our method is also a tool for improving the knowledge of stellar interiors and atmospheres, by imposing constraints on parameters such as the metallicity and the mixing-length parameter alpha (a procedure we label non-adiabatic asteroseismology). The non-adiabatic eigenfunctions needed for the mode identification are available upon request from the authors.

  18. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  19. Blade resonance parameter identification based on tip-timing method without the once-per revolution sensor

    NASA Astrophysics Data System (ADS)

    Guo, Haotian; Duan, Fajie; Zhang, Jilong

    2016-01-01

    Blade tip-timing is the most effective method for blade vibration online measurement of turbomachinery. In this article a synchronous resonance vibration measurement method of blade based on tip-timing is presented. This method requires no once-per revolution sensor which makes it more generally applicable in the condition where this sensor is difficult to install, especially for the high-pressure rotors of dual-rotor engines. Only three casing mounted probes are required to identify the engine order, amplitude, natural frequency and the damping coefficient of the blade. A method is developed to identify the blade which a tip-timing data belongs to without once-per revolution sensor. Theoretical analyses of resonance parameter measurement are presented. Theoretic error of the method is investigated and corrected. Experiments are conducted and the results indicate that blade resonance parameter identification is achieved without once-per revolution sensor.

  20. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error‐based weighting and one objective function

    USGS Publications Warehouse

    Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.

    2009-01-01

    We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.

  1. Accuracy-enhanced constitutive parameter identification using virtual fields method and special stereo-digital image correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongya; Pan, Bing; Grédiac, Michel; Song, Weidong

    2018-04-01

    The virtual fields method (VFM) is generally used with two-dimensional digital image correlation (2D-DIC) or grid method (GM) for identifying constitutive parameters. However, when small out-of-plane translation/rotation occurs to the test specimen, 2D-DIC and GM are prone to yield inaccurate measurements, which further lessen the accuracy of the parameter identification using VFM. In this work, an easy-to-implement but effective "special" stereo-DIC (SS-DIC) method is proposed for accuracy-enhanced VFM identification. The SS-DIC can not only deliver accurate deformation measurement without being affected by unavoidable out-of-plane movement/rotation of a test specimen, but can also ensure evenly distributed calculation data in space, which leads to simple data processing. Based on the accurate kinematics fields with evenly distributed measured points determined by SS-DIC method, constitutive parameters can be identified by VFM with enhanced accuracy. Uniaxial tensile tests of a perforated aluminum plate and pure shear tests of a prismatic aluminum specimen verified the effectiveness and accuracy of the proposed method. Experimental results show that the constitutive parameters identified by VFM using SS-DIC are more accurate and stable than those identified by VFM using 2D-DIC. It is suggested that the proposed SS-DIC can be used as a standard measuring tool for mechanical identification using VFM.

  2. Reservoir Identification: Parameter Characterization or Feature Classification

    NASA Astrophysics Data System (ADS)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  3. Pole-zero form fractional model identification in frequency domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansouri, R.; Djamah, T.; Djennoune, S.

    2009-03-05

    This paper deals with system identification in the frequency domain using non integer order models given in the pole-zero form. The usual identification techniques cannot be used in this case because of the non integer orders of differentiation which makes the problem strongly nonlinear. A general identification method based on Levenberg-Marquardt algorithm is developed and allows to estimate the (2n+2m+1) parameters of the model. Its application to identify the ''skin effect'' of a squirrel cage induction machine modeling is then presented.

  4. Research on gait-based human identification

    NASA Astrophysics Data System (ADS)

    Li, Youguo

    Gait recognition refers to automatic identification of individual based on his/her style of walking. This paper proposes a gait recognition method based on Continuous Hidden Markov Model with Mixture of Gaussians(G-CHMM). First, we initialize a Gaussian mix model for training image sequence with K-means algorithm, then train the HMM parameters using a Baum-Welch algorithm. These gait feature sequences can be trained and obtain a Continuous HMM for every person, therefore, the 7 key frames and the obtained HMM can represent each person's gait sequence. Finally, the recognition is achieved by Front algorithm. The experiments made on CASIA gait databases obtain comparatively high correction identification ratio and comparatively strong robustness for variety of bodily angle.

  5. Addressing subjective decision-making inherent in GLUE-based multi-criteria rainfall-runoff model calibration

    NASA Astrophysics Data System (ADS)

    Shafii, Mahyar; Tolson, Bryan; Shawn Matott, L.

    2015-04-01

    GLUE is one of the most commonly used informal methodologies for uncertainty estimation in hydrological modelling. Despite the ease-of-use of GLUE, it involves a number of subjective decisions such as the strategy for identifying the behavioural solutions. This study evaluates the impact of behavioural solution identification strategies in GLUE on the quality of model output uncertainty. Moreover, two new strategies are developed to objectively identify behavioural solutions. The first strategy considers Pareto-based ranking of parameter sets, while the second one is based on ranking the parameter sets based on an aggregated criterion. The proposed strategies, as well as the traditional strategies in the literature, are evaluated with respect to reliability (coverage of observations by the envelope of model outcomes) and sharpness (width of the envelope of model outcomes) in different numerical experiments. These experiments include multi-criteria calibration and uncertainty estimation of three rainfall-runoff models with different number of parameters. To demonstrate the importance of behavioural solution identification strategy more appropriately, GLUE is also compared with two other informal multi-criteria calibration and uncertainty estimation methods (Pareto optimization and DDS-AU). The results show that the model output uncertainty varies with the behavioural solution identification strategy, and furthermore, a robust GLUE implementation would require considering multiple behavioural solution identification strategies and choosing the one that generates the desired balance between sharpness and reliability. The proposed objective strategies prove to be the best options in most of the case studies investigated in this research. Implementing such an approach for a high-dimensional calibration problem enables GLUE to generate robust results in comparison with Pareto optimization and DDS-AU.

  6. A drilling tool design and in situ identification of planetary regolith mechanical parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei

    2018-05-01

    The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.

  7. Identification of Anisotropic Criteria for Stratified Soil Based on Triaxial Tests Results

    NASA Astrophysics Data System (ADS)

    Tankiewicz, Matylda; Kawa, Marek

    2017-09-01

    The paper presents the identification methodology of anisotropic criteria based on triaxial test results. The considered material is varved clay - a sedimentary soil occurring in central Poland which is characterized by the so-called "layered microstructure". The strength examination outcomes were identified by standard triaxial tests. The results include the estimated peak strength obtained for a wide range of orientations and confining pressures. Two models were chosen as potentially adequate for the description of the tested material, namely Pariseau and its conjunction with the Jaeger weakness plane. Material constants were obtained by fitting the model to the experimental results. The identification procedure is based on the least squares method. The optimal values of parameters are searched for between specified bounds by sequentially decreasing the distance between points and reducing the length of the searched range. For both considered models the optimal parameters have been obtained. The comparison of theoretical and experimental results as well as the assessment of the suitability of selected criteria for the specified range of confining pressures are presented.

  8. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection

    NASA Astrophysics Data System (ADS)

    Magalhães, F.; Cunha, A.; Caetano, E.

    2012-04-01

    In order to evaluate the usefulness of approaches based on modal parameters tracking for structural health monitoring of bridges, in September of 2007, a dynamic monitoring system was installed in a concrete arch bridge at the city of Porto, in Portugal. The implementation of algorithms to perform the continuous on-line identification of modal parameters based on structural responses to ambient excitation (automated Operational Modal Analysis) has permitted to create a very complete database with the time evolution of the bridge modal characteristics during more than 2 years. This paper describes the strategy that was followed to minimize the effects of environmental and operational factors on the bridge natural frequencies, enabling, in a subsequent stage, the identification of structural anomalies. Alternative static and dynamic regression models are tested and complemented by a Principal Components Analysis. Afterwards, the identification of damages is tried with control charts. At the end, it is demonstrated that the adopted processing methodology permits the detection of realistic damage scenarios, associated with frequency shifts around 0.2%, which were simulated with a numerical model.

  9. Approach to identifying pollutant source and matching flow field

    NASA Astrophysics Data System (ADS)

    Liping, Pang; Yu, Zhang; Hongquan, Qu; Tao, Hu; Wei, Wang

    2013-07-01

    Accidental pollution events often threaten people's health and lives, and it is necessary to identify a pollutant source rapidly so that prompt actions can be taken to prevent the spread of pollution. But this identification process is one of the difficulties in the inverse problem areas. This paper carries out some studies on this issue. An approach using single sensor information with noise was developed to identify a sudden continuous emission trace pollutant source in a steady velocity field. This approach first compares the characteristic distance of the measured concentration sequence to the multiple hypothetical measured concentration sequences at the sensor position, which are obtained based on a source-three-parameter multiple hypotheses. Then we realize the source identification by globally searching the optimal values with the objective function of the maximum location probability. Considering the large amount of computation load resulting from this global searching, a local fine-mesh source search method based on priori coarse-mesh location probabilities is further used to improve the efficiency of identification. Studies have shown that the flow field has a very important influence on the source identification. Therefore, we also discuss the impact of non-matching flow fields with estimation deviation on identification. Based on this analysis, a method for matching accurate flow field is presented to improve the accuracy of identification. In order to verify the practical application of the above method, an experimental system simulating a sudden pollution process in a steady flow field was set up and some experiments were conducted when the diffusion coefficient was known. The studies showed that the three parameters (position, emission strength and initial emission time) of the pollutant source in the experiment can be estimated by using the method for matching flow field and source identification.

  10. Performance of tensor decomposition-based modal identification under nonstationary vibration

    NASA Astrophysics Data System (ADS)

    Friesen, P.; Sadhu, A.

    2017-03-01

    Health monitoring of civil engineering structures is of paramount importance when they are subjected to natural hazards or extreme climatic events like earthquake, strong wind gusts or man-made excitations. Most of the traditional modal identification methods are reliant on stationarity assumption of the vibration response and posed difficulty while analyzing nonstationary vibration (e.g. earthquake or human-induced vibration). Recently tensor decomposition based methods are emerged as powerful and yet generic blind (i.e. without requiring a knowledge of input characteristics) signal decomposition tool for structural modal identification. In this paper, a tensor decomposition based system identification method is further explored to estimate modal parameters using nonstationary vibration generated due to either earthquake or pedestrian induced excitation in a structure. The effects of lag parameters and sensor densities on tensor decomposition are studied with respect to the extent of nonstationarity of the responses characterized by the stationary duration and peak ground acceleration of the earthquake. A suite of more than 1400 earthquakes is used to investigate the performance of the proposed method under a wide variety of ground motions utilizing both complete and partial measurements of a high-rise building model. Apart from the earthquake, human-induced nonstationary vibration of a real-life pedestrian bridge is also used to verify the accuracy of the proposed method.

  11. Iterative integral parameter identification of a respiratory mechanics model.

    PubMed

    Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey

    2012-07-18

    Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.

  12. Efficient Bayesian experimental design for contaminant source identification

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zeng, L.

    2013-12-01

    In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameter identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from indirect concentration measurements in identifying unknown source parameters such as the release time, strength and location. In this approach, the sampling location that gives the maximum relative entropy is selected as the optimal one. Once the sampling location is determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown source parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. Compared with the traditional optimal design, which is based on the Gaussian linear assumption, the method developed in this study can cope with arbitrary nonlinearity. It can be used to assist in groundwater monitor network design and identification of unknown contaminant sources. Contours of the expected information gain. The optimal observing location corresponds to the maximum value. Posterior marginal probability densities of unknown parameters, the thick solid black lines are for the designed location. For comparison, other 7 lines are for randomly chosen locations. The true values are denoted by vertical lines. It is obvious that the unknown parameters are estimated better with the desinged location.

  13. An efficient recursive least square-based condition monitoring approach for a rail vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Alfi, S.; Bruni, S.

    2016-06-01

    A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic 'input-output' model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software 'ADTreS' are utilised as 'virtual measurements' considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.

  14. Combined state and parameter identification of nonlinear structural dynamical systems based on Rao-Blackwellization and Markov chain Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Abhinav, S.; Manohar, C. S.

    2018-03-01

    The problem of combined state and parameter estimation in nonlinear state space models, based on Bayesian filtering methods, is considered. A novel approach, which combines Rao-Blackwellized particle filters for state estimation with Markov chain Monte Carlo (MCMC) simulations for parameter identification, is proposed. In order to ensure successful performance of the MCMC samplers, in situations involving large amount of dynamic measurement data and (or) low measurement noise, the study employs a modified measurement model combined with an importance sampling based correction. The parameters of the process noise covariance matrix are also included as quantities to be identified. The study employs the Rao-Blackwellization step at two stages: one, associated with the state estimation problem in the particle filtering step, and, secondly, in the evaluation of the ratio of likelihoods in the MCMC run. The satisfactory performance of the proposed method is illustrated on three dynamical systems: (a) a computational model of a nonlinear beam-moving oscillator system, (b) a laboratory scale beam traversed by a loaded trolley, and (c) an earthquake shake table study on a bending-torsion coupled nonlinear frame subjected to uniaxial support motion.

  15. Study on feed forward neural network convex optimization for LiFePO4 battery parameters

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    Based on the modern facility agriculture automatic walking equipment LiFePO4 Battery, the parameter identification of LiFePO4 Battery is analyzed. An improved method for the process model of li battery is proposed, and the on-line estimation algorithm is presented. The parameters of the battery are identified using feed forward network neural convex optimization algorithm.

  16. Aircraft flight flutter testing at the NASA Ames-Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.

    1988-01-01

    Many parameter identification techniques have been used at the NASA Ames Research Center, Dryden Research Facility at Edwards Air Force Base to determine the aeroelastic stability of new and modified research vehicles in flight. This paper presents a summary of each technique used with emphasis on fast Fourier transform methods. Experiences gained from application of these techniques to various flight test programs are discussed. Also presented are data-smoothing techniques used for test data distorted by noise. Data are presented for various aircraft to demonstrate the accuracy of each parameter identification technique discussed.

  17. A system identification technique based on the random decrement signatures. Part 2: Experimental results

    NASA Technical Reports Server (NTRS)

    Bedewi, Nabih E.; Yang, Jackson C. S.

    1987-01-01

    Identification of the system parameters of a randomly excited structure may be treated using a variety of statistical techniques. Of all these techniques, the Random Decrement is unique in that it provides the homogeneous component of the system response. Using this quality, a system identification technique was developed based on a least-squares fit of the signatures to estimate the mass, damping, and stiffness matrices of a linear randomly excited system. The results of an experiment conducted on an offshore platform scale model to verify the validity of the technique and to demonstrate its application in damage detection are presented.

  18. Knowledge of damage identification about tensegrities via flexibility disassembly

    NASA Astrophysics Data System (ADS)

    Jiang, Ge; Feng, Xiaodong; Du, Shigui

    2017-12-01

    Tensegrity structures composing of continuous cables and discrete struts are under tension and compression, respectively. In order to determine the damage extents of tensegrity structures, a new method for tensegrity structural damage identification is presented based on flexibility disassembly. To decompose a tensegrity structural flexibility matrix into the matrix represention of the connectivity between degress-of-freedoms and the diagonal matrix comprising of magnitude informations. Step 1: Calculate perturbation flexibility; Step 2: Compute the flexibility connectivity matrix and perturbation flexibility parameters; Step 3: Calculate the perturbation stiffness parameters. The efficiency of the proposed method is demonstrated by a numeical example comprising of 12 cables and 4 struts with pretensioned. Accurate identification of local damage depends on the availability of good measured data, an accurate and reasonable algorithm.

  19. Inverse problems and optimal experiment design in unsteady heat transfer processes identification

    NASA Technical Reports Server (NTRS)

    Artyukhin, Eugene A.

    1991-01-01

    Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

  20. Simultaneous versus sequential optimal experiment design for the identification of multi-parameter microbial growth kinetics as a function of temperature.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2010-05-21

    Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. A comparative assessment of different frequency based damage detection in unidirectional composite plates using MFC sensors

    NASA Astrophysics Data System (ADS)

    de Medeiros, Ricardo; Sartorato, Murilo; Vandepitte, Dirk; Tita, Volnei

    2016-11-01

    The basic concept of the vibration based damage identification methods is that the dynamic behaviour of a structure can change if damage occurs. Damage in a structure can alter the structural integrity, and therefore, the physical properties like stiffness, mass and/or damping may change. The dynamic behaviour of a structure is a function of these physical properties and will, therefore, directly be affected by the damage. The dynamic behaviour can be described in terms of time, frequency and modal domain parameters. The changes in these parameters (or properties derived from these parameters) are used as indicators of damage. Hence, this work has two main objectives. The first one is to provide an overview of the structural vibration based damage identification methods. For this purpose, a fundamental description of the structural vibration based damage identification problem is given, followed by a short literature overview of the damage features, which are commonly addressed. The second objective is to create a damage identification method for detection of the damage in composite structures. To aid in this process, two basic principles are discussed, namely the effect of the potential damage case on the dynamic behaviour, and the consequences involved with the information reduction in the signal processing. Modal properties from the structural dynamic output response are obtained. In addition, experimental and computational results are presented for the application of modal analysis techniques applied to composite specimens with and without damage. The excitation of the structures is performed using an impact hammer and, for measuring the output data, accelerometers as well as piezoelectric sensors. Finite element models are developed by shell elements, and numerical results are compared to experimental data, showing good correlation for the response of the specimens in some specific frequency range. Finally, FRFs are analysed using suitable metrics, including a new one, which are compared in terms of their capability for damage identification. The experimental and numerical results show that the vibration-based damage methods combined to the metrics can be used in Structural Health Monitoring (SHM) systems to identify the damage in the structure.

  2. Mathematical correlation of modal-parameter-identification methods via system-realization theory

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    1987-01-01

    A unified approach is introduced using system-realization theory to derive and correlate modal-parameter-identification methods for flexible structures. Several different time-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal-parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research toward the unification of the many possible approaches for modal-parameter identification.

  3. Calculation and Identification of the Aerodynamic Parameters for Small-Scaled Fixed-Wing UAVs.

    PubMed

    Shen, Jieliang; Su, Yan; Liang, Qing; Zhu, Xinhua

    2018-01-13

    The establishment of the Aircraft Dynamic Model(ADM) constitutes the prerequisite for the design of the navigation and control system, but the aerodynamic parameters in the model could not be readily obtained especially for small-scaled fixed-wing UAVs. In this paper, the procedure of computing the aerodynamic parameters is developed. All the longitudinal and lateral aerodynamic derivatives are firstly calculated through semi-empirical method based on the aerodynamics, rather than the wind tunnel tests or fluid dynamics software analysis. Secondly, the residuals of each derivative are proposed to be identified or estimated further via Extended Kalman Filter(EKF), with the observations of the attitude and velocity from the airborne integrated navigation system. Meanwhile, the observability of the targeted parameters is analyzed and strengthened through multiple maneuvers. Based on a small-scaled fixed-wing aircraft driven by propeller, the airborne sensors are chosen and the model of the actuators are constructed. Then, real flight tests are implemented to verify the calculation and identification process. Test results tell the rationality of the semi-empirical method and show the improvement of accuracy of ADM after the compensation of the parameters.

  4. Calculation and Identification of the Aerodynamic Parameters for Small-Scaled Fixed-Wing UAVs

    PubMed Central

    Shen, Jieliang; Su, Yan; Liang, Qing; Zhu, Xinhua

    2018-01-01

    The establishment of the Aircraft Dynamic Model (ADM) constitutes the prerequisite for the design of the navigation and control system, but the aerodynamic parameters in the model could not be readily obtained especially for small-scaled fixed-wing UAVs. In this paper, the procedure of computing the aerodynamic parameters is developed. All the longitudinal and lateral aerodynamic derivatives are firstly calculated through semi-empirical method based on the aerodynamics, rather than the wind tunnel tests or fluid dynamics software analysis. Secondly, the residuals of each derivative are proposed to be identified or estimated further via Extended Kalman Filter (EKF), with the observations of the attitude and velocity from the airborne integrated navigation system. Meanwhile, the observability of the targeted parameters is analyzed and strengthened through multiple maneuvers. Based on a small-scaled fixed-wing aircraft driven by propeller, the airborne sensors are chosen and the model of the actuators are constructed. Then, real flight tests are implemented to verify the calculation and identification process. Test results tell the rationality of the semi-empirical method and show the improvement of accuracy of ADM after the compensation of the parameters. PMID:29342856

  5. Fuzzy variable impedance control based on stiffness identification for human-robot cooperation

    NASA Astrophysics Data System (ADS)

    Mao, Dachao; Yang, Wenlong; Du, Zhijiang

    2017-06-01

    This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.

  6. System parameter identification from projection of inverse analysis

    NASA Astrophysics Data System (ADS)

    Liu, K.; Law, S. S.; Zhu, X. Q.

    2017-05-01

    The output of a system due to a change of its parameters is often approximated with the sensitivity matrix from the first order Taylor series. The system output can be measured in practice, but the perturbation in the system parameters is usually not available. Inverse sensitivity analysis can be adopted to estimate the unknown system parameter perturbation from the difference between the observation output data and corresponding analytical output data calculated from the original system model. The inverse sensitivity analysis is re-visited in this paper with improvements based on the Principal Component Analysis on the analytical data calculated from the known system model. The identification equation is projected into a subspace of principal components of the system output, and the sensitivity of the inverse analysis is improved with an iterative model updating procedure. The proposed method is numerical validated with a planar truss structure and dynamic experiments with a seven-storey planar steel frame. Results show that it is robust to measurement noise, and the location and extent of stiffness perturbation can be identified with better accuracy compared with the conventional response sensitivity-based method.

  7. On Markov parameters in system identification

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Longman, Richard W.

    1991-01-01

    A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.

  8. High-order dynamic modeling and parameter identification of structural discontinuities in Timoshenko beams by using reflection coefficients

    NASA Astrophysics Data System (ADS)

    Fan, Qiang; Huang, Zhenyu; Zhang, Bing; Chen, Dayue

    2013-02-01

    Properties of discontinuities, such as bolt joints and cracks in the waveguide structures, are difficult to evaluate by either analytical or numerical methods due to the complexity and uncertainty of the discontinuities. In this paper, the discontinuity in a Timoshenko beam is modeled with high-order parameters and then these parameters are identified by using reflection coefficients at the discontinuity. The high-order model is composed of several one-order sub-models in series and each sub-model consists of inertia, stiffness and damping components in parallel. The order of the discontinuity model is determined based on the characteristics of the reflection coefficient curve and the accuracy requirement of the dynamic modeling. The model parameters are identified through the least-square fitting iteration method, of which the undetermined model parameters are updated in iteration to fit the dynamic reflection coefficient curve with the wave-based one. By using the spectral super-element method (SSEM), simulation cases, including one-order discontinuities on infinite- and finite-beams and a two-order discontinuity on an infinite beam, were employed to evaluate both the accuracy of the discontinuity model and the effectiveness of the identification method. For practical considerations, effects of measurement noise on the discontinuity parameter identification are investigated by adding different levels of noise to the simulated data. The simulation results were then validated by the corresponding experiments. Both the simulation and experimental results show that (1) the one-order discontinuities can be identified accurately with the maximum errors of 6.8% and 8.7%, respectively; (2) and the high-order discontinuities can be identified with the maximum errors of 15.8% and 16.2%, respectively; and (3) the high-order model can predict the complex discontinuity much more accurately than the one-order discontinuity model.

  9. Evaluation of trace analyte identification in complex matrices by low-resolution gas chromatography--Mass spectrometry through signal simulation.

    PubMed

    Bettencourt da Silva, Ricardo J N

    2016-04-01

    The identification of trace levels of compounds in complex matrices by conventional low-resolution gas chromatography hyphenated with mass spectrometry is based in the comparison of retention times and abundance ratios of characteristic mass spectrum fragments of analyte peaks from calibrators with sample peaks. Statistically sound criteria for the comparison of these parameters were developed based on the normal distribution of retention times and the simulation of possible non-normal distribution of correlated abundances ratios. The confidence level used to set the statistical maximum and minimum limits of parameters defines the true positive rates of identifications. The false positive rate of identification was estimated from worst-case signal noise models. The estimated true and false positive identifications rate from one retention time and two correlated ratios of three fragments abundances were combined using simple Bayes' statistics to estimate the probability of compound identification being correct designated examination uncertainty. Models of the variation of examination uncertainty with analyte quantity allowed the estimation of the Limit of Examination as the lowest quantity that produced "Extremely strong" evidences of compound presence. User friendly MS-Excel files are made available to allow the easy application of developed approach in routine and research laboratories. The developed approach was successfully applied to the identification of chlorpyrifos-methyl and malathion in QuEChERS method extracts of vegetables with high water content for which the estimated Limit of Examination is 0.14 mg kg(-1) and 0.23 mg kg(-1) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Single Nucleobase Identification Using Biophysical Signatures from Nanoelectronic Quantum Tunneling.

    PubMed

    Korshoj, Lee E; Afsari, Sepideh; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-03-01

    Nanoelectronic DNA sequencing can provide an important alternative to sequencing-by-synthesis by reducing sample preparation time, cost, and complexity as a high-throughput next-generation technique with accurate single-molecule identification. However, sample noise and signature overlap continue to prevent high-resolution and accurate sequencing results. Probing the molecular orbitals of chemically distinct DNA nucleobases offers a path for facile sequence identification, but molecular entropy (from nucleotide conformations) makes such identification difficult when relying only on the energies of lowest-unoccupied and highest-occupied molecular orbitals (LUMO and HOMO). Here, nine biophysical parameters are developed to better characterize molecular orbitals of individual nucleobases, intended for single-molecule DNA sequencing using quantum tunneling of charges. For this analysis, theoretical models for quantum tunneling are combined with transition voltage spectroscopy to obtain measurable parameters unique to the molecule within an electronic junction. Scanning tunneling spectroscopy is then used to measure these nine biophysical parameters for DNA nucleotides, and a modified machine learning algorithm identified nucleobases. The new parameters significantly improve base calling over merely using LUMO and HOMO frontier orbital energies. Furthermore, high accuracies for identifying DNA nucleobases were observed at different pH conditions. These results have significant implications for developing a robust and accurate high-throughput nanoelectronic DNA sequencing technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sheet metals characterization using the virtual fields method

    NASA Astrophysics Data System (ADS)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2018-05-01

    In this work, a characterisation method involving a deep-notched specimen subjected to a tensile loading is introduced. This specimen leads to heterogeneous states of stress and strain, the latter being measured using a stereo DIC system (MatchID). This heterogeneity enables the identification of multiple material parameters in a single test. In order to identify material parameters from the DIC data, an inverse method called the Virtual Fields Method is employed. The method combined with recently developed sensitivity-based virtual fields allows to optimally locate areas in the test where information about each material parameter is encoded, improving accuracy of the identification over the traditional user-defined virtual fields. It is shown that a single test performed at 45° to the rolling direction is sufficient to obtain all anisotropic plastic parameters, thus reducing experimental effort involved in characterisation. The paper presents the methodology and some numerical validation.

  12. Application of system identification to analytic rotor modeling from simulated and wind tunnel dynamic test data, part 2

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Banerjee, D.

    1977-01-01

    An introduction to aircraft state and parameter identification methods is presented. A simplified form of the maximum likelihood method is selected to extract analytical aeroelastic rotor models from simulated and dynamic wind tunnel test results for accelerated cyclic pitch stirring excitation. The dynamic inflow characteristics for forward flight conditions from the blade flapping responses without direct inflow measurements were examined. The rotor blades are essentially rigid for inplane bending and for torsion within the frequency range of study, but flexible in out-of-plane bending. Reverse flow effects are considered for high rotor advance ratios. Two inflow models are studied; the first is based on an equivalent blade Lock number, the second is based on a time delayed momentum inflow. In addition to the inflow parameters, basic rotor parameters like the blade natural frequency and the actual blade Lock number are identified together with measurement bias values. The effect of the theoretical dynamic inflow on the rotor eigenvalues is evaluated.

  13. Dynamic neural networks based on-line identification and control of high performance motor drives

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  14. Performance enhancement for audio-visual speaker identification using dynamic facial muscle model.

    PubMed

    Asadpour, Vahid; Towhidkhah, Farzad; Homayounpour, Mohammad Mehdi

    2006-10-01

    Science of human identification using physiological characteristics or biometry has been of great concern in security systems. However, robust multimodal identification systems based on audio-visual information has not been thoroughly investigated yet. Therefore, the aim of this work to propose a model-based feature extraction method which employs physiological characteristics of facial muscles producing lip movements. This approach adopts the intrinsic properties of muscles such as viscosity, elasticity, and mass which are extracted from the dynamic lip model. These parameters are exclusively dependent on the neuro-muscular properties of speaker; consequently, imitation of valid speakers could be reduced to a large extent. These parameters are applied to a hidden Markov model (HMM) audio-visual identification system. In this work, a combination of audio and video features has been employed by adopting a multistream pseudo-synchronized HMM training method. Noise robust audio features such as Mel-frequency cepstral coefficients (MFCC), spectral subtraction (SS), and relative spectra perceptual linear prediction (J-RASTA-PLP) have been used to evaluate the performance of the multimodal system once efficient audio feature extraction methods have been utilized. The superior performance of the proposed system is demonstrated on a large multispeaker database of continuously spoken digits, along with a sentence that is phonetically rich. To evaluate the robustness of algorithms, some experiments were performed on genetically identical twins. Furthermore, changes in speaker voice were simulated with drug inhalation tests. In 3 dB signal to noise ratio (SNR), the dynamic muscle model improved the identification rate of the audio-visual system from 91 to 98%. Results on identical twins revealed that there was an apparent improvement on the performance for the dynamic muscle model-based system, in which the identification rate of the audio-visual system was enhanced from 87 to 96%.

  15. Mathematical correlation of modal parameter identification methods via system realization theory

    NASA Technical Reports Server (NTRS)

    Juang, J. N.

    1986-01-01

    A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification.

  16. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  17. Development of advanced techniques for rotorcraft state estimation and parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.

    1980-01-01

    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.

  18. A Time-Space Domain Information Fusion Method for Specific Emitter Identification Based on Dempster-Shafer Evidence Theory.

    PubMed

    Jiang, Wen; Cao, Ying; Yang, Lin; He, Zichang

    2017-08-28

    Specific emitter identification plays an important role in contemporary military affairs. However, most of the existing specific emitter identification methods haven't taken into account the processing of uncertain information. Therefore, this paper proposes a time-space domain information fusion method based on Dempster-Shafer evidence theory, which has the ability to deal with uncertain information in the process of specific emitter identification. In this paper, radars will generate a group of evidence respectively based on the information they obtained, and our main task is to fuse the multiple groups of evidence to get a reasonable result. Within the framework of recursive centralized fusion model, the proposed method incorporates a correlation coefficient, which measures the relevance between evidence and a quantum mechanical approach, which is based on the parameters of radar itself. The simulation results of an illustrative example demonstrate that the proposed method can effectively deal with uncertain information and get a reasonable recognition result.

  19. On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models part 2. Parameter and state estimation

    NASA Astrophysics Data System (ADS)

    Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe

    2014-09-01

    Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored. These include: battery state of charge (SoC), battery state of health (capacity fade determination, SoH), and state of function (power fade determination, SoF). The second paper concludes the series by presenting a multi-stage online parameter identification technique based on a weighted recursive least quadratic squares parameter estimator to determine the parameters of the proposed battery model from the first paper during operation. A novel mutation based algorithm is developed to determine the nonlinear current dependency of the charge-transfer resistance. The influence of diffusion is determined by an on-line identification technique and verified on several batteries at different operation conditions. This method guarantees a short response time and, together with its fully recursive structure, assures a long-term stable monitoring of the battery parameters. The relative dynamic voltage prediction error of the algorithm is reduced to 2%. The changes of parameters are used to determine the states of the battery. The algorithm is real-time capable and can be implemented on embedded systems.

  20. Identification of piecewise affine systems based on fuzzy PCA-guided robust clustering technique

    NASA Astrophysics Data System (ADS)

    Khanmirza, Esmaeel; Nazarahari, Milad; Mousavi, Alireza

    2016-12-01

    Hybrid systems are a class of dynamical systems whose behaviors are based on the interaction between discrete and continuous dynamical behaviors. Since a general method for the analysis of hybrid systems is not available, some researchers have focused on specific types of hybrid systems. Piecewise affine (PWA) systems are one of the subsets of hybrid systems. The identification of PWA systems includes the estimation of the parameters of affine subsystems and the coefficients of the hyperplanes defining the partition of the state-input domain. In this paper, we have proposed a PWA identification approach based on a modified clustering technique. By using a fuzzy PCA-guided robust k-means clustering algorithm along with neighborhood outlier detection, the two main drawbacks of the well-known clustering algorithms, i.e., the poor initialization and the presence of outliers, are eliminated. Furthermore, this modified clustering technique enables us to determine the number of subsystems without any prior knowledge about system. In addition, applying the structure of the state-input domain, that is, considering the time sequence of input-output pairs, provides a more efficient clustering algorithm, which is the other novelty of this work. Finally, the proposed algorithm has been evaluated by parameter identification of an IGV servo actuator. Simulation together with experiment analysis has proved the effectiveness of the proposed method.

  1. Maximum likelihood identification and optimal input design for identifying aircraft stability and control derivatives

    NASA Technical Reports Server (NTRS)

    Stepner, D. E.; Mehra, R. K.

    1973-01-01

    A new method of extracting aircraft stability and control derivatives from flight test data is developed based on the maximum likelihood cirterion. It is shown that this new method is capable of processing data from both linear and nonlinear models, both with and without process noise and includes output error and equation error methods as special cases. The first application of this method to flight test data is reported for lateral maneuvers of the HL-10 and M2/F3 lifting bodies, including the extraction of stability and control derivatives in the presence of wind gusts. All the problems encountered in this identification study are discussed. Several different methods (including a priori weighting, parameter fixing and constrained parameter values) for dealing with identifiability and uniqueness problems are introduced and the results given. The method for the design of optimal inputs for identifying the parameters of linear dynamic systems is also given. The criterion used for the optimization is the sensitivity of the system output to the unknown parameters. Several simple examples are first given and then the results of an extensive stability and control dervative identification simulation for a C-8 aircraft are detailed.

  2. Parameters Identification for Photovoltaic Module Based on an Improved Artificial Fish Swarm Algorithm

    PubMed Central

    Wang, Hong-Hua

    2014-01-01

    A precise mathematical model plays a pivotal role in the simulation, evaluation, and optimization of photovoltaic (PV) power systems. Different from the traditional linear model, the model of PV module has the features of nonlinearity and multiparameters. Since conventional methods are incapable of identifying the parameters of PV module, an excellent optimization algorithm is required. Artificial fish swarm algorithm (AFSA), originally inspired by the simulation of collective behavior of real fish swarms, is proposed to fast and accurately extract the parameters of PV module. In addition to the regular operation, a mutation operator (MO) is designed to enhance the searching performance of the algorithm. The feasibility of the proposed method is demonstrated by various parameters of PV module under different environmental conditions, and the testing results are compared with other studied methods in terms of final solutions and computational time. The simulation results show that the proposed method is capable of obtaining higher parameters identification precision. PMID:25243233

  3. A system identification technique based on the random decrement signatures. Part 1: Theory and simulation

    NASA Technical Reports Server (NTRS)

    Bedewi, Nabih E.; Yang, Jackson C. S.

    1987-01-01

    Identification of the system parameters of a randomly excited structure may be treated using a variety of statistical techniques. Of all these techniques, the Random Decrement is unique in that it provides the homogeneous component of the system response. Using this quality, a system identification technique was developed based on a least-squares fit of the signatures to estimate the mass, damping, and stiffness matrices of a linear randomly excited system. The mathematics of the technique is presented in addition to the results of computer simulations conducted to demonstrate the prediction of the response of the system and the random forcing function initially introduced to excite the system.

  4. Model identification and vision-based H∞ position control of 6-DoF cable-driven parallel robots

    NASA Astrophysics Data System (ADS)

    Chellal, R.; Cuvillon, L.; Laroche, E.

    2017-04-01

    This paper presents methodologies for the identification and control of 6-degrees of freedom (6-DoF) cable-driven parallel robots (CDPRs). First a two-step identification methodology is proposed to accurately estimate the kinematic parameters independently and prior to the dynamic parameters of a physics-based model of CDPRs. Second, an original control scheme is developed, including a vision-based position controller tuned with the H∞ methodology and a cable tension distribution algorithm. The position is controlled in the operational space, making use of the end-effector pose measured by a motion-tracking system. A four-block H∞ design scheme with adjusted weighting filters ensures good trajectory tracking and disturbance rejection properties for the CDPR system, which is a nonlinear-coupled MIMO system with constrained states. The tension management algorithm generates control signals that maintain the cables under feasible tensions. The paper makes an extensive review of the available methods and presents an extension of one of them. The presented methodologies are evaluated by simulations and experimentally on a redundant 6-DoF INCA 6D CDPR with eight cables, equipped with a motion-tracking system.

  5. Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.; de Callafon, Raymond A.

    2017-02-01

    This paper presents a framework for structural health monitoring (SHM) and damage identification of civil structures. This framework integrates advanced mechanics-based nonlinear finite element (FE) modeling and analysis techniques with a batch Bayesian estimation approach to estimate time-invariant model parameters used in the FE model of the structure of interest. The framework uses input excitation and dynamic response of the structure and updates a nonlinear FE model of the structure to minimize the discrepancies between predicted and measured response time histories. The updated FE model can then be interrogated to detect, localize, classify, and quantify the state of damage and predict the remaining useful life of the structure. As opposed to recursive estimation methods, in the batch Bayesian estimation approach, the entire time history of the input excitation and output response of the structure are used as a batch of data to estimate the FE model parameters through a number of iterations. In the case of non-informative prior, the batch Bayesian method leads to an extended maximum likelihood (ML) estimation method to estimate jointly time-invariant model parameters and the measurement noise amplitude. The extended ML estimation problem is solved efficiently using a gradient-based interior-point optimization algorithm. Gradient-based optimization algorithms require the FE response sensitivities with respect to the model parameters to be identified. The FE response sensitivities are computed accurately and efficiently using the direct differentiation method (DDM). The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem by computing the exact Fisher Information matrix using the FE response sensitivities with respect to the model parameters. The accuracy of the proposed uncertainty quantification approach is verified using a sampling approach based on the unscented transformation. Two validation studies, based on realistic structural FE models of a bridge pier and a moment resisting steel frame, are performed to validate the performance and accuracy of the presented nonlinear FE model updating approach and demonstrate its application to SHM. These validation studies show the excellent performance of the proposed framework for SHM and damage identification even in the presence of high measurement noise and/or way-out initial estimates of the model parameters. Furthermore, the detrimental effects of the input measurement noise on the performance of the proposed framework are illustrated and quantified through one of the validation studies.

  6. Identifiability and Performance Analysis of Output Over-sampling Approach to Direct Closed-loop Identification

    NASA Astrophysics Data System (ADS)

    Sun, Lianming; Sano, Akira

    Output over-sampling based closed-loop identification algorithm is investigated in this paper. Some instinct properties of the continuous stochastic noise and the plant input, output in the over-sampling approach are analyzed, and they are used to demonstrate the identifiability in the over-sampling approach and to evaluate its identification performance. Furthermore, the selection of plant model order, the asymptotic variance of estimated parameters and the asymptotic variance of frequency response of the estimated model are also explored. It shows that the over-sampling approach can guarantee the identifiability and improve the performance of closed-loop identification greatly.

  7. Application of data fusion technology based on D-S evidence theory in fire detection

    NASA Astrophysics Data System (ADS)

    Cai, Zhishan; Chen, Musheng

    2015-12-01

    Judgment and identification based on single fire characteristic parameter information in fire detection is subject to environmental disturbances, and accordingly its detection performance is limited with the increase of false positive rate and false negative rate. The compound fire detector employs information fusion technology to judge and identify multiple fire characteristic parameters in order to improve the reliability and accuracy of fire detection. The D-S evidence theory is applied to the multi-sensor data-fusion: first normalize the data from all sensors to obtain the normalized basic probability function of the fire occurrence; then conduct the fusion processing using the D-S evidence theory; finally give the judgment results. The results show that the method meets the goal of accurate fire signal identification and increases the accuracy of fire alarm, and therefore is simple and effective.

  8. A MATLAB-based graphical user interface for the identification of muscular activations from surface electromyography signals.

    PubMed

    Mengarelli, Alessandro; Cardarelli, Stefano; Verdini, Federica; Burattini, Laura; Fioretti, Sandro; Di Nardo, Francesco

    2016-08-01

    In this paper a graphical user interface (GUI) built in MATLAB® environment is presented. This interactive tool has been developed for the analysis of superficial electromyography (sEMG) signals and in particular for the assessment of the muscle activation time intervals. After the signal import, the tool performs a first analysis in a totally user independent way, providing a reliable computation of the muscular activation sequences. Furthermore, the user has the opportunity to modify each parameter of the on/off identification algorithm implemented in the presented tool. The presence of an user-friendly GUI allows the immediate evaluation of the effects that the modification of every single parameter has on the activation intervals recognition, through the real-time updating and visualization of the muscular activation/deactivation sequences. The possibility to accept the initial signal analysis or to modify the on/off identification with respect to each considered signal, with a real-time visual feedback, makes this GUI-based tool a valuable instrument in clinical, research applications and also in an educational perspective.

  9. Modeling, estimation and identification methods for static shape determination of flexible structures. [for large space structure design

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, R. E., Jr.

    1986-01-01

    This paper outlines methods for modeling, identification and estimation for static determination of flexible structures. The shape estimation schemes are based on structural models specified by (possibly interconnected) elliptic partial differential equations. The identification techniques provide approximate knowledge of parameters in elliptic systems. The techniques are based on the method of maximum-likelihood that finds parameter values such that the likelihood functional associated with the system model is maximized. The estimation methods are obtained by means of a function-space approach that seeks to obtain the conditional mean of the state given the data and a white noise characterization of model errors. The solutions are obtained in a batch-processing mode in which all the data is processed simultaneously. After methods for computing the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the related estimation error is conducted. In addition to outlining the above theoretical results, the paper presents typical flexible structure simulations illustrating performance of the shape determination methods.

  10. [Crop geometry identification based on inversion of semiempirical BRDF models].

    PubMed

    Huang, Wen-jiang; Wang, Jin-di; Mu, Xi-han; Wang, Ji-hua; Liu, Liang-yun; Liu, Qiang; Niu, Zheng

    2007-10-01

    Investigations have been made on identification of erective and horizontal varieties by bidirectional canopy reflected spectrum and semi-empirical bidirectional reflectance distribution function (BRDF) models. The qualitative effect of leaf area index (LAI) and average leaf angle (ALA) on crop canopy reflected spectrum was studied. The structure parameter sensitive index (SPEI) based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso), was defined in the present study for crop geometry identification. However, the weights associated with the kernels of semi-empirical BRDF model do not have a direct relationship with measurable biophysical parameters. Therefore, efforts have focused on trying to find the relation between these semi-empirical BRDF kernel weights and various vegetation structures. SPEI was proved to be more sensitive to identify crop geometry structures than structural scattering index (SSI) and normalized difference f-index (NDFI), SPEI could be used to distinguish erective and horizontal geometry varieties. So, it is feasible to identify horizontal and erective varieties of wheat by bidirectional canopy reflected spectrum.

  11. Prediction of acoustic feature parameters using myoelectric signals.

    PubMed

    Lee, Ki-Seung

    2010-07-01

    It is well-known that a clear relationship exists between human voices and myoelectric signals (MESs) from the area of the speaker's mouth. In this study, we utilized this information to implement a speech synthesis scheme in which MES alone was used to predict the parameters characterizing the vocal-tract transfer function of specific speech signals. Several feature parameters derived from MES were investigated to find the optimal feature for maximization of the mutual information between the acoustic and the MES features. After the optimal feature was determined, an estimation rule for the acoustic parameters was proposed, based on a minimum mean square error (MMSE) criterion. In a preliminary study, 60 isolated words were used for both objective and subjective evaluations. The results showed that the average Euclidean distance between the original and predicted acoustic parameters was reduced by about 30% compared with the average Euclidean distance of the original parameters. The intelligibility of the synthesized speech signals using the predicted features was also evaluated. A word-level identification ratio of 65.5% and a syllable-level identification ratio of 73% were obtained through a listening test.

  12. Analysis of blind identification methods for estimation of kinetic parameters in dynamic medical imaging

    NASA Astrophysics Data System (ADS)

    Riabkov, Dmitri

    Compartment modeling of dynamic medical image data implies that the concentration of the tracer over time in a particular region of the organ of interest is well-modeled as a convolution of the tissue response with the tracer concentration in the blood stream. The tissue response is different for different tissues while the blood input is assumed to be the same for different tissues. The kinetic parameters characterizing the tissue responses can be estimated by blind identification methods. These algorithms use the simultaneous measurements of concentration in separate regions of the organ; if the regions have different responses, the measurement of the blood input function may not be required. In this work it is shown that the blind identification problem has a unique solution for two-compartment model tissue response. For two-compartment model tissue responses in dynamic cardiac MRI imaging conditions with gadolinium-DTPA contrast agent, three blind identification algorithms are analyzed here to assess their utility: Eigenvector-based Algorithm for Multichannel Blind Deconvolution (EVAM), Cross Relations (CR), and Iterative Quadratic Maximum Likelihood (IQML). Comparisons of accuracy with conventional (not blind) identification techniques where the blood input is known are made as well. The statistical accuracies of estimation for the three methods are evaluated and compared for multiple parameter sets. The results show that the IQML method gives more accurate estimates than the other two blind identification methods. A proof is presented here that three-compartment model blind identification is not unique in the case of only two regions. It is shown that it is likely unique for the case of more than two regions, but this has not been proved analytically. For the three-compartment model the tissue responses in dynamic FDG PET imaging conditions are analyzed with the blind identification algorithms EVAM and Separable variables Least Squares (SLS). A method of identification that assumes that FDG blood input in the brain can be modeled as a function of time and several parameters (IFM) is analyzed also. Nonuniform sampling SLS (NSLS) is developed due to the rapid change of the FDG concentration in the blood during the early postinjection stage. Comparisons of accuracy of EVAM, SLS, NSLS and IFM identification techniques are made.

  13. Identification and compensation of friction for a novel two-axis differential micro-feed system

    NASA Astrophysics Data System (ADS)

    Du, Fuxin; Zhang, Mingyang; Wang, Zhaoguo; Yu, Chen; Feng, Xianying; Li, Peigang

    2018-06-01

    Non-linear friction in a conventional drive feed system (CDFS) feeding at low speed is one of the main factors that lead to the complexity of the feed drive. The CDFS will inevitably enter or approach a non-linear creeping work area at extremely low speed. A novel two-axis differential micro-feed system (TDMS) is developed in this paper to overcome the accuracy limitation of CDFS. A dynamic model of TDMS is first established. Then, a novel all-component friction parameter identification method (ACFPIM) using a genetic algorithm (GA) to identify the friction parameters of a TDMS is introduced. The friction parameters of the ball screw and linear motion guides are identified independently using the method, assuring the accurate modelling of friction force at all components. A proportional-derivate feed drive position controller with an observer-based friction compensator is implemented to achieve an accurate trajectory tracking performance. Finally, comparative experiments demonstrate the effectiveness of the TDMS in inhibiting the disadvantageous influence of non-linear friction and the validity of the proposed identification method for TDMS.

  14. A six-parameter Iwan model and its application

    NASA Astrophysics Data System (ADS)

    Li, Yikun; Hao, Zhiming

    2016-02-01

    Iwan model is a practical tool to describe the constitutive behaviors of joints. In this paper, a six-parameter Iwan model based on a truncated power-law distribution with two Dirac delta functions is proposed, which gives a more comprehensive description of joints than the previous Iwan models. Its analytical expressions including backbone curve, unloading curves and energy dissipation are deduced. Parameter identification procedures and the discretization method are also provided. A model application based on Segalman et al.'s experiment works with bolted joints is carried out. Simulation effects of different numbers of Jenkins elements are discussed. The results indicate that the six-parameter Iwan model can be used to accurately reproduce the experimental phenomena of joints.

  15. Laboratory for Engineering Man/Machine Systems (LEMS): System identification, model reduction and deconvolution filtering using Fourier based modulating signals and high order statistics

    NASA Technical Reports Server (NTRS)

    Pan, Jianqiang

    1992-01-01

    Several important problems in the fields of signal processing and model identification, such as system structure identification, frequency response determination, high order model reduction, high resolution frequency analysis, deconvolution filtering, and etc. Each of these topics involves a wide range of applications and has received considerable attention. Using the Fourier based sinusoidal modulating signals, it is shown that a discrete autoregressive model can be constructed for the least squares identification of continuous systems. Some identification algorithms are presented for both SISO and MIMO systems frequency response determination using only transient data. Also, several new schemes for model reduction were developed. Based upon the complex sinusoidal modulating signals, a parametric least squares algorithm for high resolution frequency estimation is proposed. Numerical examples show that the proposed algorithm gives better performance than the usual. Also, the problem was studied of deconvolution and parameter identification of a general noncausal nonminimum phase ARMA system driven by non-Gaussian stationary random processes. Algorithms are introduced for inverse cumulant estimation, both in the frequency domain via the FFT algorithms and in the domain via the least squares algorithm.

  16. Parameter identification of partially covered piezoelectric cantilever power scavenger based on the coupled distributed parameter solution

    NASA Astrophysics Data System (ADS)

    Hosseini; Hamedi; Ebrahimi Mamaghani; Kim; Kim; Dayou

    2017-07-01

    Among the various techniques of power scavenging, piezoelectric energy harvesting usually has more power density. Although piezoceramics are usually more efficient than other piezoelectric materials, since they are very brittle and fragile, researchers are looking for alternative materials. Recently Cellulose Electro-active paper (EAPap) has been recognized as a smart material with piezoelectric behavior that can be used in energy scavenging systems. The majority of researches in energy harvesting area, use unimorph piezoelectric cantilever beams. This paper presents an analytical solution based on distributed parameter model for partially covered pieoelectric cantilever energy harvester. The purpose of the paper is to describe the changes in generated power with damping and the load resistance using analytical calculations. The analytical data are verified using experiment on a vibrating cantilever substrate that is partially covered by EAPap films. The results are very close to each other. Also asymptotic trends of the voltage, current and power outputs are investigated and expressions are obtained for the extreme conditions of the load resistance. These new findings provide guidelines for identification and manipulation of effective parameters in order to achieve the efficient performance in different ambient source conditions.

  17. Airframe Icing Research Gaps: NASA Perspective

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark

    2009-01-01

    qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.

  18. Basic research on design analysis methods for rotorcraft vibrations

    NASA Technical Reports Server (NTRS)

    Hanagud, S.

    1991-01-01

    The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.

  19. Modelling and identification for control of gas bearings

    NASA Astrophysics Data System (ADS)

    Theisen, Lukas R. S.; Niemann, Hans H.; Santos, Ilmar F.; Galeazzi, Roberto; Blanke, Mogens

    2016-03-01

    Gas bearings are popular for their high speed capabilities, low friction and clean operation, but suffer from poor damping, which poses challenges for safe operation in presence of disturbances. Feedback control can achieve enhanced damping but requires low complexity models of the dominant dynamics over its entire operating range. Models from first principles are complex and sensitive to parameter uncertainty. This paper presents an experimental technique for "in situ" identification of a low complexity model of a rotor-bearing-actuator system and demonstrates identification over relevant ranges of rotational speed and gas injection pressure. This is obtained using parameter-varying linear models that are found to capture the dominant dynamics. The approach is shown to be easily applied and to suit subsequent control design. Based on the identified models, decentralised proportional control is designed and shown to obtain the required damping in theory and in a laboratory test rig.

  20. Parameters Identification for Motorcycle Simulator's Platform Characterization

    NASA Astrophysics Data System (ADS)

    Nehaoua, L.; Arioui, H.

    2008-06-01

    This paper presents the dynamics modeling and parameters identification of a motorcycle simulator's platform. This model begins with some suppositions which consider that the leg dynamics can be neglected with respect to the mobile platform one. The objectif is to synthesis a simplified control scheme, adapted to driving simulation application, minimising dealys and without loss of tracking performance. Electronic system of platform actuation is described. It's based on a CAN BUS communication which offers a large transmission robustness and error handling. Despite some disadvanteges, we adapted a control solution which overcome these inconvenients and preserve the quality of tracking trajectory. A bref description of the simulator's platform is given and results are shown and justified according to our specifications.

  1. Developmental immunotoxicity of chemicals in rodents and its possible regulatory impact.

    PubMed

    Hessel, Ellen V S; Tonk, Elisa C M; Bos, Peter M J; van Loveren, Henk; Piersma, Aldert H

    2015-01-01

    Around 25% of the children in developed countries are affected with immune-based diseases. Juvenile onset diseases such as allergic, inflammatory and autoimmune diseases have shown increasing prevalences in the last decades. The role of chemical exposures in these phenomena is unclear. It is thought that the developmental immune system is more susceptible to toxicants than the mature situation. Developmental immunotoxicity (DIT) testing is nowadays not or minimally included in regulatory toxicology requirements. We reviewed whether developmental immune parameters in rodents would provide relatively sensitive endpoints of toxicity, whose inclusion in regulatory toxicity testing might improve hazard identification and risk assessment of chemicals. For each of the nine reviewed toxicants, the developing immune system was found to be at least as sensitive or more sensitive than the general (developmental) toxicity parameters. Functional immune (antigen-challenged) parameters appear more affected than structural (non-challenged) immune parameters. Especially, antibody responses to immune challenges with keyhole limpet hemocyanine or sheep red blood cells and delayed-type hypersensitivity responses appear to provide sensitive parameters of developmental immune toxicity. Comparison with current tolerable daily intakes (TDI) and their underlying overall no observed adverse effect levels showed that for some of the compounds reviewed, the TDI may need reconsideration based on developmental immune parameters. From these data, it can be concluded that the developing immune system is very sensitive to the disruption of toxicants independent of study design. Consideration of including functional DIT parameters in current hazard identification guidelines and wider application of relevant study protocols is warranted.

  2. Identifying key sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2013-09-01

    This study investigates sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment, through the use of local and global sensitivity analysis tools, and contributes to an in-depth understanding of wastewater treatment modelling by revealing critical parameters and parameter interactions. One-factor-at-a-time sensitivity analysis is used to screen model parameters and identify those with significant individual effects on three performance indicators: total greenhouse gas emissions, effluent quality and operational cost. Sobol's method enables identification of parameters with significant higher order effects and of particular parameter pairs to which model outputs are sensitive. Use of a variance-based global sensitivity analysis tool to investigate parameter interactions enables identification of important parameters not revealed in one-factor-at-a-time sensitivity analysis. These interaction effects have not been considered in previous studies and thus provide a better understanding wastewater treatment plant model characterisation. It was found that uncertainty in modelled nitrous oxide emissions is the primary contributor to uncertainty in total greenhouse gas emissions, due largely to the interaction effects of three nitrogen conversion modelling parameters. The higher order effects of these parameters are also shown to be a key source of uncertainty in effluent quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly

    PubMed Central

    Maier, Andrea B.; Aarts, Ronald G. K. M.; van Gerven, Joop M. A.; Arendzen, J. Hans; Schouten, Alfred C.; Meskers, Carel G. M.; van der Kooij, Herman

    2016-01-01

    Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. Methods In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). Results A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. Conclusion This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two minutes must be performed on one day. PMID:26953694

  4. Algorithm for personal identification in distance learning system based on registration of keyboard rhythm

    NASA Astrophysics Data System (ADS)

    Nikitin, P. V.; Savinov, A. N.; Bazhenov, R. I.; Sivandaev, S. V.

    2018-05-01

    The article describes the method of identifying a person in distance learning systems based on a keyboard rhythm. An algorithm for the organization of access control is proposed, which implements authentication, identification and verification of a person using the keyboard rhythm. Authentication methods based on biometric personal parameters, including those based on the keyboard rhythm, due to the inexistence of biometric characteristics without a particular person, are able to provide an advanced accuracy and inability to refuse authorship and convenience for operators of automated systems, in comparison with other methods of conformity checking. Methods of permanent hidden keyboard monitoring allow detecting the substitution of a student and blocking the key system.

  5. Performance of wavelet analysis and neural networks for pathological voices identification

    NASA Astrophysics Data System (ADS)

    Salhi, Lotfi; Talbi, Mourad; Abid, Sabeur; Cherif, Adnane

    2011-09-01

    Within the medical environment, diverse techniques exist to assess the state of the voice of the patient. The inspection technique is inconvenient for a number of reasons, such as its high cost, the duration of the inspection, and above all, the fact that it is an invasive technique. This study focuses on a robust, rapid and accurate system for automatic identification of pathological voices. This system employs non-invasive, non-expensive and fully automated method based on hybrid approach: wavelet transform analysis and neural network classifier. First, we present the results obtained in our previous study while using classic feature parameters. These results allow visual identification of pathological voices. Second, quantified parameters drifting from the wavelet analysis are proposed to characterise the speech sample. On the other hand, a system of multilayer neural networks (MNNs) has been developed which carries out the automatic detection of pathological voices. The developed method was evaluated using voice database composed of recorded voice samples (continuous speech) from normophonic or dysphonic speakers. The dysphonic speakers were patients of a National Hospital 'RABTA' of Tunis Tunisia and a University Hospital in Brussels, Belgium. Experimental results indicate a success rate ranging between 75% and 98.61% for discrimination of normal and pathological voices using the proposed parameters and neural network classifier. We also compared the average classification rate based on the MNN, Gaussian mixture model and support vector machines.

  6. Forensic identification of resampling operators: A semi non-intrusive approach.

    PubMed

    Cao, Gang; Zhao, Yao; Ni, Rongrong

    2012-03-10

    Recently, several new resampling operators have been proposed and successfully invalidate the existing resampling detectors. However, the reliability of such anti-forensic techniques is unaware and needs to be investigated. In this paper, we focus on the forensic identification of digital image resampling operators including the traditional type and the anti-forensic type which hides the trace of traditional resampling. Various resampling algorithms involving geometric distortion (GD)-based, dual-path-based and postprocessing-based are investigated. The identification is achieved in the manner of semi non-intrusive, supposing the resampling software could be accessed. Given an input pattern of monotone signal, polarity aberration of GD-based resampled signal's first derivative is analyzed theoretically and measured by effective feature metric. Dual-path-based and postprocessing-based resampling can also be identified by feeding proper test patterns. Experimental results on various parameter settings demonstrate the effectiveness of the proposed approach. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Linear modeling of human hand-arm dynamics relevant to right-angle torque tool interaction.

    PubMed

    Ay, Haluk; Sommerich, Carolyn M; Luscher, Anthony F

    2013-10-01

    A new protocol was evaluated for identification of stiffness, mass, and damping parameters employing a linear model for human hand-arm dynamics relevant to right-angle torque tool use. Powered torque tools are widely used to tighten fasteners in manufacturing industries. While these tools increase accuracy and efficiency of tightening processes, operators are repetitively exposed to impulsive forces, posing risk of upper extremity musculoskeletal injury. A novel testing apparatus was developed that closely mimics biomechanical exposure in torque tool operation. Forty experienced torque tool operators were tested with the apparatus to determine model parameters and validate the protocol for physical capacity assessment. A second-order hand-arm model with parameters extracted in the time domain met model accuracy criterion of 5% for time-to-peak displacement error in 93% of trials (vs. 75% for frequency domain). Average time-to-peak handle displacement and relative peak handle force errors were 0.69 ms and 0.21%, respectively. Model parameters were significantly affected by gender and working posture. Protocol and numerical calculation procedures provide an alternative method for assessing mechanical parameters relevant to right-angle torque tool use. The protocol more closely resembles tool use, and calculation procedures demonstrate better performance of parameter extraction using time domain system identification methods versus frequency domain. Potential future applications include parameter identification for in situ torque tool operation and equipment development for human hand-arm dynamics simulation under impulsive forces that could be used for assessing torque tools based on factors relevant to operator health (handle dynamics and hand-arm reaction force).

  8. Analysis and application of minimum variance discrete time system identification

    NASA Technical Reports Server (NTRS)

    Kaufman, H.; Kotob, S.

    1975-01-01

    An on-line minimum variance parameter identifier is developed which embodies both accuracy and computational efficiency. The formulation results in a linear estimation problem with both additive and multiplicative noise. The resulting filter which utilizes both the covariance of the parameter vector itself and the covariance of the error in identification is proven to be mean square convergent and mean square consistent. The MV parameter identification scheme is then used to construct a stable state and parameter estimation algorithm.

  9. Identification and stochastic control of helicopter dynamic modes

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.; Bar-Shalom, Y.

    1983-01-01

    A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.

  10. Noninvasive identification of fluids by swept-frequency acoustic interferometry

    DOEpatents

    Sinha, Dipen N.

    1998-01-01

    A method for rapid, noninvasive identification and monitoring of chemicals in sealed containers or containers where direct access to the chemical is not possible is described. Multiple ultrasonic acoustic properties (up to four) of a fluid are simultaneously determined. The present invention can be used for chemical identification and for determining changes in known chemicals from a variety of sources. It is not possible to identify all known chemicals based on the measured parameters, but known classes of chemicals in suspected containers, such as in chemical munitions, can be characterized. In addition, a large number of industrial chemicals can be identified.

  11. A method to investigate the diffusion properties of nuclear calcium.

    PubMed

    Queisser, Gillian; Wittum, Gabriel

    2011-10-01

    Modeling biophysical processes in general requires knowledge about underlying biological parameters. The quality of simulation results is strongly influenced by the accuracy of these parameters, hence the identification of parameter values that the model includes is a major part of simulating biophysical processes. In many cases, secondary data can be gathered by experimental setups, which are exploitable by mathematical inverse modeling techniques. Here we describe a method for parameter identification of diffusion properties of calcium in the nuclei of rat hippocampal neurons. The method is based on a Gauss-Newton method for solving a least-squares minimization problem and was formulated in such a way that it is ideally implementable in the simulation platform uG. Making use of independently published space- and time-dependent calcium imaging data, generated from laser-assisted calcium uncaging experiments, here we could identify the diffusion properties of nuclear calcium and were able to validate a previously published model that describes nuclear calcium dynamics as a diffusion process.

  12. Real-Time Parameter Estimation Method Applied to a MIMO Process and its Comparison with an Offline Identification Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplanoglu, Erkan; Safak, Koray K.; Varol, H. Selcuk

    2009-01-12

    An experiment based method is proposed for parameter estimation of a class of linear multivariable systems. The method was applied to a pressure-level control process. Experimental time domain input/output data was utilized in a gray-box modeling approach. Prior knowledge of the form of the system transfer function matrix elements is assumed to be known. Continuous-time system transfer function matrix parameters were estimated in real-time by the least-squares method. Simulation results of experimentally determined system transfer function matrix compare very well with the experimental results. For comparison and as an alternative to the proposed real-time estimation method, we also implemented anmore » offline identification method using artificial neural networks and obtained fairly good results. The proposed methods can be implemented conveniently on a desktop PC equipped with a data acquisition board for parameter estimation of moderately complex linear multivariable systems.« less

  13. Linear parameter varying identification of ankle joint intrinsic stiffness during imposed walking movements.

    PubMed

    Sobhani Tehrani, Ehsan; Jalaleddini, Kian; Kearney, Robert E

    2013-01-01

    This paper describes a novel model structure and identification method for the time-varying, intrinsic stiffness of human ankle joint during imposed walking (IW) movements. The model structure is based on the superposition of a large signal, linear, time-invariant (LTI) model and a small signal linear-parameter varying (LPV) model. The methodology is based on a two-step algorithm; the LTI model is first estimated using data from an unperturbed IW trial. Then, the LPV model is identified using data from a perturbed IW trial with the output predictions of the LTI model removed from the measured torque. Experimental results demonstrate that the method accurately tracks the continuous-time variation of normal ankle intrinsic stiffness when the joint position changes during the IW movement. Intrinsic stiffness gain decreases from full plantarflexion to near the mid-point of plantarflexion and then increases substantially as the ankle is dosriflexed.

  14. An intelligent identification algorithm for the monoclonal picking instrument

    NASA Astrophysics Data System (ADS)

    Yan, Hua; Zhang, Rongfu; Yuan, Xujun; Wang, Qun

    2017-11-01

    The traditional colony selection is mainly operated by manual mode, which takes on low efficiency and strong subjectivity. Therefore, it is important to develop an automatic monoclonal-picking instrument. The critical stage of the automatic monoclonal-picking and intelligent optimal selection is intelligent identification algorithm. An auto-screening algorithm based on Support Vector Machine (SVM) is proposed in this paper, which uses the supervised learning method, which combined with the colony morphological characteristics to classify the colony accurately. Furthermore, through the basic morphological features of the colony, system can figure out a series of morphological parameters step by step. Through the establishment of maximal margin classifier, and based on the analysis of the growth trend of the colony, the selection of the monoclonal colony was carried out. The experimental results showed that the auto-screening algorithm could screen out the regular colony from the other, which meets the requirement of various parameters.

  15. Collaborative Study for Analysis of High Resolution Infrared Atmospheric Spectra Between NASA Langley Research Center and the University of Denver

    NASA Technical Reports Server (NTRS)

    Goldman, A.

    2002-01-01

    The Langley-D.U. collaboration on the analysis of high resolultion infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: 1) Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights; 2) Identification and preliminary quantification of several isotopic species, including oxygen and Sulfur isotopes; 3) Search for new species on the available spectra, including the use of selective coadding of ground-based spectra for high signal to noise; 4) Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods; 5) Study of trends and correlations of atmosphere trace constituents; and 6) Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.

  16. Sensitivity-based virtual fields for the non-linear virtual fields method

    NASA Astrophysics Data System (ADS)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  17. Labeling Projections on Published Maps

    USGS Publications Warehouse

    Snyder, John P.

    1987-01-01

    To permit accurate scaling on a map, and to use the map as a source of accurate positions in the transfer of data, certain parameters - such as the standard parallels selected for a conic projection - must be stated on the map. This information is often missing on published maps. Three current major world atlases are evaluated with respect to map projection identification. The parameters essential for the projections used in these three atlases are discussed and listed. These parameters should be stated on any map based on the same projection.

  18. Certainty Equivalence M-MRAC for Systems with Unmatched Uncertainties

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    The paper presents a certainty equivalence state feedback indirect adaptive control design method for the systems of any relative degree with unmatched uncertainties. The approach is based on the parameter identification (estimation) model, which is completely separated from the control design and is capable of producing parameter estimates as fast as the computing power allows without generating high frequency oscillations. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters.

  19. Rigid body mode identification of the PAH-2 helicopter using the eigensystem realization algorithm

    NASA Technical Reports Server (NTRS)

    Schenk, Axel; Pappa, Richard S.

    1992-01-01

    The rigid body modes of the PAH-2 'Tiger' helicopter were identified using the Eigensystem Realization Algorithm (ERA). This work complements ground vibration tests performed using DLR's traditional phase resonance technique and the ISSPA (Identification of Structural System Parameters) method. Rigid body modal parameters are important for ground resonance prediction. Time-domain data for ERA were obtained by inverse Fourier transformation of frequency response functions measured with stepped-sine excitation. Mode purity (based on the Phase Resonance Criterion) was generally equal to or greater than corresponding results obtained in the ground vibration tests. All identified natural frequencies and mode shapes correlate well with corresponding ground vibration test results. The modal identification approach discussed in this report has become increasingly attractive in recent years due to the steadily declining cost and increased performance of scientific computers. As illustrated in this application, modern time-domain methods can be successfully applied to data acquired using DLR's existing test equipment. Some suggestions are made for future applications of time domain modal identification in this manner.

  20. Probing Reliability of Transport Phenomena Based Heat Transfer and Fluid Flow Analysis in Autogeneous Fusion Welding Process

    NASA Astrophysics Data System (ADS)

    Bag, S.; de, A.

    2010-09-01

    The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented.

  1. A modified NARMAX model-based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input-output direct feed-through term.

    PubMed

    Tsai, Jason S-H; Hsu, Wen-Teng; Lin, Long-Guei; Guo, Shu-Mei; Tann, Joseph W

    2014-01-01

    A modified nonlinear autoregressive moving average with exogenous inputs (NARMAX) model-based state-space self-tuner with fault tolerance is proposed in this paper for the unknown nonlinear stochastic hybrid system with a direct transmission matrix from input to output. Through the off-line observer/Kalman filter identification method, one has a good initial guess of modified NARMAX model to reduce the on-line system identification process time. Then, based on the modified NARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown continuous-time nonlinear system, with an input-output direct transmission term, which also has measurement and system noises and inaccessible system states. Besides, an effective state space self-turner with fault tolerance scheme is presented for the unknown multivariable stochastic system. A quantitative criterion is suggested by comparing the innovation process error estimated by the Kalman filter estimation algorithm, so that a weighting matrix resetting technique by adjusting and resetting the covariance matrices of parameter estimate obtained by the Kalman filter estimation algorithm is utilized to achieve the parameter estimation for faulty system recovery. Consequently, the proposed method can effectively cope with partially abrupt and/or gradual system faults and input failures by the fault detection. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Computer aided design of digital controller for radial active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Shen, Zupei; Zhang, Zuming; Zhao, Hongbin

    1992-01-01

    A five degree of freedom Active Magnetic Bearing (AMB) system is developed which is controlled by digital controllers. The model of the radial AMB system is linearized and the state equation is derived. Based on the state variables feedback theory, digital controllers are designed. The performance of the controllers are evaluated according to experimental results. The Computer Aided Design (CAD) method is used to design controllers for magnetic bearings. The controllers are implemented with a digital signal processing (DSP) system. The control algorithms are realized with real-time programs. It is very easy to change the controller by changing or modifying the programs. In order to identify the dynamic parameters of the controlled magnetic system, a special experiment was carried out. Also, the online Recursive Least Squares (RLS) parameter identification method is studied. It can be realized with the digital controllers. Online parameter identification is essential for the realization of an adaptive controller.

  3. Microprocessor-Based Neural-Pulse-Wave Analyzer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K.; Bracchi, F.

    1983-01-01

    Microprocessor-based system analyzes amplitudes and rise times of neural waveforms. Displaying histograms of measured parameters helps researchers determine how many nerves contribute to signal and specify waveform characteristics of each. Results are improved noise rejection, full or partial separation of overlapping peaks, and isolation and identification of related peaks in different histograms. 2

  4. Advanced Method to Estimate Fuel Slosh Simulation Parameters

    NASA Technical Reports Server (NTRS)

    Schlee, Keith; Gangadharan, Sathya; Ristow, James; Sudermann, James; Walker, Charles; Hubert, Carl

    2005-01-01

    The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the estimation approach to a simple, accurately modeled system, its effectiveness and accuracy can be evaluated. The same experimental setup can then be used with fluid-filled tanks to further evaluate the effectiveness of the process. Ultimately, the proven process can be applied to the full-sized spinning experimental setup to quickly and accurately determine the slosh model parameters for a particular spacecraft mission. Automating the parameter identification process will save time, allow more changes to be made to proposed designs, and lower the cost in the initial design stages.

  5. Decoupling Identification for Serial Two-Link Two-Inertia System

    NASA Astrophysics Data System (ADS)

    Oaki, Junji; Adachi, Shuichi

    The purpose of our study is to develop a precise model by applying the technique of system identification for the model-based control of a nonlinear robot arm, under taking joint-elasticity into consideration. We previously proposed a systematic identification method, called “decoupling identification,” for a “SCARA-type” planar two-link robot arm with elastic joints caused by the Harmonic-drive® reduction gears. The proposed method serves as an extension of the conventional rigid-joint-model-based identification. The robot arm is treated as a serial two-link two-inertia system with nonlinearity. The decoupling identification method using link-accelerometer signals enables the serial two-link two-inertia system to be divided into two linear one-link two-inertia systems. The MATLAB®'s commands for state-space model estimation are utilized in the proposed method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients, and joint-spring coefficients are estimated through the identified one-link two-inertia systems using a gray-box approach. This paper describes accuracy evaluations using the two-link arm for the decoupling identification method under introducing closed-loop-controlled elements and varying amplitude-setup of identification-input. Experimental results show that the identification method also works with closed-loop-controlled elements. Therefore, the identification method is applicable to a “PUMA-type” vertical robot arm under gravity.

  6. Battery management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  7. Numerical Methods of Parameter Identification for Problems Arising in Elasticity.

    DTIC Science & Technology

    1982-06-01

    Theorem 2.21 remains essentially unchanged by the inclusion of this new term . We now turn to a concrete realization of the approximate identification...cost if it had been accomplished under contract or if it had been done in-house in terms of manpower and/or dollars? ( ) a. MAN-YEARS ( ) b. $ 4...eigenfunction) state approximations were applied to a class of hyperbolic and parabolic equations, and also used in [7 ], where spline-based state

  8. Research in digital adaptive flight controllers

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  9. Identification of AR(I)MA processes for modelling temporal correlations of GPS observations

    NASA Astrophysics Data System (ADS)

    Luo, X.; Mayer, M.; Heck, B.

    2009-04-01

    In many geodetic applications observations of the Global Positioning System (GPS) are routinely processed by means of the least-squares method. However, this algorithm delivers reliable estimates of unknown parameters und realistic accuracy measures only if both the functional and stochastic models are appropriately defined within GPS data processing. One deficiency of the stochastic model used in many GPS software products consists in neglecting temporal correlations of GPS observations. In practice the knowledge of the temporal stochastic behaviour of GPS observations can be improved by analysing time series of residuals resulting from the least-squares evaluation. This paper presents an approach based on the theory of autoregressive (integrated) moving average (AR(I)MA) processes to model temporal correlations of GPS observations using time series of observation residuals. A practicable integration of AR(I)MA models in GPS data processing requires the determination of the order parameters of AR(I)MA processes at first. In case of GPS, the identification of AR(I)MA processes could be affected by various factors impacting GPS positioning results, e.g. baseline length, multipath effects, observation weighting, or weather variations. The influences of these factors on AR(I)MA identification are empirically analysed based on a large amount of representative residual time series resulting from differential GPS post-processing using 1-Hz observation data collected within the permanent SAPOS® (Satellite Positioning Service of the German State Survey) network. Both short and long time series are modelled by means of AR(I)MA processes. The final order parameters are determined based on the whole residual database; the corresponding empirical distribution functions illustrate that multipath and weather variations seem to affect the identification of AR(I)MA processes much more significantly than baseline length and observation weighting. Additionally, the modelling results of temporal correlations using high-order AR(I)MA processes are compared with those by means of first order autoregressive (AR(1)) processes and empirically estimated autocorrelation functions.

  10. Combined non-parametric and parametric approach for identification of time-variant systems

    NASA Astrophysics Data System (ADS)

    Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz

    2018-03-01

    Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.

  11. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    NASA Technical Reports Server (NTRS)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  12. Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles.

    PubMed

    Bisgin, Halil; Bera, Tanmay; Ding, Hongjian; Semey, Howard G; Wu, Leihong; Liu, Zhichao; Barnes, Amy E; Langley, Darryl A; Pava-Ripoll, Monica; Vyas, Himansu J; Tong, Weida; Xu, Joshua

    2018-04-25

    Insect pests, such as pantry beetles, are often associated with food contaminations and public health risks. Machine learning has the potential to provide a more accurate and efficient solution in detecting their presence in food products, which is currently done manually. In our previous research, we demonstrated such feasibility where Artificial Neural Network (ANN) based pattern recognition techniques could be implemented for species identification in the context of food safety. In this study, we present a Support Vector Machine (SVM) model which improved the average accuracy up to 85%. Contrary to this, the ANN method yielded ~80% accuracy after extensive parameter optimization. Both methods showed excellent genus level identification, but SVM showed slightly better accuracy  for most species. Highly accurate species level identification remains a challenge, especially in distinguishing between species from the same genus which may require improvements in both imaging and machine learning techniques. In summary, our work does illustrate a new SVM based technique and provides a good comparison with the ANN model in our context. We believe such insights will pave better way forward for the application of machine learning towards species identification and food safety.

  13. Modeling and Parameter Estimation of Spacecraft Fuel Slosh with Diaphragms Using Pendulum Analogs

    NASA Technical Reports Server (NTRS)

    Chatman, Yadira; Gangadharan, Sathya; Schlee, Keith; Ristow, James; Suderman, James; Walker, Charles; Hubert, Carl

    2007-01-01

    Prediction and control of liquid slosh in moving containers is an important consideration in the design of spacecraft and launch vehicle control systems. Even with modern computing systems, CFD type simulations are not fast enough to allow for large scale Monte Carlo analyses of spacecraft and launch vehicle dynamic behavior with slosh included. It is still desirable to use some type of simplified mechanical analog for the slosh to shorten computation time. Analytic determination of the slosh analog parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices such as elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks, these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the hand-derived equations of motion for the mechanical analog are evaluated and their results compared with the experimental results. This paper will describe efforts by the university component of a team comprised of NASA's Launch Services Program, Embry Riddle Aeronautical University, Southwest Research Institute and Hubert Astronautics to improve the accuracy and efficiency of modeling techniques used to predict these types of motions. Of particular interest is the effect of diaphragms and bladders on the slosh dynamics and how best to model these devices. The previous research was an effort to automate the process of slosh model parameter identification using a MATLAB/SimMechanics-based computer simulation. These results are the first step in applying the same computer estimation to a full-size tank and vehicle propulsion system. The introduction of diaphragms to this experimental set-up will aid in a better and more complete prediction of fuel slosh characteristics and behavior. Automating the parameter identification process will save time and thus allow earlier identification of potential vehicle performance problems.

  14. Research on filter’s parameter selection based on PROMETHEE method

    NASA Astrophysics Data System (ADS)

    Zhu, Hui-min; Wang, Hang-yu; Sun, Shi-yan

    2018-03-01

    The selection of filter’s parameters in target recognition was studied in this paper. The PROMETHEE method was applied to the optimization problem of Gabor filter parameters decision, the correspondence model of the elemental relation between two methods was established. The author took the identification of military target as an example, problem about the filter’s parameter decision was simulated and calculated by PROMETHEE. The result showed that using PROMETHEE method for the selection of filter’s parameters was more scientific. The human disturbance caused by the experts method and empirical method could be avoided by this way. The method can provide reference for the parameter configuration scheme decision of the filter.

  15. Stochastic filtering for damage identification through nonlinear structural finite element model updating

    NASA Astrophysics Data System (ADS)

    Astroza, Rodrigo; Ebrahimian, Hamed; Conte, Joel P.

    2015-03-01

    This paper describes a novel framework that combines advanced mechanics-based nonlinear (hysteretic) finite element (FE) models and stochastic filtering techniques to estimate unknown time-invariant parameters of nonlinear inelastic material models used in the FE model. Using input-output data recorded during earthquake events, the proposed framework updates the nonlinear FE model of the structure. The updated FE model can be directly used for damage identification and further used for damage prognosis. To update the unknown time-invariant parameters of the FE model, two alternative stochastic filtering methods are used: the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). A three-dimensional, 5-story, 2-by-1 bay reinforced concrete (RC) frame is used to verify the proposed framework. The RC frame is modeled using fiber-section displacement-based beam-column elements with distributed plasticity and is subjected to the ground motion recorded at the Sylmar station during the 1994 Northridge earthquake. The results indicate that the proposed framework accurately estimate the unknown material parameters of the nonlinear FE model. The UKF outperforms the EKF when the relative root-mean-square error of the recorded responses are compared. In addition, the results suggest that the convergence of the estimate of modeling parameters is smoother and faster when the UKF is utilized.

  16. Radar signal categorization using a neural network

    NASA Technical Reports Server (NTRS)

    Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.

    1991-01-01

    Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.

  17. New encoded single-indicator sequences based on physico-chemical parameters for efficient exon identification.

    PubMed

    Meher, J K; Meher, P K; Dash, G N; Raval, M K

    2012-01-01

    The first step in gene identification problem based on genomic signal processing is to convert character strings into numerical sequences. These numerical sequences are then analysed spectrally or using digital filtering techniques for the period-3 peaks, which are present in exons (coding areas) and absent in introns (non-coding areas). In this paper, we have shown that single-indicator sequences can be generated by encoding schemes based on physico-chemical properties. Two new methods are proposed for generating single-indicator sequences based on hydration energy and dipole moments. The proposed methods produce high peak at exon locations and effectively suppress false exons (intron regions having greater peak than exon regions) resulting in high discriminating factor, sensitivity and specificity.

  18. Non-parametric identification of multivariable systems: A local rational modeling approach with application to a vibration isolation benchmark

    NASA Astrophysics Data System (ADS)

    Voorhoeve, Robbert; van der Maas, Annemiek; Oomen, Tom

    2018-05-01

    Frequency response function (FRF) identification is often used as a basis for control systems design and as a starting point for subsequent parametric system identification. The aim of this paper is to develop a multiple-input multiple-output (MIMO) local parametric modeling approach for FRF identification of lightly damped mechanical systems with improved speed and accuracy. The proposed method is based on local rational models, which can efficiently handle the lightly-damped resonant dynamics. A key aspect herein is the freedom in the multivariable rational model parametrizations. Several choices for such multivariable rational model parametrizations are proposed and investigated. For systems with many inputs and outputs the required number of model parameters can rapidly increase, adversely affecting the performance of the local modeling approach. Therefore, low-order model structures are investigated. The structure of these low-order parametrizations leads to an undesired directionality in the identification problem. To address this, an iterative local rational modeling algorithm is proposed. As a special case recently developed SISO algorithms are recovered. The proposed approach is successfully demonstrated on simulations and on an active vibration isolation system benchmark, confirming good performance of the method using significantly less parameters compared with alternative approaches.

  19. Psychoacoustical evaluation of natural and urban sounds in soundscapes.

    PubMed

    Yang, Ming; Kang, Jian

    2013-07-01

    Among various sounds in the environment, natural sounds, such as water sounds and birdsongs, have proven to be highly preferred by humans, but the reasons for these preferences have not been thoroughly researched. This paper explores differences between various natural and urban environmental sounds from the viewpoint of objective measures, especially psychoacoustical parameters. The sound samples used in this study include the recordings of single sound source categories of water, wind, birdsongs, and urban sounds including street music, mechanical sounds, and traffic noise. The samples are analyzed with a number of existing psychoacoustical parameter algorithmic models. Based on hierarchical cluster and principal components analyses of the calculated results, a series of differences has been shown among different sound types in terms of key psychoacoustical parameters. While different sound categories cannot be identified using any single acoustical and psychoacoustical parameter, identification can be made with a group of parameters, as analyzed with artificial neural networks and discriminant functions in this paper. For artificial neural networks, correlations between network predictions and targets using the average and standard deviation data of psychoacoustical parameters as inputs are above 0.95 for the three natural sound categories and above 0.90 for the urban sound category. For sound identification/classification, key parameters are fluctuation strength, loudness, and sharpness.

  20. Multiple concurrent recursive least squares identification with application to on-line spacecraft mass-property identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2006-01-01

    The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.

  1. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems.

    PubMed

    Kazemi, Mahdi; Arefi, Mohammad Mehdi

    2017-03-01

    In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Estimation of radiative and conductive properties of a semitransparent medium using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Braiek, A.; Adili, A.; Albouchi, F.; Karkri, M.; Ben Nasrallah, S.

    2016-06-01

    The aim of this work is to simultaneously identify the conductive and radiative parameters of a semitransparent sample using a photothermal method associated with an inverse problem. The identification of the conductive and radiative proprieties is performed by the minimization of an objective function that represents the errors between calculated temperature and measured signal. The calculated temperature is obtained from a theoretical model built with the thermal quadrupole formalism. Measurement is obtained in the rear face of the sample whose front face is excited by a crenel of heat flux. For identification procedure, a genetic algorithm is developed and used. The genetic algorithm is a useful tool in the simultaneous estimation of correlated or nearly correlated parameters, which can be a limiting factor for the gradient-based methods. The results of the identification procedure show the efficiency and the stability of the genetic algorithm to simultaneously estimate the conductive and radiative properties of clear glass.

  3. Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images

    NASA Astrophysics Data System (ADS)

    Ardila, Juan P.; Tolpekin, Valentyn A.; Bijker, Wietske; Stein, Alfred

    2011-11-01

    Identification of tree crowns from remote sensing requires detailed spectral information and submeter spatial resolution imagery. Traditional pixel-based classification techniques do not fully exploit the spatial and spectral characteristics of remote sensing datasets. We propose a contextual and probabilistic method for detection of tree crowns in urban areas using a Markov random field based super resolution mapping (SRM) approach in very high resolution images. Our method defines an objective energy function in terms of the conditional probabilities of panchromatic and multispectral images and it locally optimizes the labeling of tree crown pixels. Energy and model parameter values are estimated from multiple implementations of SRM in tuning areas and the method is applied in QuickBird images to produce a 0.6 m tree crown map in a city of The Netherlands. The SRM output shows an identification rate of 66% and commission and omission errors in small trees and shrub areas. The method outperforms tree crown identification results obtained with maximum likelihood, support vector machines and SRM at nominal resolution (2.4 m) approaches.

  4. Stress-Strain Characterization for Reversed Loading Path and Constitutive Modeling for AHSS Springback Predictions

    NASA Astrophysics Data System (ADS)

    Zhu, Hong; Huang, Mai; Sadagopan, Sriram; Yao, Hong

    2017-09-01

    With increasing vehicle fuel economy standards, automotive OEMs are widely using various AHSS grades including DP, TRIP, CP and 3rd Gen AHSS to reduce vehicle weight due to their good combination of strength and formability. As one of enabling technologies for AHSS application, the requirement for requiring accurate prediction of springback for cold stamped AHSS parts stimulated a large number of investigations in the past decade with reversed loading path at large strains followed by constitutive modeling. With a spectrum of complex loading histories occurring in production stamping processes, there were many challenges in this field including issues of test data reliability, loading path representability, constitutive model robustness and non-unique constitutive parameter-identification. In this paper, various testing approaches and constitutive modeling will be reviewed briefly and a systematic methodology from stress-strain characterization, constitutive model parameter identification for material card generation will be presented in order to support automotive OEM’s need on virtual stamping. This systematic methodology features a tension-compression test at large strain with robust anti-buckling device with concurrent friction force correction, properly selected loading paths to represent material behavior during different springback modes as well as the 10-parameter Yoshida model with knowledge-based parameter-identification through nonlinear optimization. Validation cases for lab AHSS parts will also be discussed to check applicability of this methodology.

  5. Identification of damage in composite structures using Gaussian mixture model-processed Lamb waves

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Ma, Shuxian; Yue, Dong

    2018-04-01

    Composite materials have comprehensively better properties than traditional materials, and therefore have been more and more widely used, especially because of its higher strength-weight ratio. However, the damage of composite structures is usually varied and complicated. In order to ensure the security of these structures, it is necessary to monitor and distinguish the structural damage in a timely manner. Lamb wave-based structural health monitoring (SHM) has been proved to be effective in online structural damage detection and evaluation; furthermore, the characteristic parameters of the multi-mode Lamb wave varies in response to different types of damage in the composite material. This paper studies the damage identification approach for composite structures using the Lamb wave and the Gaussian mixture model (GMM). The algorithm and principle of the GMM, and the parameter estimation, is introduced. Multi-statistical characteristic parameters of the excited Lamb waves are extracted, and the parameter space with reduced dimensions is adopted by principal component analysis (PCA). The damage identification system using the GMM is then established through training. Experiments on a glass fiber-reinforced epoxy composite laminate plate are conducted to verify the feasibility of the proposed approach in terms of damage classification. The experimental results show that different types of damage can be identified according to the value of the likelihood function of the GMM.

  6. Investigation into discretization methods of the six-parameter Iwan model

    NASA Astrophysics Data System (ADS)

    Li, Yikun; Hao, Zhiming; Feng, Jiaquan; Zhang, Dingguo

    2017-02-01

    Iwan model is widely applied for the purpose of describing nonlinear mechanisms of jointed structures. In this paper, parameter identification procedures of the six-parameter Iwan model based on joint experiments with different preload techniques are performed. Four kinds of discretization methods deduced from stiffness equation of the six-parameter Iwan model are provided, which can be used to discretize the integral-form Iwan model into a sum of finite Jenkins elements. In finite element simulation, the influences of discretization methods and numbers of Jenkins elements on computing accuracy are discussed. Simulation results indicate that a higher accuracy can be obtained with larger numbers of Jenkins elements. It is also shown that compared with other three kinds of discretization methods, the geometric series discretization based on stiffness provides the highest computing accuracy.

  7. DNA barcoding for identifying synanthropic flesh flies (Diptera, Sarcophagidae) of Colombia.

    PubMed

    Buenaventura, Eliana; Valverde-Castro, César; Wolff, Marta; Triana-Chavez, Omar; Gómez-Palacio, Andrés

    2018-06-01

    The first step for a successful use of any insect as indicator in forensic sciences is providing a precise taxonomic identification at species level. Due to morphology-based identification of Sarcophaginae flies (Diptera, Sarcophagidae) is often difficult and requires strong taxonomic expertise, their use as forensic indicators has been limited. Consequently, molecular-based approaches have been accepted as alternative means of identification. Thus, we aimed testing the efficiency of the barcode region of the mitochondrial cytochrome oxidase subunit I (COI) gene for identification of synanthropic flesh flies of several species of the genera Peckia, Oxysarcodexia, Ravinia, and Tricharaea collected in Colombia. The 645-bp fragment of COI was amplified and aligned (215 parsimoniously informative variable sites). We calculated Kimura two-parameter genetic distances and reconstruct a Neighbor-Joining phylogenetic tree. Our Neighbor-Joining tree recovered all species as monophyletic, and confirmed a new species of the genus Ravinia as also indicated by the interspecific genetic divergences and morphological observations. We obtained a 100% of identification success. Thus, the COI barcodes showed efficiency as an alternative mean of identification of species of flesh flies collected on decaying organic matter in Colombia. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation

    NASA Astrophysics Data System (ADS)

    Rainieri, Carlo; Fabbrocino, Giovanni

    2015-08-01

    In the last few decades large research efforts have been devoted to the development of methods for automated detection of damage and degradation phenomena at an early stage. Modal-based damage detection techniques are well-established methods, whose effectiveness for Level 1 (existence) and Level 2 (location) damage detection is demonstrated by several studies. The indirect estimation of tensile loads in cables and tie-rods is another attractive application of vibration measurements. It provides interesting opportunities for cheap and fast quality checks in the construction phase, as well as for safety evaluations and structural maintenance over the structure lifespan. However, the lack of automated modal identification and tracking procedures has been for long a relevant drawback to the extensive application of the above-mentioned techniques in the engineering practice. An increasing number of field applications of modal-based structural health and performance assessment are appearing after the development of several automated output-only modal identification procedures in the last few years. Nevertheless, additional efforts are still needed to enhance the robustness of automated modal identification algorithms, control the computational efforts and improve the reliability of modal parameter estimates (in particular, damping). This paper deals with an original algorithm for automated output-only modal parameter estimation. Particular emphasis is given to the extensive validation of the algorithm based on simulated and real datasets in view of continuous monitoring applications. The results point out that the algorithm is fairly robust and demonstrate its ability to provide accurate and precise estimates of the modal parameters, including damping ratios. As a result, it has been used to develop systems for vibration-based estimation of tensile loads in cables and tie-rods. Promising results have been achieved for non-destructive testing as well as continuous monitoring purposes. They are documented in the last sections of the paper.

  9. Simple protocols for oblivious transfer and secure identification in the noisy-quantum-storage model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaffner, Christian

    2010-09-15

    We present simple protocols for oblivious transfer and password-based identification which are secure against general attacks in the noisy-quantum-storage model as defined in R. Koenig, S. Wehner, and J. Wullschleger [e-print arXiv:0906.1030]. We argue that a technical tool from Koenig et al. suffices to prove security of the known protocols. Whereas the more involved protocol for oblivious transfer from Koenig et al. requires less noise in storage to achieve security, our ''canonical'' protocols have the advantage of being simpler to implement and the security error is easier control. Therefore, our protocols yield higher OT rates for many realistic noise parameters.more » Furthermore, a proof of security of a direct protocol for password-based identification against general noisy-quantum-storage attacks is given.« less

  10. Study of weathering effects on the distribution of aromatic steroid hydrocarbons in crude oils and oil residues.

    PubMed

    Wang, Chuanyuan; Chen, Bing; Zhang, Baiyu; Guo, Ping; Zhao, Mingming

    2014-01-01

    The composition and distribution of triaromatic steroid hydrocarbons in oil residues after biodegradation and photo-oxidation processes were detected, and the diagnostic ratios for oil spill identification were developed and evaluated based on the relative standard deviation (RSD) and the repeatability limit. The preferential loss of C27 methyl triaromatic steranes (MTAS) relative to C28 MTAS and C29 MTAS was shown during the photo-oxidation process. In contrast to the photochemical degradation, the MTAS with the original 20R biological configuration was preferentially degraded during the biodegradation process. The RSD of most of the diagnostic ratios of MTAS ranged from 9 to 84% during the photo-oxidation process. However, the RSDs of such ratios derived from MTAS were all <5% even in high biodegradation, and such parameters may also provide new methods on oil spill identification. The parameters of monoaromatic sterane and monoaromatic sterane are not used well for oil spill identification after photo-oxidation. The triaromatic steroid hydrocarbons retained their molecular compositions after biodegradation and photo-oxidation and most of the diagnostic ratios derived from them could be efficiently used in oil spill identification.

  11. Preliminary results of fisheries investigation associated with Skylab-3. [remotely sensed distribution and abundance of gamefish in Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Savastano, K. J. (Principal Investigator); Pastula, E. J., Jr.; Woods, G.; Faller, K.

    1974-01-01

    The author has identified the following significant results. This investigation is to establish the feasibility of utilizing remotely sensed data acquired from aircraft and satellite platforms to provide information concerning the distribution and abundance of oceanic gamefish. Data from the test area in the northeastern Gulf of Mexico has made possible the identification of fisheries significant environmental parameters for white marlin. Predictive models based on catch data and surface truth information have been developed and have demonstrated potential for reducing search significantly by identifying areas which have a high probability of being productive. Three of the parameters utilized by the model, chlorophyll-a, sea surface temperature, and turbidity have been inferred from aircraft sensor data. Cloud cover and delayed receipt have inhibited the use of Skylab data. The first step toward establishing the feasibility of utilizing remotely sensed data to assess amd monitor the distribution of ocean gamefish has been taken with the successful identification of fisheries significant oceanographic parameters and the demonstration of the capability of measuring most of these parameters remotely.

  12. A highly precise frequency-based method for estimating the tension of an inclined cable with unknown boundary conditions

    NASA Astrophysics Data System (ADS)

    Ma, Lin

    2017-11-01

    This paper develops a method for precisely determining the tension of an inclined cable with unknown boundary conditions. First, the nonlinear motion equation of an inclined cable is derived, and a numerical model of the motion of the cable is proposed using the finite difference method. The proposed numerical model includes the sag-extensibility, flexural stiffness, inclination angle and rotational stiffness at two ends of the cable. Second, the influence of the dynamic parameters of the cable on its frequencies is discussed in detail, and a method for precisely determining the tension of an inclined cable is proposed based on the derivatives of the eigenvalues of the matrices. Finally, a multiparameter identification method is developed that can simultaneously identify multiple parameters, including the rotational stiffness at two ends. This scheme is applicable to inclined cables with varying sag, varying flexural stiffness and unknown boundary conditions. Numerical examples indicate that the method provides good precision. Because the parameters of cables other than tension (e.g., the flexural stiffness and rotational stiffness at the ends) are not accurately known in practical engineering, the multiparameter identification method could further improve the accuracy of cable tension measurements.

  13. Identifying aMCI with Functional Connectivity Network Characteristics based on Subtle AAL Atlas.

    PubMed

    Zhuo, Zhizheng; Mo, Xiao; Ma, Xiangyu; Han, Ying; Li, Haiyun

    2018-05-02

    To investigate the subtle functional connectivity alterations of aMCI based on AAL atlas with 1024 regions (AAL_1024 atlas). Functional MRI images of 32 aMCI patients (Male/Female:15/17, Ages:66.8±8.36y) and 35 normal controls (Male/Female:13/22, Ages: 62.4±8.14y) were obtained in this study. Firstly, functional connectivity networks were constructed by Pearson's Correlation based on the subtle AAL_1024 atlas. Then, local and global network parameters were calculated from the thresholding functional connectivity matrices. Finally, multiple-comparison analysis was performed on these parameters to find the functional network alterations of aMCI. And furtherly, a couple of classifiers were adopted to identify the aMCI by using the network parameters. More subtle local brain functional alterations were detected by using AAL_1024 atlas. And the predominate nodes including hippocampus, inferior temporal gyrus, inferior parietal gyrus were identified which was not detected by AAL_90 atlas. The identification of aMCI from normal controls were significantly improved with the highest accuracy (98.51%), sensitivity (100%) and specificity (97.14%) compared to those (88.06%, 84.38% and 91.43% for the highest accuracy, sensitivity and specificity respectively) obtained by using AAL_90 atlas. More subtle functional connectivity alterations of aMCI could be found based on AAL_1024 atlas than those based on AAL_90 atlas. Besides, the identification of aMCI could also be improved. Copyright © 2018. Published by Elsevier B.V.

  14. Collaborative Study of Analysis of High Resolution Infrared Atmospheric Spectra Between NASA Langley Research Center and the University of Denver

    NASA Technical Reports Server (NTRS)

    Goldman, Aaron

    1999-01-01

    The Langley-D.U. collaboration on the analysis of high resolution infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights. Studies toward identification and quantification of isotopic species, mostly oxygen and Sulfur isotopes. Search for new species on the available spectra. Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods. Study of trends of atmosphere trace constituents. Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.

  15. PARTICLE FILTERING WITH SEQUENTIAL PARAMETER LEARNING FOR NONLINEAR BOLD fMRI SIGNALS.

    PubMed

    Xia, Jing; Wang, Michelle Yongmei

    Analyzing the blood oxygenation level dependent (BOLD) effect in the functional magnetic resonance imaging (fMRI) is typically based on recent ground-breaking time series analysis techniques. This work represents a significant improvement over existing approaches to system identification using nonlinear hemodynamic models. It is important for three reasons. First, instead of using linearized approximations of the dynamics, we present a nonlinear filtering based on the sequential Monte Carlo method to capture the inherent nonlinearities in the physiological system. Second, we simultaneously estimate the hidden physiological states and the system parameters through particle filtering with sequential parameter learning to fully take advantage of the dynamic information of the BOLD signals. Third, during the unknown static parameter learning, we employ the low-dimensional sufficient statistics for efficiency and avoiding potential degeneration of the parameters. The performance of the proposed method is validated using both the simulated data and real BOLD fMRI data.

  16. Novel parameter-based flexure bearing design method

    NASA Astrophysics Data System (ADS)

    Amoedo, Simon; Thebaud, Edouard; Gschwendtner, Michael; White, David

    2016-06-01

    A parameter study was carried out on the design variables of a flexure bearing to be used in a Stirling engine with a fixed axial displacement and a fixed outer diameter. A design method was developed in order to assist identification of the optimum bearing configuration. This was achieved through a parameter study of the bearing carried out with ANSYS®. The parameters varied were the number and the width of the arms, the thickness of the bearing, the eccentricity, the size of the starting and ending holes, and the turn angle of the spiral. Comparison was made between the different designs in terms of axial and radial stiffness, the natural frequency, and the maximum induced stresses. Moreover, the Finite Element Analysis (FEA) was compared to theoretical results for a given design. The results led to a graphical design method which assists the selection of flexure bearing geometrical parameters based on pre-determined geometric and material constraints.

  17. Goldstone radio spectrum signal identification, March 1980 - March 1982

    NASA Technical Reports Server (NTRS)

    Gaudian, B. A.

    1982-01-01

    The signal identification process is described. The Goldstone radio spectrum environment contains signals that are a potential source of electromagnetic interference to the Goldstone tracking receivers. The identification of these signals is accomplished by the use of signal parameters and environment parameters. Statistical data on the Goldstone radio spectrum environment from 2285 to 2305 MHz are provided.

  18. Digital image processing based identification of nodes and internodes of chopped biomass stems

    USDA-ARS?s Scientific Manuscript database

    Chemical composition of biomass feedstock is an important parameter for optimizing the yield and economics of various bioconversion pathways. Although understandably, the chemical composition of biomass varies among species, varieties, and plant components, there is distinct variation even among ste...

  19. rTANDEM, an R/Bioconductor package for MS/MS protein identification.

    PubMed

    Fournier, Frédéric; Joly Beauparlant, Charles; Paradis, René; Droit, Arnaud

    2014-08-01

    rTANDEM is an R/Bioconductor package that interfaces the X!Tandem protein identification algorithm. The package can run the multi-threaded algorithm on proteomic data files directly from R. It also provides functions to convert search parameters and results to/from R as well as functions to manipulate parameters and automate searches. An associated R package, shinyTANDEM, provides a web-based graphical interface to visualize and interpret the results. Together, those two packages form an entry point for a general MS/MS-based proteomic pipeline in R/Bioconductor. rTANDEM and shinyTANDEM are distributed in R/Bioconductor, http://bioconductor.org/packages/release/bioc/. The packages are under open licenses (GPL-3 and Artistice-1.0). frederic.fournier@crchuq.ulaval.ca or arnaud.droit@crchuq.ulaval.ca Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi.

    PubMed

    Normand, Anne-Cécile; Cassagne, Carole; Ranque, Stéphane; L'ollivier, Coralie; Fourquet, Patrick; Roesems, Sam; Hendrickx, Marijke; Piarroux, Renaud

    2013-04-08

    The poor reproducibility of matrix-assisted desorption/ionization time-of-flight (MALDI-TOF) spectra limits the effectiveness of the MALDI-TOF MS-based identification of filamentous fungi with highly heterogeneous phenotypes in routine clinical laboratories. This study aimed to enhance the MALDI-TOF MS-based identification of filamentous fungi by assessing several architectures of reference spectrum libraries. We established reference spectrum libraries that included 30 filamentous fungus species with various architectures characterized by distinct combinations of the following: i) technical replicates, i.e., the number of analyzed deposits for each culture used to build a reference meta-spectrum (RMS); ii) biological replicates, i.e., the number of RMS derived from the distinct subculture of each strain; and iii) the number of distinct strains of a given species. We then compared the effectiveness of each library in the identification of 200 prospectively collected clinical isolates, including 38 species in 28 genera.Identification effectiveness was improved by increasing the number of both RMS per strain (p<10-4) and strains for a given species (p<10-4) in a multivariate analysis. Addressing the heterogeneity of MALDI-TOF spectra derived from filamentous fungi by increasing the number of RMS obtained from distinct subcultures of strains included in the reference spectra library markedly improved the effectiveness of the MALDI-TOF MS-based identification of clinical filamentous fungi.

  1. Selection of noisy measurement locations for error reduction in static parameter identification

    NASA Astrophysics Data System (ADS)

    Sanayei, Masoud; Onipede, Oladipo; Babu, Suresh R.

    1992-09-01

    An incomplete set of noisy static force and displacement measurements is used for parameter identification of structures at the element level. Measurement location and the level of accuracy in the measured data can drastically affect the accuracy of the identified parameters. A heuristic method is presented to select a limited number of degrees of freedom (DOF) to perform a successful parameter identification and to reduce the impact of measurement errors on the identified parameters. This pretest simulation uses an error sensitivity analysis to determine the effect of measurement errors on the parameter estimates. The selected DOF can be used for nondestructive testing and health monitoring of structures. Two numerical examples, one for a truss and one for a frame, are presented to demonstrate that using the measurements at the selected subset of DOF can limit the error in the parameter estimates.

  2. Evaluation of parameters of color profile models of LCD and LED screens

    NASA Astrophysics Data System (ADS)

    Zharinov, I. O.; Zharinov, O. O.

    2017-12-01

    The purpose of the research relates to the problem of parametric identification of the color profile model of LCD (liquid crystal display) and LED (light emitting diode) screens. The color profile model of a screen is based on the Grassmann’s Law of additive color mixture. Mathematically the problem is to evaluate unknown parameters (numerical coefficients) of the matrix transformation between different color spaces. Several methods of evaluation of these screen profile coefficients were developed. These methods are based either on processing of some colorimetric measurements or on processing of technical documentation data.

  3. A program to form a multidisciplinary data base and analysis for dynamic systems

    NASA Technical Reports Server (NTRS)

    Taylor, L. W.; Suit, W. T.; Mayo, M. H.

    1984-01-01

    Diverse sets of experimental data and analysis programs have been assembled for the purpose of facilitating research in systems identification, parameter estimation and state estimation techniques. The data base analysis programs are organized to make it easy to compare alternative approaches. Additional data and alternative forms of analysis will be included as they become available.

  4. Parameter identification studies on the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mckavitt, Thomas P., Jr.

    1990-01-01

    The results of an aircraft parameters identification study conducted on the National Aeronautics and Space Administration/Ames Research Center Advanced Concepts Flight Simulator (ACFS) in conjunction with the Navy-NASA Joint Institute of Aeronautics are given. The ACFS is a commercial airline simulator with a design based on future technology. The simulator is used as a laboratory for human factors research and engineering as applied to the commercial airline industry. Parametric areas examined were engine pressure ratio (EPR), optimum long range cruise Mach number, flap reference speed, and critical take-off speeds. Results were compared with corresponding parameters of the Boeing 757 and 767 aircraft. This comparison identified two areas where improvements can be made: (1) low maximum lift coefficients (on the order of 20-25 percent less than those of a 757); and (2) low optimum cruise Mach numbers. Recommendations were made to those anticipated with the application of future technologies.

  5. Research on natural frequency based on modal test for high speed vehicles

    NASA Astrophysics Data System (ADS)

    Ma, Guangsong; He, Guanglin; Guo, Yachao

    2018-04-01

    High speed vehicle as a vibration system, resonance generated in flight may be harmful to high speed vehicles. It is possible to solve the resonance problem by acquiring the natural frequency of the high-speed aircraft and then taking some measures to avoid the natural frequency of the high speed vehicle. Therefore, In this paper, the modal test of the high speed vehicle was carried out by using the running hammer method and the PolyMAX modal parameter identification method. Firstly, the total frequency response function, coherence function of the high speed vehicle are obtained by the running hammer stimulation test, and through the modal assurance criterion (MAC) to determine the accuracy of the estimated parameters. Secondly, the first three order frequencies, the pole steady state diagram of the high speed vehicles is obtained by the PolyMAX modal parameter identification method. At last, the natural frequency of the vibration system was accurately obtained by the running hammer method.

  6. Compressive properties of passive skeletal muscle-the impact of precise sample geometry on parameter identification in inverse finite element analysis.

    PubMed

    Böl, Markus; Kruse, Roland; Ehret, Alexander E; Leichsenring, Kay; Siebert, Tobias

    2012-10-11

    Due to the increasing developments in modelling of biological material, adequate parameter identification techniques are urgently needed. The majority of recent contributions on passive muscle tissue identify material parameters solely by comparing characteristic, compressive stress-stretch curves from experiments and simulation. In doing so, different assumptions concerning e.g. the sample geometry or the degree of friction between the sample and the platens are required. In most cases these assumptions are grossly simplified leading to incorrect material parameters. In order to overcome such oversimplifications, in this paper a more reliable parameter identification technique is presented: we use the inverse finite element method (iFEM) to identify the optimal parameter set by comparison of the compressive stress-stretch response including the realistic geometries of the samples and the presence of friction at the compressed sample faces. Moreover, we judge the quality of the parameter identification by comparing the simulated and experimental deformed shapes of the samples. Besides this, the study includes a comprehensive set of compressive stress-stretch data on rabbit soleus muscle and the determination of static friction coefficients between muscle and PTFE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Identification of drought in Dhalai river watershed using MCDM and ANN models

    NASA Astrophysics Data System (ADS)

    Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy

    2017-03-01

    An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.

  8. Vehicle dynamic prediction systems with on-line identification of vehicle parameters and road conditions.

    PubMed

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-11-13

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event.

  9. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    PubMed Central

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231

  10. Intelligent Systems Approach for Automated Identification of Individual Control Behavior of a Human Operator

    NASA Technical Reports Server (NTRS)

    Zaychik, Kirill B.; Cardullo, Frank M.

    2012-01-01

    Results have been obtained using conventional techniques to model the generic human operator?s control behavior, however little research has been done to identify an individual based on control behavior. The hypothesis investigated is that different operators exhibit different control behavior when performing a given control task. Two enhancements to existing human operator models, which allow personalization of the modeled control behavior, are presented. One enhancement accounts for the testing control signals, which are introduced by an operator for more accurate control of the system and/or to adjust the control strategy. This uses the Artificial Neural Network which can be fine-tuned to model the testing control. Another enhancement takes the form of an equiripple filter which conditions the control system power spectrum. A novel automated parameter identification technique was developed to facilitate the identification process of the parameters of the selected models. This utilizes a Genetic Algorithm based optimization engine called the Bit-Climbing Algorithm. Enhancements were validated using experimental data obtained from three different sources: the Manual Control Laboratory software experiments, Unmanned Aerial Vehicle simulation, and NASA Langley Research Center Visual Motion Simulator studies. This manuscript also addresses applying human operator models to evaluate the effectiveness of motion feedback when simulating actual pilot control behavior in a flight simulator.

  11. X-48B Preliminary Flight Test Results

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2009-01-01

    This slide presentation reviews the preliminary Flight tests of the X-48B development program. The X-48B is a blended wing body aircraft that is being used to test various features of the BWB concept. The research concerns the following: (1) Turbofan Development, (2) Intelligent Flight Control and Optimization, (3) Airdata Calibration (4) Parameter Identification (i.e., Determination of the parameters of a mathematical model of a system based on observation of the system inputs and response.)

  12. Identifying High-Rate Flows Based on Sequential Sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Fang, Binxing; Luo, Hao

    We consider the problem of fast identification of high-rate flows in backbone links with possibly millions of flows. Accurate identification of high-rate flows is important for active queue management, traffic measurement and network security such as detection of distributed denial of service attacks. It is difficult to directly identify high-rate flows in backbone links because tracking the possible millions of flows needs correspondingly large high speed memories. To reduce the measurement overhead, the deterministic 1-out-of-k sampling technique is adopted which is also implemented in Cisco routers (NetFlow). Ideally, a high-rate flow identification method should have short identification time, low memory cost and processing cost. Most importantly, it should be able to specify the identification accuracy. We develop two such methods. The first method is based on fixed sample size test (FSST) which is able to identify high-rate flows with user-specified identification accuracy. However, since FSST has to record every sampled flow during the measurement period, it is not memory efficient. Therefore the second novel method based on truncated sequential probability ratio test (TSPRT) is proposed. Through sequential sampling, TSPRT is able to remove the low-rate flows and identify the high-rate flows at the early stage which can reduce the memory cost and identification time respectively. According to the way to determine the parameters in TSPRT, two versions of TSPRT are proposed: TSPRT-M which is suitable when low memory cost is preferred and TSPRT-T which is suitable when short identification time is preferred. The experimental results show that TSPRT requires less memory and identification time in identifying high-rate flows while satisfying the accuracy requirement as compared to previously proposed methods.

  13. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest

    NASA Astrophysics Data System (ADS)

    Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.

    2017-08-01

    The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest AGB retrieval showed R2 value of 0.5, RMSE of 62.73 (t ha-1) and a percent accuracy of 51%. TSI based PolInSAR inversion modeling showed the most accurate result for forest height estimation. The correlation between the field measured forest height and the estimated tree height using TSI technique is 62% with an average accuracy of 91.56% and RMSE of 2.28 m. The study suggested that PolInSAR coherence based modeling approach has significant potential for retrieval of forest biophysical parameters.

  14. Rapid condition assessment of structural condition after a blast using state-space identification

    NASA Astrophysics Data System (ADS)

    Eskew, Edward; Jang, Shinae

    2015-04-01

    After a blast event, it is important to quickly quantify the structural damage for emergency operations. In order improve the speed, accuracy, and efficiency of condition assessments after a blast, the authors have previously performed work to develop a methodology for rapid assessment of the structural condition of a building after a blast. The method involved determining a post-event equivalent stiffness matrix using vibration measurements and a finite element (FE) model. A structural model was built for the damaged structure based on the equivalent stiffness, and inter-story drifts from the blast are determined using numerical simulations, with forces determined from the blast parameters. The inter-story drifts are then compared to blast design conditions to assess the structures damage. This method still involved engineering judgment in terms of determining significant frequencies, which can lead to error, especially with noisy measurements. In an effort to improve accuracy and automate the process, this paper will look into a similar method of rapid condition assessment using subspace state-space identification. The accuracy of the method will be tested using a benchmark structural model, as well as experimental testing. The blast damage assessments will be validated using pressure-impulse (P-I) diagrams, which present the condition limits across blast parameters. Comparisons between P-I diagrams generated using the true system parameters and equivalent parameters will show the accuracy of the rapid condition based blast assessments.

  15. Multi-level damage identification with response reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Chao-Dong; Xu, You-Lin

    2017-10-01

    Damage identification through finite element (FE) model updating usually forms an inverse problem. Solving the inverse identification problem for complex civil structures is very challenging since the dimension of potential damage parameters in a complex civil structure is often very large. Aside from enormous computation efforts needed in iterative updating, the ill-condition and non-global identifiability features of the inverse problem probably hinder the realization of model updating based damage identification for large civil structures. Following a divide-and-conquer strategy, a multi-level damage identification method is proposed in this paper. The entire structure is decomposed into several manageable substructures and each substructure is further condensed as a macro element using the component mode synthesis (CMS) technique. The damage identification is performed at two levels: the first is at macro element level to locate the potentially damaged region and the second is over the suspicious substructures to further locate as well as quantify the damage severity. In each level's identification, the damage searching space over which model updating is performed is notably narrowed down, not only reducing the computation amount but also increasing the damage identifiability. Besides, the Kalman filter-based response reconstruction is performed at the second level to reconstruct the response of the suspicious substructure for exact damage quantification. Numerical studies and laboratory tests are both conducted on a simply supported overhanging steel beam for conceptual verification. The results demonstrate that the proposed multi-level damage identification via response reconstruction does improve the identification accuracy of damage localization and quantization considerably.

  16. Identification of quasi-steady compressor characteristics from transient data

    NASA Technical Reports Server (NTRS)

    Nunes, K. B.; Rock, S. M.

    1984-01-01

    The principal goal was to demonstrate that nonlinear compressor map parameters, which govern an in-stall response, can be identified from test data using parameter identification techniques. The tasks included developing and then applying an identification procedure to data generated by NASA LeRC on a hybrid computer. Two levels of model detail were employed. First was a lumped compressor rig model; second was a simplified turbofan model. The main outputs are the tools and procedures generated to accomplish the identification.

  17. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

  18. STEPS: a grid search methodology for optimized peptide identification filtering of MS/MS database search results.

    PubMed

    Piehowski, Paul D; Petyuk, Vladislav A; Sandoval, John D; Burnum, Kristin E; Kiebel, Gary R; Monroe, Matthew E; Anderson, Gordon A; Camp, David G; Smith, Richard D

    2013-03-01

    For bottom-up proteomics, there are wide variety of database-searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid-search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection--referred to as STEPS--utilizes user-defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal "parameter set" for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true-positive identifications are demonstrated using datasets derived from immunoaffinity-depleted blood serum and a bacterial cell lysate, two common proteomics sample types. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Models of Pilot Behavior and Their Use to Evaluate the State of Pilot Training

    NASA Astrophysics Data System (ADS)

    Jirgl, Miroslav; Jalovecky, Rudolf; Bradac, Zdenek

    2016-07-01

    This article discusses the possibilities of obtaining new information related to human behavior, namely the changes or progressive development of pilots' abilities during training. The main assumption is that a pilot's ability can be evaluated based on a corresponding behavioral model whose parameters are estimated using mathematical identification procedures. The mean values of the identified parameters are obtained via statistical methods. These parameters are then monitored and their changes evaluated. In this context, the paper introduces and examines relevant mathematical models of human (pilot) behavior, the pilot-aircraft interaction, and an example of the mathematical analysis.

  20. Estimation of hysteretic damping of structures by stochastic subspace identification

    NASA Astrophysics Data System (ADS)

    Bajrić, Anela; Høgsberg, Jan

    2018-05-01

    Output-only system identification techniques can estimate modal parameters of structures represented by linear time-invariant systems. However, the extension of the techniques to structures exhibiting non-linear behavior has not received much attention. This paper presents an output-only system identification method suitable for random response of dynamic systems with hysteretic damping. The method applies the concept of Stochastic Subspace Identification (SSI) to estimate the model parameters of a dynamic system with hysteretic damping. The restoring force is represented by the Bouc-Wen model, for which an equivalent linear relaxation model is derived. Hysteretic properties can be encountered in engineering structures exposed to severe cyclic environmental loads, as well as in vibration mitigation devices, such as Magneto-Rheological (MR) dampers. The identification technique incorporates the equivalent linear damper model in the estimation procedure. Synthetic data, representing the random vibrations of systems with hysteresis, validate the estimated system parameters by the presented identification method at low and high-levels of excitation amplitudes.

  1. Suspension parameter estimation in the frequency domain using a matrix inversion approach

    NASA Astrophysics Data System (ADS)

    Thite, A. N.; Banvidi, S.; Ibicek, T.; Bennett, L.

    2011-12-01

    The dynamic lumped parameter models used to optimise the ride and handling of a vehicle require base values of the suspension parameters. These parameters are generally experimentally identified. The accuracy of identified parameters can depend on the measurement noise and the validity of the model used. The existing publications on suspension parameter identification are generally based on the time domain and use a limited degree of freedom. Further, the data used are either from a simulated 'experiment' or from a laboratory test on an idealised quarter or a half-car model. In this paper, a method is developed in the frequency domain which effectively accounts for the measurement noise. Additional dynamic constraining equations are incorporated and the proposed formulation results in a matrix inversion approach. The nonlinearities in damping are estimated, however, using a time-domain approach. Full-scale 4-post rig test data of a vehicle are used. The variations in the results are discussed using the modal resonant behaviour. Further, a method is implemented to show how the results can be improved when the matrix inverted is ill-conditioned. The case study shows a good agreement between the estimates based on the proposed frequency-domain approach and measurable physical parameters.

  2. Calibration of a flexible measurement system based on industrial articulated robot and structured light sensor

    NASA Astrophysics Data System (ADS)

    Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping

    2017-05-01

    To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.

  3. Identification of internal properties of fibres and micro-swimmers

    NASA Astrophysics Data System (ADS)

    Plouraboué, Franck; Thiam, E. Ibrahima; Delmotte, Blaise; Climent, Eric

    2017-01-01

    In this paper, we address the identifiability of constitutive parameters of passive or active micro-swimmers. We first present a general framework for describing fibres or micro-swimmers using a bead-model description. Using a kinematic constraint formulation to describe fibres, flagellum or cilia, we find explicit linear relationship between elastic constitutive parameters and generalized velocities from computing contact forces. This linear formulation then permits one to address explicitly identifiability conditions and solve for parameter identification. We show that both active forcing and passive parameters are both identifiable independently but not simultaneously. We also provide unbiased estimators for generalized elastic parameters in the presence of Langevin-like forcing with Gaussian noise using a Bayesian approach. These theoretical results are illustrated in various configurations showing the efficiency of the proposed approach for direct parameter identification. The convergence of the proposed estimators is successfully tested numerically.

  4. INDES User's guide multistep input design with nonlinear rotorcraft modeling

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The INDES computer program, a multistep input design program used as part of a data processing technique for rotorcraft systems identification, is described. Flight test inputs base on INDES improve the accuracy of parameter estimates. The input design algorithm, program input, and program output are presented.

  5. JUPITER PROJECT - JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY

    EPA Science Inventory

    The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project builds on the technology of two widely used codes for sensitivity analysis, data assessment, calibration, and uncertainty analysis of environmental models: PEST and UCODE.

  6. Identification of Technological Parameters of Ni-Alloys When Machining by Monolithic Ceramic Milling Tool

    NASA Astrophysics Data System (ADS)

    Czán, Andrej; Kubala, Ondrej; Danis, Igor; Czánová, Tatiana; Holubják, Jozef; Mikloš, Matej

    2017-12-01

    The ever-increasing production and the usage of hard-to-machine progressive materials are the main cause of continual finding of new ways and methods of machining. One of these ways is the ceramic milling tool, which combines the pros of conventional ceramic cutting materials and pros of conventional coating steel-based insert. These properties allow to improve cutting conditions and so increase the productivity with preserved quality known from conventional tools usage. In this paper, there is made the identification of properties and possibilities of this tool when machining of hard-to-machine materials such as nickel alloys using in airplanes engines. This article is focused on the analysis and evaluation ordinary technological parameters and surface quality, mainly roughness of surface and quality of machined surface and tool wearing.

  7. Design of a Two-Step Calibration Method of Kinematic Parameters for Serial Robots

    NASA Astrophysics Data System (ADS)

    WANG, Wei; WANG, Lei; YUN, Chao

    2017-03-01

    Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product-of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot's 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.

  8. Reduced-order model for underwater target identification using proper orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Ramesh, Sai Sudha; Lim, Kian Meng

    2017-03-01

    Research on underwater acoustics has seen major development over the past decade due to its widespread applications in domains such as underwater communication/navigation (SONAR), seismic exploration and oceanography. In particular, acoustic signatures from partially or fully buried targets can be used in the identification of buried mines for mine counter measures (MCM). Although there exist several techniques to identify target properties based on SONAR images and acoustic signatures, these methods first employ a feature extraction method to represent the dominant characteristics of a data set, followed by the use of an appropriate classifier based on neural networks or the relevance vector machine. The aim of the present study is to demonstrate the applications of proper orthogonal decomposition (POD) technique in capturing dominant features of a set of scattered pressure signals, and subsequent use of the POD modes and coefficients in the identification of partially buried underwater target parameters such as its location, size and material density. Several numerical examples are presented to demonstrate the performance of the system identification method based on POD. Although the present study is based on 2D acoustic model, the method can be easily extended to 3D models and thereby enables cost-effective representations of large-scale data.

  9. Continuous-time interval model identification of blood glucose dynamics for type 1 diabetes

    NASA Astrophysics Data System (ADS)

    Kirchsteiger, Harald; Johansson, Rolf; Renard, Eric; del Re, Luigi

    2014-07-01

    While good physiological models of the glucose metabolism in type 1 diabetic patients are well known, their parameterisation is difficult. The high intra-patient variability observed is a further major obstacle. This holds for data-based models too, so that no good patient-specific models are available. Against this background, this paper proposes the use of interval models to cover the different metabolic conditions. The control-oriented models contain a carbohydrate and insulin sensitivity factor to be used for insulin bolus calculators directly. Available clinical measurements were sampled on an irregular schedule which prompts the use of continuous-time identification, also for the direct estimation of the clinically interpretable factors mentioned above. An identification method is derived and applied to real data from 28 diabetic patients. Model estimation was done on a clinical data-set, whereas validation results shown were done on an out-of-clinic, everyday life data-set. The results show that the interval model approach allows a much more regular estimation of the parameters and avoids physiologically incompatible parameter estimates.

  10. Structural modal parameter identification using local mean decomposition

    NASA Astrophysics Data System (ADS)

    Keyhani, Ali; Mohammadi, Saeed

    2018-02-01

    Modal parameter identification is the first step in structural health monitoring of existing structures. Already, many powerful methods have been proposed for this concept and each method has some benefits and shortcomings. In this study, a new method based on local mean decomposition is proposed for modal identification of civil structures from free or ambient vibration measurements. The ability of the proposed method was investigated using some numerical studies and the results compared with those obtained from the Hilbert-Huang transform (HHT). As a major advantage, the proposed method can extract natural frequencies and damping ratios of all active modes from only one measurement. The accuracy of the identified modes depends on their participation in the measured responses. Nevertheless, the identified natural frequencies have reasonable accuracy in both cases of free and ambient vibration measurements, even in the presence of noise. The instantaneous phase angle and the natural logarithm of instantaneous amplitude curves obtained from the proposed method have more linearity rather than those from the HHT algorithm. Also, the end effect is more restricted for the proposed method.

  11. Adaptive convex combination approach for the identification of improper quaternion processes.

    PubMed

    Ujang, Bukhari Che; Jahanchahi, Cyrus; Took, Clive Cheong; Mandic, Danilo P

    2014-01-01

    Data-adaptive optimal modeling and identification of real-world vector sensor data is provided by combining the fractional tap-length (FT) approach with model order selection in the quaternion domain. To account rigorously for the generality of such processes, both second-order circular (proper) and noncircular (improper), the proposed approach in this paper combines the FT length optimization with both the strictly linear quaternion least mean square (QLMS) and widely linear QLMS (WL-QLMS). A collaborative approach based on QLMS and WL-QLMS is shown to both identify the type of processes (proper or improper) and to track their optimal parameters in real time. Analysis shows that monitoring the evolution of the convex mixing parameter within the collaborative approach allows us to track the improperness in real time. Further insight into the properties of those algorithms is provided by establishing a relationship between the steady-state error and optimal model order. The approach is supported by simulations on model order selection and identification of both strictly linear and widely linear quaternion-valued systems, such as those routinely used in renewable energy (wind) and human-centered computing (biomechanics).

  12. Coupling Capillary Zone Electrophoresis to a Q Exactive HF Mass Spectrometer for Top-down Proteomics: 580 Proteoform Identifications from Yeast.

    PubMed

    Zhao, Yimeng; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J

    2016-10-07

    We used reversed-phase liquid chromatography to separate the yeast proteome into 23 fractions. These fractions were then analyzed using capillary zone electrophoresis (CZE) coupled to a Q-Exactive HF mass spectrometer using an electrokinetically pumped sheath flow interface. The parameters of the mass spectrometer were first optimized for top-down proteomics using a mixture of seven model proteins; we observed that intact protein mode with a trapping pressure of 0.2 and normalized collision energy of 20% produced the highest intact protein signals and most protein identifications. Then, we applied the optimized parameters for analysis of the fractionated yeast proteome. From this, 580 proteoforms and 180 protein groups were identified via database searching of the MS/MS spectra. This number of proteoform identifications is two times larger than that of previous CZE-MS/MS studies. An additional 3,243 protein species were detected based on the parent ion spectra. Post-translational modifications including N-terminal acetylation, signal peptide removal, and oxidation were identified.

  13. A Situational-Awareness System For Networked Infantry Including An Accelerometer-Based Shot-Identification Algorithm For Direct-Fire Weapons

    DTIC Science & Technology

    2016-09-01

    noise density and temperature sensitivity of these devices are all on the same order of magnitude. Even the worst- case noise density of the GCDC...accelerations from a handgun firing were distinct from other impulsive events on the wrist, such as using a hammer. Loeffler first identified potential shots by...spikes, taking various statistical parameters. He used a logistic regression model on these parameters and was able to classify 98.9% of shots

  14. Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectrometry and using genome restriction.

    PubMed

    Dhanasekaran, A Ranjitha; Pearson, Jon L; Ganesan, Balasubramanian; Weimer, Bart C

    2015-02-25

    Mass spectrometric analysis of microbial metabolism provides a long list of possible compounds. Restricting the identification of the possible compounds to those produced by the specific organism would benefit the identification process. Currently, identification of mass spectrometry (MS) data is commonly done using empirically derived compound databases. Unfortunately, most databases contain relatively few compounds, leaving long lists of unidentified molecules. Incorporating genome-encoded metabolism enables MS output identification that may not be included in databases. Using an organism's genome as a database restricts metabolite identification to only those compounds that the organism can produce. To address the challenge of metabolomic analysis from MS data, a web-based application to directly search genome-constructed metabolic databases was developed. The user query returns a genome-restricted list of possible compound identifications along with the putative metabolic pathways based on the name, formula, SMILES structure, and the compound mass as defined by the user. Multiple queries can be done simultaneously by submitting a text file created by the user or obtained from the MS analysis software. The user can also provide parameters specific to the experiment's MS analysis conditions, such as mass deviation, adducts, and detection mode during the query so as to provide additional levels of evidence to produce the tentative identification. The query results are provided as an HTML page and downloadable text file of possible compounds that are restricted to a specific genome. Hyperlinks provided in the HTML file connect the user to the curated metabolic databases housed in ProCyc, a Pathway Tools platform, as well as the KEGG Pathway database for visualization and metabolic pathway analysis. Metabolome Searcher, a web-based tool, facilitates putative compound identification of MS output based on genome-restricted metabolic capability. This enables researchers to rapidly extend the possible identifications of large data sets for metabolites that are not in compound databases. Putative compound names with their associated metabolic pathways from metabolomics data sets are returned to the user for additional biological interpretation and visualization. This novel approach enables compound identification by restricting the possible masses to those encoded in the genome.

  15. Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi

    PubMed Central

    2013-01-01

    Background The poor reproducibility of matrix-assisted desorption/ionization time-of-flight (MALDI-TOF) spectra limits the effectiveness of the MALDI-TOF MS-based identification of filamentous fungi with highly heterogeneous phenotypes in routine clinical laboratories. This study aimed to enhance the MALDI-TOF MS-based identification of filamentous fungi by assessing several architectures of reference spectrum libraries. Results We established reference spectrum libraries that included 30 filamentous fungus species with various architectures characterized by distinct combinations of the following: i) technical replicates, i.e., the number of analyzed deposits for each culture used to build a reference meta-spectrum (RMS); ii) biological replicates, i.e., the number of RMS derived from the distinct subculture of each strain; and iii) the number of distinct strains of a given species. We then compared the effectiveness of each library in the identification of 200 prospectively collected clinical isolates, including 38 species in 28 genera. Identification effectiveness was improved by increasing the number of both RMS per strain (p<10-4) and strains for a given species (p<10-4) in a multivariate analysis. Conclusion Addressing the heterogeneity of MALDI-TOF spectra derived from filamentous fungi by increasing the number of RMS obtained from distinct subcultures of strains included in the reference spectra library markedly improved the effectiveness of the MALDI-TOF MS-based identification of clinical filamentous fungi. PMID:23565856

  16. Modelling of Biometric Identification System with Given Parameters Using Colored Petri Nets

    NASA Astrophysics Data System (ADS)

    Petrosyan, G.; Ter-Vardanyan, L.; Gaboutchian, A.

    2017-05-01

    Biometric identification systems use given parameters and function on the basis of Colored Petri Nets as a modelling language developed for systems in which communication, synchronization and distributed resources play an important role. Colored Petri Nets combine the strengths of Classical Petri Nets with the power of a high-level programming language. Coloured Petri Nets have both, formal intuitive and graphical presentations. Graphical CPN model consists of a set of interacting modules which include a network of places, transitions and arcs. Mathematical representation has a well-defined syntax and semantics, as well as defines system behavioural properties. One of the best known features used in biometric is the human finger print pattern. During the last decade other human features have become of interest, such as iris-based or face recognition. The objective of this paper is to introduce the fundamental concepts of Petri Nets in relation to tooth shape analysis. Biometric identification systems functioning has two phases: data enrollment phase and identification phase. During the data enrollment phase images of teeth are added to database. This record contains enrollment data as a noisy version of the biometrical data corresponding to the individual. During the identification phase an unknown individual is observed again and is compared to the enrollment data in the database and then system estimates the individual. The purpose of modeling biometric identification system by means of Petri Nets is to reveal the following aspects of the functioning model: the efficiency of the model, behavior of the model, mistakes and accidents in the model, feasibility of the model simplification or substitution of its separate components for more effective components without interfering system functioning. The results of biometric identification system modeling and evaluating are presented and discussed.

  17. Material parameter estimation with terahertz time-domain spectroscopy.

    PubMed

    Dorney, T D; Baraniuk, R G; Mittleman, D M

    2001-07-01

    Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses. Furthermore, the possibility exists for combining spectroscopic characterization or identification with imaging because the radiation is broadband in nature. To achieve this, we require novel methods for real-time analysis of THz waveforms. This paper describes a robust algorithm for extracting material parameters from measured THz waveforms. Our algorithm simultaneously obtains both the thickness and the complex refractive index of an unknown sample under certain conditions. In contrast, most spectroscopic transmission measurements require knowledge of the sample's thickness for an accurate determination of its optical parameters. Our approach relies on a model-based estimation, a gradient descent search, and the total variation measure. We explore the limits of this technique and compare the results with literature data for optical parameters of several different materials.

  18. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    NASA Technical Reports Server (NTRS)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  19. Spectral gap optimization of order parameters for sampling complex molecular systems

    PubMed Central

    Tiwary, Pratyush; Berne, B. J.

    2016-01-01

    In modern-day simulations of many-body systems, much of the computational complexity is shifted to the identification of slowly changing molecular order parameters called collective variables (CVs) or reaction coordinates. A vast array of enhanced-sampling methods are based on the identification and biasing of these low-dimensional order parameters, whose fluctuations are important in driving rare events of interest. Here, we describe a new algorithm for finding optimal low-dimensional CVs for use in enhanced-sampling biasing methods like umbrella sampling, metadynamics, and related methods, when limited prior static and dynamic information is known about the system, and a much larger set of candidate CVs is specified. The algorithm involves estimating the best combination of these candidate CVs, as quantified by a maximum path entropy estimate of the spectral gap for dynamics viewed as a function of that CV. The algorithm is called spectral gap optimization of order parameters (SGOOP). Through multiple practical examples, we show how this postprocessing procedure can lead to optimization of CV and several orders of magnitude improvement in the convergence of the free energy calculated through metadynamics, essentially giving the ability to extract useful information even from unsuccessful metadynamics runs. PMID:26929365

  20. Motion prediction of a non-cooperative space target

    NASA Astrophysics Data System (ADS)

    Zhou, Bang-Zhao; Cai, Guo-Ping; Liu, Yun-Meng; Liu, Pan

    2018-01-01

    Capturing a non-cooperative space target is a tremendously challenging research topic. Effective acquisition of motion information of the space target is the premise to realize target capture. In this paper, motion prediction of a free-floating non-cooperative target in space is studied and a motion prediction algorithm is proposed. In order to predict the motion of the free-floating non-cooperative target, dynamic parameters of the target must be firstly identified (estimated), such as inertia, angular momentum and kinetic energy and so on; then the predicted motion of the target can be acquired by substituting these identified parameters into the Euler's equations of the target. Accurate prediction needs precise identification. This paper presents an effective method to identify these dynamic parameters of a free-floating non-cooperative target. This method is based on two steps, (1) the rough estimation of the parameters is computed using the motion observation data to the target, and (2) the best estimation of the parameters is found by an optimization method. In the optimization problem, the objective function is based on the difference between the observed and the predicted motion, and the interior-point method (IPM) is chosen as the optimization algorithm, which starts at the rough estimate obtained in the first step and finds a global minimum to the objective function with the guidance of objective function's gradient. So the speed of IPM searching for the global minimum is fast, and an accurate identification can be obtained in time. The numerical results show that the proposed motion prediction algorithm is able to predict the motion of the target.

  1. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Bi, Fengrong; Du, Haiping

    2018-05-01

    This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.

  2. FAMIAS - A userfriendly new software tool for the mode identification of photometric and spectroscopic times series

    NASA Astrophysics Data System (ADS)

    Zima, W.

    2008-12-01

    FAMIAS (Frequency Analysis and Mode Identification for AsteroSeismology) is a collection of state-of-the-art software tools for the analysis of photometric and spectroscopic time series data. It is one of the deliverables of the Work Package NA5: Asteroseismology of the European Coordination Action in Helio- and Asteroseismology (HELAS1 ). Two main sets of tools are incorporated in FAMIAS. The first set allows to search for pe- riodicities in the data using Fourier and non-linear least-squares fitting algorithms. The other set allows to carry out a mode identification for the detected pulsation frequencies to deter- mine their pulsational quantum numbers, the harmonic degree, ℓ, and the azimuthal order, m. For the spectroscopic mode identification, the Fourier parameter fit method and the moment method are available. The photometric mode identification is based on pre-computed grids of atmospheric parameters and non-adiabatic observables, and uses the method of amplitude ratios and phase differences in different filters. The types of stars to which FAMIAS is appli- cable are main-sequence pulsators hotter than the Sun. This includes the Gamma Dor stars, Delta Sct stars, the slowly pulsating B stars and the Beta Cep stars - basically all pulsating main-sequence stars, for which empirical mode identification is required to successfully carry out asteroseismology. The complete manual for FAMIAS is published in a special issue of Communications in Asteroseismology, Vol 155. The homepage of FAMIAS2 provides the possibility to download the software and to read the on-line documentation.

  3. Anthropometric correlations between parts of the upper and lower limb: models for personal identification in a Sudanese population.

    PubMed

    Ahmed, Altayeb Abdalla

    2016-09-01

    Identification of a deceased individual is an essential component of medicolegal practice. However, personal identification based on commingled limbs or parts of limbs, necessary in investigations of mass disasters or some crimes, is a difficult task. Limb measurements have been utilized in the development of biological parameters for personal identification, but the possibility to estimate the dimensions of parts of limbs other than hands and feet has not been assessed. The present study proposes an approach to estimate the dimensions of various parts of limbs based on other limb measurements. The study included 320 Sudanese adults, with equal representation of men and women. Nine limb dimensions were measured (five based on the upper limb, four based on the lower limb), and extensive statistical analysis of the distribution of values was performed. The results showed that all of the measured dimensions were sexually dimorphic and that there was a significant positive correlation between the dimensions of various parts of limbs. Regression models (direct and stepwise) were developed to estimate the dimensions of parts of limbs based on measurements pertaining to one or more other parts of limbs. The study revealed that the dimensions of parts of the upper and lower limb can be estimated from one another. These findings can be used in medicolegal practice and extended to constructive surgery, orthopedics, and prosthesis design for lost limbs.

  4. Initiating heavy-atom-based phasing by multi-dimensional molecular replacement.

    PubMed

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul

    2016-03-01

    To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts.

  5. Initiating heavy-atom-based phasing by multi-dimensional molecular replacement

    PubMed Central

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul

    2016-01-01

    To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts. PMID:26960131

  6. Intelligent person identification system using stereo camera-based height and stride estimation

    NASA Astrophysics Data System (ADS)

    Ko, Jung-Hwan; Jang, Jae-Hun; Kim, Eun-Soo

    2005-05-01

    In this paper, a stereo camera-based intelligent person identification system is suggested. In the proposed method, face area of the moving target person is extracted from the left image of the input steros image pair by using a threshold value of YCbCr color model and by carrying out correlation between the face area segmented from this threshold value of YCbCr color model and the right input image, the location coordinates of the target face can be acquired, and then these values are used to control the pan/tilt system through the modified PID-based recursive controller. Also, by using the geometric parameters between the target face and the stereo camera system, the vertical distance between the target and stereo camera system can be calculated through a triangulation method. Using this calculated vertical distance and the angles of the pan and tilt, the target's real position data in the world space can be acquired and from them its height and stride values can be finally extracted. Some experiments with video images for 16 moving persons show that a person could be identified with these extracted height and stride parameters.

  7. Discriminative and robust zero-watermarking scheme based on completed local binary pattern for authentication and copyright identification of medical images

    NASA Astrophysics Data System (ADS)

    Liu, Xiyao; Lou, Jieting; Wang, Yifan; Du, Jingyu; Zou, Beiji; Chen, Yan

    2018-03-01

    Authentication and copyright identification are two critical security issues for medical images. Although zerowatermarking schemes can provide durable, reliable and distortion-free protection for medical images, the existing zerowatermarking schemes for medical images still face two problems. On one hand, they rarely considered the distinguishability for medical images, which is critical because different medical images are sometimes similar to each other. On the other hand, their robustness against geometric attacks, such as cropping, rotation and flipping, is insufficient. In this study, a novel discriminative and robust zero-watermarking (DRZW) is proposed to address these two problems. In DRZW, content-based features of medical images are first extracted based on completed local binary pattern (CLBP) operator to ensure the distinguishability and robustness, especially against geometric attacks. Then, master shares and ownership shares are generated from the content-based features and watermark according to (2,2) visual cryptography. Finally, the ownership shares are stored for authentication and copyright identification. For queried medical images, their content-based features are extracted and master shares are generated. Their watermarks for authentication and copyright identification are recovered by stacking the generated master shares and stored ownership shares. 200 different medical images of 5 types are collected as the testing data and our experimental results demonstrate that DRZW ensures both the accuracy and reliability of authentication and copyright identification. When fixing the false positive rate to 1.00%, the average value of false negative rates by using DRZW is only 1.75% under 20 common attacks with different parameters.

  8. Probability of identification: a statistical model for the validation of qualitative botanical identification methods.

    PubMed

    LaBudde, Robert A; Harnly, James M

    2012-01-01

    A qualitative botanical identification method (BIM) is an analytical procedure that returns a binary result (1 = Identified, 0 = Not Identified). A BIM may be used by a buyer, manufacturer, or regulator to determine whether a botanical material being tested is the same as the target (desired) material, or whether it contains excessive nontarget (undesirable) material. The report describes the development and validation of studies for a BIM based on the proportion of replicates identified, or probability of identification (POI), as the basic observed statistic. The statistical procedures proposed for data analysis follow closely those of the probability of detection, and harmonize the statistical concepts and parameters between quantitative and qualitative method validation. Use of POI statistics also harmonizes statistical concepts for botanical, microbiological, toxin, and other analyte identification methods that produce binary results. The POI statistical model provides a tool for graphical representation of response curves for qualitative methods, reporting of descriptive statistics, and application of performance requirements. Single collaborator and multicollaborative study examples are given.

  9. BUILDING MODEL ANALYSIS APPLICATIONS WITH THE JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY (JUPITER) API

    EPA Science Inventory

    The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...

  10. Methods for using a biometric parameter in the identification of persons

    DOEpatents

    Hively, Lee M [Philadelphia, TN

    2011-11-22

    Brain waves are used as a biometric parameter to provide for authentication and identification of personnel. The brain waves are sampled using EEG equipment and are processed using phase-space distribution functions to compare digital signature data from enrollment of authorized individuals to data taken from a test subject to determine if the data from the test subject matches the signature data to a degree to support positive identification.

  11. Clinical Parameters and Tools for Home-Based Assessment of Parkinson's Disease: Results from a Delphi study.

    PubMed

    Ferreira, Joaquim J; Santos, Ana T; Domingos, Josefa; Matthews, Helen; Isaacs, Tom; Duffen, Joy; Al-Jawad, Ahmed; Larsen, Frank; Artur Serrano, J; Weber, Peter; Thoms, Andrea; Sollinger, Stefan; Graessner, Holm; Maetzler, Walter

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder with fluctuating symptoms. To aid the development of a system to evaluate people with PD (PwP) at home (SENSE-PARK system) there was a need to define parameters and tools to be applied in the assessment of 6 domains: gait, bradykinesia/hypokinesia, tremor, sleep, balance and cognition. To identify relevant parameters and assessment tools of the 6 domains, from the perspective of PwP, caregivers and movement disorders specialists. A 2-round Delphi study was conducted to select a core of parameters and assessment tools to be applied. This process included PwP, caregivers and movement disorders specialists. Two hundred and thirty-three PwP, caregivers and physicians completed the first round questionnaire, and 50 the second. Results allowed the identification of parameters and assessment tools to be added to the SENSE-PARK system. The most consensual parameters were: Falls and Near Falls; Capability to Perform Activities of Daily Living; Interference with Activities of Daily Living; Capability to Process Tasks; and Capability to Recall and Retrieve Information. The most cited assessment strategies included Walkers; the Evaluation of Performance Doing Fine Motor Movements; Capability to Eat; Assessment of Sleep Quality; Identification of Circumstances and Triggers for Loose of Balance and Memory Assessment. An agreed set of measuring parameters, tests, tools and devices was achieved to be part of a system to evaluate PwP at home. A pattern of different perspectives was identified for each stakeholder.

  12. A Case Study to Examine Peer Grouping and Aspirant Selection. Professional File. Article 132, Fall 2013

    ERIC Educational Resources Information Center

    D'Allegro, Mary Lou; Zhou, Kai

    2013-01-01

    Peer selection based on the similarity of a couple of institutional parameters, by itself, is insufficient. Several other considerations, including clarity of purpose, alignment of institutional information to that purpose, identification of appropriate statistical procedures, review of preliminary peer sets, and the application of additional…

  13. Flexible polyurethane foam modelling and identification of viscoelastic parameters for automotive seating applications

    NASA Astrophysics Data System (ADS)

    Deng, R.; Davies, P.; Bajaj, A. K.

    2003-05-01

    A hereditary model and a fractional derivative model for the dynamic properties of flexible polyurethane foams used in automotive seat cushions are presented. Non-linear elastic and linear viscoelastic properties are incorporated into these two models. A polynomial function of compression is used to represent the non-linear elastic behavior. The viscoelastic property is modelled by a hereditary integral with a relaxation kernel consisting of two exponential terms in the hereditary model and by a fractional derivative term in the fractional derivative model. The foam is used as the only viscoelastic component in a foam-mass system undergoing uniaxial compression. One-term harmonic balance solutions are developed to approximate the steady state response of the foam-mass system to the harmonic base excitation. System identification procedures based on the direct non-linear optimization and a sub-optimal method are formulated to estimate the material parameters. The effects of the choice of the cost function, frequency resolution of data and imperfections in experiments are discussed. The system identification procedures are also applied to experimental data from a foam-mass system. The performances of the two models for data at different compression and input excitation levels are compared, and modifications to the structure of the fractional derivative model are briefly explored. The role of the viscous damping term in both types of model is discussed.

  14. Quantifying the Uncertainty in Discharge Data Using Hydraulic Knowledge and Uncertain Gaugings

    NASA Astrophysics Data System (ADS)

    Renard, B.; Le Coz, J.; Bonnifait, L.; Branger, F.; Le Boursicaud, R.; Horner, I.; Mansanarez, V.; Lang, M.

    2014-12-01

    River discharge is a crucial variable for Hydrology: as the output variable of most hydrologic models, it is used for sensitivity analyses, model structure identification, parameter estimation, data assimilation, prediction, etc. A major difficulty stems from the fact that river discharge is not measured continuously. Instead, discharge time series used by hydrologists are usually based on simple stage-discharge relations (rating curves) calibrated using a set of direct stage-discharge measurements (gaugings). In this presentation, we present a Bayesian approach to build such hydrometric rating curves, to estimate the associated uncertainty and to propagate this uncertainty to discharge time series. The three main steps of this approach are described: (1) Hydraulic analysis: identification of the hydraulic controls that govern the stage-discharge relation, identification of the rating curve equation and specification of prior distributions for the rating curve parameters; (2) Rating curve estimation: Bayesian inference of the rating curve parameters, accounting for the individual uncertainties of available gaugings, which often differ according to the discharge measurement procedure and the flow conditions; (3) Uncertainty propagation: quantification of the uncertainty in discharge time series, accounting for both the rating curve uncertainties and the uncertainty of recorded stage values. In addition, we also discuss current research activities, including the treatment of non-univocal stage-discharge relationships (e.g. due to hydraulic hysteresis, vegetation growth, sudden change of the geometry of the section, etc.).

  15. Bayesian inference for unidirectional misclassification of a binary response trait.

    PubMed

    Xia, Michelle; Gustafson, Paul

    2018-03-15

    When assessing association between a binary trait and some covariates, the binary response may be subject to unidirectional misclassification. Unidirectional misclassification can occur when revealing a particular level of the trait is associated with a type of cost, such as a social desirability or financial cost. The feasibility of addressing misclassification is commonly obscured by model identification issues. The current paper attempts to study the efficacy of inference when the binary response variable is subject to unidirectional misclassification. From a theoretical perspective, we demonstrate that the key model parameters possess identifiability, except for the case with a single binary covariate. From a practical standpoint, the logistic model with quantitative covariates can be weakly identified, in the sense that the Fisher information matrix may be near singular. This can make learning some parameters difficult under certain parameter settings, even with quite large samples. In other cases, the stronger identification enables the model to provide more effective adjustment for unidirectional misclassification. An extension to the Poisson approximation of the binomial model reveals the identifiability of the Poisson and zero-inflated Poisson models. For fully identified models, the proposed method adjusts for misclassification based on learning from data. For binary models where there is difficulty in identification, the method is useful for sensitivity analyses on the potential impact from unidirectional misclassification. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Hypothesis-driven classification of materials using nuclear magnetic resonance relaxometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle A.; Matlashov, Andrei N.; Schultz, Larry J.

    Technologies related to identification of a substance in an optimized manner are provided. A reference group of known materials is identified. Each known material has known values for several classification parameters. The classification parameters comprise at least one of T.sub.1, T.sub.2, T.sub.1.rho., a relative nuclear susceptibility (RNS) of the substance, and an x-ray linear attenuation coefficient (LAC) of the substance. A measurement sequence is optimized based on at least one of a measurement cost of each of the classification parameters and an initial probability of each of the known materials in the reference group.

  17. Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building

    PubMed Central

    Min, Kyung-Won; Kim, Junhee; Park, Sung-Ah; Park, Chan-Soo

    2013-01-01

    This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification) to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper. PMID:24227999

  18. Authenticity examination of compressed audio recordings using detection of multiple compression and encoders' identification.

    PubMed

    Korycki, Rafal

    2014-05-01

    Since the appearance of digital audio recordings, audio authentication has been becoming increasingly difficult. The currently available technologies and free editing software allow a forger to cut or paste any single word without audible artifacts. Nowadays, the only method referring to digital audio files commonly approved by forensic experts is the ENF criterion. It consists in fluctuation analysis of the mains frequency induced in electronic circuits of recording devices. Therefore, its effectiveness is strictly dependent on the presence of mains signal in the recording, which is a rare occurrence. Recently, much attention has been paid to authenticity analysis of compressed multimedia files and several solutions were proposed for detection of double compression in both digital video and digital audio. This paper addresses the problem of tampering detection in compressed audio files and discusses new methods that can be used for authenticity analysis of digital recordings. Presented approaches consist in evaluation of statistical features extracted from the MDCT coefficients as well as other parameters that may be obtained from compressed audio files. Calculated feature vectors are used for training selected machine learning algorithms. The detection of multiple compression covers up tampering activities as well as identification of traces of montage in digital audio recordings. To enhance the methods' robustness an encoder identification algorithm was developed and applied based on analysis of inherent parameters of compression. The effectiveness of tampering detection algorithms is tested on a predefined large music database consisting of nearly one million of compressed audio files. The influence of compression algorithms' parameters on the classification performance is discussed, based on the results of the current study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. A unified framework for unraveling the functional interaction structure of a biomolecular network based on stimulus-response experimental data.

    PubMed

    Cho, Kwang-Hyun; Choo, Sang-Mok; Wellstead, Peter; Wolkenhauer, Olaf

    2005-08-15

    We propose a unified framework for the identification of functional interaction structures of biomolecular networks in a way that leads to a new experimental design procedure. In developing our approach, we have built upon previous work. Thus we begin by pointing out some of the restrictions associated with existing structure identification methods and point out how these restrictions may be eased. In particular, existing methods use specific forms of experimental algebraic equations with which to identify the functional interaction structure of a biomolecular network. In our work, we employ an extended form of these experimental algebraic equations which, while retaining their merits, also overcome some of their disadvantages. Experimental data are required in order to estimate the coefficients of the experimental algebraic equation set associated with the structure identification task. However, experimentalists are rarely provided with guidance on which parameters to perturb, and to what extent, to perturb them. When a model of network dynamics is required then there is also the vexed question of sample rate and sample time selection to be resolved. Supplying some answers to these questions is the main motivation of this paper. The approach is based on stationary and/or temporal data obtained from parameter perturbations, and unifies the previous approaches of Kholodenko et al. (PNAS 99 (2002) 12841-12846) and Sontag et al. (Bioinformatics 20 (2004) 1877-1886). By way of demonstration, we apply our unified approach to a network model which cannot be properly identified by existing methods. Finally, we propose an experiment design methodology, which is not limited by the amount of parameter perturbations, and illustrate its use with an in numero example.

  20. An Eigensystem Realization Algorithm (ERA) for modal parameter identification and model reduction

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Pappa, R. S.

    1985-01-01

    A method, called the Eigensystem Realization Algorithm (ERA), is developed for modal parameter identification and model reduction of dynamic systems from test data. A new approach is introduced in conjunction with the singular value decomposition technique to derive the basic formulation of minimum order realization which is an extended version of the Ho-Kalman algorithm. The basic formulation is then transformed into modal space for modal parameter identification. Two accuracy indicators are developed to quantitatively identify the system modes and noise modes. For illustration of the algorithm, examples are shown using simulation data and experimental data for a rectangular grid structure.

  1. Fundamental Rotorcraft Acoustic Modeling From Experiments (FRAME)

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric

    2011-01-01

    A new methodology is developed for the construction of helicopter source noise models for use in mission planning tools from experimental measurements of helicopter external noise radiation. The models are constructed by employing a parameter identification method to an assumed analytical model of the rotor harmonic noise sources. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. The method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor harmonic noise, allowing accurate estimates of the dominant rotorcraft noise sources to be made for operating conditions based on a small number of measurements taken at different operating conditions. The ability of this method to estimate changes in noise radiation due to changes in ambient conditions is also demonstrated.

  2. Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

    PubMed

    Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo

    2013-04-02

    In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.

  3. Identification of internal properties of fibers and micro-swimmers

    NASA Astrophysics Data System (ADS)

    Plouraboue, Franck; Thiam, Ibrahima; Delmotte, Blaise; Climent, Eric; PSC Collaboration

    2016-11-01

    In this presentation we discuss the identifiability of constitutive parameters of passive or active micro-swimmers. We first present a general framework for describing fibers or micro-swimmers using a bead-model description. Using a kinematic constraint formulation to describe fibers, flagellum or cilia, we find explicit linear relationship between elastic constitutive parameters and generalised velocities from computing contact forces. This linear formulation then permits to address explicitly identifiability conditions and solve for parameter identification. We show that both active forcing and passive parameters are both identifiable independently but not simultaneously. We also provide unbiased estimators for elastic parameters as well as active ones in the presence of Langevin-like forcing with Gaussian noise using normal linear regression models and maximum likelihood method. These theoretical results are illustrated in various configurations of relaxed or actuated passives fibers, and active filament of known passive properties, showing the efficiency of the proposed approach for direct parameter identification. The convergence of the proposed estimators is successfully tested numerically.

  4. Identification of the structure parameters using short-time non-stationary stochastic excitation

    NASA Astrophysics Data System (ADS)

    Jarczewska, Kamila; Koszela, Piotr; Śniady, PaweŁ; Korzec, Aleksandra

    2011-07-01

    In this paper, we propose an approach to the flexural stiffness or eigenvalue frequency identification of a linear structure using a non-stationary stochastic excitation process. The idea of the proposed approach lies within time domain input-output methods. The proposed method is based on transforming the dynamical problem into a static one by integrating the input and the output signals. The output signal is the structure reaction, i.e. structure displacements due to the short-time, irregular load of random type. The systems with single and multiple degrees of freedom, as well as continuous systems are considered.

  5. Application of RFID in the area of agricultural products quality traceability and tracking and the anti-collision algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Zu-liang; Zhang, Ting; Xie, Shi-yang

    2017-01-01

    In order to improve the agricultural tracing efficiency and reduce tracking and monitoring cost, agricultural products quality tracking and tracing based on Radio-Frequency Identification(RFID) technology is studied, then tracing and tracking model is set up. Three-layer structure model is established to realize the high quality of agricultural products traceability and tracking. To solve the collision problems between multiple RFID tags and improve the identification efficiency a new reservation slot allocation mechanism is proposed. And then we analyze and optimize the parameter by numerical simulation method.

  6. Identification and control of plasma vertical position using neural network in Damavand tokamak.

    PubMed

    Rasouli, H; Rasouli, C; Koohi, A

    2013-02-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  7. Subject-specific cardiovascular system model-based identification and diagnosis of septic shock with a minimally invasive data set: animal experiments and proof of concept.

    PubMed

    Chase, J Geoffrey; Lambermont, Bernard; Starfinger, Christina; Hann, Christopher E; Shaw, Geoffrey M; Ghuysen, Alexandre; Kolh, Philippe; Dauby, Pierre C; Desaive, Thomas

    2011-01-01

    A cardiovascular system (CVS) model and parameter identification method have previously been validated for identifying different cardiac and circulatory dysfunctions in simulation and using porcine models of pulmonary embolism, hypovolemia with PEEP titrations and induced endotoxic shock. However, these studies required both left and right heart catheters to collect the data required for subject-specific monitoring and diagnosis-a maximally invasive data set in a critical care setting although it does occur in practice. Hence, use of this model-based diagnostic would require significant additional invasive sensors for some subjects, which is unacceptable in some, if not all, cases. The main goal of this study is to prove the concept of using only measurements from one side of the heart (right) in a 'minimal' data set to identify an effective patient-specific model that can capture key clinical trends in endotoxic shock. This research extends existing methods to a reduced and minimal data set requiring only a single catheter and reducing the risk of infection and other complications-a very common, typical situation in critical care patients, particularly after cardiac surgery. The extended methods and assumptions that found it are developed and presented in a case study for the patient-specific parameter identification of pig-specific parameters in an animal model of induced endotoxic shock. This case study is used to define the impact of this minimal data set on the quality and accuracy of the model application for monitoring, detecting and diagnosing septic shock. Six anesthetized healthy pigs weighing 20-30 kg received a 0.5 mg kg(-1) endotoxin infusion over a period of 30 min from T0 to T30. For this research, only right heart measurements were obtained. Errors for the identified model are within 8% when the model is identified from data, re-simulated and then compared to the experimentally measured data, including measurements not used in the identification process for validation. Importantly, all identified parameter trends match physiologically and clinically and experimentally expected changes, indicating that no diagnostic power is lost. This work represents a further with human subjects validation for this model-based approach to cardiovascular diagnosis and therapy guidance in monitoring endotoxic disease states. The results and methods obtained can be readily extended from this case study to the other animal model results presented previously. Overall, these results provide further support for prospective, proof of concept clinical testing with humans.

  8. User's manual for a parameter identification technique. [with options for model simulation for fixed input forcing functions and identification from wind tunnel and flight measurements

    NASA Technical Reports Server (NTRS)

    Kanning, G.

    1975-01-01

    A digital computer program written in FORTRAN is presented that implements the system identification theory for deterministic systems using input-output measurements. The user supplies programs simulating the mathematical model of the physical plant whose parameters are to be identified. The user may choose any one of three options. The first option allows for a complete model simulation for fixed input forcing functions. The second option identifies up to 36 parameters of the model from wind tunnel or flight measurements. The third option performs a sensitivity analysis for up to 36 parameters. The use of each option is illustrated with an example using input-output measurements for a helicopter rotor tested in a wind tunnel.

  9. Tension Cutoff and Parameter Identification for the Viscoplastic Cap Model.

    DTIC Science & Technology

    1983-04-01

    computer program "VPDRVR" which employs a Crank-Nicolson time integration scheme and a Newton-Raphson iterative solution procedure. Numerical studies were...parameters was illustrated for triaxial stress and uniaxial strain loading for a well- studied sand material (McCormick Ranch Sand). Lastly, a finite element...viscoplastic tension-cutoff cri- terion and to establish parameter identification techniques with experimental data. Herein lies the impetus of this study

  10. Optimization of multilayer neural network parameters for speaker recognition

    NASA Astrophysics Data System (ADS)

    Tovarek, Jaromir; Partila, Pavol; Rozhon, Jan; Voznak, Miroslav; Skapa, Jan; Uhrin, Dominik; Chmelikova, Zdenka

    2016-05-01

    This article discusses the impact of multilayer neural network parameters for speaker identification. The main task of speaker identification is to find a specific person in the known set of speakers. It means that the voice of an unknown speaker (wanted person) belongs to a group of reference speakers from the voice database. One of the requests was to develop the text-independent system, which means to classify wanted person regardless of content and language. Multilayer neural network has been used for speaker identification in this research. Artificial neural network (ANN) needs to set parameters like activation function of neurons, steepness of activation functions, learning rate, the maximum number of iterations and a number of neurons in the hidden and output layers. ANN accuracy and validation time are directly influenced by the parameter settings. Different roles require different settings. Identification accuracy and ANN validation time were evaluated with the same input data but different parameter settings. The goal was to find parameters for the neural network with the highest precision and shortest validation time. Input data of neural networks are a Mel-frequency cepstral coefficients (MFCC). These parameters describe the properties of the vocal tract. Audio samples were recorded for all speakers in a laboratory environment. Training, testing and validation data set were split into 70, 15 and 15 %. The result of the research described in this article is different parameter setting for the multilayer neural network for four speakers.

  11. Approximation methods for inverse problems involving the vibration of beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    Two cubic spline based approximation schemes for the estimation of structural parameters associated with the transverse vibration of flexible beams with tip appendages are outlined. The identification problem is formulated as a least squares fit to data subject to the system dynamics which are given by a hybrid system of coupled ordinary and partial differential equations. The first approximation scheme is based upon an abstract semigroup formulation of the state equation while a weak/variational form is the basis for the second. Cubic spline based subspaces together with a Rayleigh-Ritz-Galerkin approach were used to construct sequences of easily solved finite dimensional approximating identification problems. Convergence results are briefly discussed and a numerical example demonstrating the feasibility of the schemes and exhibiting their relative performance for purposes of comparison is provided.

  12. Blur identification by multilayer neural network based on multivalued neurons.

    PubMed

    Aizenberg, Igor; Paliy, Dmitriy V; Zurada, Jacek M; Astola, Jaakko T

    2008-05-01

    A multilayer neural network based on multivalued neurons (MLMVN) is a neural network with a traditional feedforward architecture. At the same time, this network has a number of specific different features. Its backpropagation learning algorithm is derivative-free. The functionality of MLMVN is superior to that of the traditional feedforward neural networks and of a variety kernel-based networks. Its higher flexibility and faster adaptation to the target mapping enables to model complex problems using simpler networks. In this paper, the MLMVN is used to identify both type and parameters of the point spread function, whose precise identification is of crucial importance for the image deblurring. The simulation results show the high efficiency of the proposed approach. It is confirmed that the MLMVN is a powerful tool for solving classification problems, especially multiclass ones.

  13. Identification of spilled oils by NIR spectroscopy technology based on KPCA and LSSVM

    NASA Astrophysics Data System (ADS)

    Tan, Ailing; Bi, Weihong

    2011-08-01

    Oil spills on the sea surface are seen relatively often with the development of the petroleum exploitation and transportation of the sea. Oil spills are great threat to the marine environment and the ecosystem, thus the oil pollution in the ocean becomes an urgent topic in the environmental protection. To develop the oil spill accident treatment program and track the source of the spilled oils, a novel qualitative identification method combined Kernel Principal Component Analysis (KPCA) and Least Square Support Vector Machine (LSSVM) was proposed. The proposed method adapt Fourier transform NIR spectrophotometer to collect the NIR spectral data of simulated gasoline, diesel fuel and kerosene oil spills samples and do some pretreatments to the original spectrum. We use the KPCA algorithm which is an extension of Principal Component Analysis (PCA) using techniques of kernel methods to extract nonlinear features of the preprocessed spectrum. Support Vector Machines (SVM) is a powerful methodology for solving spectral classification tasks in chemometrics. LSSVM are reformulations to the standard SVMs which lead to solving a system of linear equations. So a LSSVM multiclass classification model was designed which using Error Correcting Output Code (ECOC) method borrowing the idea of error correcting codes used for correcting bit errors in transmission channels. The most common and reliable approach to parameter selection is to decide on parameter ranges, and to then do a grid search over the parameter space to find the optimal model parameters. To test the proposed method, 375 spilled oil samples of unknown type were selected to study. The optimal model has the best identification capabilities with the accuracy of 97.8%. Experimental results show that the proposed KPCA plus LSSVM qualitative analysis method of near infrared spectroscopy has good recognition result, which could work as a new method for rapid identification of spilled oils.

  14. Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?

    PubMed Central

    Valente, Giordano; Pitto, Lorenzo; Testi, Debora; Seth, Ajay; Delp, Scott L.; Stagni, Rita; Viceconti, Marco; Taddei, Fulvia

    2014-01-01

    Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces) during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312) across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force predictions could be affected by an uncertainty in the same order of magnitude of its value, although this condition has low probability to occur. PMID:25390896

  15. Chemical composition of shale oil. 1; Dependence on oil shale origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesavan, S.; Lee, S.; Polasky, M.E.

    1991-01-01

    This paper reports on shale oils obtained by nitrogen retorting of North Carolina, Cleveland, Ohio, Colorado, Rundle, Stuart, and Condor oil shales that have been chemically characterized by g.c.-m.s. techniques. After species identification, chemical compositions of the shale oils have been related to the geological origins of the parent shales. Based on the characteristics observed in the chromatograms, eight semi-quantitative parameters have been used to describe the chromatograms. Six of these parameters describe the chromatograms. Six of these parameters describe the relative abundance and distribution of straight chain alkanes and alkenes in the chromatograms. The other two parameters represent themore » abundance, relative to the total amount of volatiles in the oil, of alkylbenzenes and alkylphenols.« less

  16. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    NASA Astrophysics Data System (ADS)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  17. Identification of eggs from different production systems based on hyperspectra and CS-SVM.

    PubMed

    Sun, J; Cong, S L; Mao, H P; Zhou, X; Wu, X H; Zhang, X D

    2017-06-01

    1. To identify the origin of table eggs more accurately, a method based on hyperspectral imaging technology was studied. 2. The hyperspectral data of 200 samples of intensive and extensive eggs were collected. Standard normalised variables combined with a Savitzky-Golay were used to eliminate noise, then stepwise regression (SWR) was used for feature selection. Grid search algorithm (GS), genetic search algorithm (GA), particle swarm optimisation algorithm (PSO) and cuckoo search algorithm (CS) were applied by support vector machine (SVM) methods to establish an SVM identification model with the optimal parameters. The full spectrum data and the data after feature selection were the input of the model, while egg category was the output. 3. The SWR-CS-SVM model performed better than the other models, including SWR-GS-SVM, SWR-GA-SVM, SWR-PSO-SVM and others based on full spectral data. The training and test classification accuracy of the SWR-CS-SVM model were respectively 99.3% and 96%. 4. SWR-CS-SVM proved effective for identifying egg varieties and could also be useful for the non-destructive identification of other types of egg.

  18. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry.

    PubMed

    Rodríguez-Maecker, Roman; Vyhmeister, Eduardo; Meisen, Stefan; Rosales Martinez, Antonio; Kuklya, Andriy; Telgheder, Ursula

    2017-11-01

    Static headspace gas chromatography-ion mobility spectrometry (SHS GC-IMS) is a relatively new analytical technique that has considerable potential for analysis of volatile organic compounds (VOCs). In this study, SHS GC-IMS was used for the identification of the major terpene components of various essential oils (EOs). Based on the data obtained from 25 terpene standards and 50 EOs, a database for fingerprint identification of characteristic terpenes and EOs was generated utilizing SHS GC-IMS for authenticity testing of fragrances in foods, cosmetics, and personal care products. This database contains specific normalized IMS drift times and GC retention indices for 50 terpene components of EOs. Initially, the SHS GC-IMS parameters, e.g., drift gas and carrier gas flow rates, drift tube, and column temperatures, were evaluated to determine suitable operating conditions for terpene separation and identification. Gas chromatography-mass spectrometry (GC-MS) was used as a reference method for the identification of terpenes in EOs. The fingerprint pattern based on the normalized IMS drift times and retention indices of 50 terpenes is presented for 50 EOs. The applicability of the method was proven on examples of ten commercially available food, cosmetic, and personal care product samples. The results confirm the suitability of SHS GC-IMS as a powerful analytical technique for direct identification of terpene components in solid and liquid samples without any pretreatment. Graphical abstract Fingerprint pattern identification of terpenes and essential oils using static headspace gas chromatography-ion mobility spectrometry.

  19. Adaptive estimation of nonlinear parameters of a nonholonomic spherical robot using a modified fuzzy-based speed gradient algorithm

    NASA Astrophysics Data System (ADS)

    Roozegar, Mehdi; Mahjoob, Mohammad J.; Ayati, Moosa

    2017-05-01

    This paper deals with adaptive estimation of the unknown parameters and states of a pendulum-driven spherical robot (PDSR), which is a nonlinear in parameters (NLP) chaotic system with parametric uncertainties. Firstly, the mathematical model of the robot is deduced by applying the Newton-Euler methodology for a system of rigid bodies. Then, based on the speed gradient (SG) algorithm, the states and unknown parameters of the robot are estimated online for different step length gains and initial conditions. The estimated parameters are updated adaptively according to the error between estimated and true state values. Since the errors of the estimated states and parameters as well as the convergence rates depend significantly on the value of step length gain, this gain should be chosen optimally. Hence, a heuristic fuzzy logic controller is employed to adjust the gain adaptively. Simulation results indicate that the proposed approach is highly encouraging for identification of this NLP chaotic system even if the initial conditions change and the uncertainties increase; therefore, it is reliable to be implemented on a real robot.

  20. Hysteresis modeling and identification of a dielectric electro-active polymer actuator using an APSO-based nonlinear Preisach NARX fuzzy model

    NASA Astrophysics Data System (ADS)

    Truong, Bui Ngoc Minh; Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan

    2013-09-01

    Dielectric electro-active polymer (DEAP) materials are attractive since they are low cost, lightweight and have a large deformation capability. They have no operating noise, very low electric power consumption and higher performance and efficiency than competing technologies. However, DEAP materials generally have strong hysteresis as well as uncertain and nonlinear characteristics. These disadvantages can limit the efficiency in the use of DEAP materials. To address these limitations, this research will present the combination of the Preisach model and the dynamic nonlinear autoregressive exogenous (NARX) fuzzy model-based adaptive particle swarm optimization (APSO) identification algorithm for modeling and identification of the nonlinear behavior of one typical type of DEAP actuator. Firstly, open loop input signals are applied to obtain nonlinear features and to investigate the responses of the DEAP actuator system. Then, a Preisach model can be combined with a dynamic NARX fuzzy structure to estimate the tip displacement of a DEAP actuator. To optimize all unknown parameters of the designed combination, an identification scheme based on a least squares method and an APSO algorithm is carried out. Finally, experimental validation research is carefully completed, and the effectiveness of the proposed model is evaluated by employing various input signals.

  1. Mode extraction on wind turbine blades via phase-based video motion estimation

    NASA Astrophysics Data System (ADS)

    Sarrafi, Aral; Poozesh, Peyman; Niezrecki, Christopher; Mao, Zhu

    2017-04-01

    In recent years, image processing techniques are being applied more often for structural dynamics identification, characterization, and structural health monitoring. Although as a non-contact and full-field measurement method, image processing still has a long way to go to outperform other conventional sensing instruments (i.e. accelerometers, strain gauges, laser vibrometers, etc.,). However, the technologies associated with image processing are developing rapidly and gaining more attention in a variety of engineering applications including structural dynamics identification and modal analysis. Among numerous motion estimation and image-processing methods, phase-based video motion estimation is considered as one of the most efficient methods regarding computation consumption and noise robustness. In this paper, phase-based video motion estimation is adopted for structural dynamics characterization on a 2.3-meter long Skystream wind turbine blade, and the modal parameters (natural frequencies, operating deflection shapes) are extracted. Phase-based video processing adopted in this paper provides reliable full-field 2-D motion information, which is beneficial for manufacturing certification and model updating at the design stage. The phase-based video motion estimation approach is demonstrated through processing data on a full-scale commercial structure (i.e. a wind turbine blade) with complex geometry and properties, and the results obtained have a good correlation with the modal parameters extracted from accelerometer measurements, especially for the first four bending modes, which have significant importance in blade characterization.

  2. Identification of cracks in thick beams with a cracked beam element model

    NASA Astrophysics Data System (ADS)

    Hou, Chuanchuan; Lu, Yong

    2016-12-01

    The effect of a crack on the vibration of a beam is a classical problem, and various models have been proposed, ranging from the basic stiffness reduction method to the more sophisticated model involving formulation based on the additional flexibility due to a crack. However, in the damage identification or finite element model updating applications, it is still common practice to employ a simple stiffness reduction factor to represent a crack in the identification process, whereas the use of a more realistic crack model is rather limited. In this paper, the issues with the simple stiffness reduction method, particularly concerning thick beams, are highlighted along with a review of several other crack models. A robust finite element model updating procedure is then presented for the detection of cracks in beams. The description of the crack parameters is based on the cracked beam flexibility formulated by means of the fracture mechanics, and it takes into consideration of shear deformation and coupling between translational and longitudinal vibrations, and thus is particularly suitable for thick beams. The identification procedure employs a global searching technique using Genetic Algorithms, and there is no restriction on the location, severity and the number of cracks to be identified. The procedure is verified to yield satisfactory identification for practically any configurations of cracks in a beam.

  3. Identification of hand motion using background subtraction method and extraction of image binary with backpropagation neural network on skeleton model

    NASA Astrophysics Data System (ADS)

    Fauziah; Wibowo, E. P.; Madenda, S.; Hustinawati

    2018-03-01

    Capturing and recording motion in human is mostly done with the aim for sports, health, animation films, criminality, and robotic applications. In this study combined background subtraction and back propagation neural network. This purpose to produce, find similarity movement. The acquisition process using 8 MP resolution camera MP4 format, duration 48 seconds, 30frame/rate. video extracted produced 1444 pieces and results hand motion identification process. Phase of image processing performed is segmentation process, feature extraction, identification. Segmentation using bakground subtraction, extracted feature basically used to distinguish between one object to another object. Feature extraction performed by using motion based morfology analysis based on 7 invariant moment producing four different classes motion: no object, hand down, hand-to-side and hands-up. Identification process used to recognize of hand movement using seven inputs. Testing and training with a variety of parameters tested, it appears that architecture provides the highest accuracy in one hundred hidden neural network. The architecture is used propagate the input value of the system implementation process into the user interface. The result of the identification of the type of the human movement has been clone to produce the highest acuracy of 98.5447%. The training process is done to get the best results.

  4. AAA gunnermodel based on observer theory. [predicting a gunner's tracking response

    NASA Technical Reports Server (NTRS)

    Kou, R. S.; Glass, B. C.; Day, C. N.; Vikmanis, M. M.

    1978-01-01

    The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories.

  5. n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation

    PubMed Central

    Palma Orozco, Rosaura

    2018-01-01

    Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses of the Exponential Forgetting Factor (EFF) combined with a linear function to identify a synthetic stochastic signal is presented. The one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example, showing the effectiveness of our proposal. PMID:29568310

  6. Fast Bayesian approach for modal identification using forced vibration data considering the ambient effect

    NASA Astrophysics Data System (ADS)

    Ni, Yan-Chun; Zhang, Feng-Liang

    2018-05-01

    Modal identification based on vibration response measured from real structures is becoming more popular, especially after benefiting from the great improvement of the measurement technology. The results are reliable to estimate the dynamic performance, which fits the increasing requirement of different design configurations of the new structures. However, the high-quality vibration data collection technology calls for a more accurate modal identification method to improve the accuracy of the results. Through the whole measurement process of dynamic testing, there are many aspects that will cause the rise of uncertainty, such as measurement noise, alignment error and modeling error, since the test conditions are not directly controlled. Depending on these demands, a Bayesian statistical approach is developed in this work to estimate the modal parameters using the forced vibration response of structures, simultaneously considering the effect of the ambient vibration. This method makes use of the Fast Fourier Transform (FFT) of the data in a selected frequency band to identify the modal parameters of the mode dominating this frequency band and estimate the remaining uncertainty of the parameters correspondingly. In the existing modal identification methods for forced vibration, it is generally assumed that the forced vibration response dominates the measurement data and the influence of the ambient vibration response is ignored. However, ambient vibration will cause modeling error and affect the accuracy of the identified results. The influence is shown in the spectra as some phenomena that are difficult to explain and irrelevant to the mode to be identified. These issues all mean that careful choice of assumptions in the identification model and fundamental formulation to account for uncertainty are necessary. During the calculation, computational difficulties associated with calculating the posterior statistics are addressed. Finally, a fast computational algorithm is proposed so that the method can be practically implemented. Numerical verification with synthetic data and applicable investigation with full-scale field structures data are all carried out for the proposed method.

  7. A Fully Coupled Simulation and Optimization Scheme for the Design of 3D Powder Injection Molding Processes

    NASA Astrophysics Data System (ADS)

    Ayad, G.; Song, J.; Barriere, T.; Liu, B.; Gelin, J. C.

    2007-05-01

    The paper is concerned with optimization and parametric identification of Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders parts by solid state diffusion. In the first part, one describes an original methodology to optimize the injection stage based on the combination of Design Of Experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometer curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization for manufacturing of a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.

  8. [Identification of special quality eggs with NIR spectroscopy technology based on symbol entropy feature extraction method].

    PubMed

    Zhao, Yong; Hong, Wen-Xue

    2011-11-01

    Fast, nondestructive and accurate identification of special quality eggs is an urgent problem. The present paper proposed a new feature extraction method based on symbol entropy to identify near infrared spectroscopy of special quality eggs. The authors selected normal eggs, free range eggs, selenium-enriched eggs and zinc-enriched eggs as research objects and measured the near-infrared diffuse reflectance spectra in the range of 12 000-4 000 cm(-1). Raw spectra were symbolically represented with aggregation approximation algorithm and symbolic entropy was extracted as feature vector. An error-correcting output codes multiclass support vector machine classifier was designed to identify the spectrum. Symbolic entropy feature is robust when parameter changed and the highest recognition rate reaches up to 100%. The results show that the identification method of special quality eggs using near-infrared is feasible and the symbol entropy can be used as a new feature extraction method of near-infrared spectra.

  9. Application of physical parameter identification to finite-element models

    NASA Technical Reports Server (NTRS)

    Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.

    1987-01-01

    The time domain parameter identification method described previously is applied to TRW's Large Space Structure Truss Experiment. Only control sensors and actuators are employed in the test procedure. The fit of the linear structural model to the test data is improved by more than an order of magnitude using a physically reasonable parameter set. The electro-magnetic control actuators are found to contribute significant damping due to a combination of eddy current and back electro-motive force (EMF) effects. Uncertainties in both estimated physical parameters and modal behavior variables are given.

  10. Parameter identification of civil engineering structures

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Sun, C. T.

    1980-01-01

    This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.

  11. Cyclo-stationary linear parameter time-varying subspace realization method applied for identification of horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Velazquez, Antonio; Swartz, R. Andrew

    2013-04-01

    Wind energy is becoming increasingly important worldwide as an alternative renewable energy source. Economical, maintenance and operation are critical issues for large slender dynamic structures, especially for remote offshore wind farms. Health monitoring systems are very promising instruments to assure reliability and good performance of the structure. These sensing and control technologies are typically informed by models based on mechanics or data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order and having overlapping frequency content. Instead, time-domain techniques have shown powerful advantages from a practical point of view (e.g. embedded algorithms in wireless-sensor networks), being more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify the analysis, but such is not the case for wind loaded structures with spinning multibodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system, and the wind tower substructure interaction. Transformations of the cyclic effects on the vibration data can be applied to isolate inertia quantities different from rotating-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated Eigensystem realizations. In this paper an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here by means of a modified Eigensystem Realization Algorithm (ERA) via Stochastic Subspace Identification (SSI) and Linear Parameter Time-Varying (LPTV) techniques. Structural response is assumed under stationary ambient excitation produced by a Gaussian (white) noise assembled in the operative range bandwidth of horizontal-axis wind turbines. ERA-OKID analysis is driven by correlation-function matrices from the stationary ambient response aiming to reduce noise effects. Singular value decomposition (SVD) and eigenvalue analysis are computed in a last stage to get frequencies and mode shapes. Proposed assumptions are carefully weighted to account for the uncertainty of the environment the wind turbines are subjected to. A numerical example is presented based on data acquisition carried out in a BWC XL.1 low power wind turbine device installed in University of California at Davis. Finally, comments and observations are provided on how this subspace realization technique can be extended for modal-parameter identification using exclusively ambient vibration data.

  12. Modal identification of structures by a novel approach based on FDD-wavelet method

    NASA Astrophysics Data System (ADS)

    Tarinejad, Reza; Damadipour, Majid

    2014-02-01

    An important application of system identification in structural dynamics is the determination of natural frequencies, mode shapes and damping ratios during operation which can then be used for calibrating numerical models. In this paper, the combination of two advanced methods of Operational Modal Analysis (OMA) called Frequency Domain Decomposition (FDD) and Continuous Wavelet Transform (CWT) based on novel cyclic averaging of correlation functions (CACF) technique are used for identification of dynamic properties. By using this technique, the autocorrelation of averaged correlation functions is used instead of original signals. Integration of FDD and CWT methods is used to overcome their deficiency and take advantage of the unique capabilities of these methods. The FDD method is able to accurately estimate the natural frequencies and mode shapes of structures in the frequency domain. On the other hand, the CWT method is in the time-frequency domain for decomposition of a signal at different frequencies and determines the damping coefficients. In this paper, a new formulation applied to the wavelet transform of the averaged correlation function of an ambient response is proposed. This application causes to accurate estimation of damping ratios from weak (noise) or strong (earthquake) vibrations and long or short duration record. For this purpose, the modified Morlet wavelet having two free parameters is used. The optimum values of these two parameters are obtained by employing a technique which minimizes the entropy of the wavelet coefficients matrix. The capabilities of the novel FDD-Wavelet method in the system identification of various dynamic systems with regular or irregular distribution of mass and stiffness are illustrated. This combined approach is superior to classic methods and yields results that agree well with the exact solutions of the numerical models.

  13. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    NASA Technical Reports Server (NTRS)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  14. Aeroservoelastic Uncertainty Model Identification from Flight Data

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    2001-01-01

    Uncertainty modeling is a critical element in the estimation of robust stability margins for stability boundary prediction and robust flight control system development. There has been a serious deficiency to date in aeroservoelastic data analysis with attention to uncertainty modeling. Uncertainty can be estimated from flight data using both parametric and nonparametric identification techniques. The model validation problem addressed in this paper is to identify aeroservoelastic models with associated uncertainty structures from a limited amount of controlled excitation inputs over an extensive flight envelope. The challenge to this problem is to update analytical models from flight data estimates while also deriving non-conservative uncertainty descriptions consistent with the flight data. Multisine control surface command inputs and control system feedbacks are used as signals in a wavelet-based modal parameter estimation procedure for model updates. Transfer function estimates are incorporated in a robust minimax estimation scheme to get input-output parameters and error bounds consistent with the data and model structure. Uncertainty estimates derived from the data in this manner provide an appropriate and relevant representation for model development and robust stability analysis. This model-plus-uncertainty identification procedure is applied to aeroservoelastic flight data from the NASA Dryden Flight Research Center F-18 Systems Research Aircraft.

  15. An approximation theory for the identification of nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.

  16. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  17. A Novel Identification Methodology for the Coordinate Relationship between a 3D Vision System and a Legged Robot.

    PubMed

    Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin

    2015-04-22

    Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called "Octopus", which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust.

  18. RMB identification based on polarization parameters inversion imaging

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    Social order is threatened by counterfeit money. Conventional anti-counterfeit technology is much too old to identify its authenticity or not. The intrinsic difference between genuine notes and counterfeit notes is its paper tissue. In this paper a new technology of detecting RMB is introduced, the polarization parameter indirect microscopic imaging technique. A conventional reflection microscopic system is used as the basic optical system, and inserting into it with polarization-modulation mechanics. The near-field structural characteristics can be delivered by optical wave and material coupling. According to coupling and conduction physics, calculate the changes of optical wave parameters, then get the curves of the intensity of the image. By analyzing near-field polarization parameters in nanoscale, finally calculate indirect polarization parameter imaging of the fiber of the paper tissue in order to identify its authenticity.

  19. A new qualitative acoustic emission parameter based on Shannon's entropy for damage monitoring

    NASA Astrophysics Data System (ADS)

    Chai, Mengyu; Zhang, Zaoxiao; Duan, Quan

    2018-02-01

    An important objective of acoustic emission (AE) non-destructive monitoring is to accurately identify approaching critical damage and to avoid premature failure by means of the evolutions of AE parameters. One major drawback of most parameters such as count and rise time is that they are strongly dependent on the threshold and other settings employed in AE data acquisition system. This may hinder the correct reflection of original waveform generated from AE sources and consequently bring difficulty for the accurate identification of the critical damage and early failure. In this investigation, a new qualitative AE parameter based on Shannon's entropy, i.e. AE entropy is proposed for damage monitoring. Since it derives from the uncertainty of amplitude distribution of each AE waveform, it is independent of the threshold and other time-driven parameters and can characterize the original micro-structural deformations. Fatigue crack growth test on CrMoV steel and three point bending test on a ductile material are conducted to validate the feasibility and effectiveness of the proposed parameter. The results show that the new parameter, compared to AE amplitude, is more effective in discriminating the different damage stages and identifying the critical damage.

  20. The dimensional reduction method for identification of parameters that trade-off due to similar model roles.

    PubMed

    Davidson, Shaun M; Docherty, Paul D; Murray, Rua

    2017-03-01

    Parameter identification is an important and widely used process across the field of biomedical engineering. However, it is susceptible to a number of potential difficulties, such as parameter trade-off, causing premature convergence at non-optimal parameter values. The proposed Dimensional Reduction Method (DRM) addresses this issue by iteratively reducing the dimension of hyperplanes where trade off occurs, and running subsequent identification processes within these hyperplanes. The DRM was validated using clinical data to optimize 4 parameters of the widely used Bergman Minimal Model of glucose and insulin kinetics, as well as in-silico data to optimize 5 parameters of the Pulmonary Recruitment (PR) Model. Results were compared with the popular Levenberg-Marquardt (LMQ) Algorithm using a Monte-Carlo methodology, with both methods afforded equivalent computational resources. The DRM converged to a lower or equal residual value in all tests run using the Bergman Minimal Model and actual patient data. For the PR model, the DRM attained significantly lower overall median parameter error values and lower residuals in the vast majority of tests. This shows the DRM has potential to provide better resolution of optimum parameter values for the variety of biomedical models in which significant levels of parameter trade-off occur. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Identification of Neoceratitis asiatica (Becker) (Diptera: Tephritidae) based on morphological characteristics and DNA barcode.

    PubMed

    Guo, Shaokun; He, Jia; Zhao, Zihua; Liu, Lijun; Gao, Liyuan; Wei, Shuhua; Guo, Xiaoyu; Zhang, Rong; Li, Zhihong

    2017-12-12

    Neoceratitis asiatica (Becker), which especially infests wolfberry (Lycium barbarum L.), could cause serious economic losses every year in China, especially to organic wolfberry production. In some important wolfberry plantings, it is difficult and time-consuming to rear the larvae or pupae to adults for morphological identification. Molecular identification based on DNA barcode is a solution to the problem. In this study, 15 samples were collected from Ningxia, China. Among them, five adults were identified according to their morphological characteristics. The utility of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) gene sequence as DNA barcode in distinguishing N. asiatica was evaluated by analysing Kimura 2-parameter distances and phylogenetic trees. There were significant differences between intra-specific and inter-specific genetic distances according to the barcoding gap analysis. The uncertain larval and pupal samples were within the same cluster as N. asiatica adults and formed sister cluster to N. cyanescens. A combination of morphological and molecular methods enabled accurate identification of N. asiatica. This is the first study using DNA barcode to identify N. asiatica and the obtained DNA sequences will be added to the DNA barcode database.

  2. Stochastic global identification of a bio-inspired self-sensing composite UAV wing via wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Kopsaftopoulos, Fotios; Nardari, Raphael; Li, Yu-Hung; Wang, Pengchuan; Chang, Fu-Kuo

    2016-04-01

    In this work, the system design, integration, and wind tunnel experimental evaluation are presented for a bioinspired self-sensing intelligent composite unmanned aerial vehicle (UAV) wing. A total of 148 micro-sensors, including piezoelectric, strain, and temperature sensors, in the form of stretchable sensor networks are embedded in the layup of a composite wing in order to enable its self-sensing capabilities. Novel stochastic system identification techniques based on time series models and statistical parameter estimation are employed in order to accurately interpret the sensing data and extract real-time information on the coupled air flow-structural dynamics. Special emphasis is given to the wind tunnel experimental assessment under various flight conditions defined by multiple airspeeds and angles of attack. A novel modeling approach based on the recently introduced Vector-dependent Functionally Pooled (VFP) model structure is employed for the stochastic identification of the "global" coupled airflow-structural dynamics of the wing and their correlation with dynamic utter and stall. The obtained results demonstrate the successful system-level integration and effectiveness of the stochastic identification approach, thus opening new perspectives for the state sensing and awareness capabilities of the next generation of "fly-by-fee" UAVs.

  3. A Statistics-based Platform for Quantitative N-terminome Analysis and Identification of Protease Cleavage Products*

    PubMed Central

    auf dem Keller, Ulrich; Prudova, Anna; Gioia, Magda; Butler, Georgina S.; Overall, Christopher M.

    2010-01-01

    Terminal amine isotopic labeling of substrates (TAILS), our recently introduced platform for quantitative N-terminome analysis, enables wide dynamic range identification of original mature protein N-termini and protease cleavage products. Modifying TAILS by use of isobaric tag for relative and absolute quantification (iTRAQ)-like labels for quantification together with a robust statistical classifier derived from experimental protease cleavage data, we report reliable and statistically valid identification of proteolytic events in complex biological systems in MS2 mode. The statistical classifier is supported by a novel parameter evaluating ion intensity-dependent quantification confidences of single peptide quantifications, the quantification confidence factor (QCF). Furthermore, the isoform assignment score (IAS) is introduced, a new scoring system for the evaluation of single peptide-to-protein assignments based on high confidence protein identifications in the same sample prior to negative selection enrichment of N-terminal peptides. By these approaches, we identified and validated, in addition to known substrates, low abundance novel bioactive MMP-2 targets including the plasminogen receptor S100A10 (p11) and the proinflammatory cytokine proEMAP/p43 that were previously undescribed. PMID:20305283

  4. On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment

    NASA Astrophysics Data System (ADS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai

    2017-10-01

    With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.

  5. Operational stability prediction in milling based on impact tests

    NASA Astrophysics Data System (ADS)

    Kiss, Adam K.; Hajdu, David; Bachrathy, Daniel; Stepan, Gabor

    2018-03-01

    Chatter detection is usually based on the analysis of measured signals captured during cutting processes. These techniques, however, often give ambiguous results close to the stability boundaries, which is a major limitation in industrial applications. In this paper, an experimental chatter detection method is proposed based on the system's response for perturbations during the machining process, and no system parameter identification is required. The proposed method identifies the dominant characteristic multiplier of the periodic dynamical system that models the milling process. The variation of the modulus of the largest characteristic multiplier can also be monitored, the stability boundary can precisely be extrapolated, while the manufacturing parameters are still kept in the chatter-free region. The method is derived in details, and also verified experimentally in laboratory environment.

  6. Adaptive exponential synchronization of complex-valued Cohen-Grossberg neural networks with known and unknown parameters.

    PubMed

    Hu, Jin; Zeng, Chunna

    2017-02-01

    The complex-valued Cohen-Grossberg neural network is a special kind of complex-valued neural network. In this paper, the synchronization problem of a class of complex-valued Cohen-Grossberg neural networks with known and unknown parameters is investigated. By using Lyapunov functionals and the adaptive control method based on parameter identification, some adaptive feedback schemes are proposed to achieve synchronization exponentially between the drive and response systems. The results obtained in this paper have extended and improved some previous works on adaptive synchronization of Cohen-Grossberg neural networks. Finally, two numerical examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds.

    PubMed

    Feng, Yan; Mitchison, Timothy J; Bender, Andreas; Young, Daniel W; Tallarico, John A

    2009-07-01

    Multi-parameter phenotypic profiling of small molecules provides important insights into their mechanisms of action, as well as a systems level understanding of biological pathways and their responses to small molecule treatments. It therefore deserves more attention at an early step in the drug discovery pipeline. Here, we summarize the technologies that are currently in use for phenotypic profiling--including mRNA-, protein- and imaging-based multi-parameter profiling--in the drug discovery context. We think that an earlier integration of phenotypic profiling technologies, combined with effective experimental and in silico target identification approaches, can improve success rates of lead selection and optimization in the drug discovery process.

  8. Aircraft applications of fault detection and isolation techniques

    NASA Astrophysics Data System (ADS)

    Marcos Esteban, Andres

    In this thesis the problems of fault detection & isolation and fault tolerant systems are studied from the perspective of LTI frequency-domain, model-based techniques. Emphasis is placed on the applicability of these LTI techniques to nonlinear models, especially to aerospace systems. Two applications of Hinfinity LTI fault diagnosis are given using an open-loop (no controller) design approach: one for the longitudinal motion of a Boeing 747-100/200 aircraft, the other for a turbofan jet engine. An algorithm formalizing a robust identification approach based on model validation ideas is also given and applied to the previous jet engine. A general linear fractional transformation formulation is given in terms of the Youla and Dual Youla parameterizations for the integrated (control and diagnosis filter) approach. This formulation provides better insight into the trade-off between the control and the diagnosis objectives. It also provides the basic groundwork towards the development of nested schemes for the integrated approach. These nested structures allow iterative improvements on the control/filter Youla parameters based on successive identification of the system uncertainty (as given by the Dual Youla parameter). The thesis concludes with an application of Hinfinity LTI techniques to the integrated design for the longitudinal motion of the previous Boeing 747-100/200 model.

  9. Assessment of environmental and nondestructive earthquake effects on modal parameters of an office building based on long-term vibration measurements

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Hwa; Wang, Sheng-Wei; Chen, Chien-Chou; Lai, Gwolong

    2017-05-01

    Identification for the modal parameters of an instrumented office building using ambient vibration measurements is conducted in this study based on a recently developed stochastic subspace identification methodology equipped with an alternative stabilization diagram and a hierarchical sifting process. The identified results are then deliberately examined to recognize the dynamic features for quite a few dominant modes of this building structure including three pairs of closely-spaced modes. Making use of the collected three-month data including three seismic events, the analyzed results show that the root-mean-square vibration response is directly related to the wind speed and indirectly related to the air temperature under a specific condition. More importantly, it is discovered that the root-mean-square response is the dominant factor to induce the variation of modal parameters. Except for the torsional modes, all the other modal frequencies are highly correlated with the root-mean-square acceleration in a negative manner and the corresponding damping ratios also clearly display a positive correlation. Another crucial observation from this assessment is that the percentages of frequency variation in three months for most of the identified modes go beyond 10%. The effects of three nondestructive earthquakes are further traced to observe the tendencies of reducing the modal frequencies and raising the damping ratios, both with a variation level possibly increasing with the seismic intensity. But different from the effects of environmental factors, the changes in modal parameters caused by nondestructive earthquakes will vanish right after the seismic events.

  10. Hidden Markov models incorporating fuzzy measures and integrals for protein sequence identification and alignment.

    PubMed

    Bidargaddi, Niranjan P; Chetty, Madhu; Kamruzzaman, Joarder

    2008-06-01

    Profile hidden Markov models (HMMs) based on classical HMMs have been widely applied for protein sequence identification. The formulation of the forward and backward variables in profile HMMs is made under statistical independence assumption of the probability theory. We propose a fuzzy profile HMM to overcome the limitations of that assumption and to achieve an improved alignment for protein sequences belonging to a given family. The proposed model fuzzifies the forward and backward variables by incorporating Sugeno fuzzy measures and Choquet integrals, thus further extends the generalized HMM. Based on the fuzzified forward and backward variables, we propose a fuzzy Baum-Welch parameter estimation algorithm for profiles. The strong correlations and the sequence preference involved in the protein structures make this fuzzy architecture based model as a suitable candidate for building profiles of a given family, since the fuzzy set can handle uncertainties better than classical methods.

  11. A Gender Identification System for Customers in a Shop Using Infrared Area Scanners

    NASA Astrophysics Data System (ADS)

    Tajima, Takuya; Kimura, Haruhiko; Abe, Takehiko; Abe, Koji; Nakamoto, Yoshinori

    Information about customers in shops plays an important role in marketing analysis. Currently, in convenience stores and supermarkets, the identification of customer's gender is examined by clerks. On the other hand, gender identification systems using camera images are investigated. However, these systems have a problem of invading human privacies in identifying attributes of customers. The proposed system identifies gender by using infrared area scanners and Bayesian network. In the proposed system, since infrared area scanners do not take customers' images directly, invasion of privacies are not occurred. The proposed method uses three parameters of height, walking speed and pace for humans. In general, it is shown that these parameters have factors of sexual distinction in humans, and Bayesian network is designed with these three parameters. The proposed method resolves the existent problems of restricting the locations where the systems are set and invading human privacies. Experimental results using data obtained from 450 people show that the identification rate for the proposed method was 91.3% on the average of both of male and female identifications.

  12. Model and Data Reduction for Control, Identification and Compressed Sensing

    NASA Astrophysics Data System (ADS)

    Kramer, Boris

    This dissertation focuses on problems in design, optimization and control of complex, large-scale dynamical systems from different viewpoints. The goal is to develop new algorithms and methods, that solve real problems more efficiently, together with providing mathematical insight into the success of those methods. There are three main contributions in this dissertation. In Chapter 3, we provide a new method to solve large-scale algebraic Riccati equations, which arise in optimal control, filtering and model reduction. We present a projection based algorithm utilizing proper orthogonal decomposition, which is demonstrated to produce highly accurate solutions at low rank. The method is parallelizable, easy to implement for practitioners, and is a first step towards a matrix free approach to solve AREs. Numerical examples for n ≥ 106 unknowns are presented. In Chapter 4, we develop a system identification method which is motivated by tangential interpolation. This addresses the challenge of fitting linear time invariant systems to input-output responses of complex dynamics, where the number of inputs and outputs is relatively large. The method reduces the computational burden imposed by a full singular value decomposition, by carefully choosing directions on which to project the impulse response prior to assembly of the Hankel matrix. The identification and model reduction step follows from the eigensystem realization algorithm. We present three numerical examples, a mass spring damper system, a heat transfer problem, and a fluid dynamics system. We obtain error bounds and stability results for this method. Chapter 5 deals with control and observation design for parameter dependent dynamical systems. We address this by using local parametric reduced order models, which can be used online. Data available from simulations of the system at various configurations (parameters, boundary conditions) is used to extract a sparse basis to represent the dynamics (via dynamic mode decomposition). Subsequently, a new, compressed sensing based classification algorithm is developed which incorporates the extracted dynamic information into the sensing basis. We show that this augmented classification basis makes the method more robust to noise, and results in superior identification of the correct parameter. Numerical examples consist of a Navier-Stokes, as well as a Boussinesq flow application.

  13. Study on validation method for femur finite element model under multiple loading conditions

    NASA Astrophysics Data System (ADS)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu

    2018-03-01

    Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.

  14. Removing Visual Bias in Filament Identification: A New Goodness-of-fit Measure

    NASA Astrophysics Data System (ADS)

    Green, C.-E.; Cunningham, M. R.; Dawson, J. R.; Jones, P. A.; Novak, G.; Fissel, L. M.

    2017-05-01

    Different combinations of input parameters to filament identification algorithms, such as disperse and filfinder, produce numerous different output skeletons. The skeletons are a one-pixel-wide representation of the filamentary structure in the original input image. However, these output skeletons may not necessarily be a good representation of that structure. Furthermore, a given skeleton may not be as good of a representation as another. Previously, there has been no mathematical “goodness-of-fit” measure to compare output skeletons to the input image. Thus far this has been assessed visually, introducing visual bias. We propose the application of the mean structural similarity index (MSSIM) as a mathematical goodness-of-fit measure. We describe the use of the MSSIM to find the output skeletons that are the most mathematically similar to the original input image (the optimum, or “best,” skeletons) for a given algorithm, and independently of the algorithm. This measure makes possible systematic parameter studies, aimed at finding the subset of input parameter values returning optimum skeletons. It can also be applied to the output of non-skeleton-based filament identification algorithms, such as the Hessian matrix method. The MSSIM removes the need to visually examine thousands of output skeletons, and eliminates the visual bias, subjectivity, and limited reproducibility inherent in that process, representing a major improvement upon existing techniques. Importantly, it also allows further automation in the post-processing of output skeletons, which is crucial in this era of “big data.”

  15. Dynamic identification of axial force and boundary restraints in tie rods and cables with uncertainty quantification using Set Inversion Via Interval Analysis

    NASA Astrophysics Data System (ADS)

    Kernicky, Timothy; Whelan, Matthew; Al-Shaer, Ehab

    2018-06-01

    A methodology is developed for the estimation of internal axial force and boundary restraints within in-service, prismatic axial force members of structural systems using interval arithmetic and contractor programming. The determination of the internal axial force and end restraints in tie rods and cables using vibration-based methods has been a long standing problem in the area of structural health monitoring and performance assessment. However, for structural members with low slenderness where the dynamics are significantly affected by the boundary conditions, few existing approaches allow for simultaneous identification of internal axial force and end restraints and none permit for quantifying the uncertainties in the parameter estimates due to measurement uncertainties. This paper proposes a new technique for approaching this challenging inverse problem that leverages the Set Inversion Via Interval Analysis algorithm to solve for the unknown axial forces and end restraints using natural frequency measurements. The framework developed offers the ability to completely enclose the feasible solutions to the parameter identification problem, given specified measurement uncertainties for the natural frequencies. This ability to propagate measurement uncertainty into the parameter space is critical towards quantifying the confidence in the individual parameter estimates to inform decision-making within structural health diagnosis and prognostication applications. The methodology is first verified with simulated data for a case with unknown rotational end restraints and then extended to a case with unknown translational and rotational end restraints. A laboratory experiment is then presented to demonstrate the application of the methodology to an axially loaded rod with progressively increased end restraint at one end.

  16. A Comparative Evaluation of Anomaly Detection Algorithms for Maritime Video Surveillance

    DTIC Science & Technology

    2011-01-01

    of k-means clustering and the k- NN Localized p-value Estimator ( KNN -LPE). K-means is a popular distance-based clustering algorithm while KNN -LPE...implemented the sparse cluster identification rule we described in Section 3.1. 2. k-NN Localized p-value Estimator ( KNN -LPE): We implemented this using...Average Density ( KNN -NAD): This was implemented as described in Section 3.4. Algorithm Parameter Settings The global and local density-based anomaly

  17. eFurniture for home-based frailty detection using artificial neural networks and wireless sensors.

    PubMed

    Chang, Yu-Chuan; Lin, Chung-Chih; Lin, Pei-Hsin; Chen, Chun-Chang; Lee, Ren-Guey; Huang, Jing-Siang; Tsai, Tsai-Hsuan

    2013-02-01

    The purpose of this study is to integrate wireless sensor technologies and artificial neural networks to develop a system to manage personal frailty information automatically. The system consists of five parts: (1) an eScale to measure the subject's reaction time; (2) an eChair to detect slowness in movement, weakness and weight loss; (3) an ePad to measure the subject's balancing ability; (4) an eReach to measure body extension; and (5) a Home-based Information Gateway, which collects all the data and predicts the subject's frailty. Using a furniture-based measuring device to provide home-based measurement means that health checks are not confined to health institutions. We designed two experiments to obtain optimum frailty prediction model and test overall system performance: (1) We developed a three-step process to adjust different parameters to obtain an optimized neural identification network whose parameters include initialization, L.R. dec and L.R. inc. The post-process identification rate increased from 77.85% to 83.22%. (2) We used 149 cases to evaluate the sensitivity and specificity of our frailty prediction algorithm. The sensitivity and specificity of this system are 79.71% and 86.25% respectively. These results show that our system is a high specificity prediction tool that can be used to assess frailty. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Statistical analysis of texture in trunk images for biometric identification of tree species.

    PubMed

    Bressane, Adriano; Roveda, José A F; Martins, Antônio C G

    2015-04-01

    The identification of tree species is a key step for sustainable management plans of forest resources, as well as for several other applications that are based on such surveys. However, the present available techniques are dependent on the presence of tree structures, such as flowers, fruits, and leaves, limiting the identification process to certain periods of the year. Therefore, this article introduces a study on the application of statistical parameters for texture classification of tree trunk images. For that, 540 samples from five Brazilian native deciduous species were acquired and measures of entropy, uniformity, smoothness, asymmetry (third moment), mean, and standard deviation were obtained from the presented textures. Using a decision tree, a biometric species identification system was constructed and resulted to a 0.84 average precision rate for species classification with 0.83accuracy and 0.79 agreement. Thus, it can be considered that the use of texture presented in trunk images can represent an important advance in tree identification, since the limitations of the current techniques can be overcome.

  19. Modal Parameter Identification and Numerical Simulation for Self-anchored Suspension Bridges Based on Ambient Vibration

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Sun, Li Guo

    2018-06-01

    This paper chooses the Nanjing-Hangzhou high speed overbridge, a self-anchored suspension bridge, as the research target, trying to identify the dynamic characteristic parameters of the bridge by using the peak-picking method to analyze the velocity response data under ambient excitation collected by 7 vibration pickup sensors set on the bridge deck. The ABAQUS is used to set up a three-dimensional finite element model for the full bridge and amends the finite element model of the suspension bridge based on the identified modal parameter, and suspender force picked by the PDV100 laser vibrometer. The study shows that the modal parameter can well be identified by analyzing the bridge vibration velocity collected by 7 survey points. The identified modal parameter and measured suspender force can be used as the basis of the amendment of the finite element model of the suspension bridge. The amended model can truthfully reflect the structural physical features and it can also be the benchmark model for the long-term health monitoring and condition assessment of the bridge.

  20. Model parameter estimation approach based on incremental analysis for lithium-ion batteries without using open circuit voltage

    NASA Astrophysics Data System (ADS)

    Wu, Hongjie; Yuan, Shifei; Zhang, Xi; Yin, Chengliang; Ma, Xuerui

    2015-08-01

    To improve the suitability of lithium-ion battery model under varying scenarios, such as fluctuating temperature and SoC variation, dynamic model with parameters updated realtime should be developed. In this paper, an incremental analysis-based auto regressive exogenous (I-ARX) modeling method is proposed to eliminate the modeling error caused by the OCV effect and improve the accuracy of parameter estimation. Then, its numerical stability, modeling error, and parametric sensitivity are analyzed at different sampling rates (0.02, 0.1, 0.5 and 1 s). To identify the model parameters recursively, a bias-correction recursive least squares (CRLS) algorithm is applied. Finally, the pseudo random binary sequence (PRBS) and urban dynamic driving sequences (UDDSs) profiles are performed to verify the realtime performance and robustness of the newly proposed model and algorithm. Different sampling rates (1 Hz and 10 Hz) and multiple temperature points (5, 25, and 45 °C) are covered in our experiments. The experimental and simulation results indicate that the proposed I-ARX model can present high accuracy and suitability for parameter identification without using open circuit voltage.

  1. The Statistical Meaning of Kurtosis and Its New Application to Identification of Persons Based on Seismic Signals

    PubMed Central

    Liang, Zhiqiang; Wei, Jianming; Zhao, Junyu; Liu, Haitao; Li, Baoqing; Shen, Jie; Zheng, Chunlei

    2008-01-01

    This paper presents a new algorithm making use of kurtosis, which is a statistical parameter, to distinguish the seismic signal generated by a person's footsteps from other signals. It is adaptive to any environment and needs no machine study or training. As persons or other targets moving on the ground generate continuous signals in the form of seismic waves, we can separate different targets based on the seismic waves they generate. The parameter of kurtosis is sensitive to impulsive signals, so it's much more sensitive to the signal generated by person footsteps than other signals generated by vehicles, winds, noise, etc. The parameter of kurtosis is usually employed in the financial analysis, but rarely used in other fields. In this paper, we make use of kurtosis to distinguish person from other targets based on its different sensitivity to different signals. Simulation and application results show that this algorithm is very effective in distinguishing person from other targets. PMID:27873804

  2. DC servomechanism parameter identification: a Closed Loop Input Error approach.

    PubMed

    Garrido, Ruben; Miranda, Roger

    2012-01-01

    This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luczak, Marcin; Dziedziech, Kajetan; Peeters, Bart

    2010-05-28

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters...) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring,more » load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.« less

  4. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    NASA Astrophysics Data System (ADS)

    Luczak, Marcin; Dziedziech, Kajetan; Vivolo, Marianna; Desmet, Wim; Peeters, Bart; Van der Auweraer, Herman

    2010-05-01

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters…) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring, load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.

  5. Estimation and identification study for flexible vehicles

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Englar, T. S., Jr.

    1973-01-01

    Techniques are studied for the estimation of rigid body and bending states and the identification of model parameters associated with the single-axis attitude dynamics of a flexible vehicle. This problem is highly nonlinear but completely observable provided sufficient attitude and attitude rate data is available and provided all system bending modes are excited in the observation interval. A sequential estimator tracks the system states in the presence of model parameter errors. A batch estimator identifies all model parameters with high accuracy.

  6. Application of Two-Parameter Stabilizing Functions in Solving a Convolution-Type Integral Equation by Regularization Method

    NASA Astrophysics Data System (ADS)

    Maslakov, M. L.

    2018-04-01

    This paper examines the solution of convolution-type integral equations of the first kind by applying the Tikhonov regularization method with two-parameter stabilizing functions. The class of stabilizing functions is expanded in order to improve the accuracy of the resulting solution. The features of the problem formulation for identification and adaptive signal correction are described. A method for choosing regularization parameters in problems of identification and adaptive signal correction is suggested.

  7. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2016-04-01

    Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.

  8. A Review of System Identification Methods Applied to Aircraft

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1983-01-01

    Airplane identification, equation error method, maximum likelihood method, parameter estimation in frequency domain, extended Kalman filter, aircraft equations of motion, aerodynamic model equations, criteria for the selection of a parsimonious model, and online aircraft identification are addressed.

  9. Identification of FOPDT and SOPDT process dynamics using closed loop test.

    PubMed

    Bajarangbali, Raghunath; Majhi, Somanath; Pandey, Saurabh

    2014-07-01

    In this paper, identification of stable and unstable first order, second order overdamped and underdamped process dynamics with time delay is presented. Relay with hysteresis is used to induce a limit cycle output and using this information, unknown process model parameters are estimated. State space based generalized analytical expressions are derived to achieve accurate results. To show the performance of the proposed method expressions are also derived for systems with a zero. In real time systems, measurement noise is an important issue during identification of process dynamics. A relay with hysteresis reduces the effect of measurement noise, in addition a new multiloop control strategy is proposed to recover the original limit cycle. Simulation results are included to validate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Zero-G experimental validation of a robotics-based inertia identification algorithm

    NASA Astrophysics Data System (ADS)

    Bruggemann, Jeremy J.; Ferrel, Ivann; Martinez, Gerardo; Xie, Pu; Ma, Ou

    2010-04-01

    The need to efficiently identify the changing inertial properties of on-orbit spacecraft is becoming more critical as satellite on-orbit services, such as refueling and repairing, become increasingly aggressive and complex. This need stems from the fact that a spacecraft's control system relies on the knowledge of the spacecraft's inertia parameters. However, the inertia parameters may change during flight for reasons such as fuel usage, payload deployment or retrieval, and docking/capturing operations. New Mexico State University's Dynamics, Controls, and Robotics Research Group has proposed a robotics-based method of identifying unknown spacecraft inertia properties1. Previous methods require firing known thrusts then measuring the thrust, and the velocity and acceleration changes. The new method utilizes the concept of momentum conservation, while employing a robotic device powered by renewable energy to excite the state of the satellite. Thus, it requires no fuel usage or force and acceleration measurements. The method has been well studied in theory and demonstrated by simulation. However its experimental validation is challenging because a 6- degree-of-freedom motion in a zero-gravity condition is required. This paper presents an on-going effort to test the inertia identification method onboard the NASA zero-G aircraft. The design and capability of the test unit will be discussed in addition to the flight data. This paper also introduces the design and development of an airbearing based test used to partially validate the method, in addition to the approach used to obtain reference value for the test system's inertia parameters that can be used for comparison with the algorithm results.

  11. catcher: A Software Program to Detect Answer Copying in Multiple-Choice Tests Based on Nominal Response Model

    ERIC Educational Resources Information Center

    Kalender, Ilker

    2012-01-01

    catcher is a software program designed to compute the [omega] index, a common statistical index for the identification of collusions (cheating) among examinees taking an educational or psychological test. It requires (a) responses and (b) ability estimations of individuals, and (c) item parameters to make computations and outputs the results of…

  12. In-theater piracy: finding where the pirate was

    NASA Astrophysics Data System (ADS)

    Chupeau, Bertrand; Massoudi, Ayoub; Lefèbvre, Frédéric

    2008-02-01

    Pirate copies of feature films are proliferating on the Internet. DVD rip or screener recording methods involve the duplication of officially distributed media whereas 'cam' versions are illicitly captured with handheld camcorders in movie theaters. Several, complementary, multimedia forensic techniques such as copy identification, forensic tracking marks or sensor forensics can deter those clandestine recordings. In the case of camcorder capture in a theater, the image is often geometrically distorted, the main artifact being the trapezoidal effect, also known as 'keystoning', due to a capture viewing axis not being perpendicular to the screen. In this paper we propose to analyze the geometric distortions in a pirate copy to determine the camcorder viewing angle to the screen perpendicular and derive the approximate position of the pirate in the theater. The problem is first of all geometrically defined, by describing the general projection and capture setup, and by identifying unknown parameters and estimates. The estimation approach based on the identification of an eight-parameter homographic model of the 'keystoning' effect is then presented. A validation experiment based on ground truth collected in a real movie theater is reported, and the accuracy of the proposed method is assessed.

  13. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2016-11-01

    Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.

  14. XRF map identification problems based on a PDE electrodeposition model

    NASA Astrophysics Data System (ADS)

    Sgura, Ivonne; Bozzini, Benedetto

    2017-04-01

    In this paper we focus on the following map identification problem (MIP): given a morphochemical reaction-diffusion (RD) PDE system modeling an electrodepostion process, we look for a time t *, belonging to the transient dynamics and a set of parameters \\mathbf{p} , such that the PDE solution, for the morphology h≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) and for the chemistry θ ≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) approximates a given experimental map M *. Towards this aim, we introduce a numerical algorithm using singular value decomposition (SVD) and Frobenius norm to give a measure of error distance between experimental maps for h and θ and simulated solutions of the RD-PDE system on a fixed time integration interval. The technique proposed allows quantitative use of microspectroscopy images, such as XRF maps. Specifically, in this work we have modelled the morphology and manganese distributions of nanostructured components of innovative batteries and we have followed their changes resulting from ageing under operating conditions. The availability of quantitative information on space-time evolution of active materials in terms of model parameters will allow dramatic improvements in knowledge-based optimization of battery fabrication and operation.

  15. Virus detection and quantification using electrical parameters

    NASA Astrophysics Data System (ADS)

    Ahmad, Mahmoud Al; Mustafa, Farah; Ali, Lizna M.; Rizvi, Tahir A.

    2014-10-01

    Here we identify and quantitate two similar viruses, human and feline immunodeficiency viruses (HIV and FIV), suspended in a liquid medium without labeling, using a semiconductor technique. The virus count was estimated by calculating the impurities inside a defined volume by observing the change in electrical parameters. Empirically, the virus count was similar to the absolute value of the ratio of the change of the virus suspension dopant concentration relative to the mock dopant over the change in virus suspension Debye volume relative to mock Debye volume. The virus type was identified by constructing a concentration-mobility relationship which is unique for each kind of virus, allowing for a fast (within minutes) and label-free virus quantification and identification. For validation, the HIV and FIV virus preparations were further quantified by a biochemical technique and the results obtained by both approaches corroborated well. We further demonstrate that the electrical technique could be applied to accurately measure and characterize silica nanoparticles that resemble the virus particles in size. Based on these results, we anticipate our present approach to be a starting point towards establishing the foundation for label-free electrical-based identification and quantification of an unlimited number of viruses and other nano-sized particles.

  16. [DNA barcoding and its utility in commonly-used medicinal snakes].

    PubMed

    Huang, Yong; Zhang, Yue-yun; Zhao, Cheng-jian; Xu, Yong-li; Gu, Ying-le; Huang, Wen-qi; Lin, Kui; Li, Li

    2015-03-01

    Identification accuracy of traditional Chinese medicine is crucial for the traditional Chinese medicine research, production and application. DNA barcoding based on the mitochondrial gene coding for cytochrome c oxidase subunit I (COI), are more and more used for identification of traditional Chinese medicine. Using universal barcoding primers to sequence, we discussed the feasibility of DNA barcoding method for identification commonly-used medicinal snakes (a total of 109 samples belonging to 19 species 15 genera 6 families). The phylogenetic trees using Neighbor-joining were constructed. The results indicated that the mean content of G + C(46.5%) was lower than that of A + T (53.5%). As calculated by Kimera-2-parameter model, the mean intraspecies genetic distance of Trimeresurus albolabris, Ptyas dhumnades and Lycodon rufozonatus was greater than 2%. Further phylogenetic relationship results suggested that identification of one sample of T. albolabris was erroneous. The identification of some samples of P. dhumnades was also not correct, namely originally P. korros was identified as P. dhumnades. Factors influence on intraspecific genetic distance difference of L. rufozonatus need to be studied further. Therefore, DNA barcoding for identification of medicinal snakes is feasible, and greatly complements the morphological classification method. It is necessary to further study in identification of traditional Chinese medicine.

  17. Structural damage identification using damping: a compendium of uses and features

    NASA Astrophysics Data System (ADS)

    Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.

    2017-04-01

    The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions for advancing damping-based damage detection. This work holds the promise of (a) helping researchers identify crucial components in damping-based damage detection theories, methods, and technologies, and (b) leading practitioners to better implement damping-based structural damage identification.

  18. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America—Modern data for climatic estimation from vegetation inventories

    USGS Publications Warehouse

    Thompson, Robert S.; Anderson, Katherine H.; Pelltier, Richard T.; Strickland, Laura E.; Shafer, Sarah L.; Bartlein, Patrick J.

    2012-01-01

    Vegetation inventories (plant taxa present in a vegetation assemblage at a given site) can be used to estimate climatic parameters based on the identification of the range of a given parameter where all taxa in an assemblage overlap ("Mutual Climatic Range"). For the reconstruction of past climates from fossil or subfossil plant assemblages, we assembled the data necessary for such analyses for 530 woody plant taxa and eight climatic parameters in North America. Here we present examples of how these data can be used to obtain paleoclimatic estimates from botanical data in a straightforward, simple, and robust fashion. We also include matrices of climate parameter versus occurrence or nonoccurrence of the individual taxa. These relations are depicted graphically as histograms of the population distributions of the occurrences of a given taxon plotted against a given climatic parameter. This provides a new method for quantification of paleoclimatic parameters from fossil plant assemblages.

  19. DNA barcoding of Clarias gariepinus, Coptodon zillii and Sarotherodon melanotheron from Southwestern Nigeria

    PubMed Central

    Falade, Mofolusho O.; Opene, Anthony J.; Benson, Otarigho

    2016-01-01

    DNA barcoding has been adopted as a gold standard rapid, precise and unifying identification system for animal species and provides a database of genetic sequences that can be used as a tool for universal species identification. In this study, we employed mitochondrial genes 16S rRNA (16S) and cytochrome oxidase subunit I (COI) for the identification of some Nigerian freshwater catfish and Tilapia species. Approximately 655 bp were amplified from the 5′ region of the mitochondrial cytochrome C oxidase subunit I (COI) gene whereas 570 bp were amplified for the 16S rRNA gene. Nucleotide divergences among sequences were estimated based on Kimura 2-parameter distances and the genetic relationships were assessed by constructing phylogenetic trees using the neighbour-joining (NJ) and maximum likelihood (ML) methods. Analyses of consensus barcode sequences for each species, and alignment of individual sequences from within a given species revealed highly consistent barcodes (99% similarity on average), which could be compared with deposited sequences in public databases. The nucleotide distance between species belonging to different genera based on COI ranged from 0.17% between Sarotherodon melanotheron and Coptodon zillii to 0.49% between Clarias gariepinus and C. zillii, indicating that S. melanotheron and C. zillii are closely related. Based on the data obtained, the utility of COI gene was confirmed in accurate identification of three fish species from Southwest Nigeria. PMID:27990256

  20. Space-based infrared sensors of space target imaging effect analysis

    NASA Astrophysics Data System (ADS)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  1. A Novel Identification Methodology for the Coordinate Relationship between a 3D Vision System and a Legged Robot

    PubMed Central

    Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin

    2015-01-01

    Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called “Octopus”, which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust. PMID:25912350

  2. A lateral dynamics of a wheelchair: identification and analysis of tire parameters.

    PubMed

    Silva, L C A; Corrêa, F C; Eckert, J J; Santiciolli, F M; Dedini, F G

    2017-02-01

    In vehicle dynamics studies, the tire behaviour plays an important role in planar motion of the vehicle. Therefore, a correct representation of tire is a necessity. This paper describes a mathematical model for wheelchair tire based on the Magic Formula model. This model is widely used to represent forces and moments between the tire and the ground; however some experimental parameters must be determined. The purpose of this work is to identify the tire parameters for the wheelchair tire model, implementing them in a dynamic model of the wheelchair. For this, we developed an experimental test rig to measure the tires parameters for the lateral dynamics of a wheelchair. This dynamic model was made using a multi-body software and the wheelchair behaviour was analysed and discussed according to the tire parameters. The result of this work is one step further towards the understanding of wheelchair dynamics.

  3. Numerical Simulation of Tension Properties for Al-Cu Alloy Friction Stir-Welded Joints with GTN Damage Model

    NASA Astrophysics Data System (ADS)

    Sun, Guo-Qin; Sun, Feng-Yang; Cao, Fang-Li; Chen, Shu-Jun; Barkey, Mark E.

    2015-11-01

    The numerical simulation of tensile fracture behavior on Al-Cu alloy friction stir-welded joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. The parameters of the GTN model were studied in each region of the friction stir-welded joint by means of inverse identification. Based on the obtained parameters, the finite element model of the welded joint was built to predict the fracture behavior and tension properties. Good agreement can be found between the numerical and experimental results in the location of the tensile fracture and the mechanical properties.

  4. Parachute-deployment-parameter identification based on an analytical simulation of Viking BLDT AV-4

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1974-01-01

    A six-degree-of-freedom analytical simulation of parachute deployment dynamics developed at the Langley Research Center is presented. A comparison study was made using flight results from the Viking Balloon Launched Decelerator Test (BLDT) AV-4. Since there are significant voids in the knowledge of vehicle and decelerator aerodynamics and suspension system physical properties, a set of deployment-parameter input has been defined which may be used as a basis for future studies of parachute deployment dynamics. The study indicates the analytical model is sufficiently sophisticated to investigate parachute deployment dynamics with reasonable accuracy.

  5. An efficient identification approach for stable and unstable nonlinear systems using Colliding Bodies Optimization algorithm.

    PubMed

    Pal, Partha S; Kar, R; Mandal, D; Ghoshal, S P

    2015-11-01

    This paper presents an efficient approach to identify different stable and practically useful Hammerstein models as well as unstable nonlinear process along with its stable closed loop counterpart with the help of an evolutionary algorithm as Colliding Bodies Optimization (CBO) optimization algorithm. The performance measures of the CBO based optimization approach such as precision, accuracy are justified with the minimum output mean square value (MSE) which signifies that the amount of bias and variance in the output domain are also the least. It is also observed that the optimization of output MSE in the presence of outliers has resulted in a very close estimation of the output parameters consistently, which also justifies the effective general applicability of the CBO algorithm towards the system identification problem and also establishes the practical usefulness of the applied approach. Optimum values of the MSEs, computational times and statistical information of the MSEs are all found to be the superior as compared with those of the other existing similar types of stochastic algorithms based approaches reported in different recent literature, which establish the robustness and efficiency of the applied CBO based identification scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Constitutive error based parameter estimation technique for plate structures using free vibration signatures

    NASA Astrophysics Data System (ADS)

    Guchhait, Shyamal; Banerjee, Biswanath

    2018-04-01

    In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.

  7. Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.

    2011-09-23

    In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recordedmore » reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.« less

  8. Resistance Curves in the Tensile and Compressive Longitudinal Failure of Composites

    NASA Technical Reports Server (NTRS)

    Camanho, Pedro P.; Catalanotti, Giuseppe; Davila, Carlos G.; Lopes, Claudio S.; Bessa, Miguel A.; Xavier, Jose C.

    2010-01-01

    This paper presents a new methodology to measure the crack resistance curves associated with fiber-dominated failure modes in polymer-matrix composites. These crack resistance curves not only characterize the fracture toughness of the material, but are also the basis for the identification of the parameters of the softening laws used in the analytical and numerical simulation of fracture in composite materials. The method proposed is based on the identification of the crack tip location by the use of Digital Image Correlation and the calculation of the J-integral directly from the test data using a simple expression derived for cross-ply composite laminates. It is shown that the results obtained using the proposed methodology yield crack resistance curves similar to those obtained using FEM-based methods in compact tension carbon-epoxy specimens. However, it is also shown that the Digital Image Correlation based technique can be used to extract crack resistance curves in compact compression tests for which FEM-based techniques are inadequate.

  9. Parameter identification of piezoelectric hysteresis model based on improved artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Geng; Zhou, Kexin; Zhang, Yeming

    2018-04-01

    The widely used Bouc-Wen hysteresis model can be utilized to accurately simulate the voltage-displacement curves of piezoelectric actuators. In order to identify the unknown parameters of the Bouc-Wen model, an improved artificial bee colony (IABC) algorithm is proposed in this paper. A guiding strategy for searching the current optimal position of the food source is proposed in the method, which can help balance the local search ability and global exploitation capability. And the formula for the scout bees to search for the food source is modified to increase the convergence speed. Some experiments were conducted to verify the effectiveness of the IABC algorithm. The results show that the identified hysteresis model agreed well with the actual actuator response. Moreover, the identification results were compared with the standard particle swarm optimization (PSO) method, and it can be seen that the search performance in convergence rate of the IABC algorithm is better than that of the standard PSO method.

  10. Agronomic, chemical and genetic profiles of hot peppers (Capsicum annuum ssp.).

    PubMed

    De Masi, Luigi; Siviero, Pietro; Castaldo, Domenico; Cautela, Domenico; Esposito, Castrese; Laratta, Bruna

    2007-08-01

    A study on morphology, productive yield, main quality parameters and genetic variability of eight landraces of hot pepper (Capsicum annuum ssp.) from Southern Italy has been performed. Morphological characters of berries and productivity values were evaluated by agronomic analyses. Chemical and genetic investigations were performed by HPLC and random amplified polymorphic DNA (RAPD)-PCR, respectively. In particular, carotenoid and capsaicinoid (pungency) contents were considered as main quality parameters of hot pepper. For the eight selected samples, genetic similarity values were calculated from the generated RAPD fragments and a dendrogram of genetic similarity was constructed. All the eight landraces exhibited characteristic RAPD patterns that allowed their characterization. Agro-morphological and chemical determinations were found to be adequate for selection, but they resulted useful only for plants grown in the same environmental conditions. RAPD application may provide a more reliable way based on DNA identification. The results of our study led to the identification of three noteworthy populations, suitable for processing, which fitted into different clusters of the dendrogram.

  11. Modeling and parameters identification of 2-keto-L-gulonic acid fed-batch fermentation.

    PubMed

    Wang, Tao; Sun, Jibin; Yuan, Jingqi

    2015-04-01

    This article presents a modeling approach for industrial 2-keto-L-gulonic acid (2-KGA) fed-batch fermentation by the mixed culture of Ketogulonicigenium vulgare (K. vulgare) and Bacillus megaterium (B. megaterium). A macrokinetic model of K. vulgare is constructed based on the simplified metabolic pathways. The reaction rates obtained from the macrokinetic model are then coupled into a bioreactor model such that the relationship between substrate feeding rates and the main state variables, e.g., the concentrations of the biomass, substrate and product, is constructed. A differential evolution algorithm using the Lozi map as the random number generator is utilized to perform the model parameters identification, with the industrial data of 2-KGA fed-batch fermentation. Validation results demonstrate that the model simulations of substrate and product concentrations are well in coincidence with the measurements. Furthermore, the model simulations of biomass concentrations reflect principally the growth kinetics of the two microbes in the mixed culture.

  12. DNN-state identification of 2D distributed parameter systems

    NASA Astrophysics Data System (ADS)

    Chairez, I.; Fuentes, R.; Poznyak, A.; Poznyak, T.; Escudero, M.; Viana, L.

    2012-02-01

    There are many examples in science and engineering which are reduced to a set of partial differential equations (PDEs) through a process of mathematical modelling. Nevertheless there exist many sources of uncertainties around the aforementioned mathematical representation. Moreover, to find exact solutions of those PDEs is not a trivial task especially if the PDE is described in two or more dimensions. It is well known that neural networks can approximate a large set of continuous functions defined on a compact set to an arbitrary accuracy. In this article, a strategy based on the differential neural network (DNN) for the non-parametric identification of a mathematical model described by a class of two-dimensional (2D) PDEs is proposed. The adaptive laws for weights ensure the 'practical stability' of the DNN-trajectories to the parabolic 2D-PDE states. To verify the qualitative behaviour of the suggested methodology, here a non-parametric modelling problem for a distributed parameter plant is analysed.

  13. On the identifiability of inertia parameters of planar Multi-Body Space Systems

    NASA Astrophysics Data System (ADS)

    Nabavi-Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher

    2018-04-01

    This work describes a new formulation to study the identifiability characteristics of Serially Linked Multi-body Space Systems (SLMBSS). The process exploits the so called "Lagrange Formulation" to develop a linear form of Equations of Motion w.r.t the system Inertia Parameters (IPs). Having developed a specific form of regressor matrix, we aim to expedite the identification process. The new approach allows analytical as well as numerical identification and identifiability analysis for different SLMBSSs' configurations. Moreover, the explicit forms of SLMBSSs identifiable parameters are derived by analyzing the identifiability characteristics of the robot. We further show that any SLMBSS designed with Variable Configurations Joint allows all IPs to be identifiable through comparing two successive identification outcomes. This feature paves the way to design new class of SLMBSS for which accurate identification of all IPs is at hand. Different case studies reveal that proposed formulation provides fast and accurate results, as required by the space applications. Further studies might be necessary for cases where planar-body assumption becomes inaccurate.

  14. System IDentification Programs for AirCraft (SIDPAC)

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2002-01-01

    A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombigit, L., E-mail: lojius@nm.gov.my; Rahman, Nur Aira Abd; Mohamad, Glam Hadzir Patai

    A radioisotope identifier device based on large volume Co-planar grid CZT detector is current under development at Malaysian Nuclear Agency. This device is planned to be used for in-situ identification of radioisotopes based on their unique energies. This work reports on electronics testing performed on the front-end electronics (FEE) analog section comprising charge sensitive preamplifier-pulse shaping amplifier chain. This test involves measurement of charge sensitivity, pulse parameters and electronics noise. This report also present some preliminary results on the spectral measurement obtained from gamma emitting radioisotopes.

  16. World Wide Web-based system for the calculation of substituent parameters and substituent similarity searches.

    PubMed

    Ertl, P

    1998-02-01

    Easy to use, interactive, and platform-independent WWW-based tools are ideal for development of chemical applications. By using the newly emerging Web technologies such as Java applets and sophisticated scripting, it is possible to deliver powerful molecular processing capabilities directly to the desk of synthetic organic chemists. In Novartis Crop Protection in Basel, a Web-based molecular modelling system has been in use since 1995. In this article two new modules of this system are presented: a program for interactive calculation of important hydrophobic, electronic, and steric properties of organic substituents, and a module for substituent similarity searches enabling the identification of bioisosteric functional groups. Various possible applications of calculated substituent parameters are also discussed, including automatic design of molecules with the desired properties and creation of targeted virtual combinatorial libraries.

  17. Statistical analysis of modal parameters of a suspension bridge based on Bayesian spectral density approach and SHM data

    NASA Astrophysics Data System (ADS)

    Li, Zhijun; Feng, Maria Q.; Luo, Longxi; Feng, Dongming; Xu, Xiuli

    2018-01-01

    Uncertainty of modal parameters estimation appear in structural health monitoring (SHM) practice of civil engineering to quite some significant extent due to environmental influences and modeling errors. Reasonable methodologies are needed for processing the uncertainty. Bayesian inference can provide a promising and feasible identification solution for the purpose of SHM. However, there are relatively few researches on the application of Bayesian spectral method in the modal identification using SHM data sets. To extract modal parameters from large data sets collected by SHM system, the Bayesian spectral density algorithm was applied to address the uncertainty of mode extraction from output-only response of a long-span suspension bridge. The posterior most possible values of modal parameters and their uncertainties were estimated through Bayesian inference. A long-term variation and statistical analysis was performed using the sensor data sets collected from the SHM system of the suspension bridge over a one-year period. The t location-scale distribution was shown to be a better candidate function for frequencies of lower modes. On the other hand, the burr distribution provided the best fitting to the higher modes which are sensitive to the temperature. In addition, wind-induced variation of modal parameters was also investigated. It was observed that both the damping ratios and modal forces increased during the period of typhoon excitations. Meanwhile, the modal damping ratios exhibit significant correlation with the spectral intensities of the corresponding modal forces.

  18. On the selection of user-defined parameters in data-driven stochastic subspace identification

    NASA Astrophysics Data System (ADS)

    Priori, C.; De Angelis, M.; Betti, R.

    2018-02-01

    The paper focuses on the time domain output-only technique called Data-Driven Stochastic Subspace Identification (DD-SSI); in order to identify modal models (frequencies, damping ratios and mode shapes), the role of its user-defined parameters is studied, and rules to determine their minimum values are proposed. Such investigation is carried out using, first, the time histories of structural responses to stationary excitations, with a large number of samples, satisfying the hypothesis on the input imposed by DD-SSI. Then, the case of non-stationary seismic excitations with a reduced number of samples is considered. In this paper, partitions of the data matrix different from the one proposed in the SSI literature are investigated, together with the influence of different choices of the weighting matrices. The study is carried out considering two different applications: (1) data obtained from vibration tests on a scaled structure and (2) in-situ tests on a reinforced concrete building. Referring to the former, the identification of a steel frame structure tested on a shaking table is performed using its responses in terms of absolute accelerations to a stationary (white noise) base excitation and to non-stationary seismic excitations of low intensity. Black-box and modal models are identified in both cases and the results are compared with those from an input-output subspace technique. With regards to the latter, the identification of a complex hospital building is conducted using data obtained from ambient vibration tests.

  19. Analysis of pilot control strategy

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Hanson, G. D.; Jewell, W. F.; Clement, W. F.

    1983-01-01

    Methods for nonintrusive identification of pilot control strategy and task execution dynamics are presented along with examples based on flight data. The specific analysis technique is Nonintrusive Parameter Identification Procedure (NIPIP), which is described in a companion user's guide (NASA CR-170398). Quantification of pilot control strategy and task execution dynamics is discussed in general terms followed by a more detailed description of how NIPIP can be applied. The examples are based on flight data obtained from the NASA F-8 digital fly by wire airplane. These examples involve various piloting tasks and control axes as well as a demonstration of how the dynamics of the aircraft itself are identified using NIPIP. Application of NIPIP to the AFTI/F-16 flight test program is discussed. Recommendations are made for flight test applications in general and refinement of NIPIP to include interactive computer graphics.

  20. Real-time diagnostics of the reusable rocket engine using on-line system identification

    NASA Technical Reports Server (NTRS)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1990-01-01

    A model-based failure diagnosis system has been proposed for real-time diagnosis of SSME failures. Actuation, sensor, and system degradation failure modes are all considered by the proposed system. In the case of SSME actuation failures, it was shown that real-time identification can effectively be used for failure diagnosis purposes. It is a direct approach since it reduces the detection, isolation, and the estimation of the extent of the failures to the comparison of parameter values before and after the failure. As with any model-based failure detection system, the proposed approach requires a fault model that embodies the essential characteristics of the failure process. The proposed diagnosis approach has the added advantage that it can be used as part of an intelligent control system for failure accommodation purposes.

  1. Electro-thermal battery model identification for automotive applications

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Yurkovich, S.; Guezennec, Y.; Yurkovich, B. J.

    This paper describes a model identification procedure for identifying an electro-thermal model of lithium ion batteries used in automotive applications. The dynamic model structure adopted is based on an equivalent circuit model whose parameters are scheduled on the state-of-charge, temperature, and current direction. Linear spline functions are used as the functional form for the parametric dependence. The model identified in this way is valid inside a large range of temperatures and state-of-charge, so that the resulting model can be used for automotive applications such as on-board estimation of the state-of-charge and state-of-health. The model coefficients are identified using a multiple step genetic algorithm based optimization procedure designed for large scale optimization problems. The validity of the procedure is demonstrated experimentally for an A123 lithium ion iron-phosphate battery.

  2. Performance Evaluation and Parameter Identification on DROID III

    NASA Technical Reports Server (NTRS)

    Plumb, Julianna J.

    2011-01-01

    The DROID III project consisted of two main parts. The former, performance evaluation, focused on the performance characteristics of the aircraft such as lift to drag ratio, thrust required for level flight, and rate of climb. The latter, parameter identification, focused on finding the aerodynamic coefficients for the aircraft using a system that creates a mathematical model to match the flight data of doublet maneuvers and the aircraft s response. Both portions of the project called for flight testing and that data is now available on account of this project. The conclusion of the project is that the performance evaluation data is well-within desired standards but could be improved with a thrust model, and that parameter identification is still in need of more data processing but seems to produce reasonable results thus far.

  3. An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Cooper, J. E.; Wright, J. R.

    1987-01-01

    A modification to the Eigensystem Realization Algorithm (ERA) for modal parameter identification is presented in this paper. The ERA minimum order realization approach using singular value decomposition is combined with the philosophy of the Correlation Fit method in state space form such that response data correlations rather than actual response values are used for modal parameter identification. This new method, the ERA using data correlations (ERA/DC), reduces bias errors due to noise corruption significantly without the need for model overspecification. This method is tested using simulated five-degree-of-freedom system responses corrupted by measurement noise. It is found for this case that, when model overspecification is permitted and a minimum order solution obtained via singular value truncation, the results from the two methods are of similar quality.

  4. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    NASA Astrophysics Data System (ADS)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control of the WTG while the second controller manipulates the reactive power control of the WTG using the current magnitude as the feedback signal. Finally, the dissertation proposes a parameter identification method for identifying and verifying the reactive power control parameters of WTGs. Using voltage and current measurements of a wind unit as an input, the proposed method estimates an optimal set of parameters such that the output current of a standalone WTG model better approximates the measured signal. Because WTG are nonlinear systems, the identification method is solved by a Gauss-Newton iteration used to calculate the solution of a nonlinear least-squares problem. The effectiveness of the proposed method is illustrated using a set of simulated data and actual PMU recordings.

  5. Workflow for Criticality Assessment Applied in Biopharmaceutical Process Validation Stage 1.

    PubMed

    Zahel, Thomas; Marschall, Lukas; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Mueller, Eric M; Murphy, Patrick; Natschläger, Thomas; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph

    2017-10-12

    Identification of critical process parameters that impact product quality is a central task during regulatory requested process validation. Commonly, this is done via design of experiments and identification of parameters significantly impacting product quality (rejection of the null hypothesis that the effect equals 0). However, parameters which show a large uncertainty and might result in an undesirable product quality limit critical to the product, may be missed. This might occur during the evaluation of experiments since residual/un-modelled variance in the experiments is larger than expected a priori. Estimation of such a risk is the task of the presented novel retrospective power analysis permutation test. This is evaluated using a data set for two unit operations established during characterization of a biopharmaceutical process in industry. The results show that, for one unit operation, the observed variance in the experiments is much larger than expected a priori, resulting in low power levels for all non-significant parameters. Moreover, we present a workflow of how to mitigate the risk associated with overlooked parameter effects. This enables a statistically sound identification of critical process parameters. The developed workflow will substantially support industry in delivering constant product quality, reduce process variance and increase patient safety.

  6. Identification of atypical flight patterns

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris (Inventor)

    2005-01-01

    Method and system for analyzing aircraft data, including multiple selected flight parameters for a selected phase of a selected flight, and for determining when the selected phase of the selected flight is atypical, when compared with corresponding data for the same phase for other similar flights. A flight signature is computed using continuous-valued and discrete-valued flight parameters for the selected flight parameters and is optionally compared with a statistical distribution of other observed flight signatures, yielding atypicality scores for the same phase for other similar flights. A cluster analysis is optionally applied to the flight signatures to define an optimal collection of clusters. A level of atypicality for a selected flight is estimated, based upon an index associated with the cluster analysis.

  7. On-orbit identifying the inertia parameters of space robotic systems using simple equivalent dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Wenfu; Hu, Zhonghua; Zhang, Yu; Liang, Bin

    2017-03-01

    After being launched into space to perform some tasks, the inertia parameters of a space robotic system may change due to fuel consumption, hardware reconfiguration, target capturing, and so on. For precision control and simulation, it is required to identify these parameters on orbit. This paper proposes an effective method for identifying the complete inertia parameters (including the mass, inertia tensor and center of mass position) of a space robotic system. The key to the method is to identify two types of simple dynamics systems: equivalent single-body and two-body systems. For the former, all of the joints are locked into a designed configuration and the thrusters are used for orbital maneuvering. The object function for optimization is defined in terms of acceleration and velocity of the equivalent single body. For the latter, only one joint is unlocked and driven to move along a planned (exiting) trajectory in free-floating mode. The object function is defined based on the linear and angular momentum equations. Then, the parameter identification problems are transformed into non-linear optimization problems. The Particle Swarm Optimization (PSO) algorithm is applied to determine the optimal parameters, i.e. the complete dynamic parameters of the two equivalent systems. By sequentially unlocking the 1st to nth joints (or unlocking the nth to 1st joints), the mass properties of body 0 to n (or n to 0) are completely identified. For the proposed method, only simple dynamics equations are needed for identification. The excitation motion (orbit maneuvering and joint motion) is also easily realized. Moreover, the method does not require prior knowledge of the mass properties of any body. It is general and practical for identifying a space robotic system on-orbit.

  8. Application of Differential Evolutionary Optimization Methodology for Parameter Structure Identification in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Nishikawa, T.

    2013-12-01

    With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.

  9. Identification and Forecasting in Mortality Models

    PubMed Central

    Nielsen, Jens P.

    2014-01-01

    Mortality models often have inbuilt identification issues challenging the statistician. The statistician can choose to work with well-defined freely varying parameters, derived as maximal invariants in this paper, or with ad hoc identified parameters which at first glance seem more intuitive, but which can introduce a number of unnecessary challenges. In this paper we describe the methodological advantages from using the maximal invariant parameterisation and we go through the extra methodological challenges a statistician has to deal with when insisting on working with ad hoc identifications. These challenges are broadly similar in frequentist and in Bayesian setups. We also go through a number of examples from the literature where ad hoc identifications have been preferred in the statistical analyses. PMID:24987729

  10. Speaker gender identification based on majority vote classifiers

    NASA Astrophysics Data System (ADS)

    Mezghani, Eya; Charfeddine, Maha; Nicolas, Henri; Ben Amar, Chokri

    2017-03-01

    Speaker gender identification is considered among the most important tools in several multimedia applications namely in automatic speech recognition, interactive voice response systems and audio browsing systems. Gender identification systems performance is closely linked to the selected feature set and the employed classification model. Typical techniques are based on selecting the best performing classification method or searching optimum tuning of one classifier parameters through experimentation. In this paper, we consider a relevant and rich set of features involving pitch, MFCCs as well as other temporal and frequency-domain descriptors. Five classification models including decision tree, discriminant analysis, nave Bayes, support vector machine and k-nearest neighbor was experimented. The three best perming classifiers among the five ones will contribute by majority voting between their scores. Experimentations were performed on three different datasets spoken in three languages: English, German and Arabic in order to validate language independency of the proposed scheme. Results confirm that the presented system has reached a satisfying accuracy rate and promising classification performance thanks to the discriminating abilities and diversity of the used features combined with mid-level statistics.

  11. Detection, recognition, identification, and tracking of military vehicles using biomimetic intelligence

    NASA Astrophysics Data System (ADS)

    Pace, Paul W.; Sutherland, John

    2001-10-01

    This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.

  12. System identification of timber masonry walls using shaking table test

    NASA Astrophysics Data System (ADS)

    Roy, Timir B.; Guerreiro, Luis; Bagchi, Ashutosh

    2017-04-01

    Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as: bridges, dams, high rise buildings etc. There had been substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as: natural frequency, modal damping and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototype of such wall has been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.

  13. Parameter Estimation of Computationally Expensive Watershed Models Through Efficient Multi-objective Optimization and Interactive Decision Analytics

    NASA Astrophysics Data System (ADS)

    Akhtar, Taimoor; Shoemaker, Christine

    2016-04-01

    Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual analytics framework for decision support in selection of one parameter combination from the alternatives identified in Stage 2. HAMS is applied for calibration of flow parameters of a SWAT model, (Soil and Water Assessment Tool) designed to simulate flow in the Cannonsville watershed in upstate New York. Results from the application of HAMS to Cannonsville indicate that efficient multi-objective optimization and interactive visual and metric based analytics can bridge the gap between the effective use of both automatic and manual strategies for parameter estimation of computationally expensive watershed models.

  14. K-nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: Revisited

    NASA Astrophysics Data System (ADS)

    Wang, Dong

    2016-03-01

    Gears are the most commonly used components in mechanical transmission systems. Their failures may cause transmission system breakdown and result in economic loss. Identification of different gear crack levels is important to prevent any unexpected gear failure because gear cracks lead to gear tooth breakage. Signal processing based methods mainly require expertize to explain gear fault signatures which is usually not easy to be achieved by ordinary users. In order to automatically identify different gear crack levels, intelligent gear crack identification methods should be developed. The previous case studies experimentally proved that K-nearest neighbors based methods exhibit high prediction accuracies for identification of 3 different gear crack levels under different motor speeds and loads. In this short communication, to further enhance prediction accuracies of existing K-nearest neighbors based methods and extend identification of 3 different gear crack levels to identification of 5 different gear crack levels, redundant statistical features are constructed by using Daubechies 44 (db44) binary wavelet packet transform at different wavelet decomposition levels, prior to the use of a K-nearest neighbors method. The dimensionality of redundant statistical features is 620, which provides richer gear fault signatures. Since many of these statistical features are redundant and highly correlated with each other, dimensionality reduction of redundant statistical features is conducted to obtain new significant statistical features. At last, the K-nearest neighbors method is used to identify 5 different gear crack levels under different motor speeds and loads. A case study including 3 experiments is investigated to demonstrate that the developed method provides higher prediction accuracies than the existing K-nearest neighbors based methods for recognizing different gear crack levels under different motor speeds and loads. Based on the new significant statistical features, some other popular statistical models including linear discriminant analysis, quadratic discriminant analysis, classification and regression tree and naive Bayes classifier, are compared with the developed method. The results show that the developed method has the highest prediction accuracies among these statistical models. Additionally, selection of the number of new significant features and parameter selection of K-nearest neighbors are thoroughly investigated.

  15. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  16. Plan View Pattern Control for Steel Plates through Constrained Locally Weighted Regression

    NASA Astrophysics Data System (ADS)

    Shigemori, Hiroyasu; Nambu, Koji; Nagao, Ryo; Araki, Tadashi; Mizushima, Narihito; Kano, Manabu; Hasebe, Shinji

    A technique for performing parameter identification in a locally weighted regression model using foresight information on the physical properties of the object of interest as constraints was proposed. This method was applied to plan view pattern control of steel plates, and a reduction of shape nonconformity (crop) at the plate head end was confirmed by computer simulation based on real operation data.

  17. Host-Based Systemic Network Obfuscation System for Windows

    DTIC Science & Technology

    2011-06-01

    speed, CPU speed, and memory size. These additional parameters are control variables and do not change throughout the experiment. The applications...physical median that passes the network traffic, such as a wireless signal or Ethernet cable and does not need obfuscation. The colored layers in Figure...Gul09] Ron Gula, “ Enchanced Operating System Identification with Nessus.” [Online]. Available: http://blog.tenablesecurity.com/2009/02

  18. Classification of local and regional events in central Europe based on estimates of S-wave spectral variance

    NASA Astrophysics Data System (ADS)

    Koch, Karl

    2002-10-01

    The Vogtland region, in the border region of Germany and the Czech Republic, is of special interest for the identification of seismic events on a local and regional scale, since both earthquakes and explosions occur frequently in the same area, and thus are relevant for discrimination research for verification of the Comprehensive Nuclear Test Ban Treaty. Previous research on event discrimination using spectral decay and variance from data recorded by the GERESS array indicated that spectral variance determined for the S phase for the seismic events in the Vogtland region seems to be the most promising parameter for event discrimination, because this parameter provides for almost complete separation of the earthquake and explosion populations. Almost the entire set of Vogtland events used in this research and more than 3000 local events detected in Germany in 1998 and 1999 were analysed to determine spectral slopes and variance for the P- and S-wave windows from stacked spectra of recordings at the GERESS array. The results suggest that small values for the spectral variance are associated not only with earthquakes in the Vogtland region, but also with earthquakes in other parts of Germany and neighbouring countries. While mining blasts show larger spectral variance values, mining-induced events yield a wide range of values, for example, in the Lubin area. A threshold-based identification scheme was applied; almost all events classified as earthquakes are found in seismically active regions. While the earthquakes are uniformly distributed throughout the day, events classified as explosions correlate with normal working hours, which is when blasting is done in Germany. In this study spectral variance provides good event discrimination for events in other parts of Germany, not only for the Vogtland region, showing that this identification parameter may be transported to other geological regions.

  19. Kalman and particle filtering methods for full vehicle and tyre identification

    NASA Astrophysics Data System (ADS)

    Bogdanski, Karol; Best, Matthew C.

    2018-05-01

    This paper considers identification of all significant vehicle handling dynamics of a test vehicle, including identification of a combined-slip tyre model, using only those sensors currently available on most vehicle controller area network buses. Using an appropriately simple but efficient model structure, all of the independent parameters are found from test vehicle data, with the resulting model accuracy demonstrated on independent validation data. The paper extends previous work on augmented Kalman Filter state estimators to concentrate wholly on parameter identification. It also serves as a review of three alternative filtering methods; identifying forms of the unscented Kalman filter, extended Kalman filter and particle filter are proposed and compared for effectiveness, complexity and computational efficiency. All three filters are suited to applications of system identification and the Kalman Filters can also operate in real-time in on-line model predictive controllers or estimators.

  20. Smell identification of spices using nanomechanical membrane-type surface stress sensors

    NASA Astrophysics Data System (ADS)

    Imamura, Gaku; Shiba, Kota; Yoshikawa, Genki

    2016-11-01

    Artificial olfaction, that is, a chemical sensor system that identifies samples by smell, has not been fully achieved because of the complex perceptional mechanism of olfaction. To realize an artificial olfactory system, not only an array of chemical sensors but also a valid feature extraction method is required. In this study, we achieved the identification of spices by smell using nanomechanical membrane-type surface stress sensors (MSS). Features were extracted from the sensing signals obtained from four MSS coated with different types of polymers, focusing on the chemical interactions between polymers and odor molecules. The principal component analysis (PCA) of the dataset consisting of the extracted parameters demonstrated the separation of each spice on the scatter plot. We discuss the strategy for improving odor identification based on the relationship between the results of PCA and the chemical species in the odors.

  1. Multivariable frequency domain identification via 2-norm minimization

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1992-01-01

    The author develops a computational approach to multivariable frequency domain identification, based on 2-norm minimization. In particular, a Gauss-Newton (GN) iteration is developed to minimize the 2-norm of the error between frequency domain data and a matrix fraction transfer function estimate. To improve the global performance of the optimization algorithm, the GN iteration is initialized using the solution to a particular sequentially reweighted least squares problem, denoted as the SK iteration. The least squares problems which arise from both the SK and GN iterations are shown to involve sparse matrices with identical block structure. A sparse matrix QR factorization method is developed to exploit the special block structure, and to efficiently compute the least squares solution. A numerical example involving the identification of a multiple-input multiple-output (MIMO) plant having 286 unknown parameters is given to illustrate the effectiveness of the algorithm.

  2. Identification of diffusive transport properties of poly(vinyl alcohol) hydrogels from reservoir test.

    PubMed

    Kazimierska-Drobny, Katarzyna; Kaczmarek, Mariusz

    2013-12-01

    In this paper the identification of diffusion coefficient, retardation factor and surface distribution coefficient for selected salts in poly(vinyl alcohol) hydrogels is performed. The identification of the transport parameters is based on the previously developed inverse problem technique using experimental data from the reservoir test and the solution of the diffusive transport equation with linear equilibrium sorption. The estimated values of diffusion coefficient are: for physiological fluid (6.30±0.10)×10(-10) m(2)/s, for 1 M NaCl (6.42±0.39)×10(-10) m(2)/s, and for 1 M KCl (7.94±0.38)×10(-10) m(2)/s. The retardation factor for all tested materials and salts is equal or close to one. The average value of the effective surface distribution coefficient is equal to 0.5. © 2013 Elsevier B.V. All rights reserved.

  3. Bayesian Modeling for Identification and Estimation of the Learning Effects of Pointing Tasks

    NASA Astrophysics Data System (ADS)

    Kyo, Koki

    Recently, in the field of human-computer interaction, a model containing the systematic factor and human factor has been proposed to evaluate the performance of the input devices of a computer. This is called the SH-model. In this paper, in order to extend the range of application of the SH-model, we propose some new models based on the Box-Cox transformation and apply a Bayesian modeling method for identification and estimation of the learning effects of pointing tasks. We consider the parameters describing the learning effect as random variables and introduce smoothness priors for them. Illustrative results show that the newly-proposed models work well.

  4. [Identification of pyrrosiae folium and its adulterants based on psbA-trnH sequence].

    PubMed

    Zhang, Ya-Qin; Shi, Yue; Song, Ming; Lin, Yun-Han; Ma, Xiao-Xi; Sun, Wei; Xiang, Li; Liu, Xi

    2014-06-01

    In this study, the psbA-trnH sequence as DNA barcode was used to evaluate the accuracy and stability for identification pteridophyte medicinal material Pyrrosiae Foliumas from adulterants. Genomic DNA from 106 samples were extracted successfully. The Kimura 2-Parameter (K2P) distances and ML tree were calculated using software MEGA 6.0. The intra-specific genetic distances of 3 original plants were lower than inter-specific genetic distances of adulterants. The ML tree indicated that Pyrrosiae Folium can be distinguished from its adulterants obviously. Therefore, the psbA-trnH sequence as a barcode of the pteridophyte, can accurately and stably distinguish Pyrrosiae Folium from its adulterants.

  5. Chaos synchronization and Nelder-Mead search for parameter estimation in nonlinear pharmacological systems: Estimating tumor antigenicity in a model of immunotherapy.

    PubMed

    Pillai, Nikhil; Craig, Morgan; Dokoumetzidis, Aristeidis; Schwartz, Sorell L; Bies, Robert; Freedman, Immanuel

    2018-06-19

    In mathematical pharmacology, models are constructed to confer a robust method for optimizing treatment. The predictive capability of pharmacological models depends heavily on the ability to track the system and to accurately determine parameters with reference to the sensitivity in projected outcomes. To closely track chaotic systems, one may choose to apply chaos synchronization. An advantageous byproduct of this methodology is the ability to quantify model parameters. In this paper, we illustrate the use of chaos synchronization combined with Nelder-Mead search to estimate parameters of the well-known Kirschner-Panetta model of IL-2 immunotherapy from noisy data. Chaos synchronization with Nelder-Mead search is shown to provide more accurate and reliable estimates than Nelder-Mead search based on an extended least squares (ELS) objective function. Our results underline the strength of this approach to parameter estimation and provide a broader framework of parameter identification for nonlinear models in pharmacology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Development and system identification of a light unmanned aircraft for flying qualities research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, M.E.; Andrisani, D. II

    This paper describes the design, construction, flight testing and system identification of a light weight remotely piloted aircraft and its use in studying flying qualities in the longitudinal axis. The short period approximation to the longitudinal dynamics of the aircraft was used. Parameters in this model were determined a priori using various empirical estimators. These parameters were then estimated from flight data using a maximum likelihood parameter identification method. A comparison of the parameter values revealed that the stability derivatives obtained from the empirical estimators were reasonably close to the flight test results. However, the control derivatives determined by themore » empirical estimators were too large by a factor of two. The aircraft was also flown to determine how the longitudinal flying qualities of light weight remotely piloted aircraft compared to full size manned aircraft. It was shown that light weight remotely piloted aircraft require much faster short period dynamics to achieve level I flying qualities in an up-and-away flight task.« less

  7. Linear system identification via backward-time observer models

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh Q.

    1992-01-01

    Presented here is an algorithm to compute the Markov parameters of a backward-time observer for a backward-time model from experimental input and output data. The backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) for the backward-time system identification. The identified backward-time system Markov parameters are used in the Eigensystem Realization Algorithm to identify a backward-time state-space model, which can be easily converted to the usual forward-time representation. If one reverses time in the model to be identified, what were damped true system modes become modes with negative damping, growing as the reversed time increases. On the other hand, the noise modes in the identification still maintain the property that they are stable. The shift from positive damping to negative damping of the true system modes allows one to distinguish these modes from noise modes. Experimental results are given to illustrate when and to what extent this concept works.

  8. Modeling and parameter identification of the simultaneous saccharification-fermentation process for ethanol production.

    PubMed

    Ochoa, Silvia; Yoo, Ahrim; Repke, Jens-Uwe; Wozny, Günter; Yang, Dae Ryook

    2007-01-01

    Despite many environmental advantages of using alcohol as a fuel, there are still serious questions about its economical feasibility when compared with oil-based fuels. The bioethanol industry needs to be more competitive, and therefore, all stages of its production process must be simple, inexpensive, efficient, and "easy" to control. In recent years, there have been significant improvements in process design, such as in the purification technologies for ethanol dehydration (molecular sieves, pressure swing adsorption, pervaporation, etc.) and in genetic modifications of microbial strains. However, a lot of research effort is still required in optimization and control, where the first step is the development of suitable models of the process, which can be used as a simulated plant, as a soft sensor or as part of the control algorithm. Thus, toward developing good, reliable, and simple but highly predictive models that can be used in the future for optimization and process control applications, in this paper an unstructured and a cybernetic model are proposed and compared for the simultaneous saccharification-fermentation process (SSF) for the production of ethanol from starch by a recombinant Saccharomyces cerevisiae strain. The cybernetic model proposed is a new one that considers the degradation of starch not only into glucose but also into dextrins (reducing sugars) and takes into account the intracellular reactions occurring inside the cells, giving a more detailed description of the process. Furthermore, an identification procedure based on the Metropolis Monte Carlo optimization method coupled with a sensitivity analysis is proposed for the identification of the model's parameters, employing experimental data reported in the literature.

  9. Experimental validation of a new heterogeneous mechanical test design

    NASA Astrophysics Data System (ADS)

    Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.

    2018-05-01

    Standard material parameters identification strategies generally use an extensive number of classical tests for collecting the required experimental data. However, a great effort has been made recently by the scientific and industrial communities to support this experimental database on heterogeneous tests. These tests can provide richer information on the material behavior allowing the identification of a more complete set of material parameters. This is a result of the recent development of full-field measurements techniques, like digital image correlation (DIC), that can capture the heterogeneous deformation fields on the specimen surface during the test. Recently, new specimen geometries were designed to enhance the richness of the strain field and capture supplementary strain states. The butterfly specimen is an example of these new geometries, designed through a numerical optimization procedure where an indicator capable of evaluating the heterogeneity and the richness of strain information. However, no experimental validation was yet performed. The aim of this work is to experimentally validate the heterogeneous butterfly mechanical test in the parameter identification framework. For this aim, DIC technique and a Finite Element Model Up-date inverse strategy are used together for the parameter identification of a DC04 steel, as well as the calculation of the indicator. The experimental tests are carried out in a universal testing machine with the ARAMIS measuring system to provide the strain states on the specimen surface. The identification strategy is accomplished with the data obtained from the experimental tests and the results are compared to a reference numerical solution.

  10. Parameter identification using a creeping-random-search algorithm

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.

    1971-01-01

    A creeping-random-search algorithm is applied to different types of problems in the field of parameter identification. The studies are intended to demonstrate that a random-search algorithm can be applied successfully to these various problems, which often cannot be handled by conventional deterministic methods, and, also, to introduce methods that speed convergence to an extremal of the problem under investigation. Six two-parameter identification problems with analytic solutions are solved, and two application problems are discussed in some detail. Results of the study show that a modified version of the basic creeping-random-search algorithm chosen does speed convergence in comparison with the unmodified version. The results also show that the algorithm can successfully solve problems that contain limits on state or control variables, inequality constraints (both independent and dependent, and linear and nonlinear), or stochastic models.

  11. System identification of a tied arch bridge using reference-based wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hietbrink, Colby; Whelan, Matthew J.

    2012-04-01

    Vibration-based methods of structural health monitoring are generally founded on the principle that localized damage to a structure would exhibit changes within the global dynamic response. Upon this basis, accelerometers provide a unique health monitoring strategy in that a distributed network of sensors provides the technical feasibility to isolate the onset of damage without requiring that any sensor be located exactly on or in close proximity to the damage. While in theory this may be sufficient, practical experience has shown significant improvement in the application of damage diagnostic routines when mode shapes characterized by strongly localized behavior of specific elements are captured by the instrumentation array. In traditional applications, this presents a challenge since the cost and complexity of cable-based systems often effectively limits the number of instrumented locations thereby constraining the modal parameter extraction to only global modal responses. The advent of the low-cost RF chip transceiver with wireless networking capabilities has afforded a means by which a substantial number of output locations can be measured through referencebased testing using large-scale wireless sensor networks. In the current study, this approach was applied to the Prairie du Chien Bridge over the Mississippi River to extract operational mode shapes with high spatial reconstruction, including strongly localized modes. The tied arch bridge was instrumented at over 230 locations with single-axis accelerometers conditioned and acquired over a high-rate lossless wireless sensor network with simultaneous sampling capabilities. Acquisition of the dynamic response of the web plates of the arch rib was specifically targeted within the instrumentation array for diagnostic purposes. Reference-based operational modal analysis of the full structure through data-driven stochastic subspace identification is presented alongside finite element analysis results for confirmation of modal parameter plausibility. Particular emphasis is placed on the identification and reconstruction of modal response with large contribution from the arch rib web plates.

  12. Detecting the position of the moving-iron solenoid by non-displacement sensor based on parameter identification of flux linkage characteristics

    NASA Astrophysics Data System (ADS)

    Wang, Xuping; Quan, Long; Xiong, Guangyu

    2013-11-01

    Currently, most researches use signals, such as the coil current or voltage of solenoid, to identify parameters; typically, parameter identification method based on variation rate of coil current is applied for position estimation. The problem exists in these researches that the detected signals are prone to interference and difficult to obtain. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which adds a new group of secondary winding to the coil of the ordinary switching electromagnet. On the basis of electromagnetic coupling theory analysis and simulation research of the magnetic field regarding the primary and secondary winding coils, and in accordance with the fact that under PWM control mode varying core position and operating current of windings produce different characteristic of flux increment of the secondary winding. The flux increment of the electromagnet winding can be obtained by conducting time domain integration for the induced voltage signal of the extracted secondary winding, and the core position from the two-dimensional fitting curve of the operating winding current and flux-linkage characteristic quantity of solenoid are calculated. The detecting and testing system of solenoid core position is developed based on the theoretical research. The testing results show that the flux characteristic quantity of switching electromagnet magnetic circuit is able to effectively show the core position and thus to accomplish the non-displacement transducer detection of the said core position of the switching electromagnet. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which provides a new theory and method for switch solenoid to control the proportional valve.

  13. An IT-enabled supply chain model: a simulation study

    NASA Astrophysics Data System (ADS)

    Cannella, Salvatore; Framinan, Jose M.; Barbosa-Póvoa, Ana

    2014-11-01

    During the last decades, supply chain collaboration practices and the underlying enabling technologies have evolved from the classical electronic data interchange (EDI) approach to a web-based and radio frequency identification (RFID)-enabled collaboration. In this field, most of the literature has focused on the study of optimal parameters for reducing the total cost of suppliers, by adopting operational research (OR) techniques. Herein we are interested in showing that the considered information technology (IT)-enabled structure is resilient, that is, it works well across a reasonably broad range of parameter settings. By adopting a methodological approach based on system dynamics, we study a multi-tier collaborative supply chain. Results show that the IT-enabled supply chain improves operational performance and customer service level. Nonetheless, benefits for geographically dispersed networks are of minor entity.

  14. Definitions of components of the master water data index maintained by the National Water Data Exchange

    USGS Publications Warehouse

    Perry, R.A.; Williams, O.O.

    1982-01-01

    The Master Water Data Index is a computerized data base developed and maintained by the National Water Data Exchange (NAWDEX). The Index contains information about water-data collection sites. This information includes: the identification of new sites for which water data are available, the locations of these sites, the type of site, the data-collection organization, the types of data available, the major water-data parameters for which data are available, the frequency at which these parameters are measured, the period of time for which data are available, and the medial in which the data are stored. This document, commonly referred to as the MWDI data dictionary, contains a definition and description of each component of the Master Water Data Index data base. (USGS)

  15. Emergence of forensic podiatry--A novel sub-discipline of forensic sciences.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; DiMaggio, John A

    2015-10-01

    "Forensic podiatry is defined as the application of sound and researched podiatric knowledge and experience in forensic investigations; to show the association of an individual with a scene of crime, or to answer any other legal question concerned with the foot or footwear that requires knowledge of the functioning foot". Forensic podiatrists can contribute to forensic identification by associating the pedal evidence with the criminal or crime scene. The most common pedal evidence collected from the crime scene is in the form of footprints, shoeprints and their tracks and trails. Forensic podiatrists can establish identity of the individuals from the footprints in many ways. The analysis of bare footprints involves the identification based on the individualistic features like flat footedness, ridges, humps, creases, an extra toe, missing toe, corns, cuts, cracks, pits, deformities, and various features of the toe and heel region. All these individualistic features can link the criminal with the crime. In addition to these, parameters of body size like stature and body weight as well as sex can also be estimated by using anthropometric methods. If a series of footprints are recovered from the crime scene, then parameters of the gait analysis such as stride/step length and general movement of the criminal can be traced. Apart from these, a newly established biometric parameter of the footprints i.e. footprint ridge density can also be evaluated for personal identification. Careful analysis of the footprint ridge density can give an idea about the sex of the criminal whose footprints are recovered at the scene which can further help to reduce the burden of the investigating officer as the investigations then may be directed toward either a male suspect or a female suspect accordingly. This paper highlights various aspects of Forensic Podiatry and discusses the different methods of personal identification related to pedal evidence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Unsteady hovering wake parameters identified from dynamic model tests, part 1

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Crews, S. T.

    1977-01-01

    The development of a 4-bladed model rotor is reported that can be excited with a simple eccentric mechanism in progressing and regressing modes with either harmonic or transient inputs. Parameter identification methods were applied to the problem of extracting parameters for linear perturbation models, including rotor dynamic inflow effects, from the measured blade flapping responses to transient pitch stirring excitations. These perturbation models were then used to predict blade flapping response to other pitch stirring transient inputs, and rotor wake and blade flapping responses to harmonic inputs. The viability and utility of using parameter identification methods for extracting the perturbation models from transients are demonstrated through these combined analytical and experimental studies.

  17. Rotorcraft system identification techniques for handling qualities and stability and control evaluation

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Gupta, N. K.; Hansen, R. S.

    1978-01-01

    An integrated approach to rotorcraft system identification is described. This approach consists of sequential application of (1) data filtering to estimate states of the system and sensor errors, (2) model structure estimation to isolate significant model effects, and (3) parameter identification to quantify the coefficient of the model. An input design algorithm is described which can be used to design control inputs which maximize parameter estimation accuracy. Details of each aspect of the rotorcraft identification approach are given. Examples of both simulated and actual flight data processing are given to illustrate each phase of processing. The procedure is shown to provide means of calibrating sensor errors in flight data, quantifying high order state variable models from the flight data, and consequently computing related stability and control design models.

  18. Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring

    PubMed Central

    Hu, Hai-Feng

    2018-01-01

    As bearings are critical components of a mechanical system, it is important to characterize their wear states and evaluate health conditions. In this paper, a novel approach for analyzing the relationship between online oil multi-parameter monitoring samples and bearing wear states has been proposed based on an improved gray k-means clustering model (G-KCM). First, an online monitoring system with multiple sensors for bearings is established, obtaining oil multi-parameter data and vibration signals for bearings through the whole lifetime. Secondly, a gray correlation degree distance matrix is generated using a gray correlation model (GCM) to express the relationship of oil monitoring samples at different times and then a KCM is applied to cluster the matrix. Analysis and experimental results show that there is an obvious correspondence that state changing coincides basically in time between the lubricants’ multi-parameters and the bearings’ wear states. It also has shown that online oil samples with multi-parameters have early wear failure prediction ability for bearings superior to vibration signals. It is expected to realize online oil monitoring and evaluation for bearing health condition and to provide a novel approach for early identification of bearing-related failure modes. PMID:29621175

  19. Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring.

    PubMed

    Wang, Si-Yuan; Yang, Ding-Xin; Hu, Hai-Feng

    2018-04-05

    As bearings are critical components of a mechanical system, it is important to characterize their wear states and evaluate health conditions. In this paper, a novel approach for analyzing the relationship between online oil multi-parameter monitoring samples and bearing wear states has been proposed based on an improved gray k-means clustering model (G-KCM). First, an online monitoring system with multiple sensors for bearings is established, obtaining oil multi-parameter data and vibration signals for bearings through the whole lifetime. Secondly, a gray correlation degree distance matrix is generated using a gray correlation model (GCM) to express the relationship of oil monitoring samples at different times and then a KCM is applied to cluster the matrix. Analysis and experimental results show that there is an obvious correspondence that state changing coincides basically in time between the lubricants' multi-parameters and the bearings' wear states. It also has shown that online oil samples with multi-parameters have early wear failure prediction ability for bearings superior to vibration signals. It is expected to realize online oil monitoring and evaluation for bearing health condition and to provide a novel approach for early identification of bearing-related failure modes.

  20. An approximation theory for nonlinear partial differential equations with applications to identification and control

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Kunisch, K.

    1982-01-01

    Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.

  1. Evaluation of two outlier-detection-based methods for detecting tissue-selective genes from microarray data.

    PubMed

    Kadota, Koji; Konishi, Tomokazu; Shimizu, Kentaro

    2007-05-01

    Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent's non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent's method is not suitable for ROKU.

  2. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras.

    PubMed

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-08-30

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.

  3. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras

    PubMed Central

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-01-01

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme. PMID:27589748

  4. Global Sensitivity Analysis for Process Identification under Model Uncertainty

    NASA Astrophysics Data System (ADS)

    Ye, M.; Dai, H.; Walker, A. P.; Shi, L.; Yang, J.

    2015-12-01

    The environmental system consists of various physical, chemical, and biological processes, and environmental models are always built to simulate these processes and their interactions. For model building, improvement, and validation, it is necessary to identify important processes so that limited resources can be used to better characterize the processes. While global sensitivity analysis has been widely used to identify important processes, the process identification is always based on deterministic process conceptualization that uses a single model for representing a process. However, environmental systems are complex, and it happens often that a single process may be simulated by multiple alternative models. Ignoring the model uncertainty in process identification may lead to biased identification in that identified important processes may not be so in the real world. This study addresses this problem by developing a new method of global sensitivity analysis for process identification. The new method is based on the concept of Sobol sensitivity analysis and model averaging. Similar to the Sobol sensitivity analysis to identify important parameters, our new method evaluates variance change when a process is fixed at its different conceptualizations. The variance considers both parametric and model uncertainty using the method of model averaging. The method is demonstrated using a synthetic study of groundwater modeling that considers recharge process and parameterization process. Each process has two alternative models. Important processes of groundwater flow and transport are evaluated using our new method. The method is mathematically general, and can be applied to a wide range of environmental problems.

  5. New approach for point pollution source identification in rivers based on the backward probability method.

    PubMed

    Wang, Jiabiao; Zhao, Jianshi; Lei, Xiaohui; Wang, Hao

    2018-06-13

    Pollution risk from the discharge of industrial waste or accidental spills during transportation poses a considerable threat to the security of rivers. The ability to quickly identify the pollution source is extremely important to enable emergency disposal of pollutants. This study proposes a new approach for point source identification of sudden water pollution in rivers, which aims to determine where (source location), when (release time) and how much pollutant (released mass) was introduced into the river. Based on the backward probability method (BPM) and the linear regression model (LR), the proposed LR-BPM converts the ill-posed problem of source identification into an optimization model, which is solved using a Differential Evolution Algorithm (DEA). The decoupled parameters of released mass are not dependent on prior information, which improves the identification efficiency. A hypothetical case study with a different number of pollution sources was conducted to test the proposed approach, and the largest relative errors for identified location, release time, and released mass in all tests were not greater than 10%. Uncertainty in the LR-BPM is mainly due to a problem with model equifinality, but averaging the results of repeated tests greatly reduces errors. Furthermore, increasing the gauging sections further improves identification results. A real-world case study examines the applicability of the LR-BPM in practice, where it is demonstrated to be more accurate and time-saving than two existing approaches, Bayesian-MCMC and basic DEA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Study on Urban Heat Island Intensity Level Identification Based on an Improved Restricted Boltzmann Machine.

    PubMed

    Zhang, Yang; Jiang, Ping; Zhang, Hongyan; Cheng, Peng

    2018-01-23

    Thermal infrared remote sensing has become one of the main technology methods used for urban heat island research. When applying urban land surface temperature inversion of the thermal infrared band, problems with intensity level division arise because the method is subjective. However, this method is one of the few that performs heat island intensity level identification. This paper will build an intensity level identifier for an urban heat island, by using weak supervision and thought-based learning in an improved, restricted Boltzmann machine (RBM) model. The identifier automatically initializes the annotation and optimizes the model parameters sequentially until the target identifier is completed. The algorithm needs very little information about the weak labeling of the target training sample and generates an urban heat island intensity spatial distribution map. This study can provide reliable decision-making support for urban ecological planning and effective protection of urban ecological security. The experimental results showed the following: (1) The heat island effect in Wuhan is existent and intense. Heat island areas are widely distributed. The largest heat island area is in Wuhan, followed by the sub-green island. The total area encompassed by heat island and strong island levels accounts for 54.16% of the land in Wuhan. (2) Partially based on improved RBM identification, this method meets the research demands of determining the spatial distribution characteristics of the internal heat island effect; its identification accuracy is superior to that of comparable methods.

  7. Study on Urban Heat Island Intensity Level Identification Based on an Improved Restricted Boltzmann Machine

    PubMed Central

    Jiang, Ping; Zhang, Hongyan; Cheng, Peng

    2018-01-01

    Thermal infrared remote sensing has become one of the main technology methods used for urban heat island research. When applying urban land surface temperature inversion of the thermal infrared band, problems with intensity level division arise because the method is subjective. However, this method is one of the few that performs heat island intensity level identification. This paper will build an intensity level identifier for an urban heat island, by using weak supervision and thought-based learning in an improved, restricted Boltzmann machine (RBM) model. The identifier automatically initializes the annotation and optimizes the model parameters sequentially until the target identifier is completed. The algorithm needs very little information about the weak labeling of the target training sample and generates an urban heat island intensity spatial distribution map. This study can provide reliable decision-making support for urban ecological planning and effective protection of urban ecological security. The experimental results showed the following: (1) The heat island effect in Wuhan is existent and intense. Heat island areas are widely distributed. The largest heat island area is in Wuhan, followed by the sub-green island. The total area encompassed by heat island and strong island levels accounts for 54.16% of the land in Wuhan. (2) Partially based on improved RBM identification, this method meets the research demands of determining the spatial distribution characteristics of the internal heat island effect; its identification accuracy is superior to that of comparable methods. PMID:29360786

  8. Identification of Velcro rales based on Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Shao, Jie; Long, Yingjiao; Que, Chengli; Zhang, Jue; Fang, Jing

    2014-05-01

    Velcro rales, as a kind of crackles, are relatively specific for lung fibrosis and usually the first clinical clue of interstitial lung disease (ILD). We proposed an automatic analytic tool based on Hilbert-Huang transform (HHT) for the computerized identification of Velcro rales. In particular, HHT was utilized to extract the energy weight in various frequency bands (EW) of crackles and to calculate the portion of crackles during late inspiration. Support vector machine (SVM) based on the HHT-derived measures was used to differentiate Velcro rales from other crackles. We found that there were significant differences in the extracted parameters between Velcro rales and other crackles, including EW, EW and the proportion of crackles that appeared during the late inspiration. The discrimination results obtained from SVM achieved a concordance rate up to 92.20%±1.80% as confirmed by the diagnosis from experienced physicians. For practical purpose, the proposed approach may have potential applications to improve the sensitivity and accuracy of auscultation and conduct automatic ILD diagnose system.

  9. A knowledge-based approach to identification and adaptation in dynamical systems control

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Wong, C. M.

    1988-01-01

    Artificial intelligence techniques are applied to the problems of model form and parameter identification of large-scale dynamic systems. The object-oriented knowledge representation is discussed in the context of causal modeling and qualitative reasoning. Structured sets of rules are used for implementing qualitative component simulations, for catching qualitative discrepancies and quantitative bound violations, and for making reconfiguration and control decisions that affect the physical system. These decisions are executed by backward-chaining through a knowledge base of control action tasks. This approach was implemented for two examples: a triple quadrupole mass spectrometer and a two-phase thermal testbed. Results of tests with both of these systems demonstrate that the software replicates some or most of the functionality of a human operator, thereby reducing the need for a human-in-the-loop in the lower levels of control of these complex systems.

  10. [Measurement and analysis on complex refraction indices of pear pollen in infrared band].

    PubMed

    Li, Le; Hu, Yi-hua; Gu, You-lin; Chen, Wei; Zhao, Yi-zheng; Chen, Shan-jing

    2015-01-01

    Pollen is an important part of bioaerosols, and its complex refractive index is a crucial parameter for study on optical characteristics and detection, identification of bioaerosols. The reflection spectra of pear pollen within the 2. 5 - 15µm waveband were measured by squash method. Based on the measured data, the complex refractive index of pear pollen within the wave-band of 2. 5 to 15 µm was calculated by using Kramers-Kroning (K-K) relation, and calculation deviation about incident angle and different reflectivities at high and low frequencies.were analyzed. The results indicate that 18 degrees angle of incidence and different reflectivities at high and low frequencies have little effect on the results, and it is practicable to calculate the complex refractive index of pollen based on its reflection spectral data. The data of complex refractive index of pollen have some reference value for optical characteristics of pollen, detection and identification of bioaerosols.

  11. Adaptive identifier for uncertain complex nonlinear systems based on continuous neural networks.

    PubMed

    Alfaro-Ponce, Mariel; Cruz, Amadeo Argüelles; Chairez, Isaac

    2014-03-01

    This paper presents the design of a complex-valued differential neural network identifier for uncertain nonlinear systems defined in the complex domain. This design includes the construction of an adaptive algorithm to adjust the parameters included in the identifier. The algorithm is obtained based on a special class of controlled Lyapunov functions. The quality of the identification process is characterized using the practical stability framework. Indeed, the region where the identification error converges is derived by the same Lyapunov method. This zone is defined by the power of uncertainties and perturbations affecting the complex-valued uncertain dynamics. Moreover, this convergence zone is reduced to its lowest possible value using ideas related to the so-called ellipsoid methodology. Two simple but informative numerical examples are developed to show how the identifier proposed in this paper can be used to approximate uncertain nonlinear systems valued in the complex domain.

  12. Use of the Morlet mother wavelet in the frequency-scale domain decomposition technique for the modal identification of ambient vibration responses

    NASA Astrophysics Data System (ADS)

    Le, Thien-Phu

    2017-10-01

    The frequency-scale domain decomposition technique has recently been proposed for operational modal analysis. The technique is based on the Cauchy mother wavelet. In this paper, the approach is extended to the Morlet mother wavelet, which is very popular in signal processing due to its superior time-frequency localization. Based on the regressive form and an appropriate norm of the Morlet mother wavelet, the continuous wavelet transform of the power spectral density of ambient responses enables modes in the frequency-scale domain to be highlighted. Analytical developments first demonstrate the link between modal parameters and the local maxima of the continuous wavelet transform modulus. The link formula is then used as the foundation of the proposed modal identification method. Its practical procedure, combined with the singular value decomposition algorithm, is presented step by step. The proposition is finally verified using numerical examples and a laboratory test.

  13. Identification and evaluation of air-pollution-tolerant plants around lignite-based thermal power station for greenbelt development.

    PubMed

    Govindaraju, M; Ganeshkumar, R S; Muthukumaran, V R; Visvanathan, P

    2012-05-01

    Thermal power plants emit various gaseous and particulate pollutants into the atmosphere. It is well known that trees help to reduce air pollution. Development of a greenbelt with suitable plant species around the source of emission will mitigate the air pollution. Selection of suitable plant species for a greenbelt is very important. Present study evaluates different plant species around Neyveli thermal power plant by calculating the Air Pollution Tolerance Index (APTI) which is based on their significant biochemical parameters. Also Anticipated Performance Index (API) was calculated for these plant species by combining APTI values with other socio-economic and biological parameters. Based on these indices, the most appropriate plant species were identified for the development of a greenbelt around the thermal power plant to mitigate air pollution. Among the 30 different plant species evaluated, Mangifere indica L. was identified as keystone species which is coming under the excellent category. Ambient air quality parameters were correlated with the biochemical characteristics of plant leaves and significant changes were observed in the plants biochemical characteristics due to the air pollution stress.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasouli, C.; Abbasi Davani, F., E-mail: fabbasidavani@gmail.com

    A series of experiments and numerical calculations have been done on the Damavand tokamak for accurate determination of equilibrium parameters, such as the plasma boundary position and shape. For this work, the pickup coils of the Damavand tokamak were recalibrated and after that a plasma boundary shape identification code was developed for analyzing the experimental data, such as magnetic probes and coils currents data. The plasma boundary position, shape and other parameters are determined by the plasma shape identification code. A free-boundary equilibrium code was also generated for comparison with the plasma boundary shape identification results and determination of requiredmore » fields to obtain elongated plasma in the Damavand tokamak.« less

  15. Algebraic method for parameter identification of circuit models for batteries under non-zero initial condition

    NASA Astrophysics Data System (ADS)

    Devarakonda, Lalitha; Hu, Tingshu

    2014-12-01

    This paper presents an algebraic method for parameter identification of Thevenin's equivalent circuit models for batteries under non-zero initial condition. In traditional methods, it was assumed that all capacitor voltages have zero initial conditions at the beginning of each charging/discharging test. This would require a long rest time between two tests, leading to very lengthy tests for a charging/discharging cycle. In this paper, we propose an algebraic method which can extract the circuit parameters together with initial conditions. This would theoretically reduce the rest time to 0 and substantially accelerate the testing cycles.

  16. Damage identification using inverse methods.

    PubMed

    Friswell, Michael I

    2007-02-15

    This paper gives an overview of the use of inverse methods in damage detection and location, using measured vibration data. Inverse problems require the use of a model and the identification of uncertain parameters of this model. Damage is often local in nature and although the effect of the loss of stiffness may require only a small number of parameters, the lack of knowledge of the location means that a large number of candidate parameters must be included. This paper discusses a number of problems that exist with this approach to health monitoring, including modelling error, environmental effects, damage localization and regularization.

  17. Piloted Parameter Identification Flight Test Maneuvers for Closed Loop Modeling of the F-18 High Alpha Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1996-01-01

    Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for closed loop parameter identification purposes, specifically for longitudinal and lateral linear model parameter estimation at 5, 20, 30, 45, and 60 degrees angle of attack, using the NASA 1A control law. Each maneuver is to be realized by the pilot applying square wave inputs to specific pilot station controls. Maneuver descriptions and complete specifications of the time/amplitude points defining each input are included, along with plots of the input time histories.

  18. Understanding agent-based models of financial markets: A bottom-up approach based on order parameters and phase diagrams

    NASA Astrophysics Data System (ADS)

    Lye, Ribin; Tan, James Peng Lung; Cheong, Siew Ann

    2012-11-01

    We describe a bottom-up framework, based on the identification of appropriate order parameters and determination of phase diagrams, for understanding progressively refined agent-based models and simulations of financial markets. We illustrate this framework by starting with a deterministic toy model, whereby N independent traders buy and sell M stocks through an order book that acts as a clearing house. The price of a stock increases whenever it is bought and decreases whenever it is sold. Price changes are updated by the order book before the next transaction takes place. In this deterministic model, all traders based their buy decisions on a call utility function, and all their sell decisions on a put utility function. We then make the agent-based model more realistic, by either having a fraction fb of traders buy a random stock on offer, or a fraction fs of traders sell a random stock in their portfolio. Based on our simulations, we find that it is possible to identify useful order parameters from the steady-state price distributions of all three models. Using these order parameters as a guide, we find three phases: (i) the dead market; (ii) the boom market; and (iii) the jammed market in the phase diagram of the deterministic model. Comparing the phase diagrams of the stochastic models against that of the deterministic model, we realize that the primary effect of stochasticity is to eliminate the dead market phase.

  19. Parameter identification of process simulation models as a means for knowledge acquisition and technology transfer

    NASA Astrophysics Data System (ADS)

    Batzias, Dimitris F.; Ifanti, Konstantina

    2012-12-01

    Process simulation models are usually empirical, therefore there is an inherent difficulty in serving as carriers for knowledge acquisition and technology transfer, since their parameters have no physical meaning to facilitate verification of the dependence on the production conditions; in such a case, a 'black box' regression model or a neural network might be used to simply connect input-output characteristics. In several cases, scientific/mechanismic models may be proved valid, in which case parameter identification is required to find out the independent/explanatory variables and parameters, which each parameter depends on. This is a difficult task, since the phenomenological level at which each parameter is defined is different. In this paper, we have developed a methodological framework under the form of an algorithmic procedure to solve this problem. The main parts of this procedure are: (i) stratification of relevant knowledge in discrete layers immediately adjacent to the layer that the initial model under investigation belongs to, (ii) design of the ontology corresponding to these layers, (iii) elimination of the less relevant parts of the ontology by thinning, (iv) retrieval of the stronger interrelations between the remaining nodes within the revised ontological network, and (v) parameter identification taking into account the most influential interrelations revealed in (iv). The functionality of this methodology is demonstrated by quoting two representative case examples on wastewater treatment.

  20. Survey of adaptive control using Liapunov design

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.; Carroll, R. L.

    1972-01-01

    A survey was made of the literature devoted to the synthesis of model-tracking adaptive systems based on application of Liapunov's second method. The basic synthesis procedure is introduced and a critical review of extensions made to the theory since 1966 is made. The extensions relate to design for relative stability, reduction of order techniques, design with disturbance, design with time variable parameters, multivariable systems, identification, and an adaptive observer.

  1. The use of fractional order derivatives for eddy current non-destructive testing

    NASA Astrophysics Data System (ADS)

    Sikora, Ryszard; Grzywacz, Bogdan; Chady, Tomasz

    2018-04-01

    The paper presents the possibility of using the fractional derivatives for non-destructive testing when a multi-frequency method based on eddy current is applied. It is shown that frequency characteristics obtained during tests can be approximated by characteristics of a proposed model in the form of fractional order transfer function, and values of parameters of this model can be utilized for detection and identification of defects.

  2. Closed-Loop Evaluation of an Integrated Failure Identification and Fault Tolerant Control System for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine; Khong, thuan

    2006-01-01

    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems developed for failure detection, identification, and reconfiguration, as well as upset recovery, need to be evaluated over broad regions of the flight envelope or under extreme flight conditions, and should include various sources of uncertainty. To apply formal robustness analysis, formulation of linear fractional transformation (LFT) models of complex parameter-dependent systems is required, which represent system uncertainty due to parameter uncertainty and actuator faults. This paper describes a detailed LFT model formulation procedure from the nonlinear model of a transport aircraft by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The closed-loop system is evaluated over the entire flight envelope based on the generated LFT model which can cover nonlinear dynamics. The robustness analysis results of the closed-loop fault tolerant control system of a transport aircraft are presented. A reliable flight envelope (safe flight regime) is also calculated from the robust performance analysis results, over which the closed-loop system can achieve the desired performance of command tracking and failure detection.

  3. Taguchi experimental design to determine the taste quality characteristic of candied carrot

    NASA Astrophysics Data System (ADS)

    Ekawati, Y.; Hapsari, A. A.

    2018-03-01

    Robust parameter design is used to design product that is robust to noise factors so the product’s performance fits the target and delivers a better quality. In the process of designing and developing the innovative product of candied carrot, robust parameter design is carried out using Taguchi Method. The method is used to determine an optimal quality design. The optimal quality design is based on the process and the composition of product ingredients that are in accordance with consumer needs and requirements. According to the identification of consumer needs from the previous research, quality dimensions that need to be assessed are the taste and texture of the product. The quality dimension assessed in this research is limited to the taste dimension. Organoleptic testing is used for this assessment, specifically hedonic testing that makes assessment based on consumer preferences. The data processing uses mean and signal to noise ratio calculation and optimal level setting to determine the optimal process/composition of product ingredients. The optimal value is analyzed using confirmation experiments to prove that proposed product match consumer needs and requirements. The result of this research is identification of factors that affect the product taste and the optimal quality of product according to Taguchi Method.

  4. Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure.

    PubMed

    El-Nagar, Ahmad M

    2018-01-01

    In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Intratumoral heterogeneity characterized by pretreatment PET in non-small cell lung cancer patients predicts progression-free survival on EGFR tyrosine kinase inhibitor

    PubMed Central

    Paeng, Jin Chul; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Heo, Dae Seog

    2018-01-01

    Intratumoral heterogeneity has been suggested to be an important resistance mechanism leading to treatment failure. We hypothesized that radiologic images could be an alternative method for identification of tumor heterogeneity. We tested heterogeneity textural parameters on pretreatment FDG-PET/CT in order to assess the predictive value of target therapy. Recurred or metastatic non-small cell lung cancer (NSCLC) subjects with an activating EGFR mutation treated with either gefitinib or erlotinib were reviewed. An exploratory data set (n = 161) and a validation data set (n = 21) were evaluated, and eight parameters were selected for survival analysis. The optimal cutoff value was determined by the recursive partitioning method, and the predictive value was calculated using Harrell’s C-index. Univariate analysis revealed that all eight parameters showed an increased hazard ratio (HR) for progression-free survival (PFS). The highest HR was 6.41 (P<0.01) with co-occurrence (Co) entropy. Increased risk remained present after adjusting for initial stage, performance status (PS), and metabolic volume (MV) (aHR: 4.86, P<0.01). Textural parameters were found to have an incremental predictive value of early EGFR tyrosine kinase inhibitor (TKI) failure compared to that of the base model of the stage and PS (C-index 0.596 vs. 0.662, P = 0.02, by Co entropy). Heterogeneity textural parameters acquired from pretreatment FDG-PET/CT are highly predictive factors for PFS of EGFR TKI in EGFR-mutated NSCLC patients. These parameters are easily applicable to the identification of a subpopulation at increased risk of early EGFR TKI failure. Correlation to genomic alteration should be determined in future studies. PMID:29385152

  6. Optical identification of subjects at high risk for developing breast cancer

    NASA Astrophysics Data System (ADS)

    Taroni, Paola; Quarto, Giovanna; Pifferi, Antonio; Ieva, Francesca; Paganoni, Anna Maria; Abbate, Francesca; Balestreri, Nicola; Menna, Simona; Cassano, Enrico; Cubeddu, Rinaldo

    2013-06-01

    A time-domain multiwavelength (635 to 1060 nm) optical mammography was performed on 147 subjects with recent x-ray mammograms available, and average breast tissue composition (water, lipid, collagen, oxy- and deoxyhemoglobin) and scattering parameters (amplitude a and slope b) were estimated. Correlation was observed between optically derived parameters and mammographic density [Breast Imaging and Reporting Data System (BI-RADS) categories], which is a strong risk factor for breast cancer. A regression logistic model was obtained to best identify high-risk (BI-RADS 4) subjects, based on collagen content and scattering parameters. The model presents a total misclassification error of 12.3%, sensitivity of 69%, specificity of 94%, and simple kappa of 0.84, which compares favorably even with intraradiologist assignments of BI-RADS categories.

  7. On-line identification of fermentation processes for ethanol production.

    PubMed

    Câmara, M M; Soares, R M; Feital, T; Naomi, P; Oki, S; Thevelein, J M; Amaral, M; Pinto, J C

    2017-07-01

    A strategy for monitoring fermentation processes, specifically, simultaneous saccharification and fermentation (SSF) of corn mash, was developed. The strategy covered the development and use of first principles, semimechanistic and unstructured process model based on major kinetic phenomena, along with mass and energy balances. The model was then used as a reference model within an identification procedure capable of running on-line. The on-line identification procedure consists on updating the reference model through the estimation of corrective parameters for certain reaction rates using the most recent process measurements. The strategy makes use of standard laboratory measurements for sugars quantification and in situ temperature and liquid level data. The model, along with the on-line identification procedure, has been tested against real industrial data and have been able to accurately predict the main variables of operational interest, i.e., state variables and its dynamics, and key process indicators. The results demonstrate that the strategy is capable of monitoring, in real time, this complex industrial biomass fermentation. This new tool provides a great support for decision-making and opens a new range of opportunities for industrial optimization.

  8. Independent component analysis-based algorithm for automatic identification of Raman spectra applied to artistic pigments and pigment mixtures.

    PubMed

    González-Vidal, Juan José; Pérez-Pueyo, Rosanna; Soneira, María José; Ruiz-Moreno, Sergio

    2015-03-01

    A new method has been developed to automatically identify Raman spectra, whether they correspond to single- or multicomponent spectra. The method requires no user input or judgment. There are thus no parameters to be tweaked. Furthermore, it provides a reliability factor on the resulting identification, with the aim of becoming a useful support tool for the analyst in the decision-making process. The method relies on the multivariate techniques of principal component analysis (PCA) and independent component analysis (ICA), and on some metrics. It has been developed for the application of automated spectral analysis, where the analyzed spectrum is provided by a spectrometer that has no previous knowledge of the analyzed sample, meaning that the number of components in the sample is unknown. We describe the details of this method and demonstrate its efficiency by identifying both simulated spectra and real spectra. The method has been applied to artistic pigment identification. The reliable and consistent results that were obtained make the methodology a helpful tool suitable for the identification of pigments in artwork or in paint in general.

  9. A truncated generalized singular value decomposition algorithm for moving force identification with ill-posed problems

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Chan, Tommy H. T.

    2017-08-01

    This paper proposes a new methodology for moving force identification (MFI) from the responses of bridge deck. Based on the existing time domain method (TDM), the MFI problem eventually becomes solving the linear algebraic equation in the form Ax = b . The vector b is usually contaminated by an unknown error e generating from measurement error, which often called the vector e as ''noise''. With the ill-posed problems that exist in the inverse problem, the identification force would be sensitive to the noise e . The proposed truncated generalized singular value decomposition method (TGSVD) aims at obtaining an acceptable solution and making the noise to be less sensitive to perturbations with the ill-posed problems. The illustrated results show that the TGSVD has many advantages such as higher precision, better adaptability and noise immunity compared with TDM. In addition, choosing a proper regularization matrix L and a truncation parameter k are very useful to improve the identification accuracy and to solve ill-posed problems when it is used to identify the moving force on bridge.

  10. Linear and non-linear systems identification for adaptive control in mechanical applications vibration suppression

    NASA Astrophysics Data System (ADS)

    Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco

    2012-04-01

    During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.

  11. Parameter identification of thermophilic anaerobic degradation of valerate.

    PubMed

    Flotats, Xavier; Ahring, Birgitte K; Angelidaki, Irini

    2003-01-01

    The considered mathematical model of the decomposition of valerate presents three unknown kinetic parameters, two unknown stoichiometric coefficients, and three unknown initial concentrations for biomass. Applying a structural identifiability study, we concluded that it is necessary to perform simultaneous batch experiments with different initial conditions for estimating these parameters. Four simultaneous batch experiments were conducted at 55 degrees C, characterized by four different initial acetate concentrations. Product inhibition of valerate degradation by acetate was considered. Practical identification was done optimizing the sum of the multiple determination coefficients for all measured state variables and for all experiments simultaneously. The estimated values of kinetic parameters and stoichiometric coefficients were characterized by the parameter correlation matrix, the confidence interval, and the student's t-test at 5% significance level with positive results except for the saturation constant, for which more experiments for improving its identifiability should be conducted. In this article, we discuss kinetic parameter estimation methods.

  12. Response to ``Comment on `Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks''' [Chaos 17, 038101 (2007)

    NASA Astrophysics Data System (ADS)

    Yu, Wenwu; Cao, Jinde

    2007-09-01

    Parameter identification of dynamical systems from time series has received increasing interest due to its wide applications in secure communication, pattern recognition, neural networks, and so on. Given the driving system, parameters can be estimated from the time series by using an adaptive control algorithm. Recently, it has been reported that for some stable systems, in which parameters are difficult to be identified [Li et al., Phys Lett. A 333, 269-270 (2004); Remark 5 in Yu and Cao, Physica A 375, 467-482 (2007); and Li et al., Chaos 17, 038101 (2007)], and in this paper, a brief discussion about whether parameters can be identified from time series is investigated. From some detailed analyses, the problem of why parameters of stable systems can be hardly estimated is discussed. Some interesting examples are drawn to verify the proposed analysis.

  13. Rotor dynamic simulation and system identification methods for application to vacuum whirl data

    NASA Technical Reports Server (NTRS)

    Berman, A.; Giansante, N.; Flannelly, W. G.

    1980-01-01

    Methods of using rotor vacuum whirl data to improve the ability to model helicopter rotors were developed. The work consisted of the formulation of the equations of motion of elastic blades on a hub using a Galerkin method; the development of a general computer program for simulation of these equations; the study and implementation of a procedure for determining physical parameters based on measured data; and the application of a method for computing the normal modes and natural frequencies based on test data.

  14. TRIP-ID: A tool for a smart and interactive identification of Magic Formula tyre model parameters from experimental data acquired on track or test rig

    NASA Astrophysics Data System (ADS)

    Farroni, Flavio; Lamberti, Raffaele; Mancinelli, Nicolò; Timpone, Francesco

    2018-03-01

    Tyres play a key role in ground vehicles' dynamics because they are responsible for traction, braking and cornering. A proper tyre-road interaction model is essential for a useful and reliable vehicle dynamics model. In the last two decades Pacejka's Magic Formula (MF) has become a standard in simulation field. This paper presents a Tool, called TRIP-ID (Tyre Road Interaction Parameters IDentification), developed to characterize and to identify with a high grade of accuracy and reliability MF micro-parameters from experimental data deriving from telemetry or from test rig. The tool guides interactively the user through the identification process on the basis of strong diagnostic considerations about the experimental data made evident by the tool itself. A motorsport application of the tool is shown as a case study.

  15. Cable Overheating Risk Warning Method Based on Impedance Parameter Estimation in Distribution Network

    NASA Astrophysics Data System (ADS)

    Yu, Zhang; Xiaohui, Song; Jianfang, Li; Fei, Gao

    2017-05-01

    Cable overheating will lead to the cable insulation level reducing, speed up the cable insulation aging, even easy to cause short circuit faults. Cable overheating risk identification and warning is nessesary for distribution network operators. Cable overheating risk warning method based on impedance parameter estimation is proposed in the paper to improve the safty and reliability operation of distribution network. Firstly, cable impedance estimation model is established by using least square method based on the data from distribiton SCADA system to improve the impedance parameter estimation accuracy. Secondly, calculate the threshold value of cable impedance based on the historical data and the forecast value of cable impedance based on the forecasting data in future from distribiton SCADA system. Thirdly, establish risks warning rules library of cable overheating, calculate the cable impedance forecast value and analysis the change rate of impedance, and then warn the overheating risk of cable line based on the overheating risk warning rules library according to the variation relationship between impedance and line temperature rise. Overheating risk warning method is simulated in the paper. The simulation results shows that the method can identify the imedance and forecast the temperature rise of cable line in distribution network accurately. The result of overheating risk warning can provide decision basis for operation maintenance and repair.

  16. Characterization of the leachate in an urban landfill by physicochemical analysis and solid phase microextraction-GC/MS.

    PubMed

    Banar, Müfide; Ozkan, Aysun; Kürkçüoğlu, Mine

    2006-10-01

    The aim of this study is to evaluate extensively the characterization and identification of major pollutant parameters by paying attention to the organic chemical pollution for unregulated dumping site leachate in Eskişehir/Turkey. The study that is first and only one research has been very important data related with before new sanitary landfill site in Eskişehir city. For this purpose, in this study leachate samples were collected in-situ at monthly interval for a period of 8 months. Firstly, thirty three physicochemical parameters were monitored. Secondly, SPME technique was used for identification of organic pollutants. Meteorological data were also recorded for the same sampling period to correlate meteorological data and physicochemical parameters. Mean values are used in the correlation analysis. Correlation is shown only for the relationship between air temperature and NO(3) (-). No correlation has been found between rain and leachate quality parameters since the amount of rain was very low during the sampling period. However, analysis results were generally decreased in winter season when each parameter and each sampling point are examined separately. According to correlation between every parameter, especially solid content and dissolved oxygen concentration of leachate is affecting to other parameters. Also, sodium and potassium are changing proportionally with same parameters (suspended solids, fixed solids, dissolved oxygen) and high correlation between chloride and heavy metal concentration is showing. The results were statistically evaluated by use of SPSS 10.0 program. Second part of the study, the leachate was extracted by Solid Phase Microextraction (SPME) technique and then analyzed. Of the methodologies tested in this study, the best one selected was based on 100 micro m polydimethylsiloxane coated fiber (PDMS), headspace with heating (Delta HS) sampling mode and an extraction time of 15 min. at a temperature of 50 degrees C. Thirty three organic compounds in leachate were identified by GC/MS.

  17. Remote sensing based on hyperspectral data analysis

    NASA Astrophysics Data System (ADS)

    Sharifahmadian, Ershad

    In remote sensing, accurate identification of far objects, especially concealed objects is difficult. In this study, to improve object detection from a distance, the hyperspecral imaging and wideband technology are employed with the emphasis on wideband radar. As the wideband data includes a broad range of frequencies, it can reveal information about both the surface of the object and its content. Two main contributions are made in this study: 1) Developing concept of return loss for target detection: Unlike typical radar detection methods which uses radar cross section to detect an object, it is possible to enhance the process of detection and identification of concealed targets using the wideband radar based on the electromagnetic characteristics --conductivity, permeability, permittivity, and return loss-- of materials. During the identification process, collected wideband data is evaluated with information from wideband signature library which has already been built. In fact, several classes (e.g. metal, wood, etc.) and subclasses (ex. metals with high conductivity) have been defined based on their electromagnetic characteristics. Materials in a scene are then classified based on these classes. As an example, materials with high electrical conductivity can be conveniently detected. In fact, increasing relative conductivity leads to a reduction in the return loss. Therefore, metals with high conductivity (ex. copper) shows stronger radar reflections compared with metals with low conductivity (ex. stainless steel). Thus, it is possible to appropriately discriminate copper from stainless steel. 2) Target recognition techniques: To detect and identify targets, several techniques have been proposed, in particular the Multi-Spectral Wideband Radar Image (MSWRI) which is able to localize and identify concealed targets. The MSWRI is based on the theory of robust capon beamformer. During identification process, information from wideband signature library is utilized. The WB signature library includes such parameters as conductivity, permeability, permittivity, and return loss at different frequencies for possible materials related to a target. In the MSWRI approach, identification procedure is performed by calculating the RLs at different selected frequencies. Based on similarity of the calculated RLs and RL from WB signature library, targets are detected and identified. Based on the simulation and experimental results, it is concluded that the MSWRI technique is a promising approach for standoff target detection.

  18. Extension of the Optimized Virtual Fields Method to estimate viscoelastic material parameters from 3D dynamic displacement fields

    PubMed Central

    Connesson, N.; Clayton, E.H.; Bayly, P.V.; Pierron, F.

    2015-01-01

    In-vivo measurement of the mechanical properties of soft tissues is essential to provide necessary data in biomechanics and medicine (early cancer diagnosis, study of traumatic brain injuries, etc.). Imaging techniques such as Magnetic Resonance Elastography (MRE) can provide 3D displacement maps in the bulk and in vivo, from which, using inverse methods, it is then possible to identify some mechanical parameters of the tissues (stiffness, damping etc.). The main difficulties in these inverse identification procedures consist in dealing with the pressure waves contained in the data and with the experimental noise perturbing the spatial derivatives required during the processing. The Optimized Virtual Fields Method (OVFM) [1], designed to be robust to noise, present natural and rigorous solution to deal with these problems. The OVFM has been adapted to identify material parameter maps from Magnetic Resonance Elastography (MRE) data consisting of 3-dimensional displacement fields in harmonically loaded soft materials. In this work, the method has been developed to identify elastic and viscoelastic models. The OVFM sensitivity to spatial resolution and to noise has been studied by analyzing 3D analytically simulated displacement data. This study evaluates and describes the OVFM identification performances: different biases on the identified parameters are induced by the spatial resolution and experimental noise. The well-known identification problems in the case of quasi-incompressible materials also find a natural solution in the OVFM. Moreover, an a posteriori criterion to estimate the local identification quality is proposed. The identification results obtained on actual experiments are briefly presented. PMID:26146416

  19. Locating Groundwater Pollution Source using Breakthrough Curve Characteristics and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Jain, A.; Srivastava, R.

    2005-12-01

    The identification of pollution sources in aquifers is an important area of research not only for the hydrologists but also for the local and Federal agencies and defense organizations. Once the data in terms of pollutant concentration measurements at observation wells become known, it is important to identify the polluting industry in order to implement punitive or remedial measures. Traditionally, hydrologists have relied on the conceptual methods for the identification of groundwater pollution sources. The problem of identification of groundwater pollution sources using the conceptual methods requires a thorough understanding of the groundwater flow and contaminant transport processes and inverse modeling procedures that are highly complex and difficult to implement. Recently, the soft computing techniques, such as artificial neural networks (ANNs) and genetic algorithms, have provided an attractive and easy to implement alternative to solve complex problems efficiently. Some researchers have used ANNs for the identification of pollution sources in aquifers. A major problem with most previous studies using ANNs has been the large size of the neural networks that are needed to model the inverse problem. The breakthrough curves at an observation well may consist of hundreds of concentration measurements, and presenting all of them to the input layer of an ANN not only results in humongous networks but also requires large amount of training and testing data sets to develop the ANN models. This paper presents the results of a study aimed at using certain characteristics of the breakthrough curves and ANNs for determining the distance of the pollution source from a given observation well. Two different neural network models are developed that differ in the manner of characterizing the breakthrough curves. The first ANN model uses five parameters, similar to the synthetic unit hydrograph parameters, to characterize the breakthrough curves. The five parameters employed are peak concentration, time to peak concentration, the widths of the breakthrough curves at 50% and 75% of the peak concentration, and the time base of the breakthrough curve. The second ANN model employs only the first four parameters leaving out the time base. The measurement of breakthrough curve at an observation well involves very high costs in sample collection at suitable time intervals and analysis for various contaminants. The receding portions of the breakthrough curves are normally very long and excluding the time base from modeling would result in considerable cost savings. The feed-forward multi-layer perceptron (MLP) type neural networks trained using the back-propagation algorithm, are employed in this study. The ANN models for the two approaches were developed using simulated data generated for conservative pollutant transport through a homogeneous aquifer. A new approach for ANN training using back-propagation is employed that considers two different error statistics to prevent over-training and under-training of the ANNs. The preliminary results indicate that the ANNs are able to identify the location of the pollution source very efficiently from both the methods of the breakthrough curves characterization.

  20. The effectiveness of vane-aileron excitation in the experimental determination of flutter speed by parameter identification

    NASA Technical Reports Server (NTRS)

    Nissim, Eli

    1990-01-01

    The effectiveness of aerodynamic excitation is evaluated analytically in conjunction with the experimental determination of flutter dynamic pressure by parameter identification. Existing control surfaces were used, with an additional vane located at the wingtip. The equations leading to the identification of the equations of motion were reformulated to accommodate excitation forces of aerodynamic origin. The aerodynamic coefficients of the excitation forces do not need to be known since they are determined by the identification procedure. The 12 degree-of-freedom numerical example treated in this work revealed the best wingtip vane locations, and demonstrated the effectiveness of the aileron-vane excitation system. Results from simulated data gathered at much lower dynamic pressures (approximately half the value of flutter dynamic pressure) predicted flutter dynamic pressures with 2-percent errors.

  1. A flight-test methodology for identification of an aerodynamic model for a V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Mcnally, B. David

    1988-01-01

    Described is a flight test methodology for developing a data base to be used to identify an aerodynamic model of a vertical and short takeoff and landing (V/STOL) fighter aircraft. The aircraft serves as a test bed at Ames for ongoing research in advanced V/STOL control and display concepts. The flight envelope to be modeled includes hover, transition to conventional flight, and back to hover, STOL operation, and normaL cruise. Although the aerodynamic model is highly nonlinear, it has been formulated to be linear in the parameters to be identified. Motivation for the flight test methodology advocated in this paper is based on the choice of a linear least-squares method for model identification. The paper covers elements of the methodology from maneuver design to the completed data base. Major emphasis is placed on the use of state estimation with tracking data to ensure consistency among maneuver variables prior to their entry into the data base. The design and processing of a typical maneuver is illustrated.

  2. Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter.

    PubMed

    Vafamand, Navid; Arefi, Mohammad Mehdi; Khayatian, Alireza

    2018-03-01

    This paper proposes two novel Kalman-based learning algorithms for an online Takagi-Sugeno (TS) fuzzy model identification. The proposed approaches are designed based on the unscented Kalman filter (UKF) and the concept of dual estimation. Contrary to the extended Kalman filter (EKF) which utilizes derivatives of nonlinear functions, the UKF employs the unscented transformation. Consequently, non-differentiable membership functions can be considered in the structure of the TS models. This makes the proposed algorithms to be applicable for the online parameter calculation of wider classes of TS models compared to the recently published papers concerning the same issue. Furthermore, because of the great capability of the UKF in handling severe nonlinear dynamics, the proposed approaches can effectively approximate the nonlinear systems. Finally, numerical and practical examples are provided to show the advantages of the proposed approaches. Simulation results reveal the effectiveness of the proposed methods and performance improvement based on the root mean square (RMS) of the estimation error compared to the existing results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Development of an adaptive failure detection and identification system for detecting aircraft control element failures

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas

    1990-01-01

    A methodology for designing a failure detection and identification (FDI) system to detect and isolate control element failures in aircraft control systems is reviewed. An FDI system design for a modified B-737 aircraft resulting from this methodology is also reviewed, and the results of evaluating this system via simulation are presented. The FDI system performed well in a no-turbulence environment, but it experienced an unacceptable number of false alarms in atmospheric turbulence. An adaptive FDI system, which adjusts thresholds and other system parameters based on the estimated turbulence level, was developed and evaluated. The adaptive system performed well over all turbulence levels simulated, reliably detecting all but the smallest magnitude partially-missing-surface failures.

  4. Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract framework and convergence theory is developed for Galerkin approximation for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their approximation by a sequence of solutions to a sequence of approximating finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.

  5. Computational methods for the identification of spatially varying stiffness and damping in beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1986-01-01

    A numerical approximation scheme for the estimation of functional parameters in Euler-Bernoulli models for the transverse vibration of flexible beams with tip bodies is developed. The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial differential equations and boundary conditions describing the dynamics of such structures. An inverse problem is formulated as a least squares fit to data subject to constraints in the form of a vector system of abstract first order evolution equations. Spline-based finite element approximations are used to finite dimensionalize the problem. Theoretical convergence results are given and numerical studies carried out on both conventional (serial) and vector computers are discussed.

  6. Optimal error functional for parameter identification in anisotropic finite strain elasto-plasticity

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Kaygorodtseva, A. A.; Dranishnikov, N. S.

    2017-10-01

    A problem of parameter identification for a model of finite strain elasto-plasticity is discussed. The utilized phenomenological material model accounts for nonlinear isotropic and kinematic hardening; the model kinematics is described by a nested multiplicative split of the deformation gradient. A hierarchy of optimization problems is considered. First, following the standard procedure, the material parameters are identified through minimization of a certain least square error functional. Next, the focus is placed on finding optimal weighting coefficients which enter the error functional. Toward that end, a stochastic noise with systematic and non-systematic components is introduced to the available measurement results; a superordinate optimization problem seeks to minimize the sensitivity of the resulting material parameters to the introduced noise. The advantage of this approach is that no additional experiments are required; it also provides an insight into the robustness of the identification procedure. As an example, experimental data for the steel 42CrMo4 are considered and a set of weighting coefficients is found, which is optimal in a certain class.

  7. Insight into model mechanisms through automatic parameter fitting: a new methodological framework for model development

    PubMed Central

    2014-01-01

    Background Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. Results The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input–output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on average 15% of the mean values over the succeeding parameter sets. Conclusions Our results indicate that the presented approach is effective for comparing model alternatives and reducing models to the minimum complexity replicating measured data. We therefore believe that this approach has significant potential for reparameterising existing frameworks, for identification of redundant model components of large biophysical models and to increase their predictive capacity. PMID:24886522

  8. Causal Analysis After Haavelmo

    PubMed Central

    Heckman, James; Pinto, Rodrigo

    2014-01-01

    Haavelmo's seminal 1943 and 1944 papers are the first rigorous treatment of causality. In them, he distinguished the definition of causal parameters from their identification. He showed that causal parameters are defined using hypothetical models that assign variation to some of the inputs determining outcomes while holding all other inputs fixed. He thus formalized and made operational Marshall's (1890) ceteris paribus analysis. We embed Haavelmo's framework into the recursive framework of Directed Acyclic Graphs (DAGs) used in one influential recent approach to causality (Pearl, 2000) and in the related literature on Bayesian nets (Lauritzen, 1996). We compare the simplicity of an analysis of causality based on Haavelmo's methodology with the complex and nonintuitive approach used in the causal literature of DAGs—the “do-calculus” of Pearl (2009). We discuss the severe limitations of DAGs and in particular of the do-calculus of Pearl in securing identification of economic models. We extend our framework to consider models for simultaneous causality, a central contribution of Haavelmo. In general cases, DAGs cannot be used to analyze models for simultaneous causality, but Haavelmo's approach naturally generalizes to cover them. PMID:25729123

  9. Experiment research on infrared targets signature in mid and long IR spectral bands

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Hong, Pu; Lei, Bo; Yue, Song; Zhang, Zhijie; Ren, Tingting

    2013-09-01

    Since the infrared imaging system has played a significant role in the military self-defense system and fire control system, the radiation signature of IR target becomes an important topic in IR imaging application technology. IR target signature can be applied in target identification, especially for small and dim targets, as well as the target IR thermal design. To research and analyze the targets IR signature systematically, a practical and experimental project is processed under different backgrounds and conditions. An infrared radiation acquisition system based on a MWIR cooled thermal imager and a LWIR cooled thermal imager is developed to capture the digital infrared images. Furthermore, some instruments are introduced to provide other parameters. According to the original image data and the related parameters in a certain scene, the IR signature of interested target scene can be calculated. Different background and targets are measured with this approach, and a comparison experiment analysis shall be presented in this paper as an example. This practical experiment has proved the validation of this research work, and it is useful in detection performance evaluation and further target identification research.

  10. Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection

    NASA Astrophysics Data System (ADS)

    Batyaev, V. F.; Belichenko, S. G.; Bestaev, R. R.

    2016-04-01

    The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition [1]-[3]. The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the γ-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, LaBr3, LYSO, NaI(Tl), whose basic parameters are well known [4]-[7].

  11. Evolving Spiking Neural Networks for Recognition of Aged Voices.

    PubMed

    Silva, Marco; Vellasco, Marley M B R; Cataldo, Edson

    2017-01-01

    The aging of the voice, known as presbyphonia, is a natural process that can cause great change in vocal quality of the individual. This is a relevant problem to those people who use their voices professionally, and its early identification can help determine a suitable treatment to avoid its progress or even to eliminate the problem. This work focuses on the development of a new model for the identification of aging voices (independently of their chronological age), using as input attributes parameters extracted from the voice and glottal signals. The proposed model, named Quantum binary-real evolving Spiking Neural Network (QbrSNN), is based on spiking neural networks (SNNs), with an unsupervised training algorithm, and a Quantum-Inspired Evolutionary Algorithm that automatically determines the most relevant attributes and the optimal parameters that configure the SNN. The QbrSNN model was evaluated in a database composed of 120 records, containing samples from three groups of speakers. The results obtained indicate that the proposed model provides better accuracy than other approaches, with fewer input attributes. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  12. Use of strontium isotopes to identify buried water main leakage into groundwater in a highly urbanized coastal area.

    PubMed

    Leung, Chi-Man; Jiao, Jiu Jimmy

    2006-11-01

    Previous studies indicate that the local aquifer systems in the Mid-Levels, a highly urbanized coastal area in Hong Kong, have commonly been affected by leakage from water mains. The identification of leakage locations was done by conventional water quality parameters including major and trace elements. However, these parameters may lead to ambiguous results and fail to identify leakage locations especially where the leakage is from drinking water mains because the chemical composition of drinking water is similar to that of natural groundwater. In this study, natural groundwater, seepage in the developed spaces, leakage from water mains, and parent aquifer materials were measured for strontium isotope (87Sr/86Sr) compositions to explore the feasibility of using these ratios to better constrain the seepage sources. The results show that the 87Sr/86Sr ratios of natural groundwater and leakage from water mains are distinctly different and thus, they can provide additional information on the sources of seepage in developed spaces. A classification system based on the aqueous 87Sr/86Sr ratio is proposed for seepage source identification.

  13. Frequency domain system identification of helicopter rotor dynamics incorporating models with time periodic coefficients

    NASA Astrophysics Data System (ADS)

    Hwang, Sunghwan

    1997-08-01

    One of the most prominent features of helicopter rotor dynamics in forward flight is the periodic coefficients in the equations of motion introduced by the rotor rotation. The frequency response characteristics of such a linear time periodic system exhibits sideband behavior, which is not the case for linear time invariant systems. Therefore, a frequency domain identification methodology for linear systems with time periodic coefficients was developed, because the linear time invariant theory cannot account for sideband behavior. The modulated complex Fourier series was introduced to eliminate the smearing effect of Fourier series expansions of exponentially modulated periodic signals. A system identification theory was then developed using modulated complex Fourier series expansion. Correlation and spectral density functions were derived using the modulated complex Fourier series expansion for linear time periodic systems. Expressions of the identified harmonic transfer function were then formulated using the spectral density functions both with and without additive noise processes at input and/or output. A procedure was developed to identify parameters of a model to match the frequency response characteristics between measured and estimated harmonic transfer functions by minimizing an objective function defined in terms of the trace of the squared frequency response error matrix. Feasibility was demonstrated by the identification of the harmonic transfer function and parameters for helicopter rigid blade flapping dynamics in forward flight. This technique is envisioned to satisfy the needs of system identification in the rotating frame, especially in the context of individual blade control. The technique was applied to the coupled flap-lag-inflow dynamics of a rigid blade excited by an active pitch link. The linear time periodic technique results were compared with the linear time invariant technique results. Also, the effect of noise processes and initial parameter guess on the identification procedure were investigated. To study the effect of elastic modes, a rigid blade with a trailing edge flap excited by a smart actuator was selected and system parameters were successfully identified, but with some expense of computational storage and time. Conclusively, the linear time periodic technique substantially improved the identified parameter accuracy compared to the linear time invariant technique. Also, the linear time periodic technique was robust to noises and initial guess of parameters. However, an elastic mode of higher frequency relative to the system pumping frequency tends to increase the computer storage requirement and computing time.

  14. Identification of coal seam strata from geophysical logs of borehole using Adaptive Neuro-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Yegireddi, Satyanarayana; Uday Bhaskar, G.

    2009-01-01

    Different parameters obtained through well-logging geophysical sensors such as SP, resistivity, gamma-gamma, neutron, natural gamma and acoustic, help in identification of strata and estimation of the physical, electrical and acoustical properties of the subsurface lithology. Strong and conspicuous changes in some of the log parameters associated with any particular stratigraphy formation, are function of its composition, physical properties and help in classification. However some substrata show moderate values in respective log parameters and make difficult to identify or assess the type of strata, if we go by the standard variability ranges of any log parameters and visual inspection. The complexity increases further with more number of sensors involved. An attempt is made to identify the type of stratigraphy from borehole geophysical log data using a combined approach of neural networks and fuzzy logic, known as Adaptive Neuro-Fuzzy Inference System. A model is built based on a few data sets (geophysical logs) of known stratigraphy of in coal areas of Kothagudem, Godavari basin and further the network model is used as test model to infer the lithology of a borehole from their geophysical logs, not used in simulation. The results are very encouraging and the model is able to decipher even thin cola seams and other strata from borehole geophysical logs. The model can be further modified to assess the physical properties of the strata, if the corresponding ground truth is made available for simulation.

  15. Identification of Arbitrary Zonation in Groundwater Parameters using the Level Set Method and a Parallel Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Lei, H.; Lu, Z.; Vesselinov, V. V.; Ye, M.

    2017-12-01

    Simultaneous identification of both the zonation structure of aquifer heterogeneity and the hydrogeological parameters associated with these zones is challenging, especially for complex subsurface heterogeneity fields. In this study, a new approach, based on the combination of the level set method and a parallel genetic algorithm is proposed. Starting with an initial guess for the zonation field (including both zonation structure and the hydraulic properties of each zone), the level set method ensures that material interfaces are evolved through the inverse process such that the total residual between the simulated and observed state variables (hydraulic head) always decreases, which means that the inversion result depends on the initial guess field and the minimization process might fail if it encounters a local minimum. To find the global minimum, the genetic algorithm (GA) is utilized to explore the parameters that define initial guess fields, and the minimal total residual corresponding to each initial guess field is considered as the fitness function value in the GA. Due to the expensive evaluation of the fitness function, a parallel GA is adapted in combination with a simulated annealing algorithm. The new approach has been applied to several synthetic cases in both steady-state and transient flow fields, including a case with real flow conditions at the chromium contaminant site at the Los Alamos National Laboratory. The results show that this approach is capable of identifying the arbitrary zonation structures of aquifer heterogeneity and the hydrogeological parameters associated with these zones effectively.

  16. Stable modeling based control methods using a new RBF network.

    PubMed

    Beyhan, Selami; Alci, Musa

    2010-10-01

    This paper presents a novel model with radial basis functions (RBFs), which is applied successively for online stable identification and control of nonlinear discrete-time systems. First, the proposed model is utilized for direct inverse modeling of the plant to generate the control input where it is assumed that inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode control input. Finally, the network is employed to tune PID (proportional + integrative + derivative) controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov stability approach, the boundedness of the tracking errors and the system parameters are shown both theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network and the new model with sigmoid activation functions. To see the real-time capability of the new model, the proposed network is employed for online identification and control of a cascaded parallel two-tank liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates a suitable control input to track the reference signal better than other methods in both simulations and real time. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Adaptive PIF Control for Permanent Magnet Synchronous Motors Based on GPC

    PubMed Central

    Lu, Shaowu; Tang, Xiaoqi; Song, Bao

    2013-01-01

    To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results. PMID:23262481

  18. Adaptive PIF control for permanent magnet synchronous motors based on GPC.

    PubMed

    Lu, Shaowu; Tang, Xiaoqi; Song, Bao

    2012-12-24

    To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results.

  19. A new technique for identification of minerals in hyperspectral images. Application to robust characterization of phyllosilicate deposits at Mawrth Vallis using CRISM images.

    NASA Astrophysics Data System (ADS)

    Parente, M.; Bishop, J. L.

    2008-12-01

    Mapping of Mars by MRO has revealed the presence of numerous small phyllosilicate outcrops. These are typically identified in CRISM images using "summary products" (Pelkey, 2007) that consist of band ratios, depths and spectral slopes around diagnostic wavelengths. The summary products are designed to capture spectral features related to both surface mineralogy and atmospheric gases and aerosols. Such products, as an analysis tool to characterize composition as well as a targeting tool to identify areas of mineralogical interest, have been successful in capturing the known diversity of the Martian surface, and in highlighting locations with strong spectral signatures. Here we present alternative mineral mapping technique that 1) aims to increase the robustness of mineral detections with respect to the specific CRISM artifacts, 2) takes advantage of the spatial context of each pixel and 3) develops new parameters for the discrimination of species in the phyllosilicates family. We include spatial context by evaluating spectral shapes, band depths and spectral slopes for the current pixel based on its spatial neighbors within the same geological unit. Furthermore, the parameters are based on estimates that are more robust to CRISM speckling noise that might alter the parameters and potentially the mineral interpretation. As an effort to distinguish between phyllosilicates species, we are augmenting the suite of existent parameters with a set of mineral parameters that involve the position, number and shapes of diagnostic phyllosilicate absorptions. We are comparing the effectiveness of this new approach to the summary product procedure. The study shows that homogeneous mineral maps and diagnostic spectral identifications are possible as a result of the application of such new parameters. We applied the technique to the discrimination of kaolinite in Mawrth Vallis. The experiments show several small kaolinite outcrops dispersed within the more extensive Al-rich phyllosilicates in regions around the MSL landing sites. Another test was the discrimination of montmorillonite and nontronite in Mawrth Vallis that can be successfully accomplished by band depths summary products near 2.2 and 2.3 μm. The new technique produces improved maps with lower noise levels and lower percentage of false detections.

  20. Reconstruction of biofilm images: combining local and global structural parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk

    2014-10-20

    Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parametersmore » into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.« less

Top