Science.gov

Sample records for parameter pair m3

  1. Hot HB Stars in Globular Clusters: Physical Parameters and Consequences for Theory. VI; The Second Parameter Pair M 3 and M 13

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Landsman, W. B.; Sweigart, A. V.; Grundahl, F.

    2003-01-01

    We present the results of spectroscopic analyses of hot horizontal branch (HB) stars in M 13 and M 3, which form a famous "second parameter" pair. F rom the spectra and Stromgren photometry we derived - for the first time in M 13 - atmospheric parameters (effective temperature and surface gravity). For stars with Stromgren temperatures between 10,000 and 12,000 K we found excellent agreement between the atmospheric parameters derived from Stromgren photometry and those derived from Balmer line profile fits. However, for cooler stars there is a disagreement in the parameters derived by the two methods, for which we have no satisfactory explanation. Stars hotter than 12,000 K show evidence for helium depletion and iron enrichment, both in M 3 and M 13. Accounting for the iron enrichment substantially improves the agreement with canonical evolutionary models, although the derived gravities and masses are still somewhat too low. This remaining discrepancy may be an indication that scaled-solar metal-rich model atmospheres do not adequately represent the highly non-solar abundance ratios found in blue HB stars affected by diffusion. We discuss the effects of an enhancement in the envelope helium abundance on the atmospheric parameters of the blue HB stars, as might be caused by deep mixing on the red giant branch or primordial pollution from an earlier generation of intermediate mass asymptotic giant branch stars. Key words. Stars: atmospheres - Stars: evolution - Stars: horizontal branch - Globular clusters: individual: M 3 - Globular clusters: individual: M 13

  2. Hot HB Stars in Globular Clusters - Physical Parameters and Consequences for Theory. VI. The Second Parameter Pair M3 and M13

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Landsman, W. B.; Sweigart, A. V.; Grundahl, F.

    2002-01-01

    We present the results of spectroscopic analyses of hot horizontal branch (HB) stars in M13 and M3, which form a famous second parameter pair. From the spectra we derived - for the first time in M13 - atmospheric parameters (effective temperature and surface gravity) as well as abundances of helium, magnesium, and iron. Consistent with analyses of hot HB stars in other globular clusters we find evidence for helium depletion and iron enrichment in stars hotter than about 12,000 K in both M3 and M13. Accounting for the iron enrichment substantially improves the agreement with canonical evolutionary models, although the derived gravities and masses are still somewhat too low. This remaining discrepancy may be an indication that scaled-solar metal-rich model atmospheres do not adequately represent the highly non-solar abundance ratios found in blue HB stars with radiative levitation. We discuss the effects of an enhancement in the envelope helium abundance on the atmospheric parameters of the blue HB stars, as might be caused by deep mixing on the red giant branch or primordial pollution from an earlier generation of intermediate mass asymptotic giant branch stars.

  3. CCD Photometry of the Classic Second-Parameter Globular Clusters M3 and M13

    NASA Astrophysics Data System (ADS)

    Rey, Soo-Chang; Yoon, Suk-Jin; Lee, Young-Wook; Chaboyer, Brian; Sarajedini, Ata

    2001-12-01

    We present high-precision V, B-V color-magnitude diagrams (CMDs) for the classic second-parameter globular clusters M3 and M13 from wide-field, deep CCD photometry. The data for the two clusters were obtained during the same photometric nights with the same instrument, allowing us to determine accurate relative ages. Based on a differential comparison of the CMDs using the Δ(B-V) method, an age difference of 1.7+/-0.7 Gyr is obtained between these two clusters. We compare this result with our updated horizontal-branch (HB) population models, which confirm that the observed age difference can produce the difference in HB morphology between the clusters. This provides further evidence that age is the dominant second parameter that influences HB morphology. Data were obtained using the 2.4 m Hiltner Telescope of the Michigan-Dartmouth-MIT (MDM) Observatory.

  4. Geometrical parameters of E+S pairs

    NASA Technical Reports Server (NTRS)

    Rampazzo, Roberto; Sulentic, Jack W.

    1990-01-01

    Local environmental conditions (i.e., density and angular momentum properties of protogalactic clouds) are thought to be factors affecting the ultimate morphology of a galaxy. The existence of significant numbers of mixed morphology (E/SO+S) pairs of galaxies would represent a direct challenge to this idea unless all early-type components are formed by mergers. The authors wished to isolate candidate E+S pairs for detailed study. The authors have observed 22 pairs of mixed morphology galaxies (containing at least one early-type component) selected from a catalog of Sulentic (1988: unpublished) based upon the ESO sky survey. The observed sample and relevant morphological and interaction characteristics are summarized in tabular form. The authors report the relevant geometrical properties of the galaxies in another table. They list the maximum values measured for the ellipticity and the a(4)/a shape parameter together with the total measured twisting along the profile beyond the seeing disk (they set an inner limit of 3 arcsed). An asterisk indicates objects in which a(4)/a is neither predominantly boxy nor disky. They found a large number of true mixed pairs with 13/22 E+S pairs in the present sample. The remaining objects include 5 disk pairs (composed of SO and S members) and 3 early-type pairs comprising E and SO members. They estimate that between 25 and 50 percent of the pairs in any complete sample will be of the E+S type. This suggests that 100 to 200 such pairs exist on the sky brighter than m sub pg = 16.0. They found no global evidence for a difference between E members of this sample and those in more general samples (e.g., Bender et al. 1989). In particular, they found that about 30 percent of the early-type galaxies cannot be classified either predominantly boxy or disky because the a(4)/a profile shows both of these features at a comparable level or does not show any significant trend. Isophotal twisting is observed with a range and distribution

  5. Cultivation of Candida sp. LEB-M3 in glycerol: lipid accumulation and prediction of biodiesel quality parameters.

    PubMed

    Duarte, Susan Hartwig; Ansolin, Marina; Maugeri, Francisco

    2014-06-01

    The quality of biodiesel from lipids produced by the yeast Candida sp. LEB-M3 was predicted, by the use of mathematical models for parameters that specify quality as a function of the fatty acid profile. The lipid production was studied according to the experimental design methodology, for different cultivation conditions for agitation and aeration. Lipid compositions were affected by the cultivation conditions, and the agitation presented a positive effect for the formation of monounsaturated fatty acids and negative effect for saturated fatty acids. Aeration had a positive effect on the formation of polyunsaturated fatty acids. According to the predictions by the mathematical models, the cetane number varied from 61 to 67, the oxidative stability from 11 to 17h, the iodine index from 55 to 75gI2/100g, density from 852 to 868kg/m(3). All cultivation conditions led to lipid compositions, whose predicted bioparameter values indicate that biodiesel from this lipid source should present current standard quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Using Quasar Pairs to put Constraints on Cosmological Parameters

    NASA Astrophysics Data System (ADS)

    Johnson, Louis; Pâris, Isabelle

    2017-01-01

    For the last five billion years the universe has been expanding in size at an increasing rate. With modern technology we are able to observe objects at very high redshift, which were created in the early universe. Being able to analyze and observe these objects allows us to put specific constraints on the universe (age, size, dark matter fraction…etc). Looking at the spectra of highly redshifted objects, such as quasars, we can see a series of absorption lines called the Lyman alpha forest. The angular correlation in the Lyman alpha spectra of quasar pairs allows us to measure the size of the absorbing objects. This works best at very small-scale (below one arcmin). The most recent use of this method consisted of 32 quasar pairs and only two of those had a sky separation below 1 arcmin (Coppolani et al., 2006). The sample size that is used in this work is from the SDSS-III DR12. This catalog has over 1500 quasar pairs below two arcmin separation, giving us much lower error bars, and therefore putting much better constraints on the cosmological parameters that can be inferred from the correlation function.

  7. Size as a Parameter to Stabilize New Phases: Rock Salt Phases of Pb(m)Sb(2n)Se(m+3n).

    PubMed

    Soriano, Ronald B; Wu, Jinsong; Kanatzidis, Mercouri G

    2015-08-12

    A series of Pb(m)Sb(2n)Se(m+3n) nanocrystals (m = 2, 4, 6 and 8; n = 1) are demonstrated that exist only as a distinct phase on the nanoscale. The nanocrystals aggregates are new compounds adopting the cubic NaCl-type structure. These materials form aggregates comprised of nanocrystallites that are attached at a preferred orientation. Elemental compositions were studied using the complementary techniques of scanning transmission electron microscopy/energy dispersive X-ray spectroscopy and inductively coupled plasma-atomic emission spectroscopy. The new ternary nanocrystal aggregates are moderately monodisperse and exhibit well-defined band gap energies in the mid-IR region. The Pb(m)Sb(2n)Se(m+3n) nanomaterials behave as homogeneous solid solutions with lattice parameter trending as a function of Sb incorporation at room temperature and tend to phase separate into PbSe and Sb2Se3 at 400 °C.

  8. Spin-Hamiltonian parameters for the tetragonal GdM3+-Fi- centers in CaF2 and SrF2 crystals

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Qing; Zhang, Ying; Lin, Yuan; Zheng, Wen-Chen

    2013-02-01

    The spin-Hamiltonian parameters (g factors g//, g⊥ and zero-field splittings b20, b40, b44, b60, b64) of the tetragonal GdM3+-Fi- centers in CaF2 and SrF2 crystals at T ≈ 1.8 K are calculated from the diagonalization (of energy matrix) method based on the one-electron crystal field mechanism. In the calculations, the crystal field parameters used are estimated from the superposition model with the reported defect structural data obtained from the analyses of superhyperfire interaction constants at the same temperature. The calculated results are in reasonable agreement with the experimental values. It appears that the above defect structural data reported in the previous paper are suitable and the diagonalization (of energy matrix) method is effective to the studies of spin-Hamiltonian parameters for 4f7 ions in crystals.

  9. Revised bond valence parameters for the P+5/S-2 ion pair

    NASA Astrophysics Data System (ADS)

    Sidey, V.; Shteyfan, A.

    2017-04-01

    The physically reasonable bond valence parameters, r0=2.125 Å and b=0.37 Å, have been derived for the P+5/S-2 ion pair from a representative set of accurately determined low-symmetry thiophosphate structures. These parameters can be recommended for bond valence analysis of thiophosphates as a replacement for the (r0; b) sets previously reported for the same ions.

  10. Possibilities of paired comparison of receptor binding parameters obtained in a single experiment

    SciTech Connect

    Mashilova, K.V.; Kiriakov, G.V.; Malin, K.M.; Rozhanets, V.V.

    1987-09-01

    The authors explore the use of comparing control and experimental groups on the basis of extrapolation parameters obtained from a single pair of experiments. One of the experiments study the parameters of specific binding of /sup 3/H-D-ala-2-enkephelin-5-D-leucine in the striatum of different groups of rats. The analysis was done by the Cornish-Bowden method.

  11. Nearest-neighbor parameters for 7-deaza-adenosine·uridine base pairs in RNA duplexes.

    PubMed

    Richardson, Katherine E; Znosko, Brent M

    2016-06-01

    One of the major limitations in RNA structure prediction is the lack of information about the effect of nonstandard nucleotides on stability. The nonstandard nucleotide 7-deaza-adenosine (7DA) is a naturally occurring analog of adenosine that has been studied for medicinal purposes and is commonly referred to as tubercidin. In 7DA, the nitrogen in the 7 position of adenosine is replaced by a carbon. Differences in RNA duplex stability due to the removal of this nitrogen can be attributed to a possible change in hydration and a difference in base stacking interactions resulting from changes in the electrostatics of the ring. In order to determine how 7DA affects the stability of RNA, optical melting experiments were conducted on RNA duplexes that contain either internal or terminal 7DA·U pairs with all possible nearest-neighbor combinations. On average, duplexes containing 7DA·U pairs are 0.43 and 0.07 kcal/mol less stable than what is predicted for the same duplex containing internal and terminal A-U pairs, respectively. Thermodynamic parameters for all nearest-neighbor combinations of 7DA·U pairs were derived from the data. These parameters can be used to more accurately predict the secondary structure and stability of RNA duplexes containing 7DA·U pairs. © 2016 Richardson and Znosko; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. Finite Momentum Pairing and Spatially Varying Order Parameter in Proximitized HgTe Quantum Wells

    NASA Astrophysics Data System (ADS)

    Yacoby, Amir

    Conventional s-wave superconductivity is understood to arise from singlet pairing of electrons with opposite Fermi momenta, forming Cooper pairs whose net momentum is zero. Several recent studies have focused on structures where such conventional s-wave superconductors are coupled to systems with an unusual configuration of electronic spin and momentum at the Fermi surface. Under these conditions, the nature of the paired state can be modified and the system may even undergo a topological phase transition. Here we present measurements and theoretical calculations of several HgTe quantum wells coupled to either aluminum or niobium superconductors and subject to a magnetic field in the plane of the quantum well. By studying the oscillatory response of Josephson interference to the magnitude of the in-plane magnetic field, we find that the induced pairing within the quantum well oscillates between singlet and triplet pairing and is spatially varying. Cooper pairs acquire a tunable momentum that grows with magnetic field strength, directly reflecting the response of the spin-dependent Fermi surfaces to the in-plane magnetic field. Our new understanding of the interplay between spin physics and superconductivity introduces a way to spatially engineer the order parameter, as well as a general framework within which to investigate electronic spin texture at the Fermi surface of materials.

  13. Investigations of EPR parameters for the trigonal Ti3+-Ti3+ pair in beryl crystal.

    PubMed

    Wang, Fang; Zheng, Wen-Chen

    2007-08-01

    By using the complete diagonalization of energy matrix of 3d1 ions in trigonal symmetry, the EPR parameters (g factors g( parallel), g( perpendicular) and zero-field splitting D) of the trigonal Ti3+-Ti3+ pair in beryl crystal are calculated. In the calculations, the exchange interaction in the Ti3+-Ti3+ pair is taken as the perturbation and the local trigonal distortion in the defect center is considered. The results (which are in agreement with the experimental values) are discussed.

  14. Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides

    PubMed Central

    Hudson, Graham A.; Bloomingdale, Richard J.; Znosko, Brent M.

    2013-01-01

    Pseudouridine (Ψ) is the most common noncanonical nucleotide present in naturally occurring RNA and serves a variety of roles in the cell, typically appearing where structural stability is crucial to function. Ψ residues are isomerized from native uridine residues by a class of highly conserved enzymes known as pseudouridine synthases. In order to quantify the thermodynamic impact of pseudouridylation on U-A base pairs, 24 oligoribonucleotides, 16 internal and eight terminal Ψ-A oligoribonucleotides, were thermodynamically characterized via optical melting experiments. The thermodynamic parameters derived from two-state fits were used to generate linearly independent parameters for use in secondary structure prediction algorithms using the nearest-neighbor model. On average, internally pseudouridylated duplexes were 1.7 kcal/mol more stable than their U-A counterparts, and terminally pseudouridylated duplexes were 1.0 kcal/mol more stable than their U-A equivalents. Due to the fact that Ψ-A pairs maintain the same Watson-Crick hydrogen bonding capabilities as the parent U-A pair in A-form RNA, the difference in stability due to pseudouridylation was attributed to two possible sources: the novel hydrogen bonding capabilities of the newly relocated imino group as well as the novel stacking interactions afforded by the electronic configuration of the Ψ residue. The newly derived nearest-neighbor parameters for Ψ-A base pairs may be used in conjunction with other nearest-neighbor parameters for accurately predicting the most likely secondary structure of A-form RNA containing Ψ-A base pairs. PMID:24062573

  15. Skylab ATM/S-056 X-ray event analyzer: Instrument description, parameter determination, and analysis example (15 June 1973 1B/M3 flare)

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1976-01-01

    The Skylab ATM/S-056 X-Ray Event Analyzer, part of an X-ray telescope experiment, is described. The techniques employed in the analysis of its data to determine electron temperatures and emission measures are reviewed. The analysis of a sample event - the 15 June 1973 1B/M3 flare - is performed. Comparison of the X-Ray Event Analyzer data with that of the SolRad 9 observations indicates that the X-Ray Event Analyzer accurately monitored the sun's 2.5 to 7.25 A X-ray emission and to a lesser extent the 6.1 to 20 A emission. A mean average peak temperature of 15 million K at 1,412 UT and a mean average peak electron density (assuming a flare volume of 10 to the 13 power cu km) of 27 million/cu mm at 1,416 to 1,417 UT are deduced for the event. The X-Ray Event Analyzer data, having a 2.5 s time resolution, should be invaluable in comparisons with other high-time resolution data (e.g., radio bursts).

  16. Controlled finite momentum pairing and spatially varying order parameter in proximitized HgTe quantum wells

    NASA Astrophysics Data System (ADS)

    Hart, Sean; Ren, Hechen; Kosowsky, Michael; Ben-Shach, Gilad; Leubner, Philipp; Brüne, Christoph; Buhmann, Hartmut; Molenkamp, Laurens W.; Halperin, Bertrand I.; Yacoby, Amir

    2017-01-01

    Conventional s-wave superconductivity arises from singlet pairing of electrons with opposite Fermi momenta, forming Cooper pairs with zero net momentum. Recent studies have focused on coupling s-wave superconductors to systems with an unusual configuration of electronic spin and momentum at the Fermi surface, where the nature of the paired state can be modified and the system may even undergo a topological phase transition. Here we present measurements and theoretical calculations of HgTe quantum wells coupled to aluminium or niobium superconductors and subject to a magnetic field in the plane of the quantum well. We find that this magnetic field tunes the momentum of Cooper pairs in the quantum well, directly reflecting the response of the spin-dependent Fermi surfaces. In the high electron density regime, the induced superconductivity evolves with electron density in agreement with our model based on the Hamiltonian of Bernevig, Hughes and Zhang. This agreement provides a quantitative value for g ˜/vF, where g ˜ is the effective g-factor and vF is the Fermi velocity. Our new understanding of the interplay between spin physics and superconductivity introduces a way to spatially engineer the order parameter from singlet to triplet pairing, and in general allows investigation of electronic spin texture at the Fermi surface of materials.

  17. Segregation parameters and pair-exchange mixing models for turbulent nonpremixed flames

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.; Kollman, W.

    1991-01-01

    The progress of chemical reactions in nonpremixed turbulent flows depends on the coexistence of reactants, which are brought together by mixing. The degree of mixing can strongly influence the chemical reactions and it can be quantified by segregation parameters. In this paper, the relevance of segregation parameters to turbulent mixing and chemical reactions is explored. An analysis of the pair-exchange mixing models is performed and an explanation is given for the peculiar behavior of such models in homogeneous turbulence. The nature of segregation parameters in a H2/Ar-air nonpremixed jet flame is investigated. The results show that Monte Carlo simulation with the modified Curl's mixing model predicts segregation parameters in close agreement with the experimental values, providing an indirect validation for the theoretical model.

  18. Correlation of leptin and soluble leptin receptor levels with anthropometric parameters in mother-newborn pairs.

    PubMed

    Marino-Ortega, Linda A; Molina-Bello, Adiel; Polanco-García, Julio C; Muñoz-Valle, José F; Salgado-Bernabé, Aralia B; Guzmán-Guzmán, Iris P; Parra-Rojas, Isela

    2015-01-01

    The aim of this study was to investigate if anthropometric parameters are associated with both leptin and soluble leptin receptor (sLEPR) levels in newborns and their mothers. This cross-sectional study was performed in 118 mother-newborn pairs. The venous blood sample of mothers was taken before delivery and immediately after delivery an umbilical cord blood sample was collected. Levels of leptin and sLEPR in maternal and umbilical cord sera were assessed by ELISA. Maternal serum concentration of leptin and sLEPR (6.2 and 25.7 ng/ml, respectively) were higher than in umbilical cord blood (2.4 and 14.2 ng/ml, respectively). However, the newborns and their mothers had higher sLEPR levels than leptin levels. In mothers was observed that leptin levels increase with weight gain in pregnancy and decreased sLEPR levels. Cord leptin levels correlated with neonatal birth weight and length, the body circumferences, placental weight and maternal leptin levels. Cord sLEPR levels correlated with maternal sLEPR and leptin levels. Maternal serum concentration of leptin correlated with pre-pregnancy BMI, weight gain, cord sLEPR and leptin levels. Maternal sLEPR concentration correlated with cord sLEPR levels. The leptin and sLEPR levels in mother-newborn pairs are related with anthropometric parameters and an inverse correlation between leptin levels and sLEPR was observed in pairs.

  19. Correlation of leptin and soluble leptin receptor levels with anthropometric parameters in mother-newborn pairs

    PubMed Central

    Marino-Ortega, Linda A; Molina-Bello, Adiel; Polanco-García, Julio C; Muñoz-Valle, José F; Salgado-Bernabé, Aralia B; Guzmán-Guzmán, Iris P; Parra-Rojas, Isela

    2015-01-01

    The aim of this study was to investigate if anthropometric parameters are associated with both leptin and soluble leptin receptor (sLEPR) levels in newborns and their mothers. This cross-sectional study was performed in 118 mother-newborn pairs. The venous blood sample of mothers was taken before delivery and immediately after delivery an umbilical cord blood sample was collected. Levels of leptin and sLEPR in maternal and umbilical cord sera were assessed by ELISA. Maternal serum concentration of leptin and sLEPR (6.2 and 25.7 ng/ml, respectively) were higher than in umbilical cord blood (2.4 and 14.2 ng/ml, respectively). However, the newborns and their mothers had higher sLEPR levels than leptin levels. In mothers was observed that leptin levels increase with weight gain in pregnancy and decreased sLEPR levels. Cord leptin levels correlated with neonatal birth weight and length, the body circumferences, placental weight and maternal leptin levels. Cord sLEPR levels correlated with maternal sLEPR and leptin levels. Maternal serum concentration of leptin correlated with pre-pregnancy BMI, weight gain, cord sLEPR and leptin levels. Maternal sLEPR concentration correlated with cord sLEPR levels. The leptin and sLEPR levels in mother-newborn pairs are related with anthropometric parameters and an inverse correlation between leptin levels and sLEPR was observed in pairs. PMID:26379933

  20. Testing the Nearest Neighbor Model for Canonical RNA Base Pairs: Revision of GU Parameters

    PubMed Central

    2012-01-01

    Thermodynamic parameters for GU pairs are important for predicting the secondary structures of RNA and for finding genomic sequences that code for structured RNA. Optical melting curves were measured for 29 RNA duplexes with GU pairs to improve nearest neighbor parameters for predicting stabilities of helixes. The updated model eliminates a prior penalty assumed for terminal GU pairs. Six additional duplexes with the 5′GG/3′UU motif were added to the single representation in the previous database. This revises the ΔG°37 for the 5′GG/3′UU motif from an unfavorable 0.5 kcal/mol to a favorable −0.2 kcal/mol. Similarly, the ΔG°37 for the 5′UG/3′GU motif changes from 0.3 to −0.6 kcal/mol. The correlation coefficients between predicted and experimental ΔG°37, ΔH°, and ΔS° for the expanded database are 0.95, 0.89, and 0.87, respectively. The results should improve predictions of RNA secondary structure. PMID:22490167

  1. Influence of Design Parameters on Mechanical Power Losses of Helical Gear Pairs

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Vaidyanathan, Aarthy; Harianto, Jonny; Kahraman, Ahmet

    In this study, the influence of basic design parameters and tooth surface modifications on the mechanical (friction induced) power losses of a helical gear pair is studied. A helical gear mechanical efficiency model based on elastohydrodynamic lubrication (EHL) is introduced. The model is used to simulate the gear contact conditions of an example helical gear pair within the ranges of basic design parameter such as pressure and helix angles, number of teeth (module), and major diameters to quantify their impact on mechanical power losses. Variation of gear efficiency with these parameters are then weighed against other functional requirements such as transmission error amplitudes, and contact and bending stresses to demonstrate that many designs that have high efficiency might perform poorly in terms of noise, pitting, and tooth breakage. A representative design that is acceptable in all aspects is considered next with varying amounts of tooth modifications to demonstrate their impact on power losses. At the end, recommendations are made on how to reduce helical gear mechanical power losses while meeting other functional requirements as well.

  2. Nonperturbative quantum dynamics of the order parameter in the BCS pairing model

    NASA Astrophysics Data System (ADS)

    Galitski, Victor

    2010-08-01

    We consider quantum dynamics of the order parameter in the discrete pairing model (Richardson model) in thermodynamic equilibrium. The integrable Richardson Hamiltonian is represented as a direct sum of Hamiltonians acting in different Hilbert spaces of single-particle and paired/empty states. This allows us to factorize the full thermodynamic partition function into a combination of simple terms associated with real spins on singly occupied states and the partition function of the quantum XY model for Anderson pseudospins associated with the paired/empty states. Using coherent-state path integral, we calculate the effects of superconducting phase fluctuations exactly. The contribution of superconducting amplitude fluctuations to the partition function in the broken-symmetry phase is shown to follow from the Bogoliubov-de Gennes equations in imaginary time. These equations in turn allow several interesting mappings, e.g., they are shown to be in a one-to-one correspondence with the one-dimensional Schrödinger equation in supersymmetric quantum mechanics. However, the most practically useful approach to calculate functional determinants is found to be via an analytical continuation of the quantum order parameter to real time, Δ(τ→it) , such that the problem maps onto that of a driven two-level system. The contribution of a particular dynamic order parameter, Δ(τ) , to the partition function is shown to correspond to the sum of the Berry phase and dynamic phase accumulated by the pseudospin. We also examine a family of exact solutions for two-level-system dynamics on a class of elliptic functions and suggest a compact expression to estimate the functional determinants on such trajectories. The possibility of having quantum soliton solutions coexisting with classical BCS mean field is discussed.

  3. Entanglement-assisted quantum parameter estimation from a noisy qubit pair: A Fisher information analysis

    NASA Astrophysics Data System (ADS)

    Chapeau-Blondeau, François

    2017-04-01

    Benefit from entanglement in quantum parameter estimation in the presence of noise or decoherence is investigated, with the quantum Fisher information to asses the performance. When an input probe experiences any (noisy) transformation introducing the parameter dependence, the performance is always maximized by a pure probe. As a generic estimation task, for estimating the phase of a unitary transformation on a qubit affected by depolarizing noise, the optimal separable probe and its performance are characterized as a function of the level of noise. By entangling qubits in pairs, enhancements of performance over that of the optimal separable probe are quantified, in various settings of the entangled pair. In particular, in the presence of the noise, enhancement over the performance of the one-qubit optimal probe can always be obtained with a second entangled qubit although never interacting with the process to be estimated. Also, enhancement over the performance of the two-qubit optimal separable probe can always be achieved by a two-qubit entangled probe, either partially or maximally entangled depending on the level of the depolarizing noise.

  4. Detecting non-stationary hydrologic model parameters in a paired catchment system using data assimilation

    NASA Astrophysics Data System (ADS)

    Pathiraja, S.; Marshall, L.; Sharma, A.; Moradkhani, H.

    2016-08-01

    Non-stationarity represents one of the major challenges facing hydrologists. There exists a need to develop modelling systems that are capable of accounting for potential catchment changes, in order to provide useful predictions for the future. Such changes may be due to climatic temporal variations or human induced changes to land cover. Extensive research has been undertaken on the impacts of land-use change on hydrologic behaviour, however, few studies have examined this issue in a predictive modelling context. In this paper, we investigate whether a time varying model parameter estimation framework that uses the principles of Data Assimilation can improve prediction for two pairs of experimental catchments in Western Australia. All catchments were initially forested, but after three years one catchment was fully cleared whilst another had only 50% of its area cleared. Their adjacent catchments remained unchanged as a control. Temporal variations in parameters were detected for both treated catchments, with no comparable variations for the control catchments. Improved streamflow prediction and representation of soil moisture dynamics were also seen for the time varying parameter case, compared to when a time invariant parameter set from the calibration period was used. While we use the above mentioned catchments to illustrate the usefulness of the approach, the methods are generic and equally applicable in other settings. This study serves as an important validation step to demonstrate the potential for time varying model structures to improve both predictions and modelling of changing catchments.

  5. Localization and pair breaking parameter in superconducting molybdenum nitride thin films.

    PubMed

    Tsuneoka, Takuya; Makise, Kazumasa; Maeda, Sho; Shinozaki, Bunju; Ichikawa, Fusao

    2017-01-11

    We have investigated the superconductor-insulator transition in molybdenum nitride films prepared by deposition onto MgO substrates. It is indicated that the T c depression from [Formula: see text] for thick films with increase of the normal state sheet resistance [Formula: see text] was well explained by the Finkel'stein formula from the localization theory. Present analysis suggests that the superconducting-insulator transition occurs at a critical sheet resistance [Formula: see text]. It is found that the [Formula: see text] above [Formula: see text] shows different characteristics of [Formula: see text] and [Formula: see text] in the regions [Formula: see text] and [Formula: see text], respectively, where [Formula: see text] is the classical residual resistance and A is a constant. The excess conductance [Formula: see text] due to thermal fluctuation has been analyzed by the sum of the Aslamazov-Larkin and Maki-Thompson correction terms with use of the pair breaking parameter [Formula: see text] in the latter term. The sum agrees well with the data, although the experimental results of the [Formula: see text] dependence of [Formula: see text], that is, [Formula: see text] shows the disagreement with a linear relation [Formula: see text] derived from the localization theory.

  6. Graph theory for analyzing pair-wise data: application to geophysical model parameters estimated from interferometric synthetic aperture radar data at Okmok volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Reinisch, Elena C.; Cardiff, Michael; Feigl, Kurt L.

    2017-01-01

    Graph theory is useful for analyzing time-dependent model parameters estimated from interferometric synthetic aperture radar (InSAR) data in the temporal domain. Plotting acquisition dates (epochs) as vertices and pair-wise interferometric combinations as edges defines an incidence graph. The edge-vertex incidence matrix and the normalized edge Laplacian matrix are factors in the covariance matrix for the pair-wise data. Using empirical measures of residual scatter in the pair-wise observations, we estimate the relative variance at each epoch by inverting the covariance of the pair-wise data. We evaluate the rank deficiency of the corresponding least-squares problem via the edge-vertex incidence matrix. We implement our method in a MATLAB software package called GraphTreeTA available on GitHub (https://github.com/feigl/gipht). We apply temporal adjustment to the data set described in Lu et al. (Geophys Res Solid Earth 110, 2005) at Okmok volcano, Alaska, which erupted most recently in 1997 and 2008. The data set contains 44 differential volumetric changes and uncertainties estimated from interferograms between 1997 and 2004. Estimates show that approximately half of the magma volume lost during the 1997 eruption was recovered by the summer of 2003. Between June 2002 and September 2003, the estimated rate of volumetric increase is (6.2 ± 0.6) × 10^6 m^3/year . Our preferred model provides a reasonable fit that is compatible with viscoelastic relaxation in the five years following the 1997 eruption. Although we demonstrate the approach using volumetric rates of change, our formulation in terms of incidence graphs applies to any quantity derived from pair-wise differences, such as range change, range gradient, or atmospheric delay.

  7. Localization and pair breaking parameter in superconducting molybdenum nitride thin films

    NASA Astrophysics Data System (ADS)

    Tsuneoka, Takuya; Makise, Kazumasa; Maeda, Sho; Shinozaki, Bunju; Ichikawa, Fusao

    2017-01-01

    We have investigated the superconductor-insulator transition in molybdenum nitride films prepared by deposition onto MgO substrates. It is indicated that the T c depression from ≈ 6.6 \\text{K} for thick films with increase of the normal state sheet resistance R\\text{sq}\\text{N} was well explained by the Finkel’stein formula from the localization theory. Present analysis suggests that the superconducting-insulator transition occurs at a critical sheet resistance {{R}\\text{c}}≈ 2 \\text{k} Ω . It is found that the {{R}\\text{sq}}(T) above {{R}\\text{c}} shows different characteristics of {{R}\\text{sq}}(T)={{R}\\text{sq,0}}-A\\ln T and {{R}\\text{sq}}(T)\\propto \\exp ≤ft[{≤ft({{T}0}/T\\right)}1/2}\\right] in the regions {{R}\\text{c}}\\text{sq}\\text{N}<{{R}\\text{Q}}=h/4{{e}2}≈ 6.45 \\text{k} Ω and R\\text{sq}\\text{N}>{{R}\\text{Q}} , respectively, where {{R}\\text{sq,0}} is the classical residual resistance and A is a constant. The excess conductance {{σ\\prime}{}(T) due to thermal fluctuation has been analyzed by the sum of the Aslamazov-Larkin and Maki-Thompson correction terms with use of the pair breaking parameter δ in the latter term. The sum agrees well with the data, although the experimental results of the R\\text{sq}\\text{N} dependence of δ , that is, δ \\propto {{≤ft(R\\text{sq}\\text{N}\\right)}≈ 1.7} shows the disagreement with a linear relation δ \\propto ≤ft(R\\text{sq}\\text{N}\\right) derived from the localization theory.

  8. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  9. Dynamics of a hypoid gear pair considering the effects of time-varying mesh parameters and backlash nonlinearity

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Lim, Teik C.; Li, Mingfeng

    2007-11-01

    A generalized nonlinear time-varying (NLTV) dynamic model of a hypoid gear pair with backlash nonlinearity is formulated which is also applicable to spur, helical, spiral bevel and worm gears. Firstly, the fundamental harmonic form of time-varying mesh parameters is used to study the effects of mesh parameter variations on the dynamic response, and the interactions between them and backlash nonlinearity. The analysis also examines the effects of mean load and mesh damping. Secondly, based on a three-dimensional quasi-static tooth contact analysis, a new significantly more exact time-varying mesh model is proposed, which describes the true mesh characteristics of hypoid gear pairs. The enhanced time-varying mesh model is applied to perform further dynamic analysis. Computational results reveal numerous interesting nonlinear characteristics, such as jump discontinuities, sub-harmonic and chaotic behaviors, especially for lightly loaded and lightly damped cases.

  10. Studying temperature dependence of pairing gap parameter in a nucleus as a small superconducting system

    NASA Astrophysics Data System (ADS)

    Rahmatinejad, A.; Razavi, R.; Kakavand, T.

    2016-07-01

    In this paper, we have taken the effect of small size of nucleus and static fluctuations into account in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity calculations of 45Ti nucleus. Thermodynamic quantities of 45Ti have been extracted within the BCS model with the inclusion of the average value of the pairing gap square, extracted by the modified Ginzburg-Landau (MGL) method for small systems. Calculated values of the excitation energy and entropy within the MGL+BCS method improve the extracted results within the usual BCS model and show a smooth behavior around the critical temperature with a very good agreement with the semi-empirical values. The result of using MGL+BCS method for the heat capacity of 45Ti is compared with the corresponding semi-empirical values and the calculated values within the BCS, static path approximation (SPA) and Modified Pairing gap BCS (MPBCS) which is a method that was proposed in our previous publications. Both MGL+BCS and MPBCS avoid the discontinuity of the heat capacity curve, which is observed in the usual BCS method, and lead to an S-shaped curve with a good agreement with the semi-empirical results.

  11. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2015-01-01

    Published two-body bond-valence parameters for cation–oxygen bonds have been evaluated via the root mean-square deviation (RMSD) from the valence-sum rule for 128 cations, using 180 194 filtered bond lengths from 31 489 coordination polyhedra. Values of the RMSD range from 0.033–2.451 v.u. (1.1–40.9% per unit of charge) with a weighted mean of 0.174 v.u. (7.34% per unit of charge). The set of best published parameters has been determined for 128 ions and used as a benchmark for the determination of new bond-valence parameters in this paper. Two common methods for the derivation of bond-valence parameters have been evaluated: (1) fixing B and solving for R o; (2) the graphical method. On a subset of 90 ions observed in more than one coordination, fixing B at 0.37 Å leads to a mean weighted-RMSD of 0.139 v.u. (6.7% per unit of charge), while graphical derivation gives 0.161 v.u. (8.0% per unit of charge). The advantages and disadvantages of these (and other) methods of derivation have been considered, leading to the conclusion that current methods of derivation of bond-valence parameters are not satisfactory. A new method of derivation is introduced, the GRG (generalized reduced gradient) method, which leads to a mean weighted-RMSD of 0.128 v.u. (6.1% per unit of charge) over the same sample of 90 multiple-coordination ions. The evaluation of 19 two-parameter equations and 7 three-parameter equations to model the bond-valence–bond-length relation indicates that: (1) many equations can adequately describe the relation; (2) a plateau has been reached in the fit for two-parameter equations; (3) the equation of Brown & Altermatt (1985 ▸) is sufficiently good that use of any of the other equations tested is not warranted. Improved bond-valence parameters have been derived for 135 ions for the equation of Brown & Altermatt (1985 ▸) in terms of both the cation and anion bond-valence sums using the GRG method and our complete data set. PMID

  12. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2015-10-01

    Published two-body bond-valence parameters for cation-oxygen bonds have been evaluated via the root mean-square deviation (RMSD) from the valence-sum rule for 128 cations, using 180,194 filtered bond lengths from 31,489 coordination polyhedra. Values of the RMSD range from 0.033-2.451 v.u. (1.1-40.9% per unit of charge) with a weighted mean of 0.174 v.u. (7.34% per unit of charge). The set of best published parameters has been determined for 128 ions and used as a benchmark for the determination of new bond-valence parameters in this paper. Two common methods for the derivation of bond-valence parameters have been evaluated: (1) fixing B and solving for R(o); (2) the graphical method. On a subset of 90 ions observed in more than one coordination, fixing B at 0.37 Å leads to a mean weighted-RMSD of 0.139 v.u. (6.7% per unit of charge), while graphical derivation gives 0.161 v.u. (8.0% per unit of charge). The advantages and disadvantages of these (and other) methods of derivation have been considered, leading to the conclusion that current methods of derivation of bond-valence parameters are not satisfactory. A new method of derivation is introduced, the GRG (generalized reduced gradient) method, which leads to a mean weighted-RMSD of 0.128 v.u. (6.1% per unit of charge) over the same sample of 90 multiple-coordination ions. The evaluation of 19 two-parameter equations and 7 three-parameter equations to model the bond-valence-bond-length relation indicates that: (1) many equations can adequately describe the relation; (2) a plateau has been reached in the fit for two-parameter equations; (3) the equation of Brown & Altermatt (1985) is sufficiently good that use of any of the other equations tested is not warranted. Improved bond-valence parameters have been derived for 135 ions for the equation of Brown & Altermatt (1985) in terms of both the cation and anion bond-valence sums using the GRG method and our complete data set.

  13. Lithium Abundance in M3 Red Giant

    NASA Astrophysics Data System (ADS)

    Givens, Rashad; Pilachowski, Catherine A.

    2015-01-01

    We present the abundance of lithium in the red giant star vZ 1050 (SK 291) in the globular cluster M3. A previous survey of giants in the cluster showed that like IV-101, vZ 1050 displays a prominent Li I 6707 Å feature. vZ 1050 lies on the blue side of the red giant branch about 1.3 magnitudes above the level of the horizontal branch, and may be an asymptotic giant branch star. A high resolution spectrum of M3 vZ1050 was obtained with the ARC 3.5m telescope and the ARC Echelle Spectrograph (ARCES). Atmospheric parameters were determined using Fe I and Fe II lines from the spectrum using the MOOG spectral analysis program, and the lithium abundance was determined using spectrum synthesis.

  14. Identification of the battery state-of-health parameter from input-output pairs of time series data

    NASA Astrophysics Data System (ADS)

    Li, Yue; Chattopadhyay, Pritthi; Ray, Asok; Rahn, Christopher D.

    2015-07-01

    As a paradigm of dynamic data-driven application systems (DDDAS), this paper addresses real-time identification of the State of Health (SOH) parameter over the life span of a battery that is subjected to approximately repeated cycles of discharging/recharging current. In the proposed method, finite-length data of interest are selected via wavelet-based segmentation from the time series of synchronized input-output (i.e., current-voltage) pairs in the respective two-dimensional space. Then, symbol strings are generated by partitioning the selected segments of the input-output time series to construct a special class of probabilistic finite state automata (PFSA), called D-Markov machines. Pertinent features of the statistics of battery dynamics are extracted as the state emission matrices of these PFSA. This real-time method of SOH parameter identification relies on the divergence between extracted features. The underlying concept has been validated on (approximately periodic) experimental data, generated from a commercial-scale lead-acid battery. It is demonstrated by real-time analysis of the acquired current-voltage data on in-situ computational platforms that the proposed method is capable of distinguishing battery current-voltage dynamics at different aging stages, as an alternative to computation-intensive and electrochemistry-dependent analysis via physics-based modeling.

  15. Biasing Simulations of DNA Base Pair Parameters with Application to Propellor Twisting in AT/AT, AA/TT, and AC/GT Steps and Their Uracil Analogs.

    PubMed

    Peguero-Tejada, Alfredo; van der Vaart, Arjan

    2017-01-23

    An accurate and efficient implementation of the six DNA base pair parameters as order parameters for enhanced sampling simulations is presented. The parameter definitions are defined by vector algebra operations on a reduced atomic set of the base pair, and correlate very well with standard definitions. Application of the model is illustrated by umbrella sampling simulations of propeller twisting within AT/AT, AA/TT, and AC/GT steps and their uracil analogs. Strong correlations are found between propeller twisting and a number of conformational parameters, including buckle, opening, BI/BII backbone configuration, and sugar puckering. The thymine methyl group is observed to notably alter the local conformational free energy landscape, with effects within and directly upstream of the thymine containing base pair.

  16. Derivation of Pitzer Interaction Parameters for an Aqueous Species Pair of Sodium and Iron(II)-Citrate Complex

    NASA Astrophysics Data System (ADS)

    Jang, J. H.; Nemer, M.

    2015-12-01

    The U.S. DOE Waste Isolation Pilot Plant (WIPP) is a deep underground repository for the permanent disposal of transuranic (TRU) radioactive waste. The WIPP is located in the Permian Delaware Basin near Carlsbad, New Mexico, U.S.A. The TRU waste includes, but is not limited to, iron-based alloys and the complexing agent, citric acid. Iron is also present from the steel used in the waste containers. The objective of this analysis is to derive the Pitzer activity coefficients for the pair of Na+ and FeCit- complex to expand current WIPP thermodynamic database. An aqueous model for the dissolution of Fe(OH)2(s) in a Na3Cit solution was fitted to the experimentally measured solubility data. The aqueous model consists of several chemical reactions and related Pitzer interaction parameters. Specifically, Pitzer interaction parameters for the Na+ and FeCit- pair (β(0), β(1), and Cφ) plus the stability constant for species of FeCit- were fitted to the experimental data. Anoxic gloveboxes were used to keep the oxygen level low (<1 ppm) throughout the experiments due to redox sensitivity. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations, packaged in EQ3/6 v.8.0a, calculates the aqueous speciation and saturation index using an aqueous model addressed in EQ3/6's database. The saturation index indicates how far the system is from equilibrium with respect to the solid of interest. Thus, the smaller the sum of squared saturation indices that the aqueous model calculates for the given number of experiments, the more closely the model attributes equilibrium to each individual experiment with respect to the solid of interest. The calculation of aqueous speciation and saturation indices was repeated by adjusting stability constant of FeCit-, β(0), β(1), and Cφ in the database until the values are found that make the sum of squared saturation indices the smallest for the given number of experiments. Results will be presented at the time of

  17. Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function (ePDF) studies

    DOE PAGES

    Abeykoon, A. M. Milinda; Hu, Hefei; Wu, Lijun; ...

    2015-02-01

    We explore and describe different protocols for calibrating electron pair distribution function (ePDF) measurements for quantitative studies on nano-materials. We find the most accurate approach to determine the camera-length is to use a standard calibration sample of Au nanoparticles from National Institute of Standards and Technology. Different protocols for data collection are also explored, as are possible operational errors, to find the best approaches for accurate data collection for quantitative ePDF studies.

  18. Differences in neuropsychological and behavioral parameters and brain structure in patients with familial adenomatous polyposis: a sibling-paired study.

    PubMed

    Azofra, Ana Sánchez; Kidambi, Trilokesh D; Jeremy, Rita J; Conrad, Peggy; Blanco, Amie; Myers, Megan; Barkovich, James; Terdiman, Jonathan P

    2016-01-01

    Familial adenomatous polyposis (FAP) is an autosomal dominant hereditary colon cancer syndrome caused by mutations in adenomatous polyposis coli (APC) with both colonic and extra-colonic manifestations. Case reports have noted an association with FAP and intellectual disability and animal studies have shown that APC is implicated in neural development and function, but no studies have investigated neuropsychological, behavioral, or structural brain characteristics of patients with FAP. We undertook a pilot, sibling-pair study comparing three patients with FAP to their sex-matched siblings without FAP. Each sibling pair underwent neuropsychological testing by a blinded examiner, high resolution brain MRI scans, and the mother of each pair rated her children's adaptive life skills and behavioral and emotional characteristics. Given the small number of study participants in this pilot study, quantitative comparisons of results were made by subtracting the score of the non-FAP sibling from the FAP patient on the various neuropsychological tests and parent rating questionnaires to calculate a difference, which was then divided by the standard deviation for each individual test to determine the difference, corrected for the standard deviation. Diffusion numbers in multiple regions of the brain as assessed by MRI were calculated for each study participant. We found similarity between siblings in all three pairs on a wide range of neuropsychological measures (general intelligence, executive function, and basic academic skills) as tested by the psychologist as well as in descriptions of adaptive life skills as rated by mothers. However, mothers' ratings of behavioral and emotional characteristics of two of the three pairs showed differences between the siblings, specifically that the patients with FAP were found to have more behavioral and emotional problems compared to their siblings. No differences in brain structure were identified by MRI. We report the first study

  19. Assessing the Interplay between the Physicochemical Parameters of Ion-Pairing Reagents and the Analyte Sequence on the Electrospray Desorption Process for Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Basiri, Babak; Murph, Mandi M.; Bartlett, Michael G.

    2017-08-01

    Alkylamines are widely used as ion-pairing agents during LC-MS of oligonucleotides. In addition to a better chromatographic separation, they also assist with the desorption of oligonucleotide ions into the gas phase, cause charge state reduction, and decrease cation adduction. However, the choice of such ion-pairing agents has considerable influence on the MS signal intensity of oligonucleotides as they can also cause significant ion suppression. Interestingly, optimal ion-pairing agents should be selected on a case by case basis as their choice is strongly influenced by the sequence of the oligonucleotide under investigation. Despite imposing major practical difficulties to analytical method development, such a highly variable system that responds very strongly to the nuances of the electrospray composition provides an excellent opportunity for a fundamental study of the electrospray ionization process. Our investigations using this system quantitatively revealed the major factors that influenced the ESI ionization efficiency of oligonucleotides. Parameters such as boiling point, proton affinity, partition coefficient, water solubility, and Henry's law constants for the ion-pairing reagents and the hydrophobic thymine content of the oligonucleotides were found to be the most significant contributors. Identification of these parameters also allowed for the development of a statistical predictive algorithm that can assist with the choice of an optimum IP agent for each particular oligonucleotide sequence. We believe that research in the field of oligonucleotide bioanalysis will significantly benefit from this algorithm (included in Supplementary Material) as it advocates for the use of lesser-known but more suitable ion-pair alternatives to TEA for many oligonucleotide sequences.

  20. Theoretical investigations of the optical spectra and EPR parameters for the isolated and pairs of trivalent ytterbium ions in Li6Y(BO3)3 crystal

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Gang; Zheng, Wen-Chen

    2015-11-01

    The optical spectra and electron paramagnetic resonance (EPR) parameters (g factors and hyperfine structure constants A) for an isolated Yb3+ ion in Li6Y(BO3)3 (LYB) crystal are investigated first by the complete diagonalization method based on the superposition model. The obtained results are in reasonable agreement with the experimental ones. For a pair of coupled Yb3+ ions in crystals, the extensively used formulas to calculate EPR splitting lines for such pair cannot be directly adopted in the present study and thus we extend them to the case of arbitrarily directed vector R connecting the two Yb3+ ions in crystal. By these amended formulas, we find that in addition to the interacting Yb3+ pair with nearest distance R (=0.385 nm), the Yb3+ pair with next-nearest distance R (=0.662 nm) would also make contribution to experimental EPR spectra. This point which was not noticed in previous works would help us further understand the energy transfer scheme between two Yb3+ ions in crystals.

  1. Coronal loops diagnostics using the parameters of U-burst harmonic pair at frequencies 10-70 MHz

    NASA Astrophysics Data System (ADS)

    Dorovskyy, V. V.; Melnik, V. N.; Konovalenko, A. A.; Bubnov, I. N.; Gridin, A. A.; Shevchuk, N. V.; Rucker, H. O.; Panchenko, M.

    2013-09-01

    The results of the first observations of solar sporadic radio emission using one section of the new being currently created Giant Ukrainian Radio Telescope (GURT) are presented. The parameters of inverted U-burst with harmonic structure observed with GURT are considered. The main attention is paid to the time delay between the fundamental and harmonic components. The analytical model explaining the observed time delay is proposed.

  2. Understanding liquid mixture phase miscibility via pair energy parameter behaviors with respect to temperatures determined from molecular simulations.

    PubMed

    Oh, Suk Yung; Bae, Young Chan

    2011-05-19

    The miscibility behaviors of binary liquid mixtures were studied by a combination of molecular simulations and thermodynamic theories. Pairwise interaction parameters were obtained from molecular simulations that accounted for the effect of temperature. From a thermodynamic perspective, different types of liquid-liquid equilibrium (LLE) and different degrees of miscibility can be expressed in terms of energy behaviors with respect to temperature. Our simulation results proved this viewpoint by showing a correspondence between the simulation results and experimental observations. To describe phase diagrams, thermodynamic modeling is presented using the energy parameters obtained from the simulations. Correlations are needed to correct size mismatches between the simulations and the thermodynamic model. Using this method, not only the upper critical solution temperature (UCST) but also the closed-loop miscibility phase diagrams could be calculated without requiring additional parameters for specific interactions. The utility of this method is demonstrated for mixtures containing water, hydrocarbon, alcohols, aldehydes, ketones, chlorides, amines, nitriles, sulfides, and other organic liquids in various temperature ranges. The method presented in this paper can facilitate the understanding of the miscibilities in binary liquid mixtures from the viewpoint of thermal energy behaviors.

  3. Pair Identity and Smooth Variation Rules Applicable for the Spectroscopic Parameters of H2O Transitions Involving High-J States

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2010-01-01

    Two basic rules (i.e. the pair identity and the smooth variation) applicable for H2O transitions involving high-J states have been discovered. The origins of these rules are the properties of the energy levels and wavefunctions of H2O states with the quantum number J above certain boundaries. As a result, for lines involving high-J states in individually defined groups, all their spectroscopic parameters (i.e. the transition wavenumber, intensity, pressure-broadened half-width, pressure-induced shift, and temperature exponent) must follow these rules. One can use these rules to screen spectroscopic data provided by databases and to identify possible errors. In addition, by using extrapolation methods within the individual groups, one is able to predict the spectroscopic parameters for lines in this group involving very high-J states. The latter are required in developing high-temperature molecular spectroscopic databases such as HITEMP.

  4. Pair Identity and Smooth Variation Rules Applicable for the Spectroscopic Parameters of H2O Transitions Involving High-J States

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2010-01-01

    Two basic rules (i.e. the pair identity and the smooth variation) applicable for H2O transitions involving high-J states have been discovered. The origins of these rules are the properties of the energy levels and wavefunctions of H2O states with the quantum number J above certain boundaries. As a result, for lines involving high-J states in individually defined groups, all their spectroscopic parameters (i.e. the transition wavenumber, intensity, pressure-broadened half-width, pressure-induced shift, and temperature exponent) must follow these rules. One can use these rules to screen spectroscopic data provided by databases and to identify possible errors. In addition, by using extrapolation methods within the individual groups, one is able to predict the spectroscopic parameters for lines in this group involving very high-J states. The latter are required in developing high-temperature molecular spectroscopic databases such as HITEMP.

  5. log(MPl/m3/2)

    SciTech Connect

    Loaiza-Brito, Oscar; Martin, Johannes; Nilles, Hans Peter; Ratz, Michael

    2005-12-02

    Flux compactifications of string theory seem to require the presence of a fine-tuned constant in the superpotential. We discuss a scheme where this constant is replaced by a dynamical quantity which we argue to be a 'continuous Chern-Simons term'. In such a scheme, the gaugino condensate generates the hierarchically small scale of supersymmetry breakdown rather than adjusting its size to a constant. A crucial ingredient is the appearance of the hierarchically small quantity exp(-) which corresponds to the scale of gaugino condensation. Under rather general circumstances, this leads to a scenario of moduli stabilization, which is endowed with a hierarchy between the mass of the lightest modulus, the gravitino mass and the scale of the soft terms, mmodulus {approx} m3/2 {approx} 2 msoft. The 'little hierarchy' is given by the logarithm of the ratio of the Planck scale and the gravitino mass, {approx} log(MPl/m3/2) {approx} 4{pi}2. This exhibits a new mediation scheme of supersymmetry breakdown, called mirage mediation. We highlight the special properties of the scheme, and their consequences for phenomenology and cosmology.

  6. Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - IX. Spotted pairs with red giants

    NASA Astrophysics Data System (ADS)

    Ratajczak, M.; Hełminiak, K. G.; Konacki, M.; Smith, A. M. S.; Kozłowski, S. K.; Espinoza, N.; Jordán, A.; Brahm, R.; Hempel, M.; Anderson, D. R.; Hellier, C.

    2016-09-01

    We present spectroscopic and photometric solutions for three spotted systems with red giant components. Absolute physical and orbital parameters for these double-lined detached eclipsing binary stars are presented for the first time. These were derived from the V-, and I-band ASAS and WASP photometry, and new radial velocities calculated from high quality optical spectra we obtained with a wide range of spectrographs and using the two-dimensional cross-correlation technique (TODCOR). All of the investigated systems (ASAS J184949-1518.7, BQ Aqr, and V1207 Cen) show the differential evolutionary phase of their components consisting of a main-sequence star or a subgiant and a red giant, and thus constitute very informative objects in terms of testing stellar evolution models. Additionally, the systems show significant chromospheric activity of both components. They can be also classified as classical RS CVn-type stars. Besides the standard analysis of radial velocities and photometry, we applied spectral disentangling to obtain separate spectra for both components of each analysed system which allowed for a more detailed spectroscopic study. We also compared the properties of red giant stars in binaries that show spots, with those that do not, and found that the activity phenomenon is substantially suppressed for stars with Rossby number higher than ˜1 and radii larger than ˜20 R⊙.

  7. The red dwarf pair GJ65 AB: inflated, spinning twins of Proxima. Fundamental parameters from PIONIER, NACO, and UVES observations

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Mérand, A.; Ledoux, C.; Demory, B.-O.; Le Bouquin, J.-B.

    2016-10-01

    The nearby red dwarf binary GJ65 AB (UV+BL Ceti, M5.5Ve+M6Ve) is a cornerstone system to probe the physics of very low-mass stars. The radii of the two stars are currently known only from indirect photometric estimates, however, and this prevents us from using GJ65 AB as calibrators for the mass-radius (M-R) relation. We present new interferometric measurements of the angular diameters of the two components of GJ65 with the VLTI/PIONIER instrument in the near-infrared H band: θUD(A) = 0.558 ± 0.008 ± 0.020 mas and θUD(B) = 0.539 ± 0.009 ± 0.020 mas. They translate into limb-darkened angular diameters of θLD(A) = 0.573 ± 0.021 mas and θLD(B) = 0.554 ± 0.022 mas. Based on the known parallax, the linear radii are R(A) = 0.165 ± 0.006 R⊙ and R(B) = 0.159 ± 0.006 R⊙ (σ(R) /R = 4%). We searched for the signature of flares and faint companions in the interferometric visibilities and closure phases, but we did not identify any significant signal. We also observed GJ65 with the VLT/NACO adaptive optics and refined the orbital parameters and infrared magnitudes of the system. We derived masses for the two components of m(A) = 0.1225 ± 0.0043 M⊙ and m(B) = 0.1195 ± 0.0043 M⊙ (σ(m) /m = 4%). To derive the radial and rotational velocities of the two stars as well as their relative metallicity with respect to Proxima, we also present new individual UVES high-resolution spectra of the two components. Placing GJ65 A and B in the mass-radius diagram shows that their radii exceed expectations from recent models by 14 ± 4% and 12 ± 4%, respectively. Following previous theories, we propose that this discrepancy is caused by the inhibition of convective energy transport by a strong internal magnetic field generated by dynamo effect in these two fast-rotating stars. A comparison with the almost identical twin Proxima, which is rotating slowly, strengthens this hypothesis because the radius of Proxima does not appear to be inflated compared to models. Based on

  8. Formando planetas habitables en estrellas M3

    NASA Astrophysics Data System (ADS)

    Dugaro, A.; de Elía, G. C.; Brunini, A.

    2016-08-01

    Studies of stellar evolution allow us to infer that the low-mass stars are the most abundant in the galaxy. In the present investigation, we analyze the formation of planetary systems without gas giants around M3-type stars, which have a mass of 0.29 M. In particular, we are interested in studying the terrestrial-like planet formation processes and water delivery in the Habitable Zone (HZ) of those systems. To develop this investigation, we assume massive protoplanetary disks for such stars, which have 5 of the mass of the central star. Once defined the working disk, we use a semi-analytical model, which is able to determine the distribution of planetary embryos and planetesimals at the end of the gaseous phase. Then, these distributions are used as initial conditions for running -body simulations. Due to the stochastic nature of the accretion process, we carry out ten -body simulations in order to analyze the evolution of the planetary systems after the gas dissipation. Our results suggest the efficient formation of terrestrial-like planets in the HZ with a wide range of masses and water contents. The planets formed in the HZ of the system have masses between 0.07 M and 0.15 M and final water contents between 5.4 and 29 by mass. The physical properties of the terrestrial-like planets formed in the HZ of our simulations suggest that they should be able to retain a permanent and substantial atmosphere.

  9. Revision of AMBER Torsional Parameters for RNA Improves Free Energy Predictions for Tetramer Duplexes with GC and iGiC Base Pairs

    PubMed Central

    2011-01-01

    All-atom force fields are important for predicting thermodynamic, structural, and dynamic properties of RNA. In this paper, results are reported for thermodynamic integration calculations of free energy differences of duplex formation when CG pairs in the RNA duplexes r(CCGG)2, r(GGCC)2, r(GCGC)2, and r(CGCG)2 are replaced by isocytidine–isoguanosine (iCiG) pairs. Agreement with experiment was improved when ε/ζ, α/γ, β, and χ torsional parameters in the AMBER99 force field were revised on the basis of quantum mechanical calculations. The revised force field, AMBER99TOR, brings free energy difference predictions to within 1.3, 1.4, 2.3, and 2.6 kcal/mol at 300 K, respectively, compared to experimental results for the thermodynamic cycles of CCGG → iCiCiGiG, GGCC → iGiGiCiC, GCGC → iGiCiGiC, and CGCG → iCiGiCiG. In contrast, unmodified AMBER99 predictions for GGCC → iGiGiCiC and GCGC → iGiCiGiC differ from experiment by 11.7 and 12.6 kcal/mol, respectively. In order to test the dynamic stability of the above duplexes with AMBER99TOR, four individual 50 ns molecular dynamics (MD) simulations in explicit solvent were run. All except r(CCGG)2 retained A-form conformation for ≥82% of the time. This is consistent with NMR spectra of r(iGiGiCiC)2, which reveal an A-form conformation. In MD simulations, r(CCGG)2 retained A-form conformation 52% of the time, suggesting that its terminal base pairs may fray. The results indicate that revised backbone parameters improve predictions of RNA properties and that comparisons to measured sequence dependent thermodynamics provide useful benchmarks for testing force fields and computational methods. PMID:22249447

  10. Reassessment of the recombination parameters of chromium in n- and p-type crystalline silicon and chromium-boron pairs in p-type crystalline silicon

    SciTech Connect

    Sun, Chang Rougieux, Fiacre E.; Macdonald, Daniel

    2014-06-07

    Injection-dependent lifetime spectroscopy of both n- and p-type, Cr-doped silicon wafers with different doping levels is used to determine the defect parameters of Cr{sub i} and CrB pairs, by simultaneously fitting the measured lifetimes with the Shockley-Read-Hall model. A combined analysis of the two defects with the lifetime data measured on both n- and p-type samples enables a significant tightening of the uncertainty ranges of the parameters. The capture cross section ratios k = σ{sub n}/σ{sub p} of Cr{sub i} and CrB are determined as 3.2 (−0.6, +0) and 5.8 (−3.4, +0.6), respectively. Courtesy of a direct experimental comparison of the recombination activity of chromium in n- and p-type silicon, and as also suggested by modelling results, we conclude that chromium has a greater negative impact on carrier lifetimes in p-type silicon than n-type silicon with similar doping levels.

  11. Detecting to secret folded composite lamina package pairs in cores related slump dump structures and seismites with high resolution sampling of physical parameters

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namik; Feray Meydan, Aysegul; Eris, Kadir; Sari, Erol; Akcer, Sena; Makaroglu, Ozlem; Alkislar, Hakan; Biltekin, Demet; Nagehan Arslan, Tugce

    2016-04-01

    The core retrieved from Lake Van consists of seismites that were possibly deposited during the earthquakes around the Van region. Deformed parts of the core sediments display folded laminations that can be attributed to seismites. The problem arises that if the fold axis is deposited perpendicular to the liner and, if the hinge line is far enough, describing the true laminations might be impossible related to real age of basin evolution because extra laminae seem deposited to the area. Scientist must pay attention such problem that dating method like varve counting and basin evolution estimates can totally change due to extra laminae that explained before. For eliminate to wrong interpretations considering reversal reflected anomalies even with angularity effects to one package of pair can show significant difference than other symmetric one due to angle of the hinge line or soft sediment deformation. Considering the situation explained, p-wave is not enough to support the idea however; chemical analyses (x-ray florescence), ICP-MS (asdasd) analysis can provide appropriate results to identify laminae that appear on the limbs of the reversed micro folds. New easy designed extra U-Channel drive tray framework prepared by us. U-Channels are prepared well conditioned, saturated enough to well contact between sediment surface and plastic shield of u-channel samples from cores. Physical parameters are measured by Multi sensor core logger (MSCL) with high resolution step ratio fixed to 1mm. At the p- wave and gamma ray results, we observed together stair upwards form and reverse reflected downward data graphics, thus our interpretation of identifying the fold limbs are now visible. We understand that laminae packages are exactly the same. XRF and MSCL are totally supporting to origin of pairs generated after their sedimentation age with mechanical forces. For this reason, in this study, we attended to solve such problem to analyze deformed folded laminations that must be

  12. Aminoxyl Radicals of B/P Frustrated Lewis Pairs: Refinement of the Spin-Hamiltonian Parameters by Field- and Temperature-Dependent Pulsed EPR Spectroscopy

    PubMed Central

    de Oliveira, Marcos; Knitsch, Robert; Sajid, Muhammad; Stute, Annika; Elmer, Lisa-Maria; Kehr, Gerald; Erker, Gerhard; Magon, Claudio J.; Jeschke, Gunnar; Eckert, Hellmut

    2016-01-01

    Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine coupling between the unpaired electron and the 11B/10B, 14N and 31P nuclear magnetic moments. It was previously shown that continuous-wave spectra measured at X-band frequency (9.5 GHz) are dominated by the magnetic hyperfine coupling to 14N and 31P, whereas the g-tensor values and the 11B hyperfine coupling parameters cannot be refined with high precision from lineshape fitting. On the other hand, the X-band electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra are completely dominated by the nuclear hyperfine coupling to the 11B nuclei, allowing a selective determination of their interaction parameters. In the present work this analysis has been further validated by temperature dependent ESEEM measurements. In addition, pulsed EPR data measured in the Q-band (34 GHz) are reported, which present an entirely different situation: the g-tensor components can be measured with much higher precision, and the ESEEM and HYSCORE spectra contain information about all of the 10B, 11B, 14N and 31P hyperfine interaction parameters. Based on these new results, we report here high-accuracy and precision data of the EPR spin Hamiltonian parameters measured on six FLP-NO radical species embedded in their corresponding hydroxylamine host structures. While the ESEEM spectra at Q-band frequency turn out to be very complex (due to the multinuclear contribution to the overall signal) in the HYSCORE experiment the extension over two dimensions renders a better discrimination between the different nuclear species, and the signals arising from hyperfine

  13. Aminoxyl Radicals of B/P Frustrated Lewis Pairs: Refinement of the Spin-Hamiltonian Parameters by Field- and Temperature-Dependent Pulsed EPR Spectroscopy.

    PubMed

    de Oliveira, Marcos; Knitsch, Robert; Sajid, Muhammad; Stute, Annika; Elmer, Lisa-Maria; Kehr, Gerald; Erker, Gerhard; Magon, Claudio J; Jeschke, Gunnar; Eckert, Hellmut

    2016-01-01

    Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine coupling between the unpaired electron and the 11B/10B, 14N and 31P nuclear magnetic moments. It was previously shown that continuous-wave spectra measured at X-band frequency (9.5 GHz) are dominated by the magnetic hyperfine coupling to 14N and 31P, whereas the g-tensor values and the 11B hyperfine coupling parameters cannot be refined with high precision from lineshape fitting. On the other hand, the X-band electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra are completely dominated by the nuclear hyperfine coupling to the 11B nuclei, allowing a selective determination of their interaction parameters. In the present work this analysis has been further validated by temperature dependent ESEEM measurements. In addition, pulsed EPR data measured in the Q-band (34 GHz) are reported, which present an entirely different situation: the g-tensor components can be measured with much higher precision, and the ESEEM and HYSCORE spectra contain information about all of the 10B, 11B, 14N and 31P hyperfine interaction parameters. Based on these new results, we report here high-accuracy and precision data of the EPR spin Hamiltonian parameters measured on six FLP-NO radical species embedded in their corresponding hydroxylamine host structures. While the ESEEM spectra at Q-band frequency turn out to be very complex (due to the multinuclear contribution to the overall signal) in the HYSCORE experiment the extension over two dimensions renders a better discrimination between the different nuclear species, and the signals arising from hyperfine

  14. Alkali metals in ethylenediamine: a computational study of the optical absorption spectra and NMR parameters of [M(en)3(δ+)·M(δ-)] ion pairs.

    PubMed

    Zurek, Eva

    2011-04-06

    The optical absorption spectra of alkali metals in ethylenediamine have provided evidence for a third oxidation state, -1, of all of the alkali metals heavier than lithium. Experimentally determined NMR parameters have supported this interpretation, further indicating that whereas Na(-) is a genuine metal anion, the interaction of the alkali anion with the medium becomes progressively stronger for the larger metals. Herein, first-principles computations based upon density functional theory are carried out on various species which may be present in solutions composed of alkali metals and ethylenediamine. The energies of a number of hypothetical reactions computed with a continuum solvation model indicate that neither free metal anions, M(-), nor solvated electrons are the most stable species. Instead, [Li(en)(3)](2) and [M(en)(3)(δ+)·M(δ-)] (M = Na, K, Rb, Cs) are predicted to have enhanced stability. The M(en)(3) complexes can be viewed as superalkalis or expanded alkalis, ones in which the valence electron density is pulled out to a greater extent than in the alkali metals alone. The computed optical absorption spectra and NMR parameters of the [Li(en)(3)](2) superalkali dimer and the [M(en)(3)(δ+)·M(δ-)] superalkali-alkali mixed dimers are in good agreement with the aforementioned experimental results, providing further evidence that these may be the dominant species in solution. The latter can also be thought of as an ion pair formed from an alkali metal anion (M(-)) and solvated cation (M(en)(3)(+)). © 2011 American Chemical Society

  15. Fabrication and metrology study for M3MP of TMT

    NASA Astrophysics Data System (ADS)

    Luo, Xiao; Qi, Erhui; Hu, Haixiang; Hu, Haifei; Ford, Virginia G.; Cole, Glen

    2016-10-01

    M3M (Mirror 3 Mirror) of TMT (Thirty Meter Telescope) project is a 3.5m×2.5m×0.1m solid flat elliptical mirror. M3MP is a 1/4 prototype of M3M serving as a pathfinder for M3M. Fabrication and testing of M3MP were carried out based on planned sketch for M3M established in the past 2 years. Technology including polishing strategy, on site vertical Fizeau sub-aperture interfere test, scanning pentaprism system and dual-supporting system were tested in the fabrication of M3MP. This paper give a brief introduction of the work on M3MP and some of results.

  16. 26 CFR 1.401(m)-3 - Safe harbor requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false Safe harbor requirements. 1.401(m)-3 Section 1.401(m)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-3...

  17. 26 CFR 1.401(m)-3 - Safe harbor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Safe harbor requirements. 1.401(m)-3 Section 1.401(m)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(m)-3 Safe...

  18. Spin-orbit coupling and paramagnetic relaxation in micellized triplet radical pairs. Determination of relaxation parameters from magnetic field dependences of the decay kinetics

    NASA Astrophysics Data System (ADS)

    Levin, P. P.; Kuzmin, V. A.

    1990-01-01

    The geminate recombination kinetics of the radical pairs produced by quenching of triplet benzophenone or 4-bromobenzophenone by 4-phenylphenol and 4-phenylaniline in aqueous micellar solutions of sodium dodecyl sulfate has been examined using the laser flash technique. Application of an external magnetic field results in the retardation of geminate recombination up to 20 times. The magnetic field dependences are considered in terms of a simple kinetic scheme, which includes the singlet-triplet evolution in the separated states of a pair due to hyperfine coupling and relaxation mechanisms as well as intersystem recombination process due to the spin-orbit coupling in the contact states of a pair.

  19. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  20. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  1. PCDDs/PCDFs in ambient air (<1 fg m(-3)) - the CTDEP long term sampling (30 d) method.

    PubMed

    Hunt, Gary T; Lihzis, Melita F

    2011-12-01

    The Connecticut Department of Environmental Protection (CTDEP) commenced monitoring for PCDDs/PCDFs (polychlorinated dibenzodioxins and polychlorinated dibenzofurans) in ambient air in 1987 and adopted the long term (30 d) sampling approach in 1993. The CTDEP method represents the first use of isotopically labeled PCDDs/PCDFs as field surrogates to monitor the behavior of native PCDDs/PCDFs present in actual ambient air samples. This feature first introduced in 1987 was later adopted by US EPA in revisions to sampling methods for PCDDs/PCDFs in ambient air (EPA Method TO9A) as well as development of EPA Reference Method 23 for measurement of PCDDs/PCFDs in stationary source emissions. Results are provided here for a total of twenty-three (23) samples (reported as pairs) representing twelve (12) 30 d sampling events conducted at a site located in metropolitan Hartford CT. Samples were collected in winter months during calendar years 2002-2008. PCDDs/PCDFs concentration data (pgm(-3)) are reported as both congener sums (Cl(4)-Cl(8)) and 2378-substitued congeners. Total PCDDs/PCDFs concentrations for these twelve (12) sampling events ranged from 0.68 pg m(-3) (2003) to 4.18 pg m(-3) (2004) with a mean concentration of 2.04 pg m(-3). Method performance was monitored through use of collocated samples, in field isotopically labeled compounds, isotopically labeled laboratory applied internal standards and field blank samples. Method performance consistently exceeded goals established in USEPA Method TO9A for these same parameters. Average recoveries of in field labeled PCDDs/PCDFs ranged from 97.5% to 104.2%. Average (mean) recoveries for each of the ten (10) isotopically labeled internal standards ranged from 77.0% ((13)C-OCDF) to 95.5% ((13)C-2,3,7,8-TCDF). Method precision defined as % RPD data for collocated sampler pairs ranged from 8% to 14% for PCDDs and from 5% to 12% for PCDFs. The mean RPD for all PCDDs/PCDFs combined is 9.6%. Field monitoring results

  2. Tissue Regeneration in Urodela on Foton-M3

    NASA Astrophysics Data System (ADS)

    Grigoryan, E. N.; Poplinskaya, V. A.; Domaratskaya, E. I.; Novikova, Y. P.; Aleinikova, K. S.; Dvorochkin, N.; Almeida, E. A. C.

    2008-06-01

    In the experiment "Regeneration" flown on Foton-M3 in 2007 we continued our study of tissue and organ regeneration in Urodela. Special attention was given to the regulatory mechanisms that could induce peculiarities of regeneration during the spaceflight. The results obtained showed that lens regeneration in space-flown animals was synchronized and about 0.5 to 1 stage more advanced than in synchronous 1g controls. In both groups of animals cytokine FGFb expression increased in parallel with lens cell mitotic activity and was localized in the growth zone and iris of regenerating eyes. Lens regeneration was also accompanied by an increase of stress protein (HSP90) expression in retinal macroglia. Evaluation of HSP90 and FGFb expression by immuno-staining showed that it was higher in the eyes of space-flown animals than in synchronous controls. BrdU assay demonstrated incorporation of the precursor into populations of DNA synthesizing cells in both animal groups and mirrored cell growth in regenerating tissues. Tail regeneration in space-flown and synchronous control animals reached the stages IV to V. Computer morphometry showed that tail size parameters were similar though the tail area was slightly decreased in the space-flown newts. In contrast, remarkable changes in tail tip morphology were found between animal groups: flight and aquarium-control tail regenerates were identical in shape, while synchronous controls developed distinct dorsoventral asymmetry. Histological examinations suggested that morphogenetic differences were caused by different rates of epidermal cell growth in tail regenerates of newts exposed to microgravity and 1 g.

  3. The Moon mineralogy mapper (M3) on Chandrayaan-1

    USGS Publications Warehouse

    Pieters, C.M.; Boardman, J.; Buratti, B.; Chatterjee, A.; Clark, R.; Glavich, T.; Green, R.; Head, J.; Isaacson, P.; Malaret, E.; McCord, T.; Mustard, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L.; Tompkins, S.; Varanasi, P.; White, M.

    2009-01-01

    The Moon Mineralogy Mapper (M3) is a NASA-supported guest instrument on ISRO's remote sensing mission to Moon, Chandrayaan-1. The M3 is an imaging spectrometer that operates from the visible into the near-infrared (0.42-3.0 ??m) where highly diagnostic mineral absorption bands occur. Over the course of the mission M3 will provide low resolution spectroscopic data for the entire lunar surface at 140 m/pixel (86 spectral channels) to be used as a base-map and high spectral resolution science data (80 m/pixel; 260 spectral channels) for 25-50% of the surface. The detailed mineral assessment of different lunar terrains provided by M3 is principal information needed for understanding the geologic evolution of the lunar crust and lays the foundation for focused future in-depth exploration of the Moon.

  4. Study of tilt axis bearing arrangement for M3S of TMT project

    NASA Astrophysics Data System (ADS)

    Zhao, Hongchao; Zhang, Jingxu; Yang, Fei; An, Qichang; Su, Yanqin; Guo, Peng

    2014-09-01

    The tertiary mirror positioned assembly (M3PA) of the thirty meters telescope (TMT) is the largest tertiary mirror pointing system in the world. The tracking and pointing performance of M3PA is better than any other telescopes which have been built, and the working condition is even worse, so the designers face an enormous challenge. The tracking system includes the bottom rotator shaft and the tilt shaft. The study of this paper focuses on the tilt shaft. There are mainly three forms. The first form is one end fixed with the other unrestrained in axial direction. The second form uses two pairs of angular contact ball bearing. The last form lays two tape roller bearings. All of them can meet the requirements when the M3PA is vertical. But the first one becomes invalid when the M3PA is horizontal. We pay our attention on the study for the second arrangement method.. This bearing arrangement can produce a good stiffness, and increase the first modal frequency to 15.1Hz. In addition, some analysis were down to study the load applied on the balls. The results show that the maximum load is up to 5000N with the stress of 2300MPa.

  5. M3D project for simulation studies of plasmas

    SciTech Connect

    Park, W.; Belova, E.V.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.

  6. Quality Assurance Information for R Packages "aqfig" and "M3"

    EPA Science Inventory

    R packages “aqfig" and “M3" are optional modules for use with R statistical software (http://www.r-project.org). Package “aqfig" contains functions to aid users in the preparation of publication-quality figures for the display of air quality and other environmental data (e.g., le...

  7. Low-lying electronic states of M(3)O(9)(-) and M(3)O(9)(2-) (M = Mo, W).

    PubMed

    Li, Shenggang; Dixon, David A

    2007-11-01

    Multiple low-lying electronic states of M(3)O(9)(-) and M(3)O(9)(2-) (M = Mo, W) arise from the occupation of the near-degenerate low-lying virtual orbitals in the neutral clusters. We used density functional theory (DFT) and coupled cluster theory (CCSD(T)) with correlation consistent basis sets to study the structures and energetics of the electronic states of these anions. The adiabatic and vertical electron detachment energies (ADEs and VDEs) of the anionic clusters were calculated with 27 exchange-correlation functionals including one local spin density approximation functional, 13 generalized gradient approximation (GGA) functionals, and 13 hybrid GGA functionals, as well as the CCSD(T) method. For M(3)O(9)(-), CCSD(T) and nearly all of the DFT exchange-correlation functionals studied predict the (2)A(1) state arising from the Jahn-Teller distortion due to singly occupying the degenerate e' orbital to be lower in energy than the (2)A(1)' state arising from singly occupying the nondegenerate a(1)' orbital. For W(3)O(9)(-), the (2)A(1) state was predicted to have essentially the same energy as the (2)A(1)' state at the CCSD(T) level with core-valence correlation corrections included and to be higher in energy or essentially isoenergetic with most DFT methods. The calculated VDEs from the CCSD(T) method are in reasonable agreement with the experimental values for both electronic states if estimates for the corrections due to basis set incompleteness are included. For M(3)O(9)(2-), the singlet state arising from doubly occupying the nondegenerate a(1)' orbital was predicted to be the most stable state for both M = Mo and W. However, whereas M(3)O(9)(2-) was predicted to be less stable than M(3)O(9)(-), W(3)O(9)(2-) was predicted to be more stable than W(3)O(9)(-).

  8. A Pair of Identical Twins Discordant for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Differ in Physiological Parameters and Gut Microbiome Composition

    PubMed Central

    Giloteaux, Ludovic; Hanson, Maureen R.; Keller, Betsy A.

    2016-01-01

    Patient: Male, 34 Final Diagnosis: ME/CFS Symptoms: Exertion intolerance • loss of functional capacity • pain • severe fatigue Medication: — Clinical Procedure: Cardiopulmonary exercise test Specialty: Sports Medicine Objective: Unknown ethiology Background: Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) present with profound fatigue, flu-like symptoms, pain, cognitive impairment, orthostatic intolerance, post-exertional malaise (PEM), and exacerbation of some or all of the baseline symptoms. Case Report: We report on a pair of 34-year-old monozygotic twins discordant for ME/CFS, with WELL, the non-affected twin, and ILL, the affected twin. Both twins performed a two-day cardiopulmonary exercise test (CPET), preand post-exercise blood samples were drawn, and both provided stool samples for biochemical and molecular analyses. At peak exertion for both CPETs, ILL presented lower VO2peak and peak workload compared to WELL. WELL demonstrated normal reproducibility of VO2@ventilatory/anaerobic threshold (VAT) during CPET2, whereas ILL experienced an abnormal reduction of 13% in VAT during CPET2. A normal rise in lactate dehydrogenase (LDH), creatine kinase (CK), adrenocorticotropic hormone (ACTH), cortisol, creatinine, and ferritin content was observed following exercise for both WELL and ILL at each CPET. ILL showed higher increases of resistin, soluble CD40 ligand (sCD40L), and soluble Fas ligand (sFasL) after exercise compared to WELL. The gut bacterial microbiome and virome were examined and revealed a lower microbial diversity in ILL compared to WELL, with fewer beneficial bacteria such as Faecalibacterium and Bifidobacterium, and an expansion of bacteriophages belonging to the tailed dsDNA Caudovirales order. Conclusions: Results suggest dysfunctional immune activation in ILL following exercise and that prokaryotic viruses may contribute to mucosal inflammation and bacterial dysbiosis. Therefore, a two-day CPET and molecular

  9. Exploring the Mineralogy of the Moon with M3

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Green, R.; Head, J. W. III; McCord, T. B.; Mustard, J.; Runyon, C.; Staid, M.

    2006-01-01

    From the initial era or lunar exploration, we have learned that many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. Since most major geologic activity ceased on the Moon approx. 3 Gy ago, the Moon's surface provides a record of the earliest era of terrestrial planet evolution. The type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The Moon Mineralogy Mapper (M3, or "m-cube") is a state-of-the-art imaging spectrometer that will fly on Chandrayaan-1, the Indian Space Research Organization (ISRO) mission to be launched late 2007 to early 2008. M3 is one of several foreign instruments chosen by ISRO to be flown on Chandrayaan-1 to complement the strong ISRO payload package. M3 was selected through a peer-review process as part of NASA s Discovery Program. It is under the oversight of PI Carle Pieters at Brown University and is being built by an experienced team at the Jet Propulsion Laboratory. Data analysis and calibration are carried out by a highly qualified and knowledgeable Science Team. To characterize diagnostic properties of lunar minerals, M3 acquires high spectral resolution reflectance data from 700 to 3000 nm (optional to 430 nm). M3 operates as a pushbroom spectrometer with a slit oriented orthogonal to the S/C orbital motion. Measurements are obtained simultaneously for 640 cross track spatial elements and 261 spectral elements

  10. Exploring the Mineralogy of the Moon with M3

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Green, R.; Head, J. W. III; McCord, T. B.; Mustard, J.; Runyon, C.; Staid, M.

    2006-01-01

    From the initial era or lunar exploration, we have learned that many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. Since most major geologic activity ceased on the Moon approx. 3 Gy ago, the Moon's surface provides a record of the earliest era of terrestrial planet evolution. The type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The Moon Mineralogy Mapper (M3, or "m-cube") is a state-of-the-art imaging spectrometer that will fly on Chandrayaan-1, the Indian Space Research Organization (ISRO) mission to be launched late 2007 to early 2008. M3 is one of several foreign instruments chosen by ISRO to be flown on Chandrayaan-1 to complement the strong ISRO payload package. M3 was selected through a peer-review process as part of NASA s Discovery Program. It is under the oversight of PI Carle Pieters at Brown University and is being built by an experienced team at the Jet Propulsion Laboratory. Data analysis and calibration are carried out by a highly qualified and knowledgeable Science Team. To characterize diagnostic properties of lunar minerals, M3 acquires high spectral resolution reflectance data from 700 to 3000 nm (optional to 430 nm). M3 operates as a pushbroom spectrometer with a slit oriented orthogonal to the S/C orbital motion. Measurements are obtained simultaneously for 640 cross track spatial elements and 261 spectral elements

  11. Higher Order Lagrange Finite Elements In M3D

    SciTech Connect

    J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau

    2004-12-17

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.

  12. Using 21 cm Absorption in Small Impact Parameter Galaxy-Quasar Pairs to Probe Low-redshift Damped and Sub-damped Lyα Systems

    NASA Astrophysics Data System (ADS)

    Borthakur, Sanchayeeta; Tripp, Todd M.; Yun, Min S.; Momjian, Emmanuel; Meiring, Joseph D.; Bowen, David V.; York, Donald G.

    2010-04-01

    To search for low-redshift damped Lyα (DLA) and sub-DLA quasar absorbers, we have conducted a 21 cm absorption survey of radio-loud quasars at small impact parameters to foreground galaxies selected from the Sloan Digital Sky Survey (SDSS). Here we present the first results from this survey based on observations of SDSS J104257.58+074850.5 (z QSO = 2.66521), a quasar at an angular separation from a foreground galaxy (z gal = 0.03321) of 2farcs5 (1.7 kpc in projection). The foreground galaxy is a low-luminosity spiral with on-going star formation (0.004 M sun yr-1 kpc-2) and a metallicity of -0.27 ± 0.05 dex. We detect 21 cm absorption from the galaxy with the Green Bank Telescope (GBT), the Very Large Array (VLA), and the Very Long Baseline Array (VLBA). The absorption appears to be quiescent disk gas co-rotating with the galaxy and we do not find any evidence for outflowing cold neutral gas. The width of the main absorption line indicates that the gas is cold, Tk < 283 K, and the H I column is surprisingly low given the impact parameter of 1.7 kpc we find that N(H I) <=9.6 × 1019 cm-2 (GBT) and N(H I) <=1.5 × 1020 cm-2 (VLBA). VLBA marginally resolves the continuum source and the absorber, and a lower limit of 27.1 × 13.9 pc is derived for the size of the absorbing cloud. In turn, this indicates a low density for a cold cloud, n(H I) < 3.5 cm-3. We hypothesize that this galaxy, which is relatively isolated, is becoming depleted in H I because it is converting its interstellar matter into stars without a replenishing source of gas, and we suggest future observations to probe this and similar galaxies. Based on observations with (1) the telescopes of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc., (2) the SOAR Telescope, a joint project of Conselho Nacional de Pesquisas Cientificas e Tecnoligicas CNPq-Brazil, The University of North Carolina at Chapel

  13. [Effect of road traffic noise on sleep. A paired comparison between sleep polygraphic parameters recorded in a noisy apartment along a road with heavy traffic and those recorded in a quiet suburban house].

    PubMed

    Sato, T; Ogawa, M; Aoki, S

    1991-03-01

    Effects of road traffic noise on sleep were studied comparing 15 sleep polygraphic parameters and 6 subjective sleep complaints in a noisy apartment with those in a quiet house. Subjects were 8 persons (5 young men aged 19-38, one woman aged 65 and 2 men aged 66) and were studied for 76 nights. The average equivalent sound pressure level (Leq) from 10 p.m. to 7 a.m. was 46.67 dB (A) in the noisy apartment's bedroom compared to 27.72 dB(A) in the bedroom of the quiet house. Of the 15 parameters, proportion of REM sleep for the younger subjects was significantly less (p = 0.0046, paired t-test) in the apartment compared to the quiet house. No significant difference was seen in the remaining 14 parameters between the apartment and the house. Of the 6 subjective sleep complaints, "awakened early in the morning," was significantly less for young subjects (p = 0.031, Two-tailed sign test) in the apartment than in the house. There was no significant difference seen for the older subjects in the 6 subjective sleep complaints and 15 sleep polygraphic parameters between the two places. It appears that a small difference in the effect of road traffic noise on sleep between young and old may exist.

  14. Metal Matrix Microencapsulated (M3) fuel neutronics performance in PWRs

    SciTech Connect

    Fratoni, Massimiliano; Terrani, Kurt A

    2012-01-01

    Metal Matrix Microencapsulated (M3) fuel consists of TRISO or BISO coated fuel particles directly dispersed in a matrix of zirconium metal to form a solid rod (Fig. 1). In this integral fuel concept the cladding tube and the failure mechanisms associated with it have been eliminated. In this manner pellet-clad-interactions (PCI), thin tube failure due to oxidation and hydriding, and tube pressurization and burst will be absent. M3 fuel, given the high stiffness of the integral rod design, could as well improve grid-to-rod wear behavior. Overall M3 fuel, compared to existing fuel designs, is expected to provide greatly improved operational performance. Multiple barriers to fission product release (ceramic coating layers in the coated fuel particle and te metal matrix) and the high thermal conductivity zirconium alloy metal matrix contribute to the enhancement in fuel behavior. The discontinuous nature of fissile material encapsulated in coated particles provides additional assistance; for instance if the M3 fuel rod is snapped into multiple pieces, only the limited number of fuel particles at the failure cross section are susceptible to release fission products. This is in contrast to the conventional oxide fuel where the presence of a small opening in the cladding provides the pathway for release of the entire inventory of fission products from the fuel rod. While conventional metal fuels (e.g. U-Zr and U-Mo) are typically expected to experience large swelling under irradiation due to the high degree of damage from fission fragments and introduction of fission gas into the lattice, this is not the case for M3 fuels. The fissile portion of the fuel is contained within the coated particle where enough room is available to accommodate fission gases and kernel swelling. The zirconium metal matrix will not be exposed to fission products and its swelling is known to be very limited when exposed solely to neutrons. Under design basis RIA and LOCA, fuel performance will be

  15. Modified Multiple Model Adaptive Estimation (M3AE) for Simultaneous Parameter and State Estimation

    DTIC Science & Technology

    1998-03-01

    without you - God Bless you ! I would also like to extend my sincere thanks to the rest of my research committee, Dr. Stewart DeVilbiss and Dr. Mark Oxley...for helping me form this dissertation into a meaningful document - God Bless you all! A special and sincere thanks go to Juan Vasquez, a fellow PhD...34 stuff working, and his insight and dedication were essential to my success. Juan -God Bless you ! Thanks to Mr. Stan Musick who provided key

  16. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    SciTech Connect

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jürgen; Kobilka, Brian K.

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.

  17. Exploring the mineralogy of the Moon with M3

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.

    From the initial era or lunar exploration we have learned that many processes active on the early Moon are common to most terrestrial planets including the record of early and late impact bombardment Since most major geologic activity ceased on the Moon sim 3 Gy ago the Moon s surface provides a record of the earliest era of terrestrial planet evolution The type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes Specifically the distribution and concentration of specific minerals is closely tied to magma ocean products lenses of intruded or remelted plutons basaltic volcanism and fire-fountaining and any process e g cratering that might redistribute or transform primary and secondary lunar crustal materials The Moon Mineralogy Mapper M3 or m-cube is a state-of-the-art imaging spectrometer that will fly on Chandrayaan-1 the Indian Space Research Organization ISRO mission to be launched late 2007 to early 2008 M3 is one of several foreign instruments chosen by ISRO to be flown on Chandrayaan-1 to complement the strong ISRO payload package M3 was selected through a peer-review process as part of NASA s Discovery Program It is under the oversight of PI Carl e Pieters at Brown University and is being built by an experienced team at the Jet Propulsion Laboratory Data analysis and calibration are

  18. Hydraulic supports for polishing TMT M3MP

    NASA Astrophysics Data System (ADS)

    Hu, Haifei; Qi, Erhui; Cole, Glen; Hu, Haixiang; Luo, Xiao; Ford, Virginia; Zhang, Xuejun

    2016-10-01

    For polishing the ultra-thin TMT M3MP, a polishing support system with 18 hydraulic supports (HS) is introduced. This work focuses on the designing and testing of these HSs. Firstly the design concept of HS system is discussed; then mechanical implementation of the HS structure is carried out, with special consideration of fluid cycling, work pressurization and the weight component. Afterward the piping installation and the de-gas process for the working fluid are implemented. Pressurization and stiffness are well checked before system integration for the single HS unit. Finally the support system is integrated for the polishing process.

  19. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2004-04-01

    We report new chemical abundances of 23 bright red giant members of the globular cluster M3, based on high-resolution (R~45,000) spectra obtained with the Keck I telescope. The observations, which involve the use of multislits in the HIRES Keck I spectrograph, are described in detail. Combining these data with a previously reported small sample of M3 giants obtained with the Lick 3 m telescope, we compare metallicities and [X/Fe] ratios for 28 M3 giants with a 35-star sample in the similar-metallicity cluster M13, and with Galactic halo field stars having [Fe/H]<-1. For elements having atomic number A>=A(Si), we derive little difference in [X/Fe] ratios in the M3, M13, or halo field samples. All three groups exhibit C depletion with advancing evolutionary state beginning at the level of the red giant branch ``bump,'' but the overall depletion of about 0.7-0.9 dex seen in the clusters is larger than that associated with the field stars. The behaviors of O, Na, Mg, and Al are distinctively different among the three stellar samples. Field halo giants and subdwarfs have a positive correlation of Na with Mg, as predicted from explosive or hydrostatic carbon burning in Type II supernova sites. Both M3 and M13 show evidence of high-temperature proton-capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13: the M3 giants exhibit only modest deficiencies of O and corresponding enhancements of Na, less extreme overabundances of Al, fewer stars with low Mg and correspondingly high Na, and no indication that O depletions are a function of advancing evolutionary state, as has been claimed for M13. We have also considered NGC 6752, for which Mg isotopic abundances have been reported by Yong et al. Giants in NGC 6752 and M13 satisfy the same anticorrelation of O abundances with the ratio (25Mg+26Mg)/24Mg, which measures the

  20. Pairing Learners in Pair Work Activity

    ERIC Educational Resources Information Center

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  1. Pairing Learners in Pair Work Activity

    ERIC Educational Resources Information Center

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  2. Junctionless Cooper pair transistor

    NASA Astrophysics Data System (ADS)

    Arutyunov, K. Yu.; Lehtinen, J. S.

    2017-02-01

    Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current-voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  3. Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor

    PubMed Central

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jurgen; Kobilka, Brian

    2012-01-01

    Acetylcholine (ACh), the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic ACh receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate.2–4 Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences.5–6 We describe here the structure of the Gq/11-coupled M3 mAChR bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor, offers new possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows the first structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and raise additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer new insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors. PMID:22358844

  4. AT on Buried LPG Tanks Over 13 m3: An Innovative and Practical Solution

    NASA Astrophysics Data System (ADS)

    Di Fratta, Crescenzo; Ferraro, Antonio; Tscheliesnig, Peter; Lackner, Gerald; Correggia, Vincenzo; Altamura, Nicola

    In Italy, since 2005, techniques based on Acoustic Emission have been introduced for testing of underground LPG tanks up to 13 m3, according to the European standard EN 12818:2004. The testing procedure for these tanks plans to install one or more pairs of sensors inside the "dome" suited for the access to the valves and fittings of the tank, directly on the accessible metal shell. This methodology is not applicable for the underground LPG buried tanks, where it is necessary to install a larger number of AE sensors, in order to cover at 100% the whole tank shell, even at very deep positions. Already in 2004, the European standard EN 12820 (Appendix C - Informative)give the possibility to use Acoustic Emission testing of LPG underground or buried tanks with a capacity exceeding 13 m3, but no technique was specified for the application. In 2008, TÜV AUSTRIA ITALIA - BLU SOLUTIONS srl - Italian company of TÜV AUSTRIA Group - has developed a technique to get access at tank shell, where tank capacity is greater than 13 m3 and its' diameter greater than 3,5 m. This methodology was fully in comply with the provisions of the European Standard EN 12819:2010, becoming an innovative solution widely appreciated and is used in Italy since this time. Currently, large companies and petrochemical plants, at the occurrence of the tank's requalification, have engaged TÜV AUSTRIA ITALIA - BLU SOLUTIONS to install such permanent predispositions, which allow access to the tank shell - test object - with diameters from 4 to 8 m. Through this access, you can install the AE sensors needed to cover at 100% the tank surface and then to perform AE test. In an economic crisis period, this technique is proving a valid and practically applicable answer, in order to reduce inspection costs and downtime by offering a technically advanced solution (AT), increasing the safety of the involved operators, protecting natural resources and the environment.

  5. Magnetic circular dichroism of porphyrin lanthanide M3+ complexes.

    PubMed

    Andrushchenko, Valery; Padula, Daniele; Zhivotova, Elena; Yamamoto, Shigeki; Bouř, Petr

    2014-10-01

    Lanthanide complexes exhibit interesting spectroscopic properties yielding many applications as imaging probes, natural chirality amplifiers, and therapeutic agents. However, many properties are not fully understood yet. Therefore, we applied magnetic circular dichroism (MCD) spectroscopy, which provides enhanced information about the underlying electronic structure to a series of lanthanide compounds. The metals in the M(3+) state included Y, La, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu; the spectra were collected for selected tetraphenylporphin (TPP) and octaethylporphin (OEP) complexes in chloroform. While the MCD and UV-VIS absorption spectra were dominated by the porphyrin signal, metal binding significantly modulated them. MCD spectroscopy was found to be better suited to discriminate between various species than absorption spectroscopy alone. The main features and trends in the lanthanide series observed in MCD and absorption spectra of the complexes could be interpreted at the Density Functional Theory (DFT) level, with effective core potentials on metal nuclei. The sum over state (SOS) method was used for simulation of the MCD intensities. The combination of the spectroscopy and quantum-chemical computations is important for understanding the interactions of the metals with the organic compounds.

  6. Experimental results of a 30 m, 3-core HTSC cable

    NASA Astrophysics Data System (ADS)

    Masuda, Takato; Kato, Takeshi; Yumura, Hiroyasu; Hirose, Masayuki; Isojima, Shigeki; Honjo, Shoichi; Matsuo, Kimiyoshi; Mimura, Tomoo; Takahashi, Yoshihisa

    2002-08-01

    A high temperature superconducting (HTSC) cable is expected to transport large electric power with a compact size because of its high critical current density. We have been developing a 3-core 66 kV class HTSC cable, which is applied to the ∅150 mm duct, and is composed of a conductor and a shield wound with Ag-Mn sheathed Bi-2223 tapes, electrical insulation with polypropylene laminated paper impregnated with liquid nitrogen and thermal insulation with co-axial corrugated pipes. A 30 m, 3-core cable system has been constructed to verify the 3-core performance after its production, laying and cooling. The cable had good performance to mechanical stress in the factory process. The critical current of the cable was more than 2.4 kA at 77 K. The AC loss of the conductor part was 0.5 W/m/phase at 1 kA rms, which agreed well with the calculated value of the spiral pitch adjustment technique. A 130 kV rms AC was successfully applied without any change in tan δ and capacitance. As a next step, a 100 m HTSC cable has been designed and developed based on these experimental results.

  7. Goldschmidt crater and the Moon's north polar region: Results from the Moon Mineralogy Mapper (M3)

    USGS Publications Warehouse

    Cheek, L.C.; Pieters, C.M.; Boardman, J.W.; Clark, R.N.; Combe, J.-P.; Head, J.W.; Isaacson, P.J.; McCord, T.B.; Moriarty, D.; Nettles, J.W.; Petro, N.E.; Sunshine, J.M.; Taylor, L.A.

    2011-01-01

    Soils within the impact crater Goldschmidt have been identified as spectrally distinct from the local highland material. High spatial and spectral resolution data from the Moon Mineralogy Mapper (M3) on the Chandrayaan-1 orbiter are used to examine the character of Goldschmidt crater in detail. Spectral parameters applied to a north polar mosaic of M3 data are used to discern large-scale compositional trends at the northern high latitudes, and spectra from three widely separated regions are compared to spectra from Goldschmidt. The results highlight the compositional diversity of the lunar nearside, in particular, where feldspathic soils with a low-Ca pyroxene component are pervasive, but exclusively feldspathic regions and small areas of basaltic composition are also observed. Additionally, we find that the relative strengths of the diagnostic OH/H2O absorption feature near 3000 nm are correlated with the mineralogy of the host material. On both global and local scales, the strongest hydrous absorptions occur on the more feldspathic surfaces. Thus, M3 data suggest that while the feldspathic soils within Goldschmidt crater are enhanced in OH/H2O compared to the relatively mafic nearside polar highlands, their hydration signatures are similar to those observed in the feldspathic highlands on the farside.

  8. Hemopoietic tissue in newts flown aboard Foton M3

    NASA Astrophysics Data System (ADS)

    Domaratskaya, Elena I.; Almeida, Eduardo; Butorina, Nina N.; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Poplinskaya, Valentina A.; Souza, Kenneth; Skidmore, Mike

    The effect of 12-day spaceflight aboard the Foton-M3 biosatellite on the hematopoietic tissue of P. waltl newts was studied. These animals used at the same time in regeneration experiments after lens and tail tip amputation. In flight and synchronous groups there were performed video recording, temperature and radiation monitoring and continuous contact (via skin) with thymidine analog BrdU. We took differential blood counts and assessed histologically the liver in the flight (F), basal (BC) and synchronous (SC)control groups of animals. In the peripheral blood, we identified neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Lymphocytes (L) and neutrophils (N) prevailed, accounting for about 60 and 20% of white blood cells, respectively. The spaceflight had no apparent effect on the differential blood count in the F group: neither the L and N contents nor the maturing to mature N - ratio differed from those in the control groups. No significant differences between F, SC and BC groups were observed with respect to the structure of hematopoietic areas and the liver morphology. As in Foton-M2, BrdU labeled cells revealed in blood as well as in the hemopoietic areas of the liver. However, in previous experiments performed at satellites Bion-10 and Foton-M2 the changes in peripheral blood contents were registered in operated F newts, and we supposed it could be the result of additive effects of spaceflight factors and stimulation of reparative potency and stress due to surgical operation. Possibly, the temperature conditions also may provide some influence on blood cell content of newts that belong to poikilothermic animals. Thus, in present experiment F and SC groups were reared in the same temperature regims, whereas it was nearly 3o C differences between SC and F groups exposed on Foton-M2. At the same time as it was found in experiments on Bion-11 and Foton-M2 spaceflight factors did not affect on differential blood counts of intact non

  9. Implications for Damage Recognition during Dpo4-Mediated Mutagenic Bypass of m1G and m3C Lesions

    SciTech Connect

    Rechkoblit, Olga; Delaney, James C.; Essigmann, John M.; Patel, Dinshaw J.

    2012-05-08

    DNA is susceptible to alkylation damage by a number of environmental agents that modify the Watson-Crick edge of the bases. Such lesions, if not repaired, may be bypassed by Y-family DNA polymerases. The bypass polymerase Dpo4 is strongly inhibited by 1-methylguanine (m1G) and 3-methylcytosine (m3C), with nucleotide incorporation opposite these lesions being predominantly mutagenic. Further, extension after insertion of both correct and incorrect bases, introduces additional base substitution and deletion errors. Crystal structures of the Dpo4 ternary extension complexes with correct and mismatched 3'-terminal primer bases opposite the lesions reveal that both m1G and m3C remain positioned within the DNA template/primer helix. However, both correct and incorrect pairing partners exhibit pronounced primer terminal nucleotide distortion, being primarily evicted from the DNA helix when opposite m1G or misaligned when pairing with m3C. Our studies provide insights into mechanisms related to hindered and mutagenic bypass of methylated lesions and models associated with damage recognition by repair demethylases.

  10. Geochemical and mineralogical analysis of Gruithuisen region on Moon using M3 and DIVINER images

    NASA Astrophysics Data System (ADS)

    Kusuma, K. N.; Sebastian, N.; Murty, S. V. S.

    2012-07-01

    Spectral information from the Moon Mineralogy Mapper (M3) onboard Chandrayaan-1 and DIVINER Lunar Radiometer onboard LRO have been used for geochemical and mineralogical characterisation of the Gruithuisen region on Moon along with morphometrical information from LOLA Digital elevation model. The apparent reflectance of M3 on global mode is used for (1) spectral characterisation (2) estimating the abundance of Ti and Fe using Lucey's method and (3) discriminating non-mare region from mare regions by means of Minimum Noise Fraction (MNF) transform and Integrated Band Depth (IBD) parameters. Christensen frequency (CF) value derived from DIVINER data is used to delineate the silica saturated lithology from the undersaturated rocks as well as to delineate their spatial spread. Low values of FeO, TiO2, and IBD indicate non-mare nature of the domes and highland material, also supplemented by CF values. The highland rocks represent signatures of sodic plagioclase, the end result of plagioclase crystallisation from Lunar Magma Ocean. Compositional variations are observed among the domes. NW dome has highest silica concentration than the other two domes and in turn higher viscosity. It is most likely that the three domes tapped residual liquid from different locations of the residual magma chamber which is in constant mixing. The extrusion is probably a localised phenomenon, where urKREEP welled out along the zone of crustal weakness formed by Imbrium Impact. It is likely that δ dome has extruded over a larger time span than other two features.

  11. Stability and Uncertainty of Full Moment Tensor Solutions for M < 3.5 Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Boyd, O. S.; Dreger, D. S.

    2014-12-01

    The increase in earthquakes associated with industrial activities has created a need to investigate and characterize the source physics of induced seismicity. Many techniques and approaches are available to determine representative source parameters of these events. For M > 3.5 events, high quality seismic data from regional networks can be used to provide reasonable estimates of moment tensor solutions. In this investigation we explore various techniques and datasets to constrain full moment tensor solutions of M < 3.5 induced events, expanding upon the approach developed by Guilhem et al., 2014. Small magnitude events recorded by local seismic networks can yield good quality data with distinct body wave and converted phases depending upon the velocity structure and frequency range. Generating synthetic seismograms or Green's functions to accurately model these high frequency phases can be challenging. To investigate the variability associated with the choice of Green's functions, we test available codes to see how well they capture body wave phases. Other stability and uncertainty measures include the F-test, Jackknife test, residual bootstrap, and Network Sensitivity Solution, (Ford et al., 2009; Ford et al., 2010). Additional datasets to constrain the full moment tensor solution include P-wave first motions and amplitude ratios.

  12. Phospholipase C-independent effects of 3M3FBS in murine colon.

    PubMed

    Dwyer, Laura; Kim, Hyun Jin; Koh, Byoung Ho; Koh, Sang Don

    2010-02-25

    The muscarinic receptor subtype M(3) is coupled to Gq/11 proteins. Muscarinic receptor agonists such as carbachol stimulate these receptors that result in activation of phospholipase C (PLC) which hydrolyzes phosphatidylinositol 4,5-bisphosphate into diacylglycerol and Ins(1,4,5)P(3). This pathway leads to excitation and smooth muscle contraction. In this study the PLC agonist, 2, 4, 6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benezenesulfonamide (m-3M3FBS), was used to investigate whether direct PLC activation mimics carbachol-induced excitation. We examined the effects of m-3M3FBS and 2, 4, 6-trimethyl-N-(ortho-3-trifluoromethyl-phenyl)-benzenesulfonamide (o-3M3FBS), on murine colonic smooth muscle tissue and cells by performing conventional microelectrode recordings, isometric force measurements and patch clamp experiments. Application of m-3M3FBS decreased spontaneous contractility in murine colonic smooth muscle without affecting the resting membrane potential. Patch clamp studies revealed that delayed rectifier K(+) channels were reversibly inhibited by m-3M3FBS and o-3M3FBS. The PLC inhibitor, 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), did not prevent this inhibition by m-3M3FBS. Both m-3M3FBS and o-3M3FBS decreased two components of delayed rectifier K(+) currents in the presence of tetraethylammonium chloride or 4-aminopyridine. Ca(2+) currents were significantly suppressed by m-3M3FBS and o-3M3FBS with a simultaneous increase in intracellular Ca(2+). Pretreatment with U73122 did not prevent the decrease in Ca(2+) currents upon m-3M3FBS application. In conclusion, both m-3M3FBS and o-3M3FBS inhibit inward and outward currents via mechanisms independent of PLC acting in an antagonistic manner. In contrast, both compounds also caused an increase in [Ca(2+)](i) in an agonistic manner. Therefore caution must be employed when interpreting their effects at the tissue and cellular level.

  13. Phospholipase C-independent effects of 3M3FBS in murine colon

    PubMed Central

    Dwyer, Laura; Kim, Hyunjin; Koh, Byoung Ho; Koh, Sang Don

    2009-01-01

    The muscarinic receptor subtype M3 is coupled to Gq/11 proteins. Muscarinic receptor agonists such as carbachol stimulate these receptors that result in activation of phospholipase C (PLC) which hydrolyzes phosphatidylinositol 4,5-bisphosphate into diacylglycerol and Ins(1,4,5)P3. This pathway leads to excitation and smooth muscle contraction. In this study the PLC agonist, 2, 4, 6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benezenesulfonamide (m-3M3FBS), was used to investigate whether direct PLC activation mimics carbachol-induced excitation. We examined the effects of m-3M3FBS and 2, 4, 6-trimethyl-N-(ortho-3-trifluoromethyl-phenyl)-benzenesulfonamide (o-3M3FBS), on murine colonic smooth muscle tissue and cells by performing conventional microelectrode recordings, isometric force measurements and patch clamp experiments. Application of m-3M3FBS decreased spontaneous contractility in murine colonic smooth muscle without affecting the resting membrane potential. Patch clamp studies revealed that delayed rectifier K+ channels were reversibly inhibited by m-3M3FBS and o-3M3FBS. The PLC inhibitor, 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), did not prevent this inhibition by m-3M3FBS. Both m-3M3FBS and o-3M3FBS decreased two components of delayed rectifier K+ currents in the presence of tetraethylammonium chloride or 4-aminopyridine. Ca2+ currents were significantly suppressed by m-3M3FBS and o-3M3FBS with a simultaneous increase in intracellular Ca2+. Pretreatment with U73122 did not prevent the decrease in Ca2+ currents upon m-3M3FBS application. In conclusion, both m-3M3FBS and o-3M3FBS inhibit inward and outward currents via mechanisms independent of PLC acting in an antagonistic manner. In contrast, both compounds also caused an increase in [Ca2+]i in an agonistic manner. Therefore caution must be employed when interpreting their effects at the tissue and cellular level. PMID:19931239

  14. M3D-K Simulations of Beam-Driven Fishbone Instability in DIIID

    NASA Astrophysics Data System (ADS)

    Fu, Guoyong; Tobias, Benjamin; van Zeeland, Michael

    2013-10-01

    Fishbone instability is often observed between sawtooth crashes in DIII-D with sufficient on-axis neutral beam power. In this work, hybrid simulations with the global kinetic/MHD hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of n = 1 mode with effects of energetic beam ions for parameters and profiles of a DIII-D discharge. The results show that the n = 1 internal kink mode is unstable in MHD limit. However, with kinetic effects of beam ions, a fishbone-like mode is found to be unstable with mode frequency about a few kHz, consistent with experimental observation. Nonlinear simulations are being performed to investigate mode saturation, frequency chirping as well as energetic particle transport. Numerical results will be compared with the experimental data from DIII-D.

  15. Differential expression of M3 muscarinic receptors in progressive colon neoplasia and metastasis.

    PubMed

    Cheng, Kunrong; Shang, Aaron C; Drachenberg, Cinthia B; Zhan, Min; Raufman, Jean-Pierre

    2017-03-28

    M3 muscarinic receptor (M3R) activation promotes colon cancer cell proliferation, migration, and invasion in vitro. Although over-expression of CHRM3, the gene encoding M3R, is reported in primary colon cancers, expression of M3R itself has not been studied in colon neoplasia. We compared M3R expression in normal colon to colon adenomas, and primary and metastatic colon cancers. Compared to adjacent normal colon, CHRM3 expression was increased up to 128-fold in 10 of 18 consecutive surgical cancer specimens (56%) and associated with metastatic spread (P < 0.05). To analyze M3R protein expression we interrogated 29 consecutive paraffin-embedded colon adenocarcinomas and adjacent normal colon using a specific anti-M3R antibody and immunoperoxidase staining. This revealed weak M3R expression in normal colonocytes, primarily on basolateral surfaces. In contrast, in 25 of 29 cancer tissues (86%) we observed both cytoplasmic and plasma membrane over-expression of M3R; compared to normal epithelium, mean M3R staining intensity was increased more than two-fold in colon cancer (P < 0.001). M3R staining was also increased in 22 colon adenomas compared to adjacent normal colon (P < 0.001). In contrast, M3R staining intensity was not increased in lymph node or liver metastases. These findings suggest M3R expression plays an important role in early progression and invasion of colon neoplasia but is less important once tumors have spread.

  16. RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams

    PubMed Central

    Zhang, Juying; Na, Yong Hum; Caracappa, Peter F; Xu, X George

    2010-01-01

    This paper describes the development of a pair of adult male and adult female computational phantoms that are compatible with anatomical parameters for the 50th percentile population as specified by the International Commission on Radiological Protection (ICRP). The phantoms were designed entirely using polygonal mesh surfaces—a Boundary REPresentation (BREP) geometry that affords the ability to efficiently deform the shape and size of individual organs, as well as the body posture. A set of surface mesh models, from Anatomium™ 3D P1 V2.0, including 140 organs (out of 500 available) was adopted to supply the basic anatomical representation at the organ level. The organ masses were carefully adjusted to agree within 0.5% relative error with the reference values provided in the ICRP Publication 89. The finalized phantoms have been designated the RPI adult male (RPI-AM) and adult female (RPI-AF) phantoms. For the purposes of organ dose calculations using the MCNPX Monte Carlo code, these phantoms were subsequently converted to voxel formats. Monoenergetic photons between 10 keV and 10 MeV in six standard external photon source geometries were considered in this study: four parallel beams (anterior–posterior, posterior–anterior, left lateral and right lateral), one rotational and one isotropic. The results are tabulated as fluence-to-organ-absorbed-dose conversion coefficients and fluence-to-effective-dose conversion coefficients and compared against those derived from the ICRP computational phantoms, REX and REGINA. A general agreement was found for the effective dose from these two sets of phantoms for photon energies greater than about 300 keV. However, for low-energy photons and certain individual organs, the absorbed doses exhibit profound differences due to specific anatomical features. For example, the position of the arms affects the dose to the lung by more than 20% below 300 keV in the lateral source directions, and the vertical position of the testes

  17. Dense pair plasma generation by two laser pulses colliding in a cylinder channel

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Xun; Ma, Yan-Yun; Yu, Tong-Pu; Zhao, Jun; Yang, Xiao-Hu; Zou, De-Bin; Zhang, Guo-Bo; Zhao, Yuan; Yang, Jing-Kang; Li, Han-Zhen; Zhuo, Hong-Bin; Shao, Fu-Qiu; Kawata, Shigeo

    2017-03-01

    An all-optical scheme for high-density pair plasmas generation is proposed by two laser pulses colliding in a cylinder channel. Two dimensional particle-in-cell simulations show that, when the first laser pulse propagates in the cylinder, electrons are extracted out of the cylinder inner wall and accelerated to high energies. These energetic electrons later run into the second counter-propagating laser pulse, radiating a large amount of high-energy gamma photons via the Compton back-scattering process. The emitted gamma photons then collide with the second laser pulse to initiate the Breit-Wheeler process for pairs production. Due to the strong self-generated fields in the cylinder, positrons are confined in the channel to form dense pair plasmas. Totally, the maximum density of pair plasmas can be 4.60× {10}27 {{{m}}}-3, for lasers with an intensity of 4× {10}22 {{W}}\\cdot {{cm}}-2. Both the positron yield and density are tunable by changing the cylinder radius and the laser parameters. The generated dense pair plasmas can further facilitate investigations related to astrophysics and particle physics. Project supported by the National Natural Science Foundation (Grant Nos. 11475260, 11305264, 11622547, 11375265, and 11474360), the National Basic Research Program of China (Grant No. 2013CBA01504), the Research Project of National University of Defense Technology, China (Contract No. JC14-02-02), and the Science Challenge Program, China (Grant No. JCKY2016212A505).

  18. Ion pair receptors†

    PubMed Central

    Kim, Sung Kuk

    2010-01-01

    Compared with simple ion receptors, which are able to bind either a cation or an anion, ion pair receptors bearing both a cation and an anion recognition site offer the promise of binding ion pairs or pairs of ions strongly as the result of direct or indirect cooperative interactions between co-bound ions. This critical review focuses on the recent progress in the design of ion pair receptors and summarizes the various binding modes that have been used to accommodate ion pairs (110 references). PMID:20737073

  19. Transient expression from cab-m1 and rbcS-m3 promoter sequences is different in mesophyll and bundle sheath cells in maize leaves.

    PubMed

    Bansal, K C; Viret, J F; Haley, J; Khan, B M; Schantz, R; Bogorad, L

    1992-04-15

    Cell-specific and light-regulated expression of the beta-glucuronidase (GUS) reporter gene from maize cab-m1 and rbcS-m3 promoter sequences was studied in maize leaf segments by using an in situ transient expression microprojectile bombardment assay. The cab-m1 gene is known to be strongly photoregulated and to be expressed almost exclusively in mesophyll cells (MC) but not in bundle sheath cells (BSC). Expression of GUS from a 1026-base-pair 5' promoter fragment of cab-m1 is very low in dark-grown leaves; GUS expression is increased about 10-fold upon illumination of dark-grown leaves. In illuminated leaves, the ratio of GUS expression in MC vs. BSC is about 10:1. The cab-m1 region between 868 and 1026 base pairs 5' to the translation start confers strong MC-preferred expression on the remainder of the chimeric gene in illuminated leaves, but a region between -39 and -359 from the translation start is required for photoregulated expression. Transcripts of rbcS-m3 are found in BSC but not in MC and are about double in BSC of greening dark-grown seedlings. In contrast to the behavior of the cab-m1-GUS construct, GUS expression driven by 2.1 kilobase pairs of the rbcS-m3 5' region was about twice as high in MC as in BSC of unilluminated dark-grown maize leaves. The number of BSC, but not MC, expressing GUS nearly doubled upon greening of bombarded etiolated leaves. These data suggest that the 5' region of rbcS-m3 used here could be responsible for most of the light-dependent increase in rbcS-m3 transcripts observed in BSC of greening leaves and that transcriptional or posttranscriptional mechanisms are responsible for the lack of rbcS-m3 transcripts in MC.

  20. M3(Au,Ge)19 and M(3.25)(Au,Ge)18 (M = Ca, Yb): distinctive phase separations driven by configurational disorder in cubic YCd6-type derivatives.

    PubMed

    Lin, Qisheng; Corbett, John D

    2010-05-17

    Exploratory syntheses in the M-Au-Ge (M = Ca, Yb) systems have led to the discovery of two cleanly separated non-stoichiometric phases M(3)Au(approximately 14.4)Ge(approximately 4.6) (I) and M(3.25)Au(approximately 12.7)Ge(approximately 5.3) (II). Single crystal X-ray studies reveal that both (space group Im3) feature body-centered-cubic packing of five-shell multiply endohedral clusters that resemble those in the parent YCd(6) (= Y(3)Cd(18)) and are akin to approximate phases in other quasicrystal systems. However, differences resulting from various disorders in these are distinctive. The innermost cluster in the M(3)Au(approximately 14.4)Ge(approximately 4.6) phase (I) remains a disordered tetrahedron, as in the YCd(6) parent. In contrast, its counterpart in the electron-richer M(3.25)Au(approximately 12.7)Ge(approximately 5.3) phase (II) is a "rattling" M atom. The structural differentiations between I and II exhibit strong correlations between lattice parameters, cluster sizes, particular site occupancies, and valence electron counts.

  1. Triplet pairing in neutron matter

    NASA Astrophysics Data System (ADS)

    Khodel, V. V.; Khodel, V. A.; Clark, J. W.

    2001-01-01

    The separation method developed earlier by us [Nucl. Phys. A 598 390 (1996)] to calculate and analyze solutions of the BCS gap equation for 1S 0 pairing is extended and applied to 3P 2- 3F 2 pairing in pure neutron matter. The pairing matrix elements are written as a separable part plus a remainder that vanishes when either momentum variable is on the Fermi surface. This decomposition effects a separation of (i) the problem of determining the dependence of the gap components in a spin-angle representation on the magnitude of the momentum (described by a set of functions independent of magnetic quantum number) from (ii) the problem of determining the dependence of the gap on angle or magnetic projection. The former problem is solved through a set of nonsingular, quasilinear integral equations, providing inputs for solution of the latter problem through a coupled system of algebraic equations for a set of numerical coefficients. An incisive criterion is given for finding the upper critical density for closure of the triplet gap. The separation method and its development for triplet pairing exploit the existence of a small parameter, given by a gap-amplitude measure divided by the Fermi energy. The revised BCS equations admit analysis revealing universal properties of the full set of solutions for 3P 2 pairing in the absence of tensor coupling, referring especially to the energy degeneracy and energetic order of these solutions. The angle-average approximation introduced by Baldo et al. is illuminated in terms of the separation-transformed BCS problem and the small parameter expansion. Numerical calculations of 3P 2 pairing parameters and gap functions, with and without coupling to the 3F 2 state, are carried out for pairing matrix elements supplied by (vacuum) two-neutron interactions that fit nucleon-nucleon scattering data. It is emphasized that ab initio evaluation of the in-medium particle-particle interaction and associated single-particle energies will be

  2. BCS theory with the external pair potential

    NASA Astrophysics Data System (ADS)

    Grigorishin, Konstantin V.

    2017-09-01

    We consider a hypothetical substance, where interaction between (within) structural elements of condensed matter (molecules, nanoparticles, clusters, layers, wires etc.) depends on state of Cooper pairs: an additional work must be made against this interaction to break a pair. Such a system can be described by BCS Hamiltonian with the external pair potential term. In this model the potential essentially renormalizes the order parameter: if the pairing lowers energy of the structure the energy gap is slightly enlarged at zero temperature and asymptotically tends to zero as temperature rises. Thus the critical temperature of such a superconductor is equal to infinity formally. For this case the effective Ginzburg-Landau theory is formulated, where the coherence length decreases as temperature rises, the GL parameter and the second critical field are increasing functions of temperature unlike the standard theory. If the pairing enlarges energy of the structure then suppression of superconductivity and the first order phase transition occur.

  3. Matched-pair classification

    SciTech Connect

    Theiler, James P

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  4. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  5. Detecting a preformed pair phase: Response to a pairing forcing field

    NASA Astrophysics Data System (ADS)

    Tagliavini, A.; Capone, M.; Toschi, A.

    2016-10-01

    The normal state of strongly coupled superconductors is characterized by the presence of "preformed" Cooper pairs well above the superconducting critical temperature. In this regime, the electrons are paired, but they lack the phase coherence necessary for superconductivity. The existence of preformed pairs implies the existence of a characteristic energy scale associated with a pseudogap. Preformed pairs are often invoked to interpret systems where some signatures of pairing are present without actual superconductivity, but an unambiguous theoretical characterization of a preformed-pair system is still lacking. To fill this gap, we consider the response to an external pairing field of an attractive Hubbard model, which hosts one of the cleanest realizations of a preformed pair phase, and a repulsive model where s -wave superconductivity cannot be realized. Using dynamical mean-field theory to study this response, we identify the characteristic features which distinguish the reaction of a preformed pair state from a normal metal without any precursor of pairing. The theoretical detection of preformed pairs is associated with the behavior of the second derivative of the order parameter with respect to the external field, as confirmed by analytic calculations in limiting cases. Our findings provide a solid test bed for the interpretation of state-of-the-art calculations for the normal state of the doped Hubbard model in terms of d -wave preformed pairs and, in perspective, of nonequilibrium experiments in high-temperature superconductors.

  6. Pure Pairing Modes in Trapped Fermion Systems

    NASA Astrophysics Data System (ADS)

    Capuzzi, P.; Hernández, E. S.; Szybisz, L.

    2013-05-01

    We present numerical predictions for the shape of the pairing fluctuations in harmonically trapped atomic 6Li with two spin projections, based on the fluiddynamical description of cold fermions with pairing interactions. In previous works it has been shown that when the equilibrium of a symmetric mixture is perturbed, the linearized fluiddynamic equations decouple into two sets, one containing the sound mode of fermion superfluids and the other the pairing mode. The latter corresponds to oscillations of the modulus of the complex gap and is driven by the kinetic energy densities of the particles and of the pairs. Assuming proportionality between the heat flux and the energy gradient, the particle kinetic energy undergoes a diffusive behavior and the diffusion parameter is the key parameter for the relaxation time scale. We examine a possible range of values for this parameter and find that the shape of the pairing oscillation is rather insensitive to the precise value of the transport coefficient. Moreover, the pairing fluctuation is largely confined to the center of the trap, and the energy of the pairing mode is consistent with the magnitude of the equilibrium gap.

  7. Cooper pairs and bipolarons

    NASA Astrophysics Data System (ADS)

    Lakhno, Victor

    2016-11-01

    It is shown that Cooper pairs are a solution of the bipolaron problem for model Fröhlich Hamiltonian. The total energy of a pair for the initial Fröhlich Hamiltonian is found. Differences between the solutions for the model and initial two-particle problems are discussed.

  8. [Handling and maintenance of gerbils during the spacecraft Foton-M3 mission].

    PubMed

    Soldatov, P E; Smirnov, I A; Il'in, E A; Gur'eva, T S; Mednikova, E I; Smolenskaia, T S; Lysenko, L A; Kaminskaia, E V

    2009-01-01

    Pressurized low-sized module Kontur with an independent life support system (LSS) was developed by the Institute of Biomedical Problems cooperatively with the Special Design Bureau of Experimental Equipment to house gerbils (Meriones unguiculatus) aboard robotic technology-purpose spacecraft. Design of the module precludes pollution of the environment The fully equipped module weighs 69 kg; average daily power consumption is 62 watts. The environmental parameters for 12 animals flown on Foton-M3 in the period of September 14-26, 2007 were controlled within the following ranges: pO2 - 143-156 mm Hg, (mean 150 mm Hg), pCO2 - 0.76 mm Hg maximum (mean 0.64 mm Hg), temperature - 23-28 degrees C (mean 26.7 degrees C), relative humidity - 29% and 57% at the beginning and end of the flight, respectively (mean 39%). The animals consumed the palletized food prepared of natural products with a moisture content of approx. 20%. The day-night periods were 12 hrs. long. The daytime video recording of the animals went on continuously in the throughout the flight. The experiment showed that the module meets the requirements of experiments with mammals aboard returnable robotic spacecraft and piloted space stations. At the moment, the model is being redesigned for a 30-day BION-M1 mission.

  9. [Gerbil experiment in the flight of spacecraft "Foton-M3"].

    PubMed

    Il'in, E A; Smirnov, I A; Soldatov, P E; Orlov, O I

    2009-01-01

    The 12-d mission of Russian spacecraft Foton-M3 in September of 2007 was used as an opportunity to fly an experiment with 12 male gerbils (Meriones unguiculatus) at the age of 4-4.5 mos. and mean body weight of 51.6 grams. Considering the behavior pattern of these animals, selection and preparation of the experimental groups continued in the course of 2.5-3 months. The flight animals were contained in module Kontur-L outfitted with a self-sustained system of life support. In orbit, the animals received a palletized hydrogenous feed. The physiological and hygienic parameters of the gerbil environment during the flight complied with the official standards. Analysis of the video recorded behavior of animals in microgravity showed that virtually throughout the flight they moved chaotically along the cage never attempting to stabilize position catching at the wire netting of the cage. The animals were decapitated in 21-24 hours after landing. The investigations showed that structural and functional changes in gerbil organs and tissues were generally of the same type as in rats following fights of comparable duration. However, some differences between the animals were attributed to the specifics of water turnover in gerbils.

  10. THE SWIFT UVOT STARS SURVEY. II. RR LYRAE STARS IN M3 AND M15

    SciTech Connect

    Siegel, Michael H.; Porterfield, Blair L.; Balzer, Benjamin G.; Hagen, Lea M. Z. E-mail: blp14@psu.edu E-mail: lea.zernow.hagen@gmail.com

    2015-10-15

    We present the first results of a near-ultraviolet (NUV) survey of RR Lyrae stars from the Ultraviolet Optical Telescope (UVOT) on board the Swift Gamma-ray Burst Mission. It is well-established that RR Lyrae stars have large amplitudes in the far- and near-ultraviolet. We have used UVOT’s unique wide-field NUV imaging capability to perform the first systematic NUV survey of variable stars in the Galactic globular clusters M3 and M15. We identify 280 variable stars, comprised of 275 RR Lyrae, 2 anomalous Cepheids, 1 classical Cepheid, 1 SX Phoenicis star, and 1 possible long-period or irregular variable. Only two of these are new discoveries. We compare our results to previous investigations and find excellent agreement in the periods with significantly larger amplitudes in the NUV. We map out, for the first time, an NUV Bailey diagram from globular clusters, showing the usual loci for fundamental mode RRab and first overtone RRc pulsators. We show the unique sensitivity of NUV photometry to both the temperatures and the surface gravities of RR Lyrae stars. Finally, we show evidence of an NUV period–metallicity–luminosity relationship. Future investigations will further examine the dependence of NUV pulsation parameters on metallicity and Oosterhoff classification.

  11. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2016-07-12

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  12. Origin of transionospheric pulse pairs

    NASA Astrophysics Data System (ADS)

    Wu, H.-C.

    2017-03-01

    Transionospheric pulse pairs, associated with lightning, are the most powerful natural radio signals on Earth. Although they were discovered over two decades ago by satellites, their origin remains elusive. Here we attribute these radio signals to relativistic electrons generated by cloud-to-ground lightning. When these electrons strike the ground, radio bursts are emitted toward space within a narrow cone. This model naturally explains the interval, duration, polarization, coherence, and bimodal feature of the pulse pairs. Based on electron parameters inferred from X-ray observations of lightning, we find that the calculated signal intensity agrees with satellite measurements. Our results can be applied to the development of a global warning system for storms and hurricanes using GPS satellites.

  13. Chemokine binding protein ‘M3’ limits atherosclerosis in apolipoprotein E-/- mice

    PubMed Central

    Ravindran, Dhanya; Ridiandries, Anisyah; Vanags, Laura Z.; Henriquez, Rodney; Cartland, Siân; Tan, Joanne T. M.; Bursill, Christina A.

    2017-01-01

    Chemokines are important in macrophage recruitment and the progression of atherosclerosis. The ‘M3’ chemokine binding protein inactivates key chemokines involved in atherosclerosis (e.g. CCL2, CCL5 and CX3CL1). We aimed to determine the effect of M3 on plaque development and composition. In vitro chemotaxis studies confirmed that M3 protein inhibited the activity of chemokines CCL2, CCL5 and CX3CL1 as primary human monocyte migration as well as CCR2-, CCR5- and CX3CR1-directed migration was attenuated by M3. In vivo, adenoviruses encoding M3 (AdM3) or green fluorescence protein (AdGFP; control) were infused systemically into apolipoprotein (apo)-E-/- mice. Two models of atherosclerosis development were used in which the rate of plaque progression was varied by diet including: (1) a ‘rapid promotion’ model (6-week high-fat-fed) and (2) a ‘slow progression’ model (12-week chow-fed). Plasma chemokine activity was suppressed in AdM3-infused mice as indicated by significantly less monocyte migration towards AdM3 mouse plasma ex vivo (29.56%, p = 0.014). In the ‘slow progression’ model AdM3 mice had reduced lesion area (45.3%, p = 0.035) and increased aortic smooth muscle cell α-actin expression (60.3%, p = 0.014). The reduction in lesion size could not be explained by changes in circulating inflammatory monocytes as they were higher in the AdM3 group. In the ‘rapid promotion’ model AdM3 mice had no changes in plaque size but reduced plaque macrophage content (46.8%, p = 0.006) and suppressed lipid deposition in thoracic aortas (66.9%, p<0.05). There was also a reduction in phosphorylated p65, the active subunit of NF-κb, in the aortas of AdM3 mice (37.3%, p<0.0001). M3 inhibited liver CCL2 concentrations in both models with no change in CCL5 or systemic chemokine levels. These findings show M3 causes varying effects on atherosclerosis progression and plaque composition depending on the rate of lesion progression. Overall, our studies support a

  14. Dual origin of pairing in nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  15. Performance oriented packaging report for charge, demolition, shaped, 40 pound, M3A1. Final report

    SciTech Connect

    Sniezek, F.M.

    1992-11-02

    This POP report is for the Charge, Demolition, Shaped, 40 Pound, M3Al which is packaged 1 charge/Mil-B-2427 wood box. This report describes the results of testing conducted.... Performance oriented packaging, POP, Charge, Demolition, Shaped, 40 Pound, M3Al, Mil-B-2427 Wood box.

  16. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    NASA Astrophysics Data System (ADS)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    . We analysed the hourly changes and the daily light/dark trend in the maximum quantum yield of PSII photochemistry, Fv/Fm (Fig.2). Some physiological parameters that characterize the post-flight effect on algae viability and photosynthetic performance were also determined. The dose and particle flux during Foton-M3 flight were monitored in real time by the active spectrum-dosimeter Liulin- Photo, mounted on the top of Photo-II fluorimeter (Fig.2). Liulin-Photo measurements provided information on the amount of the energy released on the samples and the quality of the incident ionizing radiation [3]. The space flight results in relationship with the ground control simulation are discussed.

  17. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity.

  18. Role of the M3 Muscarinic Acetylcholine Receptor Subtype in Murine Ophthalmic Arteries After Endothelial Removal

    PubMed Central

    Gericke, Adrian; Steege, Andreas; Manicam, Caroline; Böhmer, Tobias; Wess, Jürgen; Pfeiffer, Norbert

    2014-01-01

    Purpose. We tested the hypothesis that the M3 muscarinic acetylcholine receptor subtype mediates cholinergic responses in murine ophthalmic arteries after endothelial removal. Methods. Muscarinic receptor gene expression was determined in ophthalmic arteries with intact and with removed endothelium using real-time PCR. To examine the role of the M3 receptor in mediating vascular responses, ophthalmic arteries from M3 receptor-deficient mice (M3R−/−) and respective wild-type controls were studied in vitro. Functional studies were performed in nonpreconstricted arteries with either intact or removed endothelium using video microscopy. Results. In endothelium-intact ophthalmic arteries, mRNA for all five muscarinic receptor subtypes was detected, but M3 receptor mRNA was most abundant. In endothelium-removed ophthalmic arteries, M1, M2, and M3 receptors displayed similar mRNA expression levels, which were higher than those for M4 and M5 receptors. In functional studies, acetylcholine evoked vasoconstriction in endothelium-removed arteries from wild-type mice that was virtually abolished after incubation with the muscarinic receptor blocker atropine, indicative of the involvement of muscarinic receptors. In concentration-response experiments, acetylcholine and carbachol concentration-dependently constricted endothelium-removed ophthalmic arteries from wild-type mice, but produced only negligible responses in arteries from M3R−/− mice. In contrast, acetylcholine concentration-dependently dilated ophthalmic arteries with intact endothelium from wild-type mice, but not from M3R−/− mice. Responses to the nitric oxide donor nitroprusside and to KCl did not differ between ophthalmic arteries from wild-type and M3R−/− mice, neither in endothelium-intact nor in endothelium-removed arteries. Conclusions. These findings provide evidence that in murine ophthalmic arteries the muscarinic M3 receptor subtype mediates cholinergic endothelium-dependent vasodilation

  19. The Caenorhabditis elegans ems class homeobox gene ceh-2 is required for M3 pharynx motoneuron function.

    PubMed

    Aspöck, Gudrun; Ruvkun, Gary; Bürglin, Thomas R

    2003-08-01

    Several homeobox genes, for example those of the ems class, play important roles in animal head development. We report on the expression pattern and function of ceh-2, the Caenorhabditis elegans ems/Emx ortholog. CEH-2 protein is restricted to the nuclei of one type of small muscle cell, one type of epithelial cell, and three types of neurons in the anterior pharynx in the head. We have generated a deletion allele of ceh-2 that removes the homeobox. Animals homozygous for this deletion are viable and fertile, but grow slightly slower and lay fewer eggs than wild type. We assayed the function of two types of pharynx neurons that express ceh-2, the pairs M3 and NSM. M3 activity is substantially reduced in electropharyngeograms of ceh-2 deletion mutants; this defect can account for the observed retardation in larval development, as M3 activity is known to be necessary for effective feeding. NSM function and metabolism are normal based on the assays used. All cells that express ceh-2 in wild type are present in the ceh-2 mutant and have normal morphologies. Therefore, unlike other ems/Emx genes, ceh-2 seems to be important for a late differentiation step and not for neuron specification or regional patterning. Because the CEH-2 homeodomain is well conserved, we tested whether ceh-2 can rescue ems(-) brain defects in Drosophila, despite the apparent differences in biological roles. We found that the C. elegans ems ortholog is able to substitute for fly ems in brain development, indicating that sequence conservation rather than conservation of biological function is important.

  20. Paired circularly polarized heterodyne ellipsometer

    SciTech Connect

    Yu, C.-J.; Lin, C.-E.; Yu, L.-P.; Chou, C

    2009-02-01

    We develop a paired circularly polarized heterodyne ellipsometer (PCPHE), in which a heterodyne interferometer based on a two-frequency circularly polarized laser beam is set up. It belongs to an amplitude-sensitive ellipsometer that is able to provide not only a wider dynamic range of polarization modulation frequency but also a higher detection sensitivity than that of a conventional photometric ellipsometer. A real-time and precise measurement of ellipsometric parameters, which demonstrated an accuracy of less than 1 nm on thickness measurement of SiO2 thin film deposited on silicon substrate, can be applied with the PCPHE.

  1. Infusion Rate Dependent Pharmacokinetics of Bendamustine with Altered Formation of γ-hydroxybendamustine (M3) Metabolite Following 30- and 60-min Infusion of Bendamustine in Rats.

    PubMed

    Srinivas, N R; Richter, W; Devaraj, V C; Suresh, P S; Bhamdipati, R K; Mullangi, R

    2016-07-01

    Bendamustine is an alkylating agent administered as 1 h intravenous infusion in the clinic for the treatment of malignant haematological cancers. The aim of the study was to evaluate the pharmacokinetics of bendamustine and its key cytochrome P 450 (CYP) 1A2 mediated γ-hydroxybendamustine (M3) metabolite after 30- and 60-min intravenous infusion of bendamustine in rats. 2 groups were assigned to receive bendamustine either as 30- or 60-min infusion and doses were normalized to 15 mg/kg for the sake of statistical evaluation. Serial pharmacokinetic samples were collected and were analysed for the circulatory levels of bendamustine and its M3 metabolite. Standard pharmacokinetic parameters were generated for bendamustine and its M3 metabolite. Regardless of the intravenous regimens, Cmax coincided with end of infusion for both bendamustine and its M3 metabolite. Immediately after stoppage of infusion, a rapid decline in the plasma levels occurred for both bendamustine and M3 metabolite. The Cmax and AUC0-∞ parameters for bendamustine after 60-min infusion were 1.90 and 1.34-fold higher; while CL was lower by 1.32-fold as compared to the 30-min infusion. In contrast, the Cmax and AUC0-∞ after 30-min infusion for the M3 metabolite was 2.15- and 2.78-fold greater; while CL was 2.32-fold lower when compared to the 60-min infusion. However, T1/2 and Vz values were similar between the 2 intravenous treatments for bendamustine or the M3 metabolite. The data unequivocally confirmed the existence of differential pharmacokinetics of bendamustine and its M3 metabolite as the function of the duration of intravenous infusion.

  2. Drop by drop backscattered signal of a 50 × 50 × 50 m3 volume: A numerical experiment

    NASA Astrophysics Data System (ADS)

    Gires, A.; Tchiguirinskaia, I.; Schertzer, D.

    2016-09-01

    The goal of this paper is to analyse the influence of individual drop positions on a backscattered radar signal. This is achieved through a numerical experiment: a 3D rain drop field generator is developed and implemented over a volume of 50 × 50 × 50 m3, and then the sum of the electromagnetic waves backscattered by its hydrometeors is computed. Finally the temporal evolution over 1 s is modelled with simplistic assumptions. For the rainfall generator, the liquid water content (LWC) distribution is represented with the help of a multiplicative cascade down to 0.5 m, below which it is considered as homogeneous. Within each 0.5 × 0.5 × 0.5 m3 patch, liquid water is distributed into drops, located randomly uniformly according to a pre-defined drop size distribution (DSD). Such configuration is compared with the one consisting of the same drops being uniformly distributed over the entire 50 × 50 × 50 m3 volume. Due to the fact that the radar wave length is much smaller than the size of a rainfall "patch", it appears that, in agreement with the theory, we retrieve an exponential distribution for potential measures on horizontal reflectivity. Much thinner dispersion is noticed for differential reflectivity. We show that a simple ballistic assumption for drop velocities does not enable the reproduction of radar observations, and turbulence should be taken into account. Finally the sensitivity of these outputs to the various model parameters is quantified.

  3. Machining of Christmas tree parts of 06Kh20N8M3D2L corrosion-resistant steel

    SciTech Connect

    Rubinov, S.R.; Balaoglanov, M.M.; Baluyants, E.G.

    1983-09-01

    To address the problem of corrosion cracking, equipment has been developed of 06Kh20N8M3D21 austenitic-ferritic corrosion-resistant multiply alloyed steel. But as this steel is difficult to machine investigations were made to determine the parameters and conditions for machining Christmas tree parts made of this steel. Turning, drilling, thread cutting, and milling are specified. The optimum conditions for machining Christmas tree parts were established in tests. The tests also showed that the coefficient of machinability of the steel is 3 or 4 times less than that of 20KhGSL steel, which is normally used for Christmas tree production.

  4. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  5. Stereo Pair, Pasadena, California

    NASA Image and Video Library

    2000-03-10

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown.

  6. Stereo Pair, Honolulu, Oahu

    NASA Image and Video Library

    2000-03-10

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by NASA Shuttle Radar Topography Mission SRTM, shows how topography controls the urban pattern.

  7. Cooper Pair Insulators

    NASA Astrophysics Data System (ADS)

    Valles, James

    One of the recent advances in the field of the Superconductor to Insulator Transition (SIT) has been the discovery and characterization of the Cooper Pair Insulator phase. This bosonic insulator, which consists of localized Cooper pairs, exhibits activated transport and a giant magneto-resistance peak. These features differ markedly from the weakly localized transport that emerges as pairs break at a ``fermionic'' SIT. I will describe how our experiments on films nano-patterned with a nearly triangular array of holes have enabled us to 1) distinguish bosonic insulators from fermionic insulators, 2) show that Cooper pairs, rather than quasi-particles dominate the transport in the Cooper Pair insulator phase, 3) demonstrate that very weak, sub nano-meter thickness inhomogeneities control whether a bosonic or fermionic insulator forms at an SIT and 4) reveal that Cooper pairs disintegrate rather than becoming more tightly bound deep in the localized phase. We have also developed a method, using a magnetic field, to tune flux disorder reversibly in these films. I will present our latest results on the influence of magnetic flux disorder and random gauge fields on phenomena near bosonic SITs. This work was performed in collaboration with M. D. Stewart, Jr., Hung Q. Nguyen, Shawna M. Hollen, Jimmy Joy, Xue Zhang, Gustavo Fernandez, Jeffrey Shainline and Jimmy Xu. It was supported by NSF Grants DMR 1307290 and DMR-0907357.

  8. Expression of muscarinic acetylcholine receptors M3 and M5 in osteoporosis.

    PubMed

    Kauschke, Vivien; Lips, Katrin Susanne; Heiss, Christian; Schnettler, Reinhard

    2014-05-27

    Cholinergic signaling via muscarinic acetylcholine receptors (mAChR) is known to influence various physiological functions. In bone, M3 mAChR and M5 mAChR were identified on the membrane of osteoblast-like cells. M3 mAChR seems to be particularly relevant for bone physiology, as signaling via this receptor was reported to increase bone formation and decrease bone resorption. Thus, in the present study we investigated the relative mRNA expression of M3 and M5 mAChR in bones of a rat osteoporosis model. Osteoporosis was induced in Sprague-Dawley rats by bilateral ovariectomy and additional feeding of a diet deficient in calcium, vitamins C, D2, D3, and phosphorus, and free of soy and phytoestrogen. After a period of 3, 12, and 14 months, relative mRNA expression of M3 mAChR and M5 mAChR was analyzed in the 11th thoracic vertebra by real-time RT-PCR. Relative mRNA expression of M3 mAChR was significantly reduced in bones of osteoporotic rats compared to sham operated animals that served as controls. Further, M3 mAChR mRNA expression was significantly down-regulated when comparing 14-month osteoporotic rats to 3-month osteoporotic rats. Relative M5 mAChR mRNA was expressed to a lesser extent than M3 mAChR and did not show significant differences in mRNA expression level between the experimental groups. M3 mAChR mRNA expression was reduced upon induction of osteoporosis and progression of disease was associated with further decrease of this receptor, indicating that M3 mAChR is involved in the development and regulation of osteoporosis.

  9. Expression of muscarinic acetylcholine receptors M3 and M5 in osteoporosis

    PubMed Central

    Kauschke, Vivien; Lips, Katrin Susanne; Heiss, Christian; Schnettler, Reinhard

    2014-01-01

    Background Cholinergic signaling via muscarinic acetylcholine receptors (mAChR) is known to influence various physiological functions. In bone, M3 mAChR and M5 mAChR were identified on the membrane of osteoblast-like cells. M3 mAChR seems to be particularly relevant for bone physiology, as signaling via this receptor was reported to increase bone formation and decrease bone resorption. Thus, in the present study we investigated the relative mRNA expression of M3 and M5 mAChR in bones of a rat osteoporosis model. Material/Methods Osteoporosis was induced in Sprague-Dawley rats by bilateral ovariectomy and additional feeding of a diet deficient in calcium, vitamins C, D2, D3, and phosphorus, and free of soy and phytoestrogen. After a period of 3, 12, and 14 months, relative mRNA expression of M3 mAChR and M5 mAChR was analyzed in the 11th thoracic vertebra by real-time RT-PCR. Results Relative mRNA expression of M3 mAChR was significantly reduced in bones of osteoporotic rats compared to sham operated animals that served as controls. Further, M3 mAChR mRNA expression was significantly down-regulated when comparing 14-month osteoporotic rats to 3-month osteoporotic rats. Relative M5 mAChR mRNA was expressed to a lesser extent than M3 mAChR and did not show significant differences in mRNA expression level between the experimental groups. Conclusions M3 mAChR mRNA expression was reduced upon induction of osteoporosis and progression of disease was associated with further decrease of this receptor, indicating that M3 mAChR is involved in the development and regulation of osteoporosis. PMID:24866457

  10. Long Periodic Helimagnetic Ordering in CrM 3S6 (M = Nb and Ta)

    NASA Astrophysics Data System (ADS)

    Kousaka, Y.; Ogura, T.; Zhang, J.; Miao, P.; Lee, S.; Torii, S.; Kamiyama, T.; Campo, J.; Inoue, K.; Akimitsu, J.

    2016-09-01

    We report long periodic chiral helimagnetic orderings in ferromagnetic inorganic compounds CrM 3S6 (M = Nb and Ta) with a chiral space group of P6322. Magnetization in polycrystalline samples and high resolution powder neutron diffraction were measured. Our powder neutron diffraction measurements in CrM 3S6 successfully separated nuclear and magnetic satellite peaks, having the period of hundreds of angstroms along the c— axis. Therefore, we propose that the magnetic ordering in ferromagnetic CrM3S6 is not ferromagnetic, but long periodic chiral helimagnetic ordering.

  11. M3S: the local network for electric wheelchairs and rehabilitation equipment.

    PubMed

    Linnman, S

    1996-09-01

    M3S is an open electric network standard for connecting rehabilitation equipment, especially electric modules in a wheelchair. It provides bidirectional communication at 250 kbaud via a CAN bus and extra safety lines for "Dead Man's Switch" and a TURN ON key. In an M3S system, the same input device may be used for controlling many different output devices in different operating modes. It provides flexible configuration tools for adapting the system for the individual user. M3S has been demonstrated and tested in more than ten different European development projects.

  12. 27. Naval Facility Engineering Command Drawing 6068752 (463M3) (1975), 'Electrolite ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Naval Facility Engineering Command Drawing 6068752 (463-M-3) (1975), 'Electrolite Aerosol Removal System' - Mare Island Naval Shipyard, Acid Mixing Facility, California Avenue & E Street, Vallejo, Solano County, CA

  13. Dual GPCR and GAG mimicry by the M3 chemokine decoy receptor

    SciTech Connect

    Alexander-Brett, Jennifer M.; Fremont, Daved H.

    2008-09-23

    Viruses have evolved a myriad of evasion strategies focused on undermining chemokine-mediated immune surveillance, exemplified by the mouse {gamma}-herpesvirus 68 M3 decoy receptor. Crystal structures of M3 in complex with C chemokine ligand 1/lymphotactin and CC chemokine ligand 2/monocyte chemoattractant protein 1 reveal that invariant chemokine features associated with G protein-coupled receptor binding are primarily recognized by the decoy C-terminal domain, whereas the N-terminal domain (NTD) reconfigures to engage divergent basic residue clusters on the surface of chemokines. Favorable electrostatic forces dramatically enhance the association kinetics of chemokine binding by M3, with a primary role ascribed to acidic NTD regions that effectively mimic glycosaminoglycan interactions. Thus, M3 employs two distinct mechanisms of chemical imitation to potently sequester chemokines, thereby inhibiting chemokine receptor binding events as well as the formation of chemotactic gradients necessary for directed leukocyte trafficking.

  14. Phenomenology of transionospheric pulse pairs

    NASA Astrophysics Data System (ADS)

    Massey, R. S.; Holden, D. N.

    1995-09-01

    Recent observations of transient radio impulses by an Earth-orbiting satellite appear to be quite unlike any previously reported. They appear as pairs of brief (a few microseconds), noiselike bursts, separated by a few tens of microseconds, and are dispersed in a way that implies subionospheric origin. Over 300 of these events have now been observed. These "transionospheric pulse pairs" (TIPPs) have not yet been associated with any known source, although thunderstorms are suspected. The observations, made by the Blackbeard instrument on the ALEXIS satellite, are digitized records of the electric field in a passband from about 25 to 100 MHz. Ground-based observations of lightning in this band appear quite different, even accounting for ionospheric dispersion: bursts of short pulses last hundreds of microseconds and have much lower power (when propagated to the satellite) than TIPP events. Signals that resemble the ground-based data have been observed by Blackbeard but, being much weaker, are much less likely to trigger the instrument than are the strong pulse pair events. In this paper we analyze 97 of the early TIPP observations. We compute several parameters that describe the events: the location of the satellite at the time of reception, the energy in each pulse, the separation between pulses, the duration of each pulse, and the dispersion of each pulse. The statistical distributions of these parameters provide clues to and constraints on possible source mechanisms. The possibility that the pulses might be the direct and reflected signals from a high-altitude source is considered and cannot be rejected by the data.

  15. Transduction of Recombinant M3-p53-R12 Protein Enhances Human Leukemia Cell Apoptosis

    PubMed Central

    Lu, Tsung Chi; Zhao, Guan- Hao; Chen, Yao Yun; Chien, Chia-Ying; Huang, Chi-Hung; Lin, Kwang Hui; Chen, Shen Liang

    2016-01-01

    Tumor suppressor protein p53 plays important roles in initiating cell cycle arrest and promoting tumor cell apoptosis. Previous studies have shown that p53 is either mutated or defective in approximately 50% of human cancers; therefore restoring normal p53 activity in cancer cells might be an effective anticancer therapeutic approach. Herein, we designed a chimeric p53 protein flanked with the MyoD N-terminal transcriptional activation domain (amino acids 1-62, called M3) and a poly-arginine (R12) cell penetrating signal in its N-and C-termini respectively. This chimeric protein, M3-p53-R12, can be expressed in E. coli and purified using immobilized metal ion chromatography followed by serial refolding dialysis. The purified M3-p53-R12 protein retains DNA-binding activity and gains of cell penetrating ability. Using MTT assay, we demonstrated that M3-p53-R12 inhibited the growth of K562, Jurkat as well as HL-60 leukemia cells carrying mutant p53 genes. Results from FACS analysis also demonstrated that transduction of M3-p53-R12 protein induced cell cycle arrest of these leukemia cells. Of special note, M3-p53-R12 has no apoptotic effect on normal mesenchymal stem cells (MSC) and leukocytes, highlighting its differential effects on normal and tumor cells. To sum up, our results reveal that purified recombinant M3-p53-R12 protein has functions of suppressing the leukemia cell lines' proliferation and launching cell apoptosis, suggesting the feasibility of using M3-p53-R12 protein as an anticancer drug. In the future we will test whether this chimeric protein can preferentially trigger the death of malignant cancer cells without affecting normal cells in animals carrying endogenous or xenographic tumors. PMID:27390612

  16. A Large Sample Sodium and Magnesium Abundance Study in the Globular Cluster M3 (NGC 5272)

    NASA Astrophysics Data System (ADS)

    Johnson, C. I.; Sneden, C.; Pilachowski, C. A.; Guntel, B.; Kraft, R. P.; Ivans, I. I.

    2005-09-01

    We have derived sodium and magnesium abundances for more than 100 red giant branch (RGB) stars in the Galactic globular cluster M3 (NGC 5272), using moderate resolving power (R˜20,000) spectra obtained with the WIYN telescope and Hydra multi-fiber spectrograph. Temperatures for the M3 sample are based on calibrations of photometric indices, in particular V-K. Gravities, microturbulent velocities, and the overall M3 metallicity ([Fe/H]˜--1.5) are based on earlier high-resolution spectroscopic analyses. Na and Mg abundances have been determined from observed/synthetic spectrum matches of the 5682, 5688 Å Na I lines and the 5711 Å Mg I line. The resulting M3 abundances are compared with the more detailed analyses of a smaller sample of M3 RGB stars observed at very high spectral resolution with the Keck I HIRES instrument, and with a similarly large-sample data set previously obtained for M13. We conclude that the star-to-star variation in sodium is greater than that of magnesium in both clusters and also that M13 contains a higher population of low sodium, high magnesium stars than does M3.

  17. Exploring the binding site of the human muscarinic M3 receptor: Homology modeling and docking study

    NASA Astrophysics Data System (ADS)

    Ostopovici, Liliana; Mracec, Maria; Mracec, Mircea; Borota, Ana

    The human muscarinic M3 receptor (hM3) and its interactions with selective agonists and antagonists were investigated by means of combined homology and docking approach. Also, two pharmacophoric models for the hM3 agonist and antagonist binding sites were proposed. The three-dimensional (3D) structure of hM3 receptor was modeled based on the high-resolution X-ray structure of bovine rhodopsin from the Protein Data Bank (PDB). To validate the reliability of the model obtained, the main chain torsion angles phi (?) and psi (?) were examined in a Ramachandran plot, and all omega angles were measured for peptidic bond planarity. The characteristics of the active site, the position, and the orientation of ligands in situ, as well as the binding modes of the representative agonists and antagonists, were analyzed by applying a molecular docking technique using the AutoDock 3.0.5 program. Specific interactions responsible for recognition of the hM3 receptor, like ionic bond formed between protonated amine of the ligands and the Asp3.6 side chain were identified. Structure-reactivity relationships have been explained by analyzing the 3D structure of the hM3 model and the ligand conformations resulted from molecular docking simulation.

  18. On Adiabatic Pair Creation

    NASA Astrophysics Data System (ADS)

    Pickl, Peter; Dürr, Detlef

    2008-08-01

    We give here a rigorous proof of the well known prediction of pair creation as it arises from the Dirac equation with an external time dependent potential. Pair creation happens with probability one if the potential changes adiabatically in time and becomes overcritical, which means that an eigenvalue curve (as a function of time) bridges the gap between the negative and positive spectral continuum. The potential can be thought of as being zero at large negative and large positive times. The rigorous treatment of this effect has been lacking since the pioneering work of Beck, Steinwedel and Süßmann [1] in 1963 and Gershtein and Zeldovich [8] in 1970.

  19. New M +, M 3+-arsenates – the framework structures of AgM 3+(HAsO4)2 (M 3+ = Al, Ga) and M +GaAs2O7 (M + = Na, Ag)

    PubMed Central

    Schwendtner, Karolina; Kolitsch, Uwe

    2017-01-01

    The crystal structures of hydro­thermally synthesized silver(I) aluminium bis­[hydrogen arsenate(V)], AgAl(HAsO4)2, silver(I) gallium bis­[hydrogen arsenate(V)], AgGa(HAsO4)2, silver gallium diarsenate(V), AgGaAs2O7, and sodium gallium diarsenate(V), NaGaAs2O7, were determined from single-crystal X-ray diffraction data collected at room temperature. The first two compounds are representatives of the MCV-3 structure type known for KSc(HAsO4)2, which is characterized by a three-dimensional anionic framework of corner-sharing alternating M 3+O6 octa­hedra (M = Al, Ga) and singly protonated AsO4 tetra­hedra. Inter­secting channels parallel to [101] and [110] host the Ag+ cations, which are positionally disordered in the Ga compound, but not in the Al compound. The hydrogen bonds are relatively strong, with O⋯O donor–acceptor distances of 2.6262 (17) and 2.6240 (19) Å for the Al and Ga compounds, respectively. The two diarsenate compounds are representatives of the NaAlAs2O7 structure type, characterized by an anionic framework topology built of M 3+O6 octa­hedra (M = Al, Ga) sharing corners with diarsenate groups, and M + cations (M = Ag) hosted in the voids of the framework. Both structures are characterized by a staggered conformation of the As2O7 groups. PMID:28529799

  20. New M(+), M(3+)-arsenates - the framework structures of AgM(3+)(HAsO4)2 (M(3+) = Al, Ga) and M(+)GaAs2O7 (M(+) = Na, Ag).

    PubMed

    Schwendtner, Karolina; Kolitsch, Uwe

    2017-05-01

    The crystal structures of hydro-thermally synthesized silver(I) aluminium bis-[hydrogen arsenate(V)], AgAl(HAsO4)2, silver(I) gallium bis-[hydrogen arsenate(V)], AgGa(HAsO4)2, silver gallium diarsenate(V), AgGaAs2O7, and sodium gallium diarsenate(V), NaGaAs2O7, were determined from single-crystal X-ray diffraction data collected at room temperature. The first two compounds are representatives of the MCV-3 structure type known for KSc(HAsO4)2, which is characterized by a three-dimensional anionic framework of corner-sharing alternating M(3+)O6 octa-hedra (M = Al, Ga) and singly protonated AsO4 tetra-hedra. Inter-secting channels parallel to [101] and [110] host the Ag(+) cations, which are positionally disordered in the Ga compound, but not in the Al compound. The hydrogen bonds are relatively strong, with O⋯O donor-acceptor distances of 2.6262 (17) and 2.6240 (19) Å for the Al and Ga compounds, respectively. The two diarsenate compounds are representatives of the NaAlAs2O7 structure type, characterized by an anionic framework topology built of M(3+)O6 octa-hedra (M = Al, Ga) sharing corners with diarsenate groups, and M(+) cations (M = Ag) hosted in the voids of the framework. Both structures are characterized by a staggered conformation of the As2O7 groups.

  1. Level of helium enhancement among M3's horizontal branch stars

    NASA Astrophysics Data System (ADS)

    Valcarce, A. A. R.; Catelan, M.; Alonso-García, J.; Contreras Ramos, R.; Alves, S.

    2016-05-01

    other words, the position of an HB star in such a CMD is exactly the same for a given chemical composition for multiple combinations of the parameters Y, MHB, and age along the HB evolutionary track. Other HST UV filters do not appear to be as severely affected by this degeneracy effect, to which visual bandpasses are also immune. On the other hand, such near-UV CMDs can be extremely useful for the hottest stars along the cool BHB end. Conclusions: Based on a reanalysis of the distribution of HB stars in the y vs. (b - y) plane, we find that the coolest BHB stars in M3 (i.e., those with Teff< 8300 K) are very likely enhanced in helium by ΔY ≈ 0.01, compared with the red HB stars in the same cluster. Using near-UV HST photometry, on the other hand, we find evidence of a progressive increase in Y with increasing temperature, reaching ΔY ≈ 0.02 at Teff ≈ 10 900 K.

  2. Coupling of M3 acetylcholine receptor to Gq16 activates a natriuretic peptide receptor guanylyl cyclase.

    PubMed

    Bruges, Gustavo; Borges, Adolfo; Sánchez de Villarroel, Sinai; Lippo de Bécemberg, Itala; Francis de Toba, Gisela; Pláceres, Fabiola; González de Alfonzo, Ramona; Alfonzo, Marcelo J

    2007-01-01

    Muscarinic activation of tracheal smooth muscle (TSM) involves a M(3)AChR/heterotrimeric-G protein/NPR-GC coupling mechanism. G protein activators Mastoparan (MAS) and Mastoparan-7 stimulated 4- and 10-fold the NPR-GC respectively, being insensitive to PTX and antibodies against Galpha(i/o) subfamily. Muscarinic and MAS stimulation of NPR-GC was blocked by antibodies against C-terminal of Galpha(q16), whose expression was confirmed by RT-PCR. However, synthetic peptides from C-terminal of Galpha(q15/16) stimulated the NPR-GC. Coupling of alpha(q16) to M(3)AChR is supported by MAS decreased [(3)H]QNB binding, being abolished after M(3)AChR-4-DAMP-alkylation. Anti-i(3)M(3)AChR antibodies blocked the muscarinic activation of NPR-GC, and synthetic peptide from i(3)M(3)AChR (M(3)P) was more potent than MAS increasing GTPgamma [(35)S] and decreasing the [(3)H]QNB activities. Coupling between NPR-GC and Galpha(q16) was evaluated by using trypsin-solubilized-fraction from TSM membranes, which displayed a MAS-sensitive-NPR-GC activity, being immunoprecipitated with anti-Galpha(q16), also showing an immunoreactive heterotrimeric-G-beta-subunit. These data support the existence of a novel transducing cascade, involving Galpha(q16)beta gamma coupling M(3)AChR to NPR-GC.

  3. Pair Creation at Large Inherent Angles

    SciTech Connect

    Chen, P.; Tauchi, T.; Schroeder, D.V.; /SLAC

    2007-04-25

    In the next-generation linear colliders, the low-energy e{sup +}e{sup -} pairs created during the collision of high-energy e{sup +}e{sup -} beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al[1]. At energies where the beamstrahlung parameter {Upsilon} lies approximately in the range 0.6 {approx}< {Upsilon} {approx}< 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen[2]. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. One source of transverse momentum is from the kick by the field of the oncoming beam which results in an outcoming angle {theta} {proportional_to} 1/{radical}x, where x is the fractional energy of the particle relative to the initial beam particle energy[2,3]. As was shown in Ref. 131, there in fact exists an energy threshold for the coherent pairs, where x{sub th} {approx}> 1/2{Upsilon}. Thus within a tolerable exiting angle, there exists an upper limit for {Upsilon} where all coherent pairs would leave the detector through the exhaust port[4]. A somewhat different analysis has been done by Schroeder[5]. In the next generation of linear colliders, as it occurs, the coherent pairs can be exponentially suppressed[2] by properly choosing the {Upsilon}({approx}< 0.6). When this is achieved, the incoherent pairs becomes dominant. Since the central issue is the transverse momentum for particles with large angles, we notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. This issue was

  4. A constraint on the pair-density ratio (Z+) in an electron-positron pair wind

    NASA Technical Reports Server (NTRS)

    Moscoso, M. D.; Wheeler, J. C.

    1994-01-01

    We derive a constraint on the pair density ratio, z(sub +) = n(sub +)/n(sub p), in an electron-positron pair wind flowing away from the central region of an accretion disk around a compact object under the assumption of a coupling between electrons, positrons, and protons. The minimum rate at which positrons are injected into the annihilation volume is given by the observed annihilation flux per unit volume. This rate is then used to determine a minimum mass loss rate per unit area, M(dot)(sub *) for a given pair density ratio at the base of the streamline. The requirement that M(dot)(sub *) less than M(dot)(sub *)(sub Edd) (the mean Eddington mass loss rate per unit area) then places a lower limit on the pair density ratio, z(sub +,)(sub min). A positron annihilation line was observed in Nova Muscae 1991 by GRANAT/SIGMA. The narrow width and redshift of the line suggest that the pair production and annihilation regions are physically distinct. We hypothesize that an electron-positron pair wind transports the pairs from the production to the annihilation region and calculate z(sub +),(sub min). We then determine constraints on the physical parameters on the pair production region by comparing z(sub +),(sub min) with previous studies of two-temperature and one-temperature accretion disks with electron-positron pairs.

  5. Minimal Pairs: Minimal Importance?

    ERIC Educational Resources Information Center

    Brown, Adam

    1995-01-01

    This article argues that minimal pairs do not merit as much attention as they receive in pronunciation instruction. There are other aspects of pronunciation that are of greater importance, and there are other ways of teaching vowel and consonant pronunciation. (13 references) (VWL)

  6. Anchored paired comparisons

    NASA Astrophysics Data System (ADS)

    Dalal, E. N.; Handley, J. C.; Wu, W.; Wang, J.

    2008-01-01

    The method of paired comparisons is often used in image quality evaluations. Psychometric scale values for quality judgments are modeled using Thurstone's Law of Comparative Judgment in which distance in a psychometric scale space is a function of the probability of preference. The transformation from psychometric space to probability is a cumulative probability distribution. The major drawback of a complete paired comparison experiment is that every treatment is compared to every other, thus the number of comparisons grows quadratically. We ameliorate this difficulty by performing paired comparisons in two stages, by precisely estimating anchors in the psychometric scale space which are spaced apart to cover the range of scale values and comparing treatments against those anchors. In this model, we employ a generalized linear model where the regression equation has a constant offset vector determined by the anchors. The result of this formulation is a straightforward statistical model easily analyzed using any modern statistics package. This enables model fitting and diagnostics. This method was applied to overall preference evaluations of color pictorial hardcopy images. The results were found to be compatible with complete paired comparison experiments, but with significantly less effort.

  7. Two Pairs of Storms

    NASA Image and Video Library

    2004-06-04

    Two pairs of dark spots, or storms, in Saturn atmosphere squeeze past each other as they dance around the planet. In this group of four storms, the top left and lower right storms are fringed with white clouds as seen by NASA Cassini spacecraft.

  8. M3-receptor activation counteracts opioid-mediated apneusis, but the apneusis per se is not necessarily related to an impaired M3 mechanism in rats.

    PubMed

    Niwa, Yuka; Haji, Akira

    2011-11-07

    Morphine slows the respiratory cycle due to a predominant prolongation of inspiration (apneusis) by postponing the spontaneous termination of inspiration (inspiratory off-switching). The present study investigates whether the morphine-induced apneusis results from impairment of cholinergic mechanisms in the central respiratory network. The efferent discharge was recorded from the phrenic nerve in artificially ventilated and anesthetized rats with vagotomy. All drugs were injected intravenously. The phrenic nerve displayed an augmenting discharge during inspiration and arrest of discharge during expiration in normal condition. Administration of morphine (0.3-10.0mg/kg) dose-dependently provoked apneusis characterized by a long-lasting, plateau inspiratory discharge of the phrenic nerve. It shortened the expiratory duration. Subsequent administration of physostigmine (0.1mg/kg) restored the morphine-induced apneusis to eupnea with a partial recovery of the augmenting inspiratory discharge. This modification of physostigmine was blocked by a non-specific muscarinic antagonist scopolamine (3.0mg/kg), leading to re-prolongation of inspiration. A similar antagonism was affected by an antagonist of M3 cholinergic receptors, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, 1.0 and 10.0mg/kg) but not by an antagonist of M1 cholinergic receptors, pirenzepine (1.0 and 10.0mg/kg). These results demonstrate that the activation of endogenous M3 cholinergic mechanisms counteracts the morphine-induced apneusis. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Muscarinic M3 receptor subtype gene expression in the human heart.

    PubMed

    Hellgren, I; Mustafa, A; Riazi, M; Suliman, I; Sylvén, C; Adem, A

    2000-01-20

    The heart is an important target organ for cholinergic function. In this study, muscarinic receptor subtype(s) in the human heart were determined using reverse transcription-polymerase chain reaction. Our results demonstrated muscarinic receptor M2 and M3 subtype RNA in left/right atria/ventricles of donor hearts. Receptor autoradiography analysis using selective muscarinic ligands indicated an absence of M1 receptor subtype in the human heart. The level of muscarinic receptor binding in atria was two to three times greater than in ventricles. Our results suggest that muscarinic receptors in the human heart are of the M2 and M3 subtypes. This is the first report of M3 receptors in the human myocardium.

  10. The application of pentaprism scanning technology on the manufacturing of M3MP

    NASA Astrophysics Data System (ADS)

    Qi, Erhui; Hu, Haixiang; Hu, Haifei; Cole, Glen; Luo, Xiao; Ford, Virginia; Zhang, Xuejun

    2016-10-01

    The PSS (pentaprism scanning system) has advantages of simple structure, needless of reference flat, be able of on-site testing, etc, it plays an important role in large flat reflective mirror's manufacturing, especially the high accuracy testing of low order aberrations. The PSS system measures directly the slope information of the tested flat surface. Aimed at the unique requirement of M3MP, which is the prototype mirror of the tertiary mirror in TMT (Thirty Meter Telescope) project, this paper analyzed the slope distribution of low order aberrations, power and astigmatism, which is very important in the manufacturing process of M3MP. Then the sample route lines of PSS are reorganized and new data process algorism is implemented. All this work is done to improve PSS's measure sensitivity of power and astigmatism, for guiding the manufacturing process of M3MP.

  11. NMR analysis of base-pair opening kinetics in DNA.

    PubMed

    Szulik, Marta W; Voehler, Markus; Stone, Michael P

    2014-12-12

    Base pairing in nucleic acids plays a crucial role in their structure and function. Differences in the base-pair opening and closing kinetics of individual double-stranded DNA sequences or between chemically modified base pairs provide insight into the recognition of these base pairs by DNA processing enzymes. This unit describes how to quantify the kinetics for localized base pairs by observing changes in the imino proton signals by nuclear magnetic resonance spectroscopy. The determination of all relevant parameters using state-of-the art techniques and NMR instrumentation, including cryoprobes, is discussed.

  12. Stability and size of particle pairs in complex plasmas

    SciTech Connect

    Nosenko, V.; Ivlev, A. V.; Kompaneets, R.; Morfill, G.

    2014-11-15

    Particle pairing in a complex plasma was experimentally studied with the emphasis on pair spatial extent and stability. Micron-size particles were suspended in the (pre)sheath area above the lower electrode in a capacitively coupled radio-frequency discharge in argon. They formed vertical pairs due to the ion wakes created by the flow of ions past particles. We discuss the confinement mechanism for the lower particle, resulting from a combination of the wake field and the field of non-uniform sheath. A model of particle pairs is proposed, which provides good description for the dependence of pair size and stability on experimental parameters.

  13. Impaired muscarinic type 3 (M3) receptor/PKC and PKA pathways in islets from MSG-obese rats.

    PubMed

    Ribeiro, Rosane Aparecida; Balbo, Sandra Lucinei; Roma, Letícia Prates; Camargo, Rafael Ludemann; Barella, Luiz Felipe; Vanzela, Emerielle Cristine; de Freitas Mathias, Paulo Cesar; Carneiro, Everardo Magalhães; Boschero, Antonio Carlos; Bonfleur, Maria Lúcia

    2013-07-01

    Monosodium glutamate-obese rats are glucose intolerant and insulin resistant. Their pancreatic islets secrete more insulin at increasing glucose concentrations, despite the possible imbalance in the autonomic nervous system of these rats. Here, we investigate the involvement of the cholinergic/protein kinase (PK)-C and PKA pathways in MSG β-cell function. Male newborn Wistar rats received a subcutaneous injection of MSG (4 g/kg body weight (BW)) or hyperosmotic saline solution during the first 5 days of life. At 90 days of life, plasma parameters, islet static insulin secretion and protein expression were analyzed. Monosodium glutamate rats presented lower body weight and decreased nasoanal length, but had higher body fat depots, glucose intolerance, hyperinsulinemia and hypertrigliceridemia. Their pancreatic islets secreted more insulin in the presence of increasing glucose concentrations with no modifications in the islet-protein content of the glucose-sensing proteins: the glucose transporter (GLUT)-2 and glycokinase. However, MSG islets presented a lower secretory capacity at 40 mM K(+) (P < 0.05). The MSG group also released less insulin in response to 100 μM carbachol, 10 μM forskolin and 1 mM 3-isobutyl-1-methyl-xantine (P < 0.05, P < 0.0001 and P < 0.01). These effects may be associated with a the decrease of 46 % in the acetylcholine muscarinic type 3 (M3) receptor, and a reduction of 64 % in PKCα and 36 % in PKAα protein expressions in MSG islets. Our data suggest that MSG islets, whilst showing a compensatory increase in glucose-induced insulin release, demonstrate decreased islet M3/PKC and adenylate cyclase/PKA activation, possibly predisposing these prediabetic rodents to the early development of β-cell dysfunction.

  14. Development of RT-components for the M-3 Strawberry Harvesting Robot

    NASA Astrophysics Data System (ADS)

    Yamashita, Tomoki; Tanaka, Motomasa; Yamamoto, Satoshi; Hayashi, Shigehiko; Saito, Sadafumi; Sugano, Shigeki

    We are now developing the strawberry harvest robot called “M-3” prototype robot system under the 4th urgent project of MAFF. In order to develop the control software of the M-3 robot more efficiently, we innovated the RT-middleware “OpenRTM-aist” software platform. In this system, we developed 9 kind of RT-Components (RTC): Robot task sequence player RTC, Proxy RTC for image processing software, DC motor controller RTC, Arm kinematics RTC, and so on. In this paper, we discuss advantages of RT-middleware developing system and problems about operating the RTC-configured robotic system by end-users.

  15. A Discussion of the High Energy Density Primary Battery Employed in the FOTON M3 Mission

    NASA Astrophysics Data System (ADS)

    Bennetti, A.; Reece, D.; Spurrett, R.; Schautz, M.; Green, K.

    2008-09-01

    In 2005, ABSL Space Products (ABSL) was contracted by QinetiQ to deliver the lithium sulfuryl chloride primary battery system for the FOTON M3 ESA (European Space Agency) mission. FOTON M3 was led by the ESA Directorate of Human Spaceflight & Exploration and carried a number of materials science, fluid physics and biology experiments as well as technology demonstration payloads. A number of the experiments required a very high energy density primary battery power source. This battery was manufactured by ABSL, and the mission was successfully completed in September 2007 following a twelve days orbiting in Low Earth Orbit (LEO).

  16. Protected Flux Pairing Qubit

    NASA Astrophysics Data System (ADS)

    Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael

    2014-03-01

    We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, 0 and 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.

  17. Corrosion cracking of 03N18K1M3TYu and 02N12Kh5M3 maraging steels in chloride solutions

    SciTech Connect

    Pavlov, V.N.; Chumalo, G.V.; Vereshchagin, A.N.; Melekhov, R.K.

    1987-07-01

    The authors investigate the electrochemical behavior in 0.5% NaCl solution and 42% MgCl/sub 2/ solution and the tendency toward corrosion cracking was determined in boiling 0.5% chloride solution of the cobalt-containing maraging steels in the title. Weld specimens and specimens of the base metal of 03N18K1M3TYu steel were tested in 3% NaCl solution for resistance to corrosion cracking. Additional investigations were made of specimens of that steel with previously created fatigue cracks of the base metal and the weld specimens in 3% NaCl solutions, since that steel is a promising material for structures operating in sea water and low concentration chloride solutions.

  18. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  19. Foton-M3 Unmanned Russian Research Satellite- Development, Implementation and Operations

    NASA Astrophysics Data System (ADS)

    Ilyin, Eugene A.; Skidmore, Michael G.

    2008-06-01

    The Foton-M3 spacecraft launched from Baikonur Cosmodrome (Kazakhstan) on 14 September 2007 and landed 12 days later approximately 130 km south of Kustanay, Northern Kazakhstan. Following the successful National Aeronautics and Space Administration (NASA) and Institute for Biomedical Problems (IMBP) collaboration on the Russian Foton-M2 spaceflight (June 2005), IMBP invited NASA to continue and broaden its participation in four Russian biomedical studies on the Foton-M3 spaceflight. Where the Foton-M2 collaboration had been accomplished without an exchange of funds, the basis for the ongoing bilateral interaction on Foton-M3 was both a cooperative Space Act Agreement and a NASA contract with IMBP. As in Foton-M2, NASA scientists agreed to focus their efforts on research that would be complementary and would facilitate the accomplishment of the original Russian science goals. Foton-M3 hardware enhancements included NASA inserts installed in the IMBP flight hardware to provide programmable in-flight video recording for newts and geckos, drinking water for the geckos, and a preflight "shower" of Bromodeoxyuridine (BrdU) for the newts.

  20. Seeing the Moon In a New Light: Educational Resources Developed in Association with M3

    NASA Astrophysics Data System (ADS)

    Runyon, C. J.; Shupla, C.; Shipp, S. S.; Hallau, K.; Boyce, K.; Pieters, C. M.

    2009-12-01

    M3 is a high spatial and spectral resolution spectrometer designed to help scientists better understand the compositional variation of the Moon’s surface. Flown on India’s first spacecraft to the Moon, Chandrayaan-1, M3 collected over 4.6 billion spectra! To facilitate student awareness and understanding of these data and resulting imagery, our team co-sponsors an on-line course, Geology of the Moon, for pre- and in-service teachers through Montana State University and has generated an educator guide: Seeing the Moon: Using Light to Investigate the Moon. This guide is a series of educational inquiry-based and hands-on activity modules created in support of the M3 science. In these modules, students investigate the physics of light and the geologic history of the Moon. Through these dynamic activities, 5th to 8th grade students experiment with light and color; collect and analyze authentic spectral data from rock samples using an ALTA hand-held reflectance spectrometer; map the rock types of the Moon; and develop theories of the Moon's history. M3 classroom loaner kits that include a lunar globe, rock samples, sets of the ALTA reflectance spectrometers, and more are available upon request.

  1. ADP-ribosylation factor-dependent phospholipase D activation by the M3 muscarinic receptor.

    PubMed

    Mitchell, Rory; Robertson, Derek N; Holland, Pamela J; Collins, Daniel; Lutz, Eve M; Johnson, Melanie S

    2003-09-05

    G protein-coupled receptors can potentially activate phospholipase D (PLD) by a number of routes. We show here that the native M3 muscarinic receptor in 1321N1 cells and an epitope-tagged M3 receptor expressed in COS7 cells substantially utilize an ADP-ribosylation factor (ARF)-dependent route of PLD activation. This pathway is activated at the plasma membrane but appears to be largely independent of G, phospholipase C, Ca2+ q/11, protein kinase C, tyrosine kinases, and phosphatidyl inositol 3-kinase. We report instead that it involves physical association of ARF with the M3 receptor as demonstrated by co-immunoprecipitation and by in vitro interaction with a glutathione S-transferase fusion protein of the receptor's third intracellular loop domain. Experiments with mutant constructs of ARF1/6 and PLD1/2 indicate that the M3 receptor displays a major ARF1-dependent route of PLD1 activation with an additional ARF6-dependent pathway to PLD1 or PLD2. Examples of other G protein-coupled receptors assessed in comparison display alternative pathways of protein kinase C- or ARF6-dependent activation of PLD2.

  2. Divergent evolution of the M3A family of metallopeptidases in plants.

    PubMed

    Kmiec, Beata; Teixeira, Pedro F; Murcha, Monika W; Glaser, Elzbieta

    2016-07-01

    Plants, as stationary organisms, have developed mechanisms allowing them efficient resource reallocation and a response to changing environmental conditions. One of these mechanisms is proteome remodeling via a broad peptidase network present in various cellular compartments including mitochondria and chloroplasts. The genome of the model plant Arabidopsis thaliana encodes as many as 616 putative peptidase-coding genes organized in 55 peptidase families. In this study, we describe the M3A family of peptidases, which comprises four members: mitochondrial and chloroplastic oligopeptidase (OOP), cytosolic oligopeptidase (CyOP), mitochondrial octapeptidyl aminopeptidase 1 (Oct1) and plant-specific protein of M3 family (PSPM3) of unknown function. We have analyzed the evolutionary conservation of M3A peptidases across plant species and the functional specialization of the three distinct subfamilies. We found that the subfamily-containing OOP and CyOP-like peptidases, responsible for oligopeptide degradation in the endosymbiotic organelles (OOP) or in the cytosol (CyOP), are highly conserved in all kingdoms of life. The Oct1-like peptidase subfamily involved in pre-protein maturation in mitochondria is conserved in all eukaryotes, whereas the PSPM3-like protein subfamily is strictly conserved in higher plants only and is of unknown function. Specific characteristics within PSPM3 sequences, i.e. occurrence of a N-terminal transmembrane domain and amino acid changes in distal substrate-binding motif, distinguish PSPM3 proteins from other members of M3A family. We performed peptidase activity measurements to analyze the role of substrate-binding residues in the different Arabidopsis M3A paralogs. © 2016 Scandinavian Plant Physiology Society.

  3. Microbial Metagenomics Mock Scenario-based Sample Simulation (M3S3).

    PubMed

    Motro, Yair; Moran-Gilad, Jacob

    2017-08-12

    Shotgun sequencing in increasingly applied in clinical microbiology for unbiased culture-independent diagnosis. While software solutions for metagenomics proliferate, integration of metagenomics in clinical care, requires method standardisation and validation. Virtual metagenomics samples could underpin validation by substituting real samples and thus we sought to develop a novel solution for simulation of metagenomics samples based on user-defined clinical scenarios. We designed the Microbial Metagenomics Mock Scenario-based Sample Simulation (M3S3) workflow, which allows users to generate virtual samples from raw reads or assemblies. The M3S3 output is a mock sample in FASTQ or FASTA format. M3S3 was tested by generating virtual samples for ten challenging infectious disease scenarios, involving a background matrix 'spiked' in silico with pathogens including mixtures. Replicate samples (seven per scenario) were used to represent different compositional ratios. Virtual samples were analysed using Taxonomer and Kraken db. The ten challenge scenarios were successfully applied, generating 80 samples. For all tested scenarios, the virtual samples showed sequence compositions as predicted from the user input. Spiked pathogen sequences were identified with the majority of the replicates and most exhibited acceptable abundance (deviation between expected and observed abundance of spiked pathogens), with slight differences observed between software tools. Despite demonstrated proof-of-concept, integration of clinical metagenomics in routine microbiology remains a substantial challenge. M3S3 is capable of producing virtual samples on-demand, simulating a spectrum of clinical diagnostic scenarios of varying complexity. The M3S3 tool can therefore support the development and validation of standardised metagenomics applications. Copyright © 2017. Published by Elsevier Ltd.

  4. Theoretical study of pair density wave superconductors

    NASA Astrophysics Data System (ADS)

    Zheng, Zhichao

    In conventional superconductors, the Cooper pairs are formed from quasiparticles. We explore another type of superconducting state, a pair density wave (PDW) order, which spontaneously breaks some of the translational and point group symmetries. In a PDW superconductor, the order parameter is a periodic function of the center-of-mass coordinate, and the spatial average value of the superconducting order parameter vanishes. In the early 1960s, following the success of the BCS theory of superconductivity, Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) developed theories of inhomogeneous superconducting states. Because of this Zeeman splitting in a magnetic field, the Cooper pairs having a nonzero center-of-mass momentum are more stable than the normal pairing, leading to the FFLO state. Experiments suggest possible occurrence of the FFLO state in the heavy-fermion compound CeCoIn5, and in quasi-low-dimensional organic superconductors. FFLO phases have also been argued to be of importance in understanding ultracold atomic Fermi gases and in the formation of color superconductivity in high density quark matter. In all Fermi superfluids known at the present time, Cooper pairs are composed of particles with spin 1/2. The spin component of a pair wave function can be characterized by its total spin S = 0 (singlet) and S = 1 (triplet). In the discovered broken inversion superconductors CePt3Si, Li2Pt3B, and Li2Pd3B, the magnetic field leads to novel inhomogeneous superconducting states, namely the helical phase and the multiple-q phase. Its order parameter exhibits periodicity similar to FFLO phase, and the consequences of both phases are same: the enhancement of transition temperature as a function of magnetic field. We have studied the PDW phases in broken parity superconductors with vortices included. By studying PDW vortex states, we find the usual Abrikosov vortex solution is unstable against a new solution with fractional vortex pairs. We have also studied the

  5. Reactor performance of a 750 m(3) anaerobic digestion plant: varied substrate input conditions impacting methanogenic community.

    PubMed

    Wagner, Andreas Otto; Malin, Cornelia; Lins, Philipp; Gstraunthaler, Gudrun; Illmer, Paul

    2014-10-01

    A 750 m(3) anaerobic digester was studied over a half year period including a shift from good reactor performance to a reduced one. Various abiotic parameters like volatile fatty acids (VFA) (formic-, acetic-, propionic-, (iso-)butyric-, (iso-)valeric-, lactic acid), total C, total N, NH4 -N, and total proteins, as well as the organic matter content and dry mass were determined. In addition several process parameters such as temperature, pH, retention time and input of substrate and the concentrations of CH4, H2, CO2 and H2S within the reactor were monitored continuously. The present study aimed at the investigation of the abundance of acetogens and total cell numbers and the microbial methanogenic community as derived from PCR-dHPLC analysis in order to put it into context with the determined abiotic parameters. An influence of substrate quantity on the efficiency of the anaerobic digestion process was found as well as a shift from a hydrogenotrophic in times of good reactor performance towards an acetoclastic dominated methanogenic community in times of reduced reactor performance. After the change in substrate conditions it took the methano-archaeal community about 5-6 weeks to be affected but then changes occurred quickly.

  6. Pair of Craters

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.5 meters per pixel (5 ft/pixel) view of a pair of small meteor impact craters in the Arena Colles region of Mars, located north of Isidis Planitia.

    Location near: 22.7oN, 278.5oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  7. Type III burst pair

    NASA Astrophysics Data System (ADS)

    Ning, Zongjun; Fu, Qijun; Lu, Quankang

    2000-05-01

    We present a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0-2.0 GHz) of the Beijing Astronomical Observatory (BAO). Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. We call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is a nice interpretation of type III burst pair since the plasma beta β~=0.01 is much less than 1 and the beams have velocity of about 1.07×10^8 cm s^-1 after leaving the reconnection region if we assume that the ambient magnetic field strength is about 100 G.

  8. Type III burst pair.

    NASA Astrophysics Data System (ADS)

    Zongjun, Ning; Fu, Qijun; Quankang, Lu

    2000-05-01

    Presents a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0 - 2.0 GHz) of the Beijing Astronomical Observatory. Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. The authors call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is an interpretation of type III burst pair.

  9. The inverse problem for Schwinger pair production

    NASA Astrophysics Data System (ADS)

    Hebenstreit, Florian

    2016-02-01

    The production of electron-positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.

  10. A supersoft variable low-luminosity X-ray source in the globular cluster M3

    NASA Technical Reports Server (NTRS)

    Hertz, P.; Grindlay, J. E.; Bailyn, C. D.

    1993-01-01

    The globular cluster M3 (NGC 5272) was observed twice with the ROSAT high-resolution imager in order to study the low-luminosity X-ray source 1E 1339.8 + 2837. In 1992 January 1E 1339.8 + 2837 had an X-ray luminosity of 2 x 10 exp 35 ergs/s over an order of magnitude brighter than it was when observed with the Einstein Observatory. The source was unresolved and very soft; such supersoft outbursts would be difficult to detect in the vast majority of globular clusters which are more heavily absorbed than M3. In 1992 June the source was too faint to be detected. The soft outburst luminosity and the blackbody radius suggest that 1E 1339.8 + 2837 is a cataclysmic variable in which much of the luminosity is generated by steady nuclear burning of accreted material on the surface of the white dwarf primary.

  11. The M2&M3 positioning control systems of a 2.5m telescope

    NASA Astrophysics Data System (ADS)

    Ye, Yu; Pei, Chong; Zhang, Zhiyong; Gu, Bozhong

    2012-09-01

    The 2.5m optical/infrared telescope is an F/8 telescope comprising one Cassegrain foci, two Nasmyth foci and two student Nasmyth foci. This paper presents a brief description of the physical structure, conceptual design, hardware implementing measure and software structure in the positioning control system of M2&M3. The graphical user interface application (Qt) is adopted to design the software. During the full working range the M2 focus and decenter achieve the positioning repeatability is better than +/-4μm and the M2 tilt is better than 10 μrad. The M3 angular positioning and locking accuracy is better than 10 arcsec and repeatability is better than 2 arcsec RMS.

  12. Semi-Empirical Determination of the Mass Distribution of Horizontal Branch Stars in M3

    NASA Astrophysics Data System (ADS)

    Valcarce, A.; Catelan, M.

    2006-06-01

    We determine, by means of a semi-empirical study, the masses of horizontal branch stars in the glo-bular cluster M3 (NGC 5272). We used the most recent and reliable observational datasets (broadband BVI photometry) available for the cluster, both for variable and nonvariable stars, to infer the most likely masses of individual horizontal branch stars by comparison against theoretical evolutionary tracks, suitably transformed to the observational planes. We found a mass distribution that is adequately described by a Gaussian, with = 0.64M_⊙ and σ = 0.020M⊙, thus su-pporting the Gaussian shape previously obtained by Rood & Crocker (1989, in The Use of Pulsating Stars in Fundamental Problems of Astronomy, 218) without taking evolutionary effects into account. A recent suggestion of strong mass bimodality in M3 (Castellani et al. 2005, A&A, 437, 1017) is not supported by our analysis.

  13. The Abundance of Lithium in an ABG Star in the Globular Cluster M3 (NGC 5272)

    NASA Astrophysics Data System (ADS)

    Givens, R. A.; Pilachowski, C. A.

    2016-12-01

    A survey of red giants in the globular cluster M3 with the Hydra multi-object spectrograph on the WIYN 3.5 m telescope indicated a prominent Li i 6707 Å feature in the red giant vZ 1050. Followup spectroscopy with the ARC 3.5 m telescope confirmed this observation and yielded a derived abundance of A(Li)NLTE = 1.6 ± 0.05. In addition, the high oxygen and low sodium abundances measured from the same spectrum suggest that vZ 1050 is a first generation cluster star. The location of vZ 1050 above the horizontal branch and blueward of the red giant branch in the cluster’s color-magnitude diagram places vZ 1050 on M3's asymptotic giant branch. The likely source for the enhanced lithium abundance is the Cameron-Fowler mechanism operating in vZ 1050 itself.

  14. Meeting Report: Metagenomics, Metadata and MetaAnalysis (M3) at ISMB 2010

    PubMed Central

    Field, Dawn; Sansone, Susanna; DeLong, Edward F.; Sterk, Peter; Friedberg, Iddo; Kottmann, Renzo; Hirschman, Lynette; Garrity, George; Cochrane, Guy; Wooley, John; Meyer, Folker; Hunter, Sarah; White, Owen

    2010-01-01

    This report summarizes the proceedings of the first day of the Metagenomics, Metadata and MetaAnalysis (M3) workshop held at the Intelligent Systems for Molecular Biology 2010 conference. The second day, which was dedicated to the inaugural meeting of the BioSharing initiative is presented in a separate report. The Genomic Standards Consortium (GSC) hosted the first day of this Special Interest Group (SIG) at ISMB to continue exploring the bottlenecks and emerging solutions for obtaining biological insights through large-scale comparative analysis of metagenomic datasets. The M3 SIG included invited and selected talks and a panel discussion at the end of the day involving the plenary speakers. Further information about the GSC and its range of activities can be found at http://gensc.org. Information about the newly established BioSharing effort can be found at http://biosharing.org/. PMID:21304724

  15. A picrotoxin-specific conformational change in the glycine receptor M2-M3 loop.

    PubMed

    Hawthorne, Rebecca; Lynch, Joseph W

    2005-10-28

    The external loop linking the M2 and M3 transmembrane domains is crucial for coupling agonist binding to channel gating in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility scan previously showed that glycine activation increased the surface accessibility of 6 contiguous residues (Arg271-Lys276) toward the N-terminal end of the homomeric alpha1 GlyR M2-M3 loop. In the present study we used a similar approach to determine whether the allosteric antagonist, picrotoxin, could impose conformational changes to this domain that cannot be induced by varying agonist concentrations alone. Picrotoxin slowed the reaction rate of a sulfhydryl-containing compound (MTSET) with A272C, S273C, and L274C. Before interpreting this as a picrotoxin-specific conformational change, it was necessary to eliminate the possibility of steric competition between picrotoxin and MTSET. Accordingly, we showed that picrotoxin and the structurally unrelated blocker, bilobalide, were both trapped in the R271C GlyR in the closed state and that a point mutation to the pore-lining Thr6' residue abolished inhibition by both compounds. We also demonstrated that the picrotoxin dissociation rate was linearly related to the channel open probability. These observations constitute a strong case for picrotoxin binding in the pore. We thus conclude that the picrotoxin-specific effects on the M2-M3 loop are mediated allosterically. This suggests that the M2-M3 loop responds differently to the occupation of different binding sites.

  16. M3MS-16OR0401086 – Report on NEAMS Workbench Support for MOOSE Applications

    SciTech Connect

    Lefebvre, Robert A.; Langley, Brandon R.; Thompson, Adam B.

    2016-09-23

    This report summarizes the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Workbench from Oak Ridge National Laboratory (ORNL) and the integration of the MOOSE framework. This report marks the completion of NEAMS milestone M3MS-16OR0401086. This report documents the developed infrastructure to support the MOOSE framework applications, the applications’ results, visualization status, the collaboration that facilitated this progress, and future considerations.

  17. Ten-m3 Is Required for the Development of Topography in the Ipsilateral Retinocollicular Pathway

    PubMed Central

    Dharmaratne, Nuwan; Glendining, Kelly A.; Young, Timothy R.; Tran, Heidi; Sawatari, Atomu; Leamey, Catherine A.

    2012-01-01

    Background The alignment of ipsilaterally and contralaterally projecting retinal axons that view the same part of visual space is fundamental to binocular vision. While much progress has been made regarding the mechanisms which regulate contralateral topography, very little is known of the mechanisms which regulate the mapping of ipsilateral axons such that they align with their contralateral counterparts. Results Using the advantageous model provided by the mouse retinocollicular pathway, we have performed anterograde tracing experiments which demonstrate that ipsilateral retinal axons begin to form terminal zones (TZs) in the superior colliculus (SC), within the first few postnatal days. These appear mature by postnatal day 11. Importantly, TZs formed by ipsilaterally-projecting retinal axons are spatially offset from those of contralaterally-projecting axons arising from the same retinotopic location from the outset. This pattern is consistent with that required for adult visuotopy. We further demonstrate that a member of the Ten-m/Odz/Teneurin family of homophilic transmembrane glycoproteins, Ten-m3, is an essential regulator of ipsilateral retinocollicular topography. Ten-m3 mRNA is expressed in a high-medial to low-lateral gradient in the developing SC. This corresponds topographically with its high-ventral to low-dorsal retinal gradient. In Ten-m3 knockout mice, contralateral ventrotemporal axons appropriately target rostromedial SC, whereas ipsilateral axons exhibit dramatic targeting errors along both the mediolateral and rostrocaudal axes of the SC, with a caudal shift of the primary TZ, as well as the formation of secondary, caudolaterally displaced TZs. In addition to these dramatic ipsilateral-specific mapping errors, both contralateral and ipsilateral retinocollicular TZs exhibit more subtle changes in morphology. Conclusions We conclude that important aspects of adult visuotopy are established via the differential sensitivity of ipsilateral and

  18. New species of Triplocania Roesler with forewing M3 forked (Psocodea: 'Psocoptera': Ptiloneuridae), from Brazil.

    PubMed

    Da Silva Neto, Alberto Moreira; Rafael, José Albertino; Aldrete, Alfonso N García

    2014-07-16

    Four new Brazilian species of Triplocania with forewing M3 forked are described and illustrated based on male specimens, namely: Triplocania lamasi n.sp. (Mato Grosso: Brazil), Triplocania mariateresae n.sp. (Rio de Janeiro: Brazil), Triplocania newi n.sp. (Tocantins: Brazil) and Triplocania plaumanni n.sp. (Santa Catarina: Brasil). They differ from all the other species in the genus, in which the males are known, by the hypandrium and phallosome structures.

  19. Relativistic electrons high doses at International Space Station and Foton M2/M3 satellites

    NASA Astrophysics Data System (ADS)

    Dachev, T. P.; Tomov, B.; Matviichuk, Yu.; Dimitrov, Pl.; Bankov, N.

    2009-12-01

    The paper presents observation of relativistic electrons. Data are collected by the Radiation Risk Radiometer-Dosimeters (R3D) B2/B3 modifications during the flights of Foton M2/M3 satellites in 2005 and 2007 as well as by the R3DE instrument at the European Technology Exposure Facility (EuTEF) on the Columbus External Payload Adaptor at the International Space Station (ISS) in the period February 20 - April 28, 2008. On the Foton M2/M3 satellites relativistic electrons are observed more frequently than on the ISS because of higher (62.8°) inclination of the orbit. At both Foton satellites the usual duration of the observations are a few minutes long. On the ISS the duration usually is about 1 min or less. The places of observations of high doses due to relativistic electrons are distributed mainly at latitudes above 50° geographic latitude in both hemispheres on Foton M2/M3 satellites. A very high maximum is found in the southern hemisphere at longitudinal range 0°-60°E. At the ISS the maximums are observed between 45° and 52° geographic latitude in both hemispheres mainly at longitudes equatorward from the magnetic poles. The measured absolute maximums of dose rates generated by relativistic electrons are found to be as follows: 304 μGy h -1 behind 1.75 g cm -2 shielding at Foton M2, 2314 μGy h -1 behind 0.71 g cm -2 shielding at Foton M3 and 19,195 μGy h -1 (Flux is 8363 cm -2 s -1) behind les than 0.4 g cm -2 shielding at ISS.

  20. Mice Lacking M1 and M3 Muscarinic Acetylcholine Receptors Have Impaired Odor Discrimination and Learning

    PubMed Central

    Chan, Wilson; Singh, Sanmeet; Keshav, Taj; Dewan, Ramita; Eberly, Christian; Maurer, Robert; Nunez-Parra, Alexia; Araneda, Ricardo C.

    2017-01-01

    The cholinergic system has extensive projections to the olfactory bulb (OB) where it produces a state-dependent regulation of sensory gating. Previous work has shown a prominent role of muscarinic acetylcholine (ACh) receptors (mAChRs) in regulating the excitability of OB neurons, in particular the M1 receptor. Here, we examined the contribution of M1 and M3 mAChR subtypes to olfactory processing using mice with a genetic deletion of these receptors, the M1−/− and the M1/M3−/− knockout (KO) mice. Genetic ablation of the M1 and M3 mAChRs resulted in a significant deficit in odor discrimination of closely related molecules, including stereoisomers. However, the discrimination of dissimilar molecules, social odors (e.g., urine) and novel object recognition was not affected. In addition the KO mice showed impaired learning in an associative odor-learning task, learning to discriminate odors at a slower rate, indicating that both short and long-term memory is disrupted by mAChR dysfunction. Interestingly, the KO mice exhibited decreased olfactory neurogenesis at younger ages, a deficit that was not maintained in older animals. In older animals, the olfactory deficit could be restored by increasing the number of new born neurons integrated into the OB after exposing them to an olfactory enriched environment, suggesting that muscarinic modulation and adult neurogenesis could be two different mechanism used by the olfactory system to improve olfactory processing. PMID:28210219

  1. Rasch Analysis of the Malaysian Secondary School Student Leadership Inventory (M3SLI).

    PubMed

    Ling, Mei-Teng

    The importance of instilling leadership skills in students has always been a main subject of discussion in Malaysia. Malaysian Secondary School Students Leadership Inventory (M3SLI) is an instrument which has been piloted tested in year 2013. The main purpose of this study is to examine and optimize the functioning of the rating scale categories in M3SLI by investigating the rating scale category counts, average and expected rating scale category measures, and steps calibrations. In detail, the study was aimed to (1) identify whether the five-point rating scale was functioning as intended and (2) review the effect of a rating scale category revision on the psychometric characteristics of M3SLI. The study was carried out on students aged between 13 to 18 years (2183 students) by stratified random sampling in 26 public schools in Sabah, Malaysia, with the results analysed using Winsteps. This study found that the rating scale of Personality and Values constructs needed to be modified while the scale for Leadership Skills was maintained. For future studies, other aspects of psychometric properties like differential item functioning (DIF) based on demographic variables such as gender, school locations and forms should be researched on prior to the use of the instrument.

  2. Development of a DNA aptamer that binds specifically to group A Streptococcus serotype M3.

    PubMed

    Alfavian, Hanif; Mousavi Gargari, Seyed Latif; Rasoulinejad, Samaneh; Medhat, Arvin

    2017-02-01

    Group A streptococcus (GAS) is an important Gram-positive pathogen that causes various human diseases ranging from peripheral lesions to invasive infections. The M protein is one of the main virulence factors present on the cell surface and is associated with invasive GAS infections. Compared with other M types, serotype M3 has a predominant role in lethal infections and demonstrates epidemic behaviors, including streptococcal toxic shock syndrome, bacteremia, and necrotizing fasciitis. Traditional methods for M typing are time-consuming, tedious, contradictory, and generally restricted to reference laboratories. Therefore, development of a new M-typing technique is needed. Aptamers with the ability to detect their target with a high degree of accuracy and specificity can be ideal candidates for specific M-typing of Streptococcus pyogenes. In this study DNA aptamers with a high binding affinity towards S. pyogenes serotype M3 were selected through 12 iterative rounds of the Systematic Evolution of Ligands by EXponential (SELEX) enrichment procedure using live cells as a target. We monitored the progress of the SELEX procedure by flow cytometry analysis. Of several aptamer sequences analyzed, 12L18A showed the highest binding efficiency towards S. pyogenes type M3, with an apparent dissociation constant (Kd) of 7.47 ± 1.72 pmol/L being the lowest. Therefore the isolated aptamer can be used in any tool, such as a biosensor, for the detection of S. pyogenes and can be used in the development of a novel M-typing system.

  3. Aluminum-air power cell: the M3-3 experiment

    SciTech Connect

    Maimoni, A.; Muelder, S.A.

    1985-03-01

    The M3-3 experiment was a test of the M3 cell coupled to a crystallizer and hydrocyclone for separation of coarse solids before return of electrolyte to the cell. It was essentially a repeat of the M3-2 experiment, but with increased emphasis to understand the sources of experimental error and the evolution of the particle size distributions during the course of the experiment. A new hydrocyclone, scaled to operation with 1 to 5 cells, was tested in conjunction with peristaltic pumps. The test ran at 14 A for 101 min, followed by 122 A for 269 min at 60/sup 0/C. The main operational problem was failure of the rubber tubing in the peristaltic pump feeding the hydrocyclone. Primary results include reasonable agreement in the material balances and with the calculated crystallization rates, the 50% cut point of the new hydrocyclone at about 8 ..mu..m, and the aluminate concentration decreased from 2.4M to 1.4M in 21 h at 60/sup 0/C in a subsequent batch crystallization experiment. The particle size distributions do not change significantly on aging de-ionized water. It is recommended that electrolyte conductivity should not be used as the only measure of aluminate concentration. More care is required to obtain meaningful samples of suspension from crystallizer vessels. Insufficient stirring in the vessels led to settling of the solids and obtaining non-representative samples.

  4. A hybrid kinetic hot ion PIC module for the M3D-C1 Code

    NASA Astrophysics Data System (ADS)

    Breslau, J. A.; Ferraro, N.; Jardin, S. C.; Kalyanaraman, K.

    2016-10-01

    Building on the success of the original M3D code with the addition of efficient high-order, high-continuity finite elements and a fully implicit time advance making use of cutting-edge numerical techniques, M3D-C1 has become a flagship code for realistic time-dependent 3D MHD and two-fluid calculations of the nonlinear evolution of macroinstabilities in tokamak plasmas. It is therefore highly desirable to introduce to M3D-C1 one of the most-used features of its predecessor: the option to use a drift-kinetic delta- f PIC model for a minority population of energetic ions (representing, e.g., beam ions or fusion alpha particles) coupled with the usual finite element advance of the bulk ion and electron fluids through its pressure tensor. We describe the implementation of a module for this purpose using high-order-of-accuracy numerical integration and carefully tuned to take advantage of state-of-the-art multicore processing elements. Verification results for a toroidal Alfvén eigenmode test problem will be presented, along with a demonstration of favorable parallel scaling to large numbers of supercomputer nodes.

  5. Mass-Analyzed Threshold Ionization and Structures of M_3C_2(M=Sc, La)

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Mourad, Roudjane; Yang, D. S.

    2011-06-01

    M_3C_2 (M=Sc, La) clusters are produced by laser vaporization in a pulsed metal-cluster source and identified by photoionization mass spectrometry. Vibrationally resolved ion spectra are obtained with mass-analyzed threshold ionization (MATI) spectroscopy. The MATI spectra of M_3C_2 (M=Sc, La) exhibit a weak 0-0 transition, indicating a significant geometry difference between the neutral and ionized clusters. The ionization energies of Sc_2C_2 and La_3C_2 are measured to be 36398 (5) and 30051(5) Cm-1, respectively. In addition, the spectra of the two clusters display a number of vibrational intervals that are associated with M_3 deformations. Preliminary data analysis shows that both clusters have a C2v bi-pyramid structure in the neutral state and a D3h bi-pyramid structure in the ion state, and the spectra may be assigned to the ^1A'_1 (D3h)← ^2B_2 (C2v) transitions.

  6. The Moon Mineralogy (M3) Imaging Spectrometer: Early Assessment of the Spectral, Radiometric, Spatial and Uniformity Properties

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Pieters, C. M.; Boardman, J.; Barr, D.; Bruce, C.; Bousman, J.; Chatterjee, A.; Eastwood, M.; Essandoh, V.; Geier, S.; Glavich, T.; Green, R.; Haemmerle, V.; Hyman, S.; Hovland, L.; Koch, T.; Lee, K.; Lundeen, S.; Motts, E.; Mouroulis, P.; Paulson, S.; Plourde, K.; Racho, C.; Robinson, D.; Rodriquez, J.

    2009-01-01

    The Moon Mineralogy Mapper's (M3) is a high uniformity and high signal-to-noise ratio NASA imaging spectrometer that is a guest instrument on the Indian Chandrayaan-1 Mission to the Moon. The laboratory measured spectral, radiometric, spatial, and uniformity characteristics of the M3 instrument are given. The M3 imaging spectrometer takes advantage of a suite of critical enabling capabilities to achieve its measurement requirement with a mass of 8 kg, power usage of 15 W, and volume of 25X18X12 cm. The M3 detector and spectrometer are cooled by a multi-stage passive cooler. This paper presents early M3 performance assessment results.

  7. Majorana Kramers pair in a nematic vortex

    DOE PAGES

    Wu, Fengcheng; Martin, Ivar

    2017-06-05

    A time-reversal (TR) invariant topological superconductor is characterized by a Kramers pair of Majorana zero-energy modes on boundaries and in a core of a TR invariant vortex. A vortex defect that preserves TR symmetry has remained primarily of theoretical interest, since typically a magnetic field, which explicitly breaks TR, needs to be applied to create vortices in superconductors. In this paper, we show that an odd-parity topological superconductor with a nematic pairing order parameter can host a nematic vortex that preserves TR symmetry and binds a Majorana Kramers pair. Such a nematic superconductor could be realized in metal-doped Bi2Se3, asmore » suggested by recent experiments. We provide an analytic solution for the zero modes in a continuous nematic vortex. In lattice, crystalline anisotropy can pin the two-component order parameter along high-symmetry directions. We show that a discrete nematic vortex, which forms when three nematic domains meet, also supports a TR pair of Majorana modes. Lastly, we discuss possible experiments to probe the zero modes.« less

  8. Majorana Kramers pair in a nematic vortex

    NASA Astrophysics Data System (ADS)

    Wu, Fengcheng; Martin, Ivar

    2017-06-01

    A time-reversal (TR) invariant topological superconductor is characterized by a Kramers pair of Majorana zero-energy modes on boundaries and in a core of a TR invariant vortex. A vortex defect that preserves TR symmetry has remained primarily of theoretical interest, since typically a magnetic field, which explicitly breaks TR, needs to be applied to create vortices in superconductors. In this paper, we show that an odd-parity topological superconductor with a nematic pairing order parameter can host a nematic vortex that preserves TR symmetry and binds a Majorana Kramers pair. Such a nematic superconductor could be realized in metal-doped Bi2Se3 , as suggested by recent experiments. We provide an analytic solution for the zero modes in a continuous nematic vortex. In lattice, crystalline anisotropy can pin the two-component order parameter along high-symmetry directions. We show that a discrete nematic vortex, which forms when three nematic domains meet, also supports a TR pair of Majorana modes. Finally, we discuss possible experiments to probe the zero modes.

  9. Paired Comparison Models with Time-Varying Parameters

    DTIC Science & Technology

    1993-05-01

    estimates of the rj2 are the sample variances of the complete data. The E-step of the EM algorithm requires finding expressions for the expected...sufficient statistics, which in this case is equivalent to finding E ( Si,,k II9 , .... ...r1 , - Y ) and E(*i5tlk k •.., r1,..,y) We can derive E(SSLkIO...71, Y by first obtaining var(Si,•lOl|,...,I rl I..., 7 ) These expressions can be shown to be equal to 9~, r 2 ! , - 9kI~ ~ + ( Ojk + 7Jk Jkk)/ TjE

  10. Stress drop and its Uncertainty for Earthquakes M3.8-5.5 in Central California and Oklahoma

    NASA Astrophysics Data System (ADS)

    Ding, Luyuan

    Stress drop is the stress that is effectively available to drive fault motion. It is a key parameter in predicting peak ground acceleration (PGA), since PGA∝, and it is very important in estimating ground motion. However, it is difficult to get an accurate estimation of stress drop. In order to get a more stable measurement of stress drop, we test two methods in this thesis: the first one is the Brune stress drop, which is more commonly applied, and the second one is the Arms stress drop, which less applied before and theoretically should have less uncertainty. By comparing these two methods we would like to test the feasibility and stability of the Arms method. We applied these two methods to data of earthquakes M3-5.5 in California and Oklahoma. We found that, taking Oklahoma results as an example, the mean value of Brune stress drop is 0.38 MPa, with a multiplicative uncertainty of 3.12, and the mean value of Arms stress drop is 1.04, with a multiplicative uncertainty of 1.79. Therefore we concluded that the Arms method is a good estimator of stress drop, with a smaller uncertainty. We determine the path attenuation so that we can increase the source-station distance of events studied to be as much as 76 km. The path seismic attenuation is a critical parameter that must be included in the analysis.

  11. Schwinger pair production with ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kasper, V.; Hebenstreit, F.; Oberthaler, M. K.; Berges, J.

    2016-09-01

    We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron-positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-dimensional Hilbert space of QED and show that it may be well approximated by experiments employing Bose-Einstein condensates interacting with fermionic atoms. Numerical calculations based on functional integral techniques give a unique access to the physical parameters required to realize QED phenomena in a cold atom experiment. In particular, we use our approach to consider quantum link models in a yet unexplored parameter regime and give bounds for their ability to capture essential features of the physics. The results suggest a paradigmatic change towards realizations using coherent many-body states for quantum simulations of high-energy particle physics phenomena.

  12. Prospective very young asteroid pairs

    NASA Astrophysics Data System (ADS)

    Galád, A.; Vokrouhlický, D.; Zizka, J.

    2014-07-01

    Several tens of asteroid pairs can be discerned from the background main-belt asteroids. The majority of them are thought to have formed within only the last few 10^6 yr. The youngest recognized pairs have formed more than ≈ 10 kyr ago. As some details of pair formation are still not understood well, the study of young pairs is of great importance. It is mainly because the conditions at the time of the pair formation could be deduced much more reliably for young pairs. For example, space weathering on the surfaces of the components, or changes in their rotational properties (in spin rates, tumbling, coordinates of rotational pole) could be negligible since the formation of young pairs. Also, possible strong perturbations by main-belt bodies on pair formation can be reliably studied only for extremely young pairs. Some pairs can quickly blend in with the background asteroids, so even the frequency of asteroid pair formation could be determined more reliably based on young pairs (though only after a statistically significant sample is at disposal). In our regular search for young pairs in the growing asteroid database, only multiopposition asteroids with very similar orbital and proper elements are investigated. Every pair component is represented by a number of clones within orbital uncertainties and drifting in semimajor axis due to the Yarkovsky effect. We found that, if the previously unrecognized pairs (87887) 2000 SS_{286} - 2002 AT_{49} and (355258) 2007 LY_{4} - 2013AF_{40} formed at the recent very close approach of their components, they could become the youngest known pairs. In both cases, the relative encounter velocities of the components were only ˜ 0.1 m s^{-1}. However, the minimum distances between some clones are too large and a few clones of the latter pair did not encounter recently (within ≈ 10 kyr). The age of some prospective young pairs cannot be determined reliably without improved orbital properties (e.g., the second component of a pair

  13. Multiprocessor switch with selective pairing

    DOEpatents

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    2014-03-11

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus

  14. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies

    USGS Publications Warehouse

    Kramer, G.Y.; Besse, S.; Dhingra, D.; Nettles, J.; Klima, R.; Garrick-Bethell, I.; Clark, R.N.; Combe, J.-P.; Head, J. W.; Taylor, L.A.; Pieters, C.M.; Boardman, J.; McCord, T.B.

    2011-01-01

    We examined the lunar swirls using data from the Moon Mineralogy Mapper (M3). The improved spectral and spatial resolution of M3 over previous spectral imaging data facilitates distinction of subtle spectral differences, and provides new information about the nature of these enigmatic features. We characterized spectral features of the swirls, interswirl regions (dark lanes), and surrounding terrain for each of three focus regions: Reiner Gamma, Gerasimovich, and Mare Ingenii. We used Principle Component Analysis to identify spectrally distinct surfaces at each focus region, and characterize the spectral features that distinguish them. We compared spectra from small, recent impact craters with the mature soils into which they penetrated to examine differences in maturation trends on- and off-swirl. Fresh, on-swirl crater spectra are higher albedo, exhibit a wider range in albedos and have well-preserved mafic absorption features compared with fresh off-swirl craters. Albedoand mafic absorptions are still evident in undisturbed, on-swirl surface soils, suggesting the maturation process is retarded. The spectral continuum is more concave compared with off-swirl spectra; a result of the limited spectral reddening being mostly constrained to wavelengths less than ???1500 nm. Off-swirl spectra show very little reddening or change in continuum shape across the entire M3 spectral range. Off-swirl spectra are dark, have attenuated absorption features, and the narrow range in off-swirl albedos suggests off-swirl regions mature rapidly. Spectral parameter maps depicting the relative OH surface abundance for each of our three swirl focus regions were created using the depth of the hydroxyl absorption feature at 2.82 ??m. For each of the studied regions, the 2.82 ??m absorption feature is significantly weaker on-swirl than off-swirl, indicating the swirls are depleted in OH relative to their surroundings. The spectral characteristics of the swirls and adjacent terrains from

  15. On the pairing effects in triaxial nuclei

    SciTech Connect

    Oudih, M. R.; Fellah, M.; Allal, N. H.

    2014-03-05

    Triaxial deformation effect on the pairing correlations is studied in the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Quantities such as binding energy, gap parameter and particle-number fluctuation are considered in neutron-rich Mo isotopes. The results are compared with those of axially symmetric calculation and with available experimental data. The role played by the particle-number projection is outlined.

  16. Are all Linear Paired Comparison Models Equivalent

    DTIC Science & Technology

    1990-09-01

    Previous authors (Jackson and Fleckenstein 1957, Mosteller 1958, Noether 1960) have found that different models of paired comparisons data lead to simi...ponential distribution with a location parameter (Mosteller 1958, Noether 1960). Formal statements describing the limiting behavior of the gamma...that are not convolu- tion type linear models (the uniform model considered by Smith (1956), Mosteller (1958), Noether (1960)) and other convolution

  17. Experimental many-pairs nonlocality

    NASA Astrophysics Data System (ADS)

    Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian

    2017-08-01

    Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.

  18. Stereo Pair, Honolulu, Oahu

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by the Shuttle Radar Topography Mission (SRTM), shows how topography controls the urban pattern. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    Features of interest in this scene include Diamond Head (an extinct volcano near the bottom of the image), Waikiki Beach (just above Diamond Head), the Punchbowl National Cemetary (another extinct volcano, near the image center), downtown Honolulu and Honolulu harbor (image left-center), and offshore reef patterns. The slopes of the Koolau mountain range are seen in the right half of the image. Clouds commonly hang above ridges and peaks of the Hawaiian Islands, but in this synthesized stereo rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with a Landsat 7 Thematic Mapper image collected at the same time as the SRTM flight. The topography data were used to create two differing perspectives, one for each eye. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the

  19. The minor population of M3-receptors mediate contraction of human detrusor muscle in vitro.

    PubMed

    Chess-Williams, R; Chapple, C R; Yamanishi, T; Yasuda, K; Sellers, D J

    2001-01-01

    1 The objective was to determine the role of muscarinic receptor subtypes in mediating contraction of the human detrusor smooth muscle in vitro. 2 Contractile responses of human detrusor muscle strips to carbachol were obtained in the absence and presence of a range of muscarinic antagonists (pirenzepine, methoctramine, 4-diphenylacetoxy-N-methyl piperidine methiodide (4-DAMP), tropicamide, oxybutynin and tolterodine). Affinity estimates (pKB values) were calculated for the antagonists and correlated with values at the cloned muscarinic receptor subtypes quoted in the literature. 3 Pirenzepine, methoctramine and tropicamide drugs that have high affinities at M1, M2 and M4-receptors, respectively, all had low affinities on the human detrusor (pKB values of 6.8, 6.9 and 6.5, respectively), whilst the M3-selective antagonist 4-DAMP had a high affinity (9.5). Schild plots for all four antagonists had slopes of unity indicating an action at a single receptor. Oxybutynin and tolterodine also acted as competitive antagonists with affinity estimates of 7.6 and 8.1, respectively. 4 When the antagonist affinities obtained on the bladder were plotted against the values published for these antagonists at the cloned muscarinic receptor subtypes, the best correlations were obtained for the m3- and m5-muscarinic receptor subtypes. 5 These data suggest that direct contractile responses of the human detrusor muscle to muscarinic receptor stimulation in vitro are mediated solely via the M3-muscarinic receptor subtype with no contribution from the major M2-receptor population.

  20. The molecular basis of oligomeric organization of the human M3 muscarinic acetylcholine receptor.

    PubMed

    Liste, María José Varela; Caltabiano, Gianluigi; Ward, Richard J; Alvarez-Curto, Elisa; Marsango, Sara; Milligan, Graeme

    2015-06-01

    G protein-coupled receptors, including the M3 muscarinic acetylcholine receptor, can form homo-oligomers. However, the basis of these interactions and the overall organizational structure of such oligomers are poorly understood. Combinations of site-directed mutagenesis and homogenous time-resolved fluorescence resonance energy transfer studies that assessed interactions between receptor protomers at the surface of transfected cells indicated important contributions of regions of transmembrane domains I, IV, V, VI, and VII as well as intracellular helix VIII to the overall organization. Molecular modeling studies based on both these results and an X-ray structure of the inactive state of the M3 receptor bound by the antagonist/inverse agonist tiotropium were then employed. The results could be accommodated fully by models in which a proportion of the cell surface M3 receptor population is a tetramer with rhombic, but not linear, orientation. This is consistent with previous studies based on spectrally resolved, multiphoton fluorescence resonance energy transfer. Modeling studies furthermore suggest an important role for molecules of cholesterol at the dimer + dimer interface of the tetramer, which is consistent with the presence of cholesterol at key locations in many G protein-coupled receptor crystal structures. Mutants that displayed disrupted quaternary organization were often poorly expressed and showed immature N-glycosylation. Sustained treatment of cells expressing such mutants with the muscarinic receptor inverse agonist atropine increased cellular levels and restored both cell surface delivery and quaternary organization to many of the mutants. These observations suggest that organization as a tetramer may occur before plasma membrane delivery and may be a key step in cellular quality control assessment.

  1. Stereo Pair, Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration

  2. Stereo Pair, Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration

  3. Lunar Exploration Insights Recognized from Chandrayaan-1 M3 Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Pieters, Carle; Green, Robert O.; Boardman, Joseph

    2016-07-01

    One of the most important lessons learned from the renaissance of lunar exploration over the last decade is that new discoveries and surprises occur with every new mission to the Moon. Although the color of the Moon had been measured using Earth-based telescopes even before Apollo, modern instruments sent to orbit the Moon provide a scope of inquiry unimaginable during the last century. Spacecraft have now been successfully sent to the Moon by six different space agencies from around the world and the number is growing. The Indian Chandrayaan- 1 spacecraft carried a suite of indigenous instruments as well as several guest instruments from other countries, including the Moon Mineralogy Mapper (M-cube) supplied by NASA. Even though Chandrayaan's lifetime in orbit was shortened by technical constraints, M3 provided a taste of the power of near-infrared imaging spectroscopy used for science and exploration at the Moon. Contrary to expectations, the lunar surface was discovered to be hydrated, which is now known to result from solar wind H combining with O of rocks and soil. Surficial hydration was found to be pervasive across the Moon and the limited data hint at both local concentrations and temporal variations. The prime objective of M3 was to characterize lunar mineralogy in a spatial context. Working in tandem with related instruments on JAXA's SELENE, M3 readily recognized and mapped known minerals from mare and highland terrains (pyroxenes, olivine) at high resolution, but also detected diagnostic properties of crystalline plagioclase which, when mapped across a spatial context, enabled the unambiguous identification of a massive crustal layer of plagioclase that clearly resulted from an early magma ocean. An additional surprise came with the discovery of a new rock type on the Moon that had not been recognized in samples returned by Apollo and Luna: a Mg-rich spinel anorthosite associated with material excavated from some of the greatest lunar depths. In

  4. X-ray Spectroscopy of E2 and M3 Transitions in Ni-like W

    SciTech Connect

    Clementson, J; Beiersdorfer, P; Gu, M F

    2009-11-09

    The electric quadrupole (E2) and magnetic octupole (M3) ground state transitions in Ni-like W{sup 46+} have been measured using high-resolution crystal spectroscopy at the Livermore electron beam ion trap facility. The lines fall in the soft x-ray region near 7.93 {angstrom} and were originally observed as an unresolved feature in tokamak plasmas. Using flat ADP and quartz crystals the wavelengths, intensities, and polarizations of the two lines have been measured for various electron beam energies and compared to intensity and polarization calculations performed using the Flexible Atomic Code (FAC).

  5. Cooper pairs spintronics in triplet spin valves.

    PubMed

    Romeo, F; Citro, R

    2013-11-27

    We study a spin valve with a triplet superconductor spacer intercalated between two ferromagnets with noncollinear magnetizations. We show that the magnetoresistance of the triplet spin valve depends on the relative orientations of the d vector, characterizing the superconducting order parameter, and the magnetization directions of the ferromagnetic layers. For devices characterized by a long superconductor, the effects of a polarized current sustained by Cooper pairs only are observed. In this regime, a supermagnetoresistance effect emerges, and the chiral symmetry of the order parameter of the superconducting spacer is easily recognized. Our findings open new perspectives in designing spintronics devices based on the cooperation of ferromagnetic and triplet correlations.

  6. Holographic pair and charge density waves

    NASA Astrophysics Data System (ADS)

    Cremonini, Sera; Li, Li; Ren, Jie

    2017-02-01

    We examine a holographic model in which a U (1 ) symmetry and translational invariance are broken spontaneously at the same time. Our construction provides an example of a system with pair-density wave order, in which the superconducting order parameter is spatially modulated but has a zero average. In addition, the charge density oscillates at twice the frequency of the scalar condensate. Depending on the choice of parameters, the model also admits a state with coexisting superconducting and charge-density wave orders, in which the scalar condensate has a uniform component.

  7. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence.

  8. Pair Cascades and Deathlines in Offset Magnetic Dipole Fields

    NASA Technical Reports Server (NTRS)

    Harding, Alice; Muslimov, Alex

    2010-01-01

    We investigate electron-positron pair cascades in a dipole magnetic field whose axis is offset from the neutron star center. In such a field geometry, the polar cap is displaced from the neutron star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the polar cap of an offset dipole, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset parameter. We find that the pair multiplicity can change dramatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity.

  9. Dynamical evolution of comet pairs

    NASA Astrophysics Data System (ADS)

    Sosa, Andrea; Fernández, Julio A.

    2016-10-01

    Some Jupiter family comets in near-Earth orbits (thereafter NEJFCs) show a remarkable similarity in their present orbits, like for instance 169P/NEAT and P/2003 T12 (SOHO), or 252P/LINEAR and P/2016 BA14 (PANSTARRS). By means of numerical integrations we studied the dynamical evolution of these objects. In particular, for each pair of presumably related objects, we are interested in assessing the stability of the orbital parameters for several thousand years, and to find a minimum of their relative spatial distance, coincident with a low value of their relative velocity. For those cases for which we find a well defined minimum of their relative orbital separation, we are trying to reproduce the actual orbit of the hypothetical fragment by modeling a fragmentation of the parent body. Some model parameters are the relative ejection velocity (a few m/s), the orbital point at which the fragmentation could have happened (e.g. perihelion), and the elapsed time since fragmentation. In addition, some possible fragmentation mechanisms, like thermal stress, rotational instability, or collisions, could be explored. According to Fernández J.A and Sosa A. 2015 (Planetary and Space Science 118,pp.14-24), some NEJFCs might come from the outer asteroid belt, and then they would have a more consolidated structure and a higher mineral content than that of comets coming from the trans-Neptunian belt or the Oort cloud. Therefore, such objects would have a much longer physical lifetime in the near-Earth region, and could become potential candidates to produce visible meteor showers (as for example 169P/NEAT which has been identified as the parent body of the alpha-Capricornid meteoroid stream, according to Jenniskens, P., Vaubaillon, J., 2010 (Astron. J. 139), and Kasuga, T., Balam, D.D., Wiegert, P.A., 2010 (Astron. J. 139).

  10. Darifenacin: a novel M3 muscarinic selective receptor antagonist for the treatment of overactive bladder.

    PubMed

    Chapple, Christopher R

    2004-11-01

    Darifenacin is a novel M3 muscarinic selective receptor antagonist for once-daily treatment of overactive bladder (OAB), a highly prevalent, chronic and debilitating disease defined by urinary urgency with or without urge incontinence, usually with increased frequency of micturition and nocturia. In vitro, darifenacin is a potent and specific muscarinic receptor antagonist with M3 receptors relative to other muscarinic receptor subtypes. This profile may, therefore, confer clinical efficacy in the treatment of OAB, with a lower propensity for adverse effects and safety issues related to blockade of other muscarinic receptor subtypes. Indeed, consistent with its low relative affinity for M1 and M2 receptors, no effects on cognitive function and heart-rate variability, respectively, have been observed with darifenacin. Subsequent large-scale clinical trials have confirmed that darifenacin (at doses of 7.5 and 15 mg/day) results in central nervous system and cardiac adverse events comparable to placebo, and provides early and meaningful improvement across a range of OAB symptoms including incontinence episodes, urgency and urinary frequency. On the basis of such findings, darifenacin would appear to meet the current need for an effective OAB pharmacotherapy that is efficacious, well-tolerated and, more importantly, minimises the risk of safety-related adverse effects.

  11. ON THE MODULATION OF RR LYRAE STARS IN THE GLOBULAR CLUSTER M3

    SciTech Connect

    Jurcsik, J.; Smitola, P.; Nuspl, J.; Hajdu, G.

    2014-12-10

    New, extended time-series photometry of M3 RR Lyrae stars has revealed that 4 of the 10 double-mode stars show large-amplitude Blazhko modulation of both radial modes. The first, detailed analysis of the peculiar behavior of the unique, Blazhko RRd stars is given. While the P1/P0 period ratio is normal, and the overtone mode is dominant in the other RRd stars of the cluster, the period ratio is anomalous and the fundamental mode has a larger (or similar) mean amplitude than the overtone has in Blazhko RRd stars. The modulations of the fundamental and overtone modes are synchronized only in one of the Blazhko RRd stars. No evidence of any connection between the modulations of the modes in the other three stars is found. The Blazhko modulation accounts, at least partly, for the previously reported amplitude and period changes of these stars. Contrary to the ∼50% Blazhko statistics of RRab and RRd stars, Blazhko modulation occurs only in 10% of the overtone variables in M3. Four of the five Blazhko RRc stars are bright, evolved objects, and one has a period and brightness similar to those of Blazhko RRd stars. The regions of the instability strip with high and low occurrence rates of the Blazhko modulation overlap with the regions populated by first- and second-generation stars according to theoretical and observational studies, raising up the possibility that the Blazhko modulation occurs preferentially in first-generation RR Lyrae stars.

  12. Modeling resistive wall modes and disruptive instabilities with M3D-C1

    NASA Astrophysics Data System (ADS)

    Ferraro, Nm; Jardin, Sc; Pfefferle, D.

    2016-10-01

    Disruptive instabilities pose a significant challenge to the tokamak approach to magnetic fusion energy, and must be reliably avoided in a successful reactor. These instabilities generally involve rapid, global changes to the magnetic field, and electromagnetic interaction with surrounding conducting structures. Here we apply the extended-MHD code M3D-C1 to calculate the stability and evolution of disruptive modes, including their interaction with external conducting structures. The M3D-C1 model includes the effects of resistivity, equilibrium rotation, and resistive walls of arbitrary thickness, each of which may play important roles in the stability and evolution of disruptive modes. The strong stabilizing effect of rotation on resistive wall modes is explored and compared with analytic theory. The nonlinear evolution of vertical displacement events is also considered, including the evolution of non-axisymmetric instabilities that may arise during the current-quench phase of the disruption. It is found that the non-axisymmetric stability of the plasma during a VDE depends strongly on the thermal history of the plasma. This work is supported by US DOE Grant DE-AC02-09CH11466 and the SciDAC Center for Extended MHD Modeling.

  13. Machining risk of beryllium disease and sensitization with median exposures below 2 micrograms/m3.

    PubMed

    Kreiss, K; Mroz, M M; Newman, L S; Martyny, J; Zhen, B

    1996-07-01

    We examined the prevalence of beryllium sensitization in relation to work process and beryllium exposure measurements in a beryllia ceramics plant that had operated since 1980. We interviewed 136 employees (97.8% of the workforce), ascertained beryllium sensitization with the beryllium lymphocyte proliferation blood test, and reviewed historical industrial hygiene measurements. Of eight beryllium-sensitized employees (5.9%), six (4.4% of participating employees) had granulomatous disease on transbronchial lung biopsy. Machinists had a sensitization rate of 14.3% compared to a rate of 1.2% among other employees. Machining had significantly higher general area and breathing zone measurements than did other processes in the time period in which most beryllium-sensitized cases had started machining work. Daily weighted average (DWA) estimates of exposure for matching processes also exceeded estimates for other work processes in that time period, with a median DWA of 0.9 microgram/m3. Machining process DWAs accounted for the majority of DWAs exceeding the 2.0 micrograms/m3 OSHA standard, with 8.1% of machining DWAs above the standard. We conclude that lowering machining process-related exposures may be important to lowering risk of beryllium disease.

  14. M(3)-S: a genotype calling method incorporating information from samples with known genotypes.

    PubMed

    Li, Gengxin; Zhao, Hongyu

    2015-12-03

    A key challenge in analyzing high throughput Single Nucleotide Polymorphism (SNP) arrays is the accurate inference of genotypes for SNPs with low minor allele frequencies. A number of calling algorithms have been developed to infer genotypes for common SNPs, but they are limited in their performance in calling rare SNPs. The existing algorithms can be broadly classified into three categories, including: population-based methods, SNP-based methods, and a hybrid of the two approaches. Despite the relatively better performance of the hybrid approach, it is still challenging to analyze rare SNPs. We propose to utilize information from samples with known genotypes to develop a two stage genotyping procedure, namely M(3)-S, for rare SNP calling. This new approach can improve genotyping accuracy through clearly defining the boundaries of genotype clusters from samples with known genotypes, and enlarge the call rate by combining the simulated data based on the inferred genotype clusters information with the study population. Applications to real data demonstrates that this new approach M(3)-S outperforms existing methods in calling rare SNPs.

  15. Strike Package-Target Pairing: Real-Time Optimization for Airborne Battlespace Command and Control

    DTIC Science & Technology

    2010-09-01

    consists of a pair of A- 10 Warthog aircraft with AGM-65 Mavericks and GBU-16 LGB, a playtime of 120 minutes, and a mission of INT. T2 consists of 6...1 Results. The Warthogs (M1) are paired with the cave (T3), The Prowler (M5) is paired with the SAM (T4), and the F/A-18Fs (M4) are paired with the...Run 2 Results. Because the SAMs are removed from the cave (T3), the Falcons (M3) can now be used to strike the cave (T3) instead of the Warthogs

  16. Describing the heavy-ion above-barrier fusion using the bare potentials resulting from Migdal and M3Y double-folding approaches

    NASA Astrophysics Data System (ADS)

    Gontchar, I. I.; Chushnyakova, M. V.

    2016-08-01

    Systematic calculations of the Coulomb barrier parameters for collisions of spherical nuclei are performed within the framework of the double folding approach. The value of the parameter {B}Z={Z}P{Z}T/({A}P{1/3}+{A}T{1/3}) (which estimates the Coulomb barrier height) varies in these calculations from 10 MeV up to 150 MeV. The nuclear densities came from the Hartree-Fock calculations which reproduce the experimental charge densities with good accuracy. For the nucleon-nucleon effective interaction two analytical approximations known in the literature are used: the M3Y and Migdal forces. The calculations show that Migdal interaction always results in the higher Coulomb barrier. Moreover, as B Z increases the difference between the M3Y and Migdal barrier heights systematically increases as well. As the result, the above barrier fusion cross sections calculated dynamically with the M3Y forces and surface friction are in agreement with the data. The cross sections calculated with the Migdal forces are always below the experimental data even without accounting for the dissipation.

  17. Three carbon pairs in Si

    NASA Astrophysics Data System (ADS)

    Docaj, A.; Estreicher, S. K.

    2012-08-01

    Carbon impurities in Si are common in floating-zone and cast-Si materials. The simplest and most discussed carbon complex is the interstitial-substitutional CiCs pair, which readily forms when self-interstitials are present in the material. This pair has three possible configurations, each of which is electrically active. The less common CsCs pair has been studied in irradiated material but has also recently been seen in as-grown C-rich cast-Si, which is commonly used to fabricate solar cells. The third pair consists of two interstitial C atoms: CiCi. Although its formation probability is low for several reasons, the CiCi pair is very stable and electrically inactive. In this contribution, we report preliminary results of first-principles calculations of these three C pairs in Si. The structures, binding energies, vibrational spectra, and electrical activity are predicted.

  18. SDSS DR2 Merging pairs

    NASA Astrophysics Data System (ADS)

    Allam, S. S.; Tucker, D. L.; SDSS Collaboration

    2004-05-01

    We present and analyze a catalog of 9,000 Merging pairs candidates to g=21 from the imaging data of the Sloan Digital Sky Survey (SDSS) Second Data Release (DR2). Candidates were selected using an automated algorithm (Allam et al. 2004) that is efficient in its selection of galaxy pairs. We highlight possible science applications of such a large photometric sample of merging pais and discuss future improvements, including incorporating magnitudes and pushing to higher redshifts and fainter pairs.

  19. Hamiltonian dynamics on matched pairs

    NASA Astrophysics Data System (ADS)

    Esen, Oğul; Sütlü, Serkan

    2016-08-01

    The cotangent bundle of a matched pair Lie group, and its trivialization, are shown to be a matched pair Lie group. The explicit matched pair decomposition on the trivialized bundle is presented. On the trivialized space, the canonical symplectic two-form and the canonical Poisson bracket are explicitly written. Various symplectic and Poisson reductions are perfomed. The Lie-Poisson bracket is derived. As an example, Lie-Poisson equations on 𝔰𝔩(2, ℂ)∗ are obtained.

  20. Controversies in kidney paired donation.

    PubMed

    Gentry, Sommer E; Montgomery, Robert A; Segev, Dorry L

    2012-07-01

    Kidney paired donation represented 10% of living kidney donation in the United States in 2011. National registries around the world and several separate registries in the United States arrange paired donations, although with significant variations in their practices. Concerns about ethical considerations, clinical advisability, and the quantitative effectiveness of these approaches in paired donation result in these variations. For instance, although donor travel can be burdensome and might discourage paired donation, it was nearly universal until convincing analysis showed that living donor kidneys can sustain many hours of cold ischemia time without adverse consequences. Opinions also differ about whether the last donor in a chain of paired donation transplants initiated by a nondirected donor should donate immediately to someone on the deceased donor wait-list (a domino or closed chain) or should be asked to wait some length of time and donate to start another sequence of paired donations later (an open chain); some argue that asking the donor to donate later may be coercive, and others focus on balancing the probability that the waiting donor withdraws versus the number of additional transplants if the chain can be continued. Other controversies in paired donation include simultaneous versus nonsimultaneous donor operations, whether to enroll compatible pairs, and interactions with desensitization protocols. Efforts to expand public awareness of and participation in paired donation are needed to generate more transplant opportunities.

  1. Pairs of promoter pairs in a web of transcription.

    PubMed

    Kaplan, Craig D

    2016-08-30

    A new analysis has characterized a fundamental building block of complex transcribed loci. Constellations of core promoters can generally be reduced to pairs of divergent transcription units, where the distance between the pairs of transcription units correlates with constraints on genomic context, which in turn contribute to transcript fate.

  2. Constraints on Helium Enhancement in the Globular Cluster M3 (NGC 5272): The Horizontal Branch Test

    NASA Technical Reports Server (NTRS)

    Catelan, M.; Grundahl, F.; Sweigart, A. V.; Valcarce, A. A. R.; Cortes, C.

    2007-01-01

    It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is a common feature among globular star clusters. In this scenario, such a helium enhancement would be particularly apparent in the enhanced luminosity of thc blue horizontal branch (HB) stars compared to the red HB stars. In this Letter, wc test this scenario in the case of the Galactic globular cluster M3 (NGC 5272), using high-precision Stromgren photometry and spectroscopic gravities for blue HB stars. We find that any helium enhancement among the cluster's blue HB stars must be significantly less than I%, thus ruling out the much higher helium enhancements that have been proposed in the literature.

  3. M3D-K simulations of sawteeth and energetic particle transport in tokamak plasmas

    SciTech Connect

    Shen, Wei; Sheng, Zheng-Mao; Fu, G. Y.; Breslau, J. A.; Wang, Feng

    2014-09-15

    Nonlinear simulations of sawteeth and related energetic particle transport are carried out using the kinetic/magnetohydrodynamic (MHD) hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in the plasma core, depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases with increasing particle energy.

  4. Modeling of lithium granule injection in NSTX using M3D-C1

    NASA Astrophysics Data System (ADS)

    Fil, A.; Kolemen, E.; Ferraro, N.; Jardin, S.; Parks, P. B.; Lunsford, R.; Maingi, R.

    2017-05-01

    In this paper, we present simulations of pedestal control by lithium granule injection (LGI) in NSTX. A model for small granule ablation has been implemented in the M3D-C1 code (Jardin et al 2012 Comput. Sci. Discovery 5 014002), allowing the simulation of realistic lithium granule injections. 2D and 3D simulations of Li injections in NSTX H-mode plasmas are performed and the effect of granule size, injection angle and velocity on the pedestal gradient increase is studied. The amplitude of the local pressure perturbation caused by the granules is found to be highly dependent on the solid granule size. Adjusting the granule injection velocity allows one to inject more particles at the pedestal top. 3D simulations show the destabilization of high order MHD modes whose amplitude is directly linked to the localized pressure perturbation, which is found to depend on the toroidal localization of the granule density source.

  5. Defect processes of M3AlC2 (M = V, Zr, Ta, Ti) MAX phases

    NASA Astrophysics Data System (ADS)

    Christopoulos, S.-R. G.; Kelaidis, N.; Chroneos, A.

    2017-08-01

    The interest on the Mn+1AXn phases (M = early transition metal; A = group 13-16 element and X = C and/or N) stems from their combination of advantageous metallic and ceramic properties. Aluminium containing 312 MAX phases in particular are deemed to enhance high-temperature oxidation resistance. In the present study, we use density functional theory calculations to study the intrinsic defect processes of M3AlC2 MAX phases (M = V, Zr, Ta, Ti). The calculations reveal that Ti3AlC2 is the more radiation tolerant 312 MAX phase considered here. In Ti3AlC2 the carbon Frenkel reaction is the lowest energy defect process with 3.17 eV. Results are discussed in view of recent experimental and theoretical results of related systems.

  6. Magnetic, Thermal and Dynamical Evolution of AN M3.2 Two-Ribbon Flare

    NASA Astrophysics Data System (ADS)

    Collados, Manuel; Kuckein, Christoph; Manso Sainz, Rafael; Asensio Ramos, Andres

    On 2013, 17th May, a two-ribbon M3.2 flare took place in the solar atmosphere on the active region AR 11748. The flare evolution was observed at the German VTT of the Observatorio del Teide using the instrument TIP-II, with spectropolarimetric measurements of the photosphere (Si I at 1082.7 nm) and the chromosphere (Helium triplet at 1083 nm). Simultaneous spectroscopic data of the chromospheric spectral line of Ca II at 854.2 nm and filtergrams at Halpha were also obtained. The flare evolution as observed from the ground can be compared with the changes observed by AIA@SDO at different ultraviolet wavelengths. The ground observations covered several hours, including the pre-flare, impulsive, gradual and post-flare phases. We present maps of the magnetic field, thermal and dynamical properties of the region during its evolution from pre- to post-flare phase.

  7. Integral fast reactor safety tests M2 and M3 in TREAT

    SciTech Connect

    Robinson, W.R.; Lo, R.K.; Wright, A.E.; Bauer, T.H.; Stanford, G.S.; Morman, J.A.

    1985-11-01

    Transient Reactor Test Facility (TREAT) tests M2 and M3 were performed to obtain information on two key fuel behavior characteristics of transient overpower conditions in metal-fueled fast reactors: the margin to cladding breach and the axial self-extrusion of fuel within intact cladding. Cladding breach depends on penetration of a fuel/cladding eutectic into the cladding as well as on internal pin pressure. Driving forces for fuel extrusion are fission gas, liquid sodium, and volatile fission products trapped within the fuel. Significant fuel extrusion prior to cladding breach would be an important factor in the case for benign termination of unprotected overpower events in a fast reactor. These preliminary tests in the Integral Fast Reactor (IFR) program were done on uranium-5% fissium Experimental Breeder Reactor II Mark-II driver fuel pins having an active fuel column length of 34 cm.

  8. Nicotinic receptor M3 transmembrane domain: position 8' contributes to channel gating.

    PubMed

    De Rosa, María José; Rayes, Diego; Spitzmaul, Guillermo; Bouzat, Cecilia

    2002-08-01

    The nicotinic acetylcholine receptor (nAChR) is a pentamer of homologous subunits with composition alpha(2)(beta)(epsilon)(delta) in adult muscle. Each subunit contains four transmembrane domains (M1-M4). Position 8' of the M3 domain is phenylalanine in all heteromeric alpha subunits, whereas it is a hydrophobic nonaromatic residue in non-alpha subunits. Given this peculiar conservation pattern, we studied its contribution to muscle nAChR activation by combining mutagenesis with single-channel kinetic analysis. Construction of nAChRs carrying different numbers of phenylalanine residues at 8' reveals that the mean open time decreases as a function of the number of phenylalanine residues. Thus, all subunits contribute through this position independently and additively to the channel closing rate. The impairment of channel opening increases when the number of phenylalanine residues at 8' increases from two (wild-type nAChR) to five. The gating equilibrium constant of the latter mutant nAChR is 13-fold lower than that of the wild-type nAChR. The replacement of (alpha)F8', (beta)L8', (delta)L8', and (epsilon)V8' by a series of hydrophobic amino acids reveals that the structural bases of the observed kinetic effects are nonequivalent among subunits. In the alpha subunit, hydrophobic amino acids at 8' lead to prolonged channel lifetimes, whereas they lead either to normal kinetics (delta and epsilon subunits) or impaired channel gating (beta subunit) in the non-alpha subunits. The overall results indicate that 8' positions of the M3 domains of all subunits contribute to channel gating.

  9. CH5M3D: an HTML5 program for creating 3D molecular structures.

    PubMed

    Earley, Clarke W

    2013-11-18

    While a number of programs and web-based applications are available for the interactive display of 3-dimensional molecular structures, few of these provide the ability to edit these structures. For this reason, we have developed a library written in JavaScript to allow for the simple creation of web-based applications that should run on any browser capable of rendering HTML5 web pages. While our primary interest in developing this application was for educational use, it may also prove useful to researchers who want a light-weight application for viewing and editing small molecular structures. Molecular compounds are drawn on the HTML5 Canvas element, with the JavaScript code making use of standard techniques to allow display of three-dimensional structures on a two-dimensional canvas. Information about the structure (bond lengths, bond angles, and dihedral angles) can be obtained using a mouse or other pointing device. Both atoms and bonds can be added or deleted, and rotation about bonds is allowed. Routines are provided to read structures either from the web server or from the user's computer, and creation of galleries of structures can be accomplished with only a few lines of code. Documentation and examples are provided to demonstrate how users can access all of the molecular information for creation of web pages with more advanced features. A light-weight (≈ 75 kb) JavaScript library has been made available that allows for the simple creation of web pages containing interactive 3-dimensional molecular structures. Although this library is designed to create web pages, a web server is not required. Installation on a web server is straightforward and does not require any server-side modules or special permissions. The ch5m3d.js library has been released under the GNU GPL version 3 open-source license and is available from http://sourceforge.net/projects/ch5m3d/.

  10. The phase 0/A study of the ESA M3 mission candidate EChO

    NASA Astrophysics Data System (ADS)

    Puig, Ludovic; Isaak, Kate; Linder, Martin; Escudero, Isabel; Crouzet, Pierre-Elie; Walker, Roger; Ehle, Matthias; Hübner, Jutta; Timm, Rainer; de Vogeleer, Bram; Drossart, Pierre; Hartogh, Paul; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Ribas, Ignasi; Snellen, Ignas; Swinyard, Bruce; Tinetti, Giovanna; Eccleston, Paul

    2015-12-01

    EChO, the Exoplanet Characterisation Observatory, has been one of the five M-class mission candidates competing for the M3 launch slot within the science programme Cosmic Vision 2015-2025 of the European Space Agency (ESA). As such, EChO has been the subject of a Phase 0/A study that involved European Industry, research institutes and universities from ESA member states and that concluded in September 2013. EChO is a concept for a dedicated mission to measure the chemical composition and structure of hundreds of exoplanet atmospheres using the technique of transit spectroscopy. With simultaneous and uninterrupted spectral coverage from the visible to infrared wavelengths, EChO targets extend from gas giants (Jupiter or Neptune-like) to super-Earths in the very hot to temperate zones of F to M-type host stars, opening up the way to large-scale, comparative planetology that would place our own solar system in the context of other planetary systems in the Milky Way. A review of the performance requirements of the EChO mission was held at ESA at the end of 2013, with the objective of assessing the readiness of the mission to progress to the Phase B1 study phase. No critical issues were identified from a technical perspective, however a number of recommendations were made for future work. Since the mission was not selected for the M3 launch slot, EChO is no longer under study at ESA. In this paper we give an overview of the final mission concept for EChO as of the end of the study, from scientific, technical and operational perspectives.

  11. Effects of novel muscarinic M3 receptor ligand C1213 in pulmonary arterial hypertension models.

    PubMed

    Ahmed, Mohamed; VanPatten, Sonya; Lakshminrusimha, Satyan; Patel, Hardik; Coleman, Thomas R; Al-Abed, Yousef

    2016-12-01

    Pulmonary hypertension (PH) is a complex disease comprising a pathologic remodeling and thickening of the pulmonary vessels causing an after load on the right heart ventricle that can result in ventricular failure. Triggered by oxidative stress, episodes of hypoxia, and other undetermined causes, PH is associated with poor outcomes and a high rate of morbidity. In the neonate, this disease has a similar etiology but is further complicated by the transition to breathing after birth, which requires a reduction in vascular resistance. Persistent pulmonary hypertension of the newborn (PPHN) is one form of PH that is frequently unresponsive to current therapies including inhaled nitric oxide (due to lack of proper absorption and diffusion), and other therapeutics targeting signaling mediators in vascular endothelium and smooth muscle. The need for novel agents, which target distinct pathways in pulmonary hypertension, remains. Herein, we investigated the therapeutic effects of novel muscarinic receptor ligand C1213 in models of PH We demonstrated that via M3 muscarinic receptors, C1213 induced activating- eNOS phosphorylation (serine-1177), which is known to lead to nitric oxide (NO) production in endothelial cells. Using signaling pathway inhibitors, we discovered that AKT and calcium signaling contributed to eNOS phosphorylation induced by C1213. As expected for an eNOS-stimulating agent, in ex vivo and in vivo models, C1213 triggered pulmonary vasodilation and induced both pulmonary artery and systemic blood pressure reductions demonstrating its potential value in PH and PPHN In brief, this proof-of-concept study provides evidence that an M3 muscarinic receptor functionally selective ligand stimulates downstream pathways leading to antihypertensive effects using in vitro, ex vivo, and in vivo models of PH.

  12. Remarkable metal-rich ternary chalcogenides Sc14M3Te8 (M = Ru, Os).

    PubMed

    Chen, Ling; Corbett, John D

    2003-02-05

    In this novel motif, scandium atoms define infinite parallel chains of alternate trans-face-sharing cubes and pairs of square antiprisms in which each polyhedron is also centered by an M atom (M = Ru, Os). These chains are further linked into a three-dimensional structure by Sc(Te2Te4/2) octahedra. Physical property measurements show Sc14Ru3Te8 to be metallic and Pauli-paramagnetic, consistent with the results of extended Hückel band structure calculations. Matrix effects are evident in the dimensions within the chains. The major interactions are Sc-M and Sc-Te.

  13. Muscarinic M3 receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice

    PubMed Central

    van Os, Ronald P.; Dethmers-Ausema, Albertina; Bos, I. Sophie T.; Hylkema, Machteld N.; van den Berge, Maarten; Hiemstra, Pieter S.; Wess, Jürgen; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud

    2014-01-01

    Anticholinergics, blocking the muscarinic M3 receptor, are effective bronchodilators for patients with chronic obstructive pulmonary disease. Recent evidence from M3 receptor-deficient mice (M3R−/−) indicates that M3 receptors also regulate neutrophilic inflammation in response to cigarette smoke (CS). M3 receptors are present on almost all cell types, and in this study we investigated the relative contribution of M3 receptors on structural cells vs. inflammatory cells to CS-induced inflammation using bone marrow chimeric mice. Bone marrow chimeras (C56Bl/6 mice) were generated, and engraftment was confirmed after 10 wk. Thereafter, irradiated and nonirradiated control animals were exposed to CS or fresh air for four consecutive days. CS induced a significant increase in neutrophil numbers in nonirradiated and irradiated control animals (4- to 35-fold). Interestingly, wild-type animals receiving M3R−/− bone marrow showed a similar increase in neutrophil number (15-fold). In contrast, no increase in the number of neutrophils was observed in M3R−/− animals receiving wild-type bone marrow. The increase in keratinocyte-derived chemokine (KC) levels was similar in all smoke-exposed groups (2.5- to 5.0-fold). Microarray analysis revealed that fibrinogen-α and CD177, both involved in neutrophil migration, were downregulated in CS-exposed M3R−/− animals receiving wild-type bone marrow compared with CS-exposed wild-type animals, which was confirmed by RT-qPCR (1.6–2.5 fold). These findings indicate that the M3 receptor on structural cells plays a proinflammatory role in CS-induced neutrophilic inflammation, whereas the M3 receptor on inflammatory cells does not. This effect is probably not mediated via KC release, but may involve altered adhesion and transmigration of neutrophils via fibrinogen-α and CD177. PMID:25381025

  14. Spin-isospin and pairing properties of modified Skyrme interactions

    NASA Astrophysics Data System (ADS)

    Van Giai, Nguyen; Sagawa, H.

    1981-11-01

    New sets of parameters for Skyrme interactions have been determined. In addition to the ground-state properties, they give satisfactory values for the compression modulus, spin and spin-isospin Landau parameters, and pairing matrix elements. Gamow-Teller states are calculated and compared with experimental data.

  15. Electronic pairing in exotic superconductors

    SciTech Connect

    Cox, D.L. ); Maple, M.B. )

    1995-02-01

    Superconductivity in heavy-fermion materials and high T[sub c] cuprates may involve electronic pairing with unconventional symmetries and mechanisms. Although there has been no smoking-gun proof, numerous pieces of circumstantial evidence combined with heuristic theoretical arguments make a compelling case that these materials have pairs with exotic symmetry bound by nonphonon glue. 20 refs., 5 figs.

  16. Assessment Strategies for Pair Programming

    ERIC Educational Resources Information Center

    Hahn, Jan Hendrik; Mentz, Elsa; Meyer, Lukas

    2009-01-01

    Although pair programming has proved its usefulness in teaching and learning programming skills, it is difficult to assess the individual roles and abilities of students whilst programming in pairs. (Note that within this manuscript, the term assessment refers to evaluating individual student performance.) Assessing only the outcomes of a pair…

  17. Stereo Pair: Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The

  18. Stereo Pair: Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The

  19. Stereo Pair, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, at Los Menucos, Argentina shows remnants of relatively young volcanoes built upon an eroded plain of much older and contorted volcanic, granitic, and sedimentary rocks. The large purple, brown, and green 'butterfly' pattern is a single volcano that has been deeply eroded. Large holes on the volcano's flanks indicate that they may have collapsed soon after eruption, as fluid molten rock drained out from under its cooled and solidified outer shell. At the upper left, a more recent eruption occurred and produced a small volcanic cone and a long stream of lava, which flowed down a gully. At the top of the image, volcanic intrusions permeated the older rocks resulting in a chain of small dark volcanic peaks. At the top center of the image, two halves of a tan ellipse pattern are offset from each other. This feature is an old igneous intrusion that has been split by a right-lateral fault. The apparent offset is about 6.6 kilometers (4 miles). Color, tonal, and topographic discontinuities reveal the fault trace as it extends across the image to the lower left. However, young unbroken basalt flows show that the fault has not been active recently.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive

  20. Homologous pairing and the role of pairing centers in meiosis.

    PubMed

    Tsai, Jui-He; McKee, Bruce D

    2011-06-15

    Homologous pairing establishes the foundation for accurate reductional segregation during meiosis I in sexual organisms. This Commentary summarizes recent progress in our understanding of homologous pairing in meiosis, and will focus on the characteristics and mechanisms of specialized chromosome sites, called pairing centers (PCs), in Caenorhabditis elegans and Drosophila melanogaster. In C. elegans, each chromosome contains a single PC that stabilizes chromosome pairing and initiates synapsis of homologous chromosomes. Specific zinc-finger proteins recruited to PCs link chromosomes to nuclear envelope proteins--and through them to the microtubule cytoskeleton--thereby stimulating chromosome movements in early prophase, which are thought to be important for homolog sorting. This mechanism appears to be a variant of the 'telomere bouquet' process, in which telomeres cluster on the nuclear envelope, connect chromosomes through nuclear envelope proteins to the cytoskeleton and lead chromosome movements that promote homologous synapsis. In Drosophila males, which undergo meiosis without recombination, pairing of the largely non-homologous X and Y chromosomes occurs at specific repetitive sequences in the ribosomal DNA. Although no other clear examples of PC-based pairing mechanisms have been described, there is evidence for special roles of telomeres and centromeres in aspects of chromosome pairing, synapsis and segregation; these roles are in some cases similar to those of PCs.

  1. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  2. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  3. Subunit-selective role of the M3 transmembrane domain of the nicotinic acetylcholine receptor in channel gating.

    PubMed

    De Rosa, María José; Corradi, Jeremías; Bouzat, Cecilia

    2008-02-01

    The nicotinic acetylcholine receptor (AChR) can be either hetero-pentameric, composed of alpha and non-alpha subunits, or homo-pentameric, composed of alpha7 subunits. To explore the subunit-selective contributions of transmembrane domains to channel gating we analyzed single-channel activity of chimeric muscle AChRs. We exchanged M3 between alpha1 and epsilon or alpha7 subunits. The replacement of M3 in alpha1 by epsilonM3 significantly alters activation properties. Channel activity appears as bursts of openings whose durations are 20-fold longer than those of wild-type AChRs. In contrast, 7-fold briefer openings are observed in AChRs containing the reverse epsilon chimeric subunit. The duration of the open state decreases with the increase in the number of alpha1M3 segments, indicating additive contributions of M3 of all subunits to channel closing. Each alpha1M3 segment decreases the energy barrier of the closing process by approximately 0.8 kcal/mol. Partial chimeric subunits show that small stretches of the M3 segment contribute additively to the open duration. The replacement of alpha1 sequence by alpha7 in M3 leads to 3-fold briefer openings whereas in M1 it leads to 10-fold prolonged openings, revealing that the subunit-selective role is unique to each transmembrane segment.

  4. M3 Macrophages Stop Division of Tumor Cells In Vitro and Extend Survival of Mice with Ehrlich Ascites Carcinoma.

    PubMed

    Kalish, Sergey; Lyamina, Svetlana; Manukhina, Eugenia; Malyshev, Yuri; Raetskaya, Anastasiya; Malyshev, Igor

    2017-01-26

    BACKGROUND M1 macrophages target tumor cells. However, many tumors produce anti-inflammatory cytokines, which reprogram the anti-tumor M1 macrophages into the pro-tumor M2 macrophages. We have hypothesized that the problem of pro-tumor macrophage reprogramming could be solved by using a special M3 switch phenotype. The M3 macrophages, in contrast to the M1 macrophages, should respond to anti-inflammatory cytokines by increasing production of pro-inflammatory cytokines to retain its anti-tumor properties. Objectives of the study were to form an M3 switch phenotype in vitro and to evaluate the effect of M3 macrophages on growth of Ehrlich ascites carcinoma (EAC) in vitro and in vivo. MATERIAL AND METHODS Tumor growth was initiated by an intraperitoneal injection of EAC cells into C57BL/6J mice. RESULTS 1) The M3 switch phenotype can be programed by activation of M1-reprogramming pathways with simultaneous inhibition of the M2 phenotype transcription factors, STAT3, STAT6, and/or SMAD3. 2) M3 macrophages exerted an anti-tumor effect both in vitro and in vivo, which was superior to anti-tumor effects of cisplatin or M1 macrophages. 3) The anti-tumor effect of M3 macrophages was due to their anti-proliferative effect. CONCLUSIONS Development of new biotechnologies for restriction of tumor growth using in vitro reprogrammed M3 macrophages is very promising.

  5. Chemokine Binding Protein M3 of Murine Gammaherpesvirus 68 Modulates the Host Response to Infection in a Natural Host

    PubMed Central

    Hughes, David J.; Kipar, Anja; Leeming, Gail H.; Bennett, Elaine; Howarth, Deborah; Cummerson, Joanne A.; Papoula-Pereira, Rita; Flanagan, Brian F.; Sample, Jeffery T.; Stewart, James P.

    2011-01-01

    Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology. PMID:21445235

  6. M3 Macrophages Stop Division of Tumor Cells In Vitro and Extend Survival of Mice with Ehrlich Ascites Carcinoma

    PubMed Central

    Kalish, Sergey; Lyamina, Svetlana; Manukhina, Eugenia; Malyshev, Yuri; Raetskaya, Anastasiya; Malyshev, Igor

    2017-01-01

    Background M1 macrophages target tumor cells. However, many tumors produce anti-inflammatory cytokines, which reprogram the anti-tumor M1 macrophages into the pro-tumor M2 macrophages. We have hypothesized that the problem of pro-tumor macrophage reprogramming could be solved by using a special M3 switch phenotype. The M3 macrophages, in contrast to the M1 macrophages, should respond to anti-inflammatory cytokines by increasing production of pro-inflammatory cytokines to retain its anti-tumor properties. Objectives of the study were to form an M3 switch phenotype in vitro and to evaluate the effect of M3 macrophages on growth of Ehrlich ascites carcinoma (EAC) in vitro and in vivo. Material/Methods Tumor growth was initiated by an intraperitoneal injection of EAC cells into C57BL/6J mice. Results 1) The M3 switch phenotype can be programed by activation of M1-reprogramming pathways with simultaneous inhibition of the M2 phenotype transcription factors, STAT3, STAT6, and/or SMAD3. 2) M3 macrophages exerted an anti-tumor effect both in vitro and in vivo, which was superior to anti-tumor effects of cisplatin or M1 macrophages. 3) The anti-tumor effect of M3 macrophages was due to their anti-proliferative effect. Conclusions Development of new biotechnologies for restriction of tumor growth using in vitro reprogrammed M3 macrophages is very promising. PMID:28123171

  7. 12 CFR Appendix M3 to Part 226 - Sample Calculations of Generic Repayment Estimates and Actual Repayment Disclosures

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Sample Calculations of Generic Repayment Estimates and Actual Repayment Disclosures M3 Appendix M3 to Part 226 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z) Pt...

  8. Locomotion gaits of a rotating cylinder pair

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.

    2015-11-01

    Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.

  9. Resonant tunneling of fluctuation Cooper pairs

    DOE PAGES

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool formore » direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.« less

  10. Soluble M3 proteins of murine gammaherpesviruses 68 and 72 expressed in Escherichia coli: analysis of chemokine-binding properties.

    PubMed

    Matúšková, R; Pančík, P; Štibrániová, I; Belvončíková, P; Režuchová, I; Kúdelová, M

    2015-12-01

    M3 protein of murine gammaherpesvirus 68 (MHV-68) was identified as a viral chemokine-binding protein 3 (vCKBP-3) capable to bind a broad spectrum of chemokines and their receptors. During both acute and latent infection MHV-68 M3 protein provides a selective advantage for the virus by inhibiting the antiviral and inflammatory response. A unique mutation Asp307Gly was identified in the M3 protein of murine gammaherpesvirus 72 (MHV-72), localized near chemokine-binding domain. Study on chemokine-binding properties of MHV-72 M3 protein purified from medium of infected cells implied reduced binding to some chemokines when compared to MHV-68 M3 protein. It was suggested that the mutation in the M3 protein might be involved in the attenuation of immune response to infection with MHV-72. Recently, Escherichia coli cells were used to prepare native recombinant M3 proteins of murine gammaherpesviruses 68 and 72 (Pančík et al., 2013). In this study, we assessed the chemokine-binding properties of three M3 proteins prepared in E. coli Rosetta-gami 2 (DE3) cells, the full length M3 protein of both MHV-68 and MHV-72 and MHV-68 M3 protein truncated in the signal sequence (the first 24 aa). They all displayed binding activity to human chemokines CCL5 (RANTES), CXCL8 (IL-8), and CCL3 (MIP-1α). The truncated MHV-68 M3 protein had more than twenty times reduced binding activity to CCL5, but only about five and three times reduced binding to CXCL8 and CCL3 when compared to its full length counterpart. Binding of the full length MHV-72 M3 protein to all chemokines was reduced when compared to MHV-68 M3 protein. Its binding to CCL5 and CCL3 was reduced over ten and seven times. However, its binding to CXCL8 was only slightly reduced (64.8 vs 91.8%). These data implied the significance of the signal sequence and also of a single mutation (at aa 307) for efficient M3 protein binding to some chemokines.

  11. Spectral Signature of Lunar Pyroclastic Deposits in Moon Mineralogy (M3) data

    NASA Astrophysics Data System (ADS)

    Besse, Sebastien; Jawin, Erica; Mazrouei, Sara; Gaddis, Lisa; Sunshine, Jessica

    2013-04-01

    Over 100 pyroclastic deposits, or Dark Mantle Deposits (DMDs) have been identified on the Moon, with areas ranging from 10 km2 to over 50,000 km2. These regions of low-albedo, fine-grained material can vary significantly in composition. Larger DMDs such as those at Taurus-Littrow and Mare Vaporum are known to contain iron- and titanium-rich glass and devitrified beads, while smaller DMDs are typically comprised of iron-bearing mafic minerals such as pyroxene and olivine in juvenile and non-juvenile volcanic components. More recently at the large DMD in Sinus Aestuum, chromite spinel has been discovered. In this project we use spectroscopic data from the Moon Mineralogy Mapper (M3) to characterize the composition of various pyroclastic deposits across the lunar nearside. Using these data, we characterized the 1- and 2 μm mafic absorption bands for each pyroclastic region of interest, and analyzed the variation in composition between all regions. DMD compositional variations will help us to understand both the origin and mode of emplacement of these deposits. The four regions of interest chosen for this study include pyroclastic deposits in J. Herschel crater (36.6°W, 61.7°N), Alphonsus crater (3°W, 13.6°S), near the Apollo 17 landing site in the Taurus-Littrow valley (30.7°E, 20.2°N), and western Mare Vaporum (7.9°E, 10°N). There is complete or near-complete coverage of M3 data in these regions, including coverage in orbital periods OP1A, OP1B, OP2A, OP2C1, and OP2C3. Additionally, there is coverage over all four regions of interest in OP1B. This configuration allows studies of the DMDs with the same resolution and detector temperature, factors which can drastically change the spectral behavior of the M3 data. Several color composite images were created to highlight surface composition and to characterize the four pyroclastic deposits. The pyroclastic deposits within a given region of interest share similar spectral characteristics, even at sites where the

  12. CH5M3D: an HTML5 program for creating 3D molecular structures

    PubMed Central

    2013-01-01

    Background While a number of programs and web-based applications are available for the interactive display of 3-dimensional molecular structures, few of these provide the ability to edit these structures. For this reason, we have developed a library written in JavaScript to allow for the simple creation of web-based applications that should run on any browser capable of rendering HTML5 web pages. While our primary interest in developing this application was for educational use, it may also prove useful to researchers who want a light-weight application for viewing and editing small molecular structures. Results Molecular compounds are drawn on the HTML5 Canvas element, with the JavaScript code making use of standard techniques to allow display of three-dimensional structures on a two-dimensional canvas. Information about the structure (bond lengths, bond angles, and dihedral angles) can be obtained using a mouse or other pointing device. Both atoms and bonds can be added or deleted, and rotation about bonds is allowed. Routines are provided to read structures either from the web server or from the user’s computer, and creation of galleries of structures can be accomplished with only a few lines of code. Documentation and examples are provided to demonstrate how users can access all of the molecular information for creation of web pages with more advanced features. Conclusions A light-weight (≈ 75 kb) JavaScript library has been made available that allows for the simple creation of web pages containing interactive 3-dimensional molecular structures. Although this library is designed to create web pages, a web server is not required. Installation on a web server is straightforward and does not require any server-side modules or special permissions. The ch5m3d.js library has been released under the GNU GPL version 3 open-source license and is available from http://sourceforge.net/projects/ch5m3d/. PMID:24246004

  13. The BIOPAN experiment MARSTOX II of the FOTON M-3 mission

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Moeller, R.; Rabbow, E.; Panitz, C.; Horneck, G.; Meyer, C.; Lammer, H.; Douki, T.; Cadet, J.

    2008-09-01

    The experiment MARSTOX II on FOTON M-3 mission (September 14 - 26, 2007) was a further step in the study of the Responses of Organisms to the Martian Environment (ROME) which already started with first ground-based experiments in Mars simulation chambers and with the space experiment MARSTOX I, flown in 2005 in the ESA facility BIOPAN (Fig. 1) on FOTON M-2. The survivability of bacterial spores of B. subtilis, a well-characterized model system for highly resistant microorganisms, was investigated under the extreme environmental conditions as they exist on the surface of Mars. By use of exterrestrial UV radiation and cut-off filters the photoprotection and potential UV-phototoxicity of different minerals of the Martian soil were investigated.In MARSTOX II two further aspects were addressed (i) the influence of different concentrations of dust in the Martian atmosphere, which change the solar irradiance on the surface significantly compared to vacuum exposure under the same conditions (experiment parts 'DUST MARS' and 'DUST SPACE'), and (ii) the survivability of spores under martian atmosphere and pressure exposed to a mars-like spectral irradiance compared to vacuum exposure under the same conditions (experiment parts 'MIXED MARS' and 'MIXED SPACE') (Fig. 2 and 3). After exposure to space during the FOTON M-3 mission the sample analysis was performed at CEA in Grenoble, F, and at DLR in Cologne, D, together with parallel samples from the corresponding ground control experiment performed in the space simulation facilities at DLR. As biological endpoints in these investigations survival and UV-induced DNAphotoproducts were analysed.From the results of MARSTOX II the following conclusions can be drawn: (i) Spores mixed with martian soil analogue are protected only to a low degree against UV radiation. The protective effect of several defined layers of spores mixed with Martian soil analogue were quantified. (ii) The two investigated martian soil analogues, MRS07 (47

  14. Insight into the pseudo π-hole interactions in the M3H6(NCF)n (M = C, Si, Ge, Sn, Pb; n = 1, 2, 3) complexes.

    PubMed

    Li, Wei; Zeng, Yanli; Li, Xiaoyan; Sun, Zheng; Meng, Lingpeng

    2016-09-21

    For cyclopropane and its derivatives M3H6 (M = C, Si, Ge, Sn, Pb), "pseudo π-hole" regions above and below the M-M-M three-membered ring have been discovered, and pseudo π-hole interactions between M3H6 and F-CN have been designed and investigated by MP2/aug-cc-pVTZ and MP2/aug-cc-pVTZ-pp calculations. To investigate the enhancing effects of FN halogen bonds on the pseudo π-hole interactions, the termolecular and tetramolecular complexes M3H6(NCF)n (n = 2, 3) were constructed. Energy decomposition analysis shows that the dispersion term contributes the most among the three attractive components in the C3H6(NCF)n (n = 1, 2, 3) complexes while in the Si3H6(NCF)n and Ge3H6(NCF)n complexes, the electrostatic term has the largest contribution. The electrostatic and polarization energies have more effect than the dispersion energy for the enhancement of the FN halogen bond on the pseudo π-hole interactions. With the increase in the number of NCF units from 1 to 3, the VS,min values outside the nitrogen atom of NCF become increasingly negative, the electric field of the lone pair of nitrogen becomes greater and causes a further increase of electron density outside the nitrogen atom and a further decrease of electron density outside the pseudo π-hole region, resulting in a stronger pseudo π-hole interaction.

  15. Electron-Positron Pair Production in the Deep Quantum Regime

    SciTech Connect

    Thompson, Kathleen A

    1998-10-06

    Electron-positron pair production via real and virtual photons is significant to the design of linear colliders, especially in the deep quantum regime (i.e., beamstrahlung parameter Upsilon >> 1). In this regime, pair production via a virtual photon (the trident process) can become comparable in rate to pair production via a real beamstrahlung photon. We derive characteristics of the e+e- pairs produced via the trident process, using the quasi-classical approach of Baier, Katkov, and Strakhovenko. We have also examined some of the implications of e+e- pair production for the design of very high energy (several TeV in the center of mass) linear colliders in the deep quantum regime.

  16. Discovery of a wide planetary-mass companion to the young M3 star GU PSC

    SciTech Connect

    Naud, Marie-Eve; Artigau, Étienne; Malo, Lison; Albert, Loïc; Doyon, René; Lafrenière, David; Gagné, Jonathan; Boucher, Anne; Saumon, Didier; Morley, Caroline V.; Allard, France; Homeier, Derek; Beichman, Charles A.; Gelino, Christopher R.

    2014-05-20

    We present the discovery of a comoving planetary-mass companion ∼42'' (∼2000 AU) from a young M3 star, GU Psc, a likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i – z color (>3.5) through a survey made with Gemini-S/GMOS. Follow-up Canada-France-Hawaii Telescope/WIRCam near-infrared (NIR) imaging, Gemini-N/GNIRS NIR spectroscopy and Wide-field Infrared Survey Explorer photometry indicate a spectral type of T3.5 ± 1 and reveal signs of low gravity which we attribute to youth. Keck/Adaptive Optics NIR observations did not resolve the companion as a binary. A comparison with atmosphere models indicates T {sub eff} = 1000-1100 K and log g = 4.5-5.0. Based on evolution models, this temperature corresponds to a mass of 9-13 M {sub Jup} for the age of ABDMG (70-130 Myr). The relatively well-constrained age of this companion and its very large angular separation to its host star will allow its thorough characterization and will make it a valuable comparison for planetary-mass companions that will be uncovered by forthcoming planet-finder instruments such as Gemini Planet Imager and SPHERE 9.

  17. Discovery of a Wide Planetary-mass Companion to the Young M3 Star GU Psc

    NASA Astrophysics Data System (ADS)

    Naud, Marie-Eve; Artigau, Étienne; Malo, Lison; Albert, Loïc; Doyon, René; Lafrenière, David; Gagné, Jonathan; Saumon, Didier; Morley, Caroline V.; Allard, France; Homeier, Derek; Beichman, Charles A.; Gelino, Christopher R.; Boucher, Anne

    2014-05-01

    We present the discovery of a comoving planetary-mass companion ~42'' (~2000 AU) from a young M3 star, GU Psc, a likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i - z color (>3.5) through a survey made with Gemini-S/GMOS. Follow-up Canada-France-Hawaii Telescope/WIRCam near-infrared (NIR) imaging, Gemini-N/GNIRS NIR spectroscopy and Wide-field Infrared Survey Explorer photometry indicate a spectral type of T3.5 ± 1 and reveal signs of low gravity which we attribute to youth. Keck/Adaptive Optics NIR observations did not resolve the companion as a binary. A comparison with atmosphere models indicates T eff = 1000-1100 K and log g = 4.5-5.0. Based on evolution models, this temperature corresponds to a mass of 9-13 M Jup for the age of ABDMG (70-130 Myr). The relatively well-constrained age of this companion and its very large angular separation to its host star will allow its thorough characterization and will make it a valuable comparison for planetary-mass companions that will be uncovered by forthcoming planet-finder instruments such as Gemini Planet Imager and SPHERE.

  18. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    PubMed Central

    Martinez-Archundia, Marlet; Cordomi, Arnau; Garriga, Pere; Perez, Juan J.

    2012-01-01

    The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC) and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS). Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand. PMID:22500107

  19. Late-Onset Inadvertent Bleb Formation following Pars Plana M3 Molteno Implant Tube Obstruction

    PubMed Central

    Abdul-Rahman, Anmar M.; Molteno, Anthony

    2017-01-01

    Purpose To report a case of inadvertent bleb formation presenting 18 months after pars plana M3 Molteno implant tube obstruction in a patient with mixed mechanism glaucoma. Materials and Methods An 84-year-old Caucasian male with mixed mechanism glaucoma underwent slit-lamp examination, gonioscopy, colour anterior segment photography and anterior segment optical coherence tomography (AS-OCT). Results An inadvertent bleb developed 18 months after pars plana implant tube re-positioning with a 6/0 Vicryl tie ligature. The bleb was located in the area anterior to the implant plate; it was characterised by a thin, transparent, avascular and multi-cystic wall, with a visible stoma at the posterior edge of the bleb. The bleb was functioning as demonstrated by an intraocular pressure of 6 mm Hg at presentation and a punctate fluorescein uptake pattern of the bleb wall. The bleb over the plate of the Molteno implant was non-functioning, likely secondary to tube obstruction by vitreous in the early postoperative period. AS-OCT showed a tract from the anterior chamber commencing at an entry wound through a corneal tunnel to the posterior stoma at the base of the inadvertent bleb. Conclusions We hypothesise that the pathophysiologic factors resulting in an inadvertent bleb are a result of a combination of apoptosis, late-onset wound dehiscence and internal gaping of a centrally placed corneal wound. In addition, aqueous hydrodynamic factors may play a role. PMID:28203200

  20. Modeling of lithium granule injection in NSTX using M3D-C1

    DOE PAGES

    Fil, A.; Kolemen, E.; Ferraro, N.; ...

    2017-04-06

    In this paper, we present simulations of pedestal control by lithium granule injection (LGI) in NSTX. A model for small granule ablation has been implemented in the M3D-C1 code (Jardin et al 2012 Comput. Sci. Discovery 5 014002), allowing the simulation of realistic lithium granule injections. 2D and 3D simulations of Li injections in NSTX H-mode plasmas are performed and the effect of granule size, injection angle and velocity on the pedestal gradient increase is studied. The amplitude of the local pressure perturbation caused by the granules is found to be highly dependent on the solid granule size. Adjusting themore » granule injection velocity allows one to inject more particles at the pedestal top. 3D simulations show the destabilization of high order MHD modes whose amplitude is directly linked to the localized pressure perturbation, which is found to depend on the toroidal localization of the granule density source.« less

  1. Role of MHC class Ib molecule, H2-M3 in host immunity against tuberculosis.

    PubMed

    Mir, Shabir Ahmad; Sharma, Sadhna

    2013-08-20

    The MHC class I family comprises both classical (class Ia) and non-classical (class Ib) members. While the prime function of classical MHC class I molecules (MHC class Ia) is to present peptide antigens to pathogen-specific cytotoxic T cells, non-classical MHC-I (MHC class Ib) antigens perform diverse array of functions in both innate and adaptive immunity. Vaccines against intracellular pathogens such as Mycobacterium tuberculosis need to induce strong cellular immune responses. Recent studies have shown that MHC class I molecules play an important role in the protective immune response to M. tuberculosis infection. Both MHC Ia-restricted and MHC class Ib-restricted M. tuberculosis -reactive CD8(+) T cells have been identified in humans and mice, but their relative contributions to immunity is still uncertain. Unlike MHC class Ia-restricted CD8(+) T cells, MHC class Ib-restricted CD8(+) T cells are constitutively activated in naive animals and respond rapidly to infection challenge, hence filling the temporal gap between innate and adaptive immunity. The present review article summarizes the general host immunity against M. tuberculosis infection highlighting the possible role of MHC class Ib molecule, H2-M3 and their ligands (N-formylated peptides) in protection against tuberculosis.

  2. [Rna content of gerbil hepatocytes after the flight aboard space platform Foton-M3].

    PubMed

    Atiashkin, D A; Bykov, E G; Il'in, E A; Pashkov, A N

    2010-01-01

    The paper compares and contrasts the results of measuring the hepatocyte cytoplasm area and RNA content in 35 gerbils in three series of experiments, i.e. the vivarium control, modeled space flight (synchronous control) and exposure to the factors of 12-d Foton-M3 orbital flight. Central, intermediate and peripheral zones of hepatic lobes were subjected to histological and histochemical analyses to measure the hepatocyte cytoplasm area; the RNA content was determined from the level of cytoplasm basophilia after azure staining. Cytometric and cytophotometric investigations were performed using image analyzer Video-7-Test-Morpho. In the vivarium animals, hepatocytes with the largest cytoplasm localized predominantly in the intermediate and central zones of the lobes. Judging from the results of microdensitometry, the RNA content was particularly high in binucleate hepatocytes of the intermediate zone. In the synchronous control, hepatocytes tended to grow in size, in the peripheral zone specifically, whereas RNA content was largely equal no matter hepatocyte topography. After space flight, cytoplasm enlargement transcended this process in the vivarium animals. The cytoplasm RNA content along the entire liver parenchyma made a significant decrease equally as compared with the vivarium and synchronous control animals.

  3. [Glycogen content in gerbil's liver following the spacecraft Foton-M3 mission].

    PubMed

    Atiakshin, D A; Bykov, E G; Il'in, E A; Pashkov, A N

    2009-01-01

    Glycogen cytochemistry and distribution in hepatocytes of the classic liver lobules were studied in three groups of gerbils Meriones unguiculatus: vivarium, synchronous control and flown in the 12-d Foton-M3 mission. The control animals were shown to have the central glycogen distribution with a large pool of polysaccharides found in hepatocytes of the pericentral and intermediate lobules and a small pool in the periportal area. Glycogen in hepatocyte plasm was within the physiological norm in the alpha- and beta-granules, typically localized on the cell periphery. Exposure to the spaceflight conditions decreased significantly glycogen concentrations in each functional region of the hepatic lobules and reduced the gradient of polysaccharide distribution from the portal triads toward the central vein. In parallel, high glycogen heterogeneity formed in adjacent hepatocytes and loci. The presence of glycosomes evidenced disturbance of carbohydrates metabolism. In addition, intracellular topography of glycogen granules in cytoplasm was altered. Trends of glycogen in gerbils of the synchronous control were similar to the space flown animals but much less pronounced.

  4. [Jejunum intersticium in mongolian gerbils after the flight on spacecraft Foton-M3].

    PubMed

    Atiashkin, D A; Bykov, É G; Il'in, E A; Pashkov, A N

    2012-01-01

    Methods of light optical microscopy were used to explore histoarchitectonics, topography and tinctorial properties of the extracellular phase of fibers of jejunum wall intersticium in Mongolian gerbils following 12-day orbital flight aboard Foton-M3, ground-based simulation of the spaceflight factors in the KONTUR-L facility, and in the group of biological control Postflight destructive changes were found in reticulin fibers (type-III collagen) of villi stroma, intercrypt intersticium and submucosa. Local acidophilia and fiber homogenization formed in type I collagen present in the intestinal subserous layer, muscular layers endomysium and submucose against the background of progressing edema and arterial, venous plethora and lymphostasis. Elastic component of the intersticium was disarranged in the structures of internal elastic membrane of submucous vessels, fragmented and partly reduced. Simulation of the orbital factors, except for microgravity, in the KONTUR-L facility called forth similar, although less often and diffuse, changes in intersticium fibers. The results of examination of intestinal intersticium fibers in the vivarium control gerbils discovered expressed species characters that should be taken into account by investigators, especially when comparing with data obtained from other animal species.

  5. Pairing Correlations at High Spins

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.

    The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.

  6. Electron positron pair production at RHIC and LHC

    SciTech Connect

    Cem Gueclue, M.

    2008-11-11

    The STAR Collaboration at the Relativistic Heavy Ion Collider present data on electron-positron pair production accompanied by nuclear breakup at small impact parameters where the simultaneous excitation of the two ions, mainly the giant dipole resonance GDR, can occur. We calculate the electron-positron pair production cross section relevant for the STAR experimental setup, and compare our results with the other calculations. We have also predictions for the LHC energies.

  7. The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner.

    PubMed

    Poulin, Benoit; Butcher, Adrian; McWilliams, Phillip; Bourgognon, Julie-Myrtille; Pawlak, Robert; Kong, Kok Choi; Bottrill, Andrew; Mistry, Sharad; Wess, Jürgen; Rosethorne, Elizabeth M; Charlton, Steven J; Tobin, Andrew B

    2010-05-18

    Degeneration of the cholinergic system is considered to be the underlying pathology that results in the cognitive deficit in Alzheimer's disease. This pathology is thought to be linked to a loss of signaling through the cholinergic M(1)-muscarinic receptor subtype. However, recent studies have cast doubt on whether this is the primary receptor mediating cholinergic-hippocampal learning and memory. The current study offers an alternative mechanism involving the M(3)-muscarinic receptor that is expressed in numerous brain regions including the hippocampus. We demonstrate here that M(3)-muscarinic receptor knockout mice show a deficit in fear conditioning learning and memory. The mechanism used by the M(3)-muscarinic receptor in this process involves receptor phosphorylation because a knockin mouse strain expressing a phosphorylation-deficient receptor mutant also shows a deficit in fear conditioning. Consistent with a role for receptor phosphorylation, we demonstrate that the M(3)-muscarinic receptor is phosphorylated in the hippocampus following agonist treatment and following fear conditioning training. Importantly, the phosphorylation-deficient M(3)-muscarinic receptor was coupled normally to G(q/11)-signaling but was uncoupled from phosphorylation-dependent processes such as receptor internalization and arrestin recruitment. It can, therefore, be concluded that M(3)-muscarinic receptor-dependent learning and memory depends, at least in part, on receptor phosphorylation/arrestin signaling. This study opens the potential for biased M(3)-muscarinic receptor ligands that direct phosphorylation/arrestin-dependent (non-G protein) signaling as being beneficial in cognitive disorders.

  8. Neutron-proton pairing correlations in odd mass systems

    SciTech Connect

    Fellah, M. Allal, N. H.; Oudih, M. R.

    2015-03-30

    An expression of the ground-state which describes odd mass systems within the BCS approach in the isovector neutron-proton pairing case is proposed using the blocked level technique. The gap equations as well as the energy expression are then derived. It is shown that they exactly generalize the expressions obtained in the pairing between like-particles case. The various gap parameters and the energy are then numerically studied as a function of the pairing-strength within the schematic one-level model.

  9. Altered ultrastructure, density and cathepsin K expression in bone of female muscarinic acetylcholine receptor M3 knockout mice.

    PubMed

    Lips, Katrin Susanne; Kneffel, Mathias; Willscheid, Fee; Mathies, Frank Martin; Kampschulte, Marian; Hartmann, Sonja; Panzer, Imke; Dürselen, Lutz; Heiss, Christian; Kauschke, Vivien

    2015-11-01

    High frequency of osteoporosis is found in postmenopausal women where several molecular components were identified to be involved in bone loss that subsequently leads to an increased fracture risk. Bone loss has already been determined in male mice with gene deficiency of muscarinic acetylcholine receptor M3 (M3R-KO). Here we asked whether bone properties of female 16-week old M3R-KO present similarities to osteoporotic bone loss by means of biomechanical, radiological, electron microscopic, cell- and molecular biological methods. Reduced biomechanical strength of M3R-KO correlated with cortical thickness and decreased bone mineral density (BMD). Femur and vertebrae of M3R-KO demonstrated a declined trabecular bone volume, surface, and a higher trabecular pattern factor and structure model index (SMI) compared to wild type (WT) mice. In M3R-KO, the number of osteoclasts as well as the cathepsin K mRNA expression was increased. Osteoclasts of M3R-KO showed an estimated increase in cytoplasmic vesicles. Further, histomorphometrical analysis revealed up-regulation of alkaline phosphatase. Osteoblasts and osteocytes showed a swollen cytoplasm with an estimated increase in the amount of rough endoplasmatic reticulum and in case of osteocytes a reduced pericellular space. Thus, current results on bone properties of 16-week old female M3R-KO are related to postmenopausal osteoporotic phenotype. Stimulation and up-regulation of muscarinic acetylcholine receptor subtype M3 expression in osteoblasts might be a possible new option for prevention and therapy of osteoporotic fractures. Pharmacological interventions and the risk of side effects have to be determined in upcoming studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Pair correlation function for spin glasses

    NASA Astrophysics Data System (ADS)

    Fernández, Julio F.; Alonso, Juan J.

    2012-10-01

    We extract a pair correlation function (PCF) from probability distributions of the spin-overlap parameter q. The distributions come from Monte Carlo simulations. A measure, w, of the thermal fluctuations of magnetic patterns follows from the PCFs. We also obtain rms deviations (over different system samples) δp away from average probabilities for q. For the linear system sizes L that we have studied, w and δp are independent of L in the Edwards-Anderson model but scale as 1/L and L, respectively, in the Sherrington-Kirkpatrick model.

  11. Molecular associations from ab initio pair potentials

    NASA Astrophysics Data System (ADS)

    Iglesias, E.; Sordo, T. L.; Sordo, J. A.

    1991-12-01

    A method of building up stable molecular associations by using pair potentials from ab initio calculations is presented. The Matsuoka-Clementi-Yoshimine potential has been chosen to emulate the water-water interactions while 1-6-12 potentials are used to compute both solute-solvent and solute-solute interactions. Parameters for neutral-amino-acid-water and neutral- amino-acid-neutral-amino-acid interactions are provided by the program. Supermolecules are constructed by minimization of the interaction energy of the molecules involved. Both steepest-decent and Fletcher-Powell algorithms are available to carry out such a minimization.

  12. Extension of RAPTOR-M3G to r-θ-z Geometry for Use in Reactor Dosimetry Applications

    NASA Astrophysics Data System (ADS)

    Hunter, Melissa A.; Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3-D Geometries) is a new deterministic radiation transport code that was originally developed for x-y-z geometry. The development of the r-θ-z version of RAPTOR-M3G and its application to determine ex-vessel neutron dosimetry responses in the cavity of a typical 2-loop pressurized water reactor is presented. The neutron dosimetry responses determined from RAPTOR-M3G and TORT 3-D r-θ-z calculations are compared to actual measured responses.

  13. Remote compositional analysis of lunar olivine-rich lithologies with Moon Mineralogy Mapper (M3) spectra

    USGS Publications Warehouse

    Isaacson, P.J.; Pieters, C.M.; Besse, S.; Clark, R.N.; Head, J.W.; Klima, R.L.; Mustard, J.F.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; Taylor, L.A.; Thaisen, K.G.; Tompkins, S.

    2011-01-01

    A systematic approach for deconvolving remotely sensed lunar olivine-rich visible to near-infrared (VNIR) reflectance spectra with the Modified Gaussian Model (MGM) is evaluated with Chandrayaan-1 Moon Mineralogy Mapper (M 3) spectra. Whereas earlier studies of laboratory reflectance spectra focused only on complications due to chromite inclusions in lunar olivines, we develop a systematic approach for addressing (through continuum removal) the prominent continuum slopes common to remotely sensed reflectance spectra of planetary surfaces. We have validated our continuum removal on a suite of laboratory reflectance spectra. Suites of olivine-dominated reflectance spectra from a small crater near Mare Moscoviense, the Copernicus central peak, Aristarchus, and the crater Marius in the Marius Hills were analyzed. Spectral diversity was detected in visual evaluation of the spectra and was quantified using the MGM. The MGM-derived band positions are used to estimate the olivine's composition in a relative sense. Spectra of olivines from Moscoviense exhibit diversity in their absorption features, and this diversity suggests some variation in olivine Fe/Mg content. Olivines from Copernicus are observed to be spectrally homogeneous and thus are predicted to be more compositionally homogeneous than those at Moscoviense but are of broadly similar composition to the Moscoviense olivines. Olivines from Aristarchus and Marius exhibit clear spectral differences from those at Moscoviense and Copernicus but also exhibit features that suggest contributions from other phases. If the various precautions discussed here are weighed carefully, the methods presented here can be used to make general predictions of absolute olivine composition (Fe/Mg content). Copyright ?? 2011 by the American Geophysical Union.

  14. Intracellular calcium in canine cultured tracheal smooth muscle cells is regulated by M3 muscarinic receptors.

    PubMed Central

    Yang, C. M.; Yo, Y. L.; Wang, Y. Y.

    1993-01-01

    1. The regulation of cytosolic Ca2+ concentrations ([Ca2+]i) during exposure to carbachol was measured directly in canine cultured tracheal smooth muscle cells (TSMCs) loaded with fura-2. Stimulation of muscarinic cholinoceptors (muscarinic AChRs) by carbachol produced a dose-dependent rise in [Ca2+]i which was followed by a stable plateau phase. The EC50 values of carbachol for the peak and sustained plateau responses were 0.34 and 0.33 microM, respectively. 2. Atropine (10 microM) prevented all the responses to carbachol, and when added during a response to carbachol, significantly, but not completely decreased [Ca2+]i within 5 s. Therefore, the changes in [Ca2+]i by carbachol were mediated through the muscarinic AChRs. 3. AF-DX 116 (a selective M2 antagonist) and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, a selective M3 antagonist) inhibited the carbachol-stimulated increase in [Ca2+]i with pKB values of 6.4 and 9.4, respectively, corresponding to low affinity for AF-DX 119 and high affinity for 4-DAMP in antagonizing this response. 4. The plateau elevation of [Ca2+]i was dependent on the presence of external Ca2+. Removal of Ca2+ by the addition of 2 mM EGTA caused the [Ca2+]i to decline rapidly to the resting level. In the absence of external Ca2+, only an initial transient peak of [Ca2+]i was seen which then declined to the resting level; the sustained elevation of [Ca2+]i could then be evoked by the addition of Ca2+ (1.8 mM) in the continued presence of carbachol.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8298822

  15. MAGNETIC AND DYNAMICAL PHOTOSPHERIC DISTURBANCES OBSERVED DURING AN M3.2 SOLAR FLARE

    SciTech Connect

    Kuckein, C.; Collados, M.; Sainz, R. Manso

    2015-02-01

    This Letter reports on a set of full-Stokes spectropolarimetric observations in the near-infrared He i 10830 Å spectral region covering the pre-flare, flare, and post-flare phases of an M3.2 class solar flare. The flare originated on 2013 May 17 and belonged to active region NOAA 11748. We detected strong He i 10830 Å emission in the flare. The red component of the He i triplet peaks at an intensity ratio to the continuum of about 1.86. During the flare, He i Stokes V is substantially larger and appears reversed compared to the usually larger Si i Stokes V profile. The photospheric Si i inversions of the four Stokes profiles reveal the following: (1) the magnetic field strength in the photosphere decreases or is even absent during the flare phase, as compared to the pre-flare phase. However, this decrease is not permanent. After the flare, the magnetic field recovers its pre-flare configuration in a short time (i.e., 30 minutes after the flare). (2) In the photosphere, the line of sight velocities show a regular granular up- and downflow pattern before the flare erupts. During the flare, upflows (blueshifts) dominate the area where the flare is produced. Evaporation rates of ∼10{sup −3} and ∼10{sup −4} g cm{sup −2} s{sup −1} have been derived in the deep and high photosphere, respectively, capable of increasing the chromospheric density by a factor of two in about 400 s.

  16. Mineralogy of young lunar mare basalts: Assessment of temporal and spatial heterogeneity using M3 data from Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Varatharajan, Indhu; Srivastava, Neeraj; Murty, Sripada V. S.

    2014-07-01

    A comparative assessment of the mineralogy of young basalts (∼1.2 Ga to ∼2.8 Ga) from the western nearside, Moscoviense basin, and the Orientale basin of the Moon has been made using Level 2 Moon Mineralogy Mapper (M3) data from the Chandrayaan-1 mission. Spectral data characteristics of the individual units have been generated from fresh small craters to minimize the complications due to space weathering. Representative spectra for individual units and the derived spectral parameters (band centers and integrated band depth ratio) have been used to study composition of these young basalts. A modified approach of Gaffey et al. (Gaffey, M.J., Cloutis, E.A., Kelley, M.S., Reed, K.L. [2002]. Mineralogy of asteroids. In: Asteroids III. The University of Arizona Press, Tucson, pp. 183-204) (for olivine-pyroxene mixtures) and the methodology of Adams (Adams, J.B. [1974]. J. Geophys. Res. 79, 4829-4836. http://dx.doi.org/10.1029/JB079i032p04829) (for interpreting pyroxene type) have been used to improve our understanding of the spectral behavior of these basalts. Most of the young basalts of Oceanus Procellarum are characterized by abundant olivines and they show complex volcanic history. Vast exposures of olivine concentrated units having higher abundance of olivine content than high-Ca pyroxenes are emplaced in the northern Oceanus Procellarum region. Mostly, they show distinct stratigraphic gradation with the immediately underlying units of relatively lower olivine content. The Moscoviense unit shows signatures of Fe-rich glasses along with clinopyroxenes. The basalts of Orientale basin are typically devoid of olivine and are rich in high-Ca pyroxene. Thus, mineralogy of these mare basalts which erupted during the late stage volcanism vary across the Moon’s surface; however, broader observations reveal apparently higher FeO content in the younger basalts of western nearside and Orientale region.

  17. Non-Ideal ELM Stability and Non-Axisymmetric Field Penetration Calculations with M3D-C1

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.; Chu, M. S.; Snyder, P. B.; Jardin, S. C.; Luo, X.

    2009-11-01

    Numerical studies of ELM stability and non-axisymmetric field penetration in diverted DIII-D and NSTX equilibria are presented, with resistive and finite Larmor radius effects included. These results are obtained with the nonlinear two-fluid code M3D-C1, which has recently been extended to allow linear non-axisymmetric calculations. Benchmarks of M3D-C1 with ideal codes ELITE and GATO show good agreement for the linear stability of peeling-ballooning modes in the ideal limit. New calculations of the resistive stability of ideally stable DIII-D equilibria are presented. M3D-C1 has also been used to calculate the linear response to non-axisymmetric external fields; these calculations are benchmarked with Surfmn and MARS-F. New numerical methods implemented in M3D-C1 are presented, including the treatment of boundary conditions with C^1 elements in a non-rectangular mesh.

  18. New Halo Stars of the Galactic Globular Clusters M3 and M13 in the LAMOST DR1 Catalog

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2016-10-01

    M3 and M13 are Galactic globular clusters with previous reports of surrounding stellar halos. We present the results of a search for members and extratidal cluster halo stars within and outside of the tidal radius of these clusters in the LAMOST Data Release 1. We find seven candidate cluster members (inside the tidal radius) of both M3 and M13, respectively. In M3 we also identify eight candidate extratidal cluster halo stars at distances up to ˜9.8 times the tidal radius, and in M13 we identify 12 candidate extratidal cluster halo stars at distances up to ˜13.8 times the tidal radius. These results support previous indications that both M3 and M13 are surrounded by extended stellar halos, and we find that the GC destruction rates corresponding to the observed mass loss are generally significantly higher than theoretical studies predict.

  19. M3 subtype of muscarinic acetylcholine receptor promotes cardioprotection via the suppression of miR-376b-5p.

    PubMed

    Pan, Zhenyu; Guo, Yueping; Qi, Hanping; Fan, Kai; Wang, Shu; Zhao, Hua; Fan, Yuhua; Xie, Jing; Guo, Feng; Hou, Yunlong; Wang, Ning; Huo, Rong; Zhang, Yong; Liu, Yan; Du, Zhimin

    2012-01-01

    The M(3) subtype of muscarinic acetylcholine receptors (M(3)-mAChR) plays a protective role in myocardial ischemia and microRNAs (miRNAs) participate in many cardiac pathophysiological processes, including ischemia-induced cardiac injury. However, the role of miRNAs in M(3)-mAChR mediated cardioprotection remains unexplored. The present study was designed to identify miRNAs that are involved in cardioprotective effects of M(3)-mAChR against myocardial ischemia and elucidate the underlying mechanisms. We established rat model of myocardial ischemia and performed miRNA microarray analysis to identify miRNAs involved in the cardioprotection of M(3)-mAChR. In H9c2 cells, the viability, intracellular free Ca(2+) concentration ([Ca(2+)]i), intracellular reactive oxygen species (ROS), miR-376b-5p expression level, brain derived neurophic factor (BDNF) and nuclear factor kappa-B (NF-κB) levels were measured. Our results demonstrated that M(3)-mAChR protected myocardial ischemia injury. Microarray analysis and qRT-PCR revealed that miR-376b-5p was significantly up-regulated in ischemic heart tissue and the M(3)-mAChRs agonist choline reversed its up-regulation. In vitro, miR-376b-5p promoted H(2)O(2)-induced H9c2 cell injuries measured by cells viability, [Ca(2+)]i and ROS. Western blot and luciferase assay identified BDNF as a direct target of miR-376b-5p. M(3)-mAChR activated NF-κB and thereby inhibited miR-376b-5p expression. Our data show that a novel M(3)-mAChR/NF-κB/miR-376b-5p/BDNF axis plays an important role in modulating cardioprotection. MiR-376b-5p promotes myocardial ischemia injury possibly by inhibiting BDNF expression and M(3)-mAChR provides cardioprotection at least partially mediated by the downregulation of miR-376b-5p through NF-κB. These findings provide new insight into the potential mechanism by which M(3)-mAChR provides cardioprotection against myocardial ischemia injury.

  20. Mineralogy of Mare Serenitatis on the near side of the Moon based on Chandrayaan-1 Moon Mineralogy Mapper (M3) observations

    NASA Astrophysics Data System (ADS)

    Kaur, Prabhjot; Bhattacharya, Satadru; Chauhan, Prakash; Ajai; Kiran Kumar, A. S.

    2013-01-01

    Spectral analysis of Mare Serenitatis has been carried out using Chandrayaan-1 Moon Mineralogy Mapper (M3) data in order to map the compositional diversity of the basaltic units that exist in the basin. Mare Serenitatis is characterized by multiple basaltic flows of different ages indicating a prolonged volcanism subsequent to the basin formation event. Reflectance spectra of fresh craters from the Mare Serenitatis have been analyzed to study the nature and location of the spectral absorption features around 1- and 2-μm respectively, arising due to the electronic charge transition of Fe2+ in the crystal lattice of pyroxenes and/or olivine. Chandrayaan-1 M3 data have been utilized to obtain an Integrated Band Depth (IBD) mosaic of the Serenitatis basin. Based on the spectral variations observed in the IBD mosaic, 13 spectral units have been mapped in the Mare Serenitatis. In the present study, we have also derived spectral band parameters, namely, band center, band strength, band area and band area ratio from the M3 data to study the mineralogical and compositional variations amongst the basaltic units of the studied basin. On the basis of spectral band parameter analysis, the pyroxene compositions of the basaltic units have been determined, which vary from low to intermediate end of the high-Ca pyroxene and probably represent a sub-calcic to calcic augite compositional range. Detailed spectral analyses reveal little variations in the mafic mineralogy of the mare basalts in terms of pyroxene chemistry. The uniformity in pyroxene composition across the basaltic units of Mare Serenitatis, therefore, suggest a probably stable basaltic source region, which might not have experienced large-scale fractionation during the prolonged volcanism that resulted in filling of the large Serenitatis basin.

  1. Superconductivity: The persistence of pairs

    SciTech Connect

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  2. Peculiarities of lens and tail regeneration detected in newts after spaceflight aboard Foton M3

    NASA Astrophysics Data System (ADS)

    Grigoryan, Eleonora N.; Almeida, Eduardo; Poplinskaya, Valentina; Novikova, Julia; Domaratskaya, Elena; Aleinikova, Karina; Souza, Kenneth; Skidmore, Mike; Grigoryan, Eleonora N.

    In September 2007 the joint, 12 day long experiment was carried out aboard Russian satellite Foton M3. The goal of the experiment was to study eye lens, tail and forelimb toe regeneration in adult 16 newts (Pl. waltl.) operated 10 days before taking-off. In spaceflight and synchronous ground control we used video recording, temperature and irradiation control, as well as constant availability of thymidine analog BrdU for its absorption via animals' skin. New techniques allowed us to analyze animals' behavior in hyperand microgravity periods of time, to take proper account of spaceflight factors, and measure accumulated pools of DNA-synthesizing cells in regenerating tissues. All tissue specimens obtained from animals were isolated in the day of landing and then prepared for morphological, immunochemical and molecular investigations. Synchronous control was shifted for two days and reproduced flight conditions except changes of gravity influence. As a result in flown animals as compared with synchronous ground control we found lens regeneration of 0.5-1 stage speeded up and an increased BrdU+ (S-phase) cell number in eye cornea, growth zone, limbus and newly forming lens. These features of regeneration were accompanied by an increase of FGF2 expression in eye growth zone and heat shock protein (HSP90) induction purely in retinal macroglial cells of regenerating eyes. Toe regeneration rate was equal and achieved the stage of accomplished healing of amputation area in both groups - "flown" and control animals. We found no essential differences in tail regeneration rate and tail regenerate sizes in the newts exposed to space and on ground. In both groups tail regeneration reached the stage IV-V when tail length and square were around 4.4 mm and 15.5 mm2, correspondingly. However we did observe remarkable changes of tail regenerate form and some of pigmentation. Computer morphometrical analysis showed that only in ground control animals the evident dorso

  3. Improving the Apollo 12 landing site mapping with Chandrayaan M3 data

    NASA Astrophysics Data System (ADS)

    Chemin, Yann; Crawford, Ian; Bugiolacchi, Roberto; Irfan, Huma; Alexander, Louise

    2014-05-01

    The geology of the Apollo 12 landing site has been the subject of many studies, including recently by Korotev et al. (2011) and Snape et al. (2013). This research attempts to bring additional understanding from a remote sensing perspective using the Moon Mineralogy Mapper (M3) sensor data, onboard the Chandrayaan lunar orbiter. This has a higher spatial-spectral resolution sensor than the Clementine UV-Vis sensor and provides the opportunity to study the lunar surface with detailed spectral signatures. Mapping of FeO (wt%) and TiO2 (wt%) is done using the methods of Lucey et al. (2000) and Wilcox et al. (2005). A FeO & TiO2 processing module (i.feotio2) is made specifically for this research within the Free & Open Source Software GRASS GIS. Attempts will be made to estimate the lava flow thickness using the method of Bugiolacchi et al. (2006) and individual lava layers thicknesses (Weider et al., 2010). Integration of this new information will be put in perspective and integrated with previous work. Analysis from the combined higher spatial and spectral resolutions will improve the accuracy of the geological mapping at the Apollo 12 landing site. References Bugiolacchi, R., Spudis, P.D., Guest, J.E., 2006. Stratigraphy and composition of lava flows in Mare Nubium and Mare Cognitum. Meteoritics & Planetary Science. 41(2):285-304. Korotev, R.L., Jolliff, B.L., Zeigler, R.A., Seddio, S.M., Haskin, L.A., 2011. Apollo 12 revisited. Geochimica et Cosmochimica Acta. 75(6):1540-1573. Lucey, P.G., Blewett, D.T., Jolliff, B.L., 2000. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J. Geophys. Res. 105(E8): 20297-20305. Snape, J.F., Alexander, L., Crawford, I.A., Joy, K.H., 2013. Basaltic Regolith Sample 12003,314: A New Member of the Apollo 12 Feldspathic Basalt Suite? Lunar and Planetary Institute Science Conference Abstracts 44:1044. Weider, S.Z., Crawford, I.A. and Joy, K.H., "Individual lava flow

  4. Pair extended coupled cluster doubles

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  5. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  6. Theoretical study of nascent solvation in Ni+ (benzene)m, m = 3 and 4, clusters.

    PubMed

    Castro, Miguel; Flores, Raul; Duncan, Michael A

    2013-11-27

    The ligand versus solvent behavior of Ni(+)(C6H6)3,4 complexes was studied using density functional theory all-electron calculations. Dispersion corrections were included with the BPW91-D2 method using the 6-311++G(2d,2p) basis set. The ground state (GS) for Ni(+)(C6H6)3 has three benzene rings 3d-π bonded to the metal. A two-layer isomer with two moieties coordinated η(3)-η(2) with Ni(+), and the other one adsorbed by van der Waals interactions to the Ni(+)(C6H6)2 subcluster, i.e., a 2 + 1 structure, is within about 8.4 kJ/mol of the GS. Structures with 3 + 1 and 2 + 2 ligand coordination were found for Ni(+)(C6H6)4. The binding energies (D0) of 28.9 and 26.0 kJ/mol for the external moieties of Ni(+)(C6H6)3,4 are much smaller than that for Ni(+)(C6H6)2, 193.0 kJ/mol, obtained also with BPW91-D2. This last D0 overestimates somehow the experimental value, of 146.7 ± 11.6 kJ/mol, for Ni(+)(C6H6)2. The abrupt fall for D0(Ni(+)(C6H6)3,4) shows that such molecules are bound externally as solvent species. These results agree with the D0(Ni(+)(C6H6)3) < 37.1 kJ/mol limit found experimentally for this kind of two-layer clusters. The ionization energies also decrease for m = 2, 3, and 4 (580.8, 573.1, and 558.6 kJ/mol). For Ni(+)(C6H6)3,4, each solvent moiety bridges the benzenes of Ni(+)(C6H6)2; their position and that of one internal ring mimics the tilted T-shape geometry of the benzene dimer (Bz2). The distances from the center of the external to the center of the internal rings for m = 3 (4.686 Å) and m = 4 (4.523 Å) are shorter than that for Bz2 (4.850 Å). This and charge transfer effects promote the (C(δ-)-H(δ+))(int) dipole-π(ext) interactions in Ni(+)(C6H6)3,4; π-π interactions also occur. The predicted IR spectra, having multiplet structure in the C-H region, provide insight into the experimental spectra of these ions.

  7. SAP is required for the development of innate phenotype in H2-M3-restricted CD8+ T cells1

    PubMed Central

    Bediako, Yaw; Bian, Yao; Zhang, Hong; Cho, Hoonsik; Stein, Paul L.; Wang, Chyung-Ru

    2012-01-01

    H2-M3-restricted T cells have a pre-activated surface phenotype, rapidly expand and produce cytokines upon stimulation and as such, are classified as innate T cells. Unlike most innate T cells, M3-restricted T cells also express CD8αβ co-receptors and a diverse TCR repertoire: hallmarks of conventional MHC Ia-restricted CD8+ T cells. Although iNKT cells are also innate lymphocytes, they are selected exclusively on hematopoietic cells (HC), while M3-restricted T cells can be selected on either hematopoietic or thymic epithelial cells (TEC). Moreover, their phenotypes differ depending on what cells mediate their selection. Though there is a clear correlation between selection on HC and development of innate phenotype, the underlying mechanism remains unclear. SAP is required for the development of iNKT cells and mediates signals from SLAM receptors that are exclusively expressed on HC. Based on their dual selection pathway, M3-restricted T cells present a unique model for studying the development of innate T cell phenotype. Using both polyclonal and transgenic mouse models we demonstrate that while M3-restricted T cells are capable of developing in the absence of SAP, SAP is required for HC-mediated selection, development of pre-activated phenotype and heightened effector functions of M3-restricted T cells. These findings are significant because they directly demonstrate the need for SAP in HC-mediated acquisition of innate T cell phenotype and suggest that due to their SAP-dependent HC-mediated selection, M3-restricted T cells develop a pre-activated phenotype and an intrinsic ability to proliferate faster upon stimulation, allowing for an important role in the early response to infection. PMID:23041566

  8. Turbulent Inertial Particle Pair Diffusion

    NASA Astrophysics Data System (ADS)

    Usama, Syed; Malik, Nadeem

    2017-04-01

    Inertial particle pair diffusion has received much less attention than fluid particle pair diffusion, even though it is arguably more relevant to real world applications, such as sand storms, and pollen dispersion. Only the DNS work of Bec et al [1] has been reported. A non-local theory of fluid particle pair diffusion has recently been proposed [2,3]; but the question is, can non-locality be extended to inertial particle pair diffusion? Here, we investigate it using Kinematic Simulations [4,5], in the limit of Stokes' drag where the transport is given by, d{x}/dt={v}(t), \\qquad; d{v}/dt = -1/τ({v}(t)-{u}) {x}(t) is the particle position at time t, {v}(t) is the particle velocity, {u}({x},t) is the Eulerian velocity field generated by the KS model, τ is the particle response time. The Stokes number is, St=τ/t_η, where t_η is the Kolmogorov time scale, σ_l(t)=< l(t)^2>1/2, where l(t)=|{x}_1(t)-{x}_2(t)| is the distance between particles in a pair, in an ensemble of particle pairs released at time t=0 such that l(t=0) =l0 2/3. KS was used in a frame of reference moving with the (virtual) large scale sweeping velocities with spectrum, E(k)˜ k-5/3, for 1≤ k ≤10^4, and E(k)=0, for k

  9. Invisibly Sanitizable Signature without Pairings

    NASA Astrophysics Data System (ADS)

    Yum, Dae Hyun; Lee, Pil Joong

    Sanitizable signatures allow sanitizers to delete some pre-determined parts of a signed document without invalidating the signature. While ordinary sanitizable signatures allow verifiers to know how many subdocuments have been sanitized, invisibly sanitizable signatures do not leave any clue to the sanitized subdocuments; verifiers do not know whether or not sanitizing has been performed. Previous invisibly sanitizable signature scheme was constructed based on aggregate signature with pairings. In this article, we present the first invisibly sanitizable signature without using pairings. Our proposed scheme is secure under the RSA assumption.

  10. Spectroscopy of asteroid pairs - new observations support previous conclusions

    NASA Astrophysics Data System (ADS)

    Polishook, David; Oszkiewicz, Dagmara Anna; None Kwiatkowski, Tomasz

    2015-08-01

    Asteroid pairs were split due to fast rotation of a strengthless body. Study them can reveal fundamental principles in asteroid interiors and evolution. We continue our spectroscopic survey of asteroid pairs in the near-IR range (IRTF) and work on completing the spectral coverage in the visible wavelength (SALT, NOT).Our new observations support our previous conclusions (Polishook et al. 2014):1. Primary and secondary members have very similar reflectance spectra supporting the claim that every pair originated from a single progenitor. We measured 2 more pairs that present the same taxonomy (4905-7813, 15107-291188). This increases to 22 the number of asteroid pairs with spectral similarities and supports the claim of a single progenitor for each pair to a significance of over 5 sigma.2. Rotational fission is not a function of the asteroid composition rather the asteroid’s structure. We present new reflectance spectra of S- and C-complex pairs that differ in their composition.3. Some asteroid pairs present spectral parameters that imply a fresh, non-weathered surface. This includes spectral slope, and a deep and wide absorption band at 1 micron. Among these, the asteroid 8306 can now be re-classified as a Q-type asteroid, a common class in the near-Earth environment, but rare in the main belt. 8306 is the 4th Q-type discovered within asteroid pairs (all locate in the main belt).4. A secondary member of an asteroid pair composed of ordinary chondrite (S-complex) might present a reflectance spectrum with lower spectral slope compared to its primary member. This is seen in the new measured reflectance spectrum of secondary 291188). This result supports the theory of Jacobson & Scheeres (2011) of continuous disintegration of the secondaries while still in the vicinity of their primaries.5. With time, the fresh surface becomes weathered. Dynamical calculations limit the disintegration time of the progenitor of the pair 4905-7813 to 1.65 millions years ago, what makes

  11. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    SciTech Connect

    Timokhin, A. N.; Harding, A. K.

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  12. Muscarinic Acetylcholine Receptor M3 Modulates Odorant Receptor Activity via Inhibition of β-Arrestin-2 Recruitment

    PubMed Central

    Jiang, Yue; Li, Yun Rose; Tian, Huikai; Ma, Minghong; Matsunami, Hiroaki

    2015-01-01

    The olfactory system in rodents serves a critical function in social, reproductive, and survival behaviors. Processing of chemosensory signals in the brain is dynamically regulated in part by an animal's physiological state. We previously reported that type 3 muscarinic acetylcholine receptors (M3-Rs) physically interact with odorant receptors (ORs) to promote odor-induced responses in a heterologous expression system. However, it is not known how M3-Rs affect the ability of olfactory sensory neurons (OSNs) to respond to odors. Here, we show that an M3-R antagonist attenuates odor-induced responses in OSNs from wild-type, but not M3-R-null mice. Using a novel molecular assay, we demonstrate that the activation of M3-Rs inhibits the recruitment of β-arrestin-2 to ORs, resulting in a potentiation of odor-induced response in OSNs. These results suggest a role for acetylcholine in modulating olfactory processing at the initial stages of signal transduction in the olfactory system. PMID:25800153

  13. Hypocholesterolemic effects of Kluyveromyces marxianus M3 isolated from Tibetan mushrooms on diet-induced hypercholesterolemia in rat

    PubMed Central

    Xie, Yuanhong; Zhang, Hongxing; Liu, Hui; Xiong, Lixia; Gao, Xiuzhi; Jia, Hui; Lian, Zhengxing; Tong, Nengsheng; Han, Tao

    2015-01-01

    To investigate the effects of Kluyveromyces marxianus M3 isolated from Tibetan mushrooms on diet-induced hypercholesterolemia in rats, female Wistar rats were fed a high-cholesterol diet (HCD) for 28 d to generate hyperlipidemic models. Hyperlipidemic rats were assigned to four groups, which were individually treated with three different dosages of K. marxianus M3+HCD or physiological saline+HCD via oral gavage for 28 d. The total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels in the serum and liver of the rats were measured using commercially available enzyme kits. In addition, the liver morphology was also examined using hematoxylin and eosin staining and optical microscopy. According to our results, the serum and liver TC, TG, LDL-C levels and atherogenic index (AI) were significantly decreased in rats orally administered K. marxianus M3 (p <0.01), and the HDL-C levels and anti atherogenic index (AAI) were significantly increased (p <0.01) compared to the control group. Moreover, K. marxianus M3 treatment also reduced the build-up of lipid droplets in the liver and exhibited normal hepatocytes, suggesting a protective effect of K. marxianus M3 in hyperlipidemic rats. PMID:26273253

  14. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation

    PubMed Central

    Yu, Huangfei; Xia, Hongwei; Tang, Qiulin; Xu, Huanji; Wei, Guoqing; Chen, Ying; Dai, Xinyu; Gong, Qiyong; Bi, Feng

    2017-01-01

    Acetylcholine (ACh), known as a neurotransmitter, regulates the functions of numerous fundamental central and peripheral nervous system. Recently, emerging evidences indicate that ACh also plays an important role in tumorigenesis. However, little is known about the role of ACh in gastric cancer. Here, we reported that ACh could be auto-synthesized and released from MKN45 and BGC823 gastric cancer cells. Exogenous ACh promoted cell proliferation in a does-dependent manner. The M3R antagonist 4-DAMP, but not M1R antagonist trihexyphenidyl and M2/4 R antagonist AFDX-116, could reverse the ACh-induced cell proliferation. Moreover, ACh, via M3R, activated the EGFR signaling to induce the phosphorylation of ERK1/2 and AKT, and blocking EGFR pathway by specific inhibitor AG1478 suppressed the ACh induced cell proliferation. Furthermore, the M3R antagonist 4-DAMP and darifenacin could markedly inhibit gastric tumor formation in vivo. 4-DAMP could also significantly enhance the cytotoxic activity of 5-Fu against the MKN45 and BGC823 cells, and induce the expression of apoptosis-related proteins such as Bax and Caspase-3. Together, these findings indicated that the autocrine ACh could act through M3R and the EGFR signaling to promote gastric cancer cells proliferation, targeting M3R or EGFR may provide us a potential therapeutic strategy for gastric cancer treatment. PMID:28102288

  15. Nonexponential kinetics of ion pair dissociation in electrofreezing water.

    PubMed

    Alaghemandi, Mohammad; Koller, Volkmar; Green, Jason R

    2017-10-04

    Temporally- or spatially-heterogeneous environments can participate in many kinetic processes, from chemical reactions and self-assembly to the forced dissociation of biomolecules. Here, we simulate the molecular dynamics of a model ion pair forced to dissociate in an explicit, aqueous solution. Triggering dissociation with an external electric field causes the surrounding water to electrofreeze and the ion pair population to decay nonexponentially. To further probe the role of the aqueous environment in the kinetics, we also simulate dissociation events under a purely mechanical force on the ion pair. In this case, regardless of whether the surrounding water is a liquid or already electrofrozen, the ion pair population decays exponentially with a well-defined rate constant that is specific to the medium and applied force. These simulation data, and the rate parameters we extract, suggest the disordered kinetics in an electrofreezing medium are a result of the comparable time scales of two concurrent processes, electrofreezing and dissociation.

  16. Applicability of effective pair potentials for active Brownian particles.

    PubMed

    Rein, Markus; Speck, Thomas

    2016-09-01

    We have performed a case study investigating a recently proposed scheme to obtain an effective pair potential for active Brownian particles (Farage et al., Phys. Rev. E 91, 042310 (2015)). Applying this scheme to the Lennard-Jones potential, numerical simulations of active Brownian particles are compared to simulations of passive Brownian particles interacting by the effective pair potential. Analyzing the static pair correlations, our results indicate a limited range of activity parameters (speed and orientational correlation time) for which we obtain quantitative, or even qualitative, agreement. Moreover, we find a qualitatively different behavior for the virial pressure even for small propulsion speeds. Combining these findings we conclude that beyond linear response active particles exhibit genuine non-equilibrium properties that cannot be captured by effective pair interaction alone.

  17. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission and ground irradiation experiment

    NASA Astrophysics Data System (ADS)

    Lambreva, Maya; Rea, Giuseppina; Antonacci, Amina; Serafini, Agnese; Damasso, Mario; Margonelli, Andrea; Johanningmeier, Udo; Bertalan, Ivo; Pezzotti, Gianni; Giardi, Maria Teresa

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plantsor algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stress-tolerant strains. Site-directed and random mutants of the unicellular green alga Chlamydomonas reinhardtii of Photosystem II D1 protein were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. Metabolite profiling by quantitative HPLC methods revealed the organisms and the stress conditions capable to accumulate the highest pigment levels. In order to develop a project for a rationale metabolic engineering of algal secondary metabolites overproduction, we are performing expression analyses on the carotenoid biosynthetic pathway under physiological and mimicked space conditions. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton-M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence biosensor, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device

  18. Pairing Linguistic and Music Intelligences

    ERIC Educational Resources Information Center

    DiEdwardo, MaryAnn Pasda

    2005-01-01

    This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…

  19. Missing energies at pair creation

    NASA Technical Reports Server (NTRS)

    El-Ela, A. A.; Hassan, S.; Bagge, E. R.

    1985-01-01

    Wilson cloud chamber measurements of the separated spectra of positrons and electrons produced by gamma quanta of 6.14 MeV differ considerably from the theoretically predicted spectra by BETHE and HEITLER, but are in good agreement with those of a modified theory of pair creation.

  20. Pick a Pair. Being Bony

    ERIC Educational Resources Information Center

    Miller, Pat

    2004-01-01

    This column suggests pairings of fiction and nonfiction books to meet curricular needs and help students to compare/contrast the texts as they may be asked on state tests. The author of this paper focuses on activities surrounding Halloween. Since many schools are discouraged from teaching about Halloween, this can be a great time to investigate…

  1. Pairing Linguistic and Music Intelligences

    ERIC Educational Resources Information Center

    DiEdwardo, MaryAnn Pasda

    2005-01-01

    This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…

  2. Pick a Pair. Being Bony

    ERIC Educational Resources Information Center

    Miller, Pat

    2004-01-01

    This column suggests pairings of fiction and nonfiction books to meet curricular needs and help students to compare/contrast the texts as they may be asked on state tests. The author of this paper focuses on activities surrounding Halloween. Since many schools are discouraged from teaching about Halloween, this can be a great time to investigate…

  3. Matched pair conical spiral antennas

    NASA Technical Reports Server (NTRS)

    Metzler, R. E.

    1972-01-01

    A matched pair of VHF (220-260 MHz) conical spiral antennas for use in a rocket-tracking interferometer array was designed and tested. While gain, bandwidth, impedance, and pattern measurements met specifications, the phase match between antennas at low elevations was not equal to the design goal.

  4. Driving topological phases by spatially inhomogeneous pairing centers

    NASA Astrophysics Data System (ADS)

    Brzezicki, Wojciech; Oleś, Andrzej M.; Cuoco, Mario

    2017-04-01

    We investigate the effect of periodic and disordered distributions of pairing centers in a one-dimensional itinerant system to obtain the microscopic conditions required to achieve an end Majorana mode and the topological phase diagram. Remarkably, the topological invariant can be generally expressed in terms of the physical parameters for any pairing center configuration. Such a fundamental relation allows us to unveil hidden local symmetries and to identify trajectories in the parameter space that preserve the nontrivial topological character of the ground state. We identify the phase diagram with topologically nontrivial domains where Majorana modes are completely unaffected by the spatial distribution of the pairing centers. These results are general and apply to several systems where inhomogeneous perturbations generate stable Majorana modes.

  5. Sequence alignments and pair hidden Markov models using evolutionary history.

    PubMed

    Knudsen, Bjarne; Miyamoto, Michael M

    2003-10-17

    This work presents a novel pairwise statistical alignment method based on an explicit evolutionary model of insertions and deletions (indels). Indel events of any length are possible according to a geometric distribution. The geometric distribution parameter, the indel rate, and the evolutionary time are all maximum likelihood estimated from the sequences being aligned. Probability calculations are done using a pair hidden Markov model (HMM) with transition probabilities calculated from the indel parameters. Equations for the transition probabilities make the pair HMM closely approximate the specified indel model. The method provides an optimal alignment, its likelihood, the likelihood of all possible alignments, and the reliability of individual alignment regions. Human alpha and beta-hemoglobin sequences are aligned, as an illustration of the potential utility of this pair HMM approach.

  6. Meeting Report: “Metagenomics, Metadata and Meta-analysis” (M3) Special Interest Group at ISMB 2009

    PubMed Central

    Field, Dawn; Friedberg, Iddo; Sterk, Peter; Kottmann, Renzo; Glöckner, Frank Oliver; Hirschman, Lynette; Garrity, George M.; Cochrane, Guy; Wooley, John; Gilbert, Jack

    2009-01-01

    This report summarizes the proceedings of the “Metagenomics, Metadata and Meta-analysis” (M3) Special Interest Group (SIG) meeting held at the Intelligent Systems for Molecular Biology 2009 conference. The Genomic Standards Consortium (GSC) hosted this meeting to explore the bottlenecks and emerging solutions for obtaining biological insights through large-scale comparative analysis of metagenomic datasets. The M3 SIG included 16 talks, half of which were selected from submitted abstracts, a poster session and a panel discussion involving members of the GSC Board. This report summarizes this one-day SIG, attempts to identify shared themes and recapitulates community recommendations for the future of this field. The GSC will also host an M3 workshop at the Pacific Symposium on Biocomputing (PSB) in January 2010. Further information about the GSC and its range of activities can be found at http://gensc.org/. PMID:21304668

  7. 1450 m^3 at 10^-9 Pa: One of the KATRIN Challenges

    SciTech Connect

    Christian Day; R. Gumbsheimer; W. Herz; J. Wolf; J. Bonn; R. Reid; G.R. Myneni

    2006-11-12

    The KATRIN project is a challenging experiment to measure the mass of the electron neutrino directly with a sensitivity of 0.2 eV. It is a next generation tritium beta-decay experiment scaling up the size and precision of previous experiments by an order of magnitude as well as the intensity of the tritium beta source. Ultrafine spectrometric analysis of the energy distribution of the decay electrons at their very endpoint of 18.57 keV is the key to derive the neutrino mass. This is provided by a high-resolution spectrometer of unique size (10 m in diameter, 22 m in length). To avoid any negative influence from residual gas, the spectrometer vessel is designed to UHV/XHV conditions (an ultimate total pressure of below 10{sup -9} Pa and a wall outgassing rate below 10{sup -13} Pam{sup 3}/scm{sup 2}). The paper shortly describes the experimental idea behind KATRIN. The emphasis will then be given to the pumping concept for how to achieve the target parameters and to the manufacturing of the spectrometer tank. Critical issues will also be discussed (surface treatment, welding, transportation). Finally, a description of the current status and an outlook on the overall KATRIN schedule completes the paper.

  8. Pairing versus quarteting coherence length

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Baran, V. V.

    2015-02-01

    We systematically analyze the coherence length in even-even nuclei. The pairing coherence length in the spin-singlet channel for the effective density-dependent delta (DDD) and Gaussian interaction is estimated. We consider in our calculations bound states as well as narrow resonances. It turns out that the pairing gaps given by the DDD interaction are similar to those of the Gaussian potential if one renormalizes the radial width to the nuclear radius. The correlations induced by the pairing interaction have, in all considered cases, a long-range character inside the nucleus and a decrease towards the surface. The mean coherence length is larger than the geometrical radius for light nuclei and approaches this value for heavy nuclei. The effect of the temperature and states in the continuum is investigated. Strong shell effects are put in evidence, especially for protons. We generalize this concept to quartets by considering similar relations, but between proton and neutron pairs. The quartet coherence length has a similar shape, but with larger values on the nuclear surface. We provide evidence of the important role of proton-neutron correlations by estimating the so-called alpha coherence length, which takes into account the overlap with the proton-neutron part of the α -particle wave function. It turns out that it does not depend on the nuclear size and has a value comparable to the free α -particle radius. We have shown that pairing correlations are mainly concentrated inside the nucleus, while quarteting correlations are connected to the nuclear surface.

  9. Expression of the M3 Muscarinic Receptor on Orexin Neurons that Project to the Rostral Ventrolateral Medulla.

    PubMed

    Dai, Yu-Wen E; Lee, Yen-Hsien; Chen, Jennifer Y S; Lin, Yen-Kuang; Hwang, Ling-Ling

    2016-05-01

    Activation of central cholinergic receptors causes a pressor response in rats, and the hypothalamus is important for this response. Projections from hypothalamic orexin neurons to the rostral ventrolateral medulla (RVLM) are involved in sympatho-excitation of the cardiovascular system. A small population of orexin neurons is regulated by cholinergic inputs through M3 muscarinic acetylcholine receptor (M3 R). To elucidate whether the M3 R on orexin neurons is involved in cardiosympathetic regulation through the RVLM, we examined the presence of the M3 R on retrograde-labeled RVLM-projecting orexin neurons. The retrograde tracer was unilaterally injected into the RVLM. Within the hypothalamus, retrograde-labeled neurons were located predominantly ipsilateral to the injection side. In the anterior hypothalamus (-1.5 to -2.3 mm to the bregma), retrograde-labeled neurons were densely distributed in the paraventricular nuclei and scattered in the retrochiasmatic area. At -2.3 to -3.5 mm from the bregma, labeled neurons were located in the regions where orexin neurons were situated, that is, the tuberal lateral hypothalamic area, perifornical area, and dorsomedial nuclei. Very few retrograde-labeled neurons were observed in the hypothalamus at -3.5 to -4.5 mm from the bregma. About 19.5% ± 1.6% of RVLM-projecting neurons in the tuberal hypothalamus were orexinergic. The M3 R was present on 18.7% ± 3.0% of RVLM-projecting orexin neurons. Injection of a muscarinic agonist, oxotremorine, in the perifornical area resulted in a pressor response, which was attenuated by a pretreatment of atropine. We conclude that cholinergic inputs to orexin neurons may be involved in cardiosympathetic regulation through the M3 R on the orexin neurons that directly project to the RVLM.

  10. Mineralogy of the Lunar Crust in Spatial Context: First Results from the Moon Mineralogy Mapper (M3)

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Combe, J-P; Green, R.; Goswami, J. N.; Head, J. W., III; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G.; Kumar, S.; Lundeen, S.; Malaret, E.; McCord, T. B.; Mustard, J.; Nettles, J.; Petro, N.; Runyon, C.; Staid, M. I.; Sunshine, J.; Taylor, L.; Tompkins, S.; Varanasi, P.

    2009-01-01

    India's Chandrayaan-1 successfully launched October 22, 2008 and went into lunar orbit a few weeks later. Commissioning of instruments began in late November and was near complete by the end of the year. Initial data for NASA's Moon Mineralogy Mapper (M3) were acquired across the Orientale Basin and the science results are discussed here. M 3 image-cube data provide mineralogy of the surface in geologic context. A major new result is that the existence and distribution of massive amounts of anorthosite as a continuous stratigraphic crustal layer is now irrefutable.

  11. Observing RR Lyrae Variables in the M3 Globular Cluster with the BYU West Mountain Observatory (Abstract)

    NASA Astrophysics Data System (ADS)

    Joner, M. D.

    2016-06-01

    (Abstract only) We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on the northern hemisphere globular cluster NGC 5272 (M3). We made 216 observations in the V filter spaced between March and August 2012. We present light curves of the M3 RR Lyrae stars using different techniques. We compare light curves produced using DAOPHOT and ISIS software packages for stars in both the halo and core regions of this globular cluster. The light curve fitting is done using FITLC.

  12. Differentiation syndrome in non-M3 acute myeloid leukemia treated with the retinoid X receptor agonist bexarotene.

    PubMed

    DiNardo, Courtney D; Ky, Bonnie; Vogl, Dan T; Forfia, Paul; Loren, Alison; Luger, Selina; Mato, Anthony; Tsai, Donald E

    2008-01-01

    Differentiation Syndrome, also known as all-trans retinoic acid (ATRA) syndrome, is a well-described clinical phenomenon occurring in patients with the M3 subtype of acute myeloid leukemia receiving ATRA chemotherapy. Bexarotene is a novel synthetic compound that selectively binds and activates retinoic X receptors, a subclass of retinoid receptors not targeted by ATRA. We report a patient with refractory non-M3 acute promyelocytic leukemia (AML) who developed differentiation syndrome during bexarotene monotherapy. This case emphasizes the importance of monitoring for differentiation syndrome among patients receiving retinoid therapies and demonstrates the ability of bexarotene to stimulate differentiation of leukemic blasts.

  13. Spin-1 Heisenberg ferromagnet using pair approximation method

    SciTech Connect

    Mert, Murat; Mert, Gülistan; Kılıç, Ahmet

    2016-06-08

    Thermodynamic properties for Heisenberg ferromagnet with spin-1 on the simple cubic lattice have been calculated using pair approximation method. We introduce the single-ion anisotropy and the next-nearest-neighbor exchange interaction. We found that for negative single-ion anisotropy parameter, the internal energy is positive and heat capacity has two peaks.

  14. Electrostatic ion waves in non-Maxwellian pair-ion plasmas

    SciTech Connect

    Arshad, Kashif; Mahmood, S.

    2010-12-15

    The electrostatic ion waves are studied for non-Maxwellian or Lorentzian distributed unmagnetized pair-ion plasmas. The Vlasov equation is solved and damping rates are calculated for electrostatic waves in Lorentzian pair-ion plasmas. The damping rates of the electrostatic ion waves are studied for the equal and different ion temperatures of pair-ion species. It is found that the Landau damping rate of the ion plasma wave is increased in Lorentzian plasmas in comparison with Maxwellian pair-ion plasmas. The numerical results are also presented for illustration by taking into account the parameters reported in fullerene pair-ion plasma experiments.

  15. Distribution function of random strains in an elastically anisotropic continuum and defect strengths of T m3 + impurity ions in crystals with zircon structure

    NASA Astrophysics Data System (ADS)

    Malkin, B. Z.; Abishev, N. M.; Baibekov, E. I.; Pytalev, D. S.; Boldyrev, K. N.; Popova, M. N.; Bettinelli, M.

    2017-07-01

    We construct a distribution function of the strain-tensor components induced by point defects in an elastically anisotropic continuum, which can be used to account quantitatively for many effects observed in different branches of condensed matter physics. Parameters of the derived six-dimensional generalized Lorentz distribution are expressed through the integrals computed over the array of strains. The distribution functions for the cubic diamond and elpasolite crystals and tetragonal crystals with the zircon and scheelite structures are presented. Our theoretical approach is supported by a successful modeling of specific line shapes of singlet-doublet transitions of the T m3 + ions doped into AB O4 (A =Y , Lu; B =P , V) crystals with zircon structure, observed in high-resolution optical spectra. The values of the defect strengths of impurity T m3 + ions in the oxygen surroundings, obtained as a result of this modeling, can be used in future studies of random strains in different rare-earth oxides.

  16. Articulatory Parameters.

    ERIC Educational Resources Information Center

    Ladefoged, Peter

    1980-01-01

    Summarizes the 16 parameters hypothesized to be necessary and sufficient for linguistic phonetic specifications. Suggests seven parameters affecting tongue shapes, three determining the positions of the lips, one controlling the position of the velum, four varying laryngeal actions, and one controlling respiratory activity. (RL)

  17. Resonant tunneling of fluctuation Cooper pairs

    SciTech Connect

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Lastly, our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.

  18. Collisions of Vortex Filament Pairs

    NASA Astrophysics Data System (ADS)

    Banica, Valeria; Faou, Erwan; Miot, Evelyne

    2014-12-01

    We consider the problem of collisions of vortex filaments for a model introduced by Klein et al. (J Fluid Mech 288:201-248, 1995) and Zakharov (Sov Phys Usp 31(7):672-674, 1988, Lect. Notes Phys 536:369-385, 1999) to describe the interaction of almost parallel vortex filaments in three-dimensional fluids. Since the results of Crow (AIAA J 8:2172-2179, 1970) examples of collisions are searched as perturbations of antiparallel translating pairs of filaments, with initial perturbations related to the unstable mode of the linearized problem; most results are numerical calculations. In this article, we first consider a related model for the evolution of pairs of filaments, and we display another type of initial perturbation leading to collision in finite time. Moreover, we give numerical evidence that it also leads to collision through the initial model. We finally study the self-similar solutions of the model.

  19. 77 FR 64848 - Proposed Collection; Comment Request for Form 1120S, Schedule D, Schedule K-1, and Schedule M-3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... Internal Revenue Service Proposed Collection; Comment Request for Form 1120S, Schedule D, Schedule K-1, and Schedule M-3 AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments... assured of consideration. ADDRESSES: Direct all written comments to Yvette Lawrence, Internal...

  20. Improved the microstructures and properties of M3:2 high-speed steel by spray forming and niobium alloying

    SciTech Connect

    Lu, L.; Hou, L.G.; Zhang, J.X.; Wang, H.B.; Cui, H.; Huang, J.F.; Zhang, Y.A.; Zhang, J.S.

    2016-07-15

    The microstructures and properties of spray formed (SF) high-speed steels (HSSs) with or without niobium (Nb) addition were studied. Particular emphasis was placed on the effect of Nb on the solidification microstructures, decomposition of M{sub 2}C carbides, thermal stability and mechanical properties. The results show that spray forming can refine the cell size of eutectic carbides due to the rapid cooling effect during atomization. With Nb addition, further refinement of the eutectic carbides and primary austenite grains are obtained. Moreover, the Nb addition can accelerate the decomposition of M{sub 2}C carbides and increase the thermal stability of high-speed steel, and also can improve the hardness and bending strength with slightly decrease the impact toughness. The high-speed steel made by spray forming and Nb alloying can give a better tool performance compared with powder metallurgy M3:2 and commercial AISI M2 high-speed steels. - Highlights: • Spray forming can effectively refine the microstructure of M3:2 steel. • Niobium accelerates the decomposition of M{sub 2}C carbides. • Niobium increases the hardness and bending strength of spray formed M3:2 steel. • Spray-formed niobium-containing M3:2 steel has the best tool performance.

  1. 75 FR 3471 - International Conference on Harmonisation; Guidance on M3(R2) Nonclinical Safety Studies for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ..., and the United States. The six ICH sponsors are the European Commission; the European Federation of... HUMAN SERVICES Food and Drug Administration International Conference on Harmonisation; Guidance on M3(R2....'' The guidance was prepared under the auspices of the International Conference on Harmonisation...

  2. Asymmetric Ion-Pairing Catalysis

    PubMed Central

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  3. Septin pairs, a complex choreography.

    PubMed

    Ewers, Helge

    2011-06-13

    Septins form a filamentous collar at the mother-bud neck in budding yeast. In cytokinesis, this collar splits into two rings and the septin complexes undergo a dramatic reorientation. Using fluorescence polarization microscopy, DeMay et al. (2011. J. Cell Biol. doi:10.1083/jcb.201012143) now demonstrate that septin complexes assemble as paired filaments in vivo and reveal new insights into septin organization during cytokinesis.

  4. Disruption, beamstrahlung, and beamstrahlung pair creation

    SciTech Connect

    Chen, P.

    1988-12-01

    The two major effects from the interaction of e/sup /minus//e/sup +/ beams---beamstrahlung and disruption---are reviewed, with emphasis on flat beam collisions. For the disruption effects we discuss the luminosity enhancement factor, the maximum and rms disruption angles, and the ''kink instability''. All the results are obtained from computer simulations, and scaling laws based on these are deduced whenever possible. For the beamstrahlung effects, we concentrate only on the final electron energy spectrum and the deflection angle associated with low energy particles. In addition to the generic studies on the beam-beam effects, we also list the relevant beam-beam parameters obtained from simulations on two sample designs: the TLC and the ILC. As an addendum, the newly discovered phenomenon of coherent beamstrahlung pair creation, together with the incoherent process, are discussed. 18 refs., 15 figs., 1 tab.

  5. Mediators of homologous DNA pairing.

    PubMed

    Zelensky, Alex; Kanaar, Roland; Wyman, Claire

    2014-10-09

    Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Mediators of Homologous DNA Pairing

    PubMed Central

    Zelensky, Alex; Kanaar, Roland; Wyman, Claire

    2014-01-01

    Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms. PMID:25301930

  7. Inhomogeneous ensembles of radical pairs in chemical compasses

    PubMed Central

    Procopio, Maria; Ritz, Thorsten

    2016-01-01

    The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity. PMID:27804956

  8. Inhomogeneous ensembles of radical pairs in chemical compasses

    NASA Astrophysics Data System (ADS)

    Procopio, Maria; Ritz, Thorsten

    2016-11-01

    The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.

  9. Lead generation using pharmacophore mapping and three-dimensional database searching: application to muscarinic M(3) receptor antagonists.

    PubMed

    Marriott, D P; Dougall, I G; Meghani, P; Liu, Y J; Flower, D R

    1999-08-26

    By using a pharmacophore model, a geometrical representation of the features necessary for molecules to show a particular biological activity, it is possible to search databases containing the 3D structures of molecules and identify novel compounds which may possess this activity. We describe our experiences of establishing a working 3D database system and its use in rational drug design. By using muscarinic M(3) receptor antagonists as an example, we show that it is possible to identify potent novel lead compounds using this approach. Pharmacophore generation based on the structures of known M(3) receptor antagonists, 3D database searching, and medium-throughput screening were used to identify candidate compounds. Three compounds were chosen to define the pharmacophore: a lung-selective M(3) antagonist patented by Pfizer and two Astra compounds which show affinity at the M(3) receptor. From these, a pharmacophore model was generated, using the program DISCO, and this was used subsequently to search a UNITY 3D database of proprietary compounds; 172 compounds were found to fit the pharmacophore. These compounds were then screened, and 1-[2-(2-(diethylamino)ethoxy)phenyl]-2-phenylethanone (pA(2) 6.67) was identified as the best hit, with N-[2-(piperidin-1-ylmethyl)cycohexyl]-2-propoxybenz amide (pA(2) 4. 83) and phenylcarbamic acid 2-(morpholin-4-ylmethyl)cyclohexyl ester (pA(2) 5.54) demonstrating lower activity. As well as its potency, 1-[2-(2-(diethylamino)ethoxy)phenyl]-2-phenylethanone is a simple structure with limited similarity to existing M(3) receptor antagonists.

  10. Floquet theory of radical pairs in radiofrequency magnetic fields

    NASA Astrophysics Data System (ADS)

    Hiscock, Hamish G.; Kattnig, Daniel R.; Manolopoulos, David E.; Hore, P. J.

    2016-09-01

    We present a new method for calculating the product yield of a radical pair recombination reaction in the presence of a weak time-dependent magnetic field. This method successfully circumvents the computational difficulties presented by a direct solution of the Liouville-von Neumann equation for a long-lived radical pair containing many hyperfine-coupled nuclear spins. Using a modified formulation of Floquet theory, treating the time-dependent magnetic field as a perturbation, and exploiting the slow radical pair recombination, we show that one can obtain a good approximation to the product yield by considering only nearly degenerate sub-spaces of the Floquet space. Within a significant parameter range, the resulting method is found to give product yields in good agreement with exact quantum mechanical results for a variety of simple model radical pairs. Moreover it is considerably more efficient than the exact calculation, and it can be applied to radical pairs containing significantly more nuclear spins. This promises to open the door to realistic theoretical investigations of the effect of radiofrequency electromagnetic radiation on the photochemically induced radical pair recombination reactions in the avian retina which are believed to be responsible for the magnetic compass sense of migratory birds.

  11. Intermolecular magnetic interactions in stacked DNA base pairs.

    PubMed

    Martínez, Fernando A; Aucar, Gustavo A

    2017-10-09

    The influence of pi-stacking on the magnetic properties of atoms that belong to adenine-thymine and guanine-cytosine pairs in sequences of three and five layers of DNA base pairs was analysed. As probes we used NMR spectroscopic parameters, which are among the most useful tools to learn about the transmission of magnetic interactions in molecules. Four DFT functionals were employed: B3LYP, BHANDLYP, KT2 and KT3, together with the SOPPA method. Besides, given that the number of non-hydrogen atoms of the supramolecular systems studied here is larger than 50 we applied a locally dense basis set scheme. Our results show that the piling up of a few Watson-Crick base pairs above and below a given pair modifies its NMR spectroscopic parameters by an amount that may be measurable and the percentage of variation does not depend on dispersion. We found that magnetic shieldings are more sensitive than J-couplings, and also that some atoms are more sensitive than others. Stacking affects the shielding of non-hydrogen atoms like nitrogens, that are donors in hydrogen bonds, HBs, and the carbons bonded to them. The amount of variation of these shieldings was found to be from 2% to 5% when the pairs are considered first as isolated, and then, placed in the middle of a sequence of three layers of base pairs. Such a variation becomes vanishingly small when the sequence contains more than three layers, showing that the stacking effect on NMR spectroscopic parameters has a local nature. We have also found a pattern for shieldings. First, equivalent atoms of similar monomers (thymine and adenine, or guanine and cytosine) have similar values of absolute shieldings in isolated pairs, and the amount of variation from isolated pairs to aggregates of a few pairs is also similar, meaning that equivalent atoms are affected in a similar manner by pi-stacking. Second, the hydrogen atoms which belong to hydrogen bonds are more sensitive to the piling up than the non-hydrogen atoms.

  12. Application of the Extended Pairing Model to Heavy Isotopes

    SciTech Connect

    Gueorguiev, V G; Pan, F; Draayer, J P

    2004-09-28

    The binding energies of three isotopic chains ({sup 100-130}Sn, {sup 152-181}Yb, and {sup 181-202}Pb) are studied using the extended pairing model. By using the exact solvability of the model one determines the pairing strength G(A) that reproduces the experimental binding energies. For these isotopic chains, log (G(A)) has a smooth systematic behavior. In particular, G(A) for the Pb and Sn isotopes can be described by a two parameter expression that is inversely proportional to the dimensionality of the model space.

  13. A role for M(2) and M(3) muscarinic receptors in the contraction of rat and human small airways.

    PubMed

    Brown, Stephanie M; Koarai, Akira; Sturton, Richard G; Nicholson, Andrew G; Barnes, Peter J; Donnelly, Louise E

    2013-02-28

    Large airway bronchoconstriction acts mainly through cholinergic pathways via muscarinic M3 receptors with some contribution from M2 receptors. By contrast, the mechanisms of small airway contraction are largely unknown. This study used precision cut lung slices to examine the role of muscarinic M2 and M3 receptors in the contractile response of rat and human small airways. In rat small airways, the M3 preferential antagonist, 4-DAMP, inhibited carbachol-mediated contraction (1×10(-6) M) more than that of the M2 selective antagonist, AF-DX116 (pIC50 values: 8.85±0.18 and 6.31±0.19, n=6-8 respectively). Tiotropium, inhibited the contractile response to carbachol with (pIC50: 9.86±0.07, n=6), but could not distinguish between M2 and M3 mediated effects. Similar experiments using human small airways with tiotropium and AF-DX116, gave a pIC50 of 10.35±0.05 and a pKB of 6.37±0.13, n=5 respectively. Therefore, M3 receptors play a key role in muscarinic contraction of small airways in both rats and humans but the effect of M2 receptors cannot be excluded. To investigate the role of M2 receptors, carbachol-induced contraction of small airways was performed in the presence and absence of a β2-agonist in order to elevate intracellular cAMP levels prior to contraction. Isoproterenol-induced relaxation was significantly increased by AF-DX116 (P<0.001) in rat small airways and by AF-DX116 (P<0.01), gallamine (P<0.05) and pertussis toxin (P<0.05) in human small airways. Taken together, these data suggest that cholinergic antagonism of muscarinic receptors in human and rat small airways inhibits airway contraction via direct inhibition of contraction through M3 receptors, and by M2 receptor mediated inhibition of relaxation. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Alu pair exclusions in the human genome

    PubMed Central

    2011-01-01

    Background The human genome contains approximately one million Alu elements which comprise more than 10% of human DNA by mass. Alu elements possess direction, and are distributed almost equally in positive and negative strand orientations throughout the genome. Previously, it has been shown that closely spaced Alu pairs in opposing orientation (inverted pairs) are found less frequently than Alu pairs having the same orientation (direct pairs). However, this imbalance has only been investigated for Alu pairs separated by 650 or fewer base pairs (bp) in a study conducted prior to the completion of the draft human genome sequence. Results We performed a comprehensive analysis of all (> 800,000) full-length Alu elements in the human genome. This large sample size permits detection of small differences in the ratio between inverted and direct Alu pairs (I:D). We have discovered a significant depression in the full-length Alu pair I:D ratio that extends to repeat pairs separated by ≤ 350,000 bp. Within this imbalance bubble (those Alu pairs separated by ≤ 350,000 bp), direct pairs outnumber inverted pairs. Using PCR, we experimentally verified several examples of inverted Alu pair exclusions that were caused by deletions. Conclusions Over 50 million full-length Alu pairs reside within the I:D imbalance bubble. Their collective impact may represent one source of Alu element-related human genomic instability that has not been previously characterized. PMID:21943335

  15. Charge Aspects of Composite Pair Superconductivity

    NASA Astrophysics Data System (ADS)

    Flint, Rebecca

    2014-03-01

    Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.

  16. TOPICAL REVIEW: W = 0 pairing in Hubbard and related models of low-dimensional superconductors

    NASA Astrophysics Data System (ADS)

    Balzarotti, Adalberto; Cini, Michele; Perfetto, Enrico; Stefanucci, Gianluca

    2004-12-01

    Lattice Hamiltonians with on-site interaction W have W = 0 solutions, that is, many-body singlet eigenstates without double occupation. In particular, W = 0 pairs give a clue to understand the pairing force in repulsive Hubbard models. These eigenstates are found in systems with high enough symmetry, like the square, hexagonal or triangular lattices. By a general theorem, we propose a systematic way to construct all the W = 0 pairs of a given Hamiltonian. We also introduce a canonical transformation to calculate the effective interaction between the particles of such pairs. In geometries appropriate for the CuO2 planes of cuprate superconductors, armchair carbon nanotubes, or cobalt oxide planes, the dressed pair becomes a bound state in a physically relevant range of parameters. We also show that W = 0 pairs quantize the magnetic flux as superconducting pairs do. The pairing mechanism breaks down in the presence of strong distortions. The W = 0 pairs are also the building blocks for the antiferromagnetic ground state of the half-filled Hubbard model at weak coupling. Our analytical results for the 4 × 4 Hubbard square lattice, compared to available numerical data, demonstrate that the method, besides providing an intuitive grasp on pairing, also has quantitative predictive power. We also consider including phonon effects in this scenario. Preliminary calculations with small clusters indicate that vector phonons hinder pairing while half-breathing modes are synergic with the W = 0 pairing mechanism both at weak coupling and in the polaronic regime.

  17. An exact solution of spherical mean-field plus a special separable pairing model

    NASA Astrophysics Data System (ADS)

    Dai, Lianrong; Pan, Feng; Draayer, J. P.

    2017-01-01

    An exact solution of nuclear spherical mean-field plus a special orbit-dependent separable pairing model is studied, of which the separable pairing interaction parameters are obtained by a linear fitting in terms of the single-particle energies considered. The advantage of the model is that, similar to the standard pairing case, it can be solved easily by using the extended Heine-Stieltjes polynomial approach. With the analysis of the model in the ds- and pf-shell subspace, it is shown that this special separable pairing model indeed provides similar pair structures of the model with the original separable pairing interaction, and is obviously better than the standard pairing model in many aspects.

  18. A synthetic snRNA m3G-CAP enhances nuclear delivery of exogenous proteins and nucleic acids.

    PubMed

    Moreno, Pedro M D; Wenska, Malgorzata; Lundin, Karin E; Wrange, Orjan; Strömberg, Roger; Smith, C I Edvard

    2009-04-01

    Accessing the nucleus through the surrounding membrane poses one of the major obstacles for therapeutic molecules large enough to be excluded due to nuclear pore size limits. In some therapeutic applications the large size of some nucleic acids, like plasmid DNA, hampers their access to the nuclear compartment. However, also for small oligonucleotides, achieving higher nuclear concentrations could be of great benefit. We report on the synthesis and possible applications of a natural RNA 5'-end nuclear localization signal composed of a 2,2,7-trimethylguanosine cap (m(3)G-CAP). The cap is found in the small nuclear RNAs that are constitutive part of the small nuclear ribonucleoprotein complexes involved in nuclear splicing. We demonstrate the use of the m(3)G signal as an adaptor that can be attached to different oligonucleotides, thereby conferring nuclear targeting capabilities with capacity to transport large-size cargo molecules. The synthetic capping of oligos interfering with splicing may have immediate clinical applications.

  19. The multi-module, multi-resolution system (M3R): A novel small-animal SPECT system

    PubMed Central

    Hesterman, Jacob Y.; Kupinski, Matthew A.; Furenlid, Lars R.; Wilson, Donald W.; Barrett, Harrison H.

    2008-01-01

    We have designed and built an inexpensive, high-resolution, tomographic imaging system, dubbed the multi-module, multi-resolution system, or M3R. Slots machined into the system shielding allow for the interchange of pinhole plates, enabling the system to operate over a wide range of magnifications and with virtually any desired pinhole configuration. The flexibility of the system allows system optimization for specific imaging tasks and also allows for modifications necessary due to improved detectors, electronics, and knowledge of system construction (e.g., system sensitivity optimization). We provide an overview of M3R, focusing primarily on system design and construction, aperture construction, and calibration methods. Reconstruction algorithms will be described and reconstructed images presented. PMID:17441245

  20. [Biological experiments in flights of unmanned space craft Foton-M2 and Foton-M3].

    PubMed

    Ilyin, E A

    2013-01-01

    Missions of unmanned spacecraft Foton-M2 (2005) and Foton-M3 (2007) of 16 and 12 days in duration, respectively, provided an opportunity to conduct the Russian/US experiments with snails (Helix lucorum and Helix aspera), newts (Pleurodeles waltli), geckos (Pachydactilus turneri) and microorganisms (Streptomyces lividans 66, E. coli and others). Besides, Foton-M3 carried a Russian experiment with Mongolian gerbils (Meriones unguiculatus). Objectives of the space experiments were to study the micro-g effects on the living systems' behavior, structure and functioning, post-traumatic regeneration of bone and organs, stable inheritance of plasmid pIJ 702, and melanin pigment synthesis by streptomycets. The survey paper presents the major findings of a large team of investigators.

  1. Acute myeloid leukemias M2 potentially misdiagnosed as M3 variant French-American-Britain (FAB) subtype: a transitional form?

    PubMed

    Fenu, S; Carmini, D; Mancini, F; Guglielmi, C; Alimena, G; Riccioni, R; Barsotti, P; Mancini, M; Avvisati, G; Mandelli, F

    1995-01-01

    From 1990 to 1994, 3 patients with de novo acute myeloid leukemia (AML) in whom light microscopy and cytochemistry suggested a FAB subtype M3 variant were observed at our Institute. Immunophenotype showed HLA-DR-, CD13+, CD33+, CD2+, CD9+; promyelocytic features were also detected by electron microscopy. However, leukemic cells lacked both translocation t(15;17) and RAR alpha/PML genes rearrangement. These cases were considered to be 'M2 atypical' subtypes and they contribute to point out how cytogenetics and molecular biology are mandatory for a correct diagnosis of acute promyelocytic leukemia (APL) particularly because therapy with all trans retinoic acid (ATRA) is now the best treatment for APL. Nevertheless these 3 cases indicate that the atypical M2 subtype may be confused with the M3v if only cytochemistry, immunophenotype and electron microscopy are used in the defining the FAB subtypes.

  2. 77 FR 76598 - Notice of Receipt of Petition for Decision That Nonconforming 2006-2010 BMW M3 Passenger Cars Are...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ...-2010 BMW M3 Passenger Cars Are Eligible for Importation AGENCY: National Highway Traffic Safety...-2010 BMW M3 passenger cars that were not originally manufactured to comply with all applicable Federal....- certified version of the 2006-2010 BMW M3 passenger cars) and they are capable of being readily altered...

  3. Probing Protein Packing Surrounding the Residues In and Flanking the Nicotinic Acetylcholine Receptor M2M3 Loop

    PubMed Central

    Wiltfong, Roger Ernest; Jansen, Michaela

    2009-01-01

    Nicotinic Acetylcholine Receptors (nAChR) are cation-selective, ligand-gated ion channels of the Cys-loop gene superfamily. The recent crystal structure of a bacterial homologue from Erwinia chrysanthemi (ELIC) agrees with previous structures of the N-terminal domain of acetylcholine-binding protein (AChBP) and of the electronmicroscopy derived Torpedo nAChR structure. However, the ELIC transmembrane domain is significantly more tightly packed than the corresponding region of the Torpedo nAChR. We investigated the tightness of protein packing surrounding the extracellular end of the M2 transmembrane segment and around the loop connecting the M2 and M3 segments using the substituted cysteine accessibility method (SCAM). The M2 20′ to 27′ residues were highly water accessible and the variation in reaction rates were consistent with this region being α-helical. At all positions tested, the presence of ACh changed MTSEA modification rates by less than 10-fold. In the presence of ACh, reaction rates for residues in the last extracellular α-helical turn of M2 and in the M2M3 loop increased, whereas rates in M2's penultimate α-helical turn decreased. Only 3 out of 8 M2M3 loop residues were accessible to MTSEA in both the presence and absence of ACh. We infer that the protein packing around the M2M3 loop is tight, consistent with it's location at the interdomain interface where it is involved in the transduction of ligand binding in the extracellular domain to gating in the transmembrane domain. Our data indicate that the Torpedo nAChR transmembrane domain structure is a better model than the ELIC structure for eukaryotic Cys loop receptors. PMID:19211870

  4. Electrochemical properties of mixed conducting (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba)

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; Bates, J.L.

    1996-04-01

    Electrical properties and oxygen permeation properties of solid mixed-conducting electrolytes (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba) have been characterized. These materials are potentially useful as passive membranes to separate high purity oxygen from air and as the cathode in a fuel cell. Dilatometric linear expansion measurements were performed as a function of temperature and oxygen partial pressure to evaluate the stability.

  5. Inhalation by design: dual pharmacology β-2 agonists/M3 antagonists for the treatment of COPD.

    PubMed

    Jones, Lyn H; Baldock, Helen; Bunnage, Mark E; Burrows, Jane; Clarke, Nick; Coghlan, Michele; Entwistle, David; Fairman, David; Feeder, Neil; Fulton, Craig; Hilton, Laura; James, Kim; Jones, Rhys M; Kenyon, Amy S; Marshall, Stuart; Newman, Sandra D; Osborne, Rachel; Patel, Sheena; Selby, Matthew D; Stuart, Emilio F; Trevethick, Michael A; Wright, Karen N; Price, David A

    2011-05-01

    This paper describes the successful design and development of dual pharmacology β-2 agonists-M3 antagonists, for the treatment of chronic obstructive pulmonary disorder using the principles of 'inhalation by design'. A key feature of this work is the combination of balanced potency and pharmacodynamic duration with desirable pharmacokinetic and material properties, whilst keeping synthetic complexity to a minimum. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Structure and properties of tungsten-free high-speed steel 8M3F3S

    NASA Astrophysics Data System (ADS)

    Smol'nikov, E. A.; Volosova, T. A.; Baranova, L. I.

    1981-07-01

    Lowering the carbon content of tungsten-free high-speed steel 8M3F3S of the 'EI277 and 'EI260 type leads to better mechanical and technological properties (the red hardness increases, the optimal range of quenching temperatures is broader) and reduces the amount of retained austenite after quenching.The addition of silicon also improves the mechanical properties and the wear resistance of tools and the grindability of the steel.

  7. Lipid rafts of mouse liver contain nonextended and extended acetylcholinesterase variants along with M3 muscarinic receptors.

    PubMed

    Montenegro, María Fernanda; Cabezas-Herrera, Juan; Campoy, F Javier; Muñoz-Delgado, Encarnación; Vidal, Cecilio J

    2017-02-01

    The observation of acetylcholinesterase (AChE) type H (AChEH), which is the predominant AChE variant in visceral organs and immune cells, in lipid rafts of muscle supports functional reasons for the raft targeting of glypiated AChEH The search for these reasons revealed that liver AChE activity is mostly confined to rafts and that the liver is able to make N-extended AChE variants and target them to rafts. These results prompted us to test whether AChE and muscarinic receptors existed in the same raft. Isolation of flotillin-2-rich raft fractions by their buoyancy in sucrose gradients, followed by immunoadsorption and matrix-assisted laser desorption ionization-time of flight-mass spectrometry application, gave the following results: 1) most hepatic AChE activity emanates from AChE-H mRNA, and its product, glypiated AChEH, accumulates in rafts; 2) N-extended N-AChE readthrough variant, nonglypiated N-AChEH, and N-AChE tailed variant were all identified in liver rafts; and 3) M3 AChRs were observed in rafts, and coprecipitation of raft-confined N-AChE and M3 receptors by using anti-M3 antibodies showed that enzyme and receptor reside in the same raft unit. A raft domain that harbors tightly packed muscarinic receptor and AChE may represent a molecular device that, by means of which, the intensity and duration of cholinergic inputs are regulated.-Montenegro, M. F., Cabezas-Herrera, J., Campoy, F. J., Muñoz-Delgado, E., Vidal, C. J. Lipid rafts of mouse liver contain nonextended and extended acetylcholinesterase variants along with M3 muscarinic receptors.

  8. Muscarinic receptor M3 mediates human gallbladder contraction through voltage-gated Ca2+ channels and Rho kinase.

    PubMed

    Lee, Ming-Che; Yang, Ying-Chin; Chen, Yen-Cheng; Huang, Shih-Che

    2013-02-01

    Muscarinic receptors mediate contraction of the human gallbladder through unclear receptor subtypes. The aim of the present study was to characterize muscarinic acetylcholine receptors mediating contraction of the human gallbladder. Contraction of human gallbladder muscle strips caused by agonists carbachol and muscarine was measured and the inhibition of carbachol-induced contraction by muscarinic receptor antagonists was evaluated. Reverse transcription polymerase chain reaction was performed to determine the existence of muscarinic receptor subtypes. Carbachol and muscarine caused concentration-dependent contraction of gallbladder strips. Four receptor antagonists, including atropine, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), methoctramine, and pirenzepine, inhibited the carbachol-induced contraction. The relative inhibitory potency of these receptor antagonists was atropine > 4-DAMP > methoctramine > pirenzepine. The antagonist affinity estimates (pA(2) values) correlated with the known affinities at M(3), M(4), and M(5) muscarinic receptors. In addition, the M(4)-selective antagonist muscarinic toxin 3 did not inhibit and the M(5)-selective positive allosteric modulator VU0238429 did not potentiate carbachol-induced gallbladder contraction. This suggests that M(3) muscarinic receptors mediate the muscarinic response predominantly. The contractile response of carbachol was attenuated by the voltage-gated Ca(2+) channel inhibitor nifedipine and Rho-kinase inhibitor H-1152, but not affected by protein kinase C inhibitor chelerythrine. This implies the involvement of voltage-gated Ca(2+) channel and Rho kinase but not protein kinase C. These results suggest a major role of M(3) muscarinic receptors mediating the human gallbladder contraction through voltage-gated Ca(2+) channels and Rho kinase. M(3)-selective muscarinic receptor antagonists could be of therapeutic importance in the treatment of biliary motility disorders.

  9. The surface accessibility of the glycine receptor M2-M3 loop is increased in the channel open state.

    PubMed

    Lynch, J W; Han, N L; Haddrill, J; Pierce, K D; Schofield, P R

    2001-04-15

    Mutations in the extracellular M2-M3 loop of the glycine receptor (GlyR) alpha1 subunit have been shown previously to affect channel gating. In this study, the substituted cysteine accessibility method was used to investigate whether a structural rearrangement of the M2-M3 loop accompanies GlyR activation. All residues from R271C to V277C were covalently modified by both positively charged methanethiosulfonate ethyltrimethylammonium (MTSET) and negatively charged methanethiosulfonate ethylsulfonate (MTSES), implying that these residues form an irregular surface loop. The MTSET modification rate of all residues from R271C to K276C was faster in the glycine-bound state than in the unliganded state. MTSES modification of A272C, L274C, and V277C was also faster in the glycine-bound state. These results demonstrate that the surface accessibility of the M2-M3 loop is increased as the channel transitions from the closed to the open state, implying that either the loop itself or an overlying domain moves during channel activation.

  10. Probing biochemical mechanisms of action of muscarinic M3 receptor antagonists with label-free whole cell assays.

    PubMed

    Deng, Huayun; Wang, Chaoming; Su, Ming; Fang, Ye

    2012-10-02

    Binding kinetics of drugs is increasingly recognized to be important for their in vivo efficacy and safety profiles. However, little is known about the effect of drug binding kinetics on receptor signaling in native cells. Here we used label-free whole cell dynamic mass redistribution (DMR) assays under persistent and duration-controlled stimulation conditions to investigate the influence of the binding kinetics of four antagonists on the signaling of endogenous muscarinic M3 receptor in native HT-29 cells. Results showed that DMR assays under different conditions differentiated the biochemical mechanisms of action of distinct M3 antagonists. When co-stimulated with acetylcholine, tiotropium, a relatively slow binding antagonist, was found to selectively block the late signaling of the receptor, suggesting that acetylcholine attains its binding equilibrium faster than tiotropium does, thereby still being able to initiate its rapid response until the antagonist draws up and fully blocks the signaling. Furthermore, DMR assays under microfluidics allowed estimation of the residence times of these antagonists acting at the receptor in native cells, which were found to be the determining factor for the blockage efficiency of M3 receptor signaling under duration-controlled conditions. This study demonstrates that DMR assays can be used to elucidate the functional consequence of kinetics-driven antagonist occupancy in native cells.

  11. Honokiol blocks store operated calcium entry in CHO cells expressing the M3 muscarinic receptor: honokiol and muscarinic signaling

    PubMed Central

    2013-01-01

    Background Honokiol, a cell-permeable phenolic compound derived from the bark of magnolia trees and present in Asian herbal teas, has a unique array of pharmacological actions, including the inhibition of multiple autonomic responses. We determined the effects of honokiol on calcium signaling underlying transmission mediated by human M3 muscarinic receptors expressed in Chinese hamster ovary (CHO) cells. Receptor binding was determined in radiolabelled ligand binding assays; changes in intracellular calcium concentrations were determined using a fura-2 ratiometric imaging protocol; cytotoxicity was determined using a dye reduction assay. Results Honokiol had a potent (EC50 ≈ 5 μmol/l) inhibitory effect on store operated calcium entry (SOCE) that was induced by activation of the M3 receptors. This effect was specific, rapid and partially reversible, and was seen at concentrations not associated with cytotoxicity, inhibition of IP3 receptor-mediated calcium release, depletion of ER calcium stores, or disruption of M3 receptor binding. Conclusions It is likely that an inhibition of SOCE contributes to honokiol disruption of parasympathetic motor functions, as well as many of its beneficial pharmacological properties. PMID:23432810

  12. Complex I inhibition augments dichloroacetate cytotoxicity through enhancing oxidative stress in VM-M3 glioblastoma cells

    PubMed Central

    Poff, Angela M.; Koutnik, Andrew P.; D’Agostino, Dominic P.

    2017-01-01

    The robust glycolytic metabolism of glioblastoma multiforme (GBM) has proven them susceptible to increases in oxidative metabolism induced by the pyruvate mimetic dichloroacetate (DCA). Recent reports demonstrate that the anti-diabetic drug metformin enhances the damaging oxidative stress associated with DCA treatment in cancer cells. We sought to elucidate the role of metformin’s reported activity as a mitochondrial complex I inhibitor in the enhancement of DCA cytotoxicity in VM-M3 GBM cells. Metformin potentiated DCA-induced superoxide production, which was required for enhanced cytotoxicity towards VM-M3 cells observed with the combination. Similarly, rotenone enhanced oxidative stress resultant from DCA treatment and this too was required for the noted augmentation of cytotoxicity. Adenosine monophosphate kinase (AMPK) activation was not observed with the concentration of metformin required to enhance DCA activity. Moreover, addition of an activator of AMPK did not enhance DCA cytotoxicity, whereas an inhibitor of AMPK heightened the cytotoxicity of the combination. Our data indicate that metformin enhancement of DCA cytotoxicity is dependent on complex I inhibition. Particularly, that complex I inhibition cooperates with DCA-induction of glucose oxidation to enhance cytotoxic oxidative stress in VM-M3 GBM cells. PMID:28644886

  13. Deletion of Ten-m3 Induces the Formation of Eye Dominance Domains in Mouse Visual Cortex

    PubMed Central

    Merlin, Sam; Horng, Sam; Marotte, Lauren R.; Sur, Mriganka; Sawatari, Atomu

    2013-01-01

    The visual system is characterized by precise retinotopic mapping of each eye, together with exquisitely matched binocular projections. In many species, the inputs that represent the eyes are segregated into ocular dominance columns in primary visual cortex (V1), whereas in rodents, this does not occur. Ten-m3, a member of the Ten-m/Odz/Teneurin family, regulates axonal guidance in the retinogeniculate pathway. Significantly, ipsilateral projections are expanded in the dorsal lateral geniculate nucleus and are not aligned with contralateral projections in Ten-m3 knockout (KO) mice. Here, we demonstrate the impact of altered retinogeniculate mapping on the organization and function of V1. Transneuronal tracing and c-fos immunohistochemistry demonstrate that the subcortical expansion of ipsilateral input is conveyed to V1 in Ten-m3 KOs: Ipsilateral inputs are widely distributed across V1 and are interdigitated with contralateral inputs into eye dominance domains. Segregation is confirmed by optical imaging of intrinsic signals. Single-unit recording shows ipsilateral, and contralateral inputs are mismatched at the level of single V1 neurons, and binocular stimulation leads to functional suppression of these cells. These findings indicate that the medial expansion of the binocular zone together with an interocular mismatch is sufficient to induce novel structural features, such as eye dominance domains in rodent visual cortex. PMID:22499796

  14. Biphasic MO2+x-M3O8-z domain of the U-Pu-O phase diagram.

    PubMed

    Strach, Michal; Belin, Renaud C; Richaud, Jean-Christophe; Rogez, Jacques

    2015-09-21

    The reduction of six mixed-oxide samples containing 14, 24, 35, 46, 54, and 62 mol % Pu was studied in situ by X-ray diffraction. The samples were first oxidized in air and subsequently reduced in a controlled atmosphere corresponding to a stoichiometric composition with an O/M = 2.00. After oxidation, we observed two structures, one cubic and one orthorhombic, MO2+x and M3O8-z. The two phases were subsequently reduced back to their stoichiometric O/M = 2.00 in a controlled atmosphere. The plutonium contents of the two resulting cubic structures differed from the initial one. We conclude that strong cation transport took place during oxidation, according to the shape of the tie lines in the biphasic MO2+x/M4O9-M3O8-z domain. The resulting overall O/M after oxidation was estimated. We propose the shape of the tie lines in the aforementioned biphasic domain and suggest a maximal plutonium solubility in the M3O8 structure at 8 ± 2 mol % (Pu/U + Pu) at 1573 K.

  15. Wear Calculation Approach for Sliding - Friction Pairs

    NASA Astrophysics Data System (ADS)

    Springis, G.; Rudzitis, J.; Lungevics, J.; Berzins, K.

    2017-05-01

    One of the most important things how to predict the service life of different products is always connected with the choice of adequate method. With the development of production technologies and measuring devices and with ever increasing precision one can get the appropriate data to be used in analytic calculations. Historically one can find several theoretical wear calculation methods but still there are no exact wear calculation model that could be applied to all cases of wear processes because of difficulties connected with a variety of parameters that are involved in wear process of two or several surfaces. Analysing the wear prediction theories that could be classified into definite groups one can state that each of them has shortcomings that might impact the results thus making unnecessary theoretical calculations. The offered wear calculation method is based on the theories of different branches of science. It includes the description of 3D surface micro-topography using standardized roughness parameters, explains the regularities of particle separation from the material in the wear process using fatigue theory and takes into account material’s physical and mechanical characteristics and definite conditions of product’s working time. The proposed wear calculation model could be of value for prediction of the exploitation time for sliding friction pairs thus allowing the best technologies to be chosen for many mechanical details.

  16. Rashba Splitting of Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Shekhter, R. I.; Entin-Wohlman, O.; Jonson, M.; Aharony, A.

    2016-05-01

    We investigate theoretically the properties of a weak link between two superconducting leads, which has the form of a nonsuperconducting nanowire with a strong Rashba spin-orbit coupling caused by an electric field. In the Coulomb-blockade regime of single-electron tunneling, we find that such a weak link acts as a "spin splitter" of the spin states of Cooper pairs tunneling through the link, to an extent that depends on the direction of the electric field. We show that the Josephson current is sensitive to interference between the resulting two transmission channels, one where the spins of both members of a Cooper pair are preserved and one where they are both flipped. As a result, the current is a periodic function of the strength of the spin-orbit interaction and of the bending angle of the nanowire (when mechanically bent); an identical effect appears due to strain-induced spin-orbit coupling. In contrast, no spin-orbit induced interference effect can influence the current through a single weak link connecting two normal metals.

  17. Topological superconductivity and unconventional pairing in oxide interfaces.

    PubMed

    Scheurer, Mathias S; Schmalian, Jörg

    2015-01-28

    Pinpointing the microscopic mechanism for superconductivity has proven to be one of the most outstanding challenges in the physics of correlated quantum matter. Thus far, the most direct evidence for an electronic pairing mechanism is the observation of a new symmetry of the order parameter, as done in the cuprate high-temperature superconductors. Alternatively, global, topological invariants allow for a sharp discrimination between states of matter that cannot be transformed into each other adiabatically. Here we propose an unconventional pairing state for the electron fluid in two-dimensional oxide interfaces and establish a direct link to the emergence of non-trivial topological invariants. Topological signatures, in particular Majorana edge states, can then be used to detect the microscopic origin of superconductivity. In addition, we show that also the density wave states that compete with superconductivity sensitively depend on the nature of the pairing interaction.

  18. Odd-frequency triplet pairing in mixed-parity superconductors

    NASA Astrophysics Data System (ADS)

    Cuoco, Mario; Gentile, Paola; Noce, Canio; Romano, Alfonso; Annunziata, Gaetano; Linder, Jacob

    2012-02-01

    We show that mixed-parity superconductors may exhibit equal-spin pair correlations that are odd-in-time and can be tuned by means of an applied field. The direction and the amplitude of the pair correlator in the spin space turn out to be strongly dependent on the symmetry of the order parameter, and thus provide a tool to identify different types of singlet-triplet mixed configurations. We suggest that odd-in-time spin-polarized pair correlations can be generated without magnetic inhomogeneities in superconducting/ferromagnetic hybrids with non-centrosymmetric superconductor or when parity mixing is induced at the interface. Paola Gentile, Canio Noce, Alfonso Romano, Gaetano Annunziata, Jacob Linder, Mario Cuoco, arXiv:1109.4885

  19. Ion pairing in molecular simulations of aqueous alkali halide solutions

    PubMed Central

    Fennell, Christopher J.; Bizjak, Alan; Vlachy, Vojko; Dill, Ken A.

    2009-01-01

    Using classical molecular dynamics simulations, we study ion-ion interactions in water. We study the potentials of mean force (PMF) for the full set of alkali halide ion pairs, and in each case, we test different parameter sets for modeling both the water and the ions. Altogether, we compared 300 different PMFs. We also calculate association equilibrium constants (KA) and compare them to two types of experiments. Of additional interest here was the proposition of Collins called the ‘law of matching water affinities’, where the relative affinity of ions in solution depends on the matching of cation and anion sizes. From observations on the relative depths of the free energies of the contact ion pair (CIP) and the solvent-shared ion pair (SIP), along with related solvent structure analyses, we find a good correlation with this proposition: small-small and large-large should associate in water and small-large should be more dissociated. PMID:19206510

  20. Ion pairing in molecular simulations of aqueous alkali halide solutions.

    PubMed

    Fennell, Christopher J; Bizjak, Alan; Vlachy, Vojko; Dill, Ken A

    2009-05-14

    Using classical molecular dynamics simulations, we study ion-ion interactions in water. We study the potentials of mean force (PMF) for the full set of alkali halide ion pairs, and in each case, we test different parameter sets for modeling both the water and the ions. Altogether, we compared 300 different PMFs. We also calculate association equilibrium constants (KA) and compare them to two types of experiments. Of additional interest here was the proposition of Collins called the "law of matching water affinities", where the relative affinity of ions in solution depends on the matching of cation and anion sizes. From observations on the relative depths of the free energies of the contact ion pair (CIP) and the solvent-shared ion pair (SIP), along with related solvent structure analyses, we find a good correlation with this proposition: small-small and large-large should associate in water, and small-large should be more dissociated.

  1. Comparison of selective M3 and nonselective muscarinic receptor antagonists on gastrointestinal transit and bowel habits in humans

    PubMed Central

    Ravi, Karthik; Zinsmeister, Alan R.

    2010-01-01

    Although in vitro studies show that muscarinic M3 receptors primarily mediate the effects of acetylcholine on gastrointestinal contractility, the muscarinic receptor subtypes regulating gastrointestinal motor activity and transit in humans in vivo are unclear. We hypothesized that muscarinic M3-specific but not nonspecific receptor antagonists would delay gastrointestinal and colonic transit in humans. In this parallel-group study, gastric emptying, small intestinal transit, and colonic transit were assessed by scintigraphy on days 4-6 in 72 healthy subjects (49 women) who received placebo (n = 16), the M3 antagonist darifenacin ER [7.5 mg (n = 20) or 15 mg daily (n = 17)], or the nonspecific antagonist tolterodine [4 mg daily (n = 19)] for 6 days. Bowel habits were recorded by daily diaries. Both doses of darifenacin substantially delayed [P < 0.01 vs. placebo (for both doses), P < 0.01 vs. tolterodine (for 15 mg)] small intestinal transit, i.e., colonic filling at 6 h (placebo [59.6 ± 6.4%, mean ± SE], 7.5 mg ER [34.4 ± 6.1%], 15 mg ER [20.4 ± 6.3%)]. Darifenacin (15 mg) also delayed (P < 0.01 vs. placebo and tolterodine) half-time for ascending colonic emptying [placebo (12.0 ± 1.5 h), 7.5 mg (18.6 ± 1.9 h), 15 mg (22.9 ± 2.6 h)] and colonic transit (geometric center) at 24 [placebo (2.8 ± 0.2), 7.5 mg (2.4 ± 0.2), 15 mg (1.9 ± 0.2)] but not 48 h. Darifenacin did not affect gastric emptying and tolterodine did not affect bowel habits or gastrointestinal transit. With muscarinic antagonists used at clinically approved doses, these findings demonstrate that muscarinic M3 receptors regulate small intestinal and colonic transit in humans; colonic effects are more pronounced in the right than left colon. At doses that affect small and large intestinal transit, M3 antagonists do not affect gastric emptying in humans. The efficacy of darifenacin in diarrhea-predominant irritable bowel syndrome should be evaluated. PMID:20395537

  2. M3(P2O7)22--type open frameworks featuring [M2O8] and [M3O12] multinuclear transition-metal oxide units. Serendipitous synthesis of six polymorphic salt-inclusion magnetic solids: Na2M3(P2O7)2·ACl (M = Mn, Fe; A = Rb, Cs) and K2M3(P2O7)2·CsCl (M = Fe, Mn).

    PubMed

    Gao, Jianhua; Li, Jian; Sulejmanovic, Dino; Hwu, Shiou-Jyh

    2015-02-02

    Single crystals of six polymorphic salt-inclusion phosphates of the A(2)M(3)(P(2)O(7))(2)·A'Cl type, Na(2)Mn(3)(P(2)O(7))(2)·CsCl (1), Na(2)Mn(3)(P(2)O(7))(2)·RbCl (2), Na(2)Fe(3)(P(2)O(7))(2)·CsCl (3), Na(2)Fe(3)(P(2)O(7))(2)·RbCl (4), K(2)Mn(3)(P(2)O(7))(2)·CsCl (5), and K(2)Fe(3)(P(2)O(7))(2)·CsCl (6), were grown in reactive molten chloride flux media. Compounds 1-4 are isostructural and crystallize in the space group C2/c (No. 15), while 5 and 6 crystallize in P2/c (No. 13) and P1̅ (No. 2), respectively. The title compounds have demonstrated an unprecedented versatility, where the M(3)(P(2)O(7))(2)(2-) covalent open frameworks contain [M(3)O(12)] (M = Mn(2+), Fe(2+)) trimeric units in 1-4 and [M(2)O(8)] dimers in 5 and 6. These multinuclear, transition-metal oxide units are linked by Cl(-) ions through the M-Cl bonds to form one-dimensional (1D) chains. The 1D chains and [P(2)O(7)] groups share common O atoms to form the extended network. The M(3)(P(2)O(7))(2)(2-) open-framework structures exhibit channels where the respective Na(+)/K(+) ions and A'Cl salt (A' = Rb, Cs) reside. Magnetic susceptibility of 2 and 4 suggests bulk antiferromagnetic properties as expected. The local structure and thermal decomposition are examined by IR and differential scanning calorimetry of representative compounds. The factors that determine the reticular chemistry of the M(3)(P(2)O(7))(2)(2-) type are illustrated in terms of the inclusion of ionic lattices of different sizes and contents.

  3. Comparison of selective M3 and nonselective muscarinic receptor antagonists on gastrointestinal transit and bowel habits in humans.

    PubMed

    Bharucha, Adil E; Ravi, Karthik; Zinsmeister, Alan R

    2010-07-01

    Although in vitro studies show that muscarinic M(3) receptors primarily mediate the effects of acetylcholine on gastrointestinal contractility, the muscarinic receptor subtypes regulating gastrointestinal motor activity and transit in humans in vivo are unclear. We hypothesized that muscarinic M(3)-specific but not nonspecific receptor antagonists would delay gastrointestinal and colonic transit in humans. In this parallel-group study, gastric emptying, small intestinal transit, and colonic transit were assessed by scintigraphy on days 4-6 in 72 healthy subjects (49 women) who received placebo (n = 16), the M(3) antagonist darifenacin ER [7.5 mg (n = 20) or 15 mg daily (n = 17)], or the nonspecific antagonist tolterodine [4 mg daily (n = 19)] for 6 days. Bowel habits were recorded by daily diaries. Both doses of darifenacin substantially delayed [P < 0.01 vs. placebo (for both doses), P < 0.01 vs. tolterodine (for 15 mg)] small intestinal transit, i.e., colonic filling at 6 h (placebo [59.6 +/- 6.4%, mean +/- SE], 7.5 mg ER [34.4 +/- 6.1%], 15 mg ER [20.4 +/- 6.3%)]. Darifenacin (15 mg) also delayed (P < 0.01 vs. placebo and tolterodine) half-time for ascending colonic emptying [placebo (12.0 +/- 1.5 h), 7.5 mg (18.6 +/- 1.9 h), 15 mg (22.9 +/- 2.6 h)] and colonic transit (geometric center) at 24 [placebo (2.8 +/- 0.2), 7.5 mg (2.4 +/- 0.2), 15 mg (1.9 +/- 0.2)] but not 48 h. Darifenacin did not affect gastric emptying and tolterodine did not affect bowel habits or gastrointestinal transit. With muscarinic antagonists used at clinically approved doses, these findings demonstrate that muscarinic M(3) receptors regulate small intestinal and colonic transit in humans; colonic effects are more pronounced in the right than left colon. At doses that affect small and large intestinal transit, M(3) antagonists do not affect gastric emptying in humans. The efficacy of darifenacin in diarrhea-predominant irritable bowel syndrome should be evaluated.

  4. Optical conductivity from pair density waves

    NASA Astrophysics Data System (ADS)

    Dai, Zhehao; Lee, Patrick A.

    2017-01-01

    We present a theory of optical conductivity in systems with finite-momentum Cooper pairs. In contrast to the BCS pairing where ac conductivity is purely imaginary in the clean limit, there is nonzero ac absorption across the superconducting gap for finite-momentum pairing if we break the Galilean symmetry explicitly in the electronic Hamiltonian. Vertex correction is crucial for maintaining the gauge invariance in the mean-field formalism and dramatically changes the optical conductivity in the direction of the pairing momentum. We carried out a self-consistent calculation and gave an explicit formula for optical conductivity in a simple case. This result applies to the Fulde-Ferrell-Larkin-Ovchinnikov state and candidates with pair density waves proposed for high-Tc cuprates. It may help detect pair density waves and determine the pairing gap as well as the direction of the pairing momentum in experiments.

  5. Structural and electronic properties of reduced transition metal oxide clusters, M3O8 and M3O8- (M = Cr, W), from photoelectron spectroscopy and quantum chemical calculations.

    PubMed

    Li, Shenggang; Zhai, Hua-Jin; Wang, Lai-Sheng; Dixon, David A

    2009-10-22

    We report a comparative study of reduced transition metal oxide clusters, M(3)O(8)(-) (M = Cr, W) anions and their neutrals, via anion photoelectron spectroscopy (PES) and density functional theory (DFT) and molecular orbital theory (CCSD(T)) calculations. Well-resolved PES spectra are obtained for M(3)O(8)(-) (M = Cr, W) at 193 and 157 nm photon energies. Different PES spectra are observed for M = Cr versus M = W. Extensive DFT and CCSD(T) calculations are performed to locate the ground and low-lying excited states for the neutrals and anions. The ground states of Cr(3)O(8) and Cr(3)O(8)(-) are predicted to be the (3)B(2) and (4)B(2) states of a C(2v) structure, respectively, revealing ferromagnetic spin coupling for Cr 3d electrons. In contrast, the ground states of W(3)O(8) and W(3)O(8)(-) are predicted to be the (1)A' state (C(s) symmetry) and the (2)A(1) state (C(2v) symmetry), respectively, showing metal-metal d-d bonding in the anion. The current cluster geometries are in qualitative agreement with prior DFT studies at the PBE level for M = Cr and the B3LYP level for M = W. The BP86 and PW91 functionals significantly outperform the B3LYP functional for the Cr species, in terms of relative energies, electron detachment energies, and electronic excitation energies, whereas the B3LYP functional is better for the W species. Accurate heats of formation for the ground states of M(3)O(8) are calculated from the clustering energies and the heats of formation of MO(2) and MO(3). The energetics have been used to predict redox reaction thermochemistry.

  6. Properties of isoscalar-pair condensates

    NASA Astrophysics Data System (ADS)

    Van Isacker, P.; Macchiavelli, A. O.; Fallon, P.; Zerguine, S.

    2016-08-01

    It is pointed out that the ground state of n neutrons and n protons in a single-j shell, interacting through an isoscalar (T =0 ) pairing force, is not paired, J =0 , but rather spin aligned, J =n . This observation is explained in the context of a model of isoscalar P (J =1 ) pairs, which is mapped onto a system of p bosons, leading to an approximate analytic solution of the isoscalar-pairing limit in j j coupling.

  7. Angular momentum decomposition of Richardson's pairs

    SciTech Connect

    Dussel, G. G.; Sofia, H. M.

    2008-07-15

    The angular momentum decomposition of pairs obtained using Richardson's exact solution of the pairing Hamiltonian for the deformed {sup 174}Yb nucleus are displayed. The probabilities for low angular momenta of the collective pairs are strikingly different from the ones obtained in the BCS ground state.

  8. Homolog pairing and segregation in Drosophila meiosis.

    PubMed

    McKee, B D

    2009-01-01

    Pairing of homologous chromosomes is fundamental to their reliable segregation during meiosis I and thus underlies sexual reproduction. In most eukaryotes homolog pairing is confined to prophase of meiosis I and is accompanied by frequent exchanges, known as crossovers, between homologous chromatids. Crossovers give rise to chiasmata, stable interhomolog connectors that are required for bipolar orientation (orientation to opposite poles) of homologs during meiosis I. Drosophila is unique among model eukaryotes in exhibiting regular homolog pairing in mitotic as well as meiotic cells. I review the results of recent molecular studies of pairing in both mitosis and meiosis in Drosophila. These studies show that homolog pairing is continuous between pre-meiotic mitosis and meiosis but that pairing frequencies and patterns are altered during the mitotic-meiotic transition. They also show that, with the exception of X-Y pairing in male meiosis, which is mediated specifically by the 240-bp rDNA spacer repeats, chromosome pairing is not restricted to specific sites in either mitosis or meiosis. Instead, virtually all chromosome regions, both heterochromatic and euchromatic, exhibit autonomous pairing capacity. Mutations that reduce the frequencies of both mitotic and meiotic pairing have been recently described, but no mutations that abolish pairing completely have been discovered, and the genetic control of pairing in Drosophila remains to be elucidated.

  9. Individuation of Pairs of Objects in Infancy

    ERIC Educational Resources Information Center

    Leslie, Alan M.; Chen, Marian L.

    2007-01-01

    Looking-time studies examined whether 11-month-old infants can individuate two pairs of objects using only shape information. In order to test individuation, the object pairs were presented sequentially. Infants were familiarized either with the sequential pairs, disk-triangle/disk-triangle (XY/XY), whose shapes differed within but not across…

  10. Expression of a tumor-associated gene, LASS2, in the human bladder carcinoma cell lines BIU-87, T24, EJ and EJ-M3

    PubMed Central

    ZHAO, QINGHUA; WANG, HAIFENG; YANG, MINGYING; YANG, DELIN; ZUO, YIGANG; WANG, JIANSONG

    2013-01-01

    Homo sapiens longevity assurance homolog 2 of yeast LAG1 (LASS2), a metastasis suppressor gene of human cancer, is the most abundantly expressed member of the ceramide synthase gene family. Expression of LASS2 has been reported in carcinomas of the prostate, liver and breast. However, there has been no report on the expression of LASS2 in human bladder cancer cell lines. In order to investigate the expression and potential role of this new tumor metastasis supressor gene in human bladder cancer, we compared the proliferation, metastasis and invasion among the BIU-87, T24, EJ and EJ-M3 human bladder cancer cell lines. The mRNA expression levels of the LASS2 gene were examined using real-time quantitative PCR (qPCR). The expression levels of LASS1 and LASS3 mRNA were used as references. The protein expression level of the LASS2 gene was detected using western blotting. The most aggressive of these four human cancer cell lines was observed to be EJ-M3. The expression of LASS2 mRNA was significantly correlated with diverse proliferation, metastasis and invasion. The expression levels of LASS1 and LASS3 mRNA were not correlated with these parameters. At the protein level, we observed that the more aggressive the cancer cell line, the lower the LASS2 protein expression level. Therefore, LASS2 expression may be correlated with the development and progression of human bladder cancer and may be a prognostic indicator for this cancer. PMID:23407876

  11. Proximity effects and pair currents in cuprate junctions

    NASA Astrophysics Data System (ADS)

    Koren, Gad

    2017-04-01

    Proximity effects and pair currents were measured in epitaxial trilayer c-axis junctions comprised of a {{{PrBa}}}2{{{Cu}}}3{{{O}}}7-δ barrier sandwiched in between an overdoped {{{Y}}}0.94{{{Ca}}}0.06{{{Ba}}}2{{{Cu}}}3{{{O}}}7-δ layer and underdoped {{{YBa}}}2{{{Cu}}}2.7{{{Co}}}0.3{{{O}}}{y} layer. These junctions had two T c values of {{T}}{{c}}({high})=84{--}86 K and {{T}}{{c}}({low})=50{--}55 K, allowing investigation when both electrodes are superconducting, or when only one is superconducting while the other is in its pseudogap regime. For T below T c(high) but much above T c(low), two distinct proximity effect transitions were observed in the resistance at two temperature regimes, between 80 and 84 K, and 76 to 80 K. The first is a conventional proximity effect with the T c(high) electrode, while the second is a second order proximity effect of this electrode with uncorrelated pairs in the pseudogap regime. Conductance spectra measured between 2 and 86 K showed four different I c pair currents which were attributed to coherent pairs tunneling through the barrier below 42 K, to a fluctuating pairs current up to ∼77 K, and to a proximity pairs current between 77 and 84 K. All pair currents were suppressed under magnetic fields, with two distinct decay parameters that originated in the two different electrodes, with a significant suppression observed in the pseudogap regime.

  12. Pair distribution function computed tomography.

    PubMed

    Jacques, Simon D M; Di Michiel, Marco; Kimber, Simon A J; Yang, Xiaohao; Cernik, Robert J; Beale, Andrew M; Billinge, Simon J L

    2013-01-01

    An emerging theme of modern composites and devices is the coupling of nanostructural properties of materials with their targeted arrangement at the microscale. Of the imaging techniques developed that provide insight into such designer materials and devices, those based on diffraction are particularly useful. However, to date, these have been heavily restrictive, providing information only on materials that exhibit high crystallographic ordering. Here we describe a method that uses a combination of X-ray atomic pair distribution function analysis and computed tomography to overcome this limitation. It allows the structure of nanocrystalline and amorphous materials to be identified, quantified and mapped. We demonstrate the method with a phantom object and subsequently apply it to resolving, in situ, the physicochemical states of a heterogeneous catalyst system. The method may have potential impact across a range of disciplines from materials science, biomaterials, geology, environmental science, palaeontology and cultural heritage to health.

  13. The thermodynamics and kinetics of a nucleotide base pair

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Gong, Sha; Wang, Zhen; Zhang, Wenbing

    2016-03-01

    The thermodynamic and kinetic parameters of an RNA base pair were obtained through a long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The thermodynamic parameters were in good agreement with the nearest-neighbor model. The opening rates showed strong temperature dependence, however, the closing rates showed only weak temperature dependence. The transition path time was weakly temperature dependent and was insensitive to the energy barrier. The diffusion constant exhibited super-Arrhenius behavior. The free energy barrier of breaking a single base stack results from the enthalpy increase, ΔH, caused by the disruption of hydrogen bonding and base-stacking interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss, ΔS, caused by the restriction of torsional angles. These results suggest that a one-dimensional free energy surface is sufficient to accurately describe the dynamics of base pair opening and closing, and the dynamics are Brownian.

  14. Exact Solutions for Pairing Correlations Among Protons and Neutrons

    NASA Astrophysics Data System (ADS)

    Miora, Madeleine; Launey, Kristina; Kekejian, David; Draayer, Jerry; Pan, Feng

    2017-01-01

    Using the nuclear shell model we are able to achieve, for the first time, exact solutions for pairing correlations for light to medium-mass nuclei, including the challenging proton-neutron pairs, while also identifying the primary physics involved. We utilize a new Hamiltonian with only two adjustable parameters. In addition to a single-particle energy term and the Coulomb potential, the shell-model Hamiltonian consists of isovector T=1 pairing interaction and average proton-neutron isoscalar T=0 interaction. The T=0 term describes the average interaction between non-paired protons and neutrons. This Hamiltonian is exactly solvable, but calculations represent a challenge, as they require highly non-linear equations to be computed. With this model, including from 3 to 7 single-particle energy levels, we can reproduce experimental data for 0+ state energies for isotopes with mass A=10 through A=62 exceptionally well including isotopes from He to Ge. These results provide a further understanding for the key role of proton-neutron pairing correlations in nuclei, which is especially important for waiting-point nuclei on the rp-path of nucleosynthesis. We acknowledge support from the National Science Foundation (grant #1262890, OCI-0904874, and ACI-1516338), DOE (DE-SC0005248), SURA, and CUSTIPEN.

  15. Electrostatic solitary waves in dusty pair-ion plasmas

    SciTech Connect

    Misra, A. P.; Adhikary, N. C.

    2013-10-15

    The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the “fast” and “slow” waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass (m) and temperature (T) ratios of negative to positive ions, as well as the effects of immobile charged dusts (δ). For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons, are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves (SWs) with only the negative potential. The results may be useful for the excitation of SWs in laboratory dusty pair-ion plasmas, electron-free industrial plasmas as well as for observation in space plasmas where electron density is negligibly small compared to that of negative ions.

  16. Self-confined particle pairs in complex plasmas.

    PubMed

    Lisina, I I; Lisin, E A; Vaulina, O S; Petrov, O F

    2017-01-01

    The liquid-crystal type of phase transition in complex plasmas has been observed repeatedly. However, more studies need to be done on the liquid-vapor transition in complex plasmas. In this paper, the phenomenon of coupling (condensation) of particles into self-confined particle pairs in an anisotropic plasma medium with ion flow is considered analytically and numerically using the Langevin molecular dynamics method. We obtain the stability conditions of the pair (bound) state depending on the interaction parameters and particle kinetic energy. It was shown that the breakup of the particle pair is very sensitive to the ratio of particle charges; for example, it is determined by the influence of the upper particle on the ion flow around the lower one. We also show that a self-confined pair of particles exists even if their total kinetic energy is much greater than the potential well depth for the pair state. This phenomenon occurs due to velocity correlation of particles, which arises with the nonreciprocity of interparticle interaction.

  17. Self-confined particle pairs in complex plasmas

    NASA Astrophysics Data System (ADS)

    Lisina, I. I.; Lisin, E. A.; Vaulina, O. S.; Petrov, O. F.

    2017-01-01

    The liquid-crystal type of phase transition in complex plasmas has been observed repeatedly. However, more studies need to be done on the liquid-vapor transition in complex plasmas. In this paper, the phenomenon of coupling (condensation) of particles into self-confined particle pairs in an anisotropic plasma medium with ion flow is considered analytically and numerically using the Langevin molecular dynamics method. We obtain the stability conditions of the pair (bound) state depending on the interaction parameters and particle kinetic energy. It was shown that the breakup of the particle pair is very sensitive to the ratio of particle charges; for example, it is determined by the influence of the upper particle on the ion flow around the lower one. We also show that a self-confined pair of particles exists even if their total kinetic energy is much greater than the potential well depth for the pair state. This phenomenon occurs due to velocity correlation of particles, which arises with the nonreciprocity of interparticle interaction.

  18. Cefotaxime-Resistant Enterobacteriaceae Isolates from a Hospital in Warsaw, Poland: Identification of a New CTX-M-3 Cefotaxime-Hydrolyzing β-Lactamase That Is Closely Related to the CTX-M-1/MEN-1 Enzyme

    PubMed Central

    Gniadkowski, Marek; Schneider, Ines; Pałucha, Andrzej; Jungwirth, Renate; Mikiewicz, Barbara; Bauernfeind, Adolf

    1998-01-01

    A group of cefotaxime-resistant Citrobacter freundii and Escherichia coli isolates were collected by a clinical laboratory in a hospital in Warsaw, Poland, in July 1996. Detailed analysis has shown that all of these produced a β-lactamase (pI, 8.4) belonging to the CTX-M family, one of the minor extended-spectrum β-lactamase families with a strong cefotaxime-hydrolyzing activity. Sequencing has revealed that C. freundii isolates produced a new CTX-M-3 enzyme which is very closely related to the CTX-M-1/MEN-1 β-lactamase, sporadically identified in Europe over a period of 6 years. Amino acid sequences of these two β-lactamases differ at four positions: Val77Ala, Asp114Asn, Ser140Ala, and Asn288Asp (the first amino acid of each pair refers to CTX-M-1/MEN-1 and second refers to CTX-M-3). The partial sequence of the E. coli CTX-M gene was identical to the corresponding region of blaCTX-M-3, but a transconjugant of the E. coli isolate expressed higher levels of resistance to β-lactams than did C. freundii transconjugants. These resistance differences correlated with differences in plasmid DNA restriction patterns. Our results suggest that CTX-M genes have been spread among different species of the family Enterobacteriaceae in the hospital and that the CTX-M-3-expressing C. freundii strain causing routine urinary tract infections has been maintained for a relatively long time in the hospital environment. PMID:9559791

  19. Incoherent pair generation in a beam-beam interaction simulation

    NASA Astrophysics Data System (ADS)

    Rimbault, C.; Bambade, P.; Mönig, K.; Schulte, D.

    2006-03-01

    This paper deals with two topics: the generation of incoherent pairs in two beam-beam simulation programs, GUINEA-PIG and CAIN, and the influence of the International Linear Collider (ILC) beam parameter choices on the background in the micro vertex detector (VD) induced by direct hits. One of the processes involved in incoherent pair creation (IPC) is equivalent to a four fermions interaction and its cross section can be calculated exactly with a dedicated generator, BDK. A comparison of GUINEA-PIG and CAIN results with BDK allows to identify and quantify the uncertainties on IPC background predictions and to benchmark the GUINEA-PIG calculation. Based on this simulation and different VD designs, the five currently suggested ILC beam parameter sets have been compared regarding IPC background induced in the VD by direct IPC hits. We emphasize that the high luminosity set, as it is currently defined, would constrain both the choices of magnetic field and VD inner layer radius.

  20. Schwinger vacuum pair production in chirped laser pulses

    SciTech Connect

    Dumlu, Cesim K.

    2010-08-15

    The recent developments of high intensity ultrashort laser pulses have raised the hopes of observing Schwinger vacuum pair production which is one of the important nonperturbative phenomena in QED. The quantitative analysis of realistic high intensity laser pulses is vital for understanding the effect of the field parameters on the momentum spectrum of the produced particles. In this study, we analyze chirped laser pulses with a subcycle structure, and investigate the effects of the chirp parameter on the momentum spectrum of the produced particles. The combined effect of the chirp and carrier phase of the laser pulse is also analyzed. These effects are qualitatively explained by investigating the turning-point structure of the potential within the framework of the complex WKB scattering approach to pair production.

  1. Promotion of activity and thermal stability of chloroperoxidase by trace amount of metal ions (M2+/M3+).

    PubMed

    Li, Haiyun; Gao, Jinwei; Wang, Limin; Li, Xiaohong; Jiang, Yucheng; Hu, Mancheng; Li, Shuni; Zhai, Quanguo

    2014-03-01

    The effect of M(2+) (Zn(2+), Cu(2+), Cd(2+), Mn(2+), Pb(2+)) and M(3+) (Cr(3+), La(3+), Fe(3+), Ce(3+), Y(3+), Al(3+)) metal ions on the activity and thermal stability of chloroperoxidase (CPO) was investigated in this work. It was found that the lower concentration of metal ions was favorable to CPO activity whereas the higher concentration reversed the results. CPO activity could be increased to 116.4-127.1% in the presence of a trace amount of these M(2+)/M(3+) metal ions at a concentration range of 0-25 μmol L(-1) after 2 h of incubation at 25 °C. The activating effect of M(3+) is better than that of M(2+), and Cr(3+) was mostly efficient. The thermal stability of the enzyme was also improved significantly. Only 30.3% of CPO activity was retained at 50 °C whereas 82.6% of CPO activity was maintained in the presence of Cr(3+) after 2 h of incubation at the same temperature. The activation of CPO by metal ions at their low concentration was studied through intrinsic fluorescence, circular dichroism (CD), and UV-Vis spectra assay. A favorable environment around the active site was achieved in the presence of metal ions. Intrinsic fluorescence and CD spectra indicated that the α-helix structure of CPO was strengthened in metal ion-contained media. More exposure of the heme ring was achieved for easy access of the substrate, which was suggested by UV-Vis spectrum analysis. This strategy for enhancing CPO activity is very simple and useful. It will be favorable to the practical application of this enzyme.

  2. Optical binding of particle pairs in retro-reflected beam geometry

    NASA Astrophysics Data System (ADS)

    Damková, Jana; Chvátal, Lukáš; Brzobohatý, Oto; Zemánek, Pavel

    2016-12-01

    Optical binding of polystyrene microparticle pairs in retro-reflected wide Gaussian beam, called "tractor beam", is studied experimentally and the results are compared with the numerical calculations based on the multiple-particle Mie scattering theory. To investigate the dynamics of optically bound particle pairs in three dimensions we employ holographic video microscopy technique. We show that the particle pair motion is strongly dependent on the relative distances of the particles and the switching between applying pushing and pulling force on particle pairs can be achieved only by changing their configuration even though the "tractor-beam" parameters remain unchanged.

  3. Temperature-dependent isovector pairing gap equations using a path integral approach

    SciTech Connect

    Fellah, M.; Allal, N. H.; Belabbas, M.; Oudih, M. R.; Benhamouda, N.

    2007-10-15

    Temperature-dependent isovector neutron-proton (np) pairing gap equations have been established by means of the path integral approach. These equations generalize the BCS ones for the pairing between like particles at finite temperature. The method has been numerically tested using the one-level model. It has been shown that the gap parameter {delta}{sub np} has a behavior analogous to that of {delta}{sub nn} and {delta}{sub pp} as a function of the temperature: one notes the presence of a critical temperature. Moreover, it has been shown that the isovector pairing effects remain beyond the critical temperature that corresponds to the pairing between like particles.

  4. Successful management of pulmonary hemorrhage and aspergillosis in a patient with acute myeloid leukemia (AML-M3)

    PubMed Central

    Gunbatar, Hulya; Demir, Cengiz; Kara, Erdal; Esen, Ramazan; Sertogullarindan, Bunyamin; Asker, Selvi

    2015-01-01

    A 35-year-old man presented with a one month history of gingival bleeding. He was diagnosed with Acute Myeloid Leukemia (AML-M3). During treatment he developed alveolar hemorrhage for which he was treated with a steroid. After the steroid treatment he developed a nodule, a cavitary lesion and atelectasia in the left lung. He was treated with voriconazole. After therapy with voriconazole his lesion significantly decreased. This case illustrates the efficacy and safety of antifungal therapy with voriconazole for aspergillosis complicated by AML. PMID:26744658

  5. Globular cluster photometry with the Hubble Space Telescope. 3: Blue stragglers and variable stars in the core of M3

    NASA Technical Reports Server (NTRS)

    Guhathakurta, Puragra; Yanny, Brian; Bahcall, John N.; Schneider, Donald P.

    1994-01-01

    This paper describes Hubble Space Telescope (HST)/Planetary Camera-I images of the core of the dense globular cluster M3 (NGC 5272). Stellar photometry in the F555W (V) and F785LP (I) bands, with a 1-sigma photometric accuracy of about 0.1 mag, has been used to construct color-magnitude diagrams of about 4700 stars above the main-sequence turnoff within r less than or approximately equal to 1 min of the cluster center. We have also analyzed archival HST F336W (U) images of M3 obtained by the Wide Field/Planetary Camera-I Instrument Definition Team. The UVI data are used to identify 28 blue straggler (BS) stars within the central 0.29 sq. arcmin. The specific frequency of BSs in this region of M3, N(sub BS)/N(sub V less than (V(HB)+2)) = 0.094 +/- 0.019, is about a factor of 2 - 3 higher than that found by Bolte et al. in a recent ground-based study of the same region, but comparable to that seen in the sparse outer parts of the same cluster and in HST observations of the core of the higher density cluster 47 Tuc. The BSs in M3 are slightly more centrally concentrated than red giant branch stars while horizontal branch stars are somewhat less concentrated red giants. The radial distribution of V-selected subgiant and turnoff stars is well fit by a King model with a core radius r(sub core) = 28 arcmin +/- 2 arcmin (90% confidence limits), which corresponds to 1.4 pc. Red giant and horizontal branch stars selected in the ultraviolet data (U less than 18) have a somewhat more compact distribution (r(sub core) = 22.5 arcmin). The HST U data consist of 17 exposures acquired over a span of three days. We have used these data to isolate 40 variable stars for which relative astrometry, brightnesses, colors, and light curves are presented. A Kolmogorov-Smirnov test indicates that, typically, the variability for each star is significant at the 95% level. We identify two variable BS candidates (probably of the SX Phe type), out of a sample of approximately 25 BSs in which

  6. Globular cluster photometry with the Hubble Space Telescope. 3: Blue stragglers and variable stars in the core of M3

    NASA Technical Reports Server (NTRS)

    Guhathakurta, Puragra; Yanny, Brian; Bahcall, John N.; Schneider, Donald P.

    1994-01-01

    This paper describes Hubble Space Telescope (HST)/Planetary Camera-I images of the core of the dense globular cluster M3 (NGC 5272). Stellar photometry in the F555W (V) and F785LP (I) bands, with a 1-sigma photometric accuracy of about 0.1 mag, has been used to construct color-magnitude diagrams of about 4700 stars above the main-sequence turnoff within r less than or approximately equal to 1 min of the cluster center. We have also analyzed archival HST F336W (U) images of M3 obtained by the Wide Field/Planetary Camera-I Instrument Definition Team. The UVI data are used to identify 28 blue straggler (BS) stars within the central 0.29 sq. arcmin. The specific frequency of BSs in this region of M3, N(sub BS)/N(sub V less than (V(HB)+2)) = 0.094 +/- 0.019, is about a factor of 2 - 3 higher than that found by Bolte et al. in a recent ground-based study of the same region, but comparable to that seen in the sparse outer parts of the same cluster and in HST observations of the core of the higher density cluster 47 Tuc. The BSs in M3 are slightly more centrally concentrated than red giant branch stars while horizontal branch stars are somewhat less concentrated red giants. The radial distribution of V-selected subgiant and turnoff stars is well fit by a King model with a core radius r(sub core) = 28 arcmin +/- 2 arcmin (90% confidence limits), which corresponds to 1.4 pc. Red giant and horizontal branch stars selected in the ultraviolet data (U less than 18) have a somewhat more compact distribution (r(sub core) = 22.5 arcmin). The HST U data consist of 17 exposures acquired over a span of three days. We have used these data to isolate 40 variable stars for which relative astrometry, brightnesses, colors, and light curves are presented. A Kolmogorov-Smirnov test indicates that, typically, the variability for each star is significant at the 95% level. We identify two variable BS candidates (probably of the SX Phe type), out of a sample of approximately 25 BSs in which

  7. Successful management of pulmonary hemorrhage and aspergillosis in a patient with acute myeloid leukemia (AML-M3).

    PubMed

    Gunbatar, Hulya; Demir, Cengiz; Kara, Erdal; Esen, Ramazan; Sertogullarindan, Bunyamin; Asker, Selvi

    2015-01-01

    A 35-year-old man presented with a one month history of gingival bleeding. He was diagnosed with Acute Myeloid Leukemia (AML-M3). During treatment he developed alveolar hemorrhage for which he was treated with a steroid. After the steroid treatment he developed a nodule, a cavitary lesion and atelectasia in the left lung. He was treated with voriconazole. After therapy with voriconazole his lesion significantly decreased. This case illustrates the efficacy and safety of antifungal therapy with voriconazole for aspergillosis complicated by AML.

  8. Development of a 5,000 m(3) super-pressure balloon with a diamond-shaped net

    NASA Astrophysics Data System (ADS)

    Saito, Yoshitaka; Tanaka, Shigeki; Nakashino, Kyoichi; Matsushima, Kiyoho; Goto, Ken; Furuta, Ryosuke; Domoto, Kodai; Akita, Daisuke; Hashimoto, Hiroyuki

    A light super-pressure balloon of which weight will be comparable to the weight of the zero-pressure balloon has been developed using a method to cover a balloon with a diamond-shaped net of high-tensile fibers. The goal is to fly a payload of 900 kg to the altitude of 37 km with a 300,000 m(3) balloon. A flight test of a 3,000 m(3) balloon in the tandem balloon configuration with a 15,000 m(3) zero-pressure balloon was performed in 2012. Although a small gas leak occurred in the super-pressure balloon at the differential pressure of 400 to 500 Pa, the differential pressure reached the highest value of 814 Pa and kept positive through the level flight lasting for 25 minutes due to its slow leakage. To avoid a possible stress concentration to films at the polar area, a new design setting the meridian length of the balloon gore film equal to the length of the net was adopted. A 3-m balloon with the design was developed and its capacity to resist pressure at room temperature and at -30 (°) C was checked through the ground inflation tests. In 2013, a balloon of the same model was launched in the tandem balloon configuration with 2 kg rubber balloons. It was confirmed that the balloon could withstand the maximum differential pressure of 6,280 Pa, could withstand the differential pressure of 5,600 Pa for 2 hours, and there was a small gas leak through a hole with an area of 0.4 mm(2) which was also found in the ground leakage test. These results indicated that the improvement was adequate and there was no problem for the super-pressure balloon to fly in the environment of the stratosphere except for the problem of the small gas leak. In 2014, a flight test of a 5,000 m(3) balloon will be performed. In this paper, after reviewing the method to cover a balloon with a diamond-shaped net, the current status of the development will be reported.

  9. Effective pairing interactions with isospin density dependence

    SciTech Connect

    Margueron, J.; Sagawa, H.; Hagino, K.

    2008-05-15

    We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic calcium, nickel, tin, and lead isotopes and N=20,28,50, and 82 isotones using density-dependent pairing interactions recently derived from a microscopic nucleon-nucleon interaction. These interactions have an isovector component so that the pairing gaps in symmetric and neutron matter are reproduced. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two-neutron separation energy, and odd-even mass staggering of these isotopes. This result suggests that by introducing the isovector term in the pairing interaction, one can construct a global effective pairing interaction that is applicable to nuclei in a wide range of the nuclear chart. It is also shown with the local density approximation that the pairing field deduced from the pairing gaps in infinite matter reproduces qualitatively well the pairing field for finite nuclei obtained with the HFB method.

  10. Effects of olanzapine on muscarinic M3 receptor binding density in the brain relates to weight gain, plasma insulin and metabolic hormone levels.

    PubMed

    Weston-Green, Katrina; Huang, Xu-Feng; Lian, Jiamei; Deng, Chao

    2012-05-01

    The second generation antipsychotic drug (SGA) olanzapine has an efficacy to treat schizophrenia, but can cause obesity and type II diabetes mellitus. Cholinergic muscarinic M3 receptors (M3R) are expressed on pancreatic β-cells and in the brain where they influence insulin secretion and may regulate other metabolic hormones via vagal innervation of the gastrointestinal tract. Olanzapine's M3R antagonism is an important risk factor for its diabetogenic liability. However, the effects of olanzapine on central M3Rs are unknown. Rats were treated with 0.25, 0.5, 1.0 or 2.0 mg olanzapine/kg or vehicle (3×/day, 14-days). M3R binding densities in the hypothalamic arcuate (Arc) and ventromedial nuclei (VMH), and dorsal vagal complex (DVC) of the brainstem were investigated using [3H]4-DAMP plus pirenzepine and AF-DX116. M3R binding correlations to body weight, food intake, insulin, ghrelin and cholecystokinin (CCK) were analyzed. Olanzapine increased M3R binding density in the Arc, VMH and DVC, body weight, food intake, circulating plasma ghrelin and CCK levels, and decreased plasma insulin and glucose. M3R negatively correlated to insulin, and positively correlated to ghrelin, CCK, food intake and body weight. Increased M3R density is a compensatory up-regulation in response to olanzapine's M3R antagonism. Olanzapine acts on M3R in regions of the brain that control food intake and insulin secretion. Olanzapine's M3R blockade in the brain may inhibit the acetylcholine pathway for insulin secretion. These findings support a role for M3Rs in the modulation of insulin, ghrelin and CCK via the vagus nerve and provide a mechanism for olanzapine's diabetogenic and weight gain liability.

  11. Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotype M3 and M49 strains.

    PubMed Central

    Lukomski, S; Sreevatsan, S; Amberg, C; Reichardt, W; Woischnik, M; Podbielski, A; Musser, J M

    1997-01-01

    Cysteine proteases have been implicated as important virulence factors in a wide range of prokaryotic and eukaryotic pathogens, but little direct evidence has been presented to support this notion. Virtually all strains of the human bacterial pathogen Streptococcus pyogenes express a highly conserved extracellular cysteine protease known as streptococcal pyrogenic exotoxin B (SpeB). Two sets of isogenic strains deficient in SpeB cysteine protease activity were constructed by integrational mutagenesis using nonreplicating recombinant plasmids containing a truncated segment of the speB gene. Immunoblot analyses and enzyme assays confirmed that the mutant derivatives were deficient in expression of enzymatically active SpeB cysteine protease. To test the hypothesis that the cysteine protease participates in host mortality, we assessed the ability of serotype M3 and M49 wild-type strains and isogenic protease-negative mutants to cause death in outbred mice after intraperitoneal inoculation. Compared to wild-type parental organisms, the serotype M3 speB mutant lost virtually all ability to cause mouse death (P < 0.00001), and similarly, the virulence of the M49 mutant was detrimentally altered (P < 0.005). The data unambiguously demonstrate that the streptococcal enzyme is a virulence factor, and thereby provide additional evidence that microbial cysteine proteases are critical in host-pathogen interactions. PMID:9169486

  12. E3 M3(+) (E=C-Pb, M=Li-Cs) Clusters: The Smallest Molecular Stars.

    PubMed

    Contreras, Maryel; Pan, Sudip; Orozco-Ic, Mesías; Cabellos, José Luis; Merino, Gabriel

    2017-08-22

    Extensive potential energy surface explorations of twenty-five clusters with the formula E3 M3(+) (E=Group 14 element and M=Group 1 element) through density functional theory and high-level ab initio computations reveal that the lowest-energy isomer for all these systems corresponds to a non-classical D3h star-like structure in the singlet state, where three M atoms interact electrostatically with the triangular E3 core, occupying three bridging positions around it. More than 18 200 calculations were done in the search for the minima structures, starting with a first phase at the PBE0/LANL2DZ level and ending with an analysis of the most representative clusters at the CCSD(T)/def2-TZVP//PBE0/def2-TZVP level. The title clusters represent the smallest molecular stars with three planar tetracoordinate E atoms (E=Group 14 element). All these E3 M3(+) clusters behave like superalkali cations with small vertical electron affinities (smaller than Cs), large vertical electron detachment energies, and HOMO-LUMO energy gaps. Their energetics, bonding, and electron delocalization are discussed in detail. The high stability of these clusters is reflected from the large dissociation energy needed for different dissociation channels. The electron delocalization is confirmed by the presence of two delocalized π electrons over the E3 core and strong diatropic responses. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multiwire proportional chambers in M1 and M3 spectrometers of charmed baryon experiment (E781) at Fermilab

    SciTech Connect

    Kaya, Mithat; /Iowa U.

    1997-08-01

    The status of the multiwire proportional chambers in the FERMILAB E781 experiment and a general description of the readout system are given. This essay will describe the system of multiwire proportional chambers (MWPC) that are part of the Fermilab experiment E781 setup. Multiwire proportional chambers are often used in particle physics experiments because they can determine the position of charged particles very accurately (less than a millimeter). The E781 experiment which is also called SELEX (SEgmented LargE-X) is a spectrometer designed to study the production and decay of charmed baryons. MWPCs are part of the 3-stage charged particle spectrometer (Figure 1). Each spectrometer stage includes a bending magnet and chambers. More information about E781 experiment is given in the Appendix. In the following, some basic concepts of MWPCs will be given briefly. After that the multiwire proportional chambers (M1PWC and M3PWC) that are used in the E781 fixed target experiment will be described. Then a general description of the readout system for both M1PWC and M3PWC setups will follow. Finally the tests done on both sets of chambers will be explained in detail.

  14. LU Vel (GJ 375): A M3.5Ve Flare and Double-Lined Spectroscopic Binary

    NASA Astrophysics Data System (ADS)

    Montes, D.; Gálvez, M. C.; Fernández-Figueroa, M. J.; Crespo-Chacón, I.

    2006-08-01

    High resolution echelle spectroscopic observations taken with the FEROS spectrograph at the 2.2 m telescope ESO confirm the binary nature of the flare M3.5V star LU Vel (GJ 375, RE J0958-462) previously reported by Christian and Mathioudakis (2002). Emission of similar intensity from both components is detected in the Balmer, Na i D1&D2, He i D3, Ca ii H&K, and Ca ii IRT lines. We have determined precise radial velocities by cross correlation with radial velocity standard stars, which have allowed us to obtain for the first time the orbital solution of the system. The binary consists of two near-equal M3.5V components with an orbital period shorter than 2 days. We have analyzed the behaviour of the chromospheric activity indicators (variability and possible flares). In addition, we have determined its rotational velocity and kinematics.

  15. A synthetic snRNA m3G-CAP enhances nuclear delivery of exogenous proteins and nucleic acids

    PubMed Central

    Moreno, Pedro M. D.; Wenska, Malgorzata; Lundin, Karin E.; Wrange, Örjan; Strömberg, Roger; Smith, C. I. Edvard

    2009-01-01

    Accessing the nucleus through the surrounding membrane poses one of the major obstacles for therapeutic molecules large enough to be excluded due to nuclear pore size limits. In some therapeutic applications the large size of some nucleic acids, like plasmid DNA, hampers their access to the nuclear compartment. However, also for small oligonucleotides, achieving higher nuclear concentrations could be of great benefit. We report on the synthesis and possible applications of a natural RNA 5′-end nuclear localization signal composed of a 2,2,7-trimethylguanosine cap (m3G-CAP). The cap is found in the small nuclear RNAs that are constitutive part of the small nuclear ribonucleoprotein complexes involved in nuclear splicing. We demonstrate the use of the m3G signal as an adaptor that can be attached to different oligonucleotides, thereby conferring nuclear targeting capabilities with capacity to transport large-size cargo molecules. The synthetic capping of oligos interfering with splicing may have immediate clinical applications. PMID:19208638

  16. Mass-analyzed threshold ionization and structural isomers of M3O4 (M = Sc, Y, and La)

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Zhang, Changhua; Krasnokutski, Serge A.; Yang, Dong-Sheng

    2012-08-01

    M3O4 (M = Sc, Y, and La) were produced in a pulsed laser-vaporization molecular beam source and studied by mass-analyzed threshold ionization (MATI) spectroscopy and electronic structure calculations. Adiabatic ionization energies (AIEs) of the neutral clusters and vibrational frequencies of the cations were measured accurately for the first time from the MATI spectra. Five possible structural isomers of M3O4 were considered in the calculations and spectral analysis. A cage-like structure in C3v point group was identified as the most stable one. The structure is formed by fusing three M2O2 fragments together, each sharing two O-M bonds with others. The ground electronic state of the neutral clusters is 2A1 with the unpaired electron being largely a metal-based s character. Ionization of the 2A1 state yields a 1A1 ion state in a similar geometry to the neutral cluster. The AIEs of the clusters are 4.4556 (6), 4.0586(6), and 3.4750(6) eV for M = Sc, Y, and La, respectively. The observed vibrational modes of the cations include metal-oxygen stretching, metal triangle breathing, and oxygen-metal-oxygen rocking in the frequency range of 200-800 cm-1.

  17. Characterization of hydromechanical stress in aerated stirred tanks up to 40 m3 scale by measurement of maximum stable drop size

    PubMed Central

    2014-01-01

    Background Turbulence intensity, or hydromechanical stress, is a parameter that influences a broad range of processes in the fields of chemical engineering and biotechnology. Fermentation processes are often characterized by high agitation and aeration intensity resulting in high gas void fractions of up to 20% in large scale reactors. Very little experimental data on hydromechanical stress for such operating conditions exists because of the problems associated with measuring hydromechanical stress under aeration and intense agitation. Results An indirect method to quantify hydromechanical stress for aerated operating conditions by the measurement of maximum stable drop size in a break-up controlled dispersion was applied to characterize hydromechanical stress in reactor scales of 50 L, 3 m3 and 40 m3 volume with a broad range of operating conditions and impeller geometries (Rushton turbines). Results for impellers within each scale for the ratio of maximum to specific energy dissipation rate ϕ based on measured values of maximum stable drop size for aerated operating conditions are qualitatively in agreement with results from literature correlations for unaerated operating conditions. Comparison of data in the different scales shows that there is a scale effect that results in higher values for ϕ in larger reactors. This behavior is not covered by the classic theory of turbulent drop dispersion but is in good agreement with the theory of turbulence intermittency. The data for all impeller configurations and all aeration rates for the three scales can be correlated within ±20% when calculated values for ϕ based on the measured values for dmax are used to calculate the maximum local energy dissipation rate. A correlation of the data for all scales and all impeller configurations in the form ϕ = 2.3∙(ϕunaerated)0.34∙(DR)0.543 is suggested that successfully models the influence of scale and impeller geometry on ϕ for aerated operating conditions

  18. Decoherence in a pair of long-lived Cooper-pair boxes

    NASA Astrophysics Data System (ADS)

    Zaretskey, V.; Novikov, S.; Suri, B.; Kim, Z.; Wellstood, F. C.; Palmer, B. S.

    2013-09-01

    We have investigated the decoherence of quantum states in two Al/AlOx/Al Cooper-pair boxes coupled to lumped element superconducting inductor-capacitor resonators. At 25 mK, the first qubit had an energy relaxation time T1 that varied from 30 μs to 200 μs between 4 and 8 GHz and displayed an inverse correlation between T1 and the coupling to the microwave drive line. The Ramsey fringe decay times T2* were in the [200-500] ns range while the spin echo envelope decay times Techo varied from 2.4-3.3 μs, consistent with 1/f charge noise with a high frequency cutoff of 0.2 MHz. A second Cooper-pair box qubit with similar parameters showed T1=4-30 μs between 4 and 7.3 GHz, and that the T1 and the coupling were again inversely correlated. Although the lifetime of the second device was shorter than that of the first device, the dependence on coupling in both devices suggests that further reduction in coupling should lead to improved qubit performance.

  19. FIR statistics of paired galaxies

    NASA Technical Reports Server (NTRS)

    Sulentic, Jack W.

    1990-01-01

    Much progress has been made in understanding the effects of interaction on galaxies (see reviews in this volume by Heckman and Kennicutt). Evidence for enhanced emission from galaxies in pairs first emerged in the radio (Sulentic 1976) and optical (Larson and Tinsley 1978) domains. Results in the far infrared (FIR) lagged behind until the advent of the Infrared Astronomy Satellite (IRAS). The last five years have seen numerous FIR studies of optical and IR selected samples of interacting galaxies (e.g., Cutri and McAlary 1985; Joseph and Wright 1985; Kennicutt et al. 1987; Haynes and Herter 1988). Despite all of this work, there are still contradictory ideas about the level and, even, the reality of an FIR enhancement in interacting galaxies. Much of the confusion originates in differences between the galaxy samples that were studied (i.e., optical morphology and redshift coverage). Here, the authors report on a study of the FIR detection properties for a large sample of interacting galaxies and a matching control sample. They focus on the distance independent detection fraction (DF) statistics of the sample. The results prove useful in interpreting the previously published work. A clarification of the phenomenology provides valuable clues about the physics of the FIR enhancement in galaxies.

  20. Pulsational Pair-instability Supernovae

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    2017-02-01

    The final evolution of stars in the mass range 70-140 {\\text{}}{M}⊙ is explored. Depending upon their mass loss history and rotation rates, these stars will end their lives as pulsational pair-instability supernovae (PPISN) producing a great variety of observational transients with total durations ranging from weeks to millennia and luminosities from 1041 to over 1044 erg s-1. No nonrotating model radiates more than 5× {10}50 erg of light or has a kinetic energy exceeding 5× {10}51 erg, but greater energies are possible, in principle, in magnetar-powered explosions, which are explored. Many events resemble SNe Ibn, SNe Icn, and SNe IIn, and some potential observational counterparts are mentioned. Some PPISN can exist in a dormant state for extended periods, producing explosions millennia after their first violent pulse. These dormant supernovae contain bright Wolf-Rayet stars, possibly embedded in bright X-ray and radio sources. The relevance of PPISN to supernova impostors like Eta Carinae, to superluminous supernovae, and to sources of gravitational radiation is discussed. No black holes between 52 and 133 {\\text{}}{M}⊙ are expected from stellar evolution in close binaries.

  1. Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies.

    PubMed

    Roy, Ashim; Panigrahi, Swati; Bhattacharyya, Malyasri; Bhattacharyya, Dhananjay

    2008-03-27

    The importance of non-Watson-Crick base pairs in the three-dimensional structure of RNA is now well established. The structure and stability of these noncanonical base pairs are, however, poorly understood. We have attempted to understand structural features of 33 frequently occurring base pairs using density functional theory. These are of three types, namely (i) those stabilized by two or more polar hydrogen bonds between the bases, (ii) those having one polar and another C-H...O/N type interactions, and (iii) those having one H-bond between the bases and another involving one of the sugars linked to the bases. We found that the base pairs having two polar H-bonds are very stable as compared to those having one C-H...O/N interaction. Our quantitatively analysis of structures of these optimized base pairs indicates that they possess a different amount of nonplanarity with large propeller or buckle values as also observed in the crystal structures. We further found that geometry optimization does not modify the hydrogen-bonding pattern, as values of shear and open angle of the base pairs remain conserved. The structures of initial crystal geometry and final optimized geometry of some base pairs having only one polar H-bond and a C-H...O/N interaction, however, are significantly different, indicating the weak nature of the nonpolar interaction. The base pair flexibility, as measured from normal-mode analysis, in terms of the intrinsic standard deviations of the base pair structural parameters are in conformity with those calculated from RNA crystal structures. We also noticed that deformation of a base pair along the stretch direction is impossible for all of the base pairs, and movements of the base pairs along shear and open are also quite restricted. The base pair opening mode through alteration of propeller or buckle is considerably less restricted for most of the base pairs.

  2. Report on Pairing-based Cryptography.

    PubMed

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed.

  3. Report on Pairing-based Cryptography

    PubMed Central

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST’s position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed. PMID:26958435

  4. Phenomenology of transionospheric pulse pairs: Further observations

    NASA Astrophysics Data System (ADS)

    Massey, Robert S.; Holden, Daniel N.; Shao, Xuan-Min

    1998-11-01

    We report on further observations of transionospheric pulse pairs (TIPPs), which are the most powerful transient radio signals observed by the Blackbeard broadband digital radio receiver on the ALEXIS satellite. The source of these signals is unknown but appears to be associated with thunderstorm activity. The signals do not resemble those reported for known lightning processes. We have previously reported observations of these events in the frequency band 28-95 MHz. In this paper we report observations of TIPPs in the 117- to 166-MHz band, with the subsatellite point situated over the contiguous United States. The main results are that the measured pulse parameter statistics are nearly the same as reported for the low-frequency events, with the exception that the pulse separation distribution is biased toward smaller values in the high-frequency observations. The radiated power does not drop off appreciably even at 166 MHz, which further constrains the possible size and timescale of the source(s). We also report results of experiments designed to measure the apparent reflectivity of dry, flat ground at frequencies around 100 MHz. We find that the apparent reflectivity can exceed 90%. This result helps to explain how the second pulse in a TIPP can have so much energy relative to the first.

  5. Phenomenology of transionospheric pulse pairs: Further observations

    SciTech Connect

    Massey, R.S.; Holden, D.N.; Shao, X.

    1998-11-01

    We report on further observations of transionospheric pulse pairs (TIPPs), which are the most powerful transient radio signals observed by the Blackbeard broadband digital radio receiver on the ALEXIS satellite. The source of these signals is unknown but appears to be associated with thunderstorm activity. The signals do not resemble those reported for known lightning processes. We have previously reported observations of these events in the frequency band 28{endash}95 MHz. In this paper we report observations of TIPPs in the 117- to 166-MHz band, with the subsatellite point situated over the contiguous United States. The main results are that the measured pulse parameter statistics are nearly the same as reported for the low-frequency events, with the exception that the pulse separation distribution is biased toward smaller values in the high-frequency observations. The radiated power does not drop off appreciably even at 166 MHz, which further constrains the possible size and timescale of the source(s). We also report results of experiments designed to measure the apparent reflectivity of dry, flat ground at frequencies around 100 MHz. We find that the apparent reflectivity can exceed 90{percent}. This result helps to explain how the second pulse in a TIPP can have so much energy relative to the first. {copyright} 1998 American Geophysical Union

  6. Supergranular Parameters

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2016-07-01

    I study the complexity of supergranular cells using intensity patterns from Kodaikanal solar observatory. The chaotic and turbulent aspect of the solar supergranulation can be studied by examining the interrelationships amongst the parameters characterizing supergranular cells namely size, horizontal flow field, lifetime and physical dimensions of the cells and the fractal dimension deduced from the size data. The findings are supportive of Kolmogorov's theory of turbulence. The Data consists of visually identified supergranular cells, from which a fractal dimension 'D' for supergranulation is obtained according to the relation P α AD/2 where 'A' is the area and 'P' is the perimeter of the supergranular cells. I find a fractal dimension close to about 1.3 which is consistent with that for isobars and suggests a possible turbulent origin. The cell circularity shows a dependence on the perimeter with a peak around (1.1-1.2) x 105 m. The findings are supportive of Kolmogorov's theory of turbulence.

  7. Ordered pairing in liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Carlsson, A. E.; Ashcroft, N. W.

    1983-01-01

    We study two possible types of pairing involving the protons of a proposed low-temperature liquid phase metallic hydrogen. Electron-proton pairing, which can result in an insulating phase, is investigated by using an approximate solution of an Eliashberg-type equation for the anomalous self-energy. A very low estimate of the transition temperature is obtained by including proton correlations in the effective interaction. For proton-proton pairing, we derive a new proton pair potential based on the Abrikosov wave function. This potential includes the electron-proton interaction to all orders and has a much larger well depth than is obtained with linear screening methods. This suggests the possibility of either a superfluid paired phase analogous to that in He-3, or alternatively a phase with true molecular pairing.

  8. Ensemble treatments of thermal pairing in nuclei

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Quang; Dang, Nguyen Dinh

    2009-10-01

    A systematic comparison is conducted for pairing properties of finite systems at nonzero temperature as predicted by the exact solutions of the pairing problem embedded in three principal statistical ensembles, namely the grandcanonical ensemble, canonical ensemble and microcanonical ensemble, as well as the unprojected (FTBCS1+SCQRPA) and Lipkin-Nogami projected (FTLN1+SCQRPA) theories that include the quasiparticle number fluctuation and coupling to pair vibrations within the self-consistent quasiparticle random-phase approximation. The numerical calculations are performed for the pairing gap, total energy, heat capacity, entropy, and microcanonical temperature within the doubly-folded equidistant multilevel pairing model. The FTLN1+SCQRPA predictions are found to agree best with the exact grand-canonical results. In general, all approaches clearly show that the superfluid-normal phase transition is smoothed out in finite systems. A novel formula is suggested for extracting the empirical pairing gap in reasonable agreement with the exact canonical results.

  9. Statistical correlation between atomic electron pairs

    NASA Astrophysics Data System (ADS)

    Sagar, Robin P.; Laguna, Humberto G.; Guevara, Nicolais L.

    2011-10-01

    The statistical correlation between a pair of electrons in Hartree-Fock orbitals is measured by mutual information and studied in position and in momentum space. We show that there are same- and opposite-spin orbital pairs where the correlation is larger in momentum space. Among these are opposite-spin valence shell pairs where the correlation arises from the indistinguishability of electron spins.

  10. Neutron-Proton Pairs in Nuclei

    NASA Astrophysics Data System (ADS)

    van Isacker, P.

    2013-11-01

    A review is given of attempts to describe nuclear properties in terms of neutron-proton pairs that are subsequently replaced by bosons. Some of the standard approaches with low-spin pairs are recalled but the emphasis is on a recently proposed framework with pairs of neutrons and protons with aligned angular momentum. The analysis is carried out for general j and applied to N=Z nuclei in the 1f7/2 and 1g9/2 shells.

  11. Effect of operational parameters on heavy metal removal by electrocoagulation.

    PubMed

    Bhagawan, D; Poodari, Saritha; Pothuraju, Tulasiram; Srinivasulu, D; Shankaraiah, G; Yamuna Rani, M; Himabindu, V; Vidyavathi, S

    2014-12-01

    In the present paper, the performance of electrocoagulation (EC) for the treatability of mixed metals (chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn)) from metal plating industrial wastewater (EPW) has been investigated. The study mainly focused on the affecting parameters of EC process, such as electrode material, initial pH, distance between electrodes, electrode size, and applied voltage. The pH 8 is observed to be the best for metal removal. Fe-Fe electrode pair with 1-cm inter-electrode distance and electrode surface area of 40 cm(2) at an applied voltage of 8 V is observed to more efficient in the metal removal. Experiments have shown that the maximum removal percentage of the metals like Cr, Ni, Zn, Cu, and Pb are reported to be 96.2, 96.4, 99.9, 98, and 99.5 %, respectively, at a reaction time of 30 min. Under optimum conditions, the energy consumption is observed to be 51.40 kWh/m(3). The method is observed to be very effective in the removal of metals from electroplating effluent.

  12. The ultraviolet spectrum of noncoronal late-type stars - The Gamma Crucis (M3.4 III) reference spectrum

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Pesce, Joseph E.; Stencel, Robert E.; Brown, Alexander; Johansson, Sveneric

    1988-01-01

    A guide is presented to the UV spectrum of M-type giants and supergiants whose outer atmospheres contain warm chromospheres but not coronae. The M3 giant Gamma Crucis is taken as the archetype of the cooler, oxygen-rich, noncoronal stars. Line identifications and integrated line flux measurements of the chromospheric emission features seen in the 1200-3200 A range of IUE high-resolution spectra are presented. The major fluorescence processes operating in the outer atmosphere of Gamma Crucis, including eight previously unknown pumping processes and 21 new fluorescent line products, are summarized, and the enhancements of selected line strengths by 'line leakage' is discussed. A set of absorption features toward the longer wavelength end of this range is identified which can be used to characterize the radial velocity of the stellar photospheres. The applicability of the results to the spectra of noncoronal stars with different effective temperatures and gravities is discussed.

  13. Evidence for a Quasi-Equilibrium Distribution of States for Bradykinin [M+3H]3+ Ions in the Gas Phase

    PubMed Central

    Pierson, Nicholas A.; Valentine, Stephen J.; Clemmer, David E.

    2010-01-01

    Multidimensional ion mobility spectrometry coupled with mass spectrometry (IMS–IMS-MS) techniques are used to select and activate six different gas-phase conformations of bradykinin [M+3H]3+ ions. Drift time distributions as a function of activation voltage show that at low voltages selected structures undergo conformational transitions in what appears to be a pathway dependent fashion. Over a relatively wide range of intermediate activation voltages a distribution of states that is independent of the initial conformation selected for activation (as well as the activation voltage in this intermediate region) is established. This distribution appears to represent an equilibrium distribution of gas-phase structures that is reached prior to the energy required for dissociation. Establishment of a quasi-equilibrium prior to dissociation results in identical dissociation patterns for different selected conformations. A discussion of the transition from solution-like to gas-phase structures is provided. PMID:20469905

  14. Coda wave interferometric detection of seismic velocity changes associated with the 1999 M = 3.6 event at Mt. Vesuvius

    NASA Astrophysics Data System (ADS)

    Pandolfi, D.; Bean, C. J.; Saccorotti, G.

    2006-03-01

    We detect seismic wave velocity changes at Mt. Vesuvius, using doublets and the Coda Wave Interferometry method. The high sensitivity of multiply scattered coda waves to temporal changes in the medium allows us to detect velocity variation smaller than 0.4%. We use 17 doublets, some of them grouped in families of multiplets, spanning January 1996 to December 1999. Data show a systematic increase in velocity from 1996 to end-September 1999, followed by a rapid drop in velocity. This drop immediately precedes a sustained swarm of VT-type earthquakes, including the 9th October 1999 M = 3.6 event, the largest in the region since at least 1972. We propose a long term fluid pressurization followed by influx as a possible causative mechanism.

  15. MarcoPolo-R: Near Earth Asteroid Sample Return Mission candidate as ESA-M3 class mission

    NASA Astrophysics Data System (ADS)

    Michel, Patrick

    2015-03-01

    MarcoPolo-R is a sample return mission to a primitive Near-Earth Asteroid (NEA) selected in 2011 for the Assessment Study Phase of M3-class missions in the framework of ESAs Cosmic Vision (CV) 2015-2025 programme. The phase A study started at the end of 2012 and will proceed throughout 2013. The final selection by ESA will occur in February 2014. MarcoPolo-R is a European-led mission with a possible contribution from other agencies. MarcoPolo-R will rendez-vous with the primitive NEA 2008 EV5. Before returning a unique sample to Earth, the asteroid will be scientifically characterized at multiple scales. MarcoPolo-R will provide detailed knowledge of the physical and compositional properties of a member of the population of Potentially Hazardous Asteroids (PHA), which is an important contribution to mitigation studies.

  16. Anomalous Hall hysteresis in T m3F e5O12/Pt with strain-induced perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Xu, Yadong; Garay, Javier E.; Shi, Jing

    2016-10-01

    We demonstrate robust interface strain-induced perpendicular magnetic anisotropy in atomically flat ferrimagnetic insulator T m3F e5O12 (TIG) films grown with pulsed laser deposition on a substituted G d3G a5O12 substrate which maximizes the tensile strain at the interface. In bilayers consisting of Pt and TIG, we observe large squared Hall hysteresis loops over a wide range of thicknesses of Pt at room temperature. When a thin Cu layer is inserted between Pt and TIG, the Hall hysteresis magnitude decays but stays finite as the thickness of Cu increases up to 5 nm. However, if the Cu layer is placed atop Pt instead, the Hall hysteresis magnitude is consistently larger than when the Cu layer with the same thickness is inserted in between for all Cu thicknesses. These results suggest that both the proximity-induced ferromagnetism and spin current contribute to the anomalous Hall effect.

  17. [Morphological changes in gastric wall of mongolian gerbils following the 12-day orbital flight aboard Foton-M3].

    PubMed

    Atiashkin, D A; Bykov, É G

    2012-01-01

    Gastric wall of Meriones unguiculatus is distinguished by species-specific properties arising from the peculiar proportion of interstitium, muscle and epithelial tissues. Exposure to the factors of the 12-d Foton-M3 flight led to microfocal lesions of the mucous coat, dystrophic developments in the acid glands, dissociation of the mucous barrier function and deterioration of its biosynthetic function. Modifications of the tinctorial properties of the interstitium reticulum in every stomach layer progressed concurrently with reductions in prismatic epithelium height, as well as in mucous and muscular layer thickness. It is assumed that existence in the low gravity aboard the Biosat stimulated involutory processes in the gastric wall. Animals of the ground synchronous control conducted in the flight equipment mockup (Kontur-L) exhibited though similar yet less pronounced changes.

  18. Impaired M3 and enhanced M2 muscarinic receptor contractile function in a streptozotocin model of mouse diabetic urinary bladder

    PubMed Central

    Pak, K. J.; Ostrom, R. S.; Matsui, M.

    2010-01-01

    We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg−1) 2–24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC50 value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 µM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M2 function is enhanced following streptozotocin treatment. PMID:20349044

  19. Differential regulation of muscarinic M2 and M3 receptor signaling in gastrointestinal smooth muscle by caveolin-1.

    PubMed

    Bhattacharya, Sayak; Mahavadi, Sunila; Al-Shboul, Othman; Rajagopal, Senthilkumar; Grider, John R; Murthy, Karnam S

    2013-08-01

    Caveolae act as scaffolding proteins for several G protein-coupled receptor signaling molecules to regulate their activity. Caveolin-1, the predominant isoform in smooth muscle, drives the formation of caveolae. The precise role of caveolin-1 and caveolae as scaffolds for G protein-coupled receptor signaling and contraction in gastrointestinal muscle is unclear. Thus the aim of this study was to examine the role of caveolin-1 in the regulation of Gq- and Gi-coupled receptor signaling. RT-PCR, Western blot, and radioligand-binding studies demonstrated the selective expression of M2 and M3 receptors in gastric smooth muscle cells. Carbachol (CCh) stimulated phosphatidylinositol (PI) hydrolysis, Rho kinase and zipper-interacting protein (ZIP) kinase activity, induced myosin phosphatase 1 (MYPT1) phosphorylation (at Thr(696)) and 20-kDa myosin light chain (MLC20) phosphorylation (at Ser(19)) and muscle contraction, and inhibited cAMP formation. Stimulation of PI hydrolysis, Rho kinase, and ZIP kinase activity, phosphorylation of MYPT1 and MLC20, and muscle contraction in response to CCh were attenuated by methyl β-cyclodextrin (MβCD) or caveolin-1 small interfering RNA (siRNA). Similar inhibition of PI hydrolysis, Rho kinase, and ZIP kinase activity and muscle contraction in response to CCh and gastric emptying in vivo was obtained in caveolin-1-knockout mice compared with wild-type mice. Agonist-induced internalization of M2, but not M3, receptors was blocked by MβCD or caveolin-1 siRNA. Stimulation of PI hydrolysis, Rho kinase, and ZIP kinase activities in response to other Gq-coupled receptor agonists such as histamine and substance P was also attenuated by MβCD or caveolin-1 siRNA. Taken together, these results suggest that caveolin-1 facilitates signaling by Gq-coupled receptors and contributes to enhanced smooth muscle function.

  20. Photometric and radial-velocity time series of RR Lyrae stars in M3: analysis of single-mode variables

    NASA Astrophysics Data System (ADS)

    Jurcsik, J.; Smitola, P.; Hajdu, G.; Sódor, Á.; Nuspl, J.; Kolenberg, K.; Fűrész, G.; Balázs, L. G.; Pilachowski, C.; Saha, A.; Moór, A.; Kun, E.; Pál, A.; Bakos, J.; Kelemen, J.; Kovács, T.; Kriskovics, L.; Sárneczky, K.; Szalai, T.; Szing, A.; Vida, K.

    2017-06-01

    We present the first simultaneous photometric and spectroscopic investigation of a large set of RR Lyrae variables in a globular cluster. The radial-velocity (RV) data presented comprise the largest sample of RVs of RR Lyrae stars ever obtained. The target is M3; BVIC time series of 111 and b flux data of further 64 RRab stars and RV data of 79 RR Lyrae stars are published. Blazhko modulation of the light curves of 47 per cent of the RRab stars is detected. The mean value of the centre-of-mass velocities of RR Lyrae stars is -146.8 km s-1 with 4.52 km s-1 standard deviation, which is in good agreement with the results obtained for the red giants of the cluster. The Φ21RV phase difference of the RV curves of RRab stars is found to be uniformly constant both for the M3 and for Galactic field RRab stars; no period or metallicity dependence of the Φ21RV is detected. The Baade-Wesselink distances of 26 non-Blazhko variables with the best phase-coverage RV curves are determined; the corresponding distance of the cluster, 10 480 ± 210 pc, agrees with the previous literature information. A quadratic formula for the Apuls - AV relation of RRab stars is given, which is valid for both OoI and OoII variables. We also show that (V - I)0 of RRab stars measured at light minimum is period dependent; there is at least 0.1 mag difference between the colours at minimum light of the shortest and longest period variables.

  1. M3 muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes

    PubMed Central

    Cea-del Rio, Christian A.; Lawrence, J. Josh; Tricoire, Ludovic; Erdelyi, Ferenc; Szabo, Gabor; McBain, Chris J.

    2010-01-01

    Cholinergic neuromodulation of hippocampal circuitry promotes network oscillations and facilitates learning and memory through cellular actions on both excitatory and inhibitory circuits. Despite widespread recognition that neurochemical content discriminates between functionally distinct interneuron populations, there has been no systematic examination of whether neurochemically distinct interneuron classes undergo differential cholinergic neuromodulation in the hippocampus. Using GFP transgenic mice that enable the visualization of perisomatically targeting parvalbumin-positive (PV+) or cholecystokinin-positive (CCK+) basket cells (BCs), we tested the hypothesis that neurochemically distinct interneuron populations are differentially engaged by muscarinic acetylcholine receptor (mAChR) activation. Cholinergic fiber activation revealed that CCK BCs were more sensitive to synaptic release of ACh than PV BCs. In response to depolarizing current steps, mAChR activation of PV BCs and CCK BCs also elicited distinct cholinergic response profiles, differing in mAChR-induced changes in action potential (AP) waveform, firing frequency, and intrinsic excitability. In contrast to PV BCs, CCK BCs exhibited a mAChR-induced afterdepolarization (mADP) that was frequency and activity-dependent. Pharmacological, molecular, and loss-of-function data converged on the presence of M3 mAChRs in distinguishing CCK BCs from PV BCs. Firing frequency of CCK BCs was controlled through M3 mAChRs but PV BC excitability was altered solely through M1 mAChRs. Finally, upon mAChR activation, glutamatergic transmission enhanced cellular excitability preferentially in CCK BCs but not in PV BCs. Our findings demonstrate that cell-type specific cholinergic specializations are present on neurochemically distinct interneuron subtypes in the hippocampus, revealing an organizing principle that cholinergic neuromodulation depends critically on neurochemical identity. PMID:20427660

  2. L-689,660, a novel cholinomimetic with functional selectivity for M1 and M3 muscarinic receptors.

    PubMed Central

    Hargreaves, R. J.; McKnight, A. T.; Scholey, K.; Newberry, N. R.; Street, L. J.; Hutson, P. H.; Semark, J. E.; Harley, E. A.; Patel, S.; Freedman, S. B.

    1992-01-01

    1. L-689,660, 1-azabicyclo[2.2.2]octane, 3-(6-chloropyrazinyl)maleate, a novel cholinomimetic, demonstrated high affinity binding (pKD (apparent) 7.42) at rat cerebral cortex muscarinic receptors. L-689,660 had a low ratio (34) of pKD (apparent) values for the displacement of binding of the antagonist ([3H]-N-methylscopolamine ([3H]-NMS) compared with the displacement of the agonist [3H]-oxotremorine-M ([3H]-Oxo-M), in rat cerebral cortex. Low NMS/Oxo-M ratios have been shown previously to be a characteristic of compounds that are low efficacy partial agonists with respect to stimulation of phosphatidyl inositol turnover in the cerebral cortex. 2. L-689,660 showed no muscarinic receptor subtype selectivity in radioligand binding assays but showed functional selectivity in pharmacological assays. At M1 muscarinic receptors in the rat superior cervical ganglion, L-689,660 was a potent (pEC50 7.3 +/- 0.2) full agonist in comparison with (+/-)-muscarine. At M3 receptors in the guinea-pig ileum myenteric plexus-longitudinal muscle or in trachea, L-689,660 was again a potent agonist (pEC50 7.5 +/- 0.2 and 7.7 +/- 0.3 respectively) but had a lower maximum response than carbachol. In contrast L-689,660 was an antagonist at M2 receptors in guinea-pig atria (pA2 7.2 (95% confidence limits 7, 7.4)) and at muscarinic autoreceptors in rat hippocampal slices. 3. The putative M1-selective muscarinic agonist, AF102B (cis-2-methylspiro-(1,3-oxathiolane 5,3')-quinuclidine hydrochloride) was found to have a profile similar to L-689,660 but had up to 100 times less affinity in binding and functional assays.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1422595

  3. Determination of attitude motion of the Foton M-3 satellite according to the data of onboard measurements of the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Beuselinck, T.; van Bavinchove, C.; Abrashkin, V. I.; Kazakova, A. E.; Sazonov, V. V.

    2010-06-01

    The results of reconstruction of rotational motion of the Foton M-3 satellite during its uncontrolled flight in September 2007 are presented. The reconstruction was performed by processing the data of onboard measurements of the Earth’s magnetic field obtained by the DIMAC instruments. The measurements were carried out continuously throughout the flight, but the processing technique dealt with the data portions covering time intervals of a few orbital revolutions. The data obtained on each such interval were processed jointly by the least squares method with using integration of the equations of satellite motion relative to its center of mass. When processing, the initial conditions of motion and the used mathematical model’s parameters were estimated. The results of processing 16 data sets gave us complete information about the satellite motion. This motion, which began at a low angular velocity, had gradually accelerated and in five days became close to the regular Euler precession of an axisymmetric solid body. At the end of uncontrolled flight the angular velocity of the satellite relative to its lengthwise axis was 0.5 deg/s; the angular velocity projection onto the plane perpendicular to this axis had a magnitude of about 0.18 deg/s.

  4. Lax pairs for deformed Minkowski spacetimes

    NASA Astrophysics Data System (ADS)

    Kyono, Hideki; Sakamoto, Jun-ichi; Yoshida, Kentaroh

    2016-01-01

    We proceed to study Yang-Baxter deformations of 4D Minkowski spacetime based on a conformal embedding. We first revisit a Melvin background and argue a Lax pair by adopting a simple replacement law invented in 1509.00173. This argument enables us to deduce a general expression of Lax pair. Then the anticipated Lax pair is shown to work for arbitrary classical r-matrices with Poincaré generators. As other examples, we present Lax pairs for pp-wave backgrounds, the Hashimoto-Sethi background, the Spradlin-Takayanagi-Volovich background.

  5. Isolated galaxies, pairs, and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G (sup 1) be any galaxy and G (sup 2) be its nearest neighbor at a distance R sub 2. If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G (sup 1) is an isolated galaxy. Let the midpoint of G (sup 1) and G (sup 2) be O sub 2 and r sub 2=R sub 2/2. For the volume V sub 2, defined with the radius r sub 2, the density D sub 2 less than k mu, the galaxy G (sup 2) is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten.

  6. Helix 8 and the i3 loop of the muscarinic M3 receptor are crucial sites for its regulation by the Gβ5-RGS7 complex.

    PubMed

    Karpinsky-Semper, Darla; Tayou, Junior; Levay, Konstantin; Schuchardt, Brett J; Bhat, Vikas; Volmar, Claude-Henry; Farooq, Amjad; Slepak, Vladlen Z

    2015-02-03

    The muscarinic M3 receptor (M3R) is a Gq-coupled receptor and is known to interact with many intracellular regulatory proteins. One of these molecules is Gβ5-RGS7, the permanently associated heterodimer of G protein β-subunit Gβ5 and RGS7, a regulator of G protein signaling. Gβ5-RGS7 can attenuate M3R-stimulated release of Ca(2+) from intracellular stores or enhance the influx of Ca(2+) across the plasma membrane. Here we show that deletion of amino acids 304-345 from the central portion of the i3 loop renders M3R insensitive to regulation by Gβ5-RGS7. In addition to the i3 loop, interaction of M3R with Gβ5-RGS7 requires helix 8. According to circular dichroism spectroscopy, the peptide corresponding to amino acids 548-567 in the C-terminus of M3R assumes an α-helical conformation. Substitution of Thr553 and Leu558 with Pro residues disrupts this α-helix and abolished binding to Gβ5-RGS7. Introduction of the double Pro substitution into full-length M3R (M3R(TP/LP)) prevents trafficking of the receptor to the cell surface. Using atropine or other antagonists as pharmacologic chaperones, we were able to increase the level of surface expression of the TP/LP mutant to levels comparable to that of wild-type M3R. However, M3R-stimulated calcium signaling is still severely compromised. These results show that the interaction of M3R with Gβ5-RGS7 requires helix 8 and the central portion of the i3 loop.

  7. Inferring relationships between pairs of individuals from locus heterozygosities

    PubMed Central

    Presciuttini, Silvano; Toni, Chiara; Tempestini, Elena; Verdiani, Simonetta; Casarino, Lucia; Spinetti, Isabella; Stefano, Francesco De; Domenici, Ranieri; Bailey-Wilson, Joan E

    2002-01-01

    Background The traditional exact method for inferring relationships between individuals from genetic data is not easily applicable in all situations that may be encountered in several fields of applied genetics. This study describes an approach that gives affordable results and is easily applicable; it is based on the probabilities that two individuals share 0, 1 or both alleles at a locus identical by state. Results We show that these probabilities (zi) depend on locus heterozygosity (H), and are scarcely affected by variation of the distribution of allele frequencies. This allows us to obtain empirical curves relating zi's to H for a series of common relationships, so that the likelihood ratio of a pair of relationships between any two individuals, given their genotypes at a locus, is a function of a single parameter, H. Application to large samples of mother-child and full-sib pairs shows that the statistical power of this method to infer the correct relationship is not much lower than the exact method. Analysis of a large database of STR data proves that locus heterozygosity does not vary significantly among Caucasian populations, apart from special cases, so that the likelihood ratio of the more common relationships between pairs of individuals may be obtained by looking at tabulated zi values. Conclusions A simple method is provided, which may be used by any scientist with the help of a calculator or a spreadsheet to compute the likelihood ratios of common alternative relationships between pairs of individuals. PMID:12441003

  8. Relation between CIDNP formed upon geminate and bulk recombination of radical pairs

    NASA Astrophysics Data System (ADS)

    Sosnovsky, Denis V.; Morozova, Olga B.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.

    2017-07-01

    A theoretical approach to time-resolved Chemically Induced Dynamic Nuclear Polarization (CIDNP) is proposed, which allows one to obtain the general relation between polarization formed upon recombination of geminate spin-correlated radical pairs, the so-called G-pairs, and upon recombination of radical pairs formed by encounters of free radicals in solution, the so-called F-pairs. This relation is described by a universal parameter denoted as γ. In this work, the γ value is computed for the arbitrary spin multiplicity, singlet or triplet, of the precursor of the G-pairs as well as for arbitrary recombination rate constants of radical pairs in singlet and triplet states, kS and kT, respectively. Furthermore, the treatment is extended to the situation where radicals undergo transformation resulting in different reactivity or magnetic parameters for F-pairs and G-pairs. The proposed theory enables modeling of time-resolved CIDNP data in cases where (i) both recombination channels are active and (ii) fast protonation/deprotonation of radicals changes the effective γ value.

  9. Cooper pairsʼ magnetic moment in MCFL color superconductivity

    NASA Astrophysics Data System (ADS)

    Feng, Bo; Ferrer, Efrain J.; de la Incera, Vivian

    2011-12-01

    We investigate the effect of the alignment of the magnetic moments of Cooper pairs of charged quarks that form at high density in three-flavor quark matter. The high-density phase of this matter in the presence of a magnetic field is known to be the Magnetic Color-Flavor-Locked (MCFL) phase of color superconductivity. We derive the Fierz identities of the theory and show how the explicit breaking of the rotational symmetry by the uniform magnetic field opens new channels of interactions and allows the formation of a new diquark condensate. The new order parameter is a spin-1 condensate proportional to the component in the field direction of the average magnetic moment of the pairs of charged quarks. The magnitude of the spin-1 condensate becomes comparable to the larger of the two scalar gaps in the region of large fields. The existence of the spin-1 condensate is unavoidable, as in the presence of a magnetic field there is no solution of the gap equations with nonzero scalar gaps and zero magnetic moment condensate. This is consistent with the fact that the extra condensate does not break any symmetry that has not already been broken by the known MCFL gaps. The spin-1 condensate enhances the condensation energy of pairs formed by charged quarks and the magnetization of the system. We discuss the possible consequences of the new order parameter on the issue of the chromomagnetic instability that appears in color superconductivity at moderate density.

  10. The Statistical Power of the Cluster Randomized Block Design with Matched Pairs--A Simulation Study

    ERIC Educational Resources Information Center

    Dong, Nianbo; Lipsey, Mark

    2010-01-01

    This study uses simulation techniques to examine the statistical power of the group- randomized design and the matched-pair (MP) randomized block design under various parameter combinations. Both nearest neighbor matching and random matching are used for the MP design. The power of each design for any parameter combination was calculated from…

  11. Dipole polarizabilities of trimetallic nitride endohedral fullerenes M 3N@C 2n (M = Sc and Y; 2 n = 68-98)

    NASA Astrophysics Data System (ADS)

    He, Jiangang; Wu, Kechen; Sa, Rongjian; Li, Qiaohong; Wei, Yongqin

    2009-06-01

    The electronic structures and static dipole polarizabilities of M 3N@C 2n fullerenes (M = Sc and Y; 2 n = 68-98) were studied by using density functional theory. Unlike nonmetal endohedral fullerenes, M 3N@C 2n show smaller static dipole polarizabilities than the corresponding C 2n ones do. It is because the induced electric field of carbon cages is reduced by inserting M 3N cluster. The mean dipole polarizabilities of M 3N@C 2n fullerenes were found to correlate closely to their chemical hardness and electron delocalization volume. The refractive indexes of the face-centered-cubic crystals assembled by M 3N@C 2n fullerenes were also estimated.

  12. Exploring Pair Programming Benefits for MIS Majors

    ERIC Educational Resources Information Center

    Dongo, Tendai; Reed, April H.; O'Hara, Margaret

    2016-01-01

    Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS) and Software Engineering (SE) majors have identified benefits such as technical productivity, program/design quality, academic…

  13. Exploring Pair Programming Benefits for MIS Majors

    ERIC Educational Resources Information Center

    Dongo, Tendai; Reed, April H.; O'Hara, Margaret

    2016-01-01

    Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS) and Software Engineering (SE) majors have identified benefits such as technical productivity, program/design quality, academic…

  14. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  15. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  16. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  17. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  18. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  19. Attitudes on Using Pair-Programming

    ERIC Educational Resources Information Center

    Howard, Elizabeth V.

    2007-01-01

    During a research study conducted over four semesters, students enrolled in an introductory programming class at a commuter campus used the pair-programming approach for both in-class labs and out-of-class programming assignments. This study was a comprehensive assessment of pair-programming using multiple measures of both quantitative and…

  20. Pair Programming in Education: A Literature Review

    ERIC Educational Resources Information Center

    Hanks, Brian; Fitzgerald, Sue; McCauley, Renee; Murphy, Laurie; Zander, Carol

    2011-01-01

    This article provides a review of educational research literature focused on pair programming in the undergraduate computer science curriculum. Research suggests that the benefits of pair programming include increased success rates in introductory courses, increased retention in the major, higher quality software, higher student confidence in…

  1. Pair condensation in a finite Fermi system

    SciTech Connect

    Sambataro, M.

    2007-05-15

    The lowest seniority-zero eigenstates of an exactly solvable multilevel pairing Hamiltonian for a finite Fermi system are examined at different pairing regimes. After briefly reviewing the form of the eigenstates in the Richardson formalism, we discuss a different representation of these states in terms of the collective pairs resulting from the diagonalization of the Hamiltonian in a space of two degenerate time-reversed fermions. We perform a two-fold analysis by working both in the fermionic space of these collective pairs and in a space of corresponding elementary bosons. On the fermionic side, we monitor the variations which occur, with increasing the pairing strength, in the structure of both these collective pairs and the lowest eigenstates. On the bosonic side, after reviewing a fermion-boson mapping procedure, we construct exact images of the fermion eigenstates and study their wave function. The analysis allows a close examination of the phenomenon of pair condensation in a finite Fermi system and gives new insights into the evolution of the lowest (seniority-zero) excited states of a pairing Hamiltonian from the unperturbed regime up to a strongly interacting one.

  2. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  3. Top Quark Pair Production at the Tevatron

    SciTech Connect

    Nielsen, Jason

    2005-05-17

    The measurement of the top quark pair production crosssection inproton-antiproton collisions at 1.96 TeV is a test ofquantumchromodynamics and could potentially be sensitive to newphysics beyondthe standard model. I report on the latest t-tbarcross section resultsfrom the CDF and DZero experiments in various finalstate topologies whicharise from decays of top quark pairs.

  4. SRTM Stereo Pair: Fiji Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    This image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (about 200 feet) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 192 km (119 miles) x 142 km (88 miles) Location: 17.8 deg. South lat., 178.0 deg. East lon. Orientation: North at top Date Acquired: February 19, 2000 Image: NASA/JPL/NIMA

  5. SRTM Stereo Pair: Fiji Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    This image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (about 200 feet) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 192 km (119 miles) x 142 km (88 miles) Location: 17.8 deg. South lat., 178.0 deg. East lon. Orientation: North at top Date Acquired: February 19, 2000 Image: NASA/JPL/NIMA

  6. Pair symmetry conversion in driven multiband superconductors

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Balatsky, Alexander V.

    2017-06-01

    It was recently shown that odd-frequency superconducting pair amplitudes can be induced in conventional superconductors subjected to a spatially nonuniform time-dependent drive. It has also been shown that, in the presence of interband scattering, multiband superconductors will possess bulk odd-frequency superconducting pair amplitudes. In this work we build on these previous results to demonstrate that by subjecting a multiband superconductor with interband scattering to a time-dependent drive, even-frequency pair amplitudes can be converted to odd-frequency pair amplitudes and vice versa. We will discuss the physical conditions under which these pair symmetry conversions can be achieved and possible experimental signatures of their presence.

  7. Centromere Associations in Meiotic Chromosome Pairing.

    PubMed

    Da Ines, Olivier; White, Charles I

    2015-01-01

    Production of gametes of halved ploidy for sexual reproduction requires a specialized cell division called meiosis. The fusion of two gametes restores the original ploidy in the new generation, and meiosis thus stabilizes ploidy across generations. To ensure balanced distribution of chromosomes, pairs of homologous chromosomes (homologs) must recognize each other and pair in the first meiotic division. Recombination plays a key role in this in most studied species, but it is not the only actor and particular chromosomal regions are known to facilitate the meiotic pairing of homologs. In this review, we focus on the roles of centromeres and in particular on the clustering and pairwise associations of nonhomologous centromeres that precede stable pairing between homologs. Although details vary from species to species, it is becoming increasingly clear that these associations play active roles in the meiotic chromosome pairing process, analogous to those of the telomere bouquet.

  8. PAIR: the predicted Arabidopsis interactome resource.

    PubMed

    Lin, Mingzhi; Shen, Xueling; Chen, Xin

    2011-01-01

    The predicted Arabidopsis interactome resource (PAIR, http://www.cls.zju.edu.cn/pair/), comprised of 5990 experimentally reported molecular interactions in Arabidopsis thaliana together with 145,494 predicted interactions, is currently the most comprehensive data set of the Arabidopsis interactome with high reliability. PAIR predicts interactions by a fine-tuned support vector machine model that integrates indirect evidences for interaction, such as gene co-expressions, domain interactions, shared GO annotations, co-localizations, phylogenetic profile similarities and homologous interactions in other organisms (interologs). These predictions were expected to cover 24% of the entire Arabidopsis interactome, and their reliability was estimated to be 44%. Two independent example data sets were used to rigorously validate the prediction accuracy. PAIR features a user-friendly query interface, providing rich annotation on the relationships between two proteins. A graphical interaction network browser has also been integrated into the PAIR web interface to facilitate mining of specific pathways.

  9. Pairing in a dry Fermi sea

    NASA Astrophysics Data System (ADS)

    Maier, T. A.; Staar, P.; Mishra, V.; Chatterjee, U.; Campuzano, J. C.; Scalapino, D. J.

    2016-06-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.

  10. Tilting structures in inverse perovskites, M3TtO (M = Ca, Sr, Ba, Eu; Tt = Si, Ge, Sn, Pb).

    PubMed

    Nuss, Jürgen; Mühle, Claus; Hayama, Kyouhei; Abdolazimi, Vahideh; Takagi, Hidenori

    2015-06-01

    Single-crystal X-ray diffraction experiments were performed for a series of inverse perovskites, M3TtO (M = Ca, Sr, Ba, Eu; Tt = tetrel element: Si, Ge, Sn, Pb) in the temperature range 500-50 K. For Tt = Sn, Pb, they crystallize as an 'ideal' perovskite-type structure (Pm3m, cP5); however, all of them show distinct anisotropies of the displacement ellipsoids of the M atoms at room temperature. This behavior vanishes on cooling for M = Ca, Sr, Eu, and the structures can be regarded as `ideal' cubic perovskites at 50 K. The anisotropies of the displacement ellipsoids are much more enhanced in the case of the Ba compounds. Finally, their structures undergo a phase transition at ∼ 150 K. They change from cubic to orthorhombic (Ibmm, oI20) upon cooling, with slightly tilted OBa6 octahedra, and bonding angles O-Ba-O ≃ 174° (100 K). For the larger Ba(2+) cations, the structural changes are in agreement with smaller tolerance factors (t) as defined by Goldschmidt. Similar structural behavior is observed for Ca3TtO. Smaller Tt(4-) anions (Si, Ge) introduce reduced tolerance factors. Both compounds Ca3SiO and Ca3GeO with cubic structures at 500 K, change into orthorhombic (Ibmm) at room temperature. Whereby, Ca3SiO is the only representative within the M3TtO family where three polymorphs can be found within the temperature range 500-50 K: Pm3m-Ibmm-Pbnm. They show tiny differences in the tilting of the OCa6 octahedra, expressed by O-Ca-O bond angles of 180° (500 K), ∼ 174° (295 K) and 170° (100 K). For larger M (Sr, Eu, Ba), together with smaller Tt (Si, Ge) atoms, pronounced tilting of the OM6 octahedra, and bonding angles of O-M-O ≃ 160° (295 K) are observed. They crystallize in the anti-GdFeO3 type of structure (Pbnm, oP20), and no phase transitions occur between 500 and 50 K. The observed phase transitions are all accompanied by multiple twinning, in terms of pseudo-merohedry or reticular pseudo-merohedry.

  11. GABA(A) receptor M2-M3 loop secondary structure and changes in accessibility during channel gating.

    PubMed

    Bera, Amal K; Chatav, Maya; Akabas, Myles H

    2002-11-08

    The gamma-aminobutyric acid type A (GABA(A)) receptor M2-M3 loop structure and its role in gating were investigated using the substituted cysteine accessibility method. Residues from alpha(1)Arg-273 to alpha(1)Ile-289 were mutated to cysteine, one at a time. MTSET(+) or MTSES(-) reacted with all mutants from alpha(1)R273C to alpha(1)Y281C, except alpha(1)P277C, in the absence and presence of GABA. The MTSET(+) closed-state reaction rate was >1000 liters/mol-s at alpha(1)N274C, alpha(1)S275C, alpha(1)K278C, and alpha(1)Y281C and was <300 liters/mol-s at alpha(1)R273C, alpha(1)L276C, alpha(1)V279C, alpha(1)A280C, and alpha(1)A284C. These two groups of residues lie on opposite sides of an alpha-helix. The fast reacting group lies on a continuation of the M2 segment channel-lining helix face. This suggests that the M2 segment alpha-helix extends about two helical turns beyond alpha(1)N274 (20'), aligned with the extracellular ring of charge. At alpha(1)S275C, alpha(1)V279C, alpha(1)A280C, and alpha(1)A284C the reaction rate was faster in the presence of GABA. The reagents had no functional effect on the mutants from alpha(1)A282C to alpha(1)I289C, except alpha(1)A284C. Access may be sterically hindered possibly by close interaction with the extracellular domain. We suggest that the M2 segment alpha-helix extends beyond the predicted extracellular end of the M2 segment and that gating induces a conformational change in and/or around the N-terminal half of the M2-M3 loop. Implications for coupling ligand-evoked conformational changes in the extracellular domain to channel gating in the membrane-spanning domain are discussed.

  12. Three-component Laser Doppler Anemometer for Gas Flowrate Measurements up to 5 500 m3/h

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Strunck, V.; Krey, E.-A.

    1994-01-01

    In the Physikalisch-Technische Bundesanstalt (PTB) the primary standard for on-line flowrate measurements using the laser Doppler anemometer (LDA) technique has been extended to a three-component LDA to improve velocity profile measurements in the boundary layers of a nozzle flow. The LDA flowrate measuring facility now consists of a two-colour argon ion LDA and a wavelength-stabilized GaAlAs diode laser LDA. The gas flowrate is obtained by numerical integration of the measured velocity profiles across the exit plane of the nozzle. High local resolution of the velocity profile measurements is achieved by perpendicular orientation of the measurement volumes of the two-component gas laser LDA and the semiconductor diode laser LDA (LD-LDA). This allows the resolution in the boundary layer to be improved significantly to velocity gradients. The present work presents the LD-LDA system for precise velocity profile measurements at flow velocities of up to 120 m/s; selected profile measurements are described in detail to demonstrate the high resolution and the symmetry of the flow profile. For the first time a wavelength-stabilized miniaturized diode laser LDA has been successfully applied in precise velocity measurements, and comparisons with well-established gas laser LDAs have been made. The uncertainty of the flowrate measurement up to 5 500 m3/h is 0,1% for air at atmospheric pressure. A turbine gas meter, type Elster G2500, was calibrated with the LDA and used as a transfer standard for an intercomparison with the Nederlands Meetinstituut (NMI) in the flowrate range up to 5 500 m3/h with and without the installation of perforated plates to condition the flow in the inlet section of the gas meter. The results of the comparison experiment clearly show the reliability and accuracy of the online flowrate measurement of gases and underline the necessity for a detailed research programme to investigate the relationship between installation effects, upstream flow conditions

  13. Dressed electrostatic solitary excitations in three component pair-plasmas: Application in isothermal pair-plasma with stationary ions

    SciTech Connect

    Esfandyari-Kalejahi, A.; Akbari-Moghanjoughi, M.; Haddadpour-Khiaban, B.

    2009-10-15

    In this work electrostatic solitary waves in a three component pair-plasma consisting of hot isothermal electrons (or negative fullerene ions), positrons (or positive fullerene ions), and stationary positive ions (say, dust particulates) are studied. Using reductive perturbation method, plasma fluid equations are reduced to a Korteweg-de Vries (KdV) equation. Considering the higher-order nonlinearity, a linear inhomogeneous equation is derived, and the stationary solutions of these coupled equations are achieved by applying the renormalization procedure of Kodama-Taniuti. It is observed that in the linear approximation and applying Fourier analysis, two electrostatic modes, namely, upper or optical and lower or acoustic modes, are present. However, the application of reductive perturbation technique confirms that only acoustic-electrostatic mode can propagate in such plasma as KdV soliton, the amplitude and width of which are studied regarding to plasma parameters {sigma} (positron-to-electron temperature ratio) and {delta} (stationary cold ions-to-electron density ratio). It is also observed that the higher-order nonlinearity leads to deformation of the soliton structure from bell-shaped to W-shaped depending on the variation in values of the plasma parameters {sigma} and {delta}. It is revealed that KdV-type solitary waves cannot propagate in three component pair-plasma when the pair-species temperature is equal.

  14. [Structural and Dipole Structure Peculiarities of Hoogsteen Base Pairs Formed in Complementary Nucleobases according to ab initio Quantum Mechanics Studies].

    PubMed

    Petrenko, Y M

    2015-01-01

    Ab initio quantum mechanics studies for the detection of structure and dipole structure peculiarities of Hoogsteen base pairs relative to Watson-Crick base pairs, were performed during our work. These base pairs are formed as a result of complementary interactions. It was revealed, that adenine-thymine Hoogsteen base pair and adenine-thymine Watson-Crick base pairs can be formed depending on initial configuration. Cytosine-guanine Hoogsteen pairs are formed only when cytosine was originally protonated. Both types of Hoogsteen pairs have noticeable difference in the bond distances and angles. These differences appeared in purine as well as in pyrimidine parts of the pairs. Hoogsteen pairs have mostly shorter hydrogen bond lengths and significantly larger angles of hydrogen bonds and larger angles between the hydrogen bonds than Watson-Crick base pairs. Notable differences are also observed with respect to charge distribution and dipole moment. Quantitative data on these differences are shown in our work. It is also reported that the values of local parameters (according to Cambridge classification of the parameters which determine DNA properties) in Hoogsteen base pairs, are greatly different from Watson-Crick ones.

  15. Correlations Between the Ligand Electrochemical Parameter, EL(L) and the Hammett Substituent Parameter Sigma

    DTIC Science & Technology

    1993-01-25

    AD-A260 299 OFFICE OF NAVAL RESEARCH Contract N00014-91-J-1910 R & T Code 4131025 Technical Report #51 Correlations Between the Ligand ...COVERED January 25, 1993 Technical - June 1991 to July 1992 4 TITLE AND SUBTITLE S. FUNDING NUMBERS Correlations Between the Ligand Electrochemical...Ontario, Canada, M3J 1P3. Correlations Between the Ligand Electrochemical Parameter. ET (D and the Hammett Substituent Param~eter. a. By Hitoshi

  16. Non-additivity of pair interactions in charged colloids

    NASA Astrophysics Data System (ADS)

    Finlayson, Samuel D.; Bartlett, Paul

    2016-07-01

    It is general wisdom that the pair potential of charged colloids in a liquid may be closely approximated by a Yukawa interaction, as predicted by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We experimentally determine the effective forces in a binary mixture of like-charged particles, of species 1 and 2, with blinking optical tweezers. The measured forces are consistent with a Yukawa pair potential but the (12) cross-interaction is not equal to the geometric mean of the (11) and (22) like-interactions, as expected from DLVO. The deviation is a function of the electrostatic screening length and the size ratio, with the cross-interaction measured being consistently weaker than DLVO predictions. The corresponding non-additivity parameter is negative and grows in magnitude with increased size asymmetry.

  17. Acoustic solitons in inhomogeneous pair-ion plasmas

    SciTech Connect

    Shah, Asif; Mahmood, S.; Haque, Q.

    2010-12-15

    The acoustic solitons are investigated in inhomogeneous unmagnetized pair ion plasmas. The Korteweg-de Vries (KdV) like equation with an additional term due to density gradients is deduced by employing reductive perturbation technique. It is noticed that pair-ion plasma system is conducive for the propagation of compressive as well as rarefactive solitons. The increase in the temperature ratio causes the amplitude of the rarefactive soliton to decrease. However, the amplitude of the compressive solitons is found to be increased as the temperature ratio of ions is enhanced. The amplitude of both compressive and rarefactive solitons is found to be increased as the density gradient parameter is increased. The equlibrium density profile is assumed to be exponential. The numerical results are shown for illustration.

  18. Topological superfluids with finite-momentum pairing and Majorana fermions.

    PubMed

    Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei

    2013-01-01

    Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.

  19. Solubilization and fractionation of paired helical filaments.

    PubMed

    González, P J; Correas, I; Avila, J

    1992-09-01

    Paired helical filaments isolated from brains of two different patients with Alzheimer's disease were extensively treated with the ionic detergent, sodium dodecyl sulphate. Filaments were solubilized at different extents, depending on the brain examined, thus suggesting the existence of two types of paired helical filaments: sodium dodecyl sulphate-soluble and insoluble filaments. In the first case, the number of structures resembling paired helical filaments greatly decreased after the detergent treatment, as observed by electron microscopy. Simultaneously, a decrease in the amount of sedimentable protein was also observed upon centrifugation of the sodium dodecyl sulfate-treated paired helical filaments. A sodium dodecyl sulphate-soluble fraction was isolated as a supernatant after low-speed centrifugation of the sodium dodecyl sulphate-treated paired helical filaments. The addition of the non-ionic detergent Nonidet-P40 to this fraction resulted in the formation of paired helical filament-like structures. When the sodium dodecyl sulphate-soluble fraction was further fractionated by high-speed centrifugation, three subfractions were observed: a supernatant, a pellet and a thin layer between these two subfractions. No paired helical filaments were observed in any of these subfractions, even after addition of Nonidet P-40. However, when they were mixed back together, the treatment with Nonidet P-40 resulted in the visualization of paired helical filament-like structures. These results suggest that at least two different components are needed for the reconstitution of paired helical filaments as determined by electron microscopy. The method described here may allow the study of the components involved in the formation of paired helical filaments and the identification of possible factors capable of blocking this process.

  20. Model of electron pairs in electron-doped cuprates

    NASA Astrophysics Data System (ADS)

    Singh, R. J.; Khan, Shakeel

    2016-07-01

    In the order parameter of hole-doped cuprate superconductors in the pseudogap phase, two holes enter the order parameter from opposite sides and pass through various CuO2 cells jumping from one O2- to the other under the influence of magnetic field offered by the Cu2+ ions in that CuO2 cell and thus forming hole pairs. In the pseudogap phase of electron-doped cuprates, two electrons enter the order parameter at Cu2+ sites from opposite ends and pass from one Cu2+ site to the diagonally opposite Cu2+ site. Following this type of path, they are subjected to high magnetic fields from various Cu2+ ions in that cell. They do not travel from one Cu2+ site to the other along straight path but by helical path. As they pass through the diagonal, they face high to low to very high magnetic field. Therefore, frequency of helical motion and pitch goes on changing with the magnetic field. Just before reaching the Cu2+ ions at the exit points of all the cells, the pitch of the helical motion is enormously decreased and thus charge density at these sites is increased. So the velocity of electrons along the diagonal path is decreased. Consequently, transition temperature of electron-doped cuprates becomes less than that of hole-doped cuprates. Symmetry of the order parameter of the electron-doped cuprates has been found to be of 3dx2-y2 + iS type. It has been inferred that internal magnetic field inside the order parameter reconstructs the Fermi surface, which is requisite for superconductivity to take place. Electron pairs formed in the pseudogap phase are the precursors of superconducting order parameter when cooled below Tc.

  1. Detection of Mg-spinel bearing central peaks using M3 images: Implications for the petrogenesis of Mg-spinel

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Li, Lin; Zhang, Yuanzhi

    2017-05-01

    Mg-spinel bearing lithologies, lacking abundant mafic materials, have been discovered with images acquired by the Moon Mineralogy Mapper (M3) aboard Chandrayaan-1. We conducted a systematic screening of lunar crater central peaks for the presence of Mg-spinel to address its distribution and petrogenesis. 38 Mg-spinel bearing crater central peaks were identified in this study out of 166 craters investigated. The results suggest that Mg-spinel is common in the lunar crust and appears to be extensive in the middle part of the lunar crust underneath Procellarum KREEP Terrane (PKT). Mg-spinel neither exclusively originated from deep layers (>10 km) nor necessarily coexist with the appearance of olivine or pyroxene. 15 Mg-spinel bearing central peaks originated from depth less than 10 km. Nine investigated central peaks only contain Mg-spinel and plagioclase without any detectable mafic materials. All those observations imply that the origin of Mg-spinel is possibly related to Mg-suite plutonism and assimilation between high Mg‧ magma with anorthositic crust. The extensive distribution and Mg-suite related petrogenesis indicates that Mg-spinel bearing lithologies might represent a new member of Mg-suite rocks.

  2. Tests of shielding effectiveness of Kevlar and Nextel onboard the International Space Station and the Foton-M3 capsule.

    PubMed

    Pugliese, M; Bengin, V; Casolino, M; Roca, V; Zanini, A; Durante, M

    2010-08-01

    Radiation assessment and protection in space is the first step in planning future missions to the Moon and Mars, where mission and number of space travelers will increase and the protection of the geomagnetic shielding against the cosmic radiation will be absent. In this framework, the shielding effectiveness of two flexible materials, Kevlar and Nextel, were tested, which are largely used in the construction of spacecrafts. Accelerator-based tests clearly demonstrated that Kevlar is an excellent shield for heavy ions, close to polyethylene, whereas Nextel shows poor shielding characteristics. Measurements on flight performed onboard of the International Space Station and of the Foton-M3 capsule have been carried out with special attention to the neutron component; shielded and unshielded detectors (thermoluminescence dosemeters, bubble detectors) were exposed to a real radiation environment to test the shielding properties of the materials under study. The results indicate no significant effects of shielding, suggesting that thin shields in low-Earth Orbit have little effect on absorbed dose.

  3. Mechanized welding of a Christmans tree of 06Kh20N8M3D2L steel

    SciTech Connect

    Leibzon, V.M.; kakhramanov, V.T.; Eshtokin, V.I.; Fataliev, S.O.; Fisher, V.O.; Pavlov, A.A.

    1986-03-01

    The most critical fitting of a well for the recovery of petroleum and gas with a high content of corrosive constituents is made of 06Kh20N8M3D2L steel. The quality, reliability, and life of a Christmas tree are determined primarily by the mechanical and corrosion properties of the weld joint. The authors report on the improvement of the existing method for welding the units of a Christmas tree. Argon and carbon dioxide were used as the protective medium in semiautomatic welding. The welding was done with a reverse polarity dc. An analysis of the data presented shows that the closest content to the base metal of chromium and nickel in the joint are provided in welding with OZL-41 electrodes. The molybdenum content in the joints welded with NZh-13 electrodes and Sv-08Kh19N10M38B wire in argon and carbon dioxide is at the level of the content of this element in the base metal.

  4. A wide planetary-mass companion to a young M3 star of the AB Dor moving group

    NASA Astrophysics Data System (ADS)

    Naud, Marie-Eve; Artigau, Étienne; Doyon, René; Malo, Lison; Albert, Loïc; Lafrenière, David; Gagné, Jonathan

    2013-04-01

    We present a planetary-mass companion found 42'' (2000 AU) from a M3 star, candidate member of the young (50-120 Myr) AB Doradus moving group. It was identified through an ongoing survey with GMOS at Gemini-South, via its distinctively red i-z color (>3.51). The comoving status of this object was confirmed by 2 epochs of WIRCam/CFHT J-band images. The NIR photometry and WISE colors suggest an early-to-mid T bound companion. A NIR spectrum, taken with GNIRS at Gemini-North, confirms a mid-T spectral type. With an estimated temperature between 900 K and 1200 K, models predict a mass between 7 and 12 MJup for this object. The benchmark character of this planetary-mass object lies in its relatively well-constrained age and in its very wide separation, that allows in-depth studies that can help validating models and understanding similar but closer-in companions such as the ones that will be uncovered by next-generation planet finders (e.g. GPI and SPHERE).

  5. An intracellular redox sensor for reactive oxygen species at the M3-M4 linker of GABAAρ1 receptors

    PubMed Central

    Beltrán González, Andrea N; Gasulla, Javier; Calvo, Daniel J

    2014-01-01

    Background and Purpose Reactive oxygen species (ROS) are normally involved in cell oxidative stress but also play a role as cellular messengers in redox signalling; for example, modulating the activity of neurotransmitter receptors and ion channels. However, the direct actions of ROS on GABAA receptors were not previously demonstrated. In the present work, we studied the effects of ROS on GABAAρ1 receptor function. Experimental Approach GABAAρ1 receptors were expressed in oocytes and GABA-evoked responses electrophysiologically recorded in the presence or absence of ROS. Chemical protection of cysteines by selective sulfhydryl reagents and site-directed mutagenesis studies were used to identify protein residues involved in ROS actions. Key Results GABAAρ1 receptor-mediated responses were significantly enhanced in a concentration-dependent and reversible manner by H2O2. Potentiating effects were attenuated by a free radical scavenger, lipoic acid or an inhibitor of the Fenton reaction, deferoxamine. Each ρ1 subunit contains only three cysteine residues, two extracellular at the Cys-loop (C177 and C191) and one intracellular (C364) at the M3-M4 linker. Mutant GABAAρ1 receptors in which C364 was exchanged by alanine were completely insensitive to modulation, implying that this site, rather than a cysteine in the Cys-loop, is essential for ROS modulation. Conclusion and Implications Our results show that the function of GABAAρ1 receptors is enhanced by ROS and that the intracellular C364 is the sensor for ROS actions. PMID:24428763

  6. Electronic and structural properties of M3(HITP)2 (M = Ni, Cu and Co) metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Silveira, Orlando; Chacham, Helio; Alexandre, Simone

    Theoretical and experimental works have demonstrated that electrical and structural properties of metal-organic frameworks (MOF) can be significantly changed by the identity of the metal center, leading to a potential strategy for tuning the selectivity of the material toward different types of technological applications. In this work, we use first principle calculations to investigate the electronic properties of 2D MOF M3(HITP)2 (M is Ni, Cu and Co and HITP = 2,3,6,7,10,11 - hexaiminotriphenylene). Our results show that for M=Ni and Co, the structures are perfect planar and there is a full charge delocalization in the 2D plane of stacking due to the predominance of π - π bonding. The band structure for M = Ni shows that this material is a semiconductor with an indirect band gap of 132 meV, whilst for M = Co the band structure shows that this material is a ferromagnetic semiconductor with a direct band gap of 386 meV for spin down and a indirect band gap of 246 meV for spin up. For M=Cu, the material is a metal and adopts a distorted structure due to a different hybridization of the metal atom in comparison with its counterparts. We also propose a tight binding model that can represent the electronic structure near the Fermi level of this family of MOF.

  7. Acute effects of exposure to 1 mg/m(3) of vaporized 2-ethyl-1-hexanol in humans.

    PubMed

    Ernstgård, L; Norbäck, D; Nordquist, T; Wieslander, G; Wålinder, R; Johanson, G

    2010-04-01

    The objective was to assess acute effects from controlled exposure of volunteers to 2-ethyl-1-hexanol, a volatile organic compound that is often found in indoor air. Sixteen males and fourteen females were in random order exposed to 1 mg/m(3) of vapors of 2-ethyl-1-hexanol or to clean air (control exposure) in an exposure chamber during 2 h at rest. The subjects performed symptom ratings on Visual Analog Scales. During exposure to 2-ethyl-1-hexanol subjective ratings of smell and eye discomfort were minimally but significantly increased. Ratings of nasal irritation, throat irritation, headache, dyspnoea, fatigue, dizziness, nausea, and intoxication were not significantly affected. No exposure-related effects on measurement of blinking frequency by electromyography, measurement of the eye break-up time, vital staining of the eye, nasal lavage biomarkers, transfer tests, spirometric and rhinometric measures were seen. No differences in response were seen between sexes or between atopics and non-atopics. Practical Implications It is important to assess acute effects in volatile organic compounds like 2-ethyl-1-hexanol. 2-ethyl-1-hexanol is often found in indoor air generated by degradation of plastic building materials or in new buildings. There are associations between 2-ethyl-1-hexanol in indoor air and respiratory effects, eye irritation, headache, and blurred vision. A controlled chamber exposure study in acute effects was performed. In conclusion, this study showed weak subjective symptom of irritation in the eyes.

  8. [Morphofunctional state of hepatocytes nuclear apparatus in Mongolian herbils after the flight on space apparatus Foton-M3].

    PubMed

    Atiakshin, D A; Il'in, E A; Pashkov, A N

    2010-01-01

    Morphofunctional state of hepatocytes nuclear apparatus was analyzed in the liver of Mongolian gerbils Meriones unguiculatus returned from 12-d space flight of Foton-M3 (SF) and their vivarium and ground synchronous controls. Volume, ploidy and number of hepatocyte nuclei, nucleolus dimensions and number as well as contacts with karyolemma were determined in the central, intermediate and peripheral areas of the liver classical lobe. Also, total number of mitoses and amitoses was determined in the liver parenchyma. The vivarium control animals displayed specifics of the nucleus apparatus structure that depended on intralobe topography. Based on the selected criteria, high functional activity was characteristic of cells in the intermediate area. According to the criteria, nuclear apparatus in the synchronous control tended to down the functional activity The adaptive adjustment of nuclei in SF seemed to have been initiated by changes in the hepatic blood flow: volumes of hepatocyte nuclei and nucleoli increased as did the number of nuclei in cell, whereas ploidy made a decrease, especially in the intermediate area. Under the SF conditions, particularly important compensatory mechanism for the liver function was intensification of amitosis and consequent increase of the population of dinuclear hepatocytes.

  9. Underground low flux neutron background measurements in LSM using a large volume (1m3) spherical proportional counter

    NASA Astrophysics Data System (ADS)

    Savvidis, I.; Giomataris, I.; Bougamont, E.; Irastorza, I.; Aune, S.; Chapelier, M.; Charvin, P. H.; Colas, P.; Derre, J.; Ferrer, E.; Gerbier, G.; Gros, M.; Mangier, P.; Navick, X. F.; Salin, P.; Vergados, J. D.; Zampalo, M.

    2010-01-01

    A large volume (1m3) spherical proportional counter has been developed at CEA/Saclay, for low flux neutron measurements. The high voltage is applied to a small sphere 15mm in diameter, located in the center of the counter and the wall of the counter is grounded. Neutrons can be measured successfully, with high sensitivity, using 3He gas in the detector. The proton and tritium energy deposition in the drift gaseous volume, from the reaction 3He(n,p)3H, can provide the neutron spectra from thermal neutrons up to several MeV. The detector has been installed in the underground laboratory in Modane (LSM) to measure the neutron background. The sphere has been has been filled with gas mixture of Ar + 2% CH4 +3gr He-3, at 275 mbar. The thermal neutron peak is well separated from the cosmic ray and gamma background, permitting of neutron flux calculation. Other potential applications requiring large volume of about 10 m in radius are described in detail in reference

  10. Full Stokes observations in the He i 1083 nm spectral region covering an M3.2 flare

    NASA Astrophysics Data System (ADS)

    Kuckein, Christoph; Collados, Manuel; Sainz, Rafael Manso; Ramos, Andrés Asensio

    2015-10-01

    We present an exceptional data set acquired with the Vacuum Tower Telescope (Tenerife, Spain) covering the pre-flare, flare, and post-flare stages of an M3.2 flare. The full Stokes spectropolarimetric observations were recorded with the Tenerife Infrared Polarimeter in the He i 1083.0 nm spectral region. The object under study was active region NOAA 11748 on 2013 May 17. During the flare the chomospheric He i 1083.0 nm intensity goes strongly into emission. However, the nearby photospheric Si i 1082.7 nm spectral line profile only gets shallower and stays in absorption. Linear polarization (Stokes Q and U) is detected in all lines of the He i triplet during the flare. Moreover, the circular polarization (Stokes V) is dominant during the flare, being the blue component of the He i triplet much stronger than the red component, and both are stronger than the Si i Stokes V profile. The Si i inversions reveal enormous changes of the photospheric magnetic field during the flare. Before the flare magnetic field concentrations of up to ~1500 G are inferred. During the flare the magnetic field strength globally decreases and in some cases it is even absent. After the flare the magnetic field recovers its strength and initial configuration.

  11. A Curious Pair of Galaxies

    NASA Astrophysics Data System (ADS)

    2009-03-01

    The ESO Very Large Telescope has taken the best image ever of a strange and chaotic duo of interwoven galaxies. The images also contain some surprises -- interlopers both far and near. ESO PR Photo 11a/09 A Curious Pair of Galaxies ESO PR Video 11a/09 Arp 261 zoom in ESO PR Video 11b/09 Pan over Arp 261 Sometimes objects in the sky that appear strange, or different from normal, have a story to tell and prove scientifically very rewarding. This was the idea behind Halton Arp's catalogue of Peculiar Galaxies that appeared in the 1960s. One of the oddballs listed there is Arp 261, which has now been imaged in more detail than ever before using the FORS2 instrument on ESO's Very Large Telescope. The image proves to contain several surprises. Arp 261 lies about 70 million light-years distant in the constellation of Libra, the Scales. Its chaotic and very unusual structure is created by the interaction of two galaxies that are engaged in a slow motion, but highly disruptive close encounter. Although individual stars are very unlikely to collide in such an event, the huge clouds of gas and dust certainly do crash into each other at high speed, leading to the formation of bright new clusters of very hot stars that are clearly seen in the picture. The paths of the existing stars in the galaxies are also dramatically disrupted, creating the faint swirls extending to the upper left and lower right of the image. Both interacting galaxies were probably dwarfs not unlike the Magellanic Clouds orbiting our own galaxy. The images used to create this picture were not actually taken to study the interacting galaxies at all, but to investigate the properties of the inconspicuous object just to the right of the brightest part of Arp 261 and close to the centre of the image. This is an unusual exploding star, called SN 1995N, that is thought to be the result of the final collapse of a massive star at the end of its life, a so-called core collapse supernova. SN 1995N is unusual because

  12. Weird Stellar Pair Puzzles Scientists

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Astronomers have discovered a speedy spinning pulsar in an elongated orbit around an apparent Sun-like star, a combination never seen before, and one that has them puzzled about how the strange system developed. Orbital Comparison Comparing Orbits of Pulsar and Its Companion to our Solar System. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for full caption information and available graphics. "Our ideas about how the fastest-spinning pulsars are produced do not predict either the kind of orbit or the type of companion star this one has," said David Champion of the Australia Telescope National Facility. "We have to come up with some new scenarios to explain this weird pair," he added. Astronomers first detected the pulsar, called J1903+0327, as part of a long-term survey using the National Science Foundation's Arecibo radio telescope in Puerto Rico. They made the discovery in 2006 doing data analysis at McGill University, where Champion worked at the time. They followed up the discovery with detailed studies using the Arecibo telescope, the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, the Westerbork radio telescope in the Netherlands, and the Gemini North optical telescope in Hawaii. The pulsar, a city-sized superdense stellar corpse left over after a massive star exploded as a supernova, is spinning on its axis 465 times every second. Nearly 21,000 light-years from Earth, it is in a highly-elongated orbit that takes it around its companion star once every 95 days. An infrared image made with the Gemini North telescope in Hawaii shows a Sun-like star at the pulsar's position. If this is an orbital companion to the pulsar, it is unlike any companions of other rapidly rotating pulsars. The pulsar, a neutron star, also is unusually massive for its type. "This combination of properties is unprecedented. Not only does it require us to figure out how this system was produced, but the large mass may help us understand how matter behaves at extremely

  13. Do pairing systems improve welfare of captive Red-Legged partridges (Alectoris rufa) in laying cages?

    PubMed

    Prieto, R; Sánchez-García, C; Alonso, M E; Rodríguez, P L; Gaudioso, V R

    2012-08-01

    Although animal welfare has become an important premise in poultry, little attention has been paid to the effects of present-day rearing methods on the welfare of game birds, species released for hunting and re-establishment purposes. This work studied the effect of pairing methods on the welfare of the Red-Legged partridge kept in laying cages (4,500 cm2), a commonly hunted game species in Western Europe. Agonistic behavior and possible injuries caused by aggression were studied during the pairing and laying period in 2 types of couples: the forced type (n=24), 1 male and 1 female randomly chosen and placed in the same cage, and the free type (n=24), where the female had the opportunity to chose between 4 males, using the time spent by the female near each male as female choice parameter. Welfare of partridges was affected by pairing system, as aggressive behavior, divorces and injuries were observed in a higher rate in forced pairs (25% of pairs did not finish the productive cycle) than in free pairs (16.6%). In addition, more females were attacked in forced pairs, whereas in free pairs, the number of attacked males and mutual aggression was increased. Males tended to display more aggressive behavior than females, pecking mainly on the head and back of females. Although injuries were observed in a minor rate in free pairs, a higher mortality was reported in females compared with males from both free and forced pairs (6 females died in total). The poor welfare in a high percentage of laying pairs hampers the development of sustainable rearing methods for the species. Thus, farmers should consider avoiding forced pairing.

  14. P-wave Cooper pair splitting.

    PubMed

    Soller, Henning; Komnik, Andreas

    2012-01-01

    Splitting of Cooper pairs has recently been realized experimentally for s-wave Cooper pairs. A split Cooper pair represents an entangled two-electron pair state, which has possible application in on-chip quantum computation. Likewise the spin-activity of interfaces in nanoscale tunnel junctions has been investigated theoretically and experimentally in recent years. However, the possible implications of spin-active interfaces in Cooper pair splitters so far have not been investigated. We analyze the current and the cross correlation of currents in a superconductor-ferromagnet beam splitter, including spin-active scattering. Using the Hamiltonian formalism, we calculate the cumulant-generating function of charge transfer. As a first step, we discuss characteristics of the conductance for crossed Andreev reflection in superconductor-ferromagnet beam splitters with s-wave and p-wave superconductors and no spin-active scattering. In a second step, we consider spin-active scattering and show how to realize p-wave splitting using only an s-wave superconductor, through the process of spin-flipped crossed Andreev reflection. We present results for the conductance and cross correlations. Spin-activity of interfaces in Cooper pair splitters allows for new features in ordinary s-wave Cooper pair splitters, that can otherwise only be realized by using p-wave superconductors. In particular, it provides access to Bell states that are different from the typical spin singlet state.

  15. Bound free electron-positron pair production accompanied by giant dipole resonances

    SciTech Connect

    Senguel, M. Y.; Gueclue, M. C.

    2011-01-15

    At the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), for example, virtual photons produce many particles. At small impact parameters where the colliding nuclei make peripheral collisions, photon fluxes are very large and these are responsible for the multiple photonuclear interactions. Free pair productions, bound free pair productions, and nuclear Coulomb excitations are important examples of such interactions, and these processes play important roles in the beam luminosity at RHIC and LHC. Here we obtained the impact parameter dependence of bound free pair production cross sections and by using this probability we obtained bound free electron-positron pair production with nuclear breakup for heavy ion collisions at RHIC and LHC. We also compared our results to the other calculations.

  16. DNA terminal base pairs have weaker hydrogen bonds especially for AT under low salt concentration

    NASA Astrophysics Data System (ADS)

    Ferreira, Izabela; Amarante, Tauanne D.; Weber, Gerald

    2015-11-01

    DNA base pairs are known to open more easily at the helix terminal, a process usually called end fraying, the details of which are still poorly understood. Here, we present a mesoscopic model calculation based on available experimental data where we consider separately the terminal base pairs of a DNA duplex. Our results show an important reduction of hydrogen bond strength for terminal cytosine-guanine (CG) base pairs which is uniform over the whole range of salt concentrations, while for AT base pairs, we obtain a nearly 1/3 reduction but only at low salt concentrations. At higher salt concentrations, terminal adenine-thymine (AT) pair has almost the same hydrogen bond strength than interior bases. The calculated terminal stacking interaction parameters display some peculiarly contrasting behavior. While there is mostly no perceptible difference to internal stacking, for some cases, we observe an unusually strong dependence with salt concentration which does not appear follow any pattern or trend.

  17. Actively switchable nondegenerate polarization-entangled photon-pair distribution in dense wave-division multiplexing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Yuan; Jiang, Yun-Kun; Ding, Dong-Sheng; Shi, Bao-Sen; Guo, Guang-Can

    2013-04-01

    We have demonstrated experimentally a nondegenerate polarization-entangled photon-pair distribution in a commercial telecom dense wave-division multiplexing device (DWDM) with eight channels. A promising point of this experiment is that an entangled photon pair is obtained via spontaneous parametric down conversion in a single type-II periodically poled KTiOPO4 crystal without postselection. Another promising advantage is that we can actively switch the distribution of the photon pair between different channel pairs in DWDM at will. There is no crosstalk between different channel pairs because of a limited emission bandwidth of the source. Maximum raw visibility of 97.88%±0.86% obtained in a Bell-type interference experiment and a Clauser-Horne-Shimony-Holt (CHSH) inequality S parameter of 2.63±0.08 calculated prove high entanglement of our source. Our work is helpful for building quantum communication networks.

  18. Localized Superconductivity in Systems with Inhomogeneous Mass of Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Kopasov, A. A.; Savinov, D. A.; Mel'nikov, A. S.

    2017-04-01

    Within the framework of the Ginzburg-Landau theory, we study the features of the localized nucleation of the order parameter in superconducting systems with inhomogeneous effective mass m of the Cooper pairs, which is due to the spatial modulation of the diffusion coefficient and/or fluctuations in the local anisotropy axis in the sample. In the asymptotics of the weak magnetic fields H, for which the magnetic length [Φ0/(2 πH)]1/2, where Φ0 is the magnetic-flux quantum, is much shorter than the inhomogeneity scale, the spatial scale of the order parameter is determined by the sample-average coherence length and the regular lattice of the Abrikosov vortices is formed in the superconductor. In sufficiently strong magnetic fields H, the order parameter is localized near the minima of the coherence length ξ ∝ m -1/2, which results in an increase in the critical temperature and destruction of the regular lattice of the Abrikosov vortices. Therefore, competition between the two superconductivity-nucleation types is observed during a gradual increase in the magnetic field, which leads to the positive curvature of the phase-transition line. We have also studied the features of the temperature dependences of the upper critical magnetic field for some model spatial mass profiles of the Cooper pairs. The obtained results are in good agreement with direct numerical calculations.

  19. Pair supersolid with atom-pair hopping on the state-dependent triangular lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Wanzhou; Yin, Ruoxi; Wang, Yancheng

    2013-11-01

    We systematically study an extended Bose-Hubbard model with atom hopping and atom-pair hopping in the presence of a three-body constraint on the triangular lattice. By means of large-scale quantum Monte Carlo simulations, the ground-state phase diagram is studied. We find a first-order transition between the atomic superfluid phase and the pair superfluid phase when the ratio of the atomic hopping and the atom-pair hopping is adapted. The first-order transition remains unchanged under various conditions. We then focus on the interplay among the atom-pair hopping, the on-site repulsion, and the nearest-neighbor repulsion. With on-site repulsion present, we observe first-order transitions between the Mott insulators and pair superfluid driven by the pair hopping. With the nearest-neighbor repulsion turning on, three typical solid phases with 2/3, 1, and 4/3 filling emerge at small atom-pair hopping region. A stable pair supersolid phase is found at small on-site repulsion. This is due to the three-body constraint and the pair hopping, which essentially make the model a quasihardcore boson system. Thus the pair supersolid state emerges basing on the order-by-disorder mechanism, by which hardcore bosons avoid classical frustration on the triangular lattice. Without on-site repulsion, the transitions between the pair supersolid and the atom superfluid or pair superfluid are first order, except for the particle-hole symmetric point. With weak on-site repulsion and atom hopping turning on, the transition between the pair supersolid and pair superfluid phase becomes continuous. The transition between solid and pair supersolid is three-dimensional XY university, with dynamical exponent z=1 and correlation exponent ν=0.67155. The thermal melting of pair supersolid belongs to the two-dimensional Ising university. We check both energetic and mechanical balance of pair supersolid phase. Lowering the three-body constraint, no pair supersolid is found due to the absence of

  20. Pair creation in heavy ion channeling

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Harman, Z.

    2016-04-01

    Heavy ions channeled through crystals with multi-GeV kinetic energies can create electron-positron pairs. In the framework of the ion, the energy of virtual photons arising from the periodic crystal potential may exceed the threshold 2mec2. The repeated periodic collisions with the crystal ions yield high pair production rates. When the virtual photon frequency matches a nuclear transition in the ion, the production rate can be resonantly increased. In this two-step excitation-pair conversion scheme, the excitation rates are coherently enhanced, and scale approximately quadratically with the number of crystal sites along the channel.

  1. Evidence of zooplankton vertical migration from continuous Southern Adriatic buoy current-meter records (E2-M3A)

    NASA Astrophysics Data System (ADS)

    Ursella, Laura; Cardin, Vanessa; Batistić, Mirna

    2017-04-01

    The E2-M3A Station is deployed in the southern Adriatic Sea, at about 1200 m depth, in the center of the cyclonic gyre where deep convection process takes place, involving both the atmosphere and the ocean dynamics and forming new dense and oxygenated waters, thus triggering the solubility and the biological pump. In particular, the E2M3A is equipped with an upward looking 150 kHz RDI-Acoustic Doppler Current Profiler (ADCP) positioned between 265 and 320 m depth, with a vertical resolution of 5 m and a range of 250-300 m. The mooring line has been in water since November 2006, with an interruption from September 2010 until May 2011. ADCP backscattering signal is very useful in determining zooplankton distribution and variability at various time scales, including seasonal/annual behavior and diel vertical migration (DVM). From ADCP backscattering signal, backscattering strength (Sv) was calculated for the entire dataset. Sv permits to quantify qualitatively the scatters present in the water, i.e. the particulate and/or the phyto/zoo-plankton. Zooplankton distribution is dependent on phytoplankton presence and blooms, which on its own depend on nutrients availability (related to wind-induced vertical mixing), but also on sunlight. The variation in time of Sv together with vertical velocity allows for measuring DVM of zooplankton and its variability with seasons and years. Alternation of high and low values for Sv are present all year long with differences in intensities in particular in the surface layer. Quite high values for Sv are found in spring and summer; in spring they are found along a large part of the water column, while in summer they are detected prevalently in the upper part of the measurement range. This behavior is related to the conditions of the water column, i.e. mixing and nutrients availability, which influence phytoplankton blooms and therefore zooplankton growing and movements. Correlating Net Primary Production obtained from model and Mixed

  2. Thermohaline variability and mesoscale activities observed at the E2M3A deep site in the south Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Bensi, M.; Cardin, V.; Gačić, M.

    2012-04-01

    The south Adriatic Sea is recognized as a dense water formation site which is able to oxygenate the deep layer of the whole eastern Mediterranean Sea. The entrance of salty water from the Ionian Sea represents a preconditioning factor for the deep convection which can occur during winters characterized by particularly vigorous air-sea heat exchanges. Continuous sampling measurements are strictly essential to better understand the deep convection. For that reason, the south Adriatic Sea has been constantly monitored by means of the E2M3A deep mooring site located in its central part (Latitude 41° 50' N, Longitude 17° 45' E, maximum depth 1250m) since 2006. Temperature, salinity and currents time series at the E2M3A site from 2006 till 2010 are analyzed. They represent currently the longest timeseries available for this region. Moreover, their integration with data obtained from several oceanographic cruises provides the necessary spatial distribution of the thermohaline properties in the study area. Here we report on the abrupt temperature and salinity decrease particularly evident down to 600m depth from March 2008 on. In fact, the intermediate layer shows a maximum temperature and salinity decrease of ~0.3°C and ~0.06 respectively, clearly evident after each severe winter. The bottom layer (~1200m) shows an opposite behaviour: it suffered an unforeseen and continous temperature and salinity increase (linear trend of ~0.05 °C y-1 and ~0.004 psu y-1respectively) during the whole observational period. The results show a strong relationship between the recently discovered variability of the Ionian surface circulation (Gačić et al. 2010) and the thermohaline variability observed in the south Adriatic. In particular, we demonstrate here the role of the winter convection in trasferring fresher surface waters towards deeper layers triggering salt content changes in the Adriatic. The intrusion of fresher water at the depth of about 700-800m noticed in the mooring

  3. Pair annihilation in laser pulses: Optical versus x-ray free-electron laser regimes

    SciTech Connect

    Ilderton, Anton; Johansson, Petter; Marklund, Mattias

    2011-09-15

    We discuss the theory and phenomenology of pair annihilation, within an ultrashort laser pulse, to a single photon. The signature of this process is the unidirectional emission of single photons with a fixed energy. We show that the cross section is significantly larger than for two-photon pair annihilation in vacuum, with x-ray free-electron laser parameters admitting a much clearer signal than optical beams.

  4. From Cooper pairs to Luttinger liquids with bosonic atoms in optical lattices.

    PubMed

    Paredes, B; Cirac, J I

    2003-04-18

    We propose a scheme to observe strongly correlated fermionic phenomena with bosonic atoms in optical lattices. For different values of the sign and strength of the scattering lengths, it is possible to reach either a "superconducting" regime, where the system exhibits atomic pairing, or a Luttinger liquid behavior. We identify the range of parameters where these phenomena appear, illustrate our predictions with numerical calculations, and show how to detect the presence of pairing.

  5. On limits of ab initio calculations of pairing gap in nuclei

    SciTech Connect

    Saperstein, E. E.; Baldo, M.; Lombardo, U.; Pankratov, S. S.; Zverev, M. V.

    2011-11-15

    A brief review of recent microscopic calculations of nuclear pairing gap is given. A semi-microscopic model is suggested in which the ab initio effective pairing interaction is supplemented with a small phenomenological addendum. It involves a parameter which is universal for all medium and heavy nuclei. Calculations for several isotopic and isotonic chains of semi-magic nuclei confirm the relevance of the model.

  6. The structure definition of complementary pairs Ade-Ura in different phase states using IR spectra

    NASA Astrophysics Data System (ADS)

    Ten, G. N.; Glukhova, O. E.; Semagina, A. M.; Slepchenkov, M. M.; Baranov, V. I.

    2015-03-01

    The parameters of hydrogen bridges and oscillation spectra of complementary pairs of adenine-uracil formed by Watson- Crick and Hugstin and two reverse to them structures are calculated. Performed analysis shows that due to the characteristic oscillations of the IR spectra in the area of 1600-1800 and 2900-3500 cm-1 it is possible to identify uniquely each of the four pairs in the gas phase and aqueous solution.

  7. Pair production of Dirac particles in a -dimensional noncommutative space-time

    NASA Astrophysics Data System (ADS)

    Ousmane Samary, Dine; N'Dolo, Emanonfi Elias; Hounkonnou, Mahouton Norbert

    2014-11-01

    This work addresses the computation of the probability of fermionic particle pair production in -dimensional noncommutative Moyal space. Using Seiberg-Witten maps, which establish relations between noncommutative and commutative field variables, up to the first order in the noncommutative parameter , we derive the probability density of vacuum-vacuum pair production of Dirac particles. The cases of constant electromagnetic, alternating time-dependent, and space-dependent electric fields are considered and discussed.

  8. Amplification of Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry

    NASA Astrophysics Data System (ADS)

    Islam, SK Firoz; Saha, Arijit

    2017-09-01

    Motivated by the recent experiments [Scientific Reports 6, 23051 (2016), 10.1038/srep23051; Phys. Rev. Lett. 114, 096602 (2015), 10.1103/PhysRevLett.114.096602], we theoretically investigate Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry. By considering the graphene-based superconductor as an entangler device, instead of normal [two-dimensional (2D)] BCS superconductor, we show that the Cooper pair splitting current mediated by the crossed Andreev process is amplified compared to its normal superconductor counterpart. This amplification is attributed to the strong suppression of the local normal Andreev reflection process (arising from the Cooper pair splitting) from the graphene-based superconductor to lead via the same quantum dot, in comparison to the usual 2D superconductor. Due to the vanishing density of states at the Dirac point of undoped graphene, a doped graphene-based superconductor is considered here and it is observed that Cooper pair splitting current is very insensitive to the doping level in comparison to the usual 2D superconductor. The transport process of nonlocal spin-entangled electrons also depends on the type of pairing, i.e., whether the electron-hole pairing is onsite, intersublattice or the combination of both. The intersublattice pairing of graphene causes the maximum nonlocal Cooper pair splitting current, whereas the presence of both pairings reduces the Cooper pair splitting current.

  9. Structure and Function of the Snail Statocyst System after Orbital Missions on Foton M-2 and M-3

    NASA Astrophysics Data System (ADS)

    Balaban, P. M.; Malyshev, A. Y.; Ierusalimsky, V. N.; Aseev, N. A.; Korshunova, T. A.; Bravarenko, N. I.; Lemak, M. S.; Roschin, M. V.; Zakharov, I. S.; Popova, Y.; Boyle, R.

    2008-06-01

    In terrestrial gastropod snail Helix lucorum L. we studied the changes after a 16-day (Foton M-2) and 12-day (Foton M-3) exposure to microgravity in: behavior, neural responses to adequate motion stimulation, intersensory interactions between the photo- and the statocyst receptors, and in expression of the HPeP and FMRFa genes in the statoreceptors. Experiments were performed in the interval 13-30 hours after landing. In behavioral experiments it was found that the latency of body position response to sudden orientation change (90° pitch head-down from horizontal position) was significantly reduced in the postflight snails. Responses recorded extracellularly from the statocyst nerve to adequate motion stimulation in the postflight snails were independent of the motion direction, while in the control animals differences in responses to different directions were observed. In electrophysiological recordings it was possible to distinguish firing patterns of up to 11 of the 13 receptors that constitute the statocyst. A significantly higher firing rate in statocyst responses to body orientation at all tested speeds were observed in postflight snails, while in control snails similar dependence of statocyst responses on speed of body position change was observed, but firing rate at each speed was significantly less. Significant differences in the HPeP gene mRNA expression pattern in the statocyst receptor neurons were observed between postflight and control snails. No differences in expression of FMRFa gene expression was noted in the nervous system or statocyst after the flight. Results suggest a possibility to describe the subcellular mechanisms of changes in gravireceptors due to microgravity exposure using this simple model animal.

  10. Using Predefined M3(μ3-O) Clusters as Building Blocks for an Isostructural Series of Metal-Organic Frameworks.

    PubMed

    Peng, Li; Asgari, Mehrdad; Mieville, Pascal; Schouwink, Pascal; Bulut, Safak; Sun, Daniel T; Zhou, Zhongrui; Pattison, Philip; van Beek, Wouter; Queen, Wendy L

    2017-07-19

    Metal-organic frameworks (MOFs) have attracted much attention in the past decade owing to their unprecedented internal surface areas, tunable topologies, designable surfaces, and various potential applications. One bottleneck in the field regarding MOF synthesis is controlling the metal-containing secondary building unit (SBU) incorporated into the structure. In this work we report the synthesis and characterization of five trimeric [M3(μ3-O)(CH3CO2)6](x) clusters (where M = Fe(3+), Cr(3+), Fe(3+)/Cr(3+), Fe(3+)/Co(2+), or Fe(3+)/Ni(2+) and x = +1 or 0). The monocarboxylate capping ligand, acetate in this case, readily undergoes exchange with several difunctional counterparts, including 1,4-benzenedicarboxylic acid (H2-BDC) and biphenyl-4,4'-dicarboxylic acid (H2-BPDC), for the formation of an isostructural series of MOFs, several of which are newly reported (for M = Fe(3+)/Cr(3+), Fe(3+)/Co(2+), and Fe(3+)/Ni(2+)) and show excellent CO2 adsorption properties. In this report, a host of techniques including NMR, ICP, and ESI-MS are used to probe the ligand exchange process and composition of the SBUs, and XAS is used to monitor the Fe(3+) and Cr(3+) environment throughout the reactions, giving strong evidence that the clusters stay intact throughout the MOF synthesis. This work reveals that predefined SBUs is an effective means to create metal-substituted analogues of known frameworks. Further, CO adsorption and in situ IR are used to probe accessibility of the metals after solvent removal. We show for the first time that the incorporation of the neutral clusters, containing weaker Lewis acids like Ni(2+) and Co(2+), can promote the formation of open metal sites in the MOF frameworks, structural features known to enhance the binding energy of small guest molecules like CO2.

  11. Competing Pairing Symmetries in a Generalized Two-Orbital Model for the Pnictide Superconductors

    SciTech Connect

    Nicholson, Andrew D; Ge, Weihao; Zhang, Xiaotian; Riera, J. A.; Daghofer, M.; Olés, Andrzej M.; Martins, G. B.; Moreo, Adriana; Dagotto, Elbio R

    2011-01-01

    We introduce and study an extended t-U-J two-orbital model for the pnictides that includes Heisenberg terms deduced from the strong coupling expansion. Including these J terms explicitly allows us to enhance the strength of the %;0 - 0;% spin order which favors the presence of tightly bound pairing states even in the small clusters that are here exactly diagonalized. The A1g and B2g pairing symmetries are found to compete in the realistic spin-ordered and metallic regime. The dynamical pairing susceptibility additionally unveils low-lying B1g states, suggesting that small changes in parameters may render any of the three channels stable.

  12. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method

    NASA Astrophysics Data System (ADS)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-01

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol-1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500

  13. Dynamical Cooper pairing in nonequilibrium electron-phonon systems

    NASA Astrophysics Data System (ADS)

    Knap, Michael; Babadi, Mehrtash; Refael, Gil; Martin, Ivar; Demler, Eugene

    2016-12-01

    We analyze Cooper pairing instabilities in strongly driven electron-phonon systems. The light-induced nonequilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We demonstrate that the competition between these effects leads to an enhanced superconducting transition temperature in a broad range of parameters. Our results may explain the observed transient enhancement of superconductivity in several classes of materials upon irradiation with high intensity pulses of terahertz light, and may pave new ways for engineering high-temperature light-induced superconducting states.

  14. Richardson-Gaudin description of pairing in atomic nuclei

    NASA Astrophysics Data System (ADS)

    De Baerdemacker, Stijn

    2012-05-01

    The present contribution discusses a connection between the exact Bethe Ansatz eigenstates of the reduced Bardeen-Cooper-Schrieffer (BCS) Hamiltonian and the multi-phonon states of the Tamm-Dancoff Approximation (TDA). The connection is made on the algebraic level, by means of a deformed quasi-spin algebra with a bosonic Heisenberg-Weyl algebra in the contraction limit of the deformation parameter. Each exact Bethe Ansatz eigenstate is mapped on a unique TDA multi-phonon state, shedding light on the physics behind the Bethe Ansatz structure of the exact wave function. The procedure is illustrated with a model describing neutron pairing in 56Fe.

  15. Dynamical Cooper pairing in nonequilibrium electron-phonon systems

    SciTech Connect

    Knap, Michael; Babadi, Mehrtash; Refael, Gil; Martin, Ivar; Demler, Eugene

    2016-12-08

    In this paper, we analyze Cooper pairing instabilities in strongly driven electron-phonon systems. The light-induced nonequilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We demonstrate that the competition between these effects leads to an enhanced superconducting transition temperature in a broad range of parameters. Finally, our results may explain the observed transient enhancement of superconductivity in several classes of materials upon irradiation with high intensity pulses of terahertz light, and may pave new ways for engineering high-temperature light-induced superconducting states.

  16. Magnetosonic wave in pair-ion electron collisional plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Hasnain, H.

    2017-03-01

    Low frequency magnetosonic waves in positive and negative ions of equal mass and opposite charges in the presence of electrons in collisional plasmas are studied. The collisions of ions and electrons with neutrals are taken into account. The nonlinearities in the plasma system arise due to ion and electrons flux, Lorentz forces, and plasma current densities. The reductive perturbation method is applied to derive the Damped Korteweg de Vries (DKdV) equation. The time dependent solution of DKdV is presented. The effects of variations of different plasma parameters on propagation characteristics of magnetosonic waves in pair-ion electron plasma in the context of laboratory plasmas are discussed.

  17. Medium polarization and pairing in asymmetric nuclear matter

    NASA Astrophysics Data System (ADS)

    Dong, J. M.; Lombardo, U.; Zhang, H. F.; Zuo, W.

    2017-01-01

    The many-body theory of asymmetric nuclear matter is developed beyond the Brueckner-Hartree-Fock approximation to incorporate the medium polarization effects. The extension is performed within the Babu-Brown induced interaction theory. After deriving the particle-hole interaction in the form of Landau-Migdal parameters, the effects of the induced component on the symmetry energy are investigated along with the screening of 1 S 0 proton-proton and 3 PF 2 neutron-neutron pairing, which are relevant for the neutron-star cooling. The crossover from repulsive (screening) to attractive (anti-screening) interaction going from pure neutron matter to symmetric nuclear matter is discussed.

  18. Asymmetry-driven structure formation in pair plasmas

    SciTech Connect

    Mahajan, S. M.; Shatashvili, N. L.; Berezhiani, V. I.

    2009-12-15

    The nonlinear propagation of electromagnetic waves in pair plasmas, in which the electrostatic potential plays a very important but subdominant role of a 'binding glue' is investigated. Several mechanisms for structure formation are investigated, in particular, the 'asymmetry' in the initial temperatures of the constituent species. It is shown that the temperature asymmetry leads to a (localizing) nonlinearity that is qualitatively different from the ones originating in ambient mass or density difference. The temperature-asymmetry-driven focusing-defocusing nonlinearity supports stable localized wave structures in 1-3 dimensions, which, for certain parameters, may have flat-top shapes.

  19. Dense QCD: Overhauser or BCS pairing?

    SciTech Connect

    Park, Byung-Yoon; Rho, Mannque; Wirzba, Andreas; Zahed, Ismail

    2000-08-01

    We discuss the Overhauser effect (particle-hole pairing) versus the BCS effect (particle-particle or hole-hole pairing) in QCD at large quark density. In weak coupling and to leading logarithm accuracy, the pairing energies can be estimated exactly. For a small number of colors, the BCS effect overtakes the Overhauser effect, while for a large number of colors the opposite takes place, in agreement with a recent renormalization group argument. In strong coupling with large pairing energies, the Overhauser effect may be dominant for any number of colors, suggesting that QCD may crystallize into an insulator at a few times nuclear matter density, a situation reminiscent of dense Skyrmions. The Overhauser effect is dominant in QCD in 1+1 dimensions, although susceptible to quantum effects. It is sensitive to temperature in all dimensions. (c) 2000 The American Physical Society.

  20. Anyon pairing via phonon-mediated interaction

    NASA Astrophysics Data System (ADS)

    Kandemir, B. S.

    2006-08-01

    In this paper, we study the pairing of anyons subjected to an external uniform magnetic field and confined in a two-dimensional parabolic quantum dot within the framework of Fröhlich large bipolaron theory, motivated by the Wilczek’s prescription that treats anyons as composites having both charges and fictitious flux tubes. In this model, electrons bound to Aharanov-Bohm type flux tubes and surrounded by a cloud of virtual LO phonons interact with each other through the long range Coulomb and statistical potentials. In order to discuss the effects of both spatial confinement potential and external uniform magnetic field on the boundaries of the stability region of such a pairing in real space, we perform a self-consistent treatment of the ground-state energies of both an interacting anyon pair and two noninteracting anyons. Our results suggest that two interacting anyons can be bound into a condensate anyon pair through a phonon-mediated interaction.