Sample records for parameter sensitivity study

  1. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    NASA Astrophysics Data System (ADS)

    Bennett, Katrina E.; Urrego Blanco, Jorge R.; Jonko, Alexandra; Bohn, Theodore J.; Atchley, Adam L.; Urban, Nathan M.; Middleton, Richard S.

    2018-01-01

    The Colorado River Basin is a fundamentally important river for society, ecology, and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent, and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model. We combine global sensitivity analysis with a space-filling Latin Hypercube Sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach. We find that snow-dominated regions are much more sensitive to uncertainties in VIC parameters. Although baseflow and runoff changes respond to parameters used in previous sensitivity studies, we discover new key parameter sensitivities. For instance, changes in runoff and evapotranspiration are sensitive to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI) in the VIC model. It is critical for improved modeling to narrow uncertainty in these parameters through improved observations and field studies. This is important because LAI and albedo are anticipated to change under future climate and narrowing uncertainty is paramount to advance our application of models such as VIC for water resource management.

  2. Optimization of Parameter Ranges for Composite Tape Winding Process Based on Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Shi, Yaoyao; He, Xiaodong; Kang, Chao; Deng, Bo; Song, Shibo

    2017-08-01

    This study is focus on the parameters sensitivity of winding process for composite prepreg tape. The methods of multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis are proposed. The polynomial empirical model of interlaminar shear strength is established by response surface experimental method. Using this model, the relative sensitivity of key process parameters including temperature, tension, pressure and velocity is calculated, while the single-parameter sensitivity curves are obtained. According to the analysis of sensitivity curves, the stability and instability range of each parameter are recognized. Finally, the optimization method of winding process parameters is developed. The analysis results show that the optimized ranges of the process parameters for interlaminar shear strength are: temperature within [100 °C, 150 °C], tension within [275 N, 387 N], pressure within [800 N, 1500 N], and velocity within [0.2 m/s, 0.4 m/s], respectively.

  3. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE PAGES

    Lu, Zhiming

    2018-01-30

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  4. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhiming

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  5. Comparison of Two Global Sensitivity Analysis Methods for Hydrologic Modeling over the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Hameed, M.; Demirel, M. C.; Moradkhani, H.

    2015-12-01

    Global Sensitivity Analysis (GSA) approach helps identify the effectiveness of model parameters or inputs and thus provides essential information about the model performance. In this study, the effects of the Sacramento Soil Moisture Accounting (SAC-SMA) model parameters, forcing data, and initial conditions are analysed by using two GSA methods: Sobol' and Fourier Amplitude Sensitivity Test (FAST). The simulations are carried out over five sub-basins within the Columbia River Basin (CRB) for three different periods: one-year, four-year, and seven-year. Four factors are considered and evaluated by using the two sensitivity analysis methods: the simulation length, parameter range, model initial conditions, and the reliability of the global sensitivity analysis methods. The reliability of the sensitivity analysis results is compared based on 1) the agreement between the two sensitivity analysis methods (Sobol' and FAST) in terms of highlighting the same parameters or input as the most influential parameters or input and 2) how the methods are cohered in ranking these sensitive parameters under the same conditions (sub-basins and simulation length). The results show the coherence between the Sobol' and FAST sensitivity analysis methods. Additionally, it is found that FAST method is sufficient to evaluate the main effects of the model parameters and inputs. Another conclusion of this study is that the smaller parameter or initial condition ranges, the more consistency and coherence between the sensitivity analysis methods results.

  6. Are quantitative sensitivity analysis methods always reliable?

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2016-12-01

    Physical parameterizations developed to represent subgrid-scale physical processes include various uncertain parameters, leading to large uncertainties in today's Earth System Models (ESMs). Sensitivity Analysis (SA) is an efficient approach to quantitatively determine how the uncertainty of the evaluation metric can be apportioned to each parameter. Also, SA can identify the most influential parameters, as a result to reduce the high dimensional parametric space. In previous studies, some SA-based approaches, such as Sobol' and Fourier amplitude sensitivity testing (FAST), divide the parameters into sensitive and insensitive groups respectively. The first one is reserved but the other is eliminated for certain scientific study. However, these approaches ignore the disappearance of the interactive effects between the reserved parameters and the eliminated ones, which are also part of the total sensitive indices. Therefore, the wrong sensitive parameters might be identified by these traditional SA approaches and tools. In this study, we propose a dynamic global sensitivity analysis method (DGSAM), which iteratively removes the least important parameter until there are only two parameters left. We use the CLM-CASA, a global terrestrial model, as an example to verify our findings with different sample sizes ranging from 7000 to 280000. The result shows DGSAM has abilities to identify more influential parameters, which is confirmed by parameter calibration experiments using four popular optimization methods. For example, optimization using Top3 parameters filtered by DGSAM could achieve substantial improvement against Sobol' by 10%. Furthermore, the current computational cost for calibration has been reduced to 1/6 of the original one. In future, it is necessary to explore alternative SA methods emphasizing parameter interactions.

  7. MOVES sensitivity analysis update : Transportation Research Board Summer Meeting 2012 : ADC-20 Air Quality Committee

    DOT National Transportation Integrated Search

    2012-01-01

    OVERVIEW OF PRESENTATION : Evaluation Parameters : EPAs Sensitivity Analysis : Comparison to Baseline Case : MOVES Sensitivity Run Specification : MOVES Sensitivity Input Parameters : Results : Uses of Study

  8. Importance analysis for Hudson River PCB transport and fate model parameters using robust sensitivity studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Toll, J.; Cothern, K.

    1995-12-31

    The authors have performed robust sensitivity studies of the physico-chemical Hudson River PCB model PCHEPM to identify the parameters and process uncertainties contributing the most to uncertainty in predictions of water column and sediment PCB concentrations, over the time period 1977--1991 in one segment of the lower Hudson River. The term ``robust sensitivity studies`` refers to the use of several sensitivity analysis techniques to obtain a more accurate depiction of the relative importance of different sources of uncertainty. Local sensitivity analysis provided data on the sensitivity of PCB concentration estimates to small perturbations in nominal parameter values. Range sensitivity analysismore » provided information about the magnitude of prediction uncertainty associated with each input uncertainty. Rank correlation analysis indicated which parameters had the most dominant influence on model predictions. Factorial analysis identified important interactions among model parameters. Finally, term analysis looked at the aggregate influence of combinations of parameters representing physico-chemical processes. The authors scored the results of the local and range sensitivity and rank correlation analyses. The authors considered parameters that scored high on two of the three analyses to be important contributors to PCB concentration prediction uncertainty, and treated them probabilistically in simulations. They also treated probabilistically parameters identified in the factorial analysis as interacting with important parameters. The authors used the term analysis to better understand how uncertain parameters were influencing the PCB concentration predictions. The importance analysis allowed us to reduce the number of parameters to be modeled probabilistically from 16 to 5. This reduced the computational complexity of Monte Carlo simulations, and more importantly, provided a more lucid depiction of prediction uncertainty and its causes.« less

  9. [Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model].

    PubMed

    He, Li-hong; Wang, Hai-yan; Lei, Xiang-dong

    2016-02-01

    Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a case study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The results showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' teraction effect.

  10. [Sensitivity analysis of AnnAGNPS model's hydrology and water quality parameters based on the perturbation analysis method].

    PubMed

    Xi, Qing; Li, Zhao-Fu; Luo, Chuan

    2014-05-01

    Sensitivity analysis of hydrology and water quality parameters has a great significance for integrated model's construction and application. Based on AnnAGNPS model's mechanism, terrain, hydrology and meteorology, field management, soil and other four major categories of 31 parameters were selected for the sensitivity analysis in Zhongtian river watershed which is a typical small watershed of hilly region in the Taihu Lake, and then used the perturbation method to evaluate the sensitivity of the parameters to the model's simulation results. The results showed that: in the 11 terrain parameters, LS was sensitive to all the model results, RMN, RS and RVC were generally sensitive and less sensitive to the output of sediment but insensitive to the remaining results. For hydrometeorological parameters, CN was more sensitive to runoff and sediment and relatively sensitive for the rest results. In field management, fertilizer and vegetation parameters, CCC, CRM and RR were less sensitive to sediment and particulate pollutants, the six fertilizer parameters (FR, FD, FID, FOD, FIP, FOP) were particularly sensitive for nitrogen and phosphorus nutrients. For soil parameters, K is quite sensitive to all the results except the runoff, the four parameters of the soil's nitrogen and phosphorus ratio (SONR, SINR, SOPR, SIPR) were less sensitive to the corresponding results. The simulation and verification results of runoff in Zhongtian watershed show a good accuracy with the deviation less than 10% during 2005- 2010. Research results have a direct reference value on AnnAGNPS model's parameter selection and calibration adjustment. The runoff simulation results of the study area also proved that the sensitivity analysis was practicable to the parameter's adjustment and showed the adaptability to the hydrology simulation in the Taihu Lake basin's hilly region and provide reference for the model's promotion in China.

  11. Behavior of sensitivities in the one-dimensional advection-dispersion equation: Implications for parameter estimation and sampling design

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1987-01-01

    The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time with a high sensitivity to the parameter. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases and the consequent estimate of velocity tends to have lower variance. (3) The frequency of sampling must be “in phase” with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise and thus have limited value in predicting variance in parameter estimates among designs. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters. (8) The time and space interval over which an observation point is sensitive to a given parameter depends on the actual values of the parameters in the underlying physical system.

  12. Physiologically based pharmacokinetic modeling of a homologous series of barbiturates in the rat: a sensitivity analysis.

    PubMed

    Nestorov, I A; Aarons, L J; Rowland, M

    1997-08-01

    Sensitivity analysis studies the effects of the inherent variability and uncertainty in model parameters on the model outputs and may be a useful tool at all stages of the pharmacokinetic modeling process. The present study examined the sensitivity of a whole-body physiologically based pharmacokinetic (PBPK) model for the distribution kinetics of nine 5-n-alkyl-5-ethyl barbituric acids in arterial blood and 14 tissues (lung, liver, kidney, stomach, pancreas, spleen, gut, muscle, adipose, skin, bone, heart, brain, testes) after i.v. bolus administration to rats. The aims were to obtain new insights into the model used, to rank the model parameters involved according to their impact on the model outputs and to study the changes in the sensitivity induced by the increase in the lipophilicity of the homologues on ascending the series. Two approaches for sensitivity analysis have been implemented. The first, based on the Matrix Perturbation Theory, uses a sensitivity index defined as the normalized sensitivity of the 2-norm of the model compartmental matrix to perturbations in its entries. The second approach uses the traditional definition of the normalized sensitivity function as the relative change in a model state (a tissue concentration) corresponding to a relative change in a model parameter. Autosensitivity has been defined as sensitivity of a state to any of its parameters; cross-sensitivity as the sensitivity of a state to any other states' parameters. Using the two approaches, the sensitivity of representative tissue concentrations (lung, liver, kidney, stomach, gut, adipose, heart, and brain) to the following model parameters: tissue-to-unbound plasma partition coefficients, tissue blood flows, unbound renal and intrinsic hepatic clearance, permeability surface area product of the brain, have been analyzed. Both the tissues and the parameters were ranked according to their sensitivity and impact. The following general conclusions were drawn: (i) the overall sensitivity of the system to all parameters involved is small due to the weak connectivity of the system structure; (ii) the time course of both the auto- and cross-sensitivity functions for all tissues depends on the dynamics of the tissues themselves, e.g., the higher the perfusion of a tissue, the higher are both its cross-sensitivity to other tissues' parameters and the cross-sensitivities of other tissues to its parameters; and (iii) with a few exceptions, there is not a marked influence of the lipophilicity of the homologues on either the pattern or the values of the sensitivity functions. The estimates of the sensitivity and the subsequent tissue and parameter rankings may be extended to other drugs, sharing the same common structure of the whole body PBPK model, and having similar model parameters. Results show also that the computationally simple Matrix Perturbation Analysis should be used only when an initial idea about the sensitivity of a system is required. If comprehensive information regarding the sensitivity is needed, the numerically expensive Direct Sensitivity Analysis should be used.

  13. Classification of hydrological parameter sensitivity and evaluation of parameter transferability across 431 US MOPEX basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi

    The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. Inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts.« less

  14. Scalable Online Network Modeling and Simulation

    DTIC Science & Technology

    2005-08-01

    ONLINE NETWORK MODELING AND SIMULATION 6. AUTHOR(S) Boleslaw Szymanski , Shivkumar Kalyanaraman, Biplab Sikdar and Christopher Carothers 5...performance for a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics, and studying feature ...a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics, and studying feature interactions

  15. Sensitivity analysis of conservative and reactive stream transient storage models applied to field data from multiple-reach experiments

    USGS Publications Warehouse

    Gooseff, M.N.; Bencala, K.E.; Scott, D.T.; Runkel, R.L.; McKnight, Diane M.

    2005-01-01

    The transient storage model (TSM) has been widely used in studies of stream solute transport and fate, with an increasing emphasis on reactive solute transport. In this study we perform sensitivity analyses of a conservative TSM and two different reactive solute transport models (RSTM), one that includes first-order decay in the stream and the storage zone, and a second that considers sorption of a reactive solute on streambed sediments. Two previously analyzed data sets are examined with a focus on the reliability of these RSTMs in characterizing stream and storage zone solute reactions. Sensitivities of simulations to parameters within and among reaches, parameter coefficients of variation, and correlation coefficients are computed and analyzed. Our results indicate that (1) simulated values have the greatest sensitivity to parameters within the same reach, (2) simulated values are also sensitive to parameters in reaches immediately upstream and downstream (inter-reach sensitivity), (3) simulated values have decreasing sensitivity to parameters in reaches farther downstream, and (4) in-stream reactive solute data provide adequate data to resolve effective storage zone reaction parameters, given the model formulations. Simulations of reactive solutes are shown to be equally sensitive to transport parameters and effective reaction parameters of the model, evidence of the control of physical transport on reactive solute dynamics. Similar to conservative transport analysis, reactive solute simulations appear to be most sensitive to data collected during the rising and falling limb of the concentration breakthrough curve. ?? 2005 Elsevier Ltd. All rights reserved.

  16. An analysis of sensitivity of CLIMEX parameters in mapping species potential distribution and the broad-scale changes observed with minor variations in parameters values: an investigation using open-field Solanum lycopersicum and Neoleucinodes elegantalis as an example

    NASA Astrophysics Data System (ADS)

    da Silva, Ricardo Siqueira; Kumar, Lalit; Shabani, Farzin; Picanço, Marcelo Coutinho

    2018-04-01

    A sensitivity analysis can categorize levels of parameter influence on a model's output. Identifying parameters having the most influence facilitates establishing the best values for parameters of models, providing useful implications in species modelling of crops and associated insect pests. The aim of this study was to quantify the response of species models through a CLIMEX sensitivity analysis. Using open-field Solanum lycopersicum and Neoleucinodes elegantalis distribution records, and 17 fitting parameters, including growth and stress parameters, comparisons were made in model performance by altering one parameter value at a time, in comparison to the best-fit parameter values. Parameters that were found to have a greater effect on the model results are termed "sensitive". Through the use of two species, we show that even when the Ecoclimatic Index has a major change through upward or downward parameter value alterations, the effect on the species is dependent on the selection of suitability categories and regions of modelling. Two parameters were shown to have the greatest sensitivity, dependent on the suitability categories of each species in the study. Results enhance user understanding of which climatic factors had a greater impact on both species distributions in our model, in terms of suitability categories and areas, when parameter values were perturbed by higher or lower values, compared to the best-fit parameter values. Thus, the sensitivity analyses have the potential to provide additional information for end users, in terms of improving management, by identifying the climatic variables that are most sensitive.

  17. Towards simplification of hydrologic modeling: Identification of dominant processes

    USGS Publications Warehouse

    Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.

    2016-01-01

    The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many

  18. Relative sensitivity of developmental and immune parameters in juvenile versus adult male rats after exposure to di(2-ethylhexyl) phthalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonk, Elisa C.M., E-mail: ilse.tonk@rivm.nl; Laboratory for Health Protection Research, National Institute for Public Health and the Environment; Verhoef, Aart

    The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10–50 or PND 50–90 atmore » doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology. -- Highlights: ► In this study we evaluate the relative sensitivities for DEHP induced effects. ► Results of this study demonstrate the age-dependency of DEHP toxicity. ► Functional immune parameters were more sensitive than structural immune parameters. ► Immune parameters were affected at lower dose levels than developmental parameters. ► Findings demonstrate the susceptibility of the developing immune system for DEHP.« less

  19. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Thober, S.; Cuntz, M.; Mai, J.; Samaniego, L. E.; Clark, M. P.; Branch, O.; Wulfmeyer, V.; Attinger, S.

    2016-12-01

    Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The agility of the models to react to different meteorological conditions is artificially constrained by having hard-coded parameters in their equations. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options in addition to the 71 standard parameters. We performed a Sobol' global sensitivity analysis to variations of the standard and hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff, their component fluxes, as well as photosynthesis and sensible heat were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Latent heat and total runoff show very similar sensitivities towards standard and hard-coded parameters. They are sensitive to both soil and plant parameters, which means that model calibrations of hydrologic or land surface models should take both soil and plant parameters into account. Sensible and latent heat exhibit almost the same sensitivities so that calibration or sensitivity analysis can be performed with either of the two. Photosynthesis has almost the same sensitivities as transpiration, which are different from the sensitivities of latent heat. Including photosynthesis and latent heat in model calibration might therefore be beneficial. Surface runoff is sensitive to almost all hard-coded snow parameters. These sensitivities get, however, diminished in total runoff. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.

  20. Sensitivity Analysis of the Land Surface Model NOAH-MP for Different Model Fluxes

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Thober, Stephan; Samaniego, Luis; Branch, Oliver; Wulfmeyer, Volker; Clark, Martyn; Attinger, Sabine; Kumar, Rohini; Cuntz, Matthias

    2015-04-01

    Land Surface Models (LSMs) use a plenitude of process descriptions to represent the carbon, energy and water cycles. They are highly complex and computationally expensive. Practitioners, however, are often only interested in specific outputs of the model such as latent heat or surface runoff. In model applications like parameter estimation, the most important parameters are then chosen by experience or expert knowledge. Hydrologists interested in surface runoff therefore chose mostly soil parameters while biogeochemists interested in carbon fluxes focus on vegetation parameters. However, this might lead to the omission of parameters that are important, for example, through strong interactions with the parameters chosen. It also happens during model development that some process descriptions contain fixed values, which are supposedly unimportant parameters. However, these hidden parameters remain normally undetected although they might be highly relevant during model calibration. Sensitivity analyses are used to identify informative model parameters for a specific model output. Standard methods for sensitivity analysis such as Sobol indexes require large amounts of model evaluations, specifically in case of many model parameters. We hence propose to first use a recently developed inexpensive sequential screening method based on Elementary Effects that has proven to identify the relevant informative parameters. This reduces the number parameters and therefore model evaluations for subsequent analyses such as sensitivity analysis or model calibration. In this study, we quantify parametric sensitivities of the land surface model NOAH-MP that is a state-of-the-art LSM and used at regional scale as the land surface scheme of the atmospheric Weather Research and Forecasting Model (WRF). NOAH-MP contains multiple process parameterizations yielding a considerable amount of parameters (˜ 100). Sensitivities for the three model outputs (a) surface runoff, (b) soil drainage and (c) latent heat are calculated on twelve Model Parameter Estimation Experiment (MOPEX) catchments ranging in size from 1020 to 4421 km2. This allows investigation of parametric sensitivities for distinct hydro-climatic characteristics, emphasizing different land-surface processes. The sequential screening identifies the most informative parameters of NOAH-MP for different model output variables. The number of parameters is reduced substantially for all of the three model outputs to approximately 25. The subsequent Sobol method quantifies the sensitivities of these informative parameters. The study demonstrates the existence of sensitive, important parameters in almost all parts of the model irrespective of the considered output. Soil parameters, e.g., are informative for all three output variables whereas plant parameters are not only informative for latent heat but also for soil drainage because soil drainage is strongly coupled to transpiration through the soil water balance. These results contrast to the choice of only soil parameters in hydrological studies and only plant parameters in biogeochemical ones. The sequential screening identified several important hidden parameters that carry large sensitivities and have hence to be included during model calibration.

  1. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE PAGES

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra; ...

    2017-11-20

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  2. Analysis of the sensitivity properties of a model of vector-borne bubonic plague.

    PubMed

    Buzby, Megan; Neckels, David; Antolin, Michael F; Estep, Donald

    2008-09-06

    Model sensitivity is a key to evaluation of mathematical models in ecology and evolution, especially in complex models with numerous parameters. In this paper, we use some recently developed methods for sensitivity analysis to study the parameter sensitivity of a model of vector-borne bubonic plague in a rodent population proposed by Keeling & Gilligan. The new sensitivity tools are based on a variational analysis involving the adjoint equation. The new approach provides a relatively inexpensive way to obtain derivative information about model output with respect to parameters. We use this approach to determine the sensitivity of a quantity of interest (the force of infection from rats and their fleas to humans) to various model parameters, determine a region over which linearization at a specific parameter reference point is valid, develop a global picture of the output surface, and search for maxima and minima in a given region in the parameter space.

  3. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  4. An approach to measure parameter sensitivity in watershed ...

    EPA Pesticide Factsheets

    Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds were used for detail sensitivity analyses. To compare the relative sensitivities of the hydrologic parameters of these two models, we used Normalized Root Mean Square Error (NRMSE). By combining the NRMSE index with the flow duration curve analysis, we derived an approach to measure parameter sensitivities under different flow regimes. Results show that the parameters related to groundwater are highly sensitive in the LMR watershed, whereas the LVW watershed is primarily sensitive to near surface and impervious parameters. The high and medium flows are more impacted by most of the parameters. Low flow regime was highly sensitive to groundwater related parameters. Moreover, our approach is found to be useful in facilitating model development and calibration. This journal article describes hydrological modeling of climate change and land use changes on stream hydrology, and elucidates the importance of hydrological model construction in generating valid modeling results.

  5. Identifying key sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2013-09-01

    This study investigates sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment, through the use of local and global sensitivity analysis tools, and contributes to an in-depth understanding of wastewater treatment modelling by revealing critical parameters and parameter interactions. One-factor-at-a-time sensitivity analysis is used to screen model parameters and identify those with significant individual effects on three performance indicators: total greenhouse gas emissions, effluent quality and operational cost. Sobol's method enables identification of parameters with significant higher order effects and of particular parameter pairs to which model outputs are sensitive. Use of a variance-based global sensitivity analysis tool to investigate parameter interactions enables identification of important parameters not revealed in one-factor-at-a-time sensitivity analysis. These interaction effects have not been considered in previous studies and thus provide a better understanding wastewater treatment plant model characterisation. It was found that uncertainty in modelled nitrous oxide emissions is the primary contributor to uncertainty in total greenhouse gas emissions, due largely to the interaction effects of three nitrogen conversion modelling parameters. The higher order effects of these parameters are also shown to be a key source of uncertainty in effluent quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A three-dimensional cohesive sediment transport model with data assimilation: Model development, sensitivity analysis and parameter estimation

    NASA Astrophysics Data System (ADS)

    Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue

    2018-06-01

    Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.

  7. Parameter Estimation and Sensitivity Analysis of an Urban Surface Energy Balance Parameterization at a Tropical Suburban Site

    NASA Astrophysics Data System (ADS)

    Harshan, S.; Roth, M.; Velasco, E.

    2014-12-01

    Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model validation studies to identify inherent deficiencies in model physics.

  8. Dimension scaling effects on the yield sensitivity of HEMT digital circuits

    NASA Technical Reports Server (NTRS)

    Sarker, Jogendra C.; Purviance, John E.

    1992-01-01

    In our previous works, using a graphical tool, yield factor histograms, we studied the yield sensitivity of High Electron Mobility Transistors (HEMT) and HEMT circuit performance with the variation of process parameters. This work studies the scaling effects of process parameters on yield sensitivity of HEMT digital circuits. The results from two HEMT circuits are presented.

  9. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Branch, Oliver; Attinger, Sabine; Thober, Stephan

    2016-09-01

    Land surface models incorporate a large number of process descriptions, containing a multitude of parameters. These parameters are typically read from tabulated input files. Some of these parameters might be fixed numbers in the computer code though, which hinder model agility during calibration. Here we identified 139 hard-coded parameters in the model code of the Noah land surface model with multiple process options (Noah-MP). We performed a Sobol' global sensitivity analysis of Noah-MP for a specific set of process options, which includes 42 out of the 71 standard parameters and 75 out of the 139 hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated at 12 catchments within the United States with very different hydrometeorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its applicable standard parameters (i.e., Sobol' indexes above 1%). The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for direct evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities because of their tight coupling via the water balance. A calibration of Noah-MP against either of these fluxes should therefore give comparable results. Moreover, these fluxes are sensitive to both plant and soil parameters. Calibrating, for example, only soil parameters hence limit the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.

  10. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    NASA Astrophysics Data System (ADS)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling parameter for the aerosols. The estimation method is computationally fast and can be used with more complex models where climate sensitivity is diagnosed rather than prescribed. The parameter estimates can be used to create probabilistic climate projections using the UVic ESCM model in future studies.

  11. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    DOE PAGES

    Bernstein, Diana N.; Neelin, J. David

    2016-04-28

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less

  12. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Diana N.; Neelin, J. David

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less

  13. A global sensitivity analysis approach for morphogenesis models.

    PubMed

    Boas, Sonja E M; Navarro Jimenez, Maria I; Merks, Roeland M H; Blom, Joke G

    2015-11-21

    Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.

  14. [Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: The BIOME-BGC model as an example.

    PubMed

    Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying

    2018-01-01

    The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial heterogeneity under the three vegetation types. According to the temporal and spatial heterogeneity of the optimal values, the parameters of the BIOME-BGC model could be classified in order to adopt different parameter strategies in practical application. The conclusion could help to deeply understand the parameters and the optimal values of the ecological process models, and provide a way or reference for obtaining the reasonable values of parameters in models application.

  15. A sensitivity analysis of cloud properties to CLUBB parameters in the single-column Community Atmosphere Model (SCAM5)

    DOE PAGES

    Guo, Zhun; Wang, Minghuai; Qian, Yun; ...

    2014-08-13

    In this study, we investigate the sensitivity of simulated shallow cumulus and stratocumulus clouds to selected tunable parameters of Cloud Layers Unified by Binormals (CLUBB) in the single column version of Community Atmosphere Model version 5 (SCAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is adopted to study the responses of simulated cloud fields to tunable parameters. One stratocumulus and two shallow convection cases are configured at both coarse and fine vertical resolutions in this study.. Our results show that most of the variance in simulated cloudmore » fields can be explained by a small number of tunable parameters. The parameters related to Newtonian and buoyancy-damping terms of total water flux are found to be the most influential parameters for stratocumulus. For shallow cumulus, the most influential parameters are those related to skewness of vertical velocity, reflecting the strong coupling between cloud properties and dynamics in this regime. The influential parameters in the stratocumulus case are sensitive to the choice of the vertical resolution while little sensitivity is found for the shallow convection cases, as eddy mixing length (or dissipation time scale) plays a more important role and depends more strongly on the vertical resolution in stratocumulus than in shallow convections. The influential parameters remain almost unchanged when the number of tunable parameters increases from 16 to 35. This study improves understanding of the CLUBB behavior associated with parameter uncertainties.« less

  16. Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model

    NASA Astrophysics Data System (ADS)

    Demaria, Eleonora M.; Nijssen, Bart; Wagener, Thorsten

    2007-06-01

    Current land surface models use increasingly complex descriptions of the processes that they represent. Increase in complexity is accompanied by an increase in the number of model parameters, many of which cannot be measured directly at large spatial scales. A Monte Carlo framework was used to evaluate the sensitivity and identifiability of ten parameters controlling surface and subsurface runoff generation in the Variable Infiltration Capacity model (VIC). Using the Monte Carlo Analysis Toolbox (MCAT), parameter sensitivities were studied for four U.S. watersheds along a hydroclimatic gradient, based on a 20-year data set developed for the Model Parameter Estimation Experiment (MOPEX). Results showed that simulated streamflows are sensitive to three parameters when evaluated with different objective functions. Sensitivity of the infiltration parameter (b) and the drainage parameter (exp) were strongly related to the hydroclimatic gradient. The placement of vegetation roots played an important role in the sensitivity of model simulations to the thickness of the second soil layer (thick2). Overparameterization was found in the base flow formulation indicating that a simplified version could be implemented. Parameter sensitivity was more strongly dictated by climatic gradients than by changes in soil properties. Results showed how a complex model can be reduced to a more parsimonious form, leading to a more identifiable model with an increased chance of successful regionalization to ungauged basins. Although parameter sensitivities are strictly valid for VIC, this model is representative of a wider class of macroscale hydrological models. Consequently, the results and methodology will have applicability to other hydrological models.

  17. Parameter optimization, sensitivity, and uncertainty analysis of an ecosystem model at a forest flux tower site in the United States

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Huang, Zhihong; Yan, Wende

    2014-01-01

    Ecosystem models are useful tools for understanding ecological processes and for sustainable management of resources. In biogeochemical field, numerical models have been widely used for investigating carbon dynamics under global changes from site to regional and global scales. However, it is still challenging to optimize parameters and estimate parameterization uncertainty for complex process-based models such as the Erosion Deposition Carbon Model (EDCM), a modified version of CENTURY, that consider carbon, water, and nutrient cycles of ecosystems. This study was designed to conduct the parameter identifiability, optimization, sensitivity, and uncertainty analysis of EDCM using our developed EDCM-Auto, which incorporated a comprehensive R package—Flexible Modeling Framework (FME) and the Shuffled Complex Evolution (SCE) algorithm. Using a forest flux tower site as a case study, we implemented a comprehensive modeling analysis involving nine parameters and four target variables (carbon and water fluxes) with their corresponding measurements based on the eddy covariance technique. The local sensitivity analysis shows that the plant production-related parameters (e.g., PPDF1 and PRDX) are most sensitive to the model cost function. Both SCE and FME are comparable and performed well in deriving the optimal parameter set with satisfactory simulations of target variables. Global sensitivity and uncertainty analysis indicate that the parameter uncertainty and the resulting output uncertainty can be quantified, and that the magnitude of parameter-uncertainty effects depends on variables and seasons. This study also demonstrates that using the cutting-edge R functions such as FME can be feasible and attractive for conducting comprehensive parameter analysis for ecosystem modeling.

  18. A two-step sensitivity analysis for hydrological signatures in Jinhua River Basin, East China

    NASA Astrophysics Data System (ADS)

    Pan, S.; Fu, G.; Chiang, Y. M.; Xu, Y. P.

    2016-12-01

    Owing to model complexity and large number of parameters, calibration and sensitivity analysis are difficult processes for distributed hydrological models. In this study, a two-step sensitivity analysis approach is proposed for analyzing the hydrological signatures in Jinhua River Basin, East China, using the Distributed Hydrology-Soil-Vegetation Model (DHSVM). A rough sensitivity analysis is firstly conducted to obtain preliminary influential parameters via Analysis of Variance. The number of parameters was greatly reduced from eighteen-three to sixteen. Afterwards, the sixteen parameters are further analyzed based on a variance-based global sensitivity analysis, i.e., Sobol's sensitivity analysis method, to achieve robust sensitivity rankings and parameter contributions. Parallel-Computing is applied to reduce computational burden in variance-based sensitivity analysis. The results reveal that only a few number of model parameters are significantly sensitive, including rain LAI multiplier, lateral conductivity, porosity, field capacity, wilting point of clay loam, understory monthly LAI, understory minimum resistance and root zone depths of croplands. Finally several hydrological signatures are used for investigating the performance of DHSVM. Results show that high value of efficiency criteria didn't indicate excellent performance of hydrological signatures. For most samples from Sobol's sensitivity analysis, water yield was simulated very well. However, lowest and maximum annual daily runoffs were underestimated. Most of seven-day minimum runoffs were overestimated. Nevertheless, good performances of the three signatures above still exist in a number of samples. Analysis of peak flow shows that small and medium floods are simulated perfectly while slight underestimations happen to large floods. The work in this study helps to further multi-objective calibration of DHSVM model and indicates where to improve the reliability and credibility of model simulation.

  19. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less

  20. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    DOE PAGES

    Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare; ...

    2016-04-01

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less

  1. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, Jorge R.; Urban, Nathan M.; Hunke, Elizabeth C.; Turner, Adrian K.; Jeffery, Nicole

    2016-04-01

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. It is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.

  2. [External respiration parameters in workers engaged in synthetic detergents production].

    PubMed

    Makhon'ko, M N; Trubetskov, A D

    2005-01-01

    The study covers results of thorough clinical and functional examination of workers engaged into contemporary chemical production. The authors studied effects caused in immunity parameters, respiratory organs and skin by sensitizing and irritating chemicals. Findings are that the most significant changes in external respiration parameters and high predisposition to respiratory diseases are associated with specific sensitizing to industrial allergen and with higher IgE levels.

  3. Sensitivity study for a remotely piloted microwave-powered sailplane used as a high-altitude observation

    NASA Technical Reports Server (NTRS)

    Turriziani, R. V.

    1979-01-01

    The sensitivity of several performance characteristics of a proposed design for a microwave-powered, remotely piloted, high-altitude sailplane to changes in independently varied design parameters was investigated. Results were expressed as variations from baseline values of range, final climb altitude and onboard storage of radiated energy. Calculated range decreased with increases in either gross weight or parasite drag coefficient; it also decreased with decreases in lift coefficient, propeller efficiency, or microwave beam density. The sensitivity trends for range and final climb altitude were very similar. The sensitivity trends for stored energy were reversed from those for range, except for decreasing microwave beam density. Some study results for single parameter variations were combined to estimate the effect of the simultaneous variation of several parameters: for two parameters, this appeared to give reasonably accurate results.

  4. Material and morphology parameter sensitivity analysis in particulate composite materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; Oskay, Caglar

    2017-12-01

    This manuscript presents a novel parameter sensitivity analysis framework for damage and failure modeling of particulate composite materials subjected to dynamic loading. The proposed framework employs global sensitivity analysis to study the variance in the failure response as a function of model parameters. In view of the computational complexity of performing thousands of detailed microstructural simulations to characterize sensitivities, Gaussian process (GP) surrogate modeling is incorporated into the framework. In order to capture the discontinuity in response surfaces, the GP models are integrated with a support vector machine classification algorithm that identifies the discontinuities within response surfaces. The proposed framework is employed to quantify variability and sensitivities in the failure response of polymer bonded particulate energetic materials under dynamic loads to material properties and morphological parameters that define the material microstructure. Particular emphasis is placed on the identification of sensitivity to interfaces between the polymer binder and the energetic particles. The proposed framework has been demonstrated to identify the most consequential material and morphological parameters under vibrational and impact loads.

  5. Proof-of-Concept Study for Uncertainty Quantification and Sensitivity Analysis using the BRL Shaped-Charge Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Justin Matthew

    These are the slides for a graduate presentation at Mississippi State University. It covers the following: the BRL Shaped-Charge Geometry in PAGOSA, mesh refinement study, surrogate modeling using a radial basis function network (RBFN), ruling out parameters using sensitivity analysis (equation of state study), uncertainty quantification (UQ) methodology, and sensitivity analysis (SA) methodology. In summary, a mesh convergence study was used to ensure that solutions were numerically stable by comparing PDV data between simulations. A Design of Experiments (DOE) method was used to reduce the simulation space to study the effects of the Jones-Wilkins-Lee (JWL) Parameters for the Composition Bmore » main charge. Uncertainty was quantified by computing the 95% data range about the median of simulation output using a brute force Monte Carlo (MC) random sampling method. Parameter sensitivities were quantified using the Fourier Amplitude Sensitivity Test (FAST) spectral analysis method where it was determined that detonation velocity, initial density, C1, and B1 controlled jet tip velocity.« less

  6. Sensitivity analysis of TRX-2 lattice parameters with emphasis on epithermal /sup 238/U capture. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomlinson, E.T.; deSaussure, G.; Weisbin, C.R.

    1977-03-01

    The main purpose of the study is the determination of the sensitivity of TRX-2 thermal lattice performance parameters to nuclear cross section data, particularly the epithermal resonance capture cross section of /sup 238/U. An energy-dependent sensitivity profile was generated for each of the performance parameters, to the most important cross sections of the various isotopes in the lattice. Uncertainties in the calculated values of the performance parameters due to estimated uncertainties in the basic nuclear data, deduced in this study, were shown to be small compared to the uncertainties in the measured values of the performance parameter and compared tomore » differences among calculations based upon the same data but with different methodologies.« less

  7. Systematic parameter estimation and sensitivity analysis using a multidimensional PEMFC model coupled with DAKOTA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao Yang; Luo, Gang; Jiang, Fangming

    2010-05-01

    Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated inmore » order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.« less

  8. Impact of the hard-coded parameters on the hydrologic fluxes of the land surface model Noah-MP

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Attinger, Sabine; Thober, Stephan

    2016-04-01

    Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The process descriptions contain a number of parameters that can be soil or plant type dependent and are typically read from tabulated input files. Land surface models may have, however, process descriptions that contain fixed, hard-coded numbers in the computer code, which are not identified as model parameters. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the importance of the fixed values on restricting the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options, which are mostly spatially constant values. This is in addition to the 71 standard parameters of Noah-MP, which mostly get distributed spatially by given vegetation and soil input maps. We performed a Sobol' global sensitivity analysis of Noah-MP to variations of the standard and hard-coded parameters for a specific set of process options. 42 standard parameters and 75 hard-coded parameters were active with the chosen process options. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated. These sensitivities were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities towards standard and hard-coded parameters in Noah-MP because of their tight coupling via the water balance. It should therefore be comparable to calibrate Noah-MP either against latent heat observations or against river runoff data. Latent heat and total runoff are sensitive to both, plant and soil parameters. Calibrating only a parameter sub-set of only soil parameters, for example, thus limits the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.

  9. Parametrization study of the land multiparameter VTI elastic waveform inversion

    NASA Astrophysics Data System (ADS)

    He, W.; Plessix, R.-É.; Singh, S.

    2018-06-01

    Multiparameter inversion of seismic data remains challenging due to the trade-off between the different elastic parameters and the non-uniqueness of the solution. The sensitivity of the seismic data to a given subsurface elastic parameter depends on the source and receiver ray/wave path orientations at the subsurface point. In a high-frequency approximation, this is commonly analysed through the study of the radiation patterns that indicate the sensitivity of each parameter versus the incoming (from the source) and outgoing (to the receiver) angles. In practice, this means that the inversion result becomes sensitive to the choice of parametrization, notably because the null-space of the inversion depends on this choice. We can use a least-overlapping parametrization that minimizes the overlaps between the radiation patterns, in this case each parameter is only sensitive in a restricted angle domain, or an overlapping parametrization that contains a parameter sensitive to all angles, in this case overlaps between the radiation parameters occur. Considering a multiparameter inversion in an elastic vertically transverse isotropic medium and a complex land geological setting, we show that the inversion with the least-overlapping parametrization gives less satisfactory results than with the overlapping parametrization. The difficulties come from the complex wave paths that make difficult to predict the areas of sensitivity of each parameter. This shows that the parametrization choice should not only be based on the radiation pattern analysis but also on the angular coverage at each subsurface point that depends on geology and the acquisition layout.

  10. Diagnostic utility of F waves in clinically diagnosed patients of carpal tunnel syndrome.

    PubMed

    Joshi, Anand G; Gargate, Ashwini R

    2013-01-01

    Sensory nerve conduction velocity (SNCV) of median nerve measured across the carpal tunnel, difference between distal sensory latencies (DSLs) of median and ulnar nerves and difference between distal motor latencies (DMLs) of median and ulnar nerves are commonly used nerve conduction parameters for diagnosis of carpal tunnel syndrome (CTS). These are having high degree of sensitivity and specificity. Study of median nerve F-wave minimal latency (FWML) and difference between F-wave minimal latencies (FWMLs) of median and ulnar nerves have also been reported to be useful parameters for diagnosis of CTS. However, there is controversy regarding superiority of F-wave study for diagnosis of CTS. So the aim of present study was to compare sensitivity and specificity of median FWML and difference between FWMLs of median and ulnar nerves with that of above mentioned electrophysiological parameters and to find out which parameters are having more sensitivity and specificity, for early diagnosis of CTS. Median and ulnar nerves sensory and motor conduction, median and ulnar nerves F-wave studies were carried out bilaterally in 125 clinically diagnosed patients of carpal tunnel syndrome. These parameters were also studied in 45 age matched controls. Difference between DSLs of median and ulnar nerves, median SNCV and difference between DMLs of median and ulnar nerves were having highest sensitivity and specificity while median FWML and difference between FWMLs of median and ulnar nerves was having lowest sensitivity and specificity for diagnosis of CTS. So in conclusion F-wave study is not superior parameter for diagnosis of CTS.

  11. Impact of the time scale of model sensitivity response on coupled model parameter estimation

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhang, Shaoqing; Li, Shan; Liu, Zhengyu

    2017-11-01

    That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter estimation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal. Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being estimated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency determined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation model for improving climate analysis and prediction initialization.

  12. Uncertainty Quantification and Sensitivity Analysis in the CICE v5.1 Sea Ice Model

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, J. R.; Urban, N. M.

    2015-12-01

    Changes in the high latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with mid latitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. In this work we characterize parametric uncertainty in Los Alamos Sea Ice model (CICE) and quantify the sensitivity of sea ice area, extent and volume with respect to uncertainty in about 40 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one-at-a-time, this study uses a global variance-based approach in which Sobol sequences are used to efficiently sample the full 40-dimensional parameter space. This approach requires a very large number of model evaluations, which are expensive to run. A more computationally efficient approach is implemented by training and cross-validating a surrogate (emulator) of the sea ice model with model output from 400 model runs. The emulator is used to make predictions of sea ice extent, area, and volume at several model configurations, which are then used to compute the Sobol sensitivity indices of the 40 parameters. A ranking based on the sensitivity indices indicates that model output is most sensitive to snow parameters such as conductivity and grain size, and the drainage of melt ponds. The main effects and interactions among the most influential parameters are also estimated by a non-parametric regression technique based on generalized additive models. It is recommended research to be prioritized towards more accurately determining these most influential parameters values by observational studies or by improving existing parameterizations in the sea ice model.

  13. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant.

    PubMed

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-08-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that upon the calculations of normalized sensitivity coefficient (S(i,j)) 17 (steady-state) or 19 (dynamic conditions) kinetic and stoichiometric parameters are sensitive. Most of them are associated with growth and decay of ordinary heterotrophic organisms and phosphorus accumulating organisms. The rankings of ten most sensitive parameters established on the basis of the calculations of the mean square sensitivity measure (δ(msqr)j) indicate that irrespective of the fact, whether the steady-state or dynamic calibration was performed, there is an agreement in the sensitivity of parameters.

  14. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.

  15. Photobiomodulation in the Prevention of Tooth Sensitivity Caused by In-Office Dental Bleaching. A Randomized Placebo Preliminary Study.

    PubMed

    Calheiros, Andrea Paiva Corsetti; Moreira, Maria Stella; Gonçalves, Flávia; Aranha, Ana Cecília Correa; Cunha, Sandra Ribeiro; Steiner-Oliveira, Carolina; Eduardo, Carlos de Paula; Ramalho, Karen Müller

    2017-08-01

    Analyze the effect of photobiomodulation in the prevention of tooth sensitivity after in-office dental bleaching. Tooth sensitivity is a common clinical consequence of dental bleaching. Therapies for prevention of sensitivity have been investigated in literature. This study was developed as a randomized, placebo blind clinical trial. Fifty patients were selected (n = 10) and randomly divided into five groups: (1) control, (2) placebo, (3) laser before bleaching, (4) laser after bleaching, and (5) laser before and after bleaching. Irradiation was performed perpendicularly, in contact, on each tooth during 10 sec per point in two points. The first point was positioned in the middle of the tooth crown and the second in the periapical region. Photobiomodulation was applied using the following parameters: 780 nm, 40 mW, 10 J/cm 2 , 0.4 J per point. Pain was analyzed before, immediately after, and seven subsequent days after bleaching. Patients were instructed to report pain using the scale: 0 = no tooth sensitivity, 1 = gentle sensitivity, 2 = moderate sensitivity, 3 = severe sensitivity. There were no statistical differences between groups at any time (p > 0.05). More studies, with others parameters and different methods of tooth sensitivity analysis, should be performed to complement the results found. Within the limitation of the present study, the laser parameters of photobiomodulation tested in the present study were not efficient in preventing tooth sensitivity after in-office bleaching.

  16. Sensitivity Analysis for Steady State Groundwater Flow Using Adjoint Operators

    NASA Astrophysics Data System (ADS)

    Sykes, J. F.; Wilson, J. L.; Andrews, R. W.

    1985-03-01

    Adjoint sensitivity theory is currently being considered as a potential method for calculating the sensitivity of nuclear waste repository performance measures to the parameters of the system. For groundwater flow systems, performance measures of interest include piezometric heads in the vicinity of a waste site, velocities or travel time in aquifers, and mass discharge to biosphere points. The parameters include recharge-discharge rates, prescribed boundary heads or fluxes, formation thicknesses, and hydraulic conductivities. The derivative of a performance measure with respect to the system parameters is usually taken as a measure of sensitivity. To calculate sensitivities, adjoint sensitivity equations are formulated from the equations describing the primary problem. The solution of the primary problem and the adjoint sensitivity problem enables the determination of all of the required derivatives and hence related sensitivity coefficients. In this study, adjoint sensitivity theory is developed for equations of two-dimensional steady state flow in a confined aquifer. Both the primary flow equation and the adjoint sensitivity equation are solved using the Galerkin finite element method. The developed computer code is used to investigate the regional flow parameters of the Leadville Formation of the Paradox Basin in Utah. The results illustrate the sensitivity of calculated local heads to the boundary conditions. Alternatively, local velocity related performance measures are more sensitive to hydraulic conductivities.

  17. Analysis of sensitivity of simulated recharge to selected parameters for seven watersheds modeled using the precipitation-runoff modeling system

    USGS Publications Warehouse

    Ely, D. Matthew

    2006-01-01

    Recharge is a vital component of the ground-water budget and methods for estimating it range from extremely complex to relatively simple. The most commonly used techniques, however, are limited by the scale of application. One method that can be used to estimate ground-water recharge includes process-based models that compute distributed water budgets on a watershed scale. These models should be evaluated to determine which model parameters are the dominant controls in determining ground-water recharge. Seven existing watershed models from different humid regions of the United States were chosen to analyze the sensitivity of simulated recharge to model parameters. Parameter sensitivities were determined using a nonlinear regression computer program to generate a suite of diagnostic statistics. The statistics identify model parameters that have the greatest effect on simulated ground-water recharge and that compare and contrast the hydrologic system responses to those parameters. Simulated recharge in the Lost River and Big Creek watersheds in Washington State was sensitive to small changes in air temperature. The Hamden watershed model in west-central Minnesota was developed to investigate the relations that wetlands and other landscape features have with runoff processes. Excess soil moisture in the Hamden watershed simulation was preferentially routed to wetlands, instead of to the ground-water system, resulting in little sensitivity of any parameters to recharge. Simulated recharge in the North Fork Pheasant Branch watershed, Wisconsin, demonstrated the greatest sensitivity to parameters related to evapotranspiration. Three watersheds were simulated as part of the Model Parameter Estimation Experiment (MOPEX). Parameter sensitivities for the MOPEX watersheds, Amite River, Louisiana and Mississippi, English River, Iowa, and South Branch Potomac River, West Virginia, were similar and most sensitive to small changes in air temperature and a user-defined flow routing parameter. Although the primary objective of this study was to identify, by geographic region, the importance of the parameter value to the simulation of ground-water recharge, the secondary objectives proved valuable for future modeling efforts. The value of a rigorous sensitivity analysis can (1) make the calibration process more efficient, (2) guide additional data collection, (3) identify model limitations, and (4) explain simulated results.

  18. [Application of Fourier amplitude sensitivity test in Chinese healthy volunteer population pharmacokinetic model of tacrolimus].

    PubMed

    Guan, Zheng; Zhang, Guan-min; Ma, Ping; Liu, Li-hong; Zhou, Tian-yan; Lu, Wei

    2010-07-01

    In this study, we evaluated the influence of different variance from each of the parameters on the output of tacrolimus population pharmacokinetic (PopPK) model in Chinese healthy volunteers, using Fourier amplitude sensitivity test (FAST). Besides, we estimated the index of sensitivity within whole course of blood sampling, designed different sampling times, and evaluated the quality of parameters' and the efficiency of prediction. It was observed that besides CL1/F, the index of sensitivity for all of the other four parameters (V1/F, V2/F, CL2/F and k(a)) in tacrolimus PopPK model showed relatively high level and changed fast with the time passing. With the increase of the variance of k(a), its indices of sensitivity increased obviously, associated with significant decrease in sensitivity index for the other parameters, and obvious change in peak time as well. According to the simulation of NONMEM and the comparison among different fitting results, we found that the sampling time points designed according to FAST surpassed the other time points. It suggests that FAST can access the sensitivities of model parameters effectively, and assist the design of clinical sampling times and the construction of PopPK model.

  19. Investigation of uncertainty in CO 2 reservoir models: A sensitivity analysis of relative permeability parameter values

    DOE PAGES

    Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.

    2016-03-22

    Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less

  20. Investigation of uncertainty in CO 2 reservoir models: A sensitivity analysis of relative permeability parameter values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.

    Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less

  1. Application of global sensitivity analysis methods to Takagi-Sugeno-Kang rainfall-runoff fuzzy models

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.; Shamseldin, A. Y.

    2009-04-01

    This study analyses the sensitivity of the parameters of Takagi-Sugeno-Kang rainfall-runoff fuzzy models previously developed by the authors. These models can be classified in two types, where the first type is intended to account for the effect of changes in catchment wetness and the second type incorporates seasonality as a source of non-linearity in the rainfall-runoff relationship. The sensitivity analysis is performed using two global sensitivity analysis methods, namely Regional Sensitivity Analysis (RSA) and Sobol's Variance Decomposition (SVD). In general, the RSA method has the disadvantage of not being able to detect sensitivities arising from parameter interactions. By contrast, the SVD method is suitable for analysing models where the model response surface is expected to be affected by interactions at a local scale and/or local optima, such as the case of the rainfall-runoff fuzzy models analysed in this study. The data of six catchments from different geographical locations and sizes are used in the sensitivity analysis. The sensitivity of the model parameters is analysed in terms of two measures of goodness of fit, assessing the model performance from different points of view. These measures are the Nash-Sutcliffe criterion and the index of volumetric fit. The results of the study show that the sensitivity of the model parameters depends on both the type of non-linear effects (i.e. changes in catchment wetness or seasonality) that dominates the catchment's rainfall-runoff relationship and the measure used to assess the model performance. Acknowledgements: This research was supported by FONDECYT, Research Grant 11070130. We would also like to express our gratitude to Prof. Kieran M. O'Connor from the National University of Ireland, Galway, for providing the data used in this study.

  2. Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Raghubanshi, A. S.

    2011-08-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.

  3. Optimization for minimum sensitivity to uncertain parameters

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw

    1994-01-01

    A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.

  4. Two-step sensitivity testing of parametrized and regionalized life cycle assessments: methodology and case study.

    PubMed

    Mutel, Christopher L; de Baan, Laura; Hellweg, Stefanie

    2013-06-04

    Comprehensive sensitivity analysis is a significant tool to interpret and improve life cycle assessment (LCA) models, but is rarely performed. Sensitivity analysis will increase in importance as inventory databases become regionalized, increasing the number of system parameters, and parametrized, adding complexity through variables and nonlinear formulas. We propose and implement a new two-step approach to sensitivity analysis. First, we identify parameters with high global sensitivities for further examination and analysis with a screening step, the method of elementary effects. Second, the more computationally intensive contribution to variance test is used to quantify the relative importance of these parameters. The two-step sensitivity test is illustrated on a regionalized, nonlinear case study of the biodiversity impacts from land use of cocoa production, including a worldwide cocoa products trade model. Our simplified trade model can be used for transformable commodities where one is assessing market shares that vary over time. In the case study, the highly uncertain characterization factors for the Ivory Coast and Ghana contributed more than 50% of variance for almost all countries and years examined. The two-step sensitivity test allows for the interpretation, understanding, and improvement of large, complex, and nonlinear LCA systems.

  5. Study of positive and negative feedback sensitivity in psychosis using the Wisconsin Card Sorting Test.

    PubMed

    Farreny, Aida; Del Rey-Mejías, Ángel; Escartin, Gemma; Usall, Judith; Tous, Núria; Haro, Josep Maria; Ochoa, Susana

    2016-07-01

    Schizophrenia involves marked motivational and learning deficits that may reflect abnormalities in reward processing. The purpose of this study was to examine positive and negative feedback sensitivity in schizophrenia using computational modeling derived from the Wisconsin Card Sorting Test (WCST). We also aimed to explore feedback sensitivity in a sample with bipolar disorder. Eighty-three individuals with schizophrenia and 27 with bipolar disorder were included. Demographic, clinical and cognitive outcomes, together with the WCST, were considered in both samples. Computational modeling was performed using the R syntax to calculate 3 parameters based on trial-by-trial execution on the WCST: reward sensitivity (R), punishment sensitivity (P), and choice consistency (D). The associations between outcome variables and the parameters were investigated. Positive and negative sensitivity showed deficits, but P parameter was clearly diminished in schizophrenia. Cognitive variables, age, and symptoms were associated with R, P, and D parameters in schizophrenia. The sample with bipolar disorder would show cognitive deficits and feedback abnormalities to a lesser extent than individuals with schizophrenia. Negative feedback sensitivity demonstrated greater deficit in both samples. Idiosyncratic cognitive requirements in the WCST might introduce confusion when supposing model-free reinforcement learning. Negative symptoms of schizophrenia were related to lower feedback sensitivity and less goal-directed patterns of choice. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Uncertainty Analysis of Runoff Simulations and Parameter Identifiability in the Community Land Model – Evidence from MOPEX Basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Hou, Zhangshuan; Leung, Lai-Yung R.

    2013-12-01

    With the emergence of earth system models as important tools for understanding and predicting climate change and implications to mitigation and adaptation, it has become increasingly important to assess the fidelity of the land component within earth system models to capture realistic hydrological processes and their response to the changing climate and quantify the associated uncertainties. This study investigates the sensitivity of runoff simulations to major hydrologic parameters in version 4 of the Community Land Model (CLM4) by integrating CLM4 with a stochastic exploratory sensitivity analysis framework at 20 selected watersheds from the Model Parameter Estimation Experiment (MOPEX) spanning amore » wide range of climate and site conditions. We found that for runoff simulations, the most significant parameters are those related to the subsurface runoff parameterizations. Soil texture related parameters and surface runoff parameters are of secondary significance. Moreover, climate and soil conditions play important roles in the parameter sensitivity. In general, site conditions within water-limited hydrologic regimes and with finer soil texture result in stronger sensitivity of output variables, such as runoff and its surface and subsurface components, to the input parameters in CLM4. This study demonstrated the feasibility of parameter inversion for CLM4 using streamflow observations to improve runoff simulations. By ranking the significance of the input parameters, we showed that the parameter set dimensionality could be reduced for CLM4 parameter calibration under different hydrologic and climatic regimes so that the inverse problem is less ill posed.« less

  7. Developmental immunotoxicity of chemicals in rodents and its possible regulatory impact.

    PubMed

    Hessel, Ellen V S; Tonk, Elisa C M; Bos, Peter M J; van Loveren, Henk; Piersma, Aldert H

    2015-01-01

    Around 25% of the children in developed countries are affected with immune-based diseases. Juvenile onset diseases such as allergic, inflammatory and autoimmune diseases have shown increasing prevalences in the last decades. The role of chemical exposures in these phenomena is unclear. It is thought that the developmental immune system is more susceptible to toxicants than the mature situation. Developmental immunotoxicity (DIT) testing is nowadays not or minimally included in regulatory toxicology requirements. We reviewed whether developmental immune parameters in rodents would provide relatively sensitive endpoints of toxicity, whose inclusion in regulatory toxicity testing might improve hazard identification and risk assessment of chemicals. For each of the nine reviewed toxicants, the developing immune system was found to be at least as sensitive or more sensitive than the general (developmental) toxicity parameters. Functional immune (antigen-challenged) parameters appear more affected than structural (non-challenged) immune parameters. Especially, antibody responses to immune challenges with keyhole limpet hemocyanine or sheep red blood cells and delayed-type hypersensitivity responses appear to provide sensitive parameters of developmental immune toxicity. Comparison with current tolerable daily intakes (TDI) and their underlying overall no observed adverse effect levels showed that for some of the compounds reviewed, the TDI may need reconsideration based on developmental immune parameters. From these data, it can be concluded that the developing immune system is very sensitive to the disruption of toxicants independent of study design. Consideration of including functional DIT parameters in current hazard identification guidelines and wider application of relevant study protocols is warranted.

  8. General methods for sensitivity analysis of equilibrium dynamics in patch occupancy models

    USGS Publications Warehouse

    Miller, David A.W.

    2012-01-01

    Sensitivity analysis is a useful tool for the study of ecological models that has many potential applications for patch occupancy modeling. Drawing from the rich foundation of existing methods for Markov chain models, I demonstrate new methods for sensitivity analysis of the equilibrium state dynamics of occupancy models. Estimates from three previous studies are used to illustrate the utility of the sensitivity calculations: a joint occupancy model for a prey species, its predators, and habitat used by both; occurrence dynamics from a well-known metapopulation study of three butterfly species; and Golden Eagle occupancy and reproductive dynamics. I show how to deal efficiently with multistate models and how to calculate sensitivities involving derived state variables and lower-level parameters. In addition, I extend methods to incorporate environmental variation by allowing for spatial and temporal variability in transition probabilities. The approach used here is concise and general and can fully account for environmental variability in transition parameters. The methods can be used to improve inferences in occupancy studies by quantifying the effects of underlying parameters, aiding prediction of future system states, and identifying priorities for sampling effort.

  9. Are LOD and LOQ Reliable Parameters for Sensitivity Evaluation of Spectroscopic Methods?

    PubMed

    Ershadi, Saba; Shayanfar, Ali

    2018-03-22

    The limit of detection (LOD) and the limit of quantification (LOQ) are common parameters to assess the sensitivity of analytical methods. In this study, the LOD and LOQ of previously reported terbium sensitized analysis methods were calculated by different methods, and the results were compared with sensitivity parameters [lower limit of quantification (LLOQ)] of U.S. Food and Drug Administration guidelines. The details of the calibration curve and standard deviation of blank samples of three different terbium-sensitized luminescence methods for the quantification of mycophenolic acid, enrofloxacin, and silibinin were used for the calculation of LOD and LOQ. A comparison of LOD and LOQ values calculated by various methods and LLOQ shows a considerable difference. The significant difference of the calculated LOD and LOQ with various methods and LLOQ should be considered in the sensitivity evaluation of spectroscopic methods.

  10. Population and High-Risk Group Screening for Glaucoma: The Los Angeles Latino Eye Study

    PubMed Central

    Francis, Brian A.; Vigen, Cheryl; Lai, Mei-Ying; Winarko, Jonathan; Nguyen, Betsy; Azen, Stanley

    2011-01-01

    Purpose. To evaluate the ability of various screening tests, both individually and in combination, to detect glaucoma in the general Latino population and high-risk subgroups. Methods. The Los Angeles Latino Eye Study is a population-based study of eye disease in Latinos 40 years of age and older. Participants (n = 6082) underwent Humphrey visual field testing (HVF), frequency doubling technology (FDT) perimetry, measurement of intraocular pressure (IOP) and central corneal thickness (CCT), and independent assessment of optic nerve vertical cup disc (C/D) ratio. Screening parameters were evaluated for three definitions of glaucoma based on optic disc, visual field, and a combination of both. Analyses were also conducted for high-risk subgroups (family history of glaucoma, diabetes mellitus, and age ≥65 years). Sensitivity, specificity, and receiver operating characteristic curves were calculated for those continuous parameters independently associated with glaucoma. Classification and regression tree (CART) analysis was used to develop a multivariate algorithm for glaucoma screening. Results. Preset cutoffs for screening parameters yielded a generally poor balance of sensitivity and specificity (sensitivity/specificity for IOP ≥21 mm Hg and C/D ≥0.8 was 0.24/0.97 and 0.60/0.98, respectively). Assessment of high-risk subgroups did not improve the sensitivity/specificity of individual screening parameters. A CART analysis using multiple screening parameters—C/D, HVF, and IOP—substantially improved the balance of sensitivity and specificity (sensitivity/specificity 0.92/0.92). Conclusions. No single screening parameter is useful for glaucoma screening. However, a combination of vertical C/D ratio, HVF, and IOP provides the best balance of sensitivity/specificity and is likely to provide the highest yield in glaucoma screening programs. PMID:21245400

  11. Can nonstandard interactions jeopardize the hierarchy sensitivity of DUNE?

    NASA Astrophysics Data System (ADS)

    Deepthi, K. N.; Goswami, Srubabati; Nath, Newton

    2017-10-01

    We study the effect of nonstandard interactions (NSIs) on the propagation of neutrinos through the Earth's matter and how it affects the hierarchy sensitivity of the DUNE experiment. We emphasize the special case when the diagonal NSI parameter ɛe e=-1 , nullifying the standard matter effect. We show that if, in addition, C P violation is maximal then this gives rise to an exact intrinsic hierarchy degeneracy in the appearance channel, irrespective of the baseline and energy. Introduction of the off diagonal NSI parameter, ɛe τ, shifts the position of this degeneracy to a different ɛe e. Moreover the unknown magnitude and phases of the off diagonal NSI parameters can give rise to additional degeneracies. Overall, given the current model independent limits on NSI parameters, the hierarchy sensitivity of DUNE can get seriously impacted. However, a more precise knowledge of the NSI parameters, especially ɛe e, can give rise to an improved sensitivity. Alternatively, if a NSI exists in nature, and still DUNE shows hierarchy sensitivity, certain ranges of the NSI parameters can be excluded. Additionally, we briefly discuss the implications of ɛe e=-1 (in the Earth) on the Mikheyev-Smirnov-Wolfenstein effect in the Sun.

  12. Identifying Cognitive Remediation Change Through Computational Modelling—Effects on Reinforcement Learning in Schizophrenia

    PubMed Central

    Cella, Matteo; Bishara, Anthony J.; Medin, Evelina; Swan, Sarah; Reeder, Clare; Wykes, Til

    2014-01-01

    Objective: Converging research suggests that individuals with schizophrenia show a marked impairment in reinforcement learning, particularly in tasks requiring flexibility and adaptation. The problem has been associated with dopamine reward systems. This study explores, for the first time, the characteristics of this impairment and how it is affected by a behavioral intervention—cognitive remediation. Method: Using computational modelling, 3 reinforcement learning parameters based on the Wisconsin Card Sorting Test (WCST) trial-by-trial performance were estimated: R (reward sensitivity), P (punishment sensitivity), and D (choice consistency). In Study 1 the parameters were compared between a group of individuals with schizophrenia (n = 100) and a healthy control group (n = 50). In Study 2 the effect of cognitive remediation therapy (CRT) on these parameters was assessed in 2 groups of individuals with schizophrenia, one receiving CRT (n = 37) and the other receiving treatment as usual (TAU, n = 34). Results: In Study 1 individuals with schizophrenia showed impairment in the R and P parameters compared with healthy controls. Study 2 demonstrated that sensitivity to negative feedback (P) and reward (R) improved in the CRT group after therapy compared with the TAU group. R and P parameter change correlated with WCST outputs. Improvements in R and P after CRT were associated with working memory gains and reduction of negative symptoms, respectively. Conclusion: Schizophrenia reinforcement learning difficulties negatively influence performance in shift learning tasks. CRT can improve sensitivity to reward and punishment. Identifying parameters that show change may be useful in experimental medicine studies to identify cognitive domains susceptible to improvement. PMID:24214932

  13. Combined loading criterial influence on structural performance

    NASA Technical Reports Server (NTRS)

    Kuchta, B. J.; Sealey, D. M.; Howell, L. J.

    1972-01-01

    An investigation was conducted to determine the influence of combined loading criteria on the space shuttle structural performance. The study consisted of four primary phases: Phase (1) The determination of the sensitivity of structural weight to various loading parameters associated with the space shuttle. Phase (2) The determination of the sensitivity of structural weight to various levels of loading parameter variability and probability. Phase (3) The determination of shuttle mission loading parameters variability and probability as a function of design evolution and the identification of those loading parameters where inadequate data exists. Phase (4) The determination of rational methods of combining both deterministic time varying and probabilistic loading parameters to provide realistic design criteria. The study results are presented.

  14. On the Influence of Material Parameters in a Complex Material Model for Powder Compaction

    NASA Astrophysics Data System (ADS)

    Staf, Hjalmar; Lindskog, Per; Andersson, Daniel C.; Larsson, Per-Lennart

    2016-10-01

    Parameters in a complex material model for powder compaction, based on a continuum mechanics approach, are evaluated using real insert geometries. The parameter sensitivity with respect to density and stress after compaction, pertinent to a wide range of geometries, is studied in order to investigate completeness and limitations of the material model. Finite element simulations with varied material parameters are used to build surrogate models for the sensitivity study. The conclusion from this analysis is that a simplification of the material model is relevant, especially for simple insert geometries. Parameters linked to anisotropy and the plastic strain evolution angle have a small impact on the final result.

  15. An automatic and effective parameter optimization method for model tuning

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.

    2015-05-01

    Physical parameterizations in General Circulation Models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determines parameter sensitivity and the other chooses the optimum initial value of sensitive parameters, are introduced before the downhill simplex method to reduce the computational cost and improve the tuning performance. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9%. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameters tuning during the model development stage.

  16. Global Sensitivity Analysis of Environmental Models: Convergence, Robustness and Validation

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Pianosi, Francesca; Khorashadi Zadeh, Farkhondeh; Van Griensven, Ann; Wagener, Thorsten

    2015-04-01

    Global Sensitivity Analysis aims to characterize the impact that variations in model input factors (e.g. the parameters) have on the model output (e.g. simulated streamflow). In sampling-based Global Sensitivity Analysis, the sample size has to be chosen carefully in order to obtain reliable sensitivity estimates while spending computational resources efficiently. Furthermore, insensitive parameters are typically identified through the definition of a screening threshold: the theoretical value of their sensitivity index is zero but in a sampling-base framework they regularly take non-zero values. There is little guidance available for these two steps in environmental modelling though. The objective of the present study is to support modellers in making appropriate choices, regarding both sample size and screening threshold, so that a robust sensitivity analysis can be implemented. We performed sensitivity analysis for the parameters of three hydrological models with increasing level of complexity (Hymod, HBV and SWAT), and tested three widely used sensitivity analysis methods (Elementary Effect Test or method of Morris, Regional Sensitivity Analysis, and Variance-Based Sensitivity Analysis). We defined criteria based on a bootstrap approach to assess three different types of convergence: the convergence of the value of the sensitivity indices, of the ranking (the ordering among the parameters) and of the screening (the identification of the insensitive parameters). We investigated the screening threshold through the definition of a validation procedure. The results showed that full convergence of the value of the sensitivity indices is not necessarily needed to rank or to screen the model input factors. Furthermore, typical values of the sample sizes that are reported in the literature can be well below the sample sizes that actually ensure convergence of ranking and screening.

  17. Effect of Fault Parameter Uncertainties on PSHA explored by Monte Carlo Simulations: A case study for southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Akinci, A.; Pace, B.

    2017-12-01

    In this study, we discuss the seismic hazard variability of peak ground acceleration (PGA) at 475 years return period in the Southern Apennines of Italy. The uncertainty and parametric sensitivity are presented to quantify the impact of the several fault parameters on ground motion predictions for 10% exceedance in 50-year hazard. A time-independent PSHA model is constructed based on the long-term recurrence behavior of seismogenic faults adopting the characteristic earthquake model for those sources capable of rupturing the entire fault segment with a single maximum magnitude. The fault-based source model uses the dimensions and slip rates of mapped fault to develop magnitude-frequency estimates for characteristic earthquakes. Variability of the selected fault parameter is given with a truncated normal random variable distribution presented by standard deviation about a mean value. A Monte Carlo approach, based on the random balanced sampling by logic tree, is used in order to capture the uncertainty in seismic hazard calculations. For generating both uncertainty and sensitivity maps, we perform 200 simulations for each of the fault parameters. The results are synthesized both in frequency-magnitude distribution of modeled faults as well as the different maps: the overall uncertainty maps provide a confidence interval for the PGA values and the parameter uncertainty maps determine the sensitivity of hazard assessment to variability of every logic tree branch. These branches of logic tree, analyzed through the Monte Carlo approach, are maximum magnitudes, fault length, fault width, fault dip and slip rates. The overall variability of these parameters is determined by varying them simultaneously in the hazard calculations while the sensitivity of each parameter to overall variability is determined varying each of the fault parameters while fixing others. However, in this study we do not investigate the sensitivity of mean hazard results to the consideration of different GMPEs. Distribution of possible seismic hazard results is illustrated by 95% confidence factor map, which indicates the dispersion about mean value, and coefficient of variation map, which shows percent variability. The results of our study clearly illustrate the influence of active fault parameters to probabilistic seismic hazard maps.

  18. Factors affecting the sensitivity and specificity of the Heidelberg Retina Tomograph parameters to glaucomatous progression in disc photographs.

    PubMed

    Saarela, Ville; Falck, Aura; Airaksinen, P Juhani; Tuulonen, Anja

    2012-03-01

    To evaluate the factors affecting the sensitivity and specificity of the stereometric optic nerve head (ONH) parameters of the Heidelberg Retina Tomograph (HRT) to glaucomatous progression in stereoscopic ONH photographs. The factors affecting the sensitivity and specificity of the vertical cup : disc ratio, the cup : disc area ratio, the cup volume, the rim area and a linear discriminant function to progression were analysed. These parameters were the best indicators of progression in a retrospective study of 476 eyes. The reference standard for progression was the masked evaluation of stereoscopic ONH photographs. The factors having the most significant effect on the sensitivity and specificity of the stereometric ONH parameters were the reference height difference and the mean topography standard deviation (TSD), indicating image quality. Also, the change in the TSD and age showed consistent, but variably significant, influence on all parameters tested. The sensitivity and specificity improved when there was little change in the reference height, the image quality was good and stable, and the patients were younger. The sensitivity and specificity of the vertical cup : disc ratio was improved by a large disc area and high baseline cup : disc area ratio. The rim area showed a better sensitivity and specificity for progression with a small disc area and low baseline cup : disc area ratio. The factors affecting the sensitivity and specificity of the stereometric ONH parameters to glaucomatous progression in disc photographs are essentially the same as those affecting the measurement variability of the HRT. © 2010 The Authors. Acta Ophthalmologica © 2010 Acta Ophthalmologica Scandinavica Foundation.

  19. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection

    PubMed Central

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa. PMID:26327290

  20. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection.

    PubMed

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.

  1. Sensitivity studies with a coupled ice-ocean model of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Roed, L. P.

    1983-01-01

    An analytical coupled ice-ocean model is considered which is forced by a specified wind stress acting on the open ocean as well as the ice. The analysis supports the conjecture that the upwelling dynamics at ice edges can be understood by means of a simple analytical model. In similarity with coastal problems it is shown that the ice edge upwelling is determined by the net mass flux at the boundaries of the considered region. The model is used to study the sensitivity of the upwelling dynamics in the marginal ice zone to variation in the controlling parameters. These parameters consist of combinations of the drag coefficients used in the parameterization of the stresses on the three interfaces atmosphere-ice, atmosphere-ocean, and ice-ocean. The response is shown to be sensitive to variations in these parameters in that one set of parameters may give upwelling while a slightly different set of parameters may give downwelling.

  2. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks

    PubMed Central

    Arampatzis, Georgios; Katsoulakis, Markos A.; Pantazis, Yannis

    2015-01-01

    Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in “sloppy” systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the number of the sensitive parameters. PMID:26161544

  3. Pattern statistics on Markov chains and sensitivity to parameter estimation

    PubMed Central

    Nuel, Grégory

    2006-01-01

    Background: In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). Results: In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of σ, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. Conclusion: We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation. PMID:17044916

  4. Pattern statistics on Markov chains and sensitivity to parameter estimation.

    PubMed

    Nuel, Grégory

    2006-10-17

    In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of sigma, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation.

  5. Assessing the sensitivity of bovine tuberculosis surveillance in Canada's cattle population, 2009-2013.

    PubMed

    El Allaki, Farouk; Harrington, Noel; Howden, Krista

    2016-11-01

    The objectives of this study were (1) to estimate the annual sensitivity of Canada's bTB surveillance system and its three system components (slaughter surveillance, export testing and disease investigation) using a scenario tree modelling approach, and (2) to identify key model parameters that influence the estimates of the surveillance system sensitivity (SSSe). To achieve these objectives, we designed stochastic scenario tree models for three surveillance system components included in the analysis. Demographic data, slaughter data, export testing data, and disease investigation data from 2009 to 2013 were extracted for input into the scenario trees. Sensitivity analysis was conducted to identify key influential parameters on SSSe estimates. The median annual SSSe estimates generated from the study were very high, ranging from 0.95 (95% probability interval [PI]: 0.88-0.98) to 0.97 (95% PI: 0.93-0.99). Median annual sensitivity estimates for the slaughter surveillance component ranged from 0.95 (95% PI: 0.88-0.98) to 0.97 (95% PI: 0.93-0.99). This shows that slaughter surveillance to be the major contributor to overall surveillance system sensitivity with a high probability to detect M. bovis infection if present at a prevalence of 0.00028% or greater during the study period. The export testing and disease investigation components had extremely low component sensitivity estimates-the maximum median sensitivity estimates were 0.02 (95% PI: 0.014-0.023) and 0.0061 (95% PI: 0.0056-0.0066) respectively. The three most influential input parameters on the model's output (SSSe) were the probability of a granuloma being detected at slaughter inspection, the probability of a granuloma being present in older animals (≥12 months of age), and the probability of a granuloma sample being submitted to the laboratory. Additional studies are required to reduce the levels of uncertainty and variability associated with these three parameters influencing the surveillance system sensitivity. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  6. Multi-Response Parameter Interval Sensitivity and Optimization for the Composite Tape Winding Process.

    PubMed

    Deng, Bo; Shi, Yaoyao; Yu, Tao; Kang, Chao; Zhao, Pan

    2018-01-31

    The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing.

  7. Multi-Response Parameter Interval Sensitivity and Optimization for the Composite Tape Winding Process

    PubMed Central

    Yu, Tao; Kang, Chao; Zhao, Pan

    2018-01-01

    The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing. PMID:29385048

  8. Sensitivity-Based Guided Model Calibration

    NASA Astrophysics Data System (ADS)

    Semnani, M.; Asadzadeh, M.

    2017-12-01

    A common practice in automatic calibration of hydrologic models is applying the sensitivity analysis prior to the global optimization to reduce the number of decision variables (DVs) by identifying the most sensitive ones. This two-stage process aims to improve the optimization efficiency. However, Parameter sensitivity information can be used to enhance the ability of the optimization algorithms to find good quality solutions in a fewer number of solution evaluations. This improvement can be achieved by increasing the focus of optimization on sampling from the most sensitive parameters in each iteration. In this study, the selection process of the dynamically dimensioned search (DDS) optimization algorithm is enhanced by utilizing a sensitivity analysis method to put more emphasis on the most sensitive decision variables for perturbation. The performance of DDS with the sensitivity information is compared to the original version of DDS for different mathematical test functions and a model calibration case study. Overall, the results show that DDS with sensitivity information finds nearly the same solutions as original DDS, however, in a significantly fewer number of solution evaluations.

  9. Macular versus Retinal Nerve Fiber Layer Parameters for Diagnosing Manifest Glaucoma: A Systematic Review of Diagnostic Accuracy Studies.

    PubMed

    Oddone, Francesco; Lucenteforte, Ersilia; Michelessi, Manuele; Rizzo, Stanislao; Donati, Simone; Parravano, Mariacristina; Virgili, Gianni

    2016-05-01

    Macular parameters have been proposed as an alternative to retinal nerve fiber layer (RNFL) parameters to diagnose glaucoma. Comparing the diagnostic accuracy of macular parameters, specifically the ganglion cell complex (GCC) and ganglion cell inner plexiform layer (GCIPL), with the accuracy of RNFL parameters for detecting manifest glaucoma is important to guide clinical practice and future research. Studies using spectral domain optical coherence tomography (SD OCT) and reporting macular parameters were included if they allowed the extraction of accuracy data for diagnosing manifest glaucoma, as confirmed with automated perimetry or a clinician's optic nerve head (ONH) assessment. Cross-sectional cohort studies and case-control studies were included. The QUADAS 2 tool was used to assess methodological quality. Only direct comparisons of macular versus RNFL parameters (i.e., in the same study) were conducted. Summary sensitivity and specificity of each macular or RNFL parameter were reported, and the relative diagnostic odds ratio (DOR) was calculated in hierarchical summary receiver operating characteristic (HSROC) models to compare them. Thirty-four studies investigated macular parameters using RTVue OCT (Optovue Inc., Fremont, CA) (19 studies, 3094 subjects), Cirrus OCT (Carl Zeiss Meditec Inc., Dublin, CA) (14 studies, 2164 subjects), or 3D Topcon OCT (Topcon, Inc., Tokyo, Japan) (4 studies, 522 subjects). Thirty-two of these studies allowed comparisons between macular and RNFL parameters. Studies generally reported sensitivities at fixed specificities, more commonly 0.90 or 0.95, with sensitivities of most best-performing parameters between 0.65 and 0.75. For all OCT devices, compared with RNFL parameters, macular parameters were similarly or slightly less accurate for detecting glaucoma at the highest reported specificity, which was confirmed in analyses at the lowest specificity. Included studies suffered from limitations, especially the case-control study design, which is known to overestimate accuracy. However, this flaw is less relevant as a source of bias in direct comparisons conducted within studies. With the use of OCT, RNFL parameters are still preferable to macular parameters for diagnosing manifest glaucoma, but the differences are small. Because of high heterogeneity, direct comparative or randomized studies of OCT devices or OCT parameters and diagnostic strategies are essential. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  10. Identifying cognitive remediation change through computational modelling--effects on reinforcement learning in schizophrenia.

    PubMed

    Cella, Matteo; Bishara, Anthony J; Medin, Evelina; Swan, Sarah; Reeder, Clare; Wykes, Til

    2014-11-01

    Converging research suggests that individuals with schizophrenia show a marked impairment in reinforcement learning, particularly in tasks requiring flexibility and adaptation. The problem has been associated with dopamine reward systems. This study explores, for the first time, the characteristics of this impairment and how it is affected by a behavioral intervention-cognitive remediation. Using computational modelling, 3 reinforcement learning parameters based on the Wisconsin Card Sorting Test (WCST) trial-by-trial performance were estimated: R (reward sensitivity), P (punishment sensitivity), and D (choice consistency). In Study 1 the parameters were compared between a group of individuals with schizophrenia (n = 100) and a healthy control group (n = 50). In Study 2 the effect of cognitive remediation therapy (CRT) on these parameters was assessed in 2 groups of individuals with schizophrenia, one receiving CRT (n = 37) and the other receiving treatment as usual (TAU, n = 34). In Study 1 individuals with schizophrenia showed impairment in the R and P parameters compared with healthy controls. Study 2 demonstrated that sensitivity to negative feedback (P) and reward (R) improved in the CRT group after therapy compared with the TAU group. R and P parameter change correlated with WCST outputs. Improvements in R and P after CRT were associated with working memory gains and reduction of negative symptoms, respectively. Schizophrenia reinforcement learning difficulties negatively influence performance in shift learning tasks. CRT can improve sensitivity to reward and punishment. Identifying parameters that show change may be useful in experimental medicine studies to identify cognitive domains susceptible to improvement. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. An automatic and effective parameter optimization method for model tuning

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.

    2015-11-01

    Physical parameterizations in general circulation models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time-consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determining the model's sensitivity to the parameters and the other choosing the optimum initial value for those sensitive parameters, are introduced before the downhill simplex method. This new method reduces the number of parameters to be tuned and accelerates the convergence of the downhill simplex method. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.

  12. How often do sensitivity analyses for economic parameters change cost-utility analysis conclusions?

    PubMed

    Schackman, Bruce R; Gold, Heather Taffet; Stone, Patricia W; Neumann, Peter J

    2004-01-01

    There is limited evidence about the extent to which sensitivity analysis has been used in the cost-effectiveness literature. Sensitivity analyses for health-related QOL (HR-QOL), cost and discount rate economic parameters are of particular interest because they measure the effects of methodological and estimation uncertainties. To investigate the use of sensitivity analyses in the pharmaceutical cost-utility literature in order to test whether a change in economic parameters could result in a different conclusion regarding the cost effectiveness of the intervention analysed. Cost-utility analyses of pharmaceuticals identified in a prior comprehensive audit (70 articles) were reviewed and further audited. For each base case for which sensitivity analyses were reported (n = 122), up to two sensitivity analyses for HR-QOL (n = 133), cost (n = 99), and discount rate (n = 128) were examined. Article mentions of thresholds for acceptable cost-utility ratios were recorded (total 36). Cost-utility ratios were denominated in US dollars for the year reported in each of the original articles in order to determine whether a different conclusion would have been indicated at the time the article was published. Quality ratings from the original audit for articles where sensitivity analysis results crossed the cost-utility ratio threshold above the base-case result were compared with those that did not. The most frequently mentioned cost-utility thresholds were $US20,000/QALY, $US50,000/QALY, and $US100,000/QALY. The proportions of sensitivity analyses reporting quantitative results that crossed the threshold above the base-case results (or where the sensitivity analysis result was dominated) were 31% for HR-QOL sensitivity analyses, 20% for cost-sensitivity analyses, and 15% for discount-rate sensitivity analyses. Almost half of the discount-rate sensitivity analyses did not report quantitative results. Articles that reported sensitivity analyses where results crossed the cost-utility threshold above the base-case results (n = 25) were of somewhat higher quality, and were more likely to justify their sensitivity analysis parameters, than those that did not (n = 45), but the overall quality rating was only moderate. Sensitivity analyses for economic parameters are widely reported and often identify whether choosing different assumptions leads to a different conclusion regarding cost effectiveness. Changes in HR-QOL and cost parameters should be used to test alternative guideline recommendations when there is uncertainty regarding these parameters. Changes in discount rates less frequently produce results that would change the conclusion about cost effectiveness. Improving the overall quality of published studies and describing the justifications for parameter ranges would allow more meaningful conclusions to be drawn from sensitivity analyses.

  13. SU-E-T-249: Determining the Sensitivity of Beam Profile Parameters for Detecting Energy Changes in Flattening Filter-Free Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, K; Yaddanapudi, S; Mutic, S

    2015-06-15

    Purpose: To identify the beam profile parameters that can be used to detect energy changes in a flattening filter-free photon beams. Methods: Flattening filter-free beam profiles (inline, crossline, and diagonals) were measured for multiple field sizes (25×25cm and 10×10cm) at 6MV on a clinical system (Truebeam, Varian Medical Systems Palo Alto CA). Profiles were acquired for baseline energy and detuned beams by changing the bending magnet current (BMC), above and below baseline. The following profile parameters were measured: flatness (off-axis ratio at 80% of field size), symmetry, uniformity, slope, and the off-axis ratio (OAR) at several off-axis distances. Tolerance valuesmore » were determined from repeated measurements. Each parameter was evaluated for sensitivity to the induced beam changes, and the minimum detectable BMC change was calculated for each parameter by calculating the change in BMC that would Result in a change in the parameter above the measurement tolerance. Results: Tolerance values for the parameters were-Flatness≤0.1%; Symmetry≤0.4%; Uniformity≤0.01%; Slope≤ 0.001%/mm. The measurements made with a field size of 25cm and a depth of d=1.5cm showed the greatest sensitivity to bending magnet current variations. Uniformity had the highest sensitivity, able to detect a change in BMC of BMC=0.02A. The OARs and slope were sensitive to the magnitude and direction of BMC change. The sensitivity in the flatness parameter was BMC=0.04A; slope was sensitive to BMC=0.05A. The sensitivity decreased for OARs measured closer to central axis-BMC(8cm)=0.23A; BMC(5cm)=0.47A; BMC(2cm)=1.35A. Symmetry was not sensitive to changes in BMC. Conclusion: These tests allow for better QA of FFF beams by setting tolerance levels to beam parameter baseline values which reflect variations in machine calibration. Uniformity is most sensitive to BMC changes, while OARs provide information about magnitude and direction of miscalibration. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.« less

  14. Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines

    PubMed Central

    Kurç, Tahsin M.; Taveira, Luís F. R.; Melo, Alba C. M. A.; Gao, Yi; Kong, Jun; Saltz, Joel H.

    2017-01-01

    Abstract Motivation: Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. Results: The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Conclusions: Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Availability and Implementation: Source code: https://github.com/SBU-BMI/region-templates/. Contact: teodoro@unb.br Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28062445

  15. Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines.

    PubMed

    Teodoro, George; Kurç, Tahsin M; Taveira, Luís F R; Melo, Alba C M A; Gao, Yi; Kong, Jun; Saltz, Joel H

    2017-04-01

    Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Source code: https://github.com/SBU-BMI/region-templates/ . teodoro@unb.br. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  16. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs' production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs.

  17. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

    PubMed Central

    Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs’ production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs. PMID:29320489

  18. Nonstandard neutrino interactions at DUNE, T2HK and T2HKK

    DOE PAGES

    Liao, Jiajun; Marfatia, Danny; Whisnant, Kerry

    2017-01-17

    Here, we study the matter effect caused by nonstandard neutrino interactions (NSI) in the next generation long-baseline neutrino experiments, DUNE, T2HK and T2HKK. If multiple NSI parameters are nonzero, the potential of these experiments to detect CP violation, determine the mass hierarchy and constrain NSI is severely impaired by degeneracies between the NSI parameters and by the generalized mass hierarchy degeneracy. In particular, a cancellation between leading order terms in the appearance channels when ϵ eτ= cot θ 23ϵ eμ, strongly affects the sensitivities to these two NSI parameters at T2HK and T2HKK. We also study the dependence of themore » sensitivities on the true CP phase and the true mass hierarchy, and find that overall DUNE has the best sensitivity to the magnitude of the NSI parameters, while T2HKK has the best sensitivity to CP violation whether or not there are NSI. Furthermore, for T2HKK a smaller off-axis angle for the Korean detector is better overall. We find that due to the structure of the leading order terms in the appearance channel probabilities, the NSI sensitivities in a given experiment are similar for both mass hierarchies, modulo the phase change δ→δ + 180°.« less

  19. Nonstandard neutrino interactions at DUNE, T2HK and T2HKK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Jiajun; Marfatia, Danny; Whisnant, Kerry

    Here, we study the matter effect caused by nonstandard neutrino interactions (NSI) in the next generation long-baseline neutrino experiments, DUNE, T2HK and T2HKK. If multiple NSI parameters are nonzero, the potential of these experiments to detect CP violation, determine the mass hierarchy and constrain NSI is severely impaired by degeneracies between the NSI parameters and by the generalized mass hierarchy degeneracy. In particular, a cancellation between leading order terms in the appearance channels when ϵ eτ= cot θ 23ϵ eμ, strongly affects the sensitivities to these two NSI parameters at T2HK and T2HKK. We also study the dependence of themore » sensitivities on the true CP phase and the true mass hierarchy, and find that overall DUNE has the best sensitivity to the magnitude of the NSI parameters, while T2HKK has the best sensitivity to CP violation whether or not there are NSI. Furthermore, for T2HKK a smaller off-axis angle for the Korean detector is better overall. We find that due to the structure of the leading order terms in the appearance channel probabilities, the NSI sensitivities in a given experiment are similar for both mass hierarchies, modulo the phase change δ→δ + 180°.« less

  20. Performance evaluation of spectral vegetation indices using a statistical sensitivity function

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2007-01-01

    A great number of spectral vegetation indices (VIs) have been developed to estimate biophysical parameters of vegetation. Traditional techniques for evaluating the performance of VIs are regression-based statistics, such as the coefficient of determination and root mean square error. These statistics, however, are not capable of quantifying the detailed relationship between VIs and biophysical parameters because the sensitivity of a VI is usually a function of the biophysical parameter instead of a constant. To better quantify this relationship, we developed a “sensitivity function” for measuring the sensitivity of a VI to biophysical parameters. The sensitivity function is defined as the first derivative of the regression function, divided by the standard error of the dependent variable prediction. The function elucidates the change in sensitivity over the range of the biophysical parameter. The Student's t- or z-statistic can be used to test the significance of VI sensitivity. Additionally, we developed a “relative sensitivity function” that compares the sensitivities of two VIs when the biophysical parameters are unavailable.

  1. Parameter screening: the use of a dummy parameter to identify non-influential parameters in a global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Khorashadi Zadeh, Farkhondeh; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2017-04-01

    Parameter estimation is a major concern in hydrological modeling, which may limit the use of complex simulators with a large number of parameters. To support the selection of parameters to include in or exclude from the calibration process, Global Sensitivity Analysis (GSA) is widely applied in modeling practices. Based on the results of GSA, the influential and the non-influential parameters are identified (i.e. parameters screening). Nevertheless, the choice of the screening threshold below which parameters are considered non-influential is a critical issue, which has recently received more attention in GSA literature. In theory, the sensitivity index of a non-influential parameter has a value of zero. However, since numerical approximations, rather than analytical solutions, are utilized in GSA methods to calculate the sensitivity indices, small but non-zero indices may be obtained for the indices of non-influential parameters. In order to assess the threshold that identifies non-influential parameters in GSA methods, we propose to calculate the sensitivity index of a "dummy parameter". This dummy parameter has no influence on the model output, but will have a non-zero sensitivity index, representing the error due to the numerical approximation. Hence, the parameters whose indices are above the sensitivity index of the dummy parameter can be classified as influential, whereas the parameters whose indices are below this index are within the range of the numerical error and should be considered as non-influential. To demonstrated the effectiveness of the proposed "dummy parameter approach", 26 parameters of a Soil and Water Assessment Tool (SWAT) model are selected to be analyzed and screened, using the variance-based Sobol' and moment-independent PAWN methods. The sensitivity index of the dummy parameter is calculated from sampled data, without changing the model equations. Moreover, the calculation does not even require additional model evaluations for the Sobol' method. A formal statistical test validates these parameter screening results. Based on the dummy parameter screening, 11 model parameters are identified as influential. Therefore, it can be denoted that the "dummy parameter approach" can facilitate the parameter screening process and provide guidance for GSA users to define a screening-threshold, with only limited additional resources. Key words: Parameter screening, Global sensitivity analysis, Dummy parameter, Variance-based method, Moment-independent method

  2. Quantifying Parameter Sensitivity, Interaction and Transferability in Hydrologically Enhanced Versions of Noah-LSM over Transition Zones

    NASA Technical Reports Server (NTRS)

    Rosero, Enrique; Yang, Zong-Liang; Wagener, Thorsten; Gulden, Lindsey E.; Yatheendradas, Soni; Niu, Guo-Yue

    2009-01-01

    We use sensitivity analysis to identify the parameters that are most responsible for shaping land surface model (LSM) simulations and to understand the complex interactions in three versions of the Noah LSM: the standard version (STD), a version enhanced with a simple groundwater module (GW), and version augmented by a dynamic phenology module (DV). We use warm season, high-frequency, near-surface states and turbulent fluxes collected over nine sites in the US Southern Great Plains. We quantify changes in the pattern of sensitive parameters, the amount and nature of the interaction between parameters, and the covariance structure of the distribution of behavioral parameter sets. Using Sobol s total and first-order sensitivity indexes, we show that very few parameters directly control the variance of the model output. Significant parameter interaction occurs so that not only the optimal parameter values differ between models, but the relationships between parameters change. GW decreases parameter interaction and appears to improve model realism, especially at wetter sites. DV increases parameter interaction and decreases identifiability, implying it is overparameterized and/or underconstrained. A case study at a wet site shows GW has two functional modes: one that mimics STD and a second in which GW improves model function by decoupling direct evaporation and baseflow. Unsupervised classification of the posterior distributions of behavioral parameter sets cannot group similar sites based solely on soil or vegetation type, helping to explain why transferability between sites and models is not straightforward. This evidence suggests a priori assignment of parameters should also consider climatic differences.

  3. Comparative Sensitivity Analysis of Muscle Activation Dynamics

    PubMed Central

    Günther, Michael; Götz, Thomas

    2015-01-01

    We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379

  4. Sensitivities of Tropical Cyclones to Surface Friction and the Coriolis Parameter in a 2-D Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Tao, Wei-Kuo; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The sensitivities to surface friction and the Coriolis parameter in tropical cyclogenesis are studied using an axisymmetric version of the Goddard cloud ensemble model. Our experiments demonstrate that tropical cyclogenesis can still occur without surface friction. However, the resulting tropical cyclone has very unrealistic structure. Surface friction plays an important role of giving the tropical cyclones their observed smaller size and diminished intensity. Sensitivity of the cyclogenesis process to surface friction. in terms of kinetic energy growth, has different signs in different phases of the tropical cyclone. Contrary to the notion of Ekman pumping efficiency, which implies a preference for the highest Coriolis parameter in the growth rate if all other parameters are unchanged, our experiments show no such preference.

  5. Optimal observables for multiparameter seismic tomography

    NASA Astrophysics Data System (ADS)

    Bernauer, Moritz; Fichtner, Andreas; Igel, Heiner

    2014-08-01

    We propose a method for the design of seismic observables with maximum sensitivity to a target model parameter class, and minimum sensitivity to all remaining parameter classes. The resulting optimal observables thereby minimize interparameter trade-offs in multiparameter inverse problems. Our method is based on the linear combination of fundamental observables that can be any scalar measurement extracted from seismic waveforms. Optimal weights of the fundamental observables are determined with an efficient global search algorithm. While most optimal design methods assume variable source and/or receiver positions, our method has the flexibility to operate with a fixed source-receiver geometry, making it particularly attractive in studies where the mobility of sources and receivers is limited. In a series of examples we illustrate the construction of optimal observables, and assess the potentials and limitations of the method. The combination of Rayleigh-wave traveltimes in four frequency bands yields an observable with strongly enhanced sensitivity to 3-D density structure. Simultaneously, sensitivity to S velocity is reduced, and sensitivity to P velocity is eliminated. The original three-parameter problem thereby collapses into a simpler two-parameter problem with one dominant parameter. By defining parameter classes to equal earth model properties within specific regions, our approach mimics the Backus-Gilbert method where data are combined to focus sensitivity in a target region. This concept is illustrated using rotational ground motion measurements as fundamental observables. Forcing dominant sensitivity in the near-receiver region produces an observable that is insensitive to the Earth structure at more than a few wavelengths' distance from the receiver. This observable may be used for local tomography with teleseismic data. While our test examples use a small number of well-understood fundamental observables, few parameter classes and a radially symmetric earth model, the method itself does not impose such restrictions. It can easily be applied to large numbers of fundamental observables and parameters classes, as well as to 3-D heterogeneous earth models.

  6. Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects.

    PubMed

    Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet

    2010-10-24

    Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary context to determine how modeling results should be interpreted in biological systems.

  7. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; ...

    2015-01-01

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  8. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  9. Quantitative analysis of vascular parameters for micro-CT imaging of vascular networks with multi-resolution.

    PubMed

    Zhao, Fengjun; Liang, Jimin; Chen, Xueli; Liu, Junting; Chen, Dongmei; Yang, Xiang; Tian, Jie

    2016-03-01

    Previous studies showed that all the vascular parameters from both the morphological and topological parameters were affected with the altering of imaging resolutions. However, neither the sensitivity analysis of the vascular parameters at multiple resolutions nor the distinguishability estimation of vascular parameters from different data groups has been discussed. In this paper, we proposed a quantitative analysis method of vascular parameters for vascular networks of multi-resolution, by analyzing the sensitivity of vascular parameters at multiple resolutions and estimating the distinguishability of vascular parameters from different data groups. Combining the sensitivity and distinguishability, we designed a hybrid formulation to estimate the integrated performance of vascular parameters in a multi-resolution framework. Among the vascular parameters, degree of anisotropy and junction degree were two insensitive parameters that were nearly irrelevant with resolution degradation; vascular area, connectivity density, vascular length, vascular junction and segment number were five parameters that could better distinguish the vascular networks from different groups and abide by the ground truth. Vascular area, connectivity density, vascular length and segment number not only were insensitive to multi-resolution but could also better distinguish vascular networks from different groups, which provided guidance for the quantification of the vascular networks in multi-resolution frameworks.

  10. Sensitivity of breeding parameters to food supply in Black-legged Kittiwakes Rissa tridactyla

    USGS Publications Warehouse

    Gill, Verena A.; Hatch, Scott A.; Lanctot, Richard B.

    2002-01-01

    We fed Herring Clupea pallasi to pairs of Black-legged Kittiwakes Rissa tridactyla throughout the breeding season in two years at a colony in the northern Gulf of Alaska. We measured responses to supplemental feeding in a wide array of breeding parameters to gauge their relative sensitivity to food supply, and thus their potential as indicators of natural foraging conditions. Conventional measures of success (hatching, fledging and overall productivity) were more effective as indicators of food supply than behavioural attributes such as courtship feeding, chick provisioning rates and sibling aggression. However, behaviour such as nest relief during incubation and adult attendance with older chicks were also highly responsive to supplemental food and may be useful for monitoring environmental conditions in studies of shorter duration. On average, the chick-rearing stage contained more sensitive indicators of food availability than prelaying or incubation stages. Overall, rates of hatching and fledging success, and the mean duration of incubation shifts were the most food-sensitive parameters studied.

  11. Complex multifractal nature in Mycobacterium tuberculosis genome

    PubMed Central

    Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.

    2017-01-01

    The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences. PMID:28440326

  12. Complex multifractal nature in Mycobacterium tuberculosis genome

    NASA Astrophysics Data System (ADS)

    Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.

    2017-04-01

    The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences.

  13. A model for hormonal control of the menstrual cycle: structural consistency but sensitivity with regard to data.

    PubMed

    Selgrade, J F; Harris, L A; Pasteur, R D

    2009-10-21

    This study presents a 13-dimensional system of delayed differential equations which predicts serum concentrations of five hormones important for regulation of the menstrual cycle. Parameters for the system are fit to two different data sets for normally cycling women. For these best fit parameter sets, model simulations agree well with the two different data sets but one model also has an abnormal stable periodic solution, which may represent polycystic ovarian syndrome. This abnormal cycle occurs for the model in which the normal cycle has estradiol levels at the high end of the normal range. Differences in model behavior are explained by studying hysteresis curves in bifurcation diagrams with respect to sensitive model parameters. For instance, one sensitive parameter is indicative of the estradiol concentration that promotes pituitary synthesis of a large amount of luteinizing hormone, which is required for ovulation. Also, it is observed that models with greater early follicular growth rates may have a greater risk of cycling abnormally.

  14. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC.

    PubMed

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V; Petway, Joy R

    2017-07-12

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH₃-N and NO₃-N. Results indicate that the integrated FME-GLUE-based model, with good Nash-Sutcliffe coefficients (0.53-0.69) and correlation coefficients (0.76-0.83), successfully simulates the concentrations of ON-N, NH₃-N and NO₃-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH₃-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO₃-N simulation, which was measured using global sensitivity.

  15. Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring

    NASA Astrophysics Data System (ADS)

    Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.

    2017-10-01

    In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.

  16. Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talukder, Srijeeta; Sen, Shrabani; Chaudhury, Pinaki, E-mail: pinakc@rediffmail.com

    We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction ε{sub hb}(AT) for an AT base pair and the ring factor ξ turn out to be the most sensitive parameters. In addition, the stackingmore » interaction ε{sub st}(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization.« less

  17. Evaluation of the AnnAGNPS Model for Predicting Runoff and Nutrient Export in a Typical Small Watershed in the Hilly Region of Taihu Lake.

    PubMed

    Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin

    2015-09-02

    The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds.

  18. Adaptation of an urban land surface model to a tropical suburban area: Offline evaluation, sensitivity analysis, and optimization of TEB/ISBA (SURFEX)

    NASA Astrophysics Data System (ADS)

    Harshan, Suraj

    The main objective of the present thesis is the improvement of the TEB/ISBA (SURFEX) urban land surface model (ULSM) through comprehensive evaluation, sensitivity analysis, and optimization experiments using energy balance and radiative and air temperature data observed during 11 months at a tropical sub-urban site in Singapore. Overall the performance of the model is satisfactory, with a small underestimation of net radiation and an overestimation of sensible heat flux. Weaknesses in predicting the latent heat flux are apparent with smaller model values during daytime and the model also significantly underpredicts both the daytime peak and nighttime storage heat. Surface temperatures of all facets are generally overpredicted. Significant variation exists in the model behaviour between dry and wet seasons. The vegetation parametrization used in the model is inadequate to represent the moisture dynamics, producing unrealistically low latent heat fluxes during a particularly dry period. The comprehensive evaluation of the USLM shows the need for accurate estimation of input parameter values for present site. Since obtaining many of these parameters through empirical methods is not feasible, the present study employed a two step approach aimed at providing information about the most sensitive parameters and an optimized parameter set from model calibration. Two well established sensitivity analysis methods (global: Sobol and local: Morris) and a state-of-the-art multiobjective evolutionary algorithm (Borg) were employed for sensitivity analysis and parameter estimation. Experiments were carried out for three different weather periods. The analysis indicates that roof related parameters are the most important ones in controlling the behaviour of the sensible heat flux and net radiation flux, with roof and road albedo as the most influential parameters. Soil moisture initialization parameters are important in controlling the latent heat flux. The built (town) fraction has a significant influence on all fluxes considered. Comparison between the Sobol and Morris methods shows similar sensitivities, indicating the robustness of the present analysis and that the Morris method can be employed as a computationally cheaper alternative of Sobol's method. Optimization as well as the sensitivity experiments for the three periods (dry, wet and mixed), show a noticeable difference in parameter sensitivity and parameter convergence, indicating inadequacies in model formulation. Existence of a significant proportion of less sensitive parameters might be indicating an over-parametrized model. Borg MOEA showed great promise in optimizing the input parameters set. The optimized model modified using the site specific values for thermal roughness length parametrization shows an improvement in the performances of outgoing longwave radiation flux, overall surface temperature, heat storage flux and sensible heat flux.

  19. Assessing uncertainty and sensitivity of model parameterizations and parameters in WRF affecting simulated surface fluxes and land-atmosphere coupling over the Amazon region

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.

    2016-12-01

    This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for improving the model physics parameterizations.

  20. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    PubMed

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables measured suggests that tree carbon allocation to coarse roots is independent of annual climate variability. The greater number of missing rings in branches highlights the fact that canopy development is a low priority for carbon allocation during poor growing conditions.

  1. High-Sensitivity GaN Microchemical Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas

    2009-01-01

    Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.

  2. Upper limb strength estimation of physically impaired persons using a musculoskeletal model: A sensitivity analysis.

    PubMed

    Carmichael, Marc G; Liu, Dikai

    2015-01-01

    Sensitivity of upper limb strength calculated from a musculoskeletal model was analyzed, with focus on how the sensitivity is affected when the model is adapted to represent a person with physical impairment. Sensitivity was calculated with respect to four muscle-tendon parameters: muscle peak isometric force, muscle optimal length, muscle pennation, and tendon slack length. Results obtained from a musculoskeletal model of average strength showed highest sensitivity to tendon slack length, followed by muscle optimal length and peak isometric force, which is consistent with existing studies. Muscle pennation angle was relatively insensitive. The analysis was repeated after adapting the musculoskeletal model to represent persons with varying severities of physical impairment. Results showed that utilizing the weakened model significantly increased the sensitivity of the calculated strength at the hand, with parameters previously insensitive becoming highly sensitive. This increased sensitivity presents a significant challenge in applications utilizing musculoskeletal models to represent impaired individuals.

  3. Sensitivity Challenge of Steep Transistors

    NASA Astrophysics Data System (ADS)

    Ilatikhameneh, Hesameddin; Ameen, Tarek A.; Chen, ChinYi; Klimeck, Gerhard; Rahman, Rajib

    2018-04-01

    Steep transistors are crucial in lowering power consumption of the integrated circuits. However, the difficulties in achieving steepness beyond the Boltzmann limit experimentally have hindered the fundamental challenges in application of these devices in integrated circuits. From a sensitivity perspective, an ideal switch should have a high sensitivity to the gate voltage and lower sensitivity to the device design parameters like oxide and body thicknesses. In this work, conventional tunnel-FET (TFET) and negative capacitance FET are shown to suffer from high sensitivity to device design parameters using full-band atomistic quantum transport simulations and analytical analysis. Although Dielectric Engineered (DE-) TFETs based on 2D materials show smaller sensitivity compared with the conventional TFETs, they have leakage issue. To mitigate this challenge, a novel DE-TFET design has been proposed and studied.

  4. Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease.

    PubMed

    Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen

    2016-01-01

    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI's potential as surrogate marker for SVD.

  5. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software.

    PubMed

    Liwarska-Bizukojc, Ewa; Biernacki, Rafal

    2010-10-01

    In order to simulate biological wastewater treatment processes, data concerning wastewater and sludge composition, process kinetics and stoichiometry are required. Selection of the most sensitive parameters is an important step of model calibration. The aim of this work is to verify the predictability of the activated sludge model, which is implemented in BioWin software, and select its most influential kinetic and stoichiometric parameters with the help of sensitivity analysis approach. Two different measures of sensitivity are applied: the normalised sensitivity coefficient (S(i,j)) and the mean square sensitivity measure (delta(j)(msqr)). It occurs that 17 kinetic and stoichiometric parameters of the BioWin activated sludge (AS) model can be regarded as influential on the basis of S(i,j) calculations. Half of the influential parameters are associated with growth and decay of phosphorus accumulating organisms (PAOs). The identification of the set of the most sensitive parameters should support the users of this model and initiate the elaboration of determination procedures for the parameters, for which it has not been done yet. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters.

    PubMed

    Bousbih, Safa; Zribi, Mehrez; Lili-Chabaane, Zohra; Baghdadi, Nicolas; El Hajj, Mohammad; Gao, Qi; Mougenot, Bernard

    2017-11-14

    The main objective of this study is to analyze the potential use of Sentinel-1 (S1) radar data for the estimation of soil characteristics (roughness and water content) and cereal vegetation parameters (leaf area index (LAI), and vegetation height (H)) in agricultural areas. Simultaneously to several radar acquisitions made between 2015 and 2017, using S1 sensors over the Kairouan Plain (Tunisia, North Africa), ground measurements of soil roughness, soil water content, LAI and H were recorded. The NDVI (normalized difference vegetation index) index computed from Landsat optical images revealed a strong correlation with in situ measurements of LAI. The sensitivity of the S1 measurements to variations in soil moisture, which has been reported in several scientific publications, is confirmed in this study. This sensitivity decreases with increasing vegetation cover growth (NDVI), and is stronger in the VV (vertical) polarization than in the VH cross-polarization. The results also reveal a similar increase in the dynamic range of radar signals observed in the VV and VH polarizations as a function of soil roughness. The sensitivity of S1 measurements to vegetation parameters (LAI and H) in the VV polarization is also determined, showing that the radar signal strength decreases when the vegetation parameters increase. No vegetation parameter sensitivity is observed in the VH polarization, probably as a consequence of volume scattering effects.

  7. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters

    PubMed Central

    Bousbih, Safa; Lili-Chabaane, Zohra; El Hajj, Mohammad; Gao, Qi

    2017-01-01

    The main objective of this study is to analyze the potential use of Sentinel-1 (S1) radar data for the estimation of soil characteristics (roughness and water content) and cereal vegetation parameters (leaf area index (LAI), and vegetation height (H)) in agricultural areas. Simultaneously to several radar acquisitions made between 2015 and 2017, using S1 sensors over the Kairouan Plain (Tunisia, North Africa), ground measurements of soil roughness, soil water content, LAI and H were recorded. The NDVI (normalized difference vegetation index) index computed from Landsat optical images revealed a strong correlation with in situ measurements of LAI. The sensitivity of the S1 measurements to variations in soil moisture, which has been reported in several scientific publications, is confirmed in this study. This sensitivity decreases with increasing vegetation cover growth (NDVI), and is stronger in the VV (vertical) polarization than in the VH cross-polarization. The results also reveal a similar increase in the dynamic range of radar signals observed in the VV and VH polarizations as a function of soil roughness. The sensitivity of S1 measurements to vegetation parameters (LAI and H) in the VV polarization is also determined, showing that the radar signal strength decreases when the vegetation parameters increase. No vegetation parameter sensitivity is observed in the VH polarization, probably as a consequence of volume scattering effects. PMID:29135929

  8. Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks.

    PubMed

    Rathinam, Muruhan; Sheppard, Patrick W; Khammash, Mustafa

    2010-01-21

    Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10,000 are demonstrated.

  9. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  10. Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method

    NASA Technical Reports Server (NTRS)

    Waelbroek, C.; Louis, J.-F.

    1995-01-01

    A model of net primary production (NPP), decomposition, and nitrogen cycling in tundra ecosystems has been developed. The adjoint technique is used to study the sensitivity of the computed annual net CO2 flux to perturbation in initial conditions, climatic inputs, and model's main parameters describing current seasonal CO2 exchange in wet sedge tundra at Barrow, Alaska. The results show that net CO2 flux is most sensitive to parameters characterizing litter chemical composition and more sensitive to decomposition parameters than to NPP parameters. This underlines the fact that in nutrient-limited ecosystems, decomposition drives net CO2 exchange by controlling mineralization of main nutrients. The results also indicate that the short-term (1 year) response of wet sedge tundra to CO2-induced warming is a significant increase in CO2 emission, creating a positive feedback to atmosphreic CO2 accumulation. However, a cloudiness increase during the same year can severely alter this response and lead to either a slight decrease or a strong increase in emitted CO2, depending on its exact timing. These results demonstrate that the adjoint method is well suited to study systems encountering regime changes, as a single run of the adjoint model provides sensitivities of the net CO2 flux to perturbations in all parameters and variables at any time of the year. Moreover, it is shown that large errors due to the presence of thresholds can be avoided by first delimiting the range of applicability of the adjoint results.

  11. Kinetic sensitivity of a receptor-binding radiopharmaceutical: Technetium-99m galactosyl-neoglycoalbumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vera, D.R.; Woodle, E.S.; Stadalnik, R.C.

    1989-09-01

    Kinetic sensitivity is the ability of a physiochemical parameter to alter the time-activity curve of a radiotracer. The kinetic sensitivity of liver and blood time-activity data resulting from a single bolus injection of ({sup 99m}Tc)galactosyl-neoglycoalbumin (( Tc)NGA) into healthy pigs was examined. Three parameters, hepatic plasma flow scaled as flow per plasma volume, ligand-receptor affinity, and total receptor concentration, were tested using (Tc)NGA injections of various molar doses and affinities. Simultaneous measurements of plasma volume (iodine-125 human serum albumin dilution), and hepatic plasma flow (indocyanine green extraction) were performed during 12 (Tc)NGA studies. Paired data sets demonstrated differences (P(chi v2)more » less than 0.01) in liver and blood time-activity curves in response to changes in each of the tested parameters. We conclude that the (Tc)NGA radiopharmacokinetic system is therefore sensitive to hepatic plasma flow, ligand-receptor affinity, and receptor concentration. In vivo demonstration of kinetic sensitivity permits delineation of the physiologic parameters that determine the biodistribution of a radiopharmaceutical. This delineation is a prerequisite to a valid analytic assessment of receptor biochemistry via kinetic modeling.« less

  12. SENSITIVITY OF BLIND PULSAR SEARCHES WITH THE FERMI LARGE AREA TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dormody, M.; Johnson, R. P.; Atwood, W. B.

    2011-12-01

    We quantitatively establish the sensitivity to the detection of young to middle-aged, isolated, gamma-ray pulsars through blind searches of Fermi Large Area Telescope (LAT) data using a Monte Carlo simulation. We detail a sensitivity study of the time-differencing blind search code used to discover gamma-ray pulsars in the first year of observations. We simulate 10,000 pulsars across a broad parameter space and distribute them across the sky. We replicate the analysis in the Fermi LAT First Source Catalog to localize the sources, and the blind search analysis to find the pulsars. We analyze the results and discuss the effect ofmore » positional error and spin frequency on gamma-ray pulsar detections. Finally, we construct a formula to determine the sensitivity of the blind search and present a sensitivity map assuming a standard set of pulsar parameters. The results of this study can be applied to population studies and are useful in characterizing unidentified LAT sources.« less

  13. Sensitivity Analysis of Cf-252 (sf) Neutron and Gamma Observables in CGMF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Austin Lewis; Talou, Patrick; Stetcu, Ionel

    CGMF is a Monte Carlo code that simulates the decay of primary fission fragments by emission of neutrons and gamma rays, according to the Hauser-Feshbach equations. As the CGMF code was recently integrated into the MCNP6.2 transport code, great emphasis has been placed on providing optimal parameters to CGMF such that many different observables are accurately represented. Of these observables, the prompt neutron spectrum, prompt neutron multiplicity, prompt gamma spectrum, and prompt gamma multiplicity are crucial for accurate transport simulations of criticality and nonproliferation applications. This contribution to the ongoing efforts to improve CGMF presents a study of the sensitivitymore » of various neutron and gamma observables to several input parameters for Californium-252 spontaneous fission. Among the most influential parameters are those that affect the input yield distributions in fragment mass and total kinetic energy (TKE). A new scheme for representing Y(A,TKE) was implemented in CGMF using three fission modes, S1, S2 and SL. The sensitivity profiles were calculated for 17 total parameters, which show that the neutron multiplicity distribution is strongly affected by the TKE distribution of the fragments. The total excitation energy (TXE) of the fragments is shared according to a parameter RT, which is defined as the ratio of the light to heavy initial temperatures. The sensitivity profile of the neutron multiplicity shows a second order effect of RT on the mean neutron multiplicity. A final sensitivity profile was produced for the parameter alpha, which affects the spin of the fragments. Higher values of alpha lead to higher fragment spins, which inhibit the emission of neutrons. Understanding the sensitivity of the prompt neutron and gamma observables to the many CGMF input parameters provides a platform for the optimization of these parameters.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Grace Chang; Jason Magalen

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deploymentmore » location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .« less

  15. Thirty-year survey on airborne pollen concentrations in Genoa, Italy: relationship with sensitizations, meteorological data, and air pollution.

    PubMed

    Negrini, Arsenio Corrado; Negrini, Simone; Giunta, Vania; Quaglini, Silvana; Ciprandi, Giorgio

    2011-01-01

    Pollen allergy represents a relevant health issue. Betulaceae sensitization significantly increased in Genoa, Italy, in the last decades. This study investigated possible relationships among pollen count, meteorological changes, air pollution, and sensitizations in this city during a 30-year period. Betulaceae, Urticaceae, Gramineae, and Oleaceae pollen counts were measured from 1981 to 2010 in Genoa. Sensitization to these pollens was also considered in large populations of allergic patients. Meteorological parameters and pollutants were also measured in the same area. Betulaceae sensitization increased over time. All pollen species significantly increased over this time. Pollen season advanced for Betulaceae and Urticaceae. Only Urticaceae season significantly increased. Temperature increased while rainfall decreased over the time. Pollutants significantly decreased. There were some relationships between pollen changes and climatic and air pollution parameters. This 30-year study conducted in an urbanized area provided evidence that Betulaceae sensitization significantly increased, pollen load significantly augmented, and climate and air pollution changed with a possible influence on pollen release.

  16. Diagnostic performance of optical coherence tomography ganglion cell--inner plexiform layer thickness measurements in early glaucoma.

    PubMed

    Mwanza, Jean-Claude; Budenz, Donald L; Godfrey, David G; Neelakantan, Arvind; Sayyad, Fouad E; Chang, Robert T; Lee, Richard K

    2014-04-01

    To evaluate the glaucoma diagnostic performance of ganglion cell inner-plexiform layer (GCIPL) parameters used individually and in combination with retinal nerve fiber layer (RNFL) or optic nerve head (ONH) parameters measured with Cirrus HD-OCT (Carl Zeiss Meditec, Inc, Dublin, CA). Prospective cross-sectional study. Fifty patients with early perimetric glaucoma and 49 age-matched healthy subjects. Three peripapillary RNFL and 3 macular GCIPL scans were obtained in 1 eye of each participant. A patient was considered glaucomatous if at least 2 of the 3 RNFL or GCIPL scans had the average or at least 1 sector measurement flagged at 1% to 5% or less than 1%. The diagnostic performance was determined for each GCIPL, RNFL, and ONH parameter as well as for binary or-logic and and-logic combinations of GCIPL with RNFL or ONH parameters. Sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR). Among GCIPL parameters, the minimum had the best diagnostic performance (sensitivity, 82.0%; specificity, 87.8%; PLR, 6.69; and NLR, 0.21). Inferior quadrant was the best RNFL parameter (sensitivity, 74%; specificity, 95.9%; PLR, 18.13; and NLR, 0.27), as was rim area (sensitivity, 68%; specificity, 98%; PLR, 33.3; and NLR, 0.33) among ONH parameters. The or-logic combination of minimum GCIPL and average RNFL provided the overall best diagnostic performance (sensitivity, 94%; specificity, 85.7%; PRL, 6.58; and NLR, 0.07) as compared with the best RNFL, best ONH, and best and-logic combination (minimum GCIPL and inferior quadrant RNFL; sensitivity, 64%; specificity, 100%; PLR, infinity; and NPR, 0.36). The binary or-logic combination of minimum GCIPL and average RNFL or rim area provides better diagnostic performances than those of and-logic combinations or best single GCIPL, RNFL, or ONH parameters. This finding may be clinically valuable for the diagnosis of early glaucoma. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  17. Sensitivity and Uncertainty Analysis for Streamflow Prediction Using Different Objective Functions and Optimization Algorithms: San Joaquin California

    NASA Astrophysics Data System (ADS)

    Paul, M.; Negahban-Azar, M.

    2017-12-01

    The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination- r2, Nash-Sutcliffe efficiency- NSE, percent bias- PBIAS, and Kling-Gupta efficiency- KGE). The preliminary results showed that using the SUFI-2 algorithm with the objective function NSE and KGE has improved significantly the calibration (e.g. R2 and NSE is found 0.52 and 0.47 respectively for daily streamflow calibration).

  18. Structural and functional assessment of macula to diagnose glaucoma.

    PubMed

    Rao, H L; Hussain, R S M; Januwada, M; Pillutla, L N; Begum, V U; Chaitanya, A; Senthil, S; Garudadri, C S

    2017-04-01

    PurposeTo compare the diagnostic abilities of structural (ganglion cell-inner plexiform layer (GCIPL) thickness measured using spectral domain optical coherence tomography (SDOCT)) and functional (visual sensitivities measured using standard automated perimetry (SAP) and microperimetry (MP)) assessments of macula in glaucoma.MethodsIn a prospective study, 46 control eyes (28 subjects) and 61 glaucoma eyes (46 patients) underwent visual sensitivity estimation at macula (central 10°) by SAP and MP, and GCIPL thickness measurement at macula by SDOCT. Glaucoma was diagnosed by experts based on the optic disc and retinal nerve fiber layer changes. Area under the receiver-operating characteristic (AUC) curves and sensitivities at 95% specificity were used to assess the diagnostic ability of visual sensitivity and GCIPL measurements at various macular sectors.ResultsAUCs of GCIPL parameters ranged between 0.58 and 0.79. AUCs of SAP and MP sensitivities ranged between 0.59 and 0.71, and 0.59 and 0.72, respectively. There were no statistically significant differences between the AUCs of corresponding sector measurements (P>0.10 for all comparisons). Sensitivities at 95% specificities ranged from 31-59% for GCIPL parameters, 16-34% for SAP, and 8-38% for MP parameters. Sensitivities were significantly better with GCIPL compared with SAP and MP parameters in diagnosing glaucoma. Inferotemporal, inferior, and superotemporal sector measurements of GCIPL and visual sensitivity showed the best abilities to diagnose glaucoma.ConclusionsComparing the diagnostic abilities of structural and functional tests at macula in glaucoma, GCIPL thickness measurements with SDOCT performed better than the visual sensitivity measurements by SAP and MP.

  19. Neuro-genetic system for optimization of GMI samples sensitivity.

    PubMed

    Pitta Botelho, A C O; Vellasco, M M B R; Hall Barbosa, C R; Costa Silva, E

    2016-03-01

    Magnetic sensors are largely used in several engineering areas. Among them, magnetic sensors based on the Giant Magnetoimpedance (GMI) effect are a new family of magnetic sensing devices that have a huge potential for applications involving measurements of ultra-weak magnetic fields. The sensitivity of magnetometers is directly associated with the sensitivity of their sensing elements. The GMI effect is characterized by a large variation of the impedance (magnitude and phase) of a ferromagnetic sample, when subjected to a magnetic field. Recent studies have shown that phase-based GMI magnetometers have the potential to increase the sensitivity by about 100 times. The sensitivity of GMI samples depends on several parameters, such as sample length, external magnetic field, DC level and frequency of the excitation current. However, this dependency is yet to be sufficiently well-modeled in quantitative terms. So, the search for the set of parameters that optimizes the samples sensitivity is usually empirical and very time consuming. This paper deals with this problem by proposing a new neuro-genetic system aimed at maximizing the impedance phase sensitivity of GMI samples. A Multi-Layer Perceptron (MLP) Neural Network is used to model the impedance phase and a Genetic Algorithm uses the information provided by the neural network to determine which set of parameters maximizes the impedance phase sensitivity. The results obtained with a data set composed of four different GMI sample lengths demonstrate that the neuro-genetic system is able to correctly and automatically determine the set of conditioning parameters responsible for maximizing their phase sensitivities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Kinematic sensitivity of robot manipulators

    NASA Technical Reports Server (NTRS)

    Vuskovic, Marko I.

    1989-01-01

    Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.

  1. A Quantitative Study of Oxygen as a Metabolic Regulator

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabrera, Marco E.

    1999-01-01

    An acute reduction in oxygen (O2) delivery to a tissue is generally associated with a decrease in phosphocreatine, increases in ADP, NADH/NAD, and inorganic phosphate, increased rates of glycolysis and lactate production, and reduced rates of pyruvate and fatty acid oxidation. However, given the complexity of the human bioenergetic system and its components, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in tissue O2 availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study, we extend a previously developed mathematical model of human bioenergetics to provide a physicochemical framework that permits quantitative understanding of O2 as a metabolic regulator. Specifically, the enhancement permits studying the effects of variations in tissue oxygenation and in parameters controlling the rate of cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The whole body is described as a bioenergetic system consisting of metabolically distinct tissue/organ subsystems that exchange materials with the blood. In order to study the dynamic response of each subsystem to stimuli, we solve the ordinary differential equations describing the temporal evolution of metabolite levels, given the initial concentrations. The solver used in the present study is the packaged code LSODE, as implemented in the NASA Lewis kinetics and sensitivity analysis code, LSENS. A major advantage of LSENS is the efficient procedures supporting systematic sensitivity analysis, which provides the basic methods for studying parameter sensitivities (i.e., changes in model behavior due to parameter variation). Sensitivity analysis establishes relationships between model predictions and problem parameters (i.e., initial concentrations, rate coefficients, etc). It helps determine the effects of uncertainties or changes in these input parameters on the predictions, which ultimately are compared with experimental observations in order to validate the model. Sensitivity analysis can identify parameters that must be determined accurately because of their large effect on the model predictions and parameters that need not be known with great precision because they have little or no effect on the solution. This capability may prove to be important in optimizing the design of experiments, thereby reducing the use of animals. This approach can be applied to study the metabolic effects of reduced oxygen delivery to cardiac muscle due to local myocardial ischemia and the effects of acute hypoxia on brain metabolism. Other important applications of sensitivity analysis include identification of quantitatively relevant pathways and biochemical species within an overall mechanism, when examining the effects of a genetic anomaly or pathological state on energetic system components and whole system behavior.

  2. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography.

    PubMed

    Jeoung, Jin Wook; Choi, Yun Jeong; Park, Ki Ho; Kim, Dong Myung

    2013-07-01

    We evaluated the diagnostic accuracy of macular ganglion cell-inner plexiform layer (GCIPL) measurements using a high-definition optical coherence tomography (Cirrus HD-OCT) ganglion cell analysis algorithm for detecting early and moderate-to-severe glaucoma. Totals of 119 normal subjects and 306 glaucoma patients (164 patients with early glaucoma and 142 with moderate-to-severe glaucoma) were enrolled from the Macular Ganglion Cell Imaging Study. Macular GCIPL, peripapillary retinal nerve fiber layer (RNFL) thickness, and optic nerve head (ONH) parameters were measured in each subject. Areas under the receiver operating characteristic curves (AUROCs) were calculated and compared. Based on the internal normative database, the sensitivity and specificity for detecting early and moderate-to-severe glaucoma were calculated. There was no statistically significant difference between the AUROCs for the best OCT parameters. For detecting early glaucoma, the sensitivity of the Cirrus GCIPL parameters ranged from 26.8% to 73.2% and that of the Cirrus RNFL parameters ranged from 6.1% to 61.6%. For the early glaucoma group, the best parameter from the GCIPL generally had a higher sensitivity than those of the RNFL and ONH parameters with comparable specificity (P < 0.05, McNemar's test). There were no significant differences between the AUROCs for Cirrus GCIPL, RNFL, and ONH parameters, indicating that these maps have similar diagnostic potentials for glaucoma. The minimum GCIPL showed better glaucoma diagnostic performance than the other parameters at comparable specificities. However, other GCIPL parameters showed performances comparable to those of the RNFL parameters.

  3. Inverse Modeling of Hydrologic Parameters Using Surface Flux and Runoff Observations in the Community Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu; Hou, Zhangshuan; Huang, Maoyi

    2013-12-10

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) - Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find thatmore » using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent - as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to the different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.« less

  4. A model study of periodic breathing, stability of the neonatal respiratory system, and causes of sudden infant death syndrome.

    PubMed

    Tehrani, F T

    1997-09-01

    A mathematical model of the neonatal respiratory system has been modified and used to examine the system under various physiological conditions at different stages of maturity. The respiratory responses in hypoxia, periodic breathing and following a sign have been analyzed. The effects of different respiratory parameters on the stability of the system for normal and premature infants have been investigated. The causes of periodic breathing, apnea spells and sudden infant death syndrome for full-term and premature infants have been studied, and the results compared with the available experimental findings. The response of the infant respiratory system has been found to be highly sensitive to several parameters of the system, as indicated by the results of this study. These significant parameters are sensitivity factor of central receptors to carbon dioxide, sensitivity factor of arterial receptors to carbon dioxide, sensitivity factor of arterial receptors to oxygen, functional residual capacity of the lungs, the alveolar-arterial oxygen difference and the lungs shunt ratio. It has been shown that different parts of the respiratory controller have antagonistic effects on hypoxic periodic breathing and apnea of infancy.

  5. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund-Potsdam-Jena (LPJ) model as an example

    NASA Astrophysics Data System (ADS)

    Sun, Guodong; Mu, Mu

    2017-05-01

    An important source of uncertainty, which causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. Therefore, finding a subset among numerous physical parameters in numerical models in the atmospheric and oceanic sciences, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach in China. The results imply that nonlinear interactions among parameters play a key role in the identification of sensitive parameters in arid and semi-arid regions of China compared to those in northern, northeastern, and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.

  6. Evaluation of the AnnAGNPS Model for Predicting Runoff and Nutrient Export in a Typical Small Watershed in the Hilly Region of Taihu Lake

    PubMed Central

    Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin

    2015-01-01

    The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds. PMID:26364642

  7. Analysis of temperature influence on the informative parameters of single-coil eddy current sensors

    NASA Astrophysics Data System (ADS)

    Borovik, S. Yu.; Kuteynikova, M. M.; Sekisov, Yu. N.; Skobelev, O. P.

    2017-07-01

    This paper describes the study of temperature in the flowing part of a turbine on the informative parameters (equivalent inductances of primary windings of matching transformers) of single-coil eddy-current sensors with a sensitive element in the form of a conductor section, which are used as part of automation systems for testing gas-turbine engines. In this case, the objects of temperature influences are both sensors and controlled turbine blades. The existing model of electromagnetic interaction of a sensitive element with the end part of a controlled blade is used to obtain quantitative estimates of temperature changes of equivalent inductances of sensitive elements and primary windings of matching transformers. This model is also used to determine the corresponding changes of the informative parameter of the sensor in the process of experimental studies of temperature influences on it (in the absence of blades in the sensitive region). This paper also presents transformations in the form of relationships of informative parameters with radial and axial displacements at normal (20 °C) and nominal (1000 °C) temperatures, and their difference is used to determine the families of dominant functions of temperature, which characterize possible temperature errors for any radial and axial displacements in the ranges of their variation.

  8. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC

    PubMed Central

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V.; Petway, Joy R.

    2017-01-01

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH3-N and NO3-N. Results indicate that the integrated FME-GLUE-based model, with good Nash–Sutcliffe coefficients (0.53–0.69) and correlation coefficients (0.76–0.83), successfully simulates the concentrations of ON-N, NH3-N and NO3-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH3-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO3-N simulation, which was measured using global sensitivity. PMID:28704958

  9. Importance of optimizing chromatographic conditions and mass spectrometric parameters for supercritical fluid chromatography/mass spectrometry.

    PubMed

    Fujito, Yuka; Hayakawa, Yoshihiro; Izumi, Yoshihiro; Bamba, Takeshi

    2017-07-28

    Supercritical fluid chromatography/mass spectrometry (SFC/MS) has great potential in high-throughput and the simultaneous analysis of a wide variety of compounds, and it has been widely used in recent years. The use of MS for detection provides the advantages of high sensitivity and high selectivity. However, the sensitivity of MS detection depends on the chromatographic conditions and MS parameters. Thus, optimization of MS parameters corresponding to the SFC condition is mandatory for maximizing performance when connecting SFC to MS. The aim of this study was to reveal a way to decide the optimum composition of the mobile phase and the flow rate of the make-up solvent for MS detection in a wide range of compounds. Additionally, we also showed the basic concept for determination of the optimum values of the MS parameters focusing on the MS detection sensitivity in SFC/MS analysis. To verify the versatility of these findings, a total of 441 pesticides with a wide polarity range (logP ow from -4.21 to 7.70) and pKa (acidic, neutral and basic). In this study, a new SFC-MS interface was used, which can transfer the entire volume of eluate into the MS by directly coupling the SFC with the MS. This enabled us to compare the sensitivity or optimum MS parameters for MS detection between LC/MS and SFC/MS for the same sample volume introduced into the MS. As a result, it was found that the optimum values of some MS parameters were completely different from those of LC/MS, and that SFC/MS-specific optimization of the analytical conditions is required. Lastly, we evaluated the sensitivity of SFC/MS using fully optimized analytical conditions. As a result, we confirmed that SFC/MS showed much higher sensitivity than LC/MS when the analytical conditions were fully optimized for SFC/MS; and the high sensitivity also increase the number of the compounds that can be detected with good repeatability in real sample analysis. This result indicates that SFC/MS has potential for practical use in the multiresidue analysis of a wide range of compounds that requires high sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Lazzara, David; Haimes, Robert

    2010-01-01

    The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.

  11. Ignoring correlation in uncertainty and sensitivity analysis in life cycle assessment: what is the risk?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groen, E.A., E-mail: Evelyne.Groen@gmail.com; Heijungs, R.; Leiden University, Einsteinweg 2, Leiden 2333 CC

    Life cycle assessment (LCA) is an established tool to quantify the environmental impact of a product. A good assessment of uncertainty is important for making well-informed decisions in comparative LCA, as well as for correctly prioritising data collection efforts. Under- or overestimation of output uncertainty (e.g. output variance) will lead to incorrect decisions in such matters. The presence of correlations between input parameters during uncertainty propagation, can increase or decrease the the output variance. However, most LCA studies that include uncertainty analysis, ignore correlations between input parameters during uncertainty propagation, which may lead to incorrect conclusions. Two approaches to include correlationsmore » between input parameters during uncertainty propagation and global sensitivity analysis were studied: an analytical approach and a sampling approach. The use of both approaches is illustrated for an artificial case study of electricity production. Results demonstrate that both approaches yield approximately the same output variance and sensitivity indices for this specific case study. Furthermore, we demonstrate that the analytical approach can be used to quantify the risk of ignoring correlations between input parameters during uncertainty propagation in LCA. We demonstrate that: (1) we can predict if including correlations among input parameters in uncertainty propagation will increase or decrease output variance; (2) we can quantify the risk of ignoring correlations on the output variance and the global sensitivity indices. Moreover, this procedure requires only little data. - Highlights: • Ignoring correlation leads to under- or overestimation of the output variance. • We demonstrated that the risk of ignoring correlation can be quantified. • The procedure proposed is generally applicable in life cycle assessment. • In some cases, ignoring correlation has a minimal effect on decision-making tools.« less

  12. MOVES sensitivity study

    DOT National Transportation Integrated Search

    2012-01-01

    Purpose: : To determine ranking of important parameters and the overall sensitivity to values of variables in MOVES : To allow a greater understanding of the MOVES modeling process for users : Continued support by FHWA to transportation modeling comm...

  13. Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease

    PubMed Central

    Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen

    2016-01-01

    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI’s potential as surrogate marker for SVD. PMID:26808982

  14. Impact parameter smearing effects on isospin sensitive observables in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Yingxun; Li, Zhuxia; Wang, Nan; Cui, Ying; Winkelbauer, Jack

    2018-04-01

    The validity of impact parameter estimation from the multiplicity of charged particles at low-intermediate energies is checked within the framework of the improved quantum molecular dynamics model. The simulations show that the multiplicity of charged particles cannot estimate the impact parameter of heavy ion collisions very well, especially for central collisions at the beam energies lower than ˜70 MeV/u due to the large fluctuations of the multiplicity of charged particles. The simulation results for the central collisions defined by the charged particle multiplicity are compared to those by using impact parameter b =2 fm and it shows that the charge distribution for 112Sn+112Sn at the beam energy of 50 MeV/u is different evidently for two cases; and the chosen isospin sensitive observable, the coalescence invariant single neutron to proton yield ratio, reduces less than 15% for neutron-rich systems Sn,132124+124Sn at Ebeam=50 MeV/u, while the coalescence invariant double neutron to proton yield ratio does not have obvious difference. The sensitivity of the chosen isospin sensitive observables to effective mass splitting is studied for central collisions defined by the multiplicity of charged particles. Our results show that the sensitivity is enhanced for 132Sn+124Sn relative to that for 124Sn+124Sn , and this reaction system should be measured in future experiments to study the effective mass splitting by heavy ion collisions.

  15. Sensitivity analysis of helicopter IMC decelerating steep approach and landing performance to navigation system parameters

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Results of a study to investigate, by means of a computer simulation, the performance sensitivity of helicopter IMC DSAL operations as a function of navigation system parameters are presented. A mathematical model representing generically a navigation system is formulated. The scenario simulated consists of a straight in helicopter approach to landing along a 6 deg glideslope. The deceleration magnitude chosen is 03g. The navigation model parameters are varied and the statistics of the total system errors (TSE) computed. These statistics are used to determine the critical navigation system parameters that affect the performance of the closed-loop navigation, guidance and control system of a UH-1H helicopter.

  16. Can the efficiency of modified Alvarado scoring system in the diagnosis acute appendicitis be increased with tenesmus?

    PubMed

    Bulus, Hakan; Tas, Adnan; Morkavuk, Baris; Koklu, Seyfettin; Soy, Derya; Coskun, Ali

    2013-01-01

    Acute appendicitis is one of the main pathological conditions requiring emergency surgical intervention. The most widely accepted scoring system is modified Alvarado scoring system (MASS). In this study we aimed to improve the efficiency of MASS by adding a new parameter and to evaluate its efficiency in the diagnosis of acute appendicitis. This study included 158 patients who underwent acute appendectomy in Keçiören Training and Research Hospital General Surgery Department. In addition to criteria of MASS, all patients were questioned about the presence of tenesmus. The validity of MASS and MASS with additional parameter was evaluated with respect to sensitivity, specificity and positive and negative predictive values. Accuracy rates of MASS, clinical findings, ultrasonography and MASS with additional parameter in the diagnosis of acute appendicitis were 64, 76, 85 and 80 %. False positivity rates for clinical findings, MASS and MASS with additional parameter in the diagnosis of acute appendicitis were 17, 26 and 10 %, respectively. Sensitivity and specificity of clinical findings in the diagnosis of acute appendicitis were 83 and 66 %, respectively. Sensitivity and specificity of MASS in the diagnosis of acute appendicitis were 74 and 39 %, respectively, and those of MASS with additional parameter were appendicitis increased to 83 and 66 %, respectively. MASS is a simple, cheap and objective scoring system and does not require expertise. When tenesmus is added to standard MASS, rates of accuracy, sensitivity and specificity become better than those in MASS in the diagnosis of acute appendicitis.

  17. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling: GEOSTATISTICAL SENSITIVITY ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Chen, Xingyuan; Ye, Ming

    Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level ofmore » the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.« less

  18. Sensitivity analysis of eigenvalues for an electro-hydraulic servomechanism

    NASA Astrophysics Data System (ADS)

    Stoia-Djeska, M.; Safta, C. A.; Halanay, A.; Petrescu, C.

    2012-11-01

    Electro-hydraulic servomechanisms (EHSM) are important components of flight control systems and their role is to control the movement of the flying control surfaces in response to the movement of the cockpit controls. As flight-control systems, the EHSMs have a fast dynamic response, a high power to inertia ratio and high control accuracy. The paper is devoted to the study of the sensitivity for an electro-hydraulic servomechanism used for an aircraft aileron action. The mathematical model of the EHSM used in this paper includes a large number of parameters whose actual values may vary within some ranges of uncertainty. It consists in a nonlinear ordinary differential equation system composed by the mass and energy conservation equations, the actuator movement equations and the controller equation. In this work the focus is on the sensitivities of the eigenvalues of the linearized homogeneous system, which are the partial derivatives of the eigenvalues of the state-space system with respect the parameters. These are obtained using a modal approach based on the eigenvectors of the state-space direct and adjoint systems. To calculate the eigenvalues and their sensitivity the system's Jacobian and its partial derivatives with respect the parameters are determined. The calculation of the derivative of the Jacobian matrix with respect to the parameters is not a simple task and for many situations it must be done numerically. The system stability is studied in relation with three parameters: m, the equivalent inertial load of primary control surface reduced to the actuator rod; B, the bulk modulus of oil and p a pressure supply proportionality coefficient. All the sensitivities calculated in this work are in good agreement with those obtained through recalculations.

  19. Effect of a single session of muscle-biased therapy on pain sensitivity: a systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Gay, Charles W; Alappattu, Meryl J; Coronado, Rogelio A; Horn, Maggie E; Bishop, Mark D

    2013-01-01

    Background Muscle-biased therapies (MBT) are commonly used to treat pain, yet several reviews suggest evidence for the clinical effectiveness of these therapies is lacking. Inadequate treatment parameters have been suggested to account for inconsistent effects across studies. Pain sensitivity may serve as an intermediate physiologic endpoint helping to establish optimal MBT treatment parameters. The purpose of this review was to summarize the current literature investigating the short-term effect of a single dose of MBT on pain sensitivity in both healthy and clinical populations, with particular attention to specific MBT parameters of intensity and duration. Methods A systematic search for articles meeting our prespecified criteria was conducted using Cumulative Index to Nursing and Allied Health Literature (CINAHL) and MEDLINE from the inception of each database until July 2012, in accordance with guidelines from the Preferred Reporting Items for Systematic reviews and Meta-Analysis. Relevant characteristics from studies included type, intensity, and duration of MBT and whether short-term changes in pain sensitivity and clinical pain were noted with MBT application. Study results were pooled using a random-effects model to estimate the overall effect size of a single dose of MBT on pain sensitivity as well as the effect of MBT, dependent on comparison group and population type. Results Reports from 24 randomized controlled trials (23 articles) were included, representing 36 MBT treatment arms and 29 comparative groups, where 10 groups received active agents, 11 received sham/inert treatments, and eight received no treatment. MBT demonstrated a favorable and consistent ability to modulate pain sensitivity. Short-term modulation of pain sensitivity was associated with short-term beneficial effects on clinical pain. Intensity of MBT, but not duration, was linked with change in pain sensitivity. A meta-analysis was conducted on 17 studies that assessed the effect of MBT on pressure pain thresholds. The results suggest that MBT had a favorable effect on pressure pain thresholds when compared with no-treatment and sham/inert groups, and effects comparable with those of other active treatments. Conclusion The evidence supports the use of pain sensitivity measures by future research to help elucidate optimal therapeutic parameters for MBT as an intermediate physiologic marker. PMID:23403507

  20. Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models.

    PubMed

    Degeling, Koen; IJzerman, Maarten J; Koopman, Miriam; Koffijberg, Hendrik

    2017-12-15

    Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.

  1. Parameter sensitivity and identifiability for a biogeochemical model of hypoxia in the northern Gulf of Mexico

    EPA Science Inventory

    Local sensitivity analyses and identifiable parameter subsets were used to describe numerical constraints of a hypoxia model for bottom waters of the northern Gulf of Mexico. The sensitivity of state variables differed considerably with parameter changes, although most variables ...

  2. MOESHA: A genetic algorithm for automatic calibration and estimation of parameter uncertainty and sensitivity of hydrologic models

    EPA Science Inventory

    Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...

  3. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait.

    PubMed

    Carbone, V; van der Krogt, M M; Koopman, H F J M; Verdonschot, N

    2016-06-14

    Subject-specific musculoskeletal (MS) models of the lower extremity are essential for applications such as predicting the effects of orthopedic surgery. We performed an extensive sensitivity analysis to assess the effects of potential errors in Hill muscle-tendon (MT) model parameters for each of the 56 MT parts contained in a state-of-the-art MS model. We used two metrics, namely a Local Sensitivity Index (LSI) and an Overall Sensitivity Index (OSI), to distinguish the effect of the perturbation on the predicted force produced by the perturbed MT parts and by all the remaining MT parts, respectively, during a simulated gait cycle. Results indicated that sensitivity of the model depended on the specific role of each MT part during gait, and not merely on its size and length. Tendon slack length was the most sensitive parameter, followed by maximal isometric muscle force and optimal muscle fiber length, while nominal pennation angle showed very low sensitivity. The highest sensitivity values were found for the MT parts that act as prime movers of gait (Soleus: average OSI=5.27%, Rectus Femoris: average OSI=4.47%, Gastrocnemius: average OSI=3.77%, Vastus Lateralis: average OSI=1.36%, Biceps Femoris Caput Longum: average OSI=1.06%) and hip stabilizers (Gluteus Medius: average OSI=3.10%, Obturator Internus: average OSI=1.96%, Gluteus Minimus: average OSI=1.40%, Piriformis: average OSI=0.98%), followed by the Peroneal muscles (average OSI=2.20%) and Tibialis Anterior (average OSI=1.78%) some of which were not included in previous sensitivity studies. Finally, the proposed priority list provides quantitative information to indicate which MT parts and which MT parameters should be estimated most accurately to create detailed and reliable subject-specific MS models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sensitivity and specificity of eustachian tube function tests in adults.

    PubMed

    Doyle, William J; Swarts, J Douglas; Banks, Julianne; Casselbrant, Margaretha L; Mandel, Ellen M; Alper, Cuneyt M

    2013-07-01

    The study demonstrates the utility of eustachian tube (ET) function (ETF) test results for accurately assigning ears to disease state. To determine if ETF tests can identify ears with physician-diagnosed ET dysfunction (ETD) in a mixed population at high sensitivity and specificity and to define the interrelatedness of ETF test parameters. Through use of the forced-response, inflation-deflation, Valsalva, and sniffing tests, ETF was evaluated in 15 control ears of adult subjects after unilateral myringotomy (group 1) and in 23 ears of 19 adult subjects with ventilation tubes inserted for ETD (group 2). Data were analyzed using logistic regression including each parameter independently and then a step-down discriminant analysis including all ETF test parameters to predict group assignment. Factor analysis operating over all parameters was used to explore relatedness. ETF testing. ETF parameters for the forced response, inflation-deflation, Valsalva, and sniffing tests measured in 15 control ears of adult subjects after unilateral myringotomy (group 1) and in 23 ears of 19 adult subjects with ventilation tubes inserted for ETD (group 2). The discriminant analysis identified 4 ETF test parameters (Valsalva, ET opening pressure, dilatory efficiency, and percentage of positive pressure equilibrated) that together correctly assigned ears to group 2 at a sensitivity of 95% and a specificity of 83%. Individual parameters representing the efficiency of ET opening during swallowing showed moderately accurate assignments of ears to their respective groups. Three factors captured approximately 98% of the variance among parameters: the first had negative loadings of the ETF structural parameters; the second had positive loadings of the muscle-assisted ET opening parameters; and the third had negative loadings of the muscle-assisted ET opening parameters and positive loadings of the structural parameters. These results show that ETF tests can correctly assign individual ears to physician-diagnosed ETD with high sensitivity and specificity and that ETF test parameters can be grouped into structural-functional categories.

  5. Sensitivity study on durability variables of marine concrete structures

    NASA Astrophysics Data System (ADS)

    Zhou, Xin'gang; Li, Kefei

    2013-06-01

    In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.

  6. Overflow Simulations using MPAS-Ocean in Idealized and Realistic Domains

    NASA Astrophysics Data System (ADS)

    Reckinger, S.; Petersen, M. R.; Reckinger, S. J.

    2016-02-01

    MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Also, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates. Additionally, preliminary measurements of overflow diagnostics on global simulations using a realistic oceanic domain are presented.

  7. Reaction time as an indicator of insufficient effort: Development and validation of an embedded performance validity parameter.

    PubMed

    Stevens, Andreas; Bahlo, Simone; Licha, Christina; Liske, Benjamin; Vossler-Thies, Elisabeth

    2016-11-30

    Subnormal performance in attention tasks may result from various sources including lack of effort. In this report, the derivation and validation of a performance validity parameter for reaction time is described, using a set of malingering-indices ("Slick-criteria"), and 3 independent samples of participants (total n =893). The Slick-criteria yield an estimate of the probability of malingering based on the presence of an external incentive, evidence from neuropsychological testing, from self-report and clinical data. In study (1) a validity parameter is derived using reaction time data of a sample, composed of inpatients with recent severe brain lesions not involved in litigation and of litigants with and without brain lesion. In study (2) the validity parameter is tested in an independent sample of litigants. In study (3) the parameter is applied to an independent sample comprising cooperative and non-cooperative testees. Logistic regression analysis led to a derived validity parameter based on median reaction time and standard deviation. It performed satisfactorily in studies (2) and (3) (study 2 sensitivity=0.94, specificity=1.00; study 3 sensitivity=0.79, specificity=0.87). The findings suggest that median reaction time and standard deviation may be used as indicators of negative response bias. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters

    NASA Astrophysics Data System (ADS)

    Boccardo, A. D.; Dardati, P. M.; Godoy, L. A.; Celentano, D. J.

    2018-06-01

    Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters ( i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.

  9. Zebrafish embryotoxicity test for developmental (neuro)toxicity: Demo case of an integrated screening approach system using anti-epileptic drugs.

    PubMed

    Beker van Woudenberg, Anna; Snel, Cor; Rijkmans, Eke; de Groot, Didima; Bouma, Marga; Hermsen, Sanne; Piersma, Aldert; Menke, Aswin; Wolterbeek, André

    2014-11-01

    To improve the predictability of the zebrafish embryotoxicity test (ZET) for developmental (neuro)toxicity screening, we used a multiple-endpoints strategy, including morphology, motor activity (MA), histopathology and kinetics. The model compounds used were antiepileptic drugs (AEDs): valproic acid (VPA), carbamazepine (CBZ), ethosuximide (ETH) and levetiracetam (LEV). For VPA, histopathology was the most sensitive parameter, showing effects already at 60μM. For CBZ, morphology and MA were the most sensitive parameters, showing effects at 180μM. For ETH, all endpoints showed similar sensitivity (6.6mM), whereas MA was the most sensitive parameter for LEV (40mM). Inclusion of kinetics did not alter the absolute ranking of the compounds, but the relative potency was changed considerably. Taking all together, this demo-case study showed that inclusion of multiple-endpoints in ZET may increase the sensitivity of the assay, contribute to the elucidation of the mode of toxic action and to a better definition of the applicability domain of ZET. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Sensitivity of land surface modeling to parameters: An uncertainty quantification method applied to the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.

    2015-12-01

    Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes or both to determine the full range of sensitivity of Earth system modeling to land-surface parameters. This can facilitate sampling strategies in measurement campaigns targeted at reduction of climate modeling uncertainties and can also provide guidance on land parameter calibration for simulation optimization.

  11. A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model

    DOE PAGES

    Gan, Yanjun; Duan, Qingyun; Gong, Wei; ...

    2014-01-01

    Sensitivity analysis (SA) is a commonly used approach for identifying important parameters that dominate model behaviors. We use a newly developed software package, a Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE), to evaluate the effectiveness and efficiency of ten widely used SA methods, including seven qualitative and three quantitative ones. All SA methods are tested using a variety of sampling techniques to screen out the most sensitive (i.e., important) parameters from the insensitive ones. The Sacramento Soil Moisture Accounting (SAC-SMA) model, which has thirteen tunable parameters, is used for illustration. The South Branch Potomac River basin nearmore » Springfield, West Virginia in the U.S. is chosen as the study area. The key findings from this study are: (1) For qualitative SA methods, Correlation Analysis (CA), Regression Analysis (RA), and Gaussian Process (GP) screening methods are shown to be not effective in this example. Morris One-At-a-Time (MOAT) screening is the most efficient, needing only 280 samples to identify the most important parameters, but it is the least robust method. Multivariate Adaptive Regression Splines (MARS), Delta Test (DT) and Sum-Of-Trees (SOT) screening methods need about 400–600 samples for the same purpose. Monte Carlo (MC), Orthogonal Array (OA) and Orthogonal Array based Latin Hypercube (OALH) are appropriate sampling techniques for them; (2) For quantitative SA methods, at least 2777 samples are needed for Fourier Amplitude Sensitivity Test (FAST) to identity parameter main effect. McKay method needs about 360 samples to evaluate the main effect, more than 1000 samples to assess the two-way interaction effect. OALH and LPτ (LPTAU) sampling techniques are more appropriate for McKay method. For the Sobol' method, the minimum samples needed are 1050 to compute the first-order and total sensitivity indices correctly. These comparisons show that qualitative SA methods are more efficient but less accurate and robust than quantitative ones.« less

  12. A new methodology based on sensitivity analysis to simplify the recalibration of functional-structural plant models in new conditions.

    PubMed

    Mathieu, Amélie; Vidal, Tiphaine; Jullien, Alexandra; Wu, QiongLi; Chambon, Camille; Bayol, Benoit; Cournède, Paul-Henry

    2018-06-19

    Functional-structural plant models (FSPMs) describe explicitly the interactions between plants and their environment at organ to plant scale. However, the high level of description of the structure or model mechanisms makes this type of model very complex and hard to calibrate. A two-step methodology to facilitate the calibration process is proposed here. First, a global sensitivity analysis method was applied to the calibration loss function. It provided first-order and total-order sensitivity indexes that allow parameters to be ranked by importance in order to select the most influential ones. Second, the Akaike information criterion (AIC) was used to quantify the model's quality of fit after calibration with different combinations of selected parameters. The model with the lowest AIC gives the best combination of parameters to select. This methodology was validated by calibrating the model on an independent data set (same cultivar, another year) with the parameters selected in the second step. All the parameters were set to their nominal value; only the most influential ones were re-estimated. Sensitivity analysis applied to the calibration loss function is a relevant method to underline the most significant parameters in the estimation process. For the studied winter oilseed rape model, 11 out of 26 estimated parameters were selected. Then, the model could be recalibrated for a different data set by re-estimating only three parameters selected with the model selection method. Fitting only a small number of parameters dramatically increases the efficiency of recalibration, increases the robustness of the model and helps identify the principal sources of variation in varying environmental conditions. This innovative method still needs to be more widely validated but already gives interesting avenues to improve the calibration of FSPMs.

  13. Effect of Cryogenic Treatment on Sensitization of 304 Stainless Steel in TIG Welding

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder; Slathia, Ravinder Singh

    2016-04-01

    Stainless steel (SS) is sensitized by a thermal treatment in the range of 400-850 °C and inter-granular attack would occur upon subsequent exposure to certain media. In many practical situations, such as welding, sensitization is best studied by continuous cooling through the sensitizing temperature range wherein the variables are the peak temperature reached and the cooling rate in contrast to temperature and time of the isothermal hold which has been the customary practice. There are also various methods of controlling the inter-granular corrosion viz. lowering the carbon content, adding stabilizers and applying solution heat treatment but all these methods are either costly or difficult to apply. This study is focussed on the effect of cryogenically treated tungsten electrode of TIG welding on the sensitization behaviour of 304SS by taking into consideration the weld properties (like: hardness, tensile strength, percentage elongation and micro-structure). The parameters of significance are current, pulse frequency and gas flow rate. Further the study suggested that the results of non cryo treated electrode were better than the treated one on sensitization of welded joints during TIG welding within the range of selected parameters.

  14. Effect of different transport observations on inverse modeling results: case study of a long-term groundwater tracer test monitored at high resolution

    NASA Astrophysics Data System (ADS)

    Rasa, Ehsan; Foglia, Laura; Mackay, Douglas M.; Scow, Kate M.

    2013-11-01

    Conservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs ( m 1), and tracer cumulative mass discharge ( M d) through control planes combined with hydraulic head observations ( h). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used. In this experiment, bromide was injected to create two adjacent plumes monitored at six different transects (perpendicular to groundwater flow) with a total of 162 monitoring wells. A total of 133 different observations of transient hydraulic head, 1,158 of BTC concentration, 23 of first moment, and 36 of mass discharge were used for sensitivity analysis and parameter estimation of nine flow and transport parameters. The importance of each group of transport observations in estimating these parameters was evaluated using sensitivity analysis, and five out of nine parameters were calibrated against these data. Results showed the advantages of using temporal moment of conservative tracer BTCs and mass discharge as observations for inverse modeling.

  15. MOVES2010a regional level sensitivity analysis

    DOT National Transportation Integrated Search

    2012-12-10

    This document discusses the sensitivity of various input parameter effects on emission rates using the US Environmental Protection Agencys (EPAs) MOVES2010a model at the regional level. Pollutants included in the study are carbon monoxide (CO),...

  16. Sensitivity analysis of infectious disease models: methods, advances and their application

    PubMed Central

    Wu, Jianyong; Dhingra, Radhika; Gambhir, Manoj; Remais, Justin V.

    2013-01-01

    Sensitivity analysis (SA) can aid in identifying influential model parameters and optimizing model structure, yet infectious disease modelling has yet to adopt advanced SA techniques that are capable of providing considerable insights over traditional methods. We investigate five global SA methods—scatter plots, the Morris and Sobol’ methods, Latin hypercube sampling-partial rank correlation coefficient and the sensitivity heat map method—and detail their relative merits and pitfalls when applied to a microparasite (cholera) and macroparasite (schistosomaisis) transmission model. The methods investigated yielded similar results with respect to identifying influential parameters, but offered specific insights that vary by method. The classical methods differed in their ability to provide information on the quantitative relationship between parameters and model output, particularly over time. The heat map approach provides information about the group sensitivity of all model state variables, and the parameter sensitivity spectrum obtained using this method reveals the sensitivity of all state variables to each parameter over the course of the simulation period, especially valuable for expressing the dynamic sensitivity of a microparasite epidemic model to its parameters. A summary comparison is presented to aid infectious disease modellers in selecting appropriate methods, with the goal of improving model performance and design. PMID:23864497

  17. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Treesearch

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  18. Sensitivity of Space Station alpha joint robust controller to structural modal parameter variations

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Cooper, Paul A.; Lim, Tae W.

    1991-01-01

    The photovoltaic array sun tracking control system of Space Station Freedom is described. A synthesis procedure for determining optimized values of the design variables of the control system is developed using a constrained optimization technique. The synthesis is performed to provide a given level of stability margin, to achieve the most responsive tracking performance, and to meet other design requirements. Performance of the baseline design, which is synthesized using predicted structural characteristics, is discussed and the sensitivity of the stability margin is examined for variations of the frequencies, mode shapes and damping ratios of dominant structural modes. The design provides enough robustness to tolerate a sizeable error in the predicted modal parameters. A study was made of the sensitivity of performance indicators as the modal parameters of the dominant modes vary. The design variables are resynthesized for varying modal parameters in order to achieve the most responsive tracking performance while satisfying the design requirements. This procedure of reoptimization design parameters would be useful in improving the control system performance if accurate model data are provided.

  19. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE PAGES

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  20. Further comments on sensitivities, parameter estimation, and sampling design in one-dimensional analysis of solute transport in porous media

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1988-01-01

    Sensitivities of solute concentration to parameters associated with first-order chemical decay, boundary conditions, initial conditions, and multilayer transport are examined in one-dimensional analytical models of transient solute transport in porous media. A sensitivity is a change in solute concentration resulting from a change in a model parameter. Sensitivity analysis is important because minimum information required in regression on chemical data for the estimation of model parameters by regression is expressed in terms of sensitivities. Nonlinear regression models of solute transport were tested on sets of noiseless observations from known models that exceeded the minimum sensitivity information requirements. Results demonstrate that the regression models consistently converged to the correct parameters when the initial sets of parameter values substantially deviated from the correct parameters. On the basis of the sensitivity analysis, several statements may be made about design of sampling for parameter estimation for the models examined: (1) estimation of parameters associated with solute transport in the individual layers of a multilayer system is possible even when solute concentrations in the individual layers are mixed in an observation well; (2) when estimating parameters in a decaying upstream boundary condition, observations are best made late in the passage of the front near a time chosen by adding the inverse of an hypothesized value of the source decay parameter to the estimated mean travel time at a given downstream location; (3) estimation of a first-order chemical decay parameter requires observations to be made late in the passage of the front, preferably near a location corresponding to a travel time of √2 times the half-life of the solute; and (4) estimation of a parameter relating to spatial variability in an initial condition requires observations to be made early in time relative to passage of the solute front.

  1. Anisotropic rotational diffusion studied by passage saturation transfer electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Robinson, Bruce H.; Dalton, Larry R.

    1980-01-01

    The stochastic Liouville equation for the spin density matrix is modified to consider the effects of Brownian anisotropic rotational diffusion upon electron paramagnetic resonance (EPR) and saturation transfer electron paramagnetic resonance (ST-EPR) spectra. Spectral shapes and the ST-EPR parameters L″/L, C'/C, and H″/H defined by Thomas, Dalton, and Hyde at X-band microwave frequencies [J. Chem. Phys. 65, 3006 (1976)] are examined and discussed in terms of the rotational times τ∥ and τ⊥ and in terms of other defined correlation times for systems characterized by magnetic tensors of axial symmetry and for systems characterized by nonaxially symmetric magnetic tensors. For nearly axially symmetric magnetic tensors, such as nitroxide spin labels studied employing 1-3 GHz microwaves, ST-EPR spectra for systems undergoing anisotropic rotational diffusion are virtually indistinguishable from spectra for systems characterized by isotropic diffusion. For nonaxially symmetric magnetic tensors, such as nitroxide spin labels studied employing 8-35 GHz microwaves, the high field region of the ST-EPR spectra, and hence the H″/H parameter, will be virtually indistinguishable from spectra, and parameter values, obtained for isotropic diffusion. On the other hand, the central spectral region at x-band microwave frequencies, and hence the C'/C parameter, is sensitive to the anisotropic diffusion model provided that a unique and static relationship exists between the magnetic and diffusion tensors. Random labeling or motion of the spin label relative to the biomolecule whose hydrodynamic properties are to be investigated will destroy spectral sensitivity to anisotropic motion. The sensitivity to anisotropic motion is enhanced in proceeding to 35 GHz with the increased sensitivity evident in the low field half of the EPR and ST-EPR spectra. The L″/L parameter is thus a meaningful indicator of anisotropic motion when compared with H″/H parameter analysis. However, consideration of spectral shapes suggests that the C'/C parameter definition is not meaningfully extended from 9.5 to 35 GHz. Alternative definitions of the L″/L and C'/C parameters are proposed for those microwave frequencies for which the electron Zeeman anisotropy is comparable to or greater than the electron-nitrogen nuclear hyperfine anisotropy.

  2. The Sensitivity of Parameter Estimates to the Latent Ability Distribution. Research Report. ETS RR-11-40

    ERIC Educational Resources Information Center

    Xu, Xueli; Jia, Yue

    2011-01-01

    Estimation of item response model parameters and ability distribution parameters has been, and will remain, an important topic in the educational testing field. Much research has been dedicated to addressing this task. Some studies have focused on item parameter estimation when the latent ability was assumed to follow a normal distribution,…

  3. Rainfall or parameter uncertainty? The power of sensitivity analysis on grouped factors

    NASA Astrophysics Data System (ADS)

    Nossent, Jiri; Pereira, Fernando; Bauwens, Willy

    2017-04-01

    Hydrological models are typically used to study and represent (a part of) the hydrological cycle. In general, the output of these models mostly depends on their input rainfall and parameter values. Both model parameters and input precipitation however, are characterized by uncertainties and, therefore, lead to uncertainty on the model output. Sensitivity analysis (SA) allows to assess and compare the importance of the different factors for this output uncertainty. Hereto, the rainfall uncertainty can be incorporated in the SA by representing it as a probabilistic multiplier. Such multiplier can be defined for the entire time series, or several of these factors can be determined for every recorded rainfall pulse or for hydrological independent storm events. As a consequence, the number of parameters included in the SA related to the rainfall uncertainty can be (much) lower or (much) higher than the number of model parameters. Although such analyses can yield interesting results, it remains challenging to determine which type of uncertainty will affect the model output most due to the different weight both types will have within the SA. In this study, we apply the variance based Sobol' sensitivity analysis method to two different hydrological simulators (NAM and HyMod) for four diverse watersheds. Besides the different number of model parameters (NAM: 11 parameters; HyMod: 5 parameters), the setup of our sensitivity and uncertainty analysis-combination is also varied by defining a variety of scenarios including diverse numbers of rainfall multipliers. To overcome the issue of the different number of factors and, thus, the different weights of the two types of uncertainty, we build on one of the advantageous properties of the Sobol' SA, i.e. treating grouped parameters as a single parameter. The latter results in a setup with a single factor for each uncertainty type and allows for a straightforward comparison of their importance. In general, the results show a clear influence of the weights in the different SA scenarios. However, working with grouped factors resolves this issue and leads to clear importance results.

  4. Sensitivity to Rhythmic Parameters in Dyslexic Children: A Comparison of Hungarian and English

    ERIC Educational Resources Information Center

    Suranyi, Zsuzsanna; Csepe, Valeria; Richardson, Ulla; Thomson, Jennifer M.; Honbolygo, Ferenc; Goswami, Usha

    2009-01-01

    It has been proposed that sensitivity to the parameters underlying speech rhythm may be important in setting up well-specified phonological representations in the mental lexicon. However, different acoustic parameters may contribute differentially to rhythm and stress in different languages. Here we contrast sensitivity to one such cue, amplitude…

  5. FEAST: sensitive local alignment with multiple rates of evolution.

    PubMed

    Hudek, Alexander K; Brown, Daniel G

    2011-01-01

    We present a pairwise local aligner, FEAST, which uses two new techniques: a sensitive extension algorithm for identifying homologous subsequences, and a descriptive probabilistic alignment model. We also present a new procedure for training alignment parameters and apply it to the human and mouse genomes, producing a better parameter set for these sequences. Our extension algorithm identifies homologous subsequences by considering all evolutionary histories. It has higher maximum sensitivity than Viterbi extensions, and better balances specificity. We model alignments with several submodels, each with unique statistical properties, describing strongly similar and weakly similar regions of homologous DNA. Training parameters using two submodels produces superior alignments, even when we align with only the parameters from the weaker submodel. Our extension algorithm combined with our new parameter set achieves sensitivity 0.59 on synthetic tests. In contrast, LASTZ with default settings achieves sensitivity 0.35 with the same false positive rate. Using the weak submodel as parameters for LASTZ increases its sensitivity to 0.59 with high error. FEAST is available at http://monod.uwaterloo.ca/feast/.

  6. A comparative study of the sensitivity of diffusion-related parameters obtained from diffusion tensor imaging, diffusional kurtosis imaging, q-space analysis and bi-exponential modelling in the early disease course (24 h) of hyperacute (6 h) ischemic stroke patients.

    PubMed

    Duchêne, Gaëtan; Peeters, Frank; Peeters, André; Duprez, Thierry

    2017-08-01

    To compare the sensitivity and early temporal changes of diffusion parameters obtained from diffusion tensor imaging (DTI), diffusional kurtosis imaging (DKI), q-space analysis (QSA) and bi-exponential modelling in hyperacute stroke patients. A single investigational acquisition allowing the four diffusion analyses was performed on seven hyperacute stroke patients with a 3T system. The percentage change between ipsi- and contralateral regions were compared at admission and 24 h later. Two out of the seven patients were imaged every 6 h during this period. Kurtoses from both DKI and QSA were the most sensitive of the tested diffusion parameters in the few hours following ischemia. An early increase-maximum-decrease pattern of evolution was highlighted during the 24-h period for all parameters proportional to diffusion coefficients. A similar pattern was observed for both kurtoses in only one of two patients. Our comparison was performed using identical diffusion encoding timings and on patients in the same stage of their condition. Although preliminary, our findings confirm those of previous studies that showed enhanced sensitivity of kurtosis. A fine time mapping of diffusion metrics in hyperacute stroke patients was presented which advocates for further investigations on larger animal or human cohorts.

  7. Generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test.

    PubMed

    Munir, Mohammad

    2018-06-01

    Generalized sensitivity functions characterize the sensitivity of the parameter estimates with respect to the nominal parameters. We observe from the generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test that the measurements of insulin, 62 min after the administration of the glucose bolus into the experimental subject's body, possess no information about the parameter estimates. The glucose measurements possess the information about the parameter estimates up to three hours. These observations have been verified by the parameter estimation of the minimal model. The standard errors of the estimates and crude Monte Carlo process also confirm this observation. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Application research on the sensitivity of porous silicon

    NASA Astrophysics Data System (ADS)

    Xu, Gaobin; Xi, Ye; Chen, Xing; Ma, Yuanming

    2017-09-01

    Applications based on sensitive property of porous silicon (PSi) were researched. As a kind of porous material, the feasibility of PSi as a getter material was studied. Five groups of samples with different parameters were prepared. The gas-sensing property of PSi was studied by the test system and suitable parameters of PSi were also discussed. Meanwhile a novel structure of humidity sensor, using porous silicon as humidity-sensitive material, based on MEMS process has been successfully designed. The humidity-sensing properties were studied by a test system. Because of the polysilicon layer deposited upon the PSi layer, the humidity sensor can realize a quick dehumidification by itself. To extend service life and reduce the effect of the environment, a passivation layer (Si3N4) was also deposited on the surface of electrodes. The result indicated the novel humidity sensor presented high sensitivity (1.1 pF/RH%), low hysteresis, low temperature coefficient (0.5%RH/°C) and high stability.

  9. Model-based POD study of manual ultrasound inspection and sensitivity analysis using metamodel

    NASA Astrophysics Data System (ADS)

    Ribay, Guillemette; Artusi, Xavier; Jenson, Frédéric; Reece, Christopher; Lhuillier, Pierre-Emile

    2016-02-01

    The reliability of NDE can be quantified by using the Probability of Detection (POD) approach. Former studies have shown the potential of the model-assisted POD (MAPOD) approach to replace expensive experimental determination of POD curves. In this paper, we make use of CIVA software to determine POD curves for a manual ultrasonic inspection of a heavy component, for which a whole experimental POD campaign was not available. The influential parameters were determined by expert analysis. The semi-analytical models used in CIVA for wave propagation and beam-defect interaction have been validated in the range of variation of the influential parameters by comparison with finite element modelling (Athena). The POD curves are computed for « hit/miss » and « â versus a » analysis. The verification of Berens hypothesis is evaluated by statistical tools. A sensitivity study is performed to measure the relative influence of parameters on the defect response amplitude variance, using the Sobol sensitivity index. A meta-model is also built to reduce computing cost and enhance the precision of estimated index.

  10. New Uses for Sensitivity Analysis: How Different Movement Tasks Effect Limb Model Parameter Sensitivity

    NASA Technical Reports Server (NTRS)

    Winters, J. M.; Stark, L.

    1984-01-01

    Original results for a newly developed eight-order nonlinear limb antagonistic muscle model of elbow flexion and extension are presented. A wider variety of sensitivity analysis techniques are used and a systematic protocol is established that shows how the different methods can be used efficiently to complement one another for maximum insight into model sensitivity. It is explicitly shown how the sensitivity of output behaviors to model parameters is a function of the controller input sequence, i.e., of the movement task. When the task is changed (for instance, from an input sequence that results in the usual fast movement task to a slower movement that may also involve external loading, etc.) the set of parameters with high sensitivity will in general also change. Such task-specific use of sensitivity analysis techniques identifies the set of parameters most important for a given task, and even suggests task-specific model reduction possibilities.

  11. Detection of co-seismic earthquake gravity field signals using GRACE-like mission simulations

    NASA Astrophysics Data System (ADS)

    Sharifi, Mohammad Ali; Shahamat, Abolfazl

    2017-05-01

    After launching the GRACE satellite mission in 2002, the earth's gravity field and its temporal variations are measured with a closer inspection. Although these variations are mainly because of the mass transfer of land water storage, they can also happen due to mass movements related to some natural phenomena including earthquakes, volcanic eruptions, melting of polar ice caps and glacial isostatic adjustment. Therefore this paper shows which parameters of an earthquake are more sensitive to GRACE-Like satellite missions. For this purpose, the parameters of the Maule earthquake that occurred in recent years and Alaska earthquake that occurred in 1964 have been chosen. Then we changed their several parameters to serve our purpose. The GRACE-Like sensitivity is observed by using the simulation of the earthquakes along with gravity changes they caused, as well as using dislocation theory under a half space earth. This observation affects the various faulting parameters which include fault length, width, depth and average slip. These changes were therefore evaluated and the result shows that the GRACE satellite missions tend to be more sensitive to Width among the Length and Width, the other parameter is Dip variations than other parameters. This article can be useful to the upcoming scenario designers and seismologists in their quest to study fault parameters.

  12. Spike shape analysis of electromyography for parkinsonian tremor evaluation.

    PubMed

    Marusiak, Jarosław; Andrzejewska, Renata; Świercz, Dominika; Kisiel-Sajewicz, Katarzyna; Jaskólska, Anna; Jaskólski, Artur

    2015-12-01

    Standard electromyography (EMG) parameters have limited utility for evaluation of Parkinson disease (PD) tremor. Spike shape analysis (SSA) EMG parameters are more sensitive than standard EMG parameters for studying motor control mechanisms in healthy subjects. SSA of EMG has not been used to assess parkinsonian tremor. This study assessed the utility of SSA and standard time and frequency analysis for electromyographic evaluation of PD-related resting tremor. We analyzed 1-s periods of EMG recordings to detect nontremor and tremor signals in relaxed biceps brachii muscle of seven mild to moderate PD patients. SSA revealed higher mean spike amplitude, duration, and slope and lower mean spike frequency in tremor signals than in nontremor signals. Standard EMG parameters (root mean square, median, and mean frequency) did not show differences between the tremor and nontremor signals. SSA of EMG data is a sensitive method for parkinsonian tremor evaluation. © 2015 Wiley Periodicals, Inc.

  13. Global Sensitivity Analysis for Identifying Important Parameters of Nitrogen Nitrification and Denitrification under Model and Scenario Uncertainties

    NASA Astrophysics Data System (ADS)

    Ye, M.; Chen, Z.; Shi, L.; Zhu, Y.; Yang, J.

    2017-12-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. While global sensitivity analysis is a vital tool for identifying the parameters important to nitrogen reactive transport, conventional global sensitivity analysis only considers parametric uncertainty. This may result in inaccurate selection of important parameters, because parameter importance may vary under different models and modeling scenarios. By using a recently developed variance-based global sensitivity analysis method, this paper identifies important parameters with simultaneous consideration of parametric uncertainty, model uncertainty, and scenario uncertainty. In a numerical example of nitrogen reactive transport modeling, a combination of three scenarios of soil temperature and two scenarios of soil moisture leads to a total of six scenarios. Four alternative models are used to evaluate reduction functions used for calculating actual rates of nitrification and denitrification. The model uncertainty is tangled with scenario uncertainty, as the reduction functions depend on soil temperature and moisture content. The results of sensitivity analysis show that parameter importance varies substantially between different models and modeling scenarios, which may lead to inaccurate selection of important parameters if model and scenario uncertainties are not considered. This problem is avoided by using the new method of sensitivity analysis in the context of model averaging and scenario averaging. The new method of sensitivity analysis can be applied to other problems of contaminant transport modeling when model uncertainty and/or scenario uncertainty are present.

  14. Uncertainty Quantification and Regional Sensitivity Analysis of Snow-related Parameters in the Canadian LAnd Surface Scheme (CLASS)

    NASA Astrophysics Data System (ADS)

    Badawy, B.; Fletcher, C. G.

    2017-12-01

    The parameterization of snow processes in land surface models is an important source of uncertainty in climate simulations. Quantifying the importance of snow-related parameters, and their uncertainties, may therefore lead to better understanding and quantification of uncertainty within integrated earth system models. However, quantifying the uncertainty arising from parameterized snow processes is challenging due to the high-dimensional parameter space, poor observational constraints, and parameter interaction. In this study, we investigate the sensitivity of the land simulation to uncertainty in snow microphysical parameters in the Canadian LAnd Surface Scheme (CLASS) using an uncertainty quantification (UQ) approach. A set of training cases (n=400) from CLASS is used to sample each parameter across its full range of empirical uncertainty, as determined from available observations and expert elicitation. A statistical learning model using support vector regression (SVR) is then constructed from the training data (CLASS output variables) to efficiently emulate the dynamical CLASS simulations over a much larger (n=220) set of cases. This approach is used to constrain the plausible range for each parameter using a skill score, and to identify the parameters with largest influence on the land simulation in CLASS at global and regional scales, using a random forest (RF) permutation importance algorithm. Preliminary sensitivity tests indicate that snow albedo refreshment threshold and the limiting snow depth, below which bare patches begin to appear, have the highest impact on snow output variables. The results also show a considerable reduction of the plausible ranges of the parameters values and hence reducing their uncertainty ranges, which can lead to a significant reduction of the model uncertainty. The implementation and results of this study will be presented and discussed in details.

  15. Ground water flow modeling with sensitivity analyses to guide field data collection in a mountain watershed

    USGS Publications Warehouse

    Johnson, Raymond H.

    2007-01-01

    In mountain watersheds, the increased demand for clean water resources has led to an increased need for an understanding of ground water flow in alpine settings. In Prospect Gulch, located in southwestern Colorado, understanding the ground water flow system is an important first step in addressing metal loads from acid-mine drainage and acid-rock drainage in an area with historical mining. Ground water flow modeling with sensitivity analyses are presented as a general tool to guide future field data collection, which is applicable to any ground water study, including mountain watersheds. For a series of conceptual models, the observation and sensitivity capabilities of MODFLOW-2000 are used to determine composite scaled sensitivities, dimensionless scaled sensitivities, and 1% scaled sensitivity maps of hydraulic head. These sensitivities determine the most important input parameter(s) along with the location of observation data that are most useful for future model calibration. The results are generally independent of the conceptual model and indicate recharge in a high-elevation recharge zone as the most important parameter, followed by the hydraulic conductivities in all layers and recharge in the next lower-elevation zone. The most important observation data in determining these parameters are hydraulic heads at high elevations, with a depth of less than 100 m being adequate. Evaluation of a possible geologic structure with a different hydraulic conductivity than the surrounding bedrock indicates that ground water discharge to individual stream reaches has the potential to identify some of these structures. Results of these sensitivity analyses can be used to prioritize data collection in an effort to reduce time and money spend by collecting the most relevant model calibration data.

  16. Primary production sensitivity to phytoplankton light attenuation parameter increases with transient forcing

    NASA Astrophysics Data System (ADS)

    Kvale, Karin F.; Meissner, Katrin J.

    2017-10-01

    Treatment of the underwater light field in ocean biogeochemical models has been attracting increasing interest, with some models moving towards more complex parameterisations. We conduct a simple sensitivity study of a typical, highly simplified parameterisation. In our study, we vary the phytoplankton light attenuation parameter over a range constrained by data during both pre-industrial equilibrated and future climate scenario RCP8.5. In equilibrium, lower light attenuation parameters (weaker self-shading) shift net primary production (NPP) towards the high latitudes, while higher values of light attenuation (stronger shelf-shading) shift NPP towards the low latitudes. Climate forcing magnifies this relationship through changes in the distribution of nutrients both within and between ocean regions. Where and how NPP responds to climate forcing can determine the magnitude and sign of global NPP trends in this high CO2 future scenario. Ocean oxygen is particularly sensitive to parameter choice. Under higher CO2 concentrations, two simulations establish a strong biogeochemical feedback between the Southern Ocean and low-latitude Pacific that highlights the potential for regional teleconnection. Our simulations serve as a reminder that shifts in fundamental properties (e.g. light attenuation by phytoplankton) over deep time have the potential to alter global biogeochemistry.

  17. Mathematical modeling of a thermovoltaic cell

    NASA Technical Reports Server (NTRS)

    White, Ralph E.; Kawanami, Makoto

    1992-01-01

    A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.

  18. Study of parameter degeneracy and hierarchy sensitivity of NO ν A in presence of sterile neutrino

    NASA Astrophysics Data System (ADS)

    Ghosh, Monojit; Gupta, Shivani; Matthews, Zachary M.; Sharma, Pankaj; Williams, Anthony G.

    2017-10-01

    The first hint of the neutrino mass hierarchy is believed to come from the long-baseline experiment NO ν A . Recent results from NO ν A shows a mild preference towards the C P phase δ13=-9 0 ° and normal hierarchy. Fortunately this is the favorable area of the parameter space which does not suffer from the hierarchy-δ13 degeneracy and thus NO ν A can have good hierarchy sensitivity for this true combination of hierarchy and δ13. Apart from the hierarchy-δ13 degeneracy there is also the octant-δ13 degeneracy. But this does not affect the favorable parameter space of NO ν A as this degeneracy can be resolved with a balanced neutrino and antineutrino run. However, if we consider the existence of a light sterile neutrino then there may be additional degeneracies which can spoil the hierarchy sensitivity of NO ν A even in the favorable parameter space. In the present work we find that apart from the degeneracies mentioned above, there are additional hierarchy and octant degeneracies that appear with the new phase δ14 in the presence of a light sterile neutrino in the eV scale. In contrast to the hierarchy and octant degeneracies appearing with δ13, the parameter space for hierarchy-δ14 degeneracy is different in neutrinos and antineutrinos though the octant-δ14 degeneracy behaves similarly in neutrinos and antineutrinos. We study the effect of these degeneracies on the hierarchy sensitivity of NO ν A for the true normal hierarchy.

  19. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Bi, Fengrong; Du, Haiping

    2018-05-01

    This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.

  20. Rapid Debris Analysis Project Task 3 Final Report - Sensitivity of Fallout to Source Parameters, Near-Detonation Environment Material Properties, Topography, and Meteorology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Peter

    2014-01-24

    This report describes the sensitivity of predicted nuclear fallout to a variety of model input parameters, including yield, height of burst, particle and activity size distribution parameters, wind speed, wind direction, topography, and precipitation. We investigate sensitivity over a wide but plausible range of model input parameters. In addition, we investigate a specific example with a relatively narrow range to illustrate the potential for evaluating uncertainties in predictions when there are more precise constraints on model parameters.

  1. Modeling sugar cane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-01-01

    Agro-Land Surface Models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugar cane cultivation in Australia and Brazil. Ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting climate-mediated different sensitivities of modeled sugar cane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.

  2. Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-06-01

    Agro-land surface models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugarcane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte Carlo sampling method associated with the calculation of partial ranked correlation coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugarcane cultivation in Australia and Brazil. The ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting different climate-mediated sensitivities of modeled sugarcane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.

  3. Sensitivity study of experimental measures for the nuclear liquid-gas phase transition in the statistical multifragmentation model

    NASA Astrophysics Data System (ADS)

    Lin, W.; Ren, P.; Zheng, H.; Liu, X.; Huang, M.; Wada, R.; Qu, G.

    2018-05-01

    The experimental measures of the multiplicity derivatives—the moment parameters, the bimodal parameter, the fluctuation of maximum fragment charge number (normalized variance of Zmax, or NVZ), the Fisher exponent (τ ), and the Zipf law parameter (ξ )—are examined to search for the liquid-gas phase transition in nuclear multifragmention processes within the framework of the statistical multifragmentation model (SMM). The sensitivities of these measures are studied. All these measures predict a critical signature at or near to the critical point both for the primary and secondary fragments. Among these measures, the total multiplicity derivative and the NVZ provide accurate measures for the critical point from the final cold fragments as well as the primary fragments. The present study will provide a guide for future experiments and analyses in the study of the nuclear liquid-gas phase transition.

  4. Nuclear morphology for the detection of alterations in bronchial cells from lung cancer: an attempt to improve sensitivity and specificity.

    PubMed

    Fafin-Lefevre, Mélanie; Morlais, Fabrice; Guittet, Lydia; Clin, Bénédicte; Launoy, Guy; Galateau-Sallé, Françoise; Plancoulaine, Benoît; Herlin, Paulette; Letourneux, Marc

    2011-08-01

    To identify which morphologic or densitometric parameters are modified in cell nuclei from bronchopulmonary cancer based on 18 parameters involving shape, intensity, chromatin, texture, and DNA content and develop a bronchopulmonary cancer screening method relying on analysis of sputum sample cell nuclei. A total of 25 sputum samples from controls and 22 bronchial aspiration samples from patients presenting with bronchopulmonary cancer who were professionally exposed to cancer were used. After Feulgen staining, 18 morphologic and DNA content parameters were measured on cell nuclei, via image cytom- etry. A method was developed for analyzing distribution quantiles, compared with simply interpreting mean values, to characterize morphologic modifications in cell nuclei. Distribution analysis of parameters enabled us to distinguish 13 of 18 parameters that demonstrated significant differences between controls and cancer cases. These parameters, used alone, enabled us to distinguish two population types, with both sensitivity and specificity > 70%. Three parameters offered 100% sensitivity and specificity. When mean values offered high sensitivity and specificity, comparable or higher sensitivity and specificity values were observed for at least one of the corresponding quantiles. Analysis of modification in morphologic parameters via distribution analysis proved promising for screening bronchopulmonary cancer from sputum.

  5. Formulation and characterization of sustained release dosage form of moisture sensitive drug

    PubMed Central

    Patel, Priya; Dave, Abhishek; Vasava, Amit; Patel, Paresh

    2015-01-01

    Objective: The purpose of this study was to prepare sustained release tablet of moisture sensitive drug like Ranitidine Hydrochloride for treatment of gastroesophageal reflux disease along with the improvement of moisture stability to get better therapeutic efficacy. Materials and Methods: Pan coating technique was used for coating of the tablet. Film coating was done using Eudragit RLPO and Eugragit EPO as coating polymer. 32 full factorial design was applied for optimization purpose, and 9 runs were conducted. In that Eudragit RLPO and Eudragit EPO taken as an independent variables and moisture gain and Cummulative Drug Release (CDR) were taken as dependent variables. Drug and excipient compatibility was done using differential scanning calorimetry and Fourier transform infrared spectroscopy study. The tablet was evaluated for precompression parameter and all postcompression parameter. Stability study was carried out at room temperature (30°C ± 2°C/65% ± 5% relative humidity). Final formulation was compared with marketed formulation RANTEC 300. Result: Tablets were passing out all precompression parameter along with postcompression parameter. Stability study shows that the parameter such as hardness, friability, and dissolution are in the range. Hence, there is no significant change shown after stability study. Our final formulation was compared with marketed formulation RANTEC 300 and result demonstrates that our final formulation have less moisture gain and give release up to 12 h. Conclusion: The result of present study demonstrates that final formulation has less moisture gain and getting desired CDR for sustained release of drug. On the basis of all study, it was concluded that the tablet was coated by combination of Eudragit RLPO 10% and Eudragit EPO 10% give better result. This formation provided promising approach for the drug release up to 12 h for moisture sensitive drug like ranitidine hydrochloride. PMID:25838994

  6. Model‐based analysis of the influence of catchment properties on hydrologic partitioning across five mountain headwater subcatchments

    PubMed Central

    Wagener, Thorsten; McGlynn, Brian

    2015-01-01

    Abstract Ungauged headwater basins are an abundant part of the river network, but dominant influences on headwater hydrologic response remain difficult to predict. To address this gap, we investigated the ability of a physically based watershed model (the Distributed Hydrology‐Soil‐Vegetation Model) to represent controls on metrics of hydrologic partitioning across five adjacent headwater subcatchments. The five study subcatchments, located in Tenderfoot Creek Experimental Forest in central Montana, have similar climate but variable topography and vegetation distribution. This facilitated a comparative hydrology approach to interpret how parameters that influence partitioning, detected via global sensitivity analysis, differ across catchments. Model parameters were constrained a priori using existing regional information and expert knowledge. Influential parameters were compared to perceptions of catchment functioning and its variability across subcatchments. Despite between‐catchment differences in topography and vegetation, hydrologic partitioning across all metrics and all subcatchments was sensitive to a similar subset of snow, vegetation, and soil parameters. Results also highlighted one subcatchment with low certainty in parameter sensitivity, indicating that the model poorly represented some complexities in this subcatchment likely because an important process is missing or poorly characterized in the mechanistic model. For use in other basins, this method can assess parameter sensitivities as a function of the specific ungauged system to which it is applied. Overall, this approach can be employed to identify dominant modeled controls on catchment response and their agreement with system understanding. PMID:27642197

  7. Sensitivity Analysis in Sequential Decision Models.

    PubMed

    Chen, Qiushi; Ayer, Turgay; Chhatwal, Jagpreet

    2017-02-01

    Sequential decision problems are frequently encountered in medical decision making, which are commonly solved using Markov decision processes (MDPs). Modeling guidelines recommend conducting sensitivity analyses in decision-analytic models to assess the robustness of the model results against the uncertainty in model parameters. However, standard methods of conducting sensitivity analyses cannot be directly applied to sequential decision problems because this would require evaluating all possible decision sequences, typically in the order of trillions, which is not practically feasible. As a result, most MDP-based modeling studies do not examine confidence in their recommended policies. In this study, we provide an approach to estimate uncertainty and confidence in the results of sequential decision models. First, we provide a probabilistic univariate method to identify the most sensitive parameters in MDPs. Second, we present a probabilistic multivariate approach to estimate the overall confidence in the recommended optimal policy considering joint uncertainty in the model parameters. We provide a graphical representation, which we call a policy acceptability curve, to summarize the confidence in the optimal policy by incorporating stakeholders' willingness to accept the base case policy. For a cost-effectiveness analysis, we provide an approach to construct a cost-effectiveness acceptability frontier, which shows the most cost-effective policy as well as the confidence in that for a given willingness to pay threshold. We demonstrate our approach using a simple MDP case study. We developed a method to conduct sensitivity analysis in sequential decision models, which could increase the credibility of these models among stakeholders.

  8. A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity

    NASA Astrophysics Data System (ADS)

    Reckinger, Shanon M.; Petersen, Mark R.; Reckinger, Scott J.

    2015-12-01

    MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are carried out using three of the vertical coordinate types available in MPAS-Ocean, including z-star with partial bottom cells, z-star with full cells, and sigma coordinates. The results are first benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model, which are used to set the base case used for this work. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Lastly, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates.

  9. Aggregation Pheromone System: A Real-parameter Optimization Algorithm using Aggregation Pheromones as the Base Metaphor

    NASA Astrophysics Data System (ADS)

    Tsutsui, Shigeyosi

    This paper proposes an aggregation pheromone system (APS) for solving real-parameter optimization problems using the collective behavior of individuals which communicate using aggregation pheromones. APS was tested on several test functions used in evolutionary computation. The results showed APS could solve real-parameter optimization problems fairly well. The sensitivity analysis of control parameters of APS is also studied.

  10. Results of an integrated structure/control law design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1989-01-01

    A design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations is discussed. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changes in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient than finite difference methods for the computation of the equivalent sensitivity information.

  11. Global Sensitivity Applied to Dynamic Combined Finite Discrete Element Methods for Fracture Simulation

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Rougier, E.; Osthus, D.; Srinivasan, G.

    2017-12-01

    Fracture propagation play a key role for a number of application of interest to the scientific community. From dynamic fracture processes like spall and fragmentation in metals and detection of gas flow in static fractures in rock and the subsurface, the dynamics of fracture propagation is important to various engineering and scientific disciplines. In this work we implement a global sensitivity analysis test to the Hybrid Optimization Software Suite (HOSS), a multi-physics software tool based on the combined finite-discrete element method, that is used to describe material deformation and failure (i.e., fracture and fragmentation) under a number of user-prescribed boundary conditions. We explore the sensitivity of HOSS for various model parameters that influence how fracture are propagated through a material of interest. The parameters control the softening curve that the model relies to determine fractures within each element in the mesh, as well a other internal parameters which influence fracture behavior. The sensitivity method we apply is the Fourier Amplitude Sensitivity Test (FAST), which is a global sensitivity method to explore how each parameter influence the model fracture and to determine the key model parameters that have the most impact on the model. We present several sensitivity experiments for different combination of model parameters and compare against experimental data for verification.

  12. Application of Ensemble Kalman Filter in Power System State Tracking and Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Huang, Zhenyu; Zhou, Ning

    2012-05-01

    Ensemble Kalman Filter (EnKF) is proposed to track dynamic states of generators. The algorithm of EnKF and its application to generator state tracking are presented in detail. The accuracy and sensitivity of the method are analyzed with respect to initial state errors, measurement noise, unknown fault locations, time steps and parameter errors. It is demonstrated through simulation studies that even with some errors in the parameters, the developed EnKF can effectively track generator dynamic states using disturbance data.

  13. Application of identified sensitive physical parameters in reducing the uncertainty of numerical simulation

    NASA Astrophysics Data System (ADS)

    Sun, Guodong; Mu, Mu

    2016-04-01

    An important source of uncertainty, which then causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. There are many physical parameters in numerical models in the atmospheric and oceanic sciences, and it would cost a great deal to reduce uncertainties in all physical parameters. Therefore, finding a subset of these parameters, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach. The results imply that nonlinear interactions among parameters play a key role in the uncertainty of numerical simulations in arid and semi-arid regions of China compared to those in northern, northeastern and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.

  14. Local sensitivity analysis for inverse problems solved by singular value decomposition

    USGS Publications Warehouse

    Hill, M.C.; Nolan, B.T.

    2010-01-01

    Local sensitivity analysis provides computationally frugal ways to evaluate models commonly used for resource management, risk assessment, and so on. This includes diagnosing inverse model convergence problems caused by parameter insensitivity and(or) parameter interdependence (correlation), understanding what aspects of the model and data contribute to measures of uncertainty, and identifying new data likely to reduce model uncertainty. Here, we consider sensitivity statistics relevant to models in which the process model parameters are transformed using singular value decomposition (SVD) to create SVD parameters for model calibration. The statistics considered include the PEST identifiability statistic, and combined use of the process-model parameter statistics composite scaled sensitivities and parameter correlation coefficients (CSS and PCC). The statistics are complimentary in that the identifiability statistic integrates the effects of parameter sensitivity and interdependence, while CSS and PCC provide individual measures of sensitivity and interdependence. PCC quantifies correlations between pairs or larger sets of parameters; when a set of parameters is intercorrelated, the absolute value of PCC is close to 1.00 for all pairs in the set. The number of singular vectors to include in the calculation of the identifiability statistic is somewhat subjective and influences the statistic. To demonstrate the statistics, we use the USDA’s Root Zone Water Quality Model to simulate nitrogen fate and transport in the unsaturated zone of the Merced River Basin, CA. There are 16 log-transformed process-model parameters, including water content at field capacity (WFC) and bulk density (BD) for each of five soil layers. Calibration data consisted of 1,670 observations comprising soil moisture, soil water tension, aqueous nitrate and bromide concentrations, soil nitrate concentration, and organic matter content. All 16 of the SVD parameters could be estimated by regression based on the range of singular values. Identifiability statistic results varied based on the number of SVD parameters included. Identifiability statistics calculated for four SVD parameters indicate the same three most important process-model parameters as CSS/PCC (WFC1, WFC2, and BD2), but the order differed. Additionally, the identifiability statistic showed that BD1 was almost as dominant as WFC1. The CSS/PCC analysis showed that this results from its high correlation with WCF1 (-0.94), and not its individual sensitivity. Such distinctions, combined with analysis of how high correlations and(or) sensitivities result from the constructed model, can produce important insights into, for example, the use of sensitivity analysis to design monitoring networks. In conclusion, the statistics considered identified similar important parameters. They differ because (1) with CSS/PCC can be more awkward because sensitivity and interdependence are considered separately and (2) identifiability requires consideration of how many SVD parameters to include. A continuing challenge is to understand how these computationally efficient methods compare with computationally demanding global methods like Markov-Chain Monte Carlo given common nonlinear processes and the often even more nonlinear models.

  15. Theoretical studies of the dependence of EPR parameters on local structure for the tetragonal Er(3+) centres in YVO4 and ScVO4.

    PubMed

    Chai, Rui-Peng; Hao, Dan-Hui; Kuang, Xiao-Yu; Liang, Liang

    2015-11-05

    The dependences of the EPR parameters on the local distortion parameters Δθ and ΔR as well as the crystal-field parameters have been studied by diagonalizing the 364×364 complete energy matrices for a tetragonal Er(3+) centre in the YVO4 and ScVO4 crystals. The results show that the local distortion angle Δθ and the fourth-order crystal-field parameter Ā4 are most sensitive to the EPR g-factors g// and g⊥, whereas the local distortion length ΔR and the second-order parameter Ā2 are less sensitive to the g-factors. Furthermore, we found that the abnormal EPR g-factors for the Er(3+) ion in the ScVO4 may be ascribed to the stronger nephelauxetic effect and covalent bonding effect, as a result of an expanded local distortion for the Er(3+) centre in the ScVO4 crystal. Simultaneously, the contributions of the J-J mixing effects from the terms of excited states to the EPR parameters have been evaluated quantitatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model

    DOE PAGES

    Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...

    2015-07-01

    In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less

  17. Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification.

    PubMed

    Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J

    2018-07-01

    Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.

  18. The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model

    NASA Astrophysics Data System (ADS)

    Ricciuto, Daniel; Sargsyan, Khachik; Thornton, Peter

    2018-02-01

    We conduct a global sensitivity analysis (GSA) of the Energy Exascale Earth System Model (E3SM), land model (ELM) to calculate the sensitivity of five key carbon cycle outputs to 68 model parameters. This GSA is conducted by first constructing a Polynomial Chaos (PC) surrogate via new Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth leading to a sparse, high-dimensional PC surrogate with 3,000 model evaluations. The PC surrogate allows efficient extraction of GSA information leading to further dimensionality reduction. The GSA is performed at 96 FLUXNET sites covering multiple plant functional types (PFTs) and climate conditions. About 20 of the model parameters are identified as sensitive with the rest being relatively insensitive across all outputs and PFTs. These sensitivities are dependent on PFT, and are relatively consistent among sites within the same PFT. The five model outputs have a majority of their highly sensitive parameters in common. A common subset of sensitive parameters is also shared among PFTs, but some parameters are specific to certain types (e.g., deciduous phenology). The relative importance of these parameters shifts significantly among PFTs and with climatic variables such as mean annual temperature.

  19. [Value of sepsis single-disease manage system in predicting mortality in patients with sepsis].

    PubMed

    Chen, J; Wang, L H; Ouyang, B; Chen, M Y; Wu, J F; Liu, Y J; Liu, Z M; Guan, X D

    2018-04-03

    Objective: To observe the effect of sepsis single-disease manage system on the improvement of sepsis treatment and the value in predicting mortality in patients with sepsis. Methods: A retrospective study was conducted. Patients with sepsis admitted to the Department of Surgical Intensive Care Unit of Sun Yat-Sen University First Affiliated Hospital from September 22, 2013 to May 5, 2015 were enrolled in this study. Sepsis single-disease manage system (Rui Xin clinical data manage system, China data, China) was used to monitor 25 clinical quality parameters, consisting of timeliness, normalization and outcome parameters. Based on whether these quality parameters could be completed or not, the clinical practice was evaluated by the system. The unachieved quality parameter was defined as suspicious parameters, and these suspicious parameters were used to predict mortality of patients with receiver operating characteristic curve (ROC). Results: A total of 1 220 patients with sepsis were enrolled, included 805 males and 415 females. The mean age was (59±17) years, and acute physiology and chronic health evaluation (APACHE Ⅱ) scores was 19±8. The area under ROC curve of total suspicious numbers for predicting 28-day mortality was 0.70; when the suspicious parameters number was more than 6, the sensitivity was 68.0% and the specificity was 61.0% for predicting 28-day mortality. In addition, the area under ROC curve of outcome suspicious number for predicting 28-day mortality was 0.89; when the suspicious outcome parameters numbers was more than 1, the sensitivity was 88.0% and the specificity was 78.0% for predicting 28-day mortality. Moreover, the area under ROC curve of total suspicious number for predicting 90-day mortality was 0.73; when the total suspicious parameters number was more than 7, the sensitivity was 60.0% and the specificity was 74.0% for predicting 90-day mortality. Finally, the area under ROC curve of outcome suspicious numbers for predicting 90-day mortality was 0.92; when suspicious outcome parameters numbers was more than 1, the sensitivity was 88.0% and the specificity was 81.0% for predicting 90-day mortality. Conclusion: The single center study suggests that this sepsis single-disease manage system could be used to monitor the completion of clinical practice for intensivist in managing sepsis, and the number of quality parameters failed to complete could be used to predict the mortality of the patients.

  20. Global sensitivity analysis for identifying important parameters of nitrogen nitrification and denitrification under model uncertainty and scenario uncertainty

    NASA Astrophysics Data System (ADS)

    Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong

    2018-06-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen models.

  1. Case-Deletion Diagnostics for Maximum Likelihood Multipoint Quantitative Trait Locus Linkage Analysis

    PubMed Central

    Mendoza, Maria C.B.; Burns, Trudy L.; Jones, Michael P.

    2009-01-01

    Objectives Case-deletion diagnostic methods are tools that allow identification of influential observations that may affect parameter estimates and model fitting conclusions. The goal of this paper was to develop two case-deletion diagnostics, the exact case deletion (ECD) and the empirical influence function (EIF), for detecting outliers that can affect results of sib-pair maximum likelihood quantitative trait locus (QTL) linkage analysis. Methods Subroutines to compute the ECD and EIF were incorporated into the maximum likelihood QTL variance estimation components of the linkage analysis program MAPMAKER/SIBS. Performance of the diagnostics was compared in simulation studies that evaluated the proportion of outliers correctly identified (sensitivity), and the proportion of non-outliers correctly identified (specificity). Results Simulations involving nuclear family data sets with one outlier showed EIF sensitivities approximated ECD sensitivities well for outlier-affected parameters. Sensitivities were high, indicating the outlier was identified a high proportion of the time. Simulations also showed the enormous computational time advantage of the EIF. Diagnostics applied to body mass index in nuclear families detected observations influential on the lod score and model parameter estimates. Conclusions The EIF is a practical diagnostic tool that has the advantages of high sensitivity and quick computation. PMID:19172086

  2. Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models

    USGS Publications Warehouse

    Rakovec, O.; Hill, Mary C.; Clark, M.P.; Weerts, A. H.; Teuling, A. J.; Uijlenhoet, R.

    2014-01-01

    This paper presents a hybrid local-global sensitivity analysis method termed the Distributed Evaluation of Local Sensitivity Analysis (DELSA), which is used here to identify important and unimportant parameters and evaluate how model parameter importance changes as parameter values change. DELSA uses derivative-based “local” methods to obtain the distribution of parameter sensitivity across the parameter space, which promotes consideration of sensitivity analysis results in the context of simulated dynamics. This work presents DELSA, discusses how it relates to existing methods, and uses two hydrologic test cases to compare its performance with the popular global, variance-based Sobol' method. The first test case is a simple nonlinear reservoir model with two parameters. The second test case involves five alternative “bucket-style” hydrologic models with up to 14 parameters applied to a medium-sized catchment (200 km2) in the Belgian Ardennes. Results show that in both examples, Sobol' and DELSA identify similar important and unimportant parameters, with DELSA enabling more detailed insight at much lower computational cost. For example, in the real-world problem the time delay in runoff is the most important parameter in all models, but DELSA shows that for about 20% of parameter sets it is not important at all and alternative mechanisms and parameters dominate. Moreover, the time delay was identified as important in regions producing poor model fits, whereas other parameters were identified as more important in regions of the parameter space producing better model fits. The ability to understand how parameter importance varies through parameter space is critical to inform decisions about, for example, additional data collection and model development. The ability to perform such analyses with modest computational requirements provides exciting opportunities to evaluate complicated models as well as many alternative models.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presencemore » of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .« less

  4. IMPORTANCE OF MOVEMENT VARIES IN STATIC AND DYNAMIC LANDSCAPES

    EPA Science Inventory

    The relative sensitivity of spatially explicit population models (SEPMs) to movement parameters is a topic of ongoing debate among theoretical ecologists. In this study, we add additional realism to this debate by examining a SEPM's sensitivity to dispersal ability in static vs....

  5. An approach to measure parameter sensitivity in watershed hydrological modelling

    EPA Science Inventory

    Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds were used for detail sensitivity analyses. To compare the...

  6. Sensitivity analysis of periodic errors in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-03-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.

  7. Design and characterization of planar capacitive imaging probe based on the measurement sensitivity distribution

    NASA Astrophysics Data System (ADS)

    Yin, X.; Chen, G.; Li, W.; Huthchins, D. A.

    2013-01-01

    Previous work indicated that the capacitive imaging (CI) technique is a useful NDE tool which can be used on a wide range of materials, including metals, glass/carbon fibre composite materials and concrete. The imaging performance of the CI technique for a given application is determined by design parameters and characteristics of the CI probe. In this paper, a rapid method for calculating the whole probe sensitivity distribution based on the finite element model (FEM) is presented to provide a direct view of the imaging capabilities of the planar CI probe. Sensitivity distributions of CI probes with different geometries were obtained. Influencing factors on sensitivity distribution were studied. Comparisons between CI probes with point-to-point triangular electrode pair and back-to-back triangular electrode pair were made based on the analysis of the corresponding sensitivity distributions. The results indicated that the sensitivity distribution could be useful for optimising the probe design parameters and predicting the imaging performance.

  8. An investigation of using an RQP based method to calculate parameter sensitivity derivatives

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1989-01-01

    Estimation of the sensitivity of problem functions with respect to problem variables forms the basis for many of our modern day algorithms for engineering optimization. The most common application of problem sensitivities has been in the calculation of objective function and constraint partial derivatives for determining search directions and optimality conditions. A second form of sensitivity analysis, parameter sensitivity, has also become an important topic in recent years. By parameter sensitivity, researchers refer to the estimation of changes in the modeling functions and current design point due to small changes in the fixed parameters of the formulation. Methods for calculating these derivatives have been proposed by several authors (Armacost and Fiacco 1974, Sobieski et al 1981, Schmit and Chang 1984, and Vanderplaats and Yoshida 1985). Two drawbacks to estimating parameter sensitivities by current methods have been: (1) the need for second order information about the Lagrangian at the current point, and (2) the estimates assume no change in the active set of constraints. The first of these two problems is addressed here and a new algorithm is proposed that does not require explicit calculation of second order information.

  9. Uncertainty analysis and global sensitivity analysis of techno-economic assessments for biodiesel production.

    PubMed

    Tang, Zhang-Chun; Zhenzhou, Lu; Zhiwen, Liu; Ningcong, Xiao

    2015-01-01

    There are various uncertain parameters in the techno-economic assessments (TEAs) of biodiesel production, including capital cost, interest rate, feedstock price, maintenance rate, biodiesel conversion efficiency, glycerol price and operating cost. However, fewer studies focus on the influence of these parameters on TEAs. This paper investigated the effects of these parameters on the life cycle cost (LCC) and the unit cost (UC) in the TEAs of biodiesel production. The results show that LCC and UC exhibit variations when involving uncertain parameters. Based on the uncertainty analysis, three global sensitivity analysis (GSA) methods are utilized to quantify the contribution of an individual uncertain parameter to LCC and UC. The GSA results reveal that the feedstock price and the interest rate produce considerable effects on the TEAs. These results can provide a useful guide for entrepreneurs when they plan plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Global sensitivity analysis in wind energy assessment

    NASA Astrophysics Data System (ADS)

    Tsvetkova, O.; Ouarda, T. B.

    2012-12-01

    Wind energy is one of the most promising renewable energy sources. Nevertheless, it is not yet a common source of energy, although there is enough wind potential to supply world's energy demand. One of the most prominent obstacles on the way of employing wind energy is the uncertainty associated with wind energy assessment. Global sensitivity analysis (SA) studies how the variation of input parameters in an abstract model effects the variation of the variable of interest or the output variable. It also provides ways to calculate explicit measures of importance of input variables (first order and total effect sensitivity indices) in regard to influence on the variation of the output variable. Two methods of determining the above mentioned indices were applied and compared: the brute force method and the best practice estimation procedure In this study a methodology for conducting global SA of wind energy assessment at a planning stage is proposed. Three sampling strategies which are a part of SA procedure were compared: sampling based on Sobol' sequences (SBSS), Latin hypercube sampling (LHS) and pseudo-random sampling (PRS). A case study of Masdar City, a showcase of sustainable living in the UAE, is used to exemplify application of the proposed methodology. Sources of uncertainty in wind energy assessment are very diverse. In the case study the following were identified as uncertain input parameters: the Weibull shape parameter, the Weibull scale parameter, availability of a wind turbine, lifetime of a turbine, air density, electrical losses, blade losses, ineffective time losses. Ineffective time losses are defined as losses during the time when the actual wind speed is lower than the cut-in speed or higher than the cut-out speed. The output variable in the case study is the lifetime energy production. Most influential factors for lifetime energy production are identified with the ranking of the total effect sensitivity indices. The results of the present research show that the brute force method is best for wind assessment purpose, SBSS outperforms other sampling strategies in the majority of cases. The results indicate that the Weibull scale parameter, turbine lifetime and Weibull shape parameter are the three most influential variables in the case study setting. The following conclusions can be drawn from these results: 1) SBSS should be recommended for use in Monte Carlo experiments, 2) The brute force method should be recommended for conducting sensitivity analysis in wind resource assessment, and 3) Little variation in the Weibull scale causes significant variation in energy production. The presence of the two distribution parameters in the top three influential variables (the Weibull shape and scale) emphasizes the importance of accuracy of (a) choosing the distribution to model wind regime at a site and (b) estimating probability distribution parameters. This can be labeled as the most important conclusion of this research because it opens a field for further research, which the authors see could change the wind energy field tremendously.

  11. Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks

    PubMed Central

    Kaltenbacher, Barbara; Hasenauer, Jan

    2017-01-01

    Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351

  12. An Algorithm for Efficient Maximum Likelihood Estimation and Confidence Interval Determination in Nonlinear Estimation Problems

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick Charles

    1985-01-01

    An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The algorithm was developed for airplane parameter estimation problems but is well suited for most nonlinear, multivariable, dynamic systems. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. The fitted surface allows sensitivity information to be updated at each iteration with a significant reduction in computational effort. MNRES determines the sensitivities with less computational effort than using either a finite-difference method or integrating the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, thus eliminating algorithm reformulation with each new model and providing flexibility to use model equations in any format that is convenient. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. It is observed that the degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. The CR bounds were found to be close to the bounds determined by the search when the degree of nonlinearity was small. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels for the parameter confidence limits. The primary utility of the measure, however, was found to be in predicting the degree of agreement between Cramer-Rao bounds and search estimates.

  13. Sensitivity analysis of machine-learning models of hydrologic time series

    NASA Astrophysics Data System (ADS)

    O'Reilly, A. M.

    2017-12-01

    Sensitivity analysis traditionally has been applied to assessing model response to perturbations in model parameters, where the parameters are those model input variables adjusted during calibration. Unlike physics-based models where parameters represent real phenomena, the equivalent of parameters for machine-learning models are simply mathematical "knobs" that are automatically adjusted during training/testing/verification procedures. Thus the challenge of extracting knowledge of hydrologic system functionality from machine-learning models lies in their very nature, leading to the label "black box." Sensitivity analysis of the forcing-response behavior of machine-learning models, however, can provide understanding of how the physical phenomena represented by model inputs affect the physical phenomena represented by model outputs.As part of a previous study, hybrid spectral-decomposition artificial neural network (ANN) models were developed to simulate the observed behavior of hydrologic response contained in multidecadal datasets of lake water level, groundwater level, and spring flow. Model inputs used moving window averages (MWA) to represent various frequencies and frequency-band components of time series of rainfall and groundwater use. Using these forcing time series, the MWA-ANN models were trained to predict time series of lake water level, groundwater level, and spring flow at 51 sites in central Florida, USA. A time series of sensitivities for each MWA-ANN model was produced by perturbing forcing time-series and computing the change in response time-series per unit change in perturbation. Variations in forcing-response sensitivities are evident between types (lake, groundwater level, or spring), spatially (among sites of the same type), and temporally. Two generally common characteristics among sites are more uniform sensitivities to rainfall over time and notable increases in sensitivities to groundwater usage during significant drought periods.

  14. Gait Implications of Visual Field Damage from Glaucoma.

    PubMed

    Mihailovic, Aleksandra; Swenor, Bonnielin K; Friedman, David S; West, Sheila K; Gitlin, Laura N; Ramulu, Pradeep Y

    2017-06-01

    To evaluate fall-relevant gait features in older glaucoma patients. The GAITRite Electronic Walkway was used to define fall-related gait parameters in 239 patients with suspected or manifest glaucoma under normal usual-pace walking conditions and while carrying a cup or tray. Multiple linear regression models assessed the association between gait parameters and integrated visual field (IVF) sensitivity after controlling for age, race, sex, medications, and comorbid illness. Under normal walking conditions, worse IVF sensitivity was associated with a wider base of support (β = 0.60 cm/5 dB IVF sensitivity decrement, 95% confidence interval [CI] = 0.12-1.09, P = 0.016). Worse IVF sensitivity was not associated with slower gait speed, shorter step or stride length, or greater left-right drift under normal walking conditions ( P > 0.05 for all), but was during cup and/or tray carrying conditions ( P < 0.05 for all). Worse IVF sensitivity was positively associated with greater stride-to-stride variability in step length, stride length, and stride velocity ( P < 0.005 for all). Inferior and superior IVF sensitivity demonstrated associations with each of the above gait parameters as well, though these associations were consistently similar to, or weaker than, the associations noted for overall IVF sensitivity. Glaucoma severity was associated with several gait parameters predictive of higher fall risk in prior studies, particularly measures of stride-to-stride variability. Gait may be useful in identifying glaucoma patients at higher risk of falls, and in designing and testing interventions to prevent falls in this high-risk group. These findings could serve to inform the development of the interventions for falls prevention in glaucoma patients.

  15. Effects of Retinal Morphology on Contrast Sensitivity and Reading Ability in Neovascular Age-Related Macular Degeneration

    PubMed Central

    Keane, Pearse A.; Patel, Praveen J.; Ouyang, Yanling; Chen, Fred K.; Ikeji, Felicia; Walsh, Alexander C.; Tufail, Adnan

    2010-01-01

    Purpose. To investigate the effect of changes in retinal morphology on contrast sensitivity and reading ability in patients with neovascular age-related macular degeneration (AMD) in the Avastin (bevacizumab; Genentech, South San Francisco, CA) for choroidal neovascularization (ABC) Trial. Methods. Contrast sensitivity obtained with Pelli-Robson charts, reading ability assessed with Minnesota Reading charts, and Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity (VA) obtained by protocol refraction, were recorded. Raw Stratus optical coherence tomography (OCT; Carl Zeiss Meditec, Inc., Dublin, CA) images were analyzed with the publicly available software OCTOR, which allows precise delineation of any retinal compartment of interest. Thickness and volume were calculated for neurosensory retina, subretinal fluid (SRF), subretinal tissue, and pigment epithelium detachment, and the resulting measurements were correlated with each visual function parameter. Results. One hundred twenty-two patients with newly diagnosed neovascular AMD and enrolled in the ABC Trial, were evaluated. Increased subretinal tissue volume correlated with decreased contrast sensitivity (Pearson's correlation coefficient, r = −0.4944, P = 0.001). A modest correlation was detected between SRF volume and contrast sensitivity (r = −0.2562, P = 0.004). Increased retinal thickness at the foveal center also correlated with decreased visual function (ETDRS VA: r = −0.4530, P < 0.001). Conclusions. The strongest correlation detected between the functional parameters assessed and any of the OCT-derived morphologic parameters was that between decreased contrast sensitivity and increased subretinal tissue. In the future, assessment of contrast sensitivity and reading ability, in combination with quantitative subanalysis of retinal compartments, may lead to the identification of parameters relevant to functional improvement and ultimate prognosis in patients with newly diagnosed neovascular AMD (www.controlled-trials.com number, ISRCTN83325075). PMID:20554607

  16. Improving on the diagnostic characteristics of echocardiography for pulmonary hypertension.

    PubMed

    Broderick-Forsgren, Kathleen; Davenport, Clemontina A; Sivak, Joseph A; Hargett, Charles William; Foster, Michael C; Monteagudo, Andrew; Armour, Alicia; Rajagopal, Sudarshan; Arges, Kristine; Velazquez, Eric J; Samad, Zainab

    2017-09-01

    This retrospective study evaluated the diagnostic characteristics of a combination of echocardiographic parameters for pulmonary hypertension (PH). Right ventricular systolic pressure (RVSP) estimation by echocardiography (echo) is used to screen for PH. However, the sensitivity of this method is suboptimal. We hypothesized that RVSP estimation in conjunction with other echo parameters would improve the value of echo for PH. The Duke Echo database was queried for adult patients with known or suspected PH who had undergone both echo and right heart catheterization (RHC) within a 24 h period between 1/1/2008 and 12/31/2013. Patients with complex congenital heart disease, heart transplantation, ventricular assist device, or on mechanical ventilation at time of study were excluded. Diagnostic characteristics of several echo parameters (right atrial enlargement, pulmonary artery (PA) enlargement, RV enlargement, RV dysfunction, and RVSP) for PH (mean PA pressure 25 mmHg on RHC) were evaluated among 1007 patients. RVSP ≥40 had a sensitivity of 77% (accuracy 77), while RVSP ≥35 had the highest sensitivity at 88% (81% accuracy). PA enlargement had the lowest sensitivity at 17%. The area under the curve (AUC) for RVSP was 0.844. A model including RVSP, RA, PA, RV enlargement and RV dysfunction had a higher AUC (AUC = 0.87) than RVSP alone. The value of echo as a screening test for PH is improved by a model incorporating a lower RVSP in addition to other right heart parameters. These findings need to be validated in prospective cohorts.

  17. Parametric Study of Synthetic-Jet-Based Flow Control on a Vertical Tail Model

    NASA Astrophysics Data System (ADS)

    Monastero, Marianne; Lindstrom, Annika; Beyar, Michael; Amitay, Michael

    2015-11-01

    Separation control over the rudder of the vertical tail of a commercial airplane using synthetic-jet-based flow control can lead to a reduction in tail size, with an associated decrease in drag and increase in fuel savings. A parametric, experimental study was undertaken using an array of finite span synthetic jets to investigate the sensitivity of the enhanced vertical tail side force to jet parameters, such as jet spanwise spacing and jet momentum coefficient. A generic wind tunnel model was designed and fabricated to fundamentally study the effects of the jet parameters at varying rudder deflection and model sideslip angles. Wind tunnel results obtained from pressure measurements and tuft flow visualization in the Rensselaer Polytechnic Subsonic Wind Tunnel show a decrease in separation severity and increase in model performance in comparison to the baseline, non-actuated case. The sensitivity to various parameters will be presented.

  18. Parameter regionalization of a monthly water balance model for the conterminous United States

    USGS Publications Warehouse

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2016-01-01

    A parameter regionalization scheme to transfer parameter values from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash–Sutcliffe efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.

  19. Parameter regionalization of a monthly water balance model for the conterminous United States

    NASA Astrophysics Data System (ADS)

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2016-07-01

    A parameter regionalization scheme to transfer parameter values from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash-Sutcliffe efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.

  20. Efficient Screening of Climate Model Sensitivity to a Large Number of Perturbed Input Parameters [plus supporting information

    DOE PAGES

    Covey, Curt; Lucas, Donald D.; Tannahill, John; ...

    2013-07-01

    Modern climate models contain numerous input parameters, each with a range of possible values. Since the volume of parameter space increases exponentially with the number of parameters N, it is generally impossible to directly evaluate a model throughout this space even if just 2-3 values are chosen for each parameter. Sensitivity screening algorithms, however, can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination.This can aid both model development and the uncertainty quantification (UQ) process. Here we report results from a parameter sensitivity screening algorithm hitherto untested in climate modeling,more » the Morris one-at-a-time (MOAT) method. This algorithm drastically reduces the computational cost of estimating sensitivities in a high dimensional parameter space because the sample size grows linearly rather than exponentially with N. It nevertheless samples over much of the N-dimensional volume and allows assessment of parameter interactions, unlike traditional elementary one-at-a-time (EOAT) parameter variation. We applied both EOAT and MOAT to the Community Atmosphere Model (CAM), assessing CAM’s behavior as a function of 27 uncertain input parameters related to the boundary layer, clouds, and other subgrid scale processes. For radiation balance at the top of the atmosphere, EOAT and MOAT rank most input parameters similarly, but MOAT identifies a sensitivity that EOAT underplays for two convection parameters that operate nonlinearly in the model. MOAT’s ranking of input parameters is robust to modest algorithmic variations, and it is qualitatively consistent with model development experience. Supporting information is also provided at the end of the full text of the article.« less

  1. Reliability analysis of a sensitive and independent stabilometry parameter set

    PubMed Central

    Nagymáté, Gergely; Orlovits, Zsanett

    2018-01-01

    Recent studies have suggested reduced independent and sensitive parameter sets for stabilometry measurements based on correlation and variance analyses. However, the reliability of these recommended parameter sets has not been studied in the literature or not in every stance type used in stabilometry assessments, for example, single leg stances. The goal of this study is to evaluate the test-retest reliability of different time-based and frequency-based parameters that are calculated from the center of pressure (CoP) during bipedal and single leg stance for 30- and 60-second measurement intervals. Thirty healthy subjects performed repeated standing trials in a bipedal stance with eyes open and eyes closed conditions and in a single leg stance with eyes open for 60 seconds. A force distribution measuring plate was used to record the CoP. The reliability of the CoP parameters was characterized by using the intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimal detectable change (MDC), coefficient of variation (CV) and CV compliance rate (CVCR). Based on the ICC, SEM and MDC results, many parameters yielded fair to good reliability values, while the CoP path length yielded the highest reliability (smallest ICC > 0.67 (0.54–0.79), largest SEM% = 19.2%). Usually, frequency type parameters and extreme value parameters yielded poor reliability values. There were differences in the reliability of the maximum CoP velocity (better with 30 seconds) and mean power frequency (better with 60 seconds) parameters between the different sampling intervals. PMID:29664938

  2. Reliability analysis of a sensitive and independent stabilometry parameter set.

    PubMed

    Nagymáté, Gergely; Orlovits, Zsanett; Kiss, Rita M

    2018-01-01

    Recent studies have suggested reduced independent and sensitive parameter sets for stabilometry measurements based on correlation and variance analyses. However, the reliability of these recommended parameter sets has not been studied in the literature or not in every stance type used in stabilometry assessments, for example, single leg stances. The goal of this study is to evaluate the test-retest reliability of different time-based and frequency-based parameters that are calculated from the center of pressure (CoP) during bipedal and single leg stance for 30- and 60-second measurement intervals. Thirty healthy subjects performed repeated standing trials in a bipedal stance with eyes open and eyes closed conditions and in a single leg stance with eyes open for 60 seconds. A force distribution measuring plate was used to record the CoP. The reliability of the CoP parameters was characterized by using the intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimal detectable change (MDC), coefficient of variation (CV) and CV compliance rate (CVCR). Based on the ICC, SEM and MDC results, many parameters yielded fair to good reliability values, while the CoP path length yielded the highest reliability (smallest ICC > 0.67 (0.54-0.79), largest SEM% = 19.2%). Usually, frequency type parameters and extreme value parameters yielded poor reliability values. There were differences in the reliability of the maximum CoP velocity (better with 30 seconds) and mean power frequency (better with 60 seconds) parameters between the different sampling intervals.

  3. A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters

    NASA Astrophysics Data System (ADS)

    Ren, Luchuan

    2015-04-01

    A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there exist differences in importance order in generating uncertainties of the maximum tsunami wave heights for same group parameters at different specific sites in offshore area. These results are helpful to deeply understand the relationship between the tsunami wave heights and the seismic tsunami source parameters. Keywords: Global sensitivity analysis; Tsunami wave height; Potential seismic tsunami source parameter; Morris method; Extended FAST method

  4. Monitoring Tumor Response to Carbogen Breathing by Oxygen-Sensitive Magnetic Resonance Parameters to Predict the Outcome of Radiation Therapy: A Preclinical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao-Pham, Thanh-Trang; Tran, Ly-Binh-An; Colliez, Florence

    Purpose: In an effort to develop noninvasive in vivo methods for mapping tumor oxygenation, magnetic resonance (MR)-derived parameters are being considered, including global R{sub 1}, water R{sub 1}, lipids R{sub 1}, and R{sub 2}*. R{sub 1} is sensitive to dissolved molecular oxygen, whereas R{sub 2}* is sensitive to blood oxygenation, detecting changes in dHb. This work compares global R{sub 1}, water R{sub 1}, lipids R{sub 1}, and R{sub 2}* with pO{sub 2} assessed by electron paramagnetic resonance (EPR) oximetry, as potential markers of the outcome of radiation therapy (RT). Methods and Materials: R{sub 1}, R{sub 2}*, and EPR were performed onmore » rhabdomyosarcoma and 9L-glioma tumor models, under air and carbogen breathing conditions (95% O{sub 2}, 5% CO{sub 2}). Because the models demonstrated different radiosensitivity properties toward carbogen, a growth delay (GD) assay was performed on the rhabdomyosarcoma model and a tumor control dose 50% (TCD50) was performed on the 9L-glioma model. Results: Magnetic resonance imaging oxygen-sensitive parameters detected the positive changes in oxygenation induced by carbogen within tumors. No consistent correlation was seen throughout the study between MR parameters and pO{sub 2}. Global and lipids R{sub 1} were found to be correlated to pO{sub 2} in the rhabdomyosarcoma model, whereas R{sub 2}* was found to be inversely correlated to pO{sub 2} in the 9L-glioma model (P=.05 and .03). Carbogen increased the TCD50 of 9L-glioma but did not increase the GD of rhabdomyosarcoma. Only R{sub 2}* was predictive (P<.05) for the curability of 9L-glioma at 40 Gy, a dose that showed a difference in response to RT between carbogen and air-breathing groups. {sup 18}F-FAZA positron emission tomography imaging has been shown to be a predictive marker under the same conditions. Conclusion: This work illustrates the sensitivity of oxygen-sensitive R{sub 1} and R{sub 2}* parameters to changes in tumor oxygenation. However, R{sub 1} parameters showed limitations in terms of predicting the outcome of RT in the tumor models studied, whereas R{sub 2}* was found to be correlated with the outcome in the responsive model.« less

  5. Plausibility and parameter sensitivity of micro-finite element-based joint load prediction at the proximal femur.

    PubMed

    Synek, Alexander; Pahr, Dieter H

    2018-06-01

    A micro-finite element-based method to estimate the bone loading history based on bone architecture was recently presented in the literature. However, a thorough investigation of the parameter sensitivity and plausibility of this method to predict joint loads is still missing. The goals of this study were (1) to analyse the parameter sensitivity of the joint load predictions at one proximal femur and (2) to assess the plausibility of the results by comparing load predictions of ten proximal femora to in vivo hip joint forces measured with instrumented prostheses (available from www.orthoload.com ). Joint loads were predicted by optimally scaling the magnitude of four unit loads (inclined [Formula: see text] to [Formula: see text] with respect to the vertical axis) applied to micro-finite element models created from high-resolution computed tomography scans ([Formula: see text]m voxel size). Parameter sensitivity analysis was performed by varying a total of nine parameters and showed that predictions of the peak load directions (range 10[Formula: see text]-[Formula: see text]) are more robust than the predicted peak load magnitudes (range 2344.8-4689.5 N). Comparing the results of all ten femora with the in vivo loading data of ten subjects showed that peak loads are plausible both in terms of the load direction (in vivo: [Formula: see text], predicted: [Formula: see text]) and magnitude (in vivo: [Formula: see text], predicted: [Formula: see text]). Overall, this study suggests that micro-finite element-based joint load predictions are both plausible and robust in terms of the predicted peak load direction, but predicted load magnitudes should be interpreted with caution.

  6. Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method

    USGS Publications Warehouse

    Kalra, Tarandeep S.; Aretxabaleta, Alfredo; Seshadri, Pranay; Ganju, Neil K.; Beudin, Alexis

    2017-01-01

    Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant density, height, and to a certain degree, diameter. Wave dissipation is mostly dependent on the variation in plant density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance for future observational and modeling work to optimize efforts and reduce exploration of parameter space.

  7. Sensitivity analysis of the add-on price estimate for the edge-defined film-fed growth process

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.; Kachare, A. H.

    1981-01-01

    The analysis is in terms of cost parameters and production parameters. The cost parameters include equipment, space, direct labor, materials, and utilities. The production parameters include growth rate, process yield, and duty cycle. A computer program was developed specifically to do the sensitivity analysis.

  8. Sensitivity analysis of simulated SOA loadings using a variance-based statistical approach: SENSITIVITY ANALYSIS OF SOA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Manish; Zhao, Chun; Easter, Richard C.

    We investigate the sensitivity of secondary organic aerosol (SOA) loadings simulated by a regional chemical transport model to 7 selected tunable model parameters: 4 involving emissions of anthropogenic and biogenic volatile organic compounds, anthropogenic semi-volatile and intermediate volatility organics (SIVOCs), and NOx, 2 involving dry deposition of SOA precursor gases, and one involving particle-phase transformation of SOA to low volatility. We adopt a quasi-Monte Carlo sampling approach to effectively sample the high-dimensional parameter space, and perform a 250 member ensemble of simulations using a regional model, accounting for some of the latest advances in SOA treatments based on our recentmore » work. We then conduct a variance-based sensitivity analysis using the generalized linear model method to study the responses of simulated SOA loadings to the tunable parameters. Analysis of SOA variance from all 250 simulations shows that the volatility transformation parameter, which controls whether particle-phase transformation of SOA from semi-volatile SOA to non-volatile is on or off, is the dominant contributor to variance of simulated surface-level daytime SOA (65% domain average contribution). We also split the simulations into 2 subsets of 125 each, depending on whether the volatility transformation is turned on/off. For each subset, the SOA variances are dominated by the parameters involving biogenic VOC and anthropogenic SIVOC emissions. Furthermore, biogenic VOC emissions have a larger contribution to SOA variance when the SOA transformation to non-volatile is on, while anthropogenic SIVOC emissions have a larger contribution when the transformation is off. NOx contributes less than 4.3% to SOA variance, and this low contribution is mainly attributed to dominance of intermediate to high NOx conditions throughout the simulated domain. The two parameters related to dry deposition of SOA precursor gases also have very low contributions to SOA variance. This study highlights the large sensitivity of SOA loadings to the particle-phase transformation of SOA volatility, which is neglected in most previous models.« less

  9. Sensitivity of geological, geochemical and hydrologic parameters in complex reactive transport systems for in-situ uranium bioremediation

    NASA Astrophysics Data System (ADS)

    Yang, G.; Maher, K.; Caers, J.

    2015-12-01

    Groundwater contamination associated with remediated uranium mill tailings is a challenging environmental problem, particularly within the Colorado River Basin. To examine the effectiveness of in-situ bioremediation of U(VI), acetate injection has been proposed and tested at the Rifle pilot site. There have been several geologic modeling and simulated contaminant transport investigations, to evaluate the potential outcomes of the process and identify crucial factors for successful uranium reduction. Ultimately, findings from these studies would contribute to accurate predictions of the efficacy of uranium reduction. However, all these previous studies have considered limited model complexities, either because of the concern that data is too sparse to resolve such complex systems or because some parameters are assumed to be less important. Such simplified initial modeling, however, limits the predictive power of the model. Moreover, previous studies have not yet focused on spatial heterogeneity of various modeling components and its impact on the spatial distribution of the immobilized uranium (U(IV)). In this study, we study the impact of uncertainty on 21 parameters on model responses by means of recently developed distance-based global sensitivity analysis (DGSA), to study the main effects and interactions of parameters of various types. The 21 parameters include, for example, spatial variability of initial uranium concentration, mean hydraulic conductivity, and variogram structures of hydraulic conductivity. DGSA allows for studying multi-variate model responses based on spatial and non-spatial model parameters. When calculating the distances between model responses, in addition to the overall uranium reduction efficacy, we also considered the spatial profiles of the immobilized uranium concentration as target response. Results show that the mean hydraulic conductivity and the mineral reaction rate are the two most sensitive parameters with regard to the overall uranium reduction. But in terms of spatial distribution of immobilized uranium, initial conditions of uranium concentration and spatial uncertainty in hydraulic conductivity also become important. These analyses serve as the first step of further prediction practices of the complex uranium transport and reaction systems.

  10. Adjoint sensitivity analysis of plasmonic structures using the FDTD method.

    PubMed

    Zhang, Yu; Ahmed, Osman S; Bakr, Mohamed H

    2014-05-15

    We present an adjoint variable method for estimating the sensitivities of arbitrary responses with respect to the parameters of dispersive discontinuities in nanoplasmonic devices. Our theory is formulated in terms of the electric field components at the vicinity of perturbed discontinuities. The adjoint sensitivities are computed using at most one extra finite-difference time-domain (FDTD) simulation regardless of the number of parameters. Our approach is illustrated through the sensitivity analysis of an add-drop coupler consisting of a square ring resonator between two parallel waveguides. The computed adjoint sensitivities of the scattering parameters are compared with those obtained using the accurate but computationally expensive central finite difference approach.

  11. Comparison of surrogate indices for insulin sensitivity with parameters of the intravenous glucose tolerance test in early lactation dairy cattle.

    PubMed

    Alves-Nores, V; Castillo, C; Hernandez, J; Abuelo, A

    2017-10-01

    The aim of this study was to investigate the correlation between different surrogate indices and parameters of the intravenous glucose tolerance test (IVGTT) in dairy cows at the start of their lactation. Ten dairy cows underwent IVGTT on Days 3 to 7 after calving. Areas under the curve during the 90 min after infusion, peak and nadir concentrations, elimination rates, and times to reach half-maximal and basal concentrations for glucose, insulin, nonesterified fatty acids, and β-hydroxybutyrate were calculated. Surrogate indices were computed using the average of the IVGTT basal samples, and their correlation with the IVGTT parameters studied through the Spearman's rank test. No statistically significant or strong correlation coefficients (P > 0.05; |ρ| < 0.50) were observed between the insulin sensitivity measures derived from the IVGTT and any of the surrogate indices. Therefore, these results support that the assessment of insulin sensitivity in early lactation cattle cannot rely on the calculation of surrogate indices in just a blood sample, and the more laborious tests (ie, hyperinsulinemic euglycemic clamp test or IVGTT) should be employed to predict the sensitivity of the peripheral tissues to insulin accurately. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Temperature compensation via cooperative stability in protein degradation

    NASA Astrophysics Data System (ADS)

    Peng, Yuanyuan; Hasegawa, Yoshihiko; Noman, Nasimul; Iba, Hitoshi

    2015-08-01

    Temperature compensation is a notable property of circadian oscillators that indicates the insensitivity of the oscillator system's period to temperature changes; the underlying mechanism, however, is still unclear. We investigated the influence of protein dimerization and cooperative stability in protein degradation on the temperature compensation ability of two oscillators. Here, cooperative stability means that high-order oligomers are more stable than their monomeric counterparts. The period of an oscillator is affected by the parameters of the dynamic system, which in turn are influenced by temperature. We adopted the Repressilator and the Atkinson oscillator to analyze the temperature sensitivity of their periods. Phase sensitivity analysis was employed to evaluate the period variations of different models induced by perturbations to the parameters. Furthermore, we used experimental data provided by other studies to determine the reasonable range of parameter temperature sensitivity. We then applied the linear programming method to the oscillatory systems to analyze the effects of protein dimerization and cooperative stability on the temperature sensitivity of their periods, which reflects the ability of temperature compensation in circadian rhythms. Our study explains the temperature compensation mechanism for circadian clocks. Compared with the no-dimer mathematical model and linear model for protein degradation, our theoretical results show that the nonlinear protein degradation caused by cooperative stability is more beneficial for realizing temperature compensation of the circadian clock.

  13. Computer-aided interpretation approach for optical tomographic images

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.; Klose, Alexander D.; Netz, Uwe J.; Scheel, Alexander K.; Beuthan, Jürgen; Hielscher, Andreas H.

    2010-11-01

    A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) in human finger joints using optical tomographic images. The image interpretation method employs a classification algorithm that makes use of a so-called self-organizing mapping scheme to classify fingers as either affected or unaffected by RA. Unlike in previous studies, this allows for combining multiple image features, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index, and mutual information. Different methods (i.e., clinical diagnostics, ultrasound imaging, magnet resonance imaging, and inspection of optical tomographic images), were used to produce ground truth benchmarks to determine the performance of image interpretations. Using data from 100 finger joints, findings suggest that some parameter combinations lead to higher sensitivities, while others to higher specificities when compared to single parameter classifications employed in previous studies. Maximum performances are reached when combining the minimum/maximum ratio of the absorption coefficient and image variance. In this case, sensitivities and specificities over 0.9 can be achieved. These values are much higher than values obtained when only single parameter classifications were used, where sensitivities and specificities remained well below 0.8.

  14. Misalignment sensitivity in an intra-cavity coherently combined crossed-Porro resonator configuration

    NASA Astrophysics Data System (ADS)

    Alperovich, Z.; Buchinsky, O.; Greenstein, S.; Ishaaya, A. A.

    2017-08-01

    We investigate the misalignment sensitivity in a crossed-Porro resonator configuration when coherently combining two pulsed multimode Nd:YAG laser channels. To the best of our knowledge, this is the first reported study of this configuration. The configuration is based on a passive intra-cavity interferometric combiner that promotes self-phase locking and coherent combining. Detailed misalignment sensitivity measurements are presented, examining both translation and angular deviations of the end prisms and combiner, and are compared to the results for standard flat end-mirror configurations. The results show that the most sensitive parameter in the crossed-Porro resonator configuration is the angular tuning of the intra-cavity interferometric combiner, which is ~±54 µrad. In comparison, with the flat end mirror configuration, the most sensitive parameter in the resonator is the angular tuning of the output coupler, which is ~±11 µrad. Thus, with the crossed-Porro configuration, we obtain significantly reduced sensitivity. This ability to reduce the misalignment sensitivity in coherently combined solid-state configurations may be beneficial in paving their way into practical use in a variety of demanding applications.

  15. The Relationship of Mean Platelet Volume/Platelet Distribution Width and Duodenal Ulcer Perforation.

    PubMed

    Fan, Zhe; Zhuang, Chengjun

    2017-03-01

    Duodenal ulcer perforation (DUP) is a severe acute abdominal disease. Mean platelet volume (MPV) and platelet distribution width (PDW) are two platelet parameters, participating in many inflammatory processes. This study aims to investigate the relation of MPV/PDW and DUP. A total of 165 patients were studied retrospectively, including 21 females and 144 males. The study included two groups: 87 normal patients (control group) and 78 duodenal ulcer perforation patients (DUP group). Routine blood parameters were collected for analysis including white blood cell count (WBC), neutrophil ratio (NR), platelet count (PLT), MPV and PDW. Receiver operating curve (ROC) analysis was applied to evaluate the parameters' sensitivity. No significant differences were observed between the control group and DUP group in age and gender. WBC, NR and PDW were significantly increased in the DUP group ( P <0.001, respectively); PLT and MPV were significantly decreased in the DUP group ( P <0.001, respectively) compared to controls. MPV had the high sensitivity. Our results suggested a potential association between MPV/PDW and disease activity in DUP patients, and high sensitivity of MPV. © 2017 by the Association of Clinical Scientists, Inc.

  16. Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models

    PubMed Central

    Bauerle, William L.; Bowden, Joseph D.

    2011-01-01

    A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions. PMID:21617246

  17. Characterization and durability testing of plasma-sprayed zirconia-yttria and hafnia-yttria thermal barrier coatings. Part 2: Effect of spray parameters on the performance of several hafnia-yttria and zirconia-yttria coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Leissler, George W.

    1993-01-01

    This is the second of two reports which discuss initial experiments on thermal barrier coatings prepared and tested in newly upgraded plasma spray and burner rig test facilities at LeRC. The first report, part 1, describes experiments designed to establish the spray parameters for the baseline zirconia-yttria coating. Coating quality was judged primarily by the response to burner rig exposure, together with a variety of other characterization approaches including thermal diffusivity measurements. That portion of the study showed that the performance of the baseline NASA coating was not strongly sensitive to processing parameters. In this second part of the study, new hafnia-yttria coatings were evaluated with respect to both baseline and alternate zirconia-yttria coatings. The hafnia-yttria and the alternate zirconia-yttria coatings were very sensitive to plasma-spray parameters in that high-quality coatings were obtained only when specific parameters were used. The reasons for this important observation are not understood.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, S; Jeraj, R; Galavis, P

    Purpose: Sensitivity of PET-derived texture features to reconstruction methods has been reported for features extracted from axial planes; however, studies often utilize three dimensional techniques. This work aims to quantify the impact of multi-plane (3D) vs. single-plane (2D) feature extraction on radiomics-based analysis, including sensitivity to reconstruction parameters and potential loss of spatial information. Methods: Twenty-three patients with solid tumors underwent [{sup 18}F]FDG PET/CT scans under identical protocols. PET data were reconstructed using five sets of reconstruction parameters. Tumors were segmented using an automatic, in-house algorithm robust to reconstruction variations. 50 texture features were extracted using two Methods: 2D patchesmore » along axial planes and 3D patches. For each method, sensitivity of features to reconstruction parameters was calculated as percent difference relative to the average value across reconstructions. Correlations between feature values were compared when using 2D and 3D extraction. Results: 21/50 features showed significantly different sensitivity to reconstruction parameters when extracted in 2D vs 3D (wilcoxon α<0.05), assessed by overall range of variation, Rangevar(%). Eleven showed greater sensitivity to reconstruction in 2D extraction, primarily first-order and co-occurrence features (average Rangevar increase 83%). The remaining ten showed higher variation in 3D extraction (average Range{sub var}increase 27%), mainly co-occurence and greylevel run-length features. Correlation of feature value extracted in 2D and feature value extracted in 3D was poor (R<0.5) in 12/50 features, including eight co-occurrence features. Feature-to-feature correlations in 2D were marginally higher than 3D, ∣R∣>0.8 in 16% and 13% of all feature combinations, respectively. Larger sensitivity to reconstruction parameters were seen for inter-feature correlation in 2D(σ=6%) than 3D (σ<1%) extraction. Conclusion: Sensitivity and correlation of various texture features were shown to significantly differ between 2D and 3D extraction. Additionally, inter-feature correlations were more sensitive to reconstruction variation using single-plane extraction. This work highlights a need for standardized feature extraction/selection techniques in radiomics.« less

  19. Developing a methodology for the inverse estimation of root architectural parameters from field based sampling schemes

    NASA Astrophysics Data System (ADS)

    Morandage, Shehan; Schnepf, Andrea; Vanderborght, Jan; Javaux, Mathieu; Leitner, Daniel; Laloy, Eric; Vereecken, Harry

    2017-04-01

    Root traits are increasingly important in breading of new crop varieties. E.g., longer and fewer lateral roots are suggested to improve drought resistance of wheat. Thus, detailed root architectural parameters are important. However, classical field sampling of roots only provides more aggregated information such as root length density (coring), root counts per area (trenches) or root arrival curves at certain depths (rhizotubes). We investigate the possibility of obtaining the information about root system architecture of plants using field based classical root sampling schemes, based on sensitivity analysis and inverse parameter estimation. This methodology was developed based on a virtual experiment where a root architectural model was used to simulate root system development in a field, parameterized for winter wheat. This information provided the ground truth which is normally unknown in a real field experiment. The three sampling schemes coring, trenching, and rhizotubes where virtually applied to and aggregated information computed. Morris OAT global sensitivity analysis method was then performed to determine the most sensitive parameters of root architecture model for the three different sampling methods. The estimated means and the standard deviation of elementary effects of a total number of 37 parameters were evaluated. Upper and lower bounds of the parameters were obtained based on literature and published data of winter wheat root architectural parameters. Root length density profiles of coring, arrival curve characteristics observed in rhizotubes, and root counts in grids of trench profile method were evaluated statistically to investigate the influence of each parameter using five different error functions. Number of branches, insertion angle inter-nodal distance, and elongation rates are the most sensitive parameters and the parameter sensitivity varies slightly with the depth. Most parameters and their interaction with the other parameters show highly nonlinear effect to the model output. The most sensitive parameters will be subject to inverse estimation from the virtual field sampling data using DREAMzs algorithm. The estimated parameters can then be compared with the ground truth in order to determine the suitability of the sampling schemes to identify specific traits or parameters of the root growth model.

  20. The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricciuto, Daniel; Sargsyan, Khachik; Thornton, Peter

    We conduct a global sensitivity analysis (GSA) of the Energy Exascale Earth System Model (E3SM), land model (ELM) to calculate the sensitivity of five key carbon cycle outputs to 68 model parameters. This GSA is conducted by first constructing a Polynomial Chaos (PC) surrogate via new Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth leading to a sparse, high-dimensional PC surrogate with 3,000 model evaluations. The PC surrogate allows efficient extraction of GSA information leading to further dimensionality reduction. The GSA is performed at 96 FLUXNET sites covering multiple plant functional types (PFTs) and climate conditions. Aboutmore » 20 of the model parameters are identified as sensitive with the rest being relatively insensitive across all outputs and PFTs. These sensitivities are dependent on PFT, and are relatively consistent among sites within the same PFT. The five model outputs have a majority of their highly sensitive parameters in common. A common subset of sensitive parameters is also shared among PFTs, but some parameters are specific to certain types (e.g., deciduous phenology). In conclusion, the relative importance of these parameters shifts significantly among PFTs and with climatic variables such as mean annual temperature.« less

  1. The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model

    DOE PAGES

    Ricciuto, Daniel; Sargsyan, Khachik; Thornton, Peter

    2018-02-27

    We conduct a global sensitivity analysis (GSA) of the Energy Exascale Earth System Model (E3SM), land model (ELM) to calculate the sensitivity of five key carbon cycle outputs to 68 model parameters. This GSA is conducted by first constructing a Polynomial Chaos (PC) surrogate via new Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth leading to a sparse, high-dimensional PC surrogate with 3,000 model evaluations. The PC surrogate allows efficient extraction of GSA information leading to further dimensionality reduction. The GSA is performed at 96 FLUXNET sites covering multiple plant functional types (PFTs) and climate conditions. Aboutmore » 20 of the model parameters are identified as sensitive with the rest being relatively insensitive across all outputs and PFTs. These sensitivities are dependent on PFT, and are relatively consistent among sites within the same PFT. The five model outputs have a majority of their highly sensitive parameters in common. A common subset of sensitive parameters is also shared among PFTs, but some parameters are specific to certain types (e.g., deciduous phenology). In conclusion, the relative importance of these parameters shifts significantly among PFTs and with climatic variables such as mean annual temperature.« less

  2. Predictive Uncertainty And Parameter Sensitivity Of A Sediment-Flux Model: Nitrogen Flux and Sediment Oxygen Demand

    EPA Science Inventory

    Estimating model predictive uncertainty is imperative to informed environmental decision making and management of water resources. This paper applies the Generalized Sensitivity Analysis (GSA) to examine parameter sensitivity and the Generalized Likelihood Uncertainty Estimation...

  3. Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization.

    PubMed

    Vucic, Steve; Kiernan, Matthew C

    2008-03-01

    Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.

  4. Parameters sensitivity on mooring loads of ship-shaped FPSOs

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Saidee

    2017-12-01

    The work in this paper is focused on special assessment and evaluation of mooring system of ship-shaped FPSO unit. In particular, the purpose of the study is to find the impact on mooring loads for the variation in different parameters using MIMOSA software. First, a selected base case was designed for an intact mooring system in a typical ultimate limit state (ULS) condition, and then the sensitivity to mooring loads on parameters e.g. location of the turret, analysis method (quasi-static vs. dynamic analysis), low-frequency damping level in the surge, pretension and drag coefficients on chain and steel wire has been performed. It is found that mooring loads change due to the change of these parameters. Especially, pretension has a large impact on the maximum tension of mooring lines and low-frequency damping can change surge offset significantly.

  5. Tactile Imaging Markers to Characterize Female Pelvic Floor Conditions.

    PubMed

    van Raalte, Heather; Egorov, Vladimir

    2015-08-01

    The Vaginal Tactile Imager (VTI) records pressure patterns from vaginal walls under an applied tissue deformation and during pelvic floor muscle contractions. The objective of this study is to validate tactile imaging and muscle contraction parameters (markers) sensitive to the female pelvic floor conditions. Twenty-two women with normal and prolapse conditions were examined by a vaginal tactile imaging probe. We identified 9 parameters which were sensitive to prolapse conditions ( p < 0.05 for one-way ANOVA and/or p < 0.05 for t -test with correlation factor r from -0.73 to -0.56). The list of parameters includes pressure, pressure gradient and dynamic pressure response during muscle contraction at identified locations. These parameters may be used for biomechanical characterization of female pelvic floor conditions to support an effective management of pelvic floor prolapse.

  6. Tactile Imaging Markers to Characterize Female Pelvic Floor Conditions

    PubMed Central

    van Raalte, Heather; Egorov, Vladimir

    2015-01-01

    The Vaginal Tactile Imager (VTI) records pressure patterns from vaginal walls under an applied tissue deformation and during pelvic floor muscle contractions. The objective of this study is to validate tactile imaging and muscle contraction parameters (markers) sensitive to the female pelvic floor conditions. Twenty-two women with normal and prolapse conditions were examined by a vaginal tactile imaging probe. We identified 9 parameters which were sensitive to prolapse conditions (p < 0.05 for one-way ANOVA and/or p < 0.05 for t-test with correlation factor r from −0.73 to −0.56). The list of parameters includes pressure, pressure gradient and dynamic pressure response during muscle contraction at identified locations. These parameters may be used for biomechanical characterization of female pelvic floor conditions to support an effective management of pelvic floor prolapse. PMID:26389014

  7. Normalized sensitivities and parameter identifiability of in situ diffusion experiments on Callovo Oxfordian clay at Bure site

    NASA Astrophysics Data System (ADS)

    Samper, J.; Dewonck, S.; Zheng, L.; Yang, Q.; Naves, A.

    Diffusion of inert and reactive tracers (DIR) is an experimental program performed by ANDRA at Bure underground research laboratory in Meuse/Haute Marne (France) to characterize diffusion and retention of radionuclides in Callovo-Oxfordian (C-Ox) argillite. In situ diffusion experiments were performed in vertical boreholes to determine diffusion and retention parameters of selected radionuclides. C-Ox clay exhibits a mild diffusion anisotropy due to stratification. Interpretation of in situ diffusion experiments is complicated by several non-ideal effects caused by the presence of a sintered filter, a gap between the filter and borehole wall and an excavation disturbed zone (EdZ). The relevance of such non-ideal effects and their impact on estimated clay parameters have been evaluated with numerical sensitivity analyses and synthetic experiments having similar parameters and geometric characteristics as real DIR experiments. Normalized dimensionless sensitivities of tracer concentrations at the test interval have been computed numerically. Tracer concentrations are found to be sensitive to all key parameters. Sensitivities are tracer dependent and vary with time. These sensitivities are useful to identify which are the parameters that can be estimated with less uncertainty and find the times at which tracer concentrations begin to be sensitive to each parameter. Synthetic experiments generated with prescribed known parameters have been interpreted automatically with INVERSE-CORE 2D and used to evaluate the relevance of non-ideal effects and ascertain parameter identifiability in the presence of random measurement errors. Identifiability analysis of synthetic experiments reveals that data noise makes difficult the estimation of clay parameters. Parameters of clay and EdZ cannot be estimated simultaneously from noisy data. Models without an EdZ fail to reproduce synthetic data. Proper interpretation of in situ diffusion experiments requires accounting for filter, gap and EdZ. Estimates of the effective diffusion coefficient and the porosity of clay are highly correlated, indicating that these parameters cannot be estimated simultaneously. Accurate estimation of De and porosities of clay and EdZ is only possible when the standard deviation of random noise is less than 0.01. Small errors in the volume of the circulation system do not affect clay parameter estimates. Normalized sensitivities as well as the identifiability analysis of synthetic experiments provide additional insight on inverse estimation of in situ diffusion experiments and will be of great benefit for the interpretation of real DIR in situ diffusion experiments.

  8. Fragmentation uncertainties in hadronic observables for top-quark mass measurements

    NASA Astrophysics Data System (ADS)

    Corcella, Gennaro; Franceschini, Roberto; Kim, Doojin

    2018-04-01

    We study the Monte Carlo uncertainties due to modeling of hadronization and showering in the extraction of the top-quark mass from observables that use exclusive hadronic final states in top decays, such as t →anything + J / ψ or t →anything + (B →charged tracks), where B is a B-hadron. To this end, we investigate the sensitivity of the top-quark mass, determined by means of a few observables already proposed in the literature as well as some new proposals, to the relevant parameters of event generators, such as HERWIG 6 and PYTHIA 8. We find that constraining those parameters at O (1%- 10%) is required to avoid a Monte Carlo uncertainty on mt greater than 500 MeV. For the sake of achieving the needed accuracy on such parameters, we examine the sensitivity of the top-quark mass measured from spectral features, such as peaks, endpoints and distributions of EB, mBℓ, and some mT2-like variables. We find that restricting oneself to regions sufficiently close to the endpoints enables one to substantially decrease the dependence on the Monte Carlo parameters, but at the price of inflating significantly the statistical uncertainties. To ameliorate this situation we study how well the data on top-quark production and decay at the LHC can be utilized to constrain the showering and hadronization variables. We find that a global exploration of several calibration observables, sensitive to the Monte Carlo parameters but very mildly to mt, can offer useful constraints on the parameters, as long as such quantities are measured with a 1% precision.

  9. Seismic Imaging of VTI, HTI and TTI based on Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Rusmanugroho, H.; Tromp, J.

    2014-12-01

    Recent studies show that isotropic seismic imaging based on adjoint method reduces low-frequency artifact caused by diving waves, which commonly occur in two-wave wave-equation migration, such as Reverse Time Migration (RTM). Here, we derive new expressions of sensitivity kernels for Vertical Transverse Isotropy (VTI) using the Thomsen parameters (ɛ, δ, γ) plus the P-, and S-wave speeds (α, β) as well as via the Chen & Tromp (GJI 2005) parameters (A, C, N, L, F). For Horizontal Transverse Isotropy (HTI), these parameters depend on an azimuthal angle φ, where the tilt angle θ is equivalent to 90°, and for Tilted Transverse Isotropy (TTI), these parameters depend on both the azimuth and tilt angles. We calculate sensitivity kernels for each of these two approaches. Individual kernels ("images") are numerically constructed based on the interaction between the regular and adjoint wavefields in smoothed models which are in practice estimated through Full-Waveform Inversion (FWI). The final image is obtained as a result of summing all shots, which are well distributed to sample the target model properly. The impedance kernel, which is a sum of sensitivity kernels of density and the Thomsen or Chen & Tromp parameters, looks crisp and promising for seismic imaging. The other kernels suffer from low-frequency artifacts, similar to traditional seismic imaging conditions. However, all sensitivity kernels are important for estimating the gradient of the misfit function, which, in combination with a standard gradient-based inversion algorithm, is used to minimize the objective function in FWI.

  10. Application of receiver operating characteristic curve in the assessment of the value of body mass index, waist circumference and percentage of body fat in the Diagnosis of Polycystic Ovary Syndrome in childbearing women.

    PubMed

    Dou, Pan; Ju, Huiyan; Shang, Jing; Li, Xueying; Xue, Qing; Xu, Yang; Guo, Xiaohui

    2016-08-24

    There are various parameters to analyze obesity, however, no standard reference to predict, screen or diagnose PCOS with various obesity parameters has been established, and the accuracy of these parameters still needs to be studied.This study was to use the receiver operating characteristic (ROC) curve to explore the different values of three obesity parameters, body mass index (BMI), waist circumference (WC) and percentage of body fat (PBF) in the diagnosis of polycystic ovary syndrome (PCOS) in Chinese childbearing women. Three hundred patients who were diagnosed with PCOS at Center of Reproductive Medicine and Genetics of Peking University First Hospital were enrolled in this study, and 110 healthy age-matched women were enrolled as controls. The characteristics of BMI, WC and PBF in PCOS patients were analyzed. Compared with the control group, all the three obesity parameters were significantly increased in PCOS group. In terms of ROC area under the curve, WC > PBF > BMI, and they were all significantly different from those of the control. At a cut-off point of 80.5 cm, WC has a sensitivity of 73.6 % and a specificity of 85 % in diagnosis of PCOS; At a cut-off point of 29 %, PBF has a sensitivity of 88.2 % and a specificity of 57.7 % in diagnosis of PCOS; and at a cut-off point of 26.6 kg/m(2), BMI has a sensitivity of 54.5 % and a specificity of 98 % in diagnosis of PCOS. WC, BMI and PBF are valuable in screening and diagnosis of PCOS in Chinese childbearing women. PBF can be used to screen PCOS as it has a better sensitivity, while BMI can be used in the diagnosis of PCOS as it has a better specificity.

  11. Stepwise sensitivity analysis from qualitative to quantitative: Application to the terrestrial hydrological modeling of a Conjunctive Surface-Subsurface Process (CSSP) land surface model

    NASA Astrophysics Data System (ADS)

    Gan, Yanjun; Liang, Xin-Zhong; Duan, Qingyun; Choi, Hyun Il; Dai, Yongjiu; Wu, Huan

    2015-06-01

    An uncertainty quantification framework was employed to examine the sensitivities of 24 model parameters from a newly developed Conjunctive Surface-Subsurface Process (CSSP) land surface model (LSM). The sensitivity analysis (SA) was performed over 18 representative watersheds in the contiguous United States to examine the influence of model parameters in the simulation of terrestrial hydrological processes. Two normalized metrics, relative bias (RB) and Nash-Sutcliffe efficiency (NSE), were adopted to assess the fit between simulated and observed streamflow discharge (SD) and evapotranspiration (ET) for a 14 year period. SA was conducted using a multiobjective two-stage approach, in which the first stage was a qualitative SA using the Latin Hypercube-based One-At-a-Time (LH-OAT) screening, and the second stage was a quantitative SA using the Multivariate Adaptive Regression Splines (MARS)-based Sobol' sensitivity indices. This approach combines the merits of qualitative and quantitative global SA methods, and is effective and efficient for understanding and simplifying large, complex system models. Ten of the 24 parameters were identified as important across different watersheds. The contribution of each parameter to the total response variance was then quantified by Sobol' sensitivity indices. Generally, parameter interactions contribute the most to the response variance of the CSSP, and only 5 out of 24 parameters dominate model behavior. Four photosynthetic and respiratory parameters are shown to be influential to ET, whereas reference depth for saturated hydraulic conductivity is the most influential parameter for SD in most watersheds. Parameter sensitivity patterns mainly depend on hydroclimatic regime, as well as vegetation type and soil texture. This article was corrected on 26 JUN 2015. See the end of the full text for details.

  12. Nervous System Sensitization as a Predictor of Outcome in the Treatment of Peripheral Musculoskeletal Conditions: A Systematic Review.

    PubMed

    O'Leary, Helen; Smart, Keith M; Moloney, Niamh A; Doody, Catherine M

    2017-02-01

    Research suggests that peripheral and central nervous system sensitization can contribute to the overall pain experience in peripheral musculoskeletal (MSK) conditions. It is unclear, however, whether sensitization of the nervous system results in poorer outcomes following the treatment. This systematic review investigated whether nervous system sensitization in peripheral MSK conditions predicts poorer clinical outcomes in response to a surgical or conservative intervention. Four electronic databases were searched to identify the relevant studies. Eligible studies had a prospective design, with a follow-up assessing the outcome in terms of pain or disability. Studies that used baseline indices of nervous system sensitization were included, such as quantitative sensory testing (QST) or questionnaires that measured centrally mediated symptoms. Thirteen studies met the inclusion criteria, of which six were at a high risk of bias. The peripheral MSK conditions investigated were knee and hip osteoarthritis, shoulder pain, and elbow tendinopathy. QST parameters indicative of sensitization (lower electrical pain thresholds, cold hyperalgesia, enhanced temporal summation, lower punctate sharpness thresholds) were associated with negative outcome (more pain or disability) in 5 small exploratory studies. Larger studies that accounted for multiple confounders in design and analysis did not support a predictive relationship between QST parameters and outcome. Two studies used self-report measures to capture comorbid centrally mediated symptoms, and found higher questionnaire scores were independently predictive of more persistent pain following a total joint arthroplasty. This systematic review found insufficient evidence to support an independent predictive relationship between QST measures of nervous system sensitization and treatment outcome. Self-report measures demonstrated better predictive ability. Further high-quality prognostic research is warranted. © 2016 World Institute of Pain.

  13. A methodology for airplane parameter estimation and confidence interval determination in nonlinear estimation problems. Ph.D. Thesis - George Washington Univ., Apr. 1985

    NASA Technical Reports Server (NTRS)

    Murphy, P. C.

    1986-01-01

    An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. With the fitted surface, sensitivity information can be updated at each iteration with less computational effort than that required by either a finite-difference method or integration of the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, and thus provides flexibility to use model equations in any convenient format. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. The degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels and to predict the degree of agreement between CR bounds and search estimates.

  14. Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area

    NASA Astrophysics Data System (ADS)

    Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei

    2018-03-01

    Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.

  15. New parameters in adaptive testing of ferromagnetic materials utilizing magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Pal'a, Jozef; Ušák, Elemír

    2016-03-01

    A new method of magnetic Barkhausen noise (MBN) measurement and optimization of the measured data processing with respect to non-destructive evaluation of ferromagnetic materials was tested. Using this method we tried to found, if it is possible to enhance sensitivity and stability of measurement results by replacing the traditional MBN parameter (root mean square) with some new parameter. In the tested method, a complex set of the MBN from minor hysteresis loops is measured. Afterward, the MBN data are collected into suitably designed matrices and optimal parameters of MBN with respect to maximum sensitivity to the evaluated variable are searched. The method was verified on plastically deformed steel samples. It was shown that the proposed measuring method and measured data processing bring an improvement of the sensitivity to the evaluated variable when comparing with measuring traditional MBN parameter. Moreover, we found a parameter of MBN, which is highly resistant to the changes of applied field amplitude and at the same time it is noticeably more sensitive to the evaluated variable.

  16. Superpave in-situ stress/strain investigation--phase II implementing (SISSI II) : draft report, evaluating the sensitivity of MEPDG to SISSI data.

    DOT National Transportation Integrated Search

    2009-01-01

    The objective of the sensitivity study was to evaluate the input parameters related to AC material properties, traffic, and climate that significantly or insignificantly influence the predicted performance for two specific SISSI flexible pavements: W...

  17. Parameter regionalization of a monthly water balance model for the conterminous United States

    NASA Astrophysics Data System (ADS)

    Bock, A. R.; Hay, L. E.; McCabe, G. J.; Markstrom, S. L.; Atkinson, R. D.

    2015-09-01

    A parameter regionalization scheme to transfer parameter values and model uncertainty information from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash-Sutcliffe Efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.

  18. Optimization Under Uncertainty for Electronics Cooling Design

    NASA Astrophysics Data System (ADS)

    Bodla, Karthik K.; Murthy, Jayathi Y.; Garimella, Suresh V.

    Optimization under uncertainty is a powerful methodology used in design and optimization to produce robust, reliable designs. Such an optimization methodology, employed when the input quantities of interest are uncertain, produces output uncertainties, helping the designer choose input parameters that would result in satisfactory thermal solutions. Apart from providing basic statistical information such as mean and standard deviation in the output quantities, auxiliary data from an uncertainty based optimization, such as local and global sensitivities, help the designer decide the input parameter(s) to which the output quantity of interest is most sensitive. This helps the design of experiments based on the most sensitive input parameter(s). A further crucial output of such a methodology is the solution to the inverse problem - finding the allowable uncertainty range in the input parameter(s), given an acceptable uncertainty range in the output quantity of interest...

  19. Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation

    PubMed Central

    Hall, Sheldon K.; Ooi, Ean H.; Payne, Stephen J.

    2015-01-01

    Abstract Purpose: A sensitivity analysis has been performed on a mathematical model of radiofrequency ablation (RFA) in the liver. The purpose of this is to identify the most important parameters in the model, defined as those that produce the largest changes in the prediction. This is important in understanding the role of uncertainty and when comparing the model predictions to experimental data. Materials and methods: The Morris method was chosen to perform the sensitivity analysis because it is ideal for models with many parameters or that take a significant length of time to obtain solutions. A comprehensive literature review was performed to obtain ranges over which the model parameters are expected to vary, crucial input information. Results: The most important parameters in predicting the ablation zone size in our model of RFA are those representing the blood perfusion, electrical conductivity and the cell death model. The size of the 50 °C isotherm is sensitive to the electrical properties of tissue while the heat source is active, and to the thermal parameters during cooling. Conclusions: The parameter ranges chosen for the sensitivity analysis are believed to represent all that is currently known about their values in combination. The Morris method is able to compute global parameter sensitivities taking into account the interaction of all parameters, something that has not been done before. Research is needed to better understand the uncertainties in the cell death, electrical conductivity and perfusion models, but the other parameters are only of second order, providing a significant simplification. PMID:26000972

  20. Automated Optimization of Potential Parameters

    PubMed Central

    Michele, Di Pierro; Ron, Elber

    2013-01-01

    An algorithm and software to refine parameters of empirical energy functions according to condensed phase experimental measurements are discussed. The algorithm is based on sensitivity analysis and local minimization of the differences between experiment and simulation as a function of potential parameters. It is illustrated for a toy problem of alanine dipeptide and is applied to folding of the peptide WAAAH. The helix fraction is highly sensitive to the potential parameters while the slope of the melting curve is not. The sensitivity variations make it difficult to satisfy both observations simultaneously. We conjecture that there is no set of parameters that reproduces experimental melting curves of short peptides that are modeled with the usual functional form of a force field. PMID:24015115

  1. Simultaneous Estimation of Microphysical Parameters and Atmospheric State Variables With Radar Data and Ensemble Square-root Kalman Filter

    NASA Astrophysics Data System (ADS)

    Tong, M.; Xue, M.

    2006-12-01

    An important source of model error for convective-scale data assimilation and prediction is microphysical parameterization. This study investigates the possibility of estimating up to five fundamental microphysical parameters, which are closely involved in the definition of drop size distribution of microphysical species in a commonly used single-moment ice microphysics scheme, using radar observations and the ensemble Kalman filter method. The five parameters include the intercept parameters for rain, snow and hail/graupel, and the bulk densities of hail/graupel and snow. Parameter sensitivity and identifiability are first examined. The ensemble square-root Kalman filter (EnSRF) is employed for simultaneous state and parameter estimation. OSS experiments are performed for a model-simulated supercell storm, in which the five microphysical parameters are estimated individually or in different combinations starting from different initial guesses. When error exists in only one of the microphysical parameters, the parameter can be successfully estimated without exception. The estimation of multiple parameters is found to be less robust, with end results of estimation being sensitive to the realization of the initial parameter perturbation. This is believed to be because of the reduced parameter identifiability and the existence of non-unique solutions. The results of state estimation are, however, always improved when simultaneous parameter estimation is performed, even when the estimated parameters values are not accurate.

  2. Ultrasound sensitivity to changes in gout: a longitudinal study after two years of treatment.

    PubMed

    Peiteado, Diana; Villalba, Alejandro; Martín-Mola, Emilio; Balsa, Alejandro; De Miguel, Eugenio

    2017-01-01

    The goals of our study are to evaluate the urate-lowering therapy (ULT) effect on gout ultrasound (US) lesions and to explore US sensitivity to change in gout patients. Patients with chronic and symptomatic gout, confirmed by crystal identification, were prospectively included. Clinical and US assessments were performed at baseline and after 6, 12 and 24 months of ULT. The presence of double contour sign (DCS) and US- detectable tophi were assessed in the first metatarsophalangeals, the knees and patellar tendons. The mean and standard deviation were calculated for each parameter. The correlation between the clinical and US parameters was assessed by calculating Pearson's correlation coefficient. Sensitivity to change in the US examinations was assessed by estimating the smallest detectable difference (SDD). Twenty-three consecutive patients were included (96% men; mean age 59 ± 11 years). DCS and US tophi were detected in 73.9% and 91.3% of patients at baseline. A significant parallel improvement in the serum urate, clinical parameters and US lesions was found at the follow-up assessment. The SDD values for the global DCS and tophi were 0.52 and 0.69, respectively, which were smaller than the differences achieved over the course of the two years. A significant correlation between DCS and clinical parameters was observed (r =0.49, p=0.038). Ultrasound findings in gout patients show sensitivity to change and concurrent validity with uric acid reduction after ULT in gout patients. US can be a useful tool for gout tophus burden monitoring.

  3. Effect of internal and external conditions on ionization processes in the FAPA ambient desorption/ionization source.

    PubMed

    Orejas, Jaime; Pfeuffer, Kevin P; Ray, Steven J; Pisonero, Jorge; Sanz-Medel, Alfredo; Hieftje, Gary M

    2014-11-01

    Ambient desorption/ionization (ADI) sources coupled to mass spectrometry (MS) offer outstanding analytical features: direct analysis of real samples without sample pretreatment, combined with the selectivity and sensitivity of MS. Since ADI sources typically work in the open atmosphere, ambient conditions can affect the desorption and ionization processes. Here, the effects of internal source parameters and ambient humidity on the ionization processes of the flowing atmospheric pressure afterglow (FAPA) source are investigated. The interaction of reagent ions with a range of analytes is studied in terms of sensitivity and based upon the processes that occur in the ionization reactions. The results show that internal parameters which lead to higher gas temperatures afforded higher sensitivities, although fragmentation is also affected. In the case of humidity, only extremely dry conditions led to higher sensitivities, while fragmentation remained unaffected.

  4. Sensitivity and Switching Delay in Trigger Circuits; SENSIBILITA E RITARDO ENI CIRCUITI A SCATTO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Lotto, I.; Stanchi, L.

    The problem of regeneration in trigger circuits is studied, particularly in relation to switching delay and switching time. The factors that affect the speed, such as the threshold as a function of the input signal duration, are examined. The sensitivity of the circuit is also discussed. The characteristics of the dipole equivalent to a trigger circuit are determined, and the switching delay and switching rise time are examined using considerable simplifications (circuits with constant parameters) and graphical methods. For the particular case of a transistor circuit, the equation of the equivalent circuit is derived taking into account the nonlinearity ofmore » the parameters. This equation is processed by means of an analog computer. Using experimental data, the circuits are classified according to their sensitivity and the switching delay. A merit figure is obtained for synthetically evaluating different circuits and optimizing circuit sensitivity and speed. (auth)« less

  5. A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. Application

    NASA Astrophysics Data System (ADS)

    Razavi, Saman; Gupta, Hoshin V.

    2016-01-01

    Based on the theoretical framework for sensitivity analysis called "Variogram Analysis of Response Surfaces" (VARS), developed in the companion paper, we develop and implement a practical "star-based" sampling strategy (called STAR-VARS), for the application of VARS to real-world problems. We also develop a bootstrap approach to provide confidence level estimates for the VARS sensitivity metrics and to evaluate the reliability of inferred factor rankings. The effectiveness, efficiency, and robustness of STAR-VARS are demonstrated via two real-data hydrological case studies (a 5-parameter conceptual rainfall-runoff model and a 45-parameter land surface scheme hydrology model), and a comparison with the "derivative-based" Morris and "variance-based" Sobol approaches are provided. Our results show that STAR-VARS provides reliable and stable assessments of "global" sensitivity across the full range of scales in the factor space, while being 1-2 orders of magnitude more efficient than the Morris or Sobol approaches.

  6. Analyses of a heterogeneous lattice hydrodynamic model with low and high-sensitivity vehicles

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Sharma, Sapna

    2018-06-01

    Basic lattice model is extended to study the heterogeneous traffic by considering the optimal current difference effect on a unidirectional single lane highway. Heterogeneous traffic consisting of low- and high-sensitivity vehicles is modeled and their impact on stability of mixed traffic flow has been examined through linear stability analysis. The stability of flow is investigated in five distinct regions of the neutral stability diagram corresponding to the amount of higher sensitivity vehicles present on road. In order to investigate the propagating behavior of density waves non linear analysis is performed and near the critical point, the kink antikink soliton is obtained by driving mKdV equation. The effect of fraction parameter corresponding to high sensitivity vehicles is investigated and the results indicates that the stability rise up due to the fraction parameter. The theoretical findings are verified via direct numerical simulation.

  7. A Fault Alarm and Diagnosis Method Based on Sensitive Parameters and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Zhang, Jinjie; Yao, Ziyun; Lv, Zhiquan; Zhu, Qunxiong; Xu, Fengtian; Jiang, Zhinong

    2015-08-01

    Study on the extraction of fault feature and the diagnostic technique of reciprocating compressor is one of the hot research topics in the field of reciprocating machinery fault diagnosis at present. A large number of feature extraction and classification methods have been widely applied in the related research, but the practical fault alarm and the accuracy of diagnosis have not been effectively improved. Developing feature extraction and classification methods to meet the requirements of typical fault alarm and automatic diagnosis in practical engineering is urgent task. The typical mechanical faults of reciprocating compressor are presented in the paper, and the existing data of online monitoring system is used to extract fault feature parameters within 15 types in total; the inner sensitive connection between faults and the feature parameters has been made clear by using the distance evaluation technique, also sensitive characteristic parameters of different faults have been obtained. On this basis, a method based on fault feature parameters and support vector machine (SVM) is developed, which will be applied to practical fault diagnosis. A better ability of early fault warning has been proved by the experiment and the practical fault cases. Automatic classification by using the SVM to the data of fault alarm has obtained better diagnostic accuracy.

  8. Quantitative analysis of iris parameters in keratoconus patients using optical coherence tomography.

    PubMed

    Bonfadini, Gustavo; Arora, Karun; Vianna, Lucas M; Campos, Mauro; Friedman, David; Muñoz, Beatriz; Jun, Albert S

    2015-01-01

    To investigate the relationship between quantitative iris parameters and the presence of keratoconus. Cross-sectional observational study that included 15 affected eyes of 15 patients with keratoconus and 26 eyes of 26 normal age- and sex-matched controls. Iris parameters (area, thickness, and pupil diameter) of affected and unaffected eyes were measured under standardized light and dark conditions using anterior segment optical coherence tomography (AS-OCT). To identify optimal iris thickness cutoff points to maximize the sensitivity and specificity when discriminating keratoconus eyes from normal eyes, the analysis included the use of receiver operating characteristic (ROC) curves. Iris thickness and area were lower in keratoconus eyes than in normal eyes. The mean thickness at the pupillary margin under both light and dark conditions was found to be the best parameter for discriminating normal patients from keratoconus patients. Diagnostic performance was assessed by the area under the ROC curve (AROC), which had a value of 0.8256 with 80.0% sensitivity and 84.6% specificity, using a cutoff of 0.4125 mm. The sensitivity increased to 86.7% when a cutoff of 0.4700 mm was used. In our sample, iris thickness was lower in keratoconus eyes than in normal eyes. These results suggest that tomographic parameters may provide novel adjunct approaches for keratoconus screening.

  9. Supplementary data of “Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ”

    PubMed Central

    Song, Jiyun; Wang, Zhi-Hua

    2015-01-01

    An advanced Markov-Chain Monte Carlo approach called Subset Simulation is described in Au and Beck (2001) [1] was used to quantify parameter uncertainty and model sensitivity of the urban land-atmospheric framework, viz. the coupled urban canopy model-single column model (UCM-SCM). The results show that the atmospheric dynamics are sensitive to land surface conditions. The most sensitive parameters are dimensional parameters, i.e. roof width, aspect ratio, roughness length of heat and momentum, since these parameters control the magnitude of sensible heat flux. The relative insensitive parameters are hydrological parameters since the lawns or green roofs in urban areas are regularly irrigated so that the water availability for evaporation is never constrained. PMID:26702421

  10. AN OVERVIEW OF THE UNCERTAINTY ANALYSIS, SENSITIVITY ANALYSIS, AND PARAMETER ESTIMATION (UA/SA/PE) API AND HOW TO IMPLEMENT IT

    EPA Science Inventory

    The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and
    Parameter Estimation (UA/SA/PE API) (also known as Calibration, Optimization and Sensitivity and Uncertainty (CUSO)) was developed in a joint effort between several members of both ...

  11. Application of a sensitivity analysis technique to high-order digital flight control systems

    NASA Technical Reports Server (NTRS)

    Paduano, James D.; Downing, David R.

    1987-01-01

    A sensitivity analysis technique for multiloop flight control systems is studied. This technique uses the scaled singular values of the return difference matrix as a measure of the relative stability of a control system. It then uses the gradients of these singular values with respect to system and controller parameters to judge sensitivity. The sensitivity analysis technique is first reviewed; then it is extended to include digital systems, through the derivation of singular-value gradient equations. Gradients with respect to parameters which do not appear explicitly as control-system matrix elements are also derived, so that high-order systems can be studied. A complete review of the integrated technique is given by way of a simple example: the inverted pendulum problem. The technique is then demonstrated on the X-29 control laws. Results show linear models of real systems can be analyzed by this sensitivity technique, if it is applied with care. A computer program called SVA was written to accomplish the singular-value sensitivity analysis techniques. Thus computational methods and considerations form an integral part of many of the discussions. A user's guide to the program is included. The SVA is a fully public domain program, running on the NASA/Dryden Elxsi computer.

  12. Sensitivity analysis of a sound absorption model with correlated inputs

    NASA Astrophysics Data System (ADS)

    Chai, W.; Christen, J.-L.; Zine, A.-M.; Ichchou, M.

    2017-04-01

    Sound absorption in porous media is a complex phenomenon, which is usually addressed with homogenized models, depending on macroscopic parameters. Since these parameters emerge from the structure at microscopic scale, they may be correlated. This paper deals with sensitivity analysis methods of a sound absorption model with correlated inputs. Specifically, the Johnson-Champoux-Allard model (JCA) is chosen as the objective model with correlation effects generated by a secondary micro-macro semi-empirical model. To deal with this case, a relatively new sensitivity analysis method Fourier Amplitude Sensitivity Test with Correlation design (FASTC), based on Iman's transform, is taken into application. This method requires a priori information such as variables' marginal distribution functions and their correlation matrix. The results are compared to the Correlation Ratio Method (CRM) for reference and validation. The distribution of the macroscopic variables arising from the microstructure, as well as their correlation matrix are studied. Finally the results of tests shows that the correlation has a very important impact on the results of sensitivity analysis. Assessment of correlation strength among input variables on the sensitivity analysis is also achieved.

  13. Further search for selectivity of positron annihilation in the skin and cancerous systems

    NASA Astrophysics Data System (ADS)

    Liu, Guang; Chen, Hongmin; Chakka, Lakshmi; Cheng, Mei-Ling; Gadzia, Joseph E.; Suzuki, R.; Ohdaira, T.; Oshima, N.; Jean, Y. C.

    2008-10-01

    Positronium annihilation lifetime (PAL) spectroscopy and Doppler broadening energy spectra (DBES) have been used to search for selectivity and sensitivity for cancerous skin samples with and without cancer. This study is to further explore the melanoma cancerous system and other different types of skin samples. We found that the S parameter in melanoma skin samples cut at 0.39 mm depth from the same patient's skin is smaller than near the skin surface. However in 10 melanoma samples from different patients, the S parameters vary significantly. Similarly, among 10 normal skin samples without cancer, the S parameters also vary largely among different patients. To understand the sensitivity of PAS as a tool to detect cancer formation at the early stage, we propose a controlled and systematic study of in vivo experiments using UV-induced cancer skin from living animals.

  14. Advanced protein crystal growth programmatic sensitivity study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this study is to define the costs of various APCG (Advanced Protein Crystal Growth) program options and to determine the parameters which, if changed, impact the costs and goals of the programs and to what extent. This was accomplished by developing and evaluating several alternate programmatic scenarios for the microgravity Advanced Protein Crystal Growth program transitioning from the present shuttle activity to the man tended Space Station to the permanently manned Space Station. These scenarios include selected variations in such sensitivity parameters as development and operational costs, schedules, technology issues, and crystal growth methods. This final report provides information that will aid in planning the Advanced Protein Crystal Growth Program.

  15. Parameter Sensitivity Study of the Wall Interference Correction System (WICS)

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.; Everhart, Joel L.; Iyer, Venkit

    2001-01-01

    An off-line version of the Wall Interference Correction System (WICS) has been implemented for the "NASA Langley National Transonic Facility. The correction capability is currently restricted to corrections for solid wall interference in the model pitch plane for Mach numbers, less than 0.45 due to a limitation in tunnel calibration data. A study to assess output sensitivity to the aerodynamic parameters of Reynolds number and Mach number was conducted on this code to further ensure quality during the correction process. In addition, this paper includes all investigation into possible correction due to a semispan test technique using a non metric standoff and all improvement to the standard data rejection algorithm.

  16. Pricing policy for declining demand using item preservation technology.

    PubMed

    Khedlekar, Uttam Kumar; Shukla, Diwakar; Namdeo, Anubhav

    2016-01-01

    We have designed an inventory model for seasonal products in which deterioration can be controlled by item preservation technology investment. Demand for the product is considered price sensitive and decreases linearly. This study has shown that the profit is a concave function of optimal selling price, replenishment time and preservation cost parameter. We simultaneously determined the optimal selling price of the product, the replenishment cycle and the cost of item preservation technology. Additionally, this study has shown that there exists an optimal selling price and optimal preservation investment to maximize the profit for every business set-up. Finally, the model is illustrated by numerical examples and sensitive analysis of the optimal solution with respect to major parameters.

  17. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ben; Qian, Yun; Berg, Larry K.

    We evaluate the sensitivity of simulated turbine-height winds to 26 parameters applied in a planetary boundary layer (PBL) scheme and a surface layer scheme of the Weather Research and Forecasting (WRF) model over an area of complex terrain during the Columbia Basin Wind Energy Study. An efficient sampling algorithm and a generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of modeled turbine-height winds. The results indicate that most of the variability in the ensemble simulations is contributed by parameters related to the dissipation of the turbulence kinetic energy (TKE), Prandtl number, turbulencemore » length scales, surface roughness, and the von Kármán constant. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability. The parameter associated with the TKE dissipation rate is found to be the most important one, and a larger dissipation rate can produce larger hub-height winds. A larger Prandtl number results in weaker nighttime winds. Increasing surface roughness reduces the frequencies of both extremely weak and strong winds, implying a reduction in the variability of the wind speed. All of the above parameters can significantly affect the vertical profiles of wind speed, the altitude of the low-level jet and the magnitude of the wind shear strength. The wind direction is found to be modulated by the same subset of influential parameters. Remainder of abstract is in attachment.« less

  18. Sensitivity analysis of a sediment dynamics model applied in a Mediterranean river basin: global change and management implications.

    PubMed

    Sánchez-Canales, M; López-Benito, A; Acuña, V; Ziv, G; Hamel, P; Chaplin-Kramer, R; Elorza, F J

    2015-01-01

    Climate change and land-use change are major factors influencing sediment dynamics. Models can be used to better understand sediment production and retention by the landscape, although their interpretation is limited by large uncertainties, including model parameter uncertainties. The uncertainties related to parameter selection may be significant and need to be quantified to improve model interpretation for watershed management. In this study, we performed a sensitivity analysis of the InVEST (Integrated Valuation of Environmental Services and Tradeoffs) sediment retention model in order to determine which model parameters had the greatest influence on model outputs, and therefore require special attention during calibration. The estimation of the sediment loads in this model is based on the Universal Soil Loss Equation (USLE). The sensitivity analysis was performed in the Llobregat basin (NE Iberian Peninsula) for exported and retained sediment, which support two different ecosystem service benefits (avoided reservoir sedimentation and improved water quality). Our analysis identified the model parameters related to the natural environment as the most influential for sediment export and retention. Accordingly, small changes in variables such as the magnitude and frequency of extreme rainfall events could cause major changes in sediment dynamics, demonstrating the sensitivity of these dynamics to climate change in Mediterranean basins. Parameters directly related to human activities and decisions (such as cover management factor, C) were also influential, especially for sediment exported. The importance of these human-related parameters in the sediment export process suggests that mitigation measures have the potential to at least partially ameliorate climate-change driven changes in sediment exportation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis

    PubMed Central

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement. PMID:26799483

  20. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis.

    PubMed

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.

  1. Sensitivity Analysis and Parameter Estimation for a Reactive Transport Model of Uranium Bioremediation

    NASA Astrophysics Data System (ADS)

    Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.

    2011-12-01

    A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.

  2. Application of ADM1 for modeling of biogas production from anaerobic digestion of Hydrilla verticillata.

    PubMed

    Chen, Xiaojuan; Chen, Zhihua; Wang, Xun; Huo, Chan; Hu, Zhiquan; Xiao, Bo; Hu, Mian

    2016-07-01

    The present study focused on the application of anaerobic digestion model no. 1 (ADM1) to simulate biogas production from Hydrilla verticillata. Model simulation was carried out by implementing ADM1 in AQUASIM 2.0 software. Sensitivity analysis was used to select the most sensitive parameters for estimation using the absolute-relative sensitivity function. Among all the kinetic parameters, disintegration constant (kdis), hydrolysis constant of protein (khyd_pr), Monod maximum specific substrate uptake rate (km_aa, km_ac, km_h2) and half-saturation constants (Ks_aa, Ks_ac) affect biogas production significantly, which were optimized by fitting of the model equations to the data obtained from batch experiments. The ADM1 model after parameter estimation was able to well predict the experimental results of daily biogas production and biogas composition. The simulation results of evolution of organic acids, bacteria concentrations and inhibition effects also helped to get insight into the reaction mechanisms. Copyright © 2016. Published by Elsevier Ltd.

  3. The Statistical Meaning of Kurtosis and Its New Application to Identification of Persons Based on Seismic Signals

    PubMed Central

    Liang, Zhiqiang; Wei, Jianming; Zhao, Junyu; Liu, Haitao; Li, Baoqing; Shen, Jie; Zheng, Chunlei

    2008-01-01

    This paper presents a new algorithm making use of kurtosis, which is a statistical parameter, to distinguish the seismic signal generated by a person's footsteps from other signals. It is adaptive to any environment and needs no machine study or training. As persons or other targets moving on the ground generate continuous signals in the form of seismic waves, we can separate different targets based on the seismic waves they generate. The parameter of kurtosis is sensitive to impulsive signals, so it's much more sensitive to the signal generated by person footsteps than other signals generated by vehicles, winds, noise, etc. The parameter of kurtosis is usually employed in the financial analysis, but rarely used in other fields. In this paper, we make use of kurtosis to distinguish person from other targets based on its different sensitivity to different signals. Simulation and application results show that this algorithm is very effective in distinguishing person from other targets. PMID:27873804

  4. Taking the Next Step: Using Water Quality Data in a Decision Support System for County, State, and Federal Land Managers

    NASA Astrophysics Data System (ADS)

    Raby, K. S.; Williams, M. W.

    2004-12-01

    Each passing year amplifies the demands placed on communities across the US in terms of population growth, increased tourism, and stresses resulting from escalated use. The conflicting concerns of recreational users, local citizens, environmentalists, and traditional economic interests cause land managers to contend with controversial decisions regarding development and protection of watersheds. Local history and culture, politics, economic goals, and science are all influential factors in land use decision making. Here we report on a scientific study to determine the sensitivity of alpine areas, and the adaptation of this study into a decision support framework. We use water quality data as an indicator of ecosystem health across a variety of alpine and subalpine landscapes, and input this information into a spatially-based decision support tool that planners can use to make informed land use decisions. We develop this tool in a case study in San Juan County, Colorado, a site chosen because its largest town, Silverton, is a small mountain community experiencing a recent surge in tourism and development, and its fragile high elevation locale makes it more sensitive to environmental changes. Extensive field surveys were conducted in priority drainages throughout the county to map the spatial distribution and aerial extent of landscape types during the summers of 2003 and 2004. Surface water samples were collected and analyzed for inorganic and organic solutes, and water quality values were associated with different land covers to enable sensitivity analysis at the landscape scale. Water quality results for each watershed were entered into a module linked to a geographic information system (GIS), which displays maps of sensitive areas based on criteria selected by the user. The decision support system initially incorporates two major water quality parameters: acid neutralizing capacity (ANC) and nitrate (NO3-) concentration, and several categories of sensitivity were created based on ANC and NO3- levels (e.g., pristine, slightly sensitive, moderately sensitive, highly sensitive, sensitive but unimpacted, disturbance impacted). We based threshold concentrations for these water quality parameters on first principles developed at the Niwot Ridge LTER site. Additional parameters such as specific conductance, base cation concentration, sulfate concentration, and dissolved organic carbon concentration may be added for a particular landscape type. Superimposed on this categorization, federal, state, and county planners are able to make decisions about the degree of potential impairment or enhancement produced by a particular project, or the maximum level of acceptable impairment to a particular area. Because water quality parameters are correlated with landscape types, the model returns a map of the watershed, partitioned by landscape type, presenting the sensitivity level of each area. This format provides land use managers with spatial criteria for project implementation.

  5. Empirical Observations on the Sensitivity of Hot Cathode Ionization Type Vacuum Gages

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1969-01-01

    A study of empirical methods of predicting tile relative sensitivities of hot cathode ionization gages is presented. Using previously published gage sensitivities, several rules for predicting relative sensitivity are tested. The relative sensitivity to different gases is shown to be invariant with gage type, in the linear range of gage operation. The total ionization cross section, molecular and molar polarizability, and refractive index are demonstrated to be useful parameters for predicting relative gage sensitivity. Using data from the literature, the probable error of predictions of relative gage sensitivity based on these molecular properties is found to be about 10 percent. A comprehensive table of predicted relative sensitivities, based on empirical methods, is presented.

  6. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE PAGES

    Dai, Heng; Ye, Ming; Walker, Anthony P.; ...

    2017-03-28

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  7. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  8. A flowsheet model of a well-mixed fluidized bed dryer: Applications in controllability assessment and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langrish, T.A.G.; Harvey, A.C.

    2000-01-01

    A model of a well-mixed fluidized-bed dryer within a process flowsheeting package (SPEEDUP{trademark}) has been developed and applied to a parameter sensitivity study, a steady-state controllability analysis and an optimization study. This approach is more general and would be more easily applied to a complex flowsheet than one which relied on stand-alone dryer modeling packages. The simulation has shown that industrial data may be fitted to the model outputs with sensible values of unknown parameters. For this case study, the parameter sensitivity study has found that the heat loss from the dryer and the critical moisture content of the materialmore » have the greatest impact on the dryer operation at the current operating point. An optimization study has demonstrated the dominant effect of the heat loss from the dryer on the current operating cost and the current operating conditions, and substantial cost savings (around 50%) could be achieved with a well-insulated and airtight dryer, for the specific case studied here.« less

  9. Photoacoustic and ultrasound characterization of bone composition

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Yang, Lifeng; Liu, Lixian; Tan, Joel W. Y.; Mandelis, Andreas

    2015-02-01

    This study examines the sensitivity and specificity of backscattered ultrasound (US) and backscattering photoacoustic (PA) signals for bone composition variation assessment. The conventional approach in the evaluation of bone health relies on measurement of bone mineral density (BMD). Although, a crucial and probably the most important parameter, BMD is not the only factor defining the bone health. New trends in osteoporosis research, also pursue the changes in collagen content and cross-links with bone diseases and aging. Therefore, any non-invasive method that can assess any of these parameters can improve the diagnostic tools and also can help with the biomedical studies on the diseases themselves. Our previous studies show that both US and PA are responsive to changes in the BMD, PA is, in addition, sensitive to changes in the collagen content of the bone. Measurements were performed on bone samples before and after mild demineralization and decollagenization at the exact same points. Results show that combining both modalities can enhance the sensitivity and specificity of diagnostic tool.

  10. Origin of the sensitivity in modeling the glide behaviour of dislocations

    DOE PAGES

    Pei, Zongrui; Stocks, George Malcolm

    2018-03-26

    The sensitivity in predicting glide behaviour of dislocations has been a long-standing problem in the framework of the Peierls-Nabarro model. The predictions of both the model itself and the analytic formulas based on it are too sensitive to the input parameters. In order to reveal the origin of this important problem in materials science, a new empirical-parameter-free formulation is proposed in the same framework. Unlike previous formulations, it includes only a limited small set of parameters all of which can be determined by convergence tests. Under special conditions the new formulation is reduced to its classic counterpart. In the lightmore » of this formulation, new relationships between Peierls stresses and the input parameters are identified, where the sensitivity is greatly reduced or even removed.« less

  11. Chloroplast avoidance movement as a sensitive indicator of relative water content during leaf desiccation in the dark.

    PubMed

    Nauš, Jan; Šmecko, Slavomír; Špundová, Martina

    2016-08-01

    In the context of global climate change, drought is one of the major stress factors with negative effect on photosynthesis and plant productivity. Currently, chlorophyll fluorescence parameters are widely used as indicators of plant stress, mainly owing to the rapid, non-destructive and simple measurements this technique allows. However, these parameters have been shown to have limited sensitivity for the monitoring of water deficit as leaf desiccation has relatively small effect on photosystem II photochemistry. In this study, we found that blue light-induced increase in leaf transmittance reflecting chloroplast avoidance movement was much more sensitive to a decrease in relative water content (RWC) than chlorophyll fluorescence parameters in dark-desiccating leaves of tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.). Whereas the inhibition of chloroplast avoidance movement was detectable in leaves even with a small RWC decrease, the chlorophyll fluorescence parameters (F V/F M, V J, Ф PSII, NPQ) changed markedly only when RWC dropped below 70 %. For this reason, we propose light-induced chloroplast avoidance movement as a sensitive indicator of the decrease in leaf RWC. As our measurement of chloroplast movement using collimated transmittance is simple and non-destructive, it may be more suitable in some cases for the detection of plant stresses including water deficit than the conventionally used chlorophyll fluorescence methods.

  12. Magnetic resonance imaging (MRI) of hormone-induced breast changes in young premenopausal women.

    PubMed

    Clendenen, Tess V; Kim, Sungheon; Moy, Linda; Wan, Livia; Rusinek, Henry; Stanczyk, Frank Z; Pike, Malcolm C; Zeleniuch-Jacquotte, Anne

    2013-01-01

    We conducted a pilot study to identify whether MRI parameters are sensitive to hormone-induced changes in the breast during the natural menstrual cycle and whether changes could also be observed during an oral contraceptive (OC) cycle. The New York University Langone Medical Center Institutional Review Board approved this HIPAA-compliant prospective study. All participants provided written informed consent. Participants were aged 24-31 years.We measured several non-contrast breast MRI parameters during each week of a single menstrual cycle (among 9 women) and OC cycle (among 8 women). Hormones were measured to confirm ovulation and classify menstrual cycle phase among naturally cycling women and to monitor OC compliance among OC users. We investigated how the non-contrast MRI parameters of breast fibroglandular tissue (FGT), apparent diffusion coefficient (ADC), magnetization transfer ratio (MTR), and transverse relaxation time (T2) varied over the natural and the OC cycles. We observed significant increases in MRI FGT% and ADC in FGT, and longer T2 in FGT in the luteal vs. follicular phase of the menstrual cycle. We did not observe any consistent pattern of change for any of the MRI parameters among women using OCs. MRI is sensitive to hormone-induced breast tissue changes during the menstrual cycle. Larger studies are needed to assess whether MRI is also sensitive to the effects of exogenous hormones, such as various OC formulations, on the breast tissue of young premenopausal women. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Conformational effects on circular dichroism in the photoelectron angular distribution.

    PubMed

    Di Tommaso, Devis; Stener, Mauro; Fronzoni, Giovanna; Decleva, Piero

    2006-04-10

    The B-spline density-functional method has been applied to the conformers of the (1R, 2R)-1,2-dibromo-1,2-dichloro-1,2-difluoroethane molecule. The cross section, asymmetry, and dichroic parameters relative to core and valence orbitals, which do not change their nature along the conformational curve, have been systematically studied. While the cross section and the asymmetry parameter are weakly affected, the dichroic parameter appears to be rather sensitive to the particular conformer of the molecule, suggesting that this dynamical property could be a useful tool for conformational analysis. The computational method has also been applied to methyl rotation in methyloxirane. Unexpected and dramatic sensitivity of the dichroic-parameter profile to the methyl rotation, both in the core and valence states, has been found. Boltzmann averaging over the conformers reproduces quite closely the profiles previously obtained for the minimum-energy conformation, which is in good agreement with the experimental results.

  14. Damage detection in rotating machinery by means of entropy-based parameters

    NASA Astrophysics Data System (ADS)

    Tocarciuc, Alexandru; Bereteu, Liviu; ǎgǎnescu, Gheorghe Eugen, Dr

    2014-11-01

    The paper is proposing two new entropy-based parameters, namely Renyi Entropy Index (REI) and Sharma-Mittal Entropy Index (SMEI), for detecting the presence of failures (or damages) in rotating machinery, namely: belt structural damage, belt wheels misalignment, failure of the fixing bolt of the machine to its baseplate and eccentricities (i.e.: due to detaching a small piece of material or bad mounting of the rotating components of the machine). The algorithms to obtain the proposed entropy-based parameters are described and test data is used in order to assess their sensitivity. A vibration test bench is used for measuring the levels of vibration while artificially inducing damage. The deviation of the two entropy-based parameters is compared in two states of the vibration test bench: not damaged and damaged. At the end of the study, their sensitivity is compared to Shannon Entropic Index.

  15. Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment

    DOE PAGES

    Coloma, Pilar

    2016-03-03

    Here, we study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ε ~more » $$ \\mathcal{O} $$ (0.05 – 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.« less

  16. Surrogate models for efficient stability analysis of brake systems

    NASA Astrophysics Data System (ADS)

    Nechak, Lyes; Gillot, Frédéric; Besset, Sébastien; Sinou, Jean-Jacques

    2015-07-01

    This study assesses capacities of the global sensitivity analysis combined together with the kriging formalism to be useful in the robust stability analysis of brake systems, which is too costly when performed with the classical complex eigenvalues analysis (CEA) based on finite element models (FEMs). By considering a simplified brake system, the global sensitivity analysis is first shown very helpful for understanding the effects of design parameters on the brake system's stability. This is allowed by the so-called Sobol indices which discriminate design parameters with respect to their influence on the stability. Consequently, only uncertainty of influent parameters is taken into account in the following step, namely, the surrogate modelling based on kriging. The latter is then demonstrated to be an interesting alternative to FEMs since it allowed, with a lower cost, an accurate estimation of the system's proportions of instability corresponding to the influent parameters.

  17. Assessing the sensitivity of a land-surface scheme to the parameter values using a single column model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitman, A.J.

    The sensitivity of a land-surface scheme (the Biosphere Atmosphere Transfer Scheme, BATS) to its parameter values was investigated using a single column model. Identifying which parameters were important in controlling the turbulent energy fluxes, temperature, soil moisture, and runoff was dependent upon many factors. In the simulation of a nonmoisture-stressed tropical forest, results were dependent on a combination of reservoir terms (soil depth, root distribution), flux efficiency terms (roughness length, stomatal resistance), and available energy (albedo). If moisture became limited, the reservoir terms increased in importance because the total fluxes predicted depended on moisture availability and not on the ratemore » of transfer between the surface and the atmosphere. The sensitivity shown by BATS depended on which vegetation type was being simulated, which variable was used to determine sensitivity, the magnitude and sign of the parameter change, the climate regime (precipitation amount and frequency), and soil moisture levels and proximity to wilting. The interactions between these factors made it difficult to identify the most important parameters in BATS. Therefore, this paper does not argue that a particular set of parameters is important in BATS, rather it shows that no general ranking of parameters is possible. It is also emphasized that using `stand-alone` forcing to examine the sensitivity of a land-surface scheme to perturbations, in either parameters or the atmosphere, is unreliable due to the lack of surface-atmospheric feedbacks.« less

  18. Sensitivity study and parameter optimization of OCD tool for 14nm finFET process

    NASA Astrophysics Data System (ADS)

    Zhang, Zhensheng; Chen, Huiping; Cheng, Shiqiu; Zhan, Yunkun; Huang, Kun; Shi, Yaoming; Xu, Yiping

    2016-03-01

    Optical critical dimension (OCD) measurement has been widely demonstrated as an essential metrology method for monitoring advanced IC process in the technology node of 90 nm and beyond. However, the rapidly shrunk critical dimensions of the semiconductor devices and the increasing complexity of the manufacturing process bring more challenges to OCD. The measurement precision of OCD technology highly relies on the optical hardware configuration, spectral types, and inherently interactions between the incidence of light and various materials with various topological structures, therefore sensitivity analysis and parameter optimization are very critical in the OCD applications. This paper presents a method for seeking the optimum sensitive measurement configuration to enhance the metrology precision and reduce the noise impact to the greatest extent. In this work, the sensitivity of different types of spectra with a series of hardware configurations of incidence angles and azimuth angles were investigated. The optimum hardware measurement configuration and spectrum parameter can be identified. The FinFET structures in the technology node of 14 nm were constructed to validate the algorithm. This method provides guidance to estimate the measurement precision before measuring actual device features and will be beneficial for OCD hardware configuration.

  19. Single Mode SU8 Polymer Based Mach-Zehnder Interferometer for Bio-Sensing Application

    NASA Astrophysics Data System (ADS)

    Boiragi, Indrajit; Kundu, Sushanta; Makkar, Roshan; Chalapathi, Krishnamurthy

    2011-10-01

    This paper explains the influence of different parameters to the sensitivity of an optical waveguide Mach-Zehnder Interferometer (MZI) for real time detection of biomolecules. The sensing principle is based on the interaction of evanescence field with the biomolecules that get immobilized on sensing arm. The sensitivity has been calculated by varying the sensing window length, wavelength and concentration of bio-analyte. The maximum attainable sensitivity for the preferred design is the order of 10-8 RIU at 840 nm wavelength with a sensing window length of 1cm. All the simulation work has been carried out with Opti-BPMCAD for the optimization of MZI device parameters. The SU8 polymers are used as a core and clad material to fabricate the waveguide. The refractive index of cladding layer is optimized by varying the curing temperature for a fixed time period and the achieved index difference between core and clad is Δn = 0.0151. The fabricated MZI device has been characterized with LASER beam profiler at 840 nm wavelength. This study demonstrates the effectiveness of the different parameter to the sensitivity of a single mode optical waveguide Mach-Zehnder Interferometer for bio-sensing application.

  20. Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method (ESQM v5.2)

    NASA Astrophysics Data System (ADS)

    Kalra, Tarandeep S.; Aretxabaleta, Alfredo; Seshadri, Pranay; Ganju, Neil K.; Beudin, Alexis

    2017-12-01

    Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as the Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant stem density, height, and, to a lesser degree, diameter. Wave dissipation is mostly dependent on the variation in plant stem density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance to optimize efforts and reduce exploration of parameter space for future observational and modeling work.

  1. 3D segmentation of lung CT data with graph-cuts: analysis of parameter sensitivities

    NASA Astrophysics Data System (ADS)

    Cha, Jung won; Dunlap, Neal; Wang, Brian; Amini, Amir

    2016-03-01

    Lung boundary image segmentation is important for many tasks including for example in development of radiation treatment plans for subjects with thoracic malignancies. In this paper, we describe a method and parameter settings for accurate 3D lung boundary segmentation based on graph-cuts from X-ray CT data1. Even though previously several researchers have used graph-cuts for image segmentation, to date, no systematic studies have been performed regarding the range of parameter that give accurate results. The energy function in the graph-cuts algorithm requires 3 suitable parameter settings: K, a large constant for assigning seed points, c, the similarity coefficient for n-links, and λ, the terminal coefficient for t-links. We analyzed the parameter sensitivity with four lung data sets from subjects with lung cancer using error metrics. Large values of K created artifacts on segmented images, and relatively much larger value of c than the value of λ influenced the balance between the boundary term and the data term in the energy function, leading to unacceptable segmentation results. For a range of parameter settings, we performed 3D image segmentation, and in each case compared the results with the expert-delineated lung boundaries. We used simple 6-neighborhood systems for n-link in 3D. The 3D image segmentation took 10 minutes for a 512x512x118 ~ 512x512x190 lung CT image volume. Our results indicate that the graph-cuts algorithm was more sensitive to the K and λ parameter settings than to the C parameter and furthermore that amongst the range of parameters tested, K=5 and λ=0.5 yielded good results.

  2. An investigation of new methods for estimating parameter sensitivities

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1988-01-01

    Parameter sensitivity is defined as the estimation of changes in the modeling functions and the design variables due to small changes in the fixed parameters of the formulation. There are currently several methods for estimating parameter sensitivities requiring either difficult to obtain second order information, or do not return reliable estimates for the derivatives. Additionally, all the methods assume that the set of active constraints does not change in a neighborhood of the estimation point. If the active set does in fact change, than any extrapolations based on these derivatives may be in error. The objective here is to investigate more efficient new methods for estimating parameter sensitivities when the active set changes. The new method is based on the recursive quadratic programming (RQP) method and in conjunction a differencing formula to produce estimates of the sensitivities. This is compared to existing methods and is shown to be very competitive in terms of the number of function evaluations required. In terms of accuracy, the method is shown to be equivalent to a modified version of the Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS method employed by the RPQ algorithm. Inital testing on a test set with known sensitivities demonstrates that the method can accurately calculate the parameter sensitivity. To handle changes in the active set, a deflection algorithm is proposed for those cases where the new set of active constraints remains linearly independent. For those cases where dependencies occur, a directional derivative is proposed. A few simple examples are included for the algorithm, but extensive testing has not yet been performed.

  3. Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria

    2018-03-01

    Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.

  4. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models.

    PubMed

    Mulder, Han A; Rönnegård, Lars; Fikse, W Freddy; Veerkamp, Roel F; Strandberg, Erling

    2013-07-04

    Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike's information criterion using h-likelihood to select the best fitting model. We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike's information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike's information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.

  5. A Sensitivity Study on Modeling Black Carbon in Snow and its Radiative Forcing over the Arctic and Northern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Yun; Wang, Hailong; Zhang, Rudong

    2014-06-02

    Black carbon in snow (BCS) simulated in the Community Atmosphere Model (CAM5) is evaluated against measurements over Northern China and the Arctic, and its sensitivity to atmospheric deposition and two parameters that affect post-depositional enrichment is explored. The BCS concentration is overestimated (underestimated) by a factor of two in Northern China (Arctic) in the default model, but agreement with observations is good over both regions in the simulation with improvements in BC transport and deposition. Sensitivity studies indicate that uncertainty in the melt-water scavenging efficiency (MSE) parameter substantially affects BCS and its radiative forcing (by a factor of 2-7) inmore » the Arctic through post-depositional enrichment. The MSE parameter has a relatively small effect on the magnitude of BCS seasonal cycle but can alter its phase in Northern China. The impact of the snow aging scaling factor (SAF) on BCS, partly through the post-depositional enrichment effect, shows more complex latitudinal and seasonal dependence. Similar to MSE, SAF affects more significantly the magnitude (phase) of BCS season cycle over the Arctic (Northern China). While uncertainty associated with the representation of BC transport and deposition processes in CAM5 is more important than that associated with the two snow model parameters in Northern China, the two uncertainties have comparable effect in the Arctic.« less

  6. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    DOE PAGES

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; ...

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertaintymore » in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.« less

  7. A surrogate-based sensitivity quantification and Bayesian inversion of a regional groundwater flow model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.; Amerjeed, Mansoor

    2018-02-01

    Bayesian inference using Markov Chain Monte Carlo (MCMC) provides an explicit framework for stochastic calibration of hydrogeologic models accounting for uncertainties; however, the MCMC sampling entails a large number of model calls, and could easily become computationally unwieldy if the high-fidelity hydrogeologic model simulation is time consuming. This study proposes a surrogate-based Bayesian framework to address this notorious issue, and illustrates the methodology by inverse modeling a regional MODFLOW model. The high-fidelity groundwater model is approximated by a fast statistical model using Bagging Multivariate Adaptive Regression Spline (BMARS) algorithm, and hence the MCMC sampling can be efficiently performed. In this study, the MODFLOW model is developed to simulate the groundwater flow in an arid region of Oman consisting of mountain-coast aquifers, and used to run representative simulations to generate training dataset for BMARS model construction. A BMARS-based Sobol' method is also employed to efficiently calculate input parameter sensitivities, which are used to evaluate and rank their importance for the groundwater flow model system. According to sensitivity analysis, insensitive parameters are screened out of Bayesian inversion of the MODFLOW model, further saving computing efforts. The posterior probability distribution of input parameters is efficiently inferred from the prescribed prior distribution using observed head data, demonstrating that the presented BMARS-based Bayesian framework is an efficient tool to reduce parameter uncertainties of a groundwater system.

  8. Phase 1 of the near term hybrid passenger vehicle development program. Appendix D: Sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Traversi, M.

    1979-01-01

    Data are presented on the sensitivity of: (1) mission analysis results to the boundary values given for number of passenger cars and average annual vehicle miles traveled per car; (2) vehicle characteristics and performance to specifications; and (3) tradeoff study results to the expected parameters.

  9. Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study.

    PubMed

    Bovendeerd, Peter H M; Borsje, Petra; Arts, Theo; van De Vosse, Frans N

    2006-12-01

    The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity.

  10. Uncertainty analysis in geospatial merit matrix–based hydropower resource assessment

    DOE PAGES

    Pasha, M. Fayzul K.; Yeasmin, Dilruba; Saetern, Sen; ...

    2016-03-30

    Hydraulic head and mean annual streamflow, two main input parameters in hydropower resource assessment, are not measured at every point along the stream. Translation and interpolation are used to derive these parameters, resulting in uncertainties. This study estimates the uncertainties and their effects on model output parameters: the total potential power and the number of potential locations (stream-reach). These parameters are quantified through Monte Carlo Simulation (MCS) linking with a geospatial merit matrix based hydropower resource assessment (GMM-HRA) Model. The methodology is applied to flat, mild, and steep terrains. Results show that the uncertainty associated with the hydraulic head ismore » within 20% for mild and steep terrains, and the uncertainty associated with streamflow is around 16% for all three terrains. Output uncertainty increases as input uncertainty increases. However, output uncertainty is around 10% to 20% of the input uncertainty, demonstrating the robustness of the GMM-HRA model. Hydraulic head is more sensitive to output parameters in steep terrain than in flat and mild terrains. Furthermore, mean annual streamflow is more sensitive to output parameters in flat terrain.« less

  11. The Role of Parvalbumin, Sarcoplasmatic Reticulum Calcium Pump Rate, Rates of Cross-Bridge Dynamics, and Ryanodine Receptor Calcium Current on Peripheral Muscle Fatigue: A Simulation Study

    PubMed Central

    Neumann, Verena

    2016-01-01

    A biophysical model of the excitation-contraction pathway, which has previously been validated for slow-twitch and fast-twitch skeletal muscles, is employed to investigate key biophysical processes leading to peripheral muscle fatigue. Special emphasis hereby is on investigating how the model's original parameter sets can be interpolated such that realistic behaviour with respect to contraction time and fatigue progression can be obtained for a continuous distribution of the model's parameters across the muscle units, as found for the functional properties of muscles. The parameters are divided into 5 groups describing (i) the sarcoplasmatic reticulum calcium pump rate, (ii) the cross-bridge dynamics rates, (iii) the ryanodine receptor calcium current, (iv) the rates of binding of magnesium and calcium ions to parvalbumin and corresponding dissociations, and (v) the remaining processes. The simulations reveal that the first two parameter groups are sensitive to contraction time but not fatigue, the third parameter group affects both considered properties, and the fourth parameter group is only sensitive to fatigue progression. Hence, within the scope of the underlying model, further experimental studies should investigate parvalbumin dynamics and the ryanodine receptor calcium current to enhance the understanding of peripheral muscle fatigue. PMID:27980606

  12. Analytical study of robustness of a negative feedback oscillator by multiparameter sensitivity

    PubMed Central

    2014-01-01

    Background One of the distinctive features of biological oscillators such as circadian clocks and cell cycles is robustness which is the ability to resume reliable operation in the face of different types of perturbations. In the previous study, we proposed multiparameter sensitivity (MPS) as an intelligible measure for robustness to fluctuations in kinetic parameters. Analytical solutions directly connect the mechanisms and kinetic parameters to dynamic properties such as period, amplitude and their associated MPSs. Although negative feedback loops are known as common structures to biological oscillators, the analytical solutions have not been presented for a general model of negative feedback oscillators. Results We present the analytical expressions for the period, amplitude and their associated MPSs for a general model of negative feedback oscillators. The analytical solutions are validated by comparing them with numerical solutions. The analytical solutions explicitly show how the dynamic properties depend on the kinetic parameters. The ratio of a threshold to the amplitude has a strong impact on the period MPS. As the ratio approaches to one, the MPS increases, indicating that the period becomes more sensitive to changes in kinetic parameters. We present the first mathematical proof that the distributed time-delay mechanism contributes to making the oscillation period robust to parameter fluctuations. The MPS decreases with an increase in the feedback loop length (i.e., the number of molecular species constituting the feedback loop). Conclusions Since a general model of negative feedback oscillators was employed, the results shown in this paper are expected to be true for many of biological oscillators. This study strongly supports that the hypothesis that phosphorylations of clock proteins contribute to the robustness of circadian rhythms. The analytical solutions give synthetic biologists some clues to design gene oscillators with robust and desired period. PMID:25605374

  13. Mars approach for global sensitivity analysis of differential equation models with applications to dynamics of influenza infection.

    PubMed

    Lee, Yeonok; Wu, Hulin

    2012-01-01

    Differential equation models are widely used for the study of natural phenomena in many fields. The study usually involves unknown factors such as initial conditions and/or parameters. It is important to investigate the impact of unknown factors (parameters and initial conditions) on model outputs in order to better understand the system the model represents. Apportioning the uncertainty (variation) of output variables of a model according to the input factors is referred to as sensitivity analysis. In this paper, we focus on the global sensitivity analysis of ordinary differential equation (ODE) models over a time period using the multivariate adaptive regression spline (MARS) as a meta model based on the concept of the variance of conditional expectation (VCE). We suggest to evaluate the VCE analytically using the MARS model structure of univariate tensor-product functions which is more computationally efficient. Our simulation studies show that the MARS model approach performs very well and helps to significantly reduce the computational cost. We present an application example of sensitivity analysis of ODE models for influenza infection to further illustrate the usefulness of the proposed method.

  14. Ability of various materials to detect explosive vapors by fluorescent technologies: a comparative study.

    PubMed

    Bouhadid, Myriam; Caron, Thomas; Veignal, Florian; Pasquinet, Eric; Ratsimihety, Amédée; Ganachaud, François; Montméat, Pierre

    2012-10-15

    For the development of fluorescent sensors, one of the key points is choosing the sensitive material. In this article, we aim at evaluating, under strictly identical experimental conditions, the performance of three materials for the detection of dinitrotoluene (a volatile marker of trinitrotoluene) through different parameters: response time, fluorescence intensity, sensitivity, reversibility, reaction after successive exposures and long-term stability. The results are discussed according to the nature of the sensitive materials. This first study rendered it possible to select a conjugated molecule as the best sensitive material for the development of a lab-made prototype. In a second part, the selectivity of this particular sensitive material was studied and its ability to detect TNT could be demonstrated. Copyright © 2012. Published by Elsevier B.V.

  15. An Initial Study of the Sensitivity of Aircraft Vortex Spacing System (AVOSS) Spacing Sensitivity to Weather and Configuration Input Parameters

    NASA Technical Reports Server (NTRS)

    Riddick, Stephen E.; Hinton, David A.

    2000-01-01

    A study has been performed on a computer code modeling an aircraft wake vortex spacing system during final approach. This code represents an initial engineering model of a system to calculate reduced approach separation criteria needed to increase airport productivity. This report evaluates model sensitivity toward various weather conditions (crosswind, crosswind variance, turbulent kinetic energy, and thermal gradient), code configurations (approach corridor option, and wake demise definition), and post-processing techniques (rounding of provided spacing values, and controller time variance).

  16. Single photon detector with high polarization sensitivity.

    PubMed

    Guo, Qi; Li, Hao; You, LiXing; Zhang, WeiJun; Zhang, Lu; Wang, Zhen; Xie, XiaoMing; Qi, Ming

    2015-04-15

    Polarization is one of the key parameters of light. Most optical detectors are intensity detectors that are insensitive to the polarization of light. A superconducting nanowire single photon detector (SNSPD) is naturally sensitive to polarization due to its nanowire structure. Previous studies focused on producing a polarization-insensitive SNSPD. In this study, by adjusting the width and pitch of the nanowire, we systematically investigate the preparation of an SNSPD with high polarization sensitivity. Subsequently, an SNSPD with a system detection efficiency of 12% and a polarization extinction ratio of 22 was successfully prepared.

  17. Modelling of intermittent microwave convective drying: parameter sensitivity

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei

    2017-06-01

    The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  18. Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem

    USGS Publications Warehouse

    Sanz, E.; Voss, C.I.

    2006-01-01

    Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only concentration observations. Permeability, freshwater inflow, solute molecular diffusivity, and porosity can be estimated with roughly equivalent confidence using observations of only the logarithm of concentration. Furthermore, covariance analysis allows a logical reduction of the number of estimated parameters for ill-posed inverse seawater intrusion problems. Ill-posed problems may exhibit poor estimation convergence, have a non-unique solution, have multiple minima, or require excessive computational effort, and the condition often occurs when estimating too many or co-dependent parameters. For the Henry problem, such analysis allows selection of the two parameters that control system physics from among all possible system parameters. ?? 2005 Elsevier Ltd. All rights reserved.

  19. Statistical sensitivity analysis of a simple nuclear waste repository model

    NASA Astrophysics Data System (ADS)

    Ronen, Y.; Lucius, J. L.; Blow, E. M.

    1980-06-01

    A preliminary step in a comprehensive sensitivity analysis of the modeling of a nuclear waste repository. The purpose of the complete analysis is to determine which modeling parameters and physical data are most important in determining key design performance criteria and then to obtain the uncertainty in the design for safety considerations. The theory for a statistical screening design methodology is developed for later use in the overall program. The theory was applied to the test case of determining the relative importance of the sensitivity of near field temperature distribution in a single level salt repository to modeling parameters. The exact values of the sensitivities to these physical and modeling parameters were then obtained using direct methods of recalculation. The sensitivity coefficients found to be important for the sample problem were thermal loading, distance between the spent fuel canisters and their radius. Other important parameters were those related to salt properties at a point of interest in the repository.

  20. On the sensitivity analysis of porous material models

    NASA Astrophysics Data System (ADS)

    Ouisse, Morvan; Ichchou, Mohamed; Chedly, Slaheddine; Collet, Manuel

    2012-11-01

    Porous materials are used in many vibroacoustic applications. Different available models describe their behaviors according to materials' intrinsic characteristics. For instance, in the case of porous material with rigid frame, and according to the Champoux-Allard model, five parameters are employed. In this paper, an investigation about this model sensitivity to parameters according to frequency is conducted. Sobol and FAST algorithms are used for sensitivity analysis. A strong parametric frequency dependent hierarchy is shown. Sensitivity investigations confirm that resistivity is the most influent parameter when acoustic absorption and surface impedance of porous materials with rigid frame are considered. The analysis is first performed on a wide category of porous materials, and then restricted to a polyurethane foam analysis in order to illustrate the impact of the reduction of the design space. In a second part, a sensitivity analysis is performed using the Biot-Allard model with nine parameters including mechanical effects of the frame and conclusions are drawn through numerical simulations.

  1. Results of an integrated structure-control law design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1988-01-01

    Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.

  2. Aeroelastic considerations for torsionally soft rotors

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1986-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by variations in the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not. In addition, fixed system vibratory loads and rotor track for potential conformable rotor candidates appears very sensitive to parametric rotor changes.

  3. MODFLOW-2000, the U.S. Geological Survey modular ground-water model; user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs

    USGS Publications Warehouse

    Hill, Mary C.; Banta, E.R.; Harbaugh, A.W.; Anderman, E.R.

    2000-01-01

    This report documents the Observation, Sensitivity, and Parameter-Estimation Processes of the ground-water modeling computer program MODFLOW-2000. The Observation Process generates model-calculated values for comparison with measured, or observed, quantities. A variety of statistics is calculated to quantify this comparison, including a weighted least-squares objective function. In addition, a number of files are produced that can be used to compare the values graphically. The Sensitivity Process calculates the sensitivity of hydraulic heads throughout the model with respect to specified parameters using the accurate sensitivity-equation method. These are called grid sensitivities. If the Observation Process is active, it uses the grid sensitivities to calculate sensitivities for the simulated values associated with the observations. These are called observation sensitivities. Observation sensitivities are used to calculate a number of statistics that can be used (1) to diagnose inadequate data, (2) to identify parameters that probably cannot be estimated by regression using the available observations, and (3) to evaluate the utility of proposed new data. The Parameter-Estimation Process uses a modified Gauss-Newton method to adjust values of user-selected input parameters in an iterative procedure to minimize the value of the weighted least-squares objective function. Statistics produced by the Parameter-Estimation Process can be used to evaluate estimated parameter values; statistics produced by the Observation Process and post-processing program RESAN-2000 can be used to evaluate how accurately the model represents the actual processes; statistics produced by post-processing program YCINT-2000 can be used to quantify the uncertainty of model simulated values. Parameters are defined in the Ground-Water Flow Process input files and can be used to calculate most model inputs, such as: for explicitly defined model layers, horizontal hydraulic conductivity, horizontal anisotropy, vertical hydraulic conductivity or vertical anisotropy, specific storage, and specific yield; and, for implicitly represented layers, vertical hydraulic conductivity. In addition, parameters can be defined to calculate the hydraulic conductance of the River, General-Head Boundary, and Drain Packages; areal recharge rates of the Recharge Package; maximum evapotranspiration of the Evapotranspiration Package; pumpage or the rate of flow at defined-flux boundaries of the Well Package; and the hydraulic head at constant-head boundaries. The spatial variation of model inputs produced using defined parameters is very flexible, including interpolated distributions that require the summation of contributions from different parameters. Observations can include measured hydraulic heads or temporal changes in hydraulic heads, measured gains and losses along head-dependent boundaries (such as streams), flows through constant-head boundaries, and advective transport through the system, which generally would be inferred from measured concentrations. MODFLOW-2000 is intended for use on any computer operating system. The program consists of algorithms programmed in Fortran 90, which efficiently performs numerical calculations and is fully compatible with the newer Fortran 95. The code is easily modified to be compatible with FORTRAN 77. Coordination for multiple processors is accommodated using Message Passing Interface (MPI) commands. The program is designed in a modular fashion that is intended to support inclusion of new capabilities.

  4. Study of chemical reactivity in relation to experimental parameters of efficiency in coumarin derivatives for dye sensitized solar cells using DFT.

    PubMed

    Soto-Rojo, Rody; Baldenebro-López, Jesús; Glossman-Mitnik, Daniel

    2015-06-07

    A group of dyes derived from coumarin was studied, which consisted of nine molecules using a very similar manufacturing process of dye sensitized solar cells (DSSCs). Optimized geometries, energy levels of the highest occupied molecular orbital and the lowest unoccupied molecular orbital, and ultraviolet-visible spectra were obtained using theoretical calculations, and they were also compared with experimental conversion efficiencies of the DSSC. The representation of an excited state in terms of natural transition orbitals (NTOs) was studied. Chemical reactivity parameters were calculated and correlated with the experimental data linked to the efficiency of the DSSC. A new proposal was obtained to design new molecular systems and to predict their potential use as a dye in DSSCs.

  5. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less

  6. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less

  7. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options.

  8. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes

    PubMed Central

    Curtis, Janelle M.R.

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options. PMID:27547529

  9. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.

    PubMed

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K

    2016-01-01

    Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.

  10. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert

    PubMed Central

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.

    2016-01-01

    Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203

  11. Generalized Polynomial Chaos Based Uncertainty Quantification for Planning MRgLITT Procedures

    PubMed Central

    Fahrenholtz, S.; Stafford, R. J.; Maier, F.; Hazle, J. D.; Fuentes, D.

    2014-01-01

    Purpose A generalized polynomial chaos (gPC) method is used to incorporate constitutive parameter uncertainties within the Pennes representation of bioheat transfer phenomena. The stochastic temperature predictions of the mathematical model are critically evaluated against MR thermometry data for planning MR-guided Laser Induced Thermal Therapies (MRgLITT). Methods Pennes bioheat transfer model coupled with a diffusion theory approximation of laser tissue interaction was implemented as the underlying deterministic kernel. A probabilistic sensitivity study was used to identify parameters that provide the most variance in temperature output. Confidence intervals of the temperature predictions are compared to MR temperature imaging (MRTI) obtained during phantom and in vivo canine (n=4) MRgLITT experiments. The gPC predictions were quantitatively compared to MRTI data using probabilistic linear and temporal profiles as well as 2-D 60 °C isotherms. Results Within the range of physically meaningful constitutive values relevant to the ablative temperature regime of MRgLITT, the sensitivity study indicated that the optical parameters, particularly the anisotropy factor, created the most variance in the stochastic model's output temperature prediction. Further, within the statistical sense considered, a nonlinear model of the temperature and damage dependent perfusion, absorption, and scattering is captured within the confidence intervals of the linear gPC method. Multivariate stochastic model predictions using parameters with the dominant sensitivities show good agreement with experimental MRTI data. Conclusions Given parameter uncertainties and mathematical modeling approximations of the Pennes bioheat model, the statistical framework demonstrates conservative estimates of the therapeutic heating and has potential for use as a computational prediction tool for thermal therapy planning. PMID:23692295

  12. [Application of CWT to extract characteristic monitoring parameters during spine surgery].

    PubMed

    Chen, Penghui; Wu, Baoming; Hu, Yong

    2005-10-01

    It is necessary to monitor intraoperative spinal function in order to prevent spinal neurological deficit during spine surgery. This study aims to extract characteristic electrophysiological monitoring parameters during surgical treatment of scoliosis. The problem, "the monitoring parameters in time domain are of great variability and are sensitive to noise", may also be solved in this study. By use of continuous wavelet transform to analyze the intraoperative cortical somatosensory evoked potential (CSEP), three new characteristic monitoring parameters in time-frequency domain (TFD) are extracted. The results indicate that the variability of CSEP characteristic parameters in TFD is lower than the variability of those in time domain. Therefore, the TFD characteristic monitoring parameters are more stable and reliable parameters of latency and amplitude in time domain. The application of TFD monitoring parameters during spine surgery may avoid spinal injury effectively.

  13. Physically-based slope stability modelling and parameter sensitivity: a case study in the Quitite and Papagaio catchments, Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    de Lima Neves Seefelder, Carolina; Mergili, Martin

    2016-04-01

    We use the software tools r.slope.stability and TRIGRS to produce factor of safety and slope failure susceptibility maps for the Quitite and Papagaio catchments, Rio de Janeiro, Brazil. The key objective of the work consists in exploring the sensitivity of the geotechnical (r.slope.stability) and geohydraulic (TRIGRS) parameterization on the model outcomes in order to define suitable parameterization strategies for future slope stability modelling. The two landslide-prone catchments Quitite and Papagaio together cover an area of 4.4 km², extending between 12 and 995 m a.s.l. The study area is dominated by granitic bedrock and soil depths of 1-3 m. Ranges of geotechnical and geohydraulic parameters are derived from literature values. A landslide inventory related to a rainfall event in 1996 (250 mm in 48 hours) is used for model evaluation. We attempt to identify those combinations of effective cohesion and effective internal friction angle yielding the best correspondence with the observed landslide release areas in terms of the area under the ROC Curve (AUCROC), and in terms of the fraction of the area affected by the release of landslides. Thereby we test multiple parameter combinations within defined ranges to derive the slope failure susceptibility (fraction of tested parameter combinations yielding a factor of safety smaller than 1). We use the tool r.slope.stability (comparing the infinite slope stability model and an ellipsoid-based sliding surface model) to test and to optimize the geotechnical parameters, and TRIGRS (a coupled hydraulic-infinite slope stability model) to explore the sensitivity of the model results to the geohydraulic parameters. The model performance in terms of AUCROC is insensitive to the variation of the geotechnical parameterization within much of the tested ranges. Assuming fully saturated soils, r.slope.stability produces rather conservative predictions, whereby the results yielded with the sliding surface model are more conservative than those yielded with the infinite slope stability model. The sensitivity of AUCROC to variations in the geohydraulic parameters remains small as long as the calculated degree of saturation of the soils is sufficient to result in the prediction of a significant amount of landslide release pixels. Due to the poor sensitivity of AUCROC to variations of the geotechnical and geohydraulic parameters it is hard to optimize the parameters by means of statistics. Instead, the results produced with many different combinations of parameters correspond reasonably well with the distribution of the observed landslide release areas, even though they vary considerably in terms of their conservativeness. Considering the uncertainty inherent in all geotechnical and geohydraulic data, and the impossibility to capture the spatial distribution of the parameters by means of laboratory tests in sufficient detail, we conclude that landslide susceptibility maps yielded by catchment-scale physically-based models should not be interpreted in absolute terms. Building on the assumption that our findings are generally valid, we suggest that efforts to develop better strategies for dealing with the uncertainties in the spatial variation of the key parameters should be given priority in future slope stability modelling efforts.

  14. Sensitivity and Specificity of Eustachian Tube Function Tests in Adults

    PubMed Central

    Doyle, William J.; Swarts, J. Douglas; Banks, Julianne; Casselbrant, Margaretha L; Mandel, Ellen M; Alper, Cuneyt M.

    2013-01-01

    Objective Determine if Eustachian Tube (ET) function (ETF) tests can identify ears with physician-diagnosed ET dysfunction (ETD) in a mixed population at high sensitivity and specificity and define the inter-relatedness of ETF test parameters. Methods ETF was evaluated using the Forced-Response, Inflation-Deflation, Valsalva and Sniffing tests in 15 control ears of adult subjects after unilateral myringotomy (Group I) and in 23 ears of 19 adult subjects with ventilation tubes inserted for ETD (Group II). Data were analyzed using logistic regression including each parameter independently and then a step-down Discriminant Analysis including all ETF test parameters to predict group assignment. Factor Analysis operating over all parameters was used to explore relatedness. Results The Discriminant Analysis identified 4 ETF test parameters (Valsalva, ET opening pressure, dilatory efficiency and % positive pressure equilibrated) that together correctly assigned ears to Group II at a sensitivity of 95% and a specificity of 83%. Individual parameters representing the efficiency of ET opening during swallowing showed moderately accurate assignments of ears to their respective groups. Three factors captured approximately 98% of the variance among parameters, the first had negative loadings of the ETF structural parameters, the second had positive loadings of the muscle-assisted ET opening parameters and the third had negative loadings of the muscle-assisted ET opening parameters and positive loadings of the structural parameters. Discussion These results show that ETF tests can correctly assign individual ears to physician-diagnosed ETD with high sensitivity and specificity and that ETF test parameters can be grouped into structural-functional categories. PMID:23868429

  15. Sensitivity of Beam Parameters to a Station C Solenoid Scan on Axis II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Martin E.

    Magnet scans are a standard technique for determining beam parameters in accelerators. Beam parameters are inferred from spot size measurements using a model of the beam optics. The sensitivity of the measured beam spot size to the beam parameters is investigated for typical DARHT Axis II beam energies and currents. In a typical S4 solenoid scan, the downstream transport is tuned to achieve a round beam at Station C with an envelope radius of about 1.5 cm with a very small divergence with S4 off. The typical beam energy and current are 16.0 MeV and 1.625 kA. Figures 1-3 showmore » the sensitivity of the bean size at Station C to the emittance, initial radius and initial angle respectively. To better understand the relative sensitivity of the beam size to the emittance, initial radius and initial angle, linear regressions were performed for each parameter as a function of the S4 setting. The results are shown in Figure 4. The measured slope was scaled to have a maximum value of 1 in order to present the relative sensitivities in a single plot. Figure 4 clearly shows the beam size at the minimum of the S4 scan is most sensitive to emittance and relatively insensitive to initial radius and angle as expected. The beam emittance is also very sensitive to the beam size of the converging beam and becomes insensitive to the beam size of the diverging beam. Measurements of the beam size of the diverging beam provide the greatest sensitivity to the initial beam radius and to a lesser extent the initial beam angle. The converging beam size is initially very sensitive to the emittance and initial angle at low S4 currents. As the S4 current is increased the sensitivity to the emittance remains strong while the sensitivity to the initial angle diminishes.« less

  16. Diagnostic Abilities of Variable and Enhanced Corneal Compensation Algorithms of GDx in Different Severities of Glaucoma.

    PubMed

    Yadav, Ravi K; Begum, Viquar U; Addepalli, Uday K; Senthil, Sirisha; Garudadri, Chandra S; Rao, Harsha L

    2016-02-01

    To compare the abilities of retinal nerve fiber layer (RNFL) parameters of variable corneal compensation (VCC) and enhanced corneal compensation (ECC) algorithms of scanning laser polarimetry (GDx) in detecting various severities of glaucoma. Two hundred and eighty-five eyes of 194 subjects from the Longitudinal Glaucoma Evaluation Study who underwent GDx VCC and ECC imaging were evaluated. Abilities of RNFL parameters of GDx VCC and ECC to diagnose glaucoma were compared using area under receiver operating characteristic curves (AUC), sensitivities at fixed specificities, and likelihood ratios. After excluding 5 eyes that failed to satisfy manufacturer-recommended quality parameters with ECC and 68 with VCC, 56 eyes of 41 normal subjects and 161 eyes of 121 glaucoma patients [36 eyes with preperimetric glaucoma, 52 eyes with early (MD>-6 dB), 34 with moderate (MD between -6 and -12 dB), and 39 with severe glaucoma (MD<-12 dB)] were included for the analysis. Inferior RNFL, average RNFL, and nerve fiber indicator parameters showed the best AUCs and sensitivities both with GDx VCC and ECC in diagnosing all severities of glaucoma. AUCs and sensitivities of all RNFL parameters were comparable between the VCC and ECC algorithms (P>0.20 for all comparisons). Likelihood ratios associated with the diagnostic categorization of RNFL parameters were comparable between the VCC and ECC algorithms. In scans satisfying the manufacturer-recommended quality parameters, which were significantly greater with ECC than VCC algorithm, diagnostic abilities of GDx ECC and VCC in glaucoma were similar.

  17. [Vulnerability to atmospheric and geomagnetic factors of the body functions in healthy male dwellers of the Russian North].

    PubMed

    Markov, A L; Zenchenko, T A; Solonin, Iu G; Boĭko, E R

    2013-01-01

    In April 2009 through to November 2011, a Mars-500 satellite study of Russian Northerners (Syktyvkar citizens) was performed using the standard ECOSAN-2007 procedure evaluating the atmospheric and geomagnetic susceptibility of the main body functional parameters. Seventeen essentially healthy men at the age of 25 to 46 years were investigated. Statistical data treatment included correlation and single-factor analysis of variance. Comparison of the number of statistical correlations of the sum of all functional parameters for participants showed that most often they were sensitive to atmospheric pressure, temperature, relative humidity and oxygen partial pressure (29-35 %), and geomagnetic activity (28 %). Dependence of the functional parameters on the rate of temperature and pressure change was weak and comparable with random coincidence (11 %). Among the hemodynamic parameters, systolic pressure was particularly sensitive to space and terrestrial weather variations (29 %); sensitivity of heart rate and diastolic pressure were determined in 25 % and 21 % of participants, respectively. Among the heart rate variability parameters (HRV) the largest number of statistically reliable correlations was determined for the centralization index (32 %) and high-frequency HRV spectrum (31 %); index of the regulatory systems activity was least dependable (19 %). Life index, maximal breath-holding and Ckibinskaya's cardiorespiratory index are also susceptible. Individual responses of the functional parameters to terrestrial and space weather changes varied with partidpants which points to the necessity of individual approach to evaluation of person's reactions to environmental changes.

  18. Correlation between fundus autofluorescence and central visual function in chronic central serous chorioretinopathy.

    PubMed

    Eandi, Chiara M; Piccolino, Felice Cardillo; Alovisi, Camilla; Tridico, Federico; Giacomello, Daniela; Grignolo, Federico M

    2015-04-01

    To find possible correlations between the morphologic macular changes revealed by fundus autofluorescence (FAF) and the functional parameters such as visual acuity and retinal sensitivity in patients with chronic central serous chorioretinopathy (CSC). Prospective, cross-sectional study. Forty-six eyes (39 consecutive patients) with chronic CSC were studied with FAF and microperimetry (MP). Retinal sensitivity value maps were exactly superimposed over FAF images. The following microperimetric parameters were applied: central 10-degree visual field, 4-2-1 strategy, 61 stimulation spots, white monochromatic background, stimulation time 200 ms, stimulation spot size Goldmann III. A possible relationship between MP and FAF was investigated. Mean best-corrected visual acuity (BCVA) was 20/32 (median 20/25, range 20/20-20/200). BCVA was significantly correlated with FAF findings (Mann-Whitney test; P < .0001). A positive concordance between FAF and MP evaluation was also found (total concordance of 0.720 with a kappa of Cohen of 0.456). The hypo-autofluorescent areas showed decreased retinal sensitivity, while adjacent areas of increased FAF could be associated to both normal and decreased retinal sensitivity. Absolute scotoma, defined as 0 dB retinal sensitivity, corresponded with absence of autofluorescence. Altered FAF in chronic CSC patients has a functional correlation quantified by microperimetry. This study confirms the impact of FAF changes on retinal sensitivity and their value to reflect the functional impairment in chronic CSC. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements.

    PubMed

    Boesche, Eyk; Stammes, Piet; Ruhtz, Thomas; Preusker, Réne; Fischer, Juergen

    2006-12-01

    We analyze the sensitivity of the degree of linear polarization in the Sun's principal plane as a function of aerosol microphysical parameters: the real and imaginary parts of the refractive index, the median radius and geometric standard deviation of the bimodal size distribution (both fine and coarse modes), and the relative number weight of the fine mode at a wavelength of 675 nm. We use Mie theory for single-scattering simulations and the doubling-adding method with the inclusion of polarization for multiple scattering. It is shown that the behavior of the degree of linear polarization is highly sensitive to both the small mode of the bimodal size distribution and the real part of the refractive index of aerosols, as well as to the aerosol optical thickness; whereas not all parameters influence the polarization equally. A classification of the importance of the input parameters is given. This sensitivity study is applied to an analysis of ground-based polarization measurements. For the passive remote sensing of microphysical and optical properties of aerosols, a ground-based spectral polarization measuring system was built, which aims to measure the Stokes parameters I, Q, and U in the visible (from 410 to 789 nm) and near-infrared (from 674 to 995 nm) spectral range with a spectral resolution of 7 nm in the visible and 2.4 nm in the near infrared. We compare polarization measurements taken with radiative transfer simulations under both clear- and hazy-sky conditions in an urban area (Cabauw, The Netherlands, 51.58 degrees N, 4.56 degrees E). Conclusions about the microphysical properties of aerosol are drawn from the comparison.

  20. Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B–induced local skin hypersensitization in healthy subjects: a machine-learned analysis

    PubMed Central

    Lötsch, Jörn; Geisslinger, Gerd; Heinemann, Sarah; Lerch, Florian; Oertel, Bruno G.; Ultsch, Alfred

    2018-01-01

    Abstract The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models. PMID:28700537

  1. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example

    USGS Publications Warehouse

    Wu, Y.; Liu, S.

    2012-01-01

    Parameter optimization and uncertainty issues are a great challenge for the application of large environmental models like the Soil and Water Assessment Tool (SWAT), which is a physically-based hydrological model for simulating water and nutrient cycles at the watershed scale. In this study, we present a comprehensive modeling environment for SWAT, including automated calibration, and sensitivity and uncertainty analysis capabilities through integration with the R package Flexible Modeling Environment (FME). To address challenges (e.g., calling the model in R and transferring variables between Fortran and R) in developing such a two-language coupling framework, 1) we converted the Fortran-based SWAT model to an R function (R-SWAT) using the RFortran platform, and alternatively 2) we compiled SWAT as a Dynamic Link Library (DLL). We then wrapped SWAT (via R-SWAT) with FME to perform complex applications including parameter identifiability, inverse modeling, and sensitivity and uncertainty analysis in the R environment. The final R-SWAT-FME framework has the following key functionalities: automatic initialization of R, running Fortran-based SWAT and R commands in parallel, transferring parameters and model output between SWAT and R, and inverse modeling with visualization. To examine this framework and demonstrate how it works, a case study simulating streamflow in the Cedar River Basin in Iowa in the United Sates was used, and we compared it with the built-in auto-calibration tool of SWAT in parameter optimization. Results indicate that both methods performed well and similarly in searching a set of optimal parameters. Nonetheless, the R-SWAT-FME is more attractive due to its instant visualization, and potential to take advantage of other R packages (e.g., inverse modeling and statistical graphics). The methods presented in the paper are readily adaptable to other model applications that require capability for automated calibration, and sensitivity and uncertainty analysis.

  2. Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie

    2015-09-01

    The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit.

  3. Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems.

    PubMed

    Pant, Sanjay

    2018-05-01

    A new class of functions, called the 'information sensitivity functions' (ISFs), which quantify the information gain about the parameters through the measurements/observables of a dynamical system are presented. These functions can be easily computed through classical sensitivity functions alone and are based on Bayesian and information-theoretic approaches. While marginal information gain is quantified by decrease in differential entropy, correlations between arbitrary sets of parameters are assessed through mutual information. For individual parameters, these information gains are also presented as marginal posterior variances, and, to assess the effect of correlations, as conditional variances when other parameters are given. The easy to interpret ISFs can be used to (a) identify time intervals or regions in dynamical system behaviour where information about the parameters is concentrated; (b) assess the effect of measurement noise on the information gain for the parameters; (c) assess whether sufficient information in an experimental protocol (input, measurements and their frequency) is available to identify the parameters; (d) assess correlation in the posterior distribution of the parameters to identify the sets of parameters that are likely to be indistinguishable; and (e) assess identifiability problems for particular sets of parameters. © 2018 The Authors.

  4. Integrating satellite actual evapotranspiration patterns into distributed model parametrization and evaluation for a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.

    2016-12-01

    Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.

  5. Calibration of a convective parameterization scheme in the WRF model and its impact on the simulation of East Asian summer monsoon precipitation

    DOE PAGES

    Yang, Ben; Zhang, Yaocun; Qian, Yun; ...

    2014-03-26

    Reasonably modeling the magnitude, south-north gradient and seasonal propagation of precipitation associated with the East Asian Summer Monsoon (EASM) is a challenging task in the climate community. In this study we calibrate five key parameters in the Kain-Fritsch convection scheme in the WRF model using an efficient importance-sampling algorithm to improve the EASM simulation. We also examine the impacts of the improved EASM precipitation on other physical process. Our results suggest similar model sensitivity and values of optimized parameters across years with different EASM intensities. By applying the optimal parameters, the simulated precipitation and surface energy features are generally improved.more » The parameters related to downdraft, entrainment coefficients and CAPE consumption time (CCT) can most sensitively affect the precipitation and atmospheric features. Larger downdraft coefficient or CCT decrease the heavy rainfall frequency, while larger entrainment coefficient delays the convection development but build up more potential for heavy rainfall events, causing a possible northward shift of rainfall distribution. The CCT is the most sensitive parameter over wet region and the downdraft parameter plays more important roles over drier northern region. Long-term simulations confirm that by using the optimized parameters the precipitation distributions are better simulated in both weak and strong EASM years. Due to more reasonable simulated precipitation condensational heating, the monsoon circulations are also improved. Lastly, by using the optimized parameters the biases in the retreating (beginning) of Mei-yu (northern China rainfall) simulated by the standard WRF model are evidently reduced and the seasonal and sub-seasonal variations of the monsoon precipitation are remarkably improved.« less

  6. Sensitivity analysis and nonlinearity assessment of steam cracking furnace process

    NASA Astrophysics Data System (ADS)

    Rosli, M. N.; Sudibyo, Aziz, N.

    2017-11-01

    In this paper, sensitivity analysis and nonlinearity assessment of cracking furnace process are presented. For the sensitivity analysis, the fractional factorial design method is employed as a method to analyze the effect of input parameters, which consist of four manipulated variables and two disturbance variables, to the output variables and to identify the interaction between each parameter. The result of the factorial design method is used as a screening method to reduce the number of parameters, and subsequently, reducing the complexity of the model. It shows that out of six input parameters, four parameters are significant. After the screening is completed, step test is performed on the significant input parameters to assess the degree of nonlinearity of the system. The result shows that the system is highly nonlinear with respect to changes in an air-to-fuel ratio (AFR) and feed composition.

  7. Application of design sensitivity analysis for greater improvement on machine structural dynamics

    NASA Technical Reports Server (NTRS)

    Yoshimura, Masataka

    1987-01-01

    Methodologies are presented for greatly improving machine structural dynamics by using design sensitivity analyses and evaluative parameters. First, design sensitivity coefficients and evaluative parameters of structural dynamics are described. Next, the relations between the design sensitivity coefficients and the evaluative parameters are clarified. Then, design improvement procedures of structural dynamics are proposed for the following three cases: (1) addition of elastic structural members, (2) addition of mass elements, and (3) substantial charges of joint design variables. Cases (1) and (2) correspond to the changes of the initial framework or configuration, and (3) corresponds to the alteration of poor initial design variables. Finally, numerical examples are given for demonstrating the availability of the methods proposed.

  8. Calibration parameters used to simulate streamflow from application of the Hydrologic Simulation Program-FORTRAN Model (HSPF) to mountainous basins containing coal mines in West Virginia

    USGS Publications Warehouse

    Atkins, John T.; Wiley, Jeffrey B.; Paybins, Katherine S.

    2005-01-01

    This report presents the Hydrologic Simulation Program-FORTRAN Model (HSPF) parameters for eight basins in the coal-mining region of West Virginia. The magnitude and characteristics of model parameters from this study will assist users of HSPF in simulating streamflow at other basins in the coal-mining region of West Virginia. The parameter for nominal capacity of the upper-zone storage, UZSN, increased from south to north. The increase in UZSN with the increase in basin latitude could be due to decreasing slopes, decreasing rockiness of the soils, and increasing soil depths from south to north. A special action was given to the parameter for fraction of ground-water inflow that flows to inactive ground water, DEEPFR. The basis for this special action was related to the seasonal movement of the water table and transpiration from trees. The models were most sensitive to DEEPFR and the parameter for interception storage capacity, CEPSC. The models were also fairly sensitive to the parameter for an index representing the infiltration capacity of the soil, INFILT; the parameter for indicating the behavior of the ground-water recession flow, KVARY; the parameter for the basic ground-water recession rate, AGWRC; the parameter for nominal capacity of the upper zone storage, UZSN; the parameter for the interflow inflow, INTFW; the parameter for the interflow recession constant, IRC; and the parameter for lower zone evapotranspiration, LZETP.

  9. Studies on electronic spectral parameters of doped Nd(III) ion with therapeutically important ligands in dioxane solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajaj, Annu, E-mail: annu.bajaj11@gmail.com; Jain, Sushma

    2016-05-06

    The present investigation is concerened with the studies on electronic spectral parameters viz. Oscillator strength (P), Judd-Ofelt T{sub λ} (λ=2,4,6), Slater-Condon(F{sub K}),Lande(ζ{sub 4F}),Nephelauxetic ratio(β), Bonding parameter (b{sup 1/2}) and Percent covalency parameter (δ%) for Nd(III) ion complexes with the ligands having Nitrogen,Oxygen Sulphur donor sites.The variation in the values of oscillator strength explicitly shows the relative sensitivities of the 4f-4f transition as well as the specific correlation between ligand structures and nature of Nd(III) ligand interaction.

  10. Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model

    NASA Astrophysics Data System (ADS)

    Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.

    2018-03-01

    We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.

  11. Scaling in sensitivity analysis

    USGS Publications Warehouse

    Link, W.A.; Doherty, P.F.

    2002-01-01

    Population matrix models allow sets of demographic parameters to be summarized by a single value 8, the finite rate of population increase. The consequences of change in individual demographic parameters are naturally measured by the corresponding changes in 8; sensitivity analyses compare demographic parameters on the basis of these changes. These comparisons are complicated by issues of scale. Elasticity analysis attempts to deal with issues of scale by comparing the effects of proportional changes in demographic parameters, but leads to inconsistencies in evaluating demographic rates. We discuss this and other problems of scaling in sensitivity analysis, and suggest a simple criterion for choosing appropriate scales. We apply our suggestions to data for the killer whale, Orcinus orca.

  12. AMH MEASUREMENT VERSUS OVARIAN ULTRASOUND IN THE DIAGNOSIS OF POLYCYSTIC OVARY SYNDROME IN DIFFERENT PHENOTYPES.

    PubMed

    Carmina, Enrico; Campagna, Anna M; Fruzzetti, Franca; Lobo, Rogerio A

    2016-03-01

    This study was designed to assess the value of serum anti-Müllerian hormone (AMH) in the diagnosis of polycystic ovary syndrome (PCOS) in various phenotypes and to assess ovarian ultrasound parameters. We performed a retrospective matched controlled study of 113 females with various PCOS phenotypes and 47 matched controls. The diagnostic utility of AMH measurement and ovarian ultrasound were compared. Using receiver operating characteristic (ROC) curve analyses, the threshold for AMH (>4.7 ng/mL) and ultrasound parameters (follicle number per ovary [FNPO] >22 and ovarian volume [OV] >8 cc) were established. In the entire cohort, AMH had a low sensitivity of 79%; while FNPO and OV were 93% and 68%, respectively. Specificities ranged from 85 to 96%. In classic anovulatory PCOS, AMH exhibited a sensitivity of 91%, and for FNPO and OV the corresponding sensitivities were 92% and 72%. In the ovulatory phenotype, AMH sensitivity was only 50%, while FNPO and OV were 95% and 50%, respectively. In the nonhyperandrogenic phenotype, the sensitivity of AMH was 53% while those for FNPO and OV were 93% and 67%. AMH does not appear to be helpful for all subjects with PCOS but may be of some value in those who are anovulatory. However, FNPO was highly sensitive in all phenotypes, and was the single best criterion assessed for all subjects, suggesting the important role of ultrasound.

  13. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averagingmore » methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  14. Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis.

    PubMed

    Reiter, Rolf; Freise, Christian; Jöhrens, Korinna; Kamphues, Carsten; Seehofer, Daniel; Stockmann, Martin; Somasundaram, Rajan; Asbach, Patrick; Braun, Jürgen; Samani, Abbas; Sack, Ingolf

    2014-05-07

    Despite the success of elastography in grading hepatic fibrosis by stiffness related noninvasive markers the relationship between viscoelastic constants in the liver and tissue structure remains unclear. We therefore studied the mechanical properties of 16 human liver specimens with different degrees of fibrosis, inflammation and steatosis by wideband magnetic resonance elastography (MRE) and static indentation experiments providing the specimens׳ static Young׳s modulus (E), dynamic storage modulus (G') and dynamic loss modulus (G″). A frequency-independent shear modulus μ and a powerlaw exponent α were obtained by fitting G' and G″ using the two-parameter sprinpot model. The mechanical parameters were compared to the specimens׳ histology derived parameters such as degree of Fibrosis (F), inflammation score and fat score, amount of hydroxyproline (HYP) used for quantification of collagen, blood markers and presurgery in vivo function tests. The frequency averaged parameters G', G″ and μ were significantly correlated with F (G': R=0.762, G″: R=0.830; μ: R=0.744; all P<0.01) and HYP (G': R=0.712; G″: R=0.720; μ: R=0.731; all P<0.01). The powerlaw exponent α displayed an inverse correlation with F (R=-0.590, P=0.034) and a trend of inverse correlation with HYP (R=-0.470, P=0.089). The static Young׳s modulus E was less correlated with F (R=0.587, P=0.022) and not sensitive to HYP. Although inflammation was highly correlated with F (R=0.773, P<0.001), no interaction was discernable between inflammation and mechanical parameters measured in this study. Other histological and blood markers as well as liver function test were correlated with neither F nor the measured mechanical parameters. In conclusion, viscoelastic constants measured by wideband MRE are highly sensitive to histologically proven fibrosis. Our results suggest that, in addition to the amount of connective tissue, subtle structural changes of the viscoelastic matrix determine the sensitivity of mechanical tissue properties to hepatic fibrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Adjusting the specificity of an engine map based on the sensitivity of an engine control parameter relative to a performance variable

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-10-28

    Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.

  16. Scoping and sensitivity analyses for the Demonstration Tokamak Hybrid Reactor (DTHR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sink, D.A.; Gibson, G.

    1979-03-01

    The results of an extensive set of parametric studies are presented which provide analytical data of the effects of various tokamak parameters on the performance and cost of the DTHR (Demonstration Tokamak Hybrid Reactor). The studies were centered on a point design which is described in detail. Variations in the device size, neutron wall loading, and plasma aspect ratio are presented, and the effects on direct hardware costs, fissile fuel production (breeding), fusion power production, electrical power consumption, and thermal power production are shown graphically. The studies considered both ignition and beam-driven operations of DTHR and yielded results based onmore » two empirical scaling laws presently used in reactor studies. Sensitivity studies were also made for variations in the following key parameters: the plasma elongation, the minor radius, the TF coil peak field, the neutral beam injection power, and the Z/sub eff/ of the plasma.« less

  17. Addressing Curse of Dimensionality in Sensitivity Analysis: How Can We Handle High-Dimensional Problems?

    NASA Astrophysics Data System (ADS)

    Safaei, S.; Haghnegahdar, A.; Razavi, S.

    2016-12-01

    Complex environmental models are now the primary tool to inform decision makers for the current or future management of environmental resources under the climate and environmental changes. These complex models often contain a large number of parameters that need to be determined by a computationally intensive calibration procedure. Sensitivity analysis (SA) is a very useful tool that not only allows for understanding the model behavior, but also helps in reducing the number of calibration parameters by identifying unimportant ones. The issue is that most global sensitivity techniques are highly computationally demanding themselves for generating robust and stable sensitivity metrics over the entire model response surface. Recently, a novel global sensitivity analysis method, Variogram Analysis of Response Surfaces (VARS), is introduced that can efficiently provide a comprehensive assessment of global sensitivity using the Variogram concept. In this work, we aim to evaluate the effectiveness of this highly efficient GSA method in saving computational burden, when applied to systems with extra-large number of input factors ( 100). We use a test function and a hydrological modelling case study to demonstrate the capability of VARS method in reducing problem dimensionality by identifying important vs unimportant input factors.

  18. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    PubMed

    Rahman, Tanzina; Millwater, Harry; Shipley, Heather J

    2014-11-15

    Aluminum oxide nanoparticles have been widely used in various consumer products and there are growing concerns regarding their exposure in the environment. This study deals with the modeling, sensitivity analysis and uncertainty quantification of one-dimensional transport of nano-sized (~82 nm) aluminum oxide particles in saturated sand. The transport of aluminum oxide nanoparticles was modeled using a two-kinetic-site model with a blocking function. The modeling was done at different ionic strengths, flow rates, and nanoparticle concentrations. The two sites representing fast and slow attachments along with a blocking term yielded good agreement with the experimental results from the column studies of aluminum oxide nanoparticles. The same model was used to simulate breakthrough curves under different conditions using experimental data and calculated 95% confidence bounds of the generated breakthroughs. The sensitivity analysis results showed that slow attachment was the most sensitive parameter for high influent concentrations (e.g. 150 mg/L Al2O3) and the maximum solid phase retention capacity (related to blocking function) was the most sensitive parameter for low concentrations (e.g. 50 mg/L Al2O3). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Assessment and Reduction of Model Parametric Uncertainties: A Case Study with A Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    Gan, Y.; Liang, X. Z.; Duan, Q.; Xu, J.; Zhao, P.; Hong, Y.

    2017-12-01

    The uncertainties associated with the parameters of a hydrological model need to be quantified and reduced for it to be useful for operational hydrological forecasting and decision support. An uncertainty quantification framework is presented to facilitate practical assessment and reduction of model parametric uncertainties. A case study, using the distributed hydrological model CREST for daily streamflow simulation during the period 2008-2010 over ten watershed, was used to demonstrate the performance of this new framework. Model behaviors across watersheds were analyzed by a two-stage stepwise sensitivity analysis procedure, using LH-OAT method for screening out insensitive parameters, followed by MARS-based Sobol' sensitivity indices for quantifying each parameter's contribution to the response variance due to its first-order and higher-order effects. Pareto optimal sets of the influential parameters were then found by the adaptive surrogate-based multi-objective optimization procedure, using MARS model for approximating the parameter-response relationship and SCE-UA algorithm for searching the optimal parameter sets of the adaptively updated surrogate model. The final optimal parameter sets were validated against the daily streamflow simulation of the same watersheds during the period 2011-2012. The stepwise sensitivity analysis procedure efficiently reduced the number of parameters that need to be calibrated from twelve to seven, which helps to limit the dimensionality of calibration problem and serves to enhance the efficiency of parameter calibration. The adaptive MARS-based multi-objective calibration exercise provided satisfactory solutions to the reproduction of the observed streamflow for all watersheds. The final optimal solutions showed significant improvement when compared to the default solutions, with about 65-90% reduction in 1-NSE and 60-95% reduction in |RB|. The validation exercise indicated a large improvement in model performance with about 40-85% reduction in 1-NSE, and 35-90% reduction in |RB|. Overall, this uncertainty quantification framework is robust, effective and efficient for parametric uncertainty analysis, the results of which provide useful information that helps to understand the model behaviors and improve the model simulations.

  20. Sobol' sensitivity analysis for stressor impacts on honeybee ...

    EPA Pesticide Factsheets

    We employ Monte Carlo simulation and nonlinear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed of hive population trajectories, taking into account queen strength, foraging success, mite impacts, weather, colony resources, population structure, and other important variables. This allows us to test the effects of defined pesticide exposure scenarios versus controlled simulations that lack pesticide exposure. The daily resolution of the model also allows us to conditionally identify sensitivity metrics. We use the variancebased global decomposition sensitivity analysis method, Sobol’, to assess firstand secondorder parameter sensitivities within VarroaPop, allowing us to determine how variance in the output is attributed to each of the input variables across different exposure scenarios. Simulations with VarroaPop indicate queen strength, forager life span and pesticide toxicity parameters are consistent, critical inputs for colony dynamics. Further analysis also reveals that the relative importance of these parameters fluctuates throughout the simulation period according to the status of other inputs. Our preliminary results show that model variability is conditional and can be attributed to different parameters depending on different timescales. By using sensitivity analysis to assess model output and variability, calibrations of simulation models can be better informed to yield more

  1. How to specify and measure sensitivity in Distributed Acoustic Sensing (DAS)?

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Eyal, Avishay

    2017-04-01

    In Rayleigh-scattering-based Distributed Acoustic Sensing (DAS) an optical fiber is transformed into an array of thousands of 'virtual microphones'. This approach has gained tremendous popularity in recent years and is one of the most successful examples of a fiber-optic sensing method which made its way from the academia to the market. Despite the great amount of work done in this field, sensitivity, which is ones of the most critical parameters of any sensing technique, was rarely investigated in this context. In particular, little attention was given to its random characteristics. Without careful consideration of the random aspects of DAS, any attempt to specify its sensitivity or to compare between different DAS modalities is of limited value. Recently we introduced a new statistical parameter which defines DAS sensitivity and enables comparison between the performances of different DAS systems. In this paper we generalize the previous parameter and give a broader, simple and intuitive definition to DAS sensitivity. An important attribute of these parameters is that they can be easily extracted from the static backscatter profile of the sensing fiber. In the paper we derive the relation between DAS sensitivity and the static backscatter profile and present an experimental verification of this relation.

  2. Tolerability of loteprednol/tobramycin versus dexamethasone/tobramycin in healthy volunteers: results of a 4-week, randomized, double-masked, parallel-group study.

    PubMed

    Bartlett, Jimmy D; Holland, Edward J; Usner, Dale W; Paterno, Michael R; Comstock, Timothy L

    2008-08-01

    To compare the ocular comfort and tolerability of loteprednol etabonate 0.5%/tobramycin 0.3% (LE/T; Zylet) with dexamethasone 0.1%/tobramycin 0.3% (DM/T; TobraDex) in healthy volunteers. In this multicenter, randomized, double-masked, parallel-group study, healthy volunteers (n = 306) were randomized to receive LE/T or DM/T four times per day for 28 days. Subjects recorded subjective ratings for seven comfort/tolerability parameters using an electronic patient diary (EPD). The primary endpoint was the difference at week 4 from the ratings of an artificial tear at baseline in comfort/tolerability parameters between treatment groups, using a noninferiority paradigm. ClinicalTrials. gov, NCT 00532961. The 97.5% confidence intervals for the lower bound were within -10 for all of the seven comfort/ tolerability parameters evaluated (pain, stinging/burning, irritation, itchiness, foreign-body sensation, dryness, and light sensitivity). Secondary analysis revealed small but significant within-treatment differences in pain favoring LE/T over tears and in light sensitivity favoring tears over DM/T (p < 0.01). Small between-treatment differences in the changes from baseline tear ratings to individual study visits favored LE/T for pain, stinging/burning, irritation, itchiness, foreign-body sensation, and light sensitivity at visit 4 (p < or = 0.04); for pain, stinging/burning, and foreignbody sensation at visit 5 (p < or = 0.03), and for dryness and light sensitivity at visit 6 (p < or = 0.05). LE/T satisfied all conditions of noninferiority to DM/T in comfort and tolerability. Subjects receiving LE/T were more likely to report better ocular comfort/tolerability ratings relative to baseline artificial tears than subjects receiving DM/T. The study population consisted of healthy volunteers.

  3. Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems With Switching [Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems

    DOE PAGES

    Zhang, Hong; Abhyankar, Shrirang; Constantinescu, Emil; ...

    2017-01-24

    Sensitivity analysis is an important tool for describing power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this paper, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating sensitivities of larger systems and is consistent, within machine precision, with the function whosemore » sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as dc exciters, by deriving and implementing the adjoint jump conditions that arise from state-dependent and time-dependent switchings. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach. In conclusion, this paper focuses primarily on the power system dynamics, but the approach is general and can be applied to hybrid dynamical systems in a broader range of fields.« less

  4. Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems With Switching [Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong; Abhyankar, Shrirang; Constantinescu, Emil

    Sensitivity analysis is an important tool for describing power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this paper, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating sensitivities of larger systems and is consistent, within machine precision, with the function whosemore » sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as dc exciters, by deriving and implementing the adjoint jump conditions that arise from state-dependent and time-dependent switchings. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach. In conclusion, this paper focuses primarily on the power system dynamics, but the approach is general and can be applied to hybrid dynamical systems in a broader range of fields.« less

  5. Sensitivity analysis of a multilayer, finite-difference model of the Southeastern Coastal Plain regional aquifer system; Mississippi, Alabama, Georgia, and South Carolina

    USGS Publications Warehouse

    Pernik, Meribeth

    1987-01-01

    The sensitivity of a multilayer finite-difference regional flow model was tested by changing the calibrated values for five parameters in the steady-state model and one in the transient-state model. The parameters that changed under the steady-state condition were those that had been routinely adjusted during the calibration process as part of the effort to match pre-development potentiometric surfaces, and elements of the water budget. The tested steady-state parameters include: recharge, riverbed conductance, transmissivity, confining unit leakance, and boundary location. In the transient-state model, the storage coefficient was adjusted. The sensitivity of the model to changes in the calibrated values of these parameters was evaluated with respect to the simulated response of net base flow to the rivers, and the mean value of the absolute head residual. To provide a standard measurement of sensitivity from one parameter to another, the standard deviation of the absolute head residual was calculated. The steady-state model was shown to be most sensitive to changes in rates of recharge. When the recharge rate was held constant, the model was more sensitive to variations in transmissivity. Near the rivers, the riverbed conductance becomes the dominant parameter in controlling the heads. Changes in confining unit leakance had little effect on simulated base flow, but greatly affected head residuals. The model was relatively insensitive to changes in the location of no-flow boundaries and to moderate changes in the altitude of constant head boundaries. The storage coefficient was adjusted under transient conditions to illustrate the model 's sensitivity to changes in storativity. The model is less sensitive to an increase in storage coefficient than it is to a decrease in storage coefficient. As the storage coefficient decreased, the aquifer drawdown increases, the base flow decreased. The opposite response occurred when the storage coefficient was increased. (Author 's abstract)

  6. Alveolar macrophages have a dual role in a rat model for trimellitic anhydride-induced occupational asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valstar, Dingena L.; Schijf, Marcel A.; Nijkamp, Frans P.

    2006-02-15

    Occupational exposure to low molecular weight chemicals, like trimellitic anhydride (TMA), can result in occupational asthma. Alveolar macrophages (AMs) are among the first cells to encounter inhaled compounds. These cells can produce many different mediators that have a putative role in asthma. In this study, we examined the role of AMs in lung function and airway inflammation of rats exposed to TMA. Female Brown Norway rats were sensitized by dermal application of TMA or received vehicle alone on days 0 and 7. One day before challenge, rats received intratracheally either empty or clodronate-containing liposomes to deplete the lungs of AMs.more » On day 21, all rats were challenged by inhalation of TMA in air. Lung function parameters were measured before, during, within 1 h after, and 24 h after challenge. IgE levels and parameters of inflammation and tissue damage were assessed 24 h after challenge. Sensitization with TMA led to decreased lung function parameters during and within 1 h after challenge as compared to non-sensitized rats. AM depletion alleviated the TMA-induced drop in lung function parameters and induced a faster recovery compared to sham-depleted TMA-sensitized rats. It also decreased the levels of serum IgE 24 h after challenge, but did not affect the sensitization-dependent increase in lung lavage fluid IL-6 and tissue TNF-{alpha} levels. In contrast, AM depletion augmented the TMA-induced tissue damage and inflammation 24 h after challenge. AMs seem to have a dual role in this model for TMA-induced occupational asthma since they potentiate the immediate TMA-induced decrease in lung function but tended to dampen the TMA-induced inflammatory reaction 24 h later.« less

  7. Parametric sensitivity analysis of leachate transport simulations at landfills.

    PubMed

    Bou-Zeid, E; El-Fadel, M

    2004-01-01

    This paper presents a case study in simulating leachate generation and transport at a 2000 ton/day landfill facility and assesses leachate migration away from the landfill in order to control associated environmental impacts, particularly on groundwater wells down gradient of the site. The site offers unique characteristics in that it is a former quarry converted to a landfill and is planned to have refuse depths that could reach 100 m, making it one of the deepest in the world. Leachate quantity and potential percolation into the subsurface are estimated using the Hydrologic Evaluation of Landfill Performance (HELP) model. A three-dimensional subsurface model (PORFLOW) was adopted to simulate ground water flow and contaminant transport away from the site. A comprehensive sensitivity analysis to leachate transport control parameters was also conducted. Sensitivity analysis suggests that changes in partition coefficient, source strength, aquifer hydraulic conductivity, and dispersivity have the most significant impact on model output indicating that these parameters should be carefully selected when similar modeling studies are performed. Copyright 2004 Elsevier Ltd.

  8. A preliminary cost-effectiveness analysis of hepatitis E vaccination among pregnant women in epidemic regions.

    PubMed

    Zhao, Yueyuan; Zhang, Xuefeng; Zhu, Fengcai; Jin, Hui; Wang, Bei

    2016-08-02

    Objective To estimate the cost-effectiveness of hepatitis E vaccination among pregnant women in epidemic regions. Methods A decision tree model was constructed to evaluate the cost-effectiveness of 3 hepatitis E virus vaccination strategies from societal perspectives. The model parameters were estimated on the basis of published studies and experts' experience. Sensitivity analysis was used to evaluate the uncertainties of the model. Results Vaccination was more economically effective on the basis of the incremental cost-effectiveness ratio (ICER< 3 times China's per capital gross domestic product/quality-adjusted life years); moreover, screening and vaccination had higher QALYs and lower costs compared with universal vaccination. No parameters significantly impacted ICER in one-way sensitivity analysis, and probabilistic sensitivity analysis also showed screening and vaccination to be the dominant strategy. Conclusion Screening and vaccination is the most economical strategy for pregnant women in epidemic regions; however, further studies are necessary to confirm the efficacy and safety of the hepatitis E vaccines.

  9. Quantum Fisher information of the Greenberg-Horne-Zeilinger state in decoherence channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Jian; Huang Yixiao; Wang Xiaoguang

    2011-08-15

    Quantum Fisher information of a parameter characterizes the sensitivity of the state with respect to changes of the parameter. In this article, we study the quantum Fisher information of a state with respect to SU(2) rotations under three decoherence channels: the amplitude-damping, phase-damping, and depolarizing channels. The initial state is chosen to be a Greenberg-Horne-Zeilinger state of which the phase sensitivity can achieve the Heisenberg limit. By using the Kraus operator representation, the quantum Fisher information is obtained analytically. We observe the decay and sudden change of the quantum Fisher information in all three channels.

  10. Thermal hydraulic simulations, error estimation and parameter sensitivity studies in Drekar::CFD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Thomas Michael; Shadid, John N.; Pawlowski, Roger P.

    2014-01-01

    This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31, 2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed on October 31, 2012.

  11. Assessment of Spatial Transferability of Process-Based Hydrological Model Parameters in Two Neighboring Catchments in the Himalayan Region

    NASA Astrophysics Data System (ADS)

    Nepal, S.

    2016-12-01

    The spatial transferability of the model parameters of the process-oriented distributed J2000 hydrological model was investigated in two glaciated sub-catchments of the Koshi river basin in eastern Nepal. The basins had a high degree of similarity with respect to their static landscape features. The model was first calibrated (1986-1991) and validated (1992-1997) in the Dudh Koshi sub-catchment. The calibrated and validated model parameters were then transferred to the nearby Tamor catchment (2001-2009). A sensitivity and uncertainty analysis was carried out for both sub-catchments to discover the sensitivity range of the parameters in the two catchments. The model represented the overall hydrograph well in both sub-catchments, including baseflow and medium range flows (rising and recession limbs). The efficiency results according to both Nash-Sutcliffe and the coefficient of determination was above 0.84 in both cases. The sensitivity analysis showed that the same parameter was most sensitive for Nash-Sutcliffe (ENS) and Log Nash-Sutcliffe (LNS) efficiencies in both catchments. However, there were some differences in sensitivity to ENS and LNS for moderate and low sensitive parameters, although the majority (13 out of 16 for ENS and 16 out of 16 for LNS) had a sensitivity response in a similar range. A generalized likelihood uncertainty estimation (GLUE) result suggest that most of the time the observed runoff is within the parameter uncertainty range, although occasionally the values lie outside the uncertainty range, especially during flood peaks and more in the Tamor. This may be due to the limited input data resulting from the small number of precipitation stations and lack of representative stations in high-altitude areas, as well as to model structural uncertainty. The results indicate that transfer of the J2000 parameters to a neighboring catchment in the Himalayan region with similar physiographic landscape characteristics is viable. This indicates the possibility of applying process-based J2000 model be to the ungauged catchments in the Himalayan region, which could provide important insights into the hydrological system dynamics and provide much needed information to support water resources planning and management.

  12. Solar polarimetry through the K I lines at 770 nm

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Uitenbroek, H.; Katsukawa, Y.; Shimizu, T.; Oba, T.; Carlsson, M.; Orozco Suárez, D.; Ruiz Cobo, B.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y.

    2017-09-01

    We characterize the K I D1 & D2 lines in order to determine whether they could complement the 850 nm window, containing the Ca II infrared triplet lines and several Zeeman sensitive photospheric lines, that was studied previously. We investigate the effect of partial redistribution on the intensity profiles, their sensitivity to changes in different atmospheric parameters, and the spatial distribution of Zeeman polarization signals employing a realistic magnetohydrodynamic simulation. The results show that these lines form in the upper photosphere at around 500 km, and that they are sensitive to the line-of-sight velocity and magnetic field strength at heights where neither the photospheric lines nor the Ca II infrared lines are. However, at the same time, we found that their sensitivity to the temperature essentially comes from the photosphere. Then, we conclude that the K I lines provide a complement to the lines in the 850 nm window for the determination of atmospheric parameters in the upper photosphere, especially for the line-of-sight velocity and the magnetic field.

  13. Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures

    NASA Astrophysics Data System (ADS)

    Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye

    2016-03-01

    Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.

  14. Uniwavelength lidar sensitivity to spherical aerosol microphysical properties for the interpretation of Lagrangian stratospheric observations

    NASA Astrophysics Data System (ADS)

    Jumelet, Julien; David, Christine; Bekki, Slimane; Keckhut, Philippe

    2009-01-01

    The determination of stratospheric particle microphysical properties from multiwavelength lidar, including Rayleigh and/or Raman detection, has been widely investigated. However, most lidar systems are uniwavelength operating at 532 nm. Although the information content of such lidar data is too limited to allow the retrieval of the full size distribution, the coupling of two or more uniwavelength lidar measurements probing the same moving air parcel may provide some meaningful size information. Within the ORACLE-O3 IPY project, the coordination of several ground-based lidars and the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) space-borne lidar is planned during measurement campaigns called MATCH-PSC (Polar Stratospheric Clouds). While probing the same moving air masses, the evolution of the measured backscatter coefficient (BC) should reflect the variation of particles microphysical properties. A sensitivity study of 532 nm lidar particle backscatter to variations of particles size distribution parameters is carried out. For simplicity, the particles are assumed to be spherical (liquid) particles and the size distribution is represented with a unimodal log-normal distribution. Each of the four microphysical parameters (i.e. log-normal size distribution parameters, refractive index) are analysed separately, while the three others are remained set to constant reference values. Overall, the BC behaviour is not affected by the initial values taken as references. The total concentration (N0) is the parameter to which BC is least sensitive, whereas it is most sensitive to the refractive index (m). A 2% variation of m induces a 15% variation of the lidar BC, while the uncertainty on the BC retrieval can also reach 15%. This result underlines the importance of having both an accurate lidar inversion method and a good knowledge of the temperature for size distribution retrieval techniques. The standard deviation ([sigma]) is the second parameter to which BC is most sensitive to. Yet, the impact of m and [sigma] on BC variations is limited by the realistic range of their variations. The mean radius (rm) of the size distribution is thus the key parameter for BC, as it can vary several-fold. BC is most sensitive to the presence of large particles. The sensitivity of BC to rm and [sigma] variations increases when the initial size distributions are characterized by low rm and large [sigma]. This makes lidar more suitable to detect particles growing on background aerosols than on volcanic aerosols.

  15. Uncertainty Quantification and Global Sensitivity Analysis of Subsurface Flow Parameters to Gravimetric Variations During Pumping Tests in Unconfined Aquifers

    NASA Astrophysics Data System (ADS)

    Maina, Fadji Zaouna; Guadagnini, Alberto

    2018-01-01

    We study the contribution of typically uncertain subsurface flow parameters to gravity changes that can be recorded during pumping tests in unconfined aquifers. We do so in the framework of a Global Sensitivity Analysis and quantify the effects of uncertainty of such parameters on the first four statistical moments of the probability distribution of gravimetric variations induced by the operation of the well. System parameters are grouped into two main categories, respectively, governing groundwater flow in the unsaturated and saturated portions of the domain. We ground our work on the three-dimensional analytical model proposed by Mishra and Neuman (2011), which fully takes into account the richness of the physical process taking place across the unsaturated and saturated zones and storage effects in a finite radius pumping well. The relative influence of model parameter uncertainties on drawdown, moisture content, and gravity changes are quantified through (a) the Sobol' indices, derived from a classical decomposition of variance and (b) recently developed indices quantifying the relative contribution of each uncertain model parameter to the (ensemble) mean, skewness, and kurtosis of the model output. Our results document (i) the importance of the effects of the parameters governing the unsaturated flow dynamics on the mean and variance of local drawdown and gravity changes; (ii) the marked sensitivity (as expressed in terms of the statistical moments analyzed) of gravity changes to the employed water retention curve model parameter, specific yield, and storage, and (iii) the influential role of hydraulic conductivity of the unsaturated and saturated zones to the skewness and kurtosis of gravimetric variation distributions. The observed temporal dynamics of the strength of the relative contribution of system parameters to gravimetric variations suggest that gravity data have a clear potential to provide useful information for estimating the key hydraulic parameters of the system.

  16. Parameter Sensitivity and Laboratory Benchmarking of a Biogeochemical Process Model for Enhanced Anaerobic Dechlorination

    NASA Astrophysics Data System (ADS)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.

    2008-12-01

    A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems, particularly at the laboratory scale.

  17. Sensitivity to Mental Effort and Test-Retest Reliability of Heart Rate Variability Measures in Healthy Seniors

    PubMed Central

    Mukherjee, Shalini; Yadav, Rajeev; Yung, Iris; Zajdel, Daniel P.; Oken, Barry S.

    2011-01-01

    Objectives To determine 1) whether heart rate variability (HRV) was a sensitive and reliable measure in mental effort tasks carried out by healthy seniors and 2) whether non-linear approaches to HRV analysis, in addition to traditional time and frequency domain approaches were useful to study such effects. Methods Forty healthy seniors performed two visual working memory tasks requiring different levels of mental effort, while ECG was recorded. They underwent the same tasks and recordings two weeks later. Traditional and 13 non-linear indices of HRV including Poincaré, entropy and detrended fluctuation analysis (DFA) were determined. Results Time domain (especially mean R-R interval/RRI), frequency domain and, among nonlinear parameters- Poincaré and DFA were the most reliable indices. Mean RRI, time domain and Poincaré were also the most sensitive to different mental effort task loads and had the largest effect size. Conclusions Overall, linear measures were the most sensitive and reliable indices to mental effort. In non-linear measures, Poincaré was the most reliable and sensitive, suggesting possible usefulness as an independent marker in cognitive function tasks in healthy seniors. Significance A large number of HRV parameters was both reliable as well as sensitive indices of mental effort, although the simple linear methods were the most sensitive. PMID:21459665

  18. An Evaluation of the Potential for Shifting of Freight from Truck to Rail and Its Impacts on Energy Use and GHG Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; Vyas, Anant D.; Guo, Zhaomiao

    This report summarizes our evaluation of the potential energy-use and GHG-emissions reduction achieved by shifting freight from truck to rail under a most-likely scenario. A sensitivity analysis is also included. The sensitivity analysis shows changes in energy use and GHG emissions when key parameters are varied. The major contribution and distinction from previous studies is that this study considers the rail level of service (LOS) and commodity movements at the origin-destination (O-D) level. In addition, this study considers the fragility and time sensitivity of each commodity type.

  19. Study of the pathogenesis of Ebola fever in laboratory animals with different sensitivity to this virus.

    PubMed

    Chepurnov, A A; Dadaeva, A A; Kolesnikov, S I

    2001-12-01

    Pathophysiological parameters were compared in animals with different sensitivity to Ebola virus infected with this virus. Analysis of the results showed the differences in immune reactions underlying the difference between Ebola-sensitive and Ebola-resistant animals. No neutrophil activation in response to Ebola virus injection was noted in Ebola-sensitive animal. Phagocytic activity of neutrophils in these animals inversely correlated with animal sensitivity to Ebola virus. Animal susceptibility to Ebola virus directly correlated with the decrease in the number of circulating T and B cells. We conclude that the immune system plays the key role in animal susceptibility and resistance to Ebola virus.

  20. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis.

    PubMed

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.

  1. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis

    PubMed Central

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement. PMID:24830736

  2. Using sensitivity analysis in model calibration efforts

    USGS Publications Warehouse

    Tiedeman, Claire; Hill, Mary C.

    2003-01-01

    In models of natural and engineered systems, sensitivity analysis can be used to assess relations among system state observations, model parameters, and model predictions. The model itself links these three entities, and model sensitivities can be used to quantify the links. Sensitivities are defined as the derivatives of simulated quantities (such as simulated equivalents of observations, or model predictions) with respect to model parameters. We present four measures calculated from model sensitivities that quantify the observation-parameter-prediction links and that are especially useful during the calibration and prediction phases of modeling. These four measures are composite scaled sensitivities (CSS), prediction scaled sensitivities (PSS), the value of improved information (VOII) statistic, and the observation prediction (OPR) statistic. These measures can be used to help guide initial calibration of models, collection of field data beneficial to model predictions, and recalibration of models updated with new field information. Once model sensitivities have been calculated, each of the four measures requires minimal computational effort. We apply the four measures to a three-layer MODFLOW-2000 (Harbaugh et al., 2000; Hill et al., 2000) model of the Death Valley regional ground-water flow system (DVRFS), located in southern Nevada and California. D’Agnese et al. (1997, 1999) developed and calibrated the model using nonlinear regression methods. Figure 1 shows some of the observations, parameters, and predictions for the DVRFS model. Observed quantities include hydraulic heads and spring flows. The 23 defined model parameters include hydraulic conductivities, vertical anisotropies, recharge rates, evapotranspiration rates, and pumpage. Predictions of interest for this regional-scale model are advective transport paths from potential contamination sites underlying the Nevada Test Site and Yucca Mountain.

  3. Global Sensitivity Analysis and Parameter Calibration for an Ecosystem Carbon Model

    NASA Astrophysics Data System (ADS)

    Safta, C.; Ricciuto, D. M.; Sargsyan, K.; Najm, H. N.; Debusschere, B.; Thornton, P. E.

    2013-12-01

    We present uncertainty quantification results for a process-based ecosystem carbon model. The model employs 18 parameters and is driven by meteorological data corresponding to years 1992-2006 at the Harvard Forest site. Daily Net Ecosystem Exchange (NEE) observations were available to calibrate the model parameters and test the performance of the model. Posterior distributions show good predictive capabilities for the calibrated model. A global sensitivity analysis was first performed to determine the important model parameters based on their contribution to the variance of NEE. We then proceed to calibrate the model parameters in a Bayesian framework. The daily discrepancies between measured and predicted NEE values were modeled as independent and identically distributed Gaussians with prescribed daily variance according to the recorded instrument error. All model parameters were assumed to have uninformative priors with bounds set according to expert opinion. The global sensitivity results show that the rate of leaf fall (LEAFALL) is responsible for approximately 25% of the total variance in the average NEE for 1992-2005. A set of 4 other parameters, Nitrogen use efficiency (NUE), base rate for maintenance respiration (BR_MR), growth respiration fraction (RG_FRAC), and allocation to plant stem pool (ASTEM) contribute between 5% and 12% to the variance in average NEE, while the rest of the parameters have smaller contributions. The posterior distributions, sampled with a Markov Chain Monte Carlo algorithm, exhibit significant correlations between model parameters. However LEAFALL, the most important parameter for the average NEE, is not informed by the observational data, while less important parameters show significant updates between their prior and posterior densities. The Fisher information matrix values, indicating which parameters are most informed by the experimental observations, are examined to augment the comparison between the calibration and global sensitivity analysis results.

  4. Diagnostic Ability of Automated Pupillography in Glaucoma.

    PubMed

    Rao, Harsha L; Kadambi, Sujatha V; Mehta, Pooja; Dasari, Srilakshmi; Puttaiah, Narendra K; Pradhan, Zia S; Rao, Dhanraj A S; Shetty, Rohit

    2017-05-01

    To evaluate the diagnostic ability of automated pupillography measurements in glaucoma and study the effect of inter-eye asymmetry in glaucomatous damage on the diagnostic ability. In an observational, cross-sectional study, 47 glaucoma patients and 42 control subjects underwent automated pupillography using a commercially available device. Diagnostic abilities of the pupillary response measurements were evaluated using area under receiver operating characteristic (ROC) curves (AUC) and sensitivities at fixed specificities. Influence of inter-eye asymmetry in glaucoma [inter-eye mean deviation (MD) difference on visual fields (VF)] on the diagnostic ability of pupillography parameters was evaluated by ROC regression approach. The AUCs of automated pupillography parameters ranged from 0.60 (amplitude score with peripheral blue stimulus) to 0.82 (amplitude score with full field white stimulus, Amp-FF-W). Sensitivity at 95% specificity ranged between 5% (amplitude score with full field blue stimulus) and 45% (amplitude score with full field green stimulus). Inter-eye MD difference significantly affected the diagnostic performance of automated pupillography parameters (p < 0.05). AUCs of Amp-FF-W at inter-eye MD difference of 0 dB, 5 dB, 10 dB and 15 dB were 0.71, 0.80, 0.87 and 0.93, respectively, according to the regression model. The corresponding sensitivities at 95% specificity were 20%, 34%, 50% and 66%, respectively. The diagnostic abilities of even the best automated pupillography parameters were only moderate in glaucoma. The performance of these pupillography measurements in detecting glaucoma significantly increased with greater inter-eye asymmetry in the glaucomatous damage.

  5. Histogram analysis derived from apparent diffusion coefficient (ADC) is more sensitive to reflect serological parameters in myositis than conventional ADC analysis.

    PubMed

    Meyer, Hans Jonas; Emmer, Alexander; Kornhuber, Malte; Surov, Alexey

    2018-05-01

    Diffusion-weighted imaging (DWI) has the potential of being able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize tissues on MRI. The aim of this study was to correlate histogram parameters derived from apparent diffusion coefficient (ADC) maps with serological parameters in myositis. 16 patients with autoimmune myositis were included in this retrospective study. DWI was obtained on a 1.5 T scanner by using the b-values of 0 and 1000 s mm - 2 . Histogram analysis was performed as a whole muscle measurement by using a custom-made Matlab-based application. The following ADC histogram parameters were estimated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, and the following percentiles ADCp10, ADCp25, ADCp75, ADCp90, as well histogram parameters kurtosis, skewness, and entropy. In all patients, the blood sample was acquired within 3 days to the MRI. The following serological parameters were estimated: alanine aminotransferase, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, C-reactive protein (CRP) and myoglobin. All patients were screened for Jo1-autobodies. Kurtosis correlated inversely with CRP (p = -0.55 and 0.03). Furthermore, ADCp10 and ADCp90 values tended to correlate with creatine kinase (p = -0.43, 0.11, and p = -0.42, = 0.12 respectively). In addition, ADCmean, p10, p25, median, mode, and entropy were different between Jo1-positive and Jo1-negative patients. ADC histogram parameters are sensitive for detection of muscle alterations in myositis patients. Advances in knowledge: This study identified that kurtosis derived from ADC maps is associated with CRP in myositis patients. Furthermore, several ADC histogram parameters are statistically different between Jo1-positive and Jo1-negative patients.

  6. Issues in Turbulence Simulation for Experimental Comparison

    NASA Astrophysics Data System (ADS)

    Ross, D. W.; Bravenec, R. V.; Dorland, W.; Beer, M. A.; Hammett, G. W.

    1999-11-01

    Studies of the sensitivity of fluctuation spectra and transport fluxes to local plasma parameters and gradients(D. W. Ross et al.), Bull. Am. Phys. Soc. 43, 1760 (1998); D. W. Ross et al., Transport Task Force Workshop, Portland, Oregon, (1999). are continued using nonlinear gyrofluid simulation(M. A. Beer et al.), Phys. Plasmas 2, 2687 (1995). on the T3E at NERSC. Parameters that are characteristic of discharges in DIII-D and Alcator C-Mod are employed. In the previous work, the gradients of Z_eff, n_e, and Te were varied within the experimental uncertainty. Amplitudes and fluxes are quite sensitive to dZ_eff/dr. Here, these studies are continued and extended to variation of other parameters, including T_e/T_i, and dT_i/dr, which are important for ion temperature gradient modes. The role of electric field shear is discussed. Implications for comparison with experiment, including transient perturbations, are discussed, with the goal of quantifying the accuracy of profile data needed to verify the turbulence theory.

  7. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less

  8. Sensitivity analysis of geometrical parameters to study haemodynamics and thrombus formation in the left atrial appendage.

    PubMed

    García-Isla, Guadalupe; Olivares, Andy Luis; Silva, Etelvino; Nuñez-Garcia, Marta; Butakoff, Constantine; Sanchez-Quintana, Damian; G Morales, Hernán; Freixa, Xavier; Noailly, Jérôme; De Potter, Tom; Camara, Oscar

    2018-05-08

    The left atrial appendage (LAA) is a complex and heterogeneous protruding structure of the left atrium (LA). In atrial fibrillation patients, it is the location where 90% of the thrombi are formed. However, the role of the LAA in thrombus formation is not fully known yet. The main goal of this work is to perform a sensitivity analysis to identify the most relevant LA and LAA morphological parameters in atrial blood flow dynamics. Simulations were run on synthetic ellipsoidal left atria models where different parameters were individually studied: pulmonary veins and mitral valve dimensions; LAA shape; and LA volume. Our computational analysis confirmed the relation between large LAA ostia, low blood flow velocities and thrombus formation. Additionally, we found that pulmonary vein configuration exerted a critical influence on LAA blood flow patterns. These findings contribute to a better understanding of the LAA and to support clinical decisions for atrial fibrillation patients. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Parametric study of power absorption from electromagnetic waves by small ferrite spheres

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.

    1989-01-01

    Algebraic expressions in terms of elementary mathematical functions are derived for power absorption and dissipation by eddy currents and magnetic hysteresis in ferrite spheres. Skin depth is determined by using a variable inner radius in descriptive integral equations. Numerical results are presented for sphere diameters less than one wavelength. A generalized power absorption parameter for both eddy currents and hysteresis is expressed in terms of the independent parameters involving wave frequency, sphere radius, resistivity, and complex permeability. In general, the hysteresis phenomenon has a greater sensitivity to these independent parameters than do eddy currents over the ranges of independent parameters studied herein. Working curves are presented for obtaining power losses from input to the independent parameters.

  10. Tradeoff studies in multiobjective insensitive design of airplane control systems

    NASA Technical Reports Server (NTRS)

    Schy, A. A.; Giesy, D. P.

    1983-01-01

    A computer aided design method for multiobjective parameter-insensitive design of airplane control systems is described. Methods are presented for trading off nominal values of design objectives against sensitivities of the design objectives to parameter uncertainties, together with guidelines for designer utilization of the methods. The methods are illustrated by application to the design of a lateral stability augmentation system for two supersonic flight conditions of the Shuttle Orbiter. Objective functions are conventional handling quality measures and peak magnitudes of control deflections and rates. The uncertain parameters are assumed Gaussian, and numerical approximations of the stochastic behavior of the objectives are described. Results of applying the tradeoff methods to this example show that stochastic-insensitive designs are distinctly different from deterministic multiobjective designs. The main penalty for achieving significant decrease in sensitivity is decreased speed of response for the nominal system.

  11. Chemical and physical characterization of the first stages of protoplanetary disk formation

    NASA Astrophysics Data System (ADS)

    Hincelin, Ugo

    2012-12-01

    Low mass stars, like our Sun, are born from the collapse of a molecular cloud. The matter falls in the center of the cloud, creating a protoplanetary disk surrounding a protostar. Planets and other Solar System bodies will be formed in the disk. The chemical composition of the interstellar matter and its evolution during the formation of the disk are important to better understand the formation process of these objects. I studied the chemical and physical evolution of this matter, from the cloud to the disk, using the chemical gas-grain code Nautilus. A sensitivity study to some parameters of the code (such as elemental abundances and parameters of grain surface chemistry) has been done. More particularly, the updates of rate coefficients and branching ratios of the reactions of our chemical network showed their importance, such as on the abundances of some chemical species, and on the code sensitivity to others parameters. Several physical models of collapsing dense core have also been considered. The more complex and solid approach has been to interface our chemical code with the radiation-magneto-hydrodynamic model of stellar formation RAMSES, in order to model in three dimensions the physical and chemical evolution of a young disk formation. Our study showed that the disk keeps imprints of the past history of the matter, and so its chemical composition is sensitive to the initial conditions.

  12. The terminal latency of the phrenic nerve correlates with respiratory symptoms in amyotrophic lateral sclerosis.

    PubMed

    Park, Jin-Sung; Park, Donghwi

    2017-09-01

    The aim of the study was to investigate the electrophysiological parameters in phrenic nerve conduction studies (NCS) that sensitively reflect latent respiratory insufficiency present in amyotrophic lateral sclerosis (ALS). Forty-nine patients with ALS were examined, and after exclusion, 21 patients with ALS and their phrenic NCS results were reviewed. The patients were divided into two groups according to their respiratory sub-score in the ALS functional rating scale - revised (Group A, sub-score 12vs. Group B, sub-score 11). We compared the parameters of phrenic NCS between the two groups. There were no significant differences in the clinical characteristics between the two groups. Using a multivariate model, we found that the terminal latency of the phrenic nerve was the only parameter that was associated with early symptoms of respiratory insufficiency (p<0.05). The optimal cutoff value for the terminal latency of the phrenic nerve was 7.65ms (sensitivity 80%, specificity 68.2%). The significantly prolonged terminal latency of the phrenic nerve in our study may reflect a profound distal motor axonal dysfunction of the phrenic nerve in patients with ALS in the early stage of respiratory insufficiency that can be used as a sensitive electrophysiological marker reflecting respiratory symptoms in ALS. The terminal latency of the phrenic nerve is useful for early detection of respiratory insufficiency in patients with ALS. Copyright © 2017. Published by Elsevier B.V.

  13. Artificial neural network aided non-invasive grading evaluation of hepatic fibrosis by duplex ultrasonography

    PubMed Central

    2012-01-01

    Background Artificial neural networks (ANNs) are widely studied for evaluating diseases. This paper discusses the intelligence mode of an ANN in grading the diagnosis of liver fibrosis by duplex ultrasonogaphy. Methods 239 patients who were confirmed as having liver fibrosis or cirrhosis by ultrasound guided liver biopsy were investigated in this study. We quantified ultrasonographic parameters as significant parameters using a data optimization procedure applied to an ANN. 179 patients were typed at random as the training group; 60 additional patients were consequently enrolled as the validating group. Performance of the ANN was evaluated according to accuracy, sensitivity, specificity, Youden’s index and receiver operating characteristic (ROC) analysis. Results 5 ultrasonographic parameters; i.e., the liver parenchyma, thickness of spleen, hepatic vein (HV) waveform, hepatic artery pulsatile index (HAPI) and HV damping index (HVDI), were enrolled as the input neurons in the ANN model. The sensitivity, specificity and accuracy of the ANN model for quantitative diagnosis of liver fibrosis were 95.0%, 85.0% and 88.3%, respectively. The Youden’s index (YI) was 0.80. Conclusions The established ANN model had good sensitivity and specificity in quantitative diagnosis of hepatic fibrosis or liver cirrhosis. Our study suggests that the ANN model based on duplex ultrasound may help non-invasive grading diagnosis of liver fibrosis in clinical practice. PMID:22716936

  14. Parametric study and global sensitivity analysis for co-pyrolysis of rape straw and waste tire via variance-based decomposition.

    PubMed

    Xu, Li; Jiang, Yong; Qiu, Rong

    2018-01-01

    In present study, co-pyrolysis behavior of rape straw, waste tire and their various blends were investigated. TG-FTIR indicated that co-pyrolysis was characterized by a four-step reaction, and H 2 O, CH, OH, CO 2 and CO groups were the main products evolved during the process. Additionally, using BBD-based experimental results, best-fit multiple regression models with high R 2 -pred values (94.10% for mass loss and 95.37% for reaction heat), which correlated explanatory variables with the responses, were presented. The derived models were analyzed by ANOVA at 95% confidence interval, F-test, lack-of-fit test and residues normal probability plots implied the models described well the experimental data. Finally, the model uncertainties as well as the interactive effect of these parameters were studied, the total-, first- and second-order sensitivity indices of operating factors were proposed using Sobol' variance decomposition. To the authors' knowledge, this is the first time global parameter sensitivity analysis has been performed in (co-)pyrolysis literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sensitivity analysis of the electrostatic force distance curve using Sobol’s method and design of experiments

    NASA Astrophysics Data System (ADS)

    Alhossen, I.; Villeneuve-Faure, C.; Baudoin, F.; Bugarin, F.; Segonds, S.

    2017-01-01

    Previous studies have demonstrated that the electrostatic force distance curve (EFDC) is a relevant way of probing injected charge in 3D. However, the EFDC needs a thorough investigation to be accurately analyzed and to provide information about charge localization. Interpreting the EFDC in terms of charge distribution is not straightforward from an experimental point of view. In this paper, a sensitivity analysis of the EFDC is studied using buried electrodes as a first approximation. In particular, the influence of input factors such as the electrode width, depth and applied potential are investigated. To reach this goal, the EFDC is fitted to a law described by four parameters, called logistic law, and the influence of the electrode parameters on the law parameters has been investigated. Then, two methods are applied—Sobol’s method and the factorial design of experiment—to quantify the effect of each factor on each parameter of the logistic law. Complementary results are obtained from both methods, demonstrating that the EFDC is not the result of the superposition of the contribution of each electrode parameter, but that it exhibits a strong contribution from electrode parameter interaction. Furthermore, thanks to these results, a matricial model has been developed to predict EFDCs for any combination of electrode characteristics. A good correlation is observed with the experiments, and this is promising for charge investigation using an EFDC.

  16. System parameter identification from projection of inverse analysis

    NASA Astrophysics Data System (ADS)

    Liu, K.; Law, S. S.; Zhu, X. Q.

    2017-05-01

    The output of a system due to a change of its parameters is often approximated with the sensitivity matrix from the first order Taylor series. The system output can be measured in practice, but the perturbation in the system parameters is usually not available. Inverse sensitivity analysis can be adopted to estimate the unknown system parameter perturbation from the difference between the observation output data and corresponding analytical output data calculated from the original system model. The inverse sensitivity analysis is re-visited in this paper with improvements based on the Principal Component Analysis on the analytical data calculated from the known system model. The identification equation is projected into a subspace of principal components of the system output, and the sensitivity of the inverse analysis is improved with an iterative model updating procedure. The proposed method is numerical validated with a planar truss structure and dynamic experiments with a seven-storey planar steel frame. Results show that it is robust to measurement noise, and the location and extent of stiffness perturbation can be identified with better accuracy compared with the conventional response sensitivity-based method.

  17. Dependence of Intramyocardial Pressure and Coronary Flow on Ventricular Loading and Contractility: A Model Study

    PubMed Central

    Borsje, Petra; Arts, Theo; van De Vosse, Frans N.

    2006-01-01

    The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity. PMID:17048105

  18. Influence of the volume and density functions within geometric models for estimating trunk inertial parameters.

    PubMed

    Wicke, Jason; Dumas, Genevieve A

    2010-02-01

    The geometric method combines a volume and a density function to estimate body segment parameters and has the best opportunity for developing the most accurate models. In the trunk, there are many different tissues that greatly differ in density (e.g., bone versus lung). Thus, the density function for the trunk must be particularly sensitive to capture this diversity, such that accurate inertial estimates are possible. Three different models were used to test this hypothesis by estimating trunk inertial parameters of 25 female and 24 male college-aged participants. The outcome of this study indicates that the inertial estimates for the upper and lower trunk are most sensitive to the volume function and not very sensitive to the density function. Although it appears that the uniform density function has a greater influence on inertial estimates in the lower trunk region than in the upper trunk region, this is likely due to the (overestimated) density value used. When geometric models are used to estimate body segment parameters, care must be taken in choosing a model that can accurately estimate segment volumes. Researchers wanting to develop accurate geometric models should focus on the volume function, especially in unique populations (e.g., pregnant or obese individuals).

  19. The performance of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury: a meta-analysis.

    PubMed

    Wang, Z X; Chen, S L; Wang, Q Q; Liu, B; Zhu, J; Shen, J

    2015-06-01

    The aim of this study was to evaluate the accuracy of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury through a meta-analysis. A comprehensive literature search was conducted before 1 April 2014. All studies comparing magnetic resonance imaging results with arthroscopy or open surgery findings were reviewed, and 25 studies that satisfied the eligibility criteria were included. Data were pooled to yield pooled sensitivity and specificity, which were respectively 0.83 and 0.82. In detection of central and peripheral tears, magnetic resonance imaging had respectively a pooled sensitivity of 0.90 and 0.88 and a pooled specificity of 0.97 and 0.97. Six high-quality studies using Ringler's recommended magnetic resonance imaging parameters were selected for analysis to determine whether optimal imaging protocols yielded better results. The pooled sensitivity and specificity of these six studies were 0.92 and 0.82, respectively. The overall accuracy of magnetic resonance imaging was acceptable. For peripheral tears, the pooled data showed a relatively high accuracy. Magnetic resonance imaging with appropriate parameters are an ideal method for diagnosing different types of triangular fibrocartilage complex tears. © The Author(s) 2015.

  20. Association between power law coefficients of the anatomical noise power spectrum and lesion detectability in breast imaging modalities

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Abbey, Craig K.; Boone, John M.

    2013-03-01

    Previous research has demonstrated that a parameter extracted from a power function fit to the anatomical noise power spectrum, β, may be predictive of breast mass lesion detectability in x-ray based medical images of the breast. In this investigation, the value of β was compared with a number of other more widely used parameters, in order to determine the relationship between β and these other parameters. This study made use of breast CT data sets, acquired on two breast CT systems developed in our laboratory. A total of 185 breast data sets in 183 women were used, and only the unaffected breast was used (where no lesion was suspected). The anatomical noise power spectrum computed from two-dimensional region of interests (ROIs), was fit to a power function (NPS(f) = α f-β), and the exponent parameter (β) was determined using log/log linear regression. Breast density for each of the volume data sets was characterized in previous work. The breast CT data sets analyzed in this study were part of a previous study which evaluated the receiver operating characteristic (ROC) curve performance using simulated spherical lesions and a pre-whitened matched filter computer observer. This ROC information was used to compute the detectability index as well as the sensitivity at 95% specificity. The fractal dimension was computed from the same ROIs which were used for the assessment of β. The value of β was compared to breast density, detectability index, sensitivity, and fractal dimension, and the slope of these relationships was investigated to assess statistical significance from zero slope. A statistically significant non-zero slope was considered to be a positive association in this investigation. All comparisons between β and breast density, detectability index, sensitivity at 95% specificity, and fractal dimension demonstrated statistically significant association with p < 0.001 in all cases. The value of β was also found to be associated with patient age and breast diameter, parameters both related to breast density. In all associations between other parameters, lower values of β were associated with increased breast cancer detection performance. Specifically, lower values of β were associated with lower breast density, higher detectability index, higher sensitivity, and lower fractal dimension values. While causality was not and probably cannot be demonstrated, the strong, statistically significant association between the β metric and the other more widely used parameters suggest that β may be considered as a surrogate measure for breast cancer detection performance. These findings are specific to breast parenchymal patterns and mass lesions only.

  1. Physics of Canopy Boundary Layer Resistance for Better Quantification of Sensitivity of Deforestation Scenarios

    NASA Astrophysics Data System (ADS)

    Ragi, K. B.; Patel, R.

    2015-12-01

    A great deal of studies focused on deforestation scenarios in the tropical rainforests. Though all these efforts are useful in the understanding of its response to climate, the systematic understanding of uncertainties in representation of physical processes related to vegetation through sensitivity studies is imperative antecedently to understand the real role of vegetation in changing the climate. It is understood that the dense vegetation fluxes energy and moisture to the atmosphere. But, how much a specific process/a group of processes in the surface conditions of a specific area helps flux energy, moisture and tracers is unknown due to lack of process sensitivity studies and uncertain due to malfunctioning of processes. In this presentation, we have found a faulty parameterization, through process sensitivity studies, that would abet in energy and moisture fluxes to the atmosphere. The model we have employed is the Common Land Model2014. The area we have chosen is the Congolese rainforest. We have discovered the flaw in the leaf boundary layer resistance (LBLR), through sensitivity studies in the LSMs, especially in the dense forest regions. This LBLR is over-parameterized with constant heat transfer coefficient and characteristic dimension of leaves; and friction velocity. However, it is too scant because of overlooking of significant complex physics of turbulence and canopy roughness boundary layer to function it realistically. Our sensitivity results show the deficiency of this process and we have formulated canopy boundary layer resistance, instead of LBLR, with depending variables such as LAI, roughness length, vegetation temperature using appropriate thermo-fluid dynamical principles. We are running the sensitivity experiments with new formulations for setting the parameter values for the data not available so far. This effort would lead to better physics for the land-use change studies and demand for the retrieval of new parameters from satellite/field experiments such as leaf mass per area and specific heat capacity of vegetation.

  2. Stability assessment and operating parameter optimization on experimental results in very small plasma focus, using sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Jafari, Hossein; Habibi, Morteza

    2018-04-01

    Regarding the importance of stability in small-scale plasma focus devices for producing the repeatable and strength pinching, a sensitivity analysis approach has been used for applicability in design parameters optimization of an actually very low energy device (84 nF, 48 nH, 8-9.5 kV, ∼2.7-3.7 J). To optimize the devices functional specification, four different coaxial electrode configurations have been studied, scanning an argon gas pressure range from 0.6 to 1.5 mbar via the charging voltage variation study from 8.3 to 9.3 kV. The strength and efficient pinching was observed for the tapered anode configuration, over an expanded operating pressure range of 0.6 to 1.5 mbar. The analysis results showed that the most sensitive of the pinch voltage was associated with 0.88 ± 0.8mbar argon gas pressure and 8.3-8.5 kV charging voltage, respectively, as the optimum operating parameters. From the viewpoint of stability assessment of the device, it was observed that the least variation in stable operation of the device was for a charging voltage range of 8.3 to 8.7 kV in an operating pressure range from 0.6 to 1.1 mbar.

  3. Techno-economic sensitivity study of heliostat field parameters for micro-gas turbine CSP

    NASA Astrophysics Data System (ADS)

    Landman, Willem A.; Gauché, Paul; Dinter, Frank; Myburgh, J. T.

    2017-06-01

    Concentrating solar power systems based on micro-gas turbines potentially offer numerous benefits should they become commercially viable. Heliostat fields for such systems have unique requirements in that the number of heliostats and the focal ratios are typically much lower than conventional central receiver systems. This paper presents a techno-economic sensitivity study of heliostat field parameters for a micro-gas turbine central receiver system. A 100 kWe minitower system is considered for the base case and a one-at-a-time strategy is used to investigate parameter sensitivities. Increasing heliostat focal ratios are found to have significant optical performance benefits due to both a reduction in astigmatic aberrations and a reduction in the number of facet focal lengths required; confirming the hypothesis that smaller heliostats offer a techno-economic advantage. Fixed Horizontal Axis tracking mechanism is shown to outperform the conventional Azimuth Zenith tracking mechanism in high density heliostat fields. Although several improvements to heliostat field performance are discussed, the capex fraction of the heliostat field for such system is shown to be almost half that of a conventional central receiver system and optimum utilization of the higher capex components, namely; the receiver and turbine subsystems, are more rewarding than that of the heliostat field.

  4. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  5. Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5

    DOE PAGES

    Qian, Yun; Yan, Huiping; Hou, Zhangshuan; ...

    2015-04-10

    We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics.more » Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.« less

  6. Effect of parameters in moving average method for event detection enhancement using phase sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum

    2017-04-01

    We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.

  7. A sensitivity analysis for a thermomechanical model of the Antarctic ice sheet and ice shelves

    NASA Astrophysics Data System (ADS)

    Baratelli, F.; Castellani, G.; Vassena, C.; Giudici, M.

    2012-04-01

    The outcomes of an ice sheet model depend on a number of parameters and physical quantities which are often estimated with large uncertainty, because of lack of sufficient experimental measurements in such remote environments. Therefore, the efforts to improve the accuracy of the predictions of ice sheet models by including more physical processes and interactions with atmosphere, hydrosphere and lithosphere can be affected by the inaccuracy of the fundamental input data. A sensitivity analysis can help to understand which are the input data that most affect the different predictions of the model. In this context, a finite difference thermomechanical ice sheet model based on the Shallow-Ice Approximation (SIA) and on the Shallow-Shelf Approximation (SSA) has been developed and applied for the simulation of the evolution of the Antarctic ice sheet and ice shelves for the last 200 000 years. The sensitivity analysis of the model outcomes (e.g., the volume of the ice sheet and of the ice shelves, the basal melt rate of the ice sheet, the mean velocity of the Ross and Ronne-Filchner ice shelves, the wet area at the base of the ice sheet) with respect to the model parameters (e.g., the basal sliding coefficient, the geothermal heat flux, the present-day surface accumulation and temperature, the mean ice shelves viscosity, the melt rate at the base of the ice shelves) has been performed by computing three synthetic numerical indices: two local sensitivity indices and a global sensitivity index. Local sensitivity indices imply a linearization of the model and neglect both non-linear and joint effects of the parameters. The global variance-based sensitivity index, instead, takes into account the complete variability of the input parameters but is usually conducted with a Monte Carlo approach which is computationally very demanding for non-linear complex models. Therefore, the global sensitivity index has been computed using a development of the model outputs in a neighborhood of the reference parameter values with a second-order approximation. The comparison of the three sensitivity indices proved that the approximation of the non-linear model with a second-order expansion is sufficient to show some differences between the local and the global indices. As a general result, the sensitivity analysis showed that most of the model outcomes are mainly sensitive to the present-day surface temperature and accumulation, which, in principle, can be measured more easily (e.g., with remote sensing techniques) than the other input parameters considered. On the other hand, the parameters to which the model resulted less sensitive are the basal sliding coefficient and the mean ice shelves viscosity.

  8. Preliminary Investigation of Ice Shape Sensitivity to Parameter Variations

    NASA Technical Reports Server (NTRS)

    Miller, Dean R.; Potapczuk, Mark G.; Langhals, Tammy J.

    2005-01-01

    A parameter sensitivity study was conducted at the NASA Glenn Research Center's Icing Research Tunnel (IRT) using a 36 in. chord (0.91 m) NACA-0012 airfoil. The objective of this preliminary work was to investigate the feasibility of using ice shape feature changes to define requirements for the simulation and measurement of SLD icing conditions. It was desired to identify the minimum change (threshold) in a parameter value, which yielded an observable change in the ice shape. Liquid Water Content (LWC), drop size distribution (MVD), and tunnel static temperature were varied about a nominal value, and the effects of these parameter changes on the resulting ice shapes were documented. The resulting differences in ice shapes were compared on the basis of qualitative and quantitative criteria (e.g., mass, ice horn thickness, ice horn angle, icing limits, and iced area). This paper will provide a description of the experimental method, present selected experimental results, and conclude with an evaluation of these results, followed by a discussion of recommendations for future research.

  9. Sensitivity analysis for best-estimate thermal models of vertical dry cask storage systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoe, Remy R.; Robb, Kevin R.; Skutnik, Steven E.

    Loading requirements for dry cask storage of spent nuclear fuel are driven primarily by decay heat capacity limitations, which themselves are determined through recommended limits on peak cladding temperature within the cask. This study examines the relative sensitivity of peak material temperatures within the cask to parameters that influence both the stored fuel residual decay heat as well as heat removal mechanisms. Here, these parameters include the detailed reactor operating history parameters (e.g., soluble boron concentrations and the presence of burnable poisons) as well as factors that influence heat removal, including non-dominant processes (such as conduction from the fuel basketmore » to the canister and radiation within the canister) and ambient environmental conditions. By examining the factors that drive heat removal from the cask alongside well-understood factors that drive decay heat, it is therefore possible to make a contextual analysis of the most important parameters to evaluation of peak material temperatures within the cask.« less

  10. Sensitivity analysis for best-estimate thermal models of vertical dry cask storage systems

    DOE PAGES

    DeVoe, Remy R.; Robb, Kevin R.; Skutnik, Steven E.

    2017-07-08

    Loading requirements for dry cask storage of spent nuclear fuel are driven primarily by decay heat capacity limitations, which themselves are determined through recommended limits on peak cladding temperature within the cask. This study examines the relative sensitivity of peak material temperatures within the cask to parameters that influence both the stored fuel residual decay heat as well as heat removal mechanisms. Here, these parameters include the detailed reactor operating history parameters (e.g., soluble boron concentrations and the presence of burnable poisons) as well as factors that influence heat removal, including non-dominant processes (such as conduction from the fuel basketmore » to the canister and radiation within the canister) and ambient environmental conditions. By examining the factors that drive heat removal from the cask alongside well-understood factors that drive decay heat, it is therefore possible to make a contextual analysis of the most important parameters to evaluation of peak material temperatures within the cask.« less

  11. An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Mansor, Maszatul M.; Purshouse, Robin C.; Fleming, Peter J.

    2015-10-01

    Many-objective optimisation problems remain challenging for many state-of-the-art multi-objective evolutionary algorithms. Preference-inspired co-evolutionary algorithms (PICEAs) which co-evolve the usual population of candidate solutions with a family of decision-maker preferences during the search have been demonstrated to be effective on such problems. However, it is unknown whether PICEAs are robust with respect to the parameter settings. This study aims to address this question. First, a global sensitivity analysis method - the Sobol' variance decomposition method - is employed to determine the relative importance of the parameters controlling the performance of PICEAs. Experimental results show that the performance of PICEAs is controlled for the most part by the number of function evaluations. Next, we investigate the effect of key parameters identified from the Sobol' test and the genetic operators employed in PICEAs. Experimental results show improved performance of the PICEAs as more preferences are co-evolved. Additionally, some suggestions for genetic operator settings are provided for non-expert users.

  12. Temporal diagnostic analysis of the SWAT model to detect dominant periods of poor model performance

    NASA Astrophysics Data System (ADS)

    Guse, Björn; Reusser, Dominik E.; Fohrer, Nicola

    2013-04-01

    Hydrological models generally include thresholds and non-linearities, such as snow-rain-temperature thresholds, non-linear reservoirs, infiltration thresholds and the like. When relating observed variables to modelling results, formal methods often calculate performance metrics over long periods, reporting model performance with only few numbers. Such approaches are not well suited to compare dominating processes between reality and model and to better understand when thresholds and non-linearities are driving model results. We present a combination of two temporally resolved model diagnostic tools to answer when a model is performing (not so) well and what the dominant processes are during these periods. We look at the temporal dynamics of parameter sensitivities and model performance to answer this question. For this, the eco-hydrological SWAT model is applied in the Treene lowland catchment in Northern Germany. As a first step, temporal dynamics of parameter sensitivities are analyzed using the Fourier Amplitude Sensitivity test (FAST). The sensitivities of the eight model parameters investigated show strong temporal variations. High sensitivities were detected for two groundwater (GW_DELAY, ALPHA_BF) and one evaporation parameters (ESCO) most of the time. The periods of high parameter sensitivity can be related to different phases of the hydrograph with dominances of the groundwater parameters in the recession phases and of ESCO in baseflow and resaturation periods. Surface runoff parameters show high parameter sensitivities in phases of a precipitation event in combination with high soil water contents. The dominant parameters give indication for the controlling processes during a given period for the hydrological catchment. The second step included the temporal analysis of model performance. For each time step, model performance was characterized with a "finger print" consisting of a large set of performance measures. These finger prints were clustered into four reoccurring patterns of typical model performance, which can be related to different phases of the hydrograph. Overall, the baseflow cluster has the lowest performance. By combining the periods with poor model performance with the dominant model components during these phases, the groundwater module was detected as the model part with the highest potential for model improvements. The detection of dominant processes in periods of poor model performance enhances the understanding of the SWAT model. Based on this, concepts how to improve the SWAT model structure for the application in German lowland catchment are derived.

  13. Comprehensive Monte-Carlo simulator for optimization of imaging parameters for high sensitivity detection of skin cancer at the THz

    NASA Astrophysics Data System (ADS)

    Ney, Michael; Abdulhalim, Ibrahim

    2016-03-01

    Skin cancer detection at its early stages has been the focus of a large number of experimental and theoretical studies during the past decades. Among these studies two prominent approaches presenting high potential are reflectometric sensing at the THz wavelengths region and polarimetric imaging techniques in the visible wavelengths. While THz radiation contrast agent and source of sensitivity to cancer related tissue alterations was considered to be mainly the elevated water content in the cancerous tissue, the polarimetric approach has been verified to enable cancerous tissue differentiation based on cancer induced structural alterations to the tissue. Combining THz with the polarimetric approach, which is considered in this study, is examined in order to enable higher detection sensitivity than previously pure reflectometric THz measurements. For this, a comprehensive MC simulation of radiative transfer in a complex skin tissue model fitted for the THz domain that considers the skin`s stratified structure, tissue material optical dispersion modeling, surface roughness, scatterers, and substructure organelles has been developed. Additionally, a narrow beam Mueller matrix differential analysis technique is suggested for assessing skin cancer induced changes in the polarimetric image, enabling the tissue model and MC simulation to be utilized for determining the imaging parameters resulting in maximal detection sensitivity.

  14. Design of experiments for identification of complex biochemical systems with applications to mitochondrial bioenergetics.

    PubMed

    Vinnakota, Kalyan C; Beard, Daniel A; Dash, Ranjan K

    2009-01-01

    Identification of a complex biochemical system model requires appropriate experimental data. Models constructed on the basis of data from the literature often contain parameters that are not identifiable with high sensitivity and therefore require additional experimental data to identify those parameters. Here we report the application of a local sensitivity analysis to design experiments that will improve the identifiability of previously unidentifiable model parameters in a model of mitochondrial oxidative phosphorylation and tricaboxylic acid cycle. Experiments were designed based on measurable biochemical reactants in a dilute suspension of purified cardiac mitochondria with experimentally feasible perturbations to this system. Experimental perturbations and variables yielding the most number of parameters above a 5% sensitivity level are presented and discussed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Zongrui; Stocks, George Malcolm

    The sensitivity in predicting glide behaviour of dislocations has been a long-standing problem in the framework of the Peierls-Nabarro model. The predictions of both the model itself and the analytic formulas based on it are too sensitive to the input parameters. In order to reveal the origin of this important problem in materials science, a new empirical-parameter-free formulation is proposed in the same framework. Unlike previous formulations, it includes only a limited small set of parameters all of which can be determined by convergence tests. Under special conditions the new formulation is reduced to its classic counterpart. In the lightmore » of this formulation, new relationships between Peierls stresses and the input parameters are identified, where the sensitivity is greatly reduced or even removed.« less

  16. Sensitivity of tire response to variations in material and geometric parameters

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Tanner, John A.; Peters, Jeanne M.

    1992-01-01

    A computational procedure is presented for evaluating the analytic sensitivity derivatives of the tire response with respect to material and geometric parameters of the tire. The tire is modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The computational procedure is applied to the case of uniform inflation pressure on the Space Shuttle nose-gear tire when subjected to uniform inflation pressure. Numerical results are presented showing the sensitivity of the different response quantities to variations in the material characteristics of both the cord and the rubber.

  17. A sensitivity analysis method for the body segment inertial parameters based on ground reaction and joint moment regressor matrices.

    PubMed

    Futamure, Sumire; Bonnet, Vincent; Dumas, Raphael; Venture, Gentiane

    2017-11-07

    This paper presents a method allowing a simple and efficient sensitivity analysis of dynamics parameters of complex whole-body human model. The proposed method is based on the ground reaction and joint moment regressor matrices, developed initially in robotics system identification theory, and involved in the equations of motion of the human body. The regressor matrices are linear relatively to the segment inertial parameters allowing us to use simple sensitivity analysis methods. The sensitivity analysis method was applied over gait dynamics and kinematics data of nine subjects and with a 15 segments 3D model of the locomotor apparatus. According to the proposed sensitivity indices, 76 segments inertial parameters out the 150 of the mechanical model were considered as not influent for gait. The main findings were that the segment masses were influent and that, at the exception of the trunk, moment of inertia were not influent for the computation of the ground reaction forces and moments and the joint moments. The same method also shows numerically that at least 90% of the lower-limb joint moments during the stance phase can be estimated only from a force-plate and kinematics data without knowing any of the segment inertial parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways

    NASA Astrophysics Data System (ADS)

    Marangoni, G.; Tavoni, M.; Bosetti, V.; Borgonovo, E.; Capros, P.; Fricko, O.; Gernaat, D. E. H. J.; Guivarch, C.; Havlik, P.; Huppmann, D.; Johnson, N.; Karkatsoulis, P.; Keppo, I.; Krey, V.; Ó Broin, E.; Price, J.; van Vuuren, D. P.

    2017-01-01

    Scenarios showing future greenhouse gas emissions are needed to estimate climate impacts and the mitigation efforts required for climate stabilization. Recently, the Shared Socioeconomic Pathways (SSPs) have been introduced to describe alternative social, economic and technical narratives, spanning a wide range of plausible futures in terms of challenges to mitigation and adaptation. Thus far the key drivers of the uncertainty in emissions projections have not been robustly disentangled. Here we assess the sensitivities of future CO2 emissions to key drivers characterizing the SSPs. We use six state-of-the-art integrated assessment models with different structural characteristics, and study the impact of five families of parameters, related to population, income, energy efficiency, fossil fuel availability, and low-carbon energy technology development. A recently developed sensitivity analysis algorithm allows us to parsimoniously compute both the direct and interaction effects of each of these drivers on cumulative emissions. The study reveals that the SSP assumptions about energy intensity and economic growth are the most important determinants of future CO2 emissions from energy combustion, both with and without a climate policy. Interaction terms between parameters are shown to be important determinants of the total sensitivities.

  19. Predicting distant failure in early stage NSCLC treated with SBRT using clinical parameters.

    PubMed

    Zhou, Zhiguo; Folkert, Michael; Cannon, Nathan; Iyengar, Puneeth; Westover, Kenneth; Zhang, Yuanyuan; Choy, Hak; Timmerman, Robert; Yan, Jingsheng; Xie, Xian-J; Jiang, Steve; Wang, Jing

    2016-06-01

    The aim of this study is to predict early distant failure in early stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT) using clinical parameters by machine learning algorithms. The dataset used in this work includes 81 early stage NSCLC patients with at least 6months of follow-up who underwent SBRT between 2006 and 2012 at a single institution. The clinical parameters (n=18) for each patient include demographic parameters, tumor characteristics, treatment fraction schemes, and pretreatment medications. Three predictive models were constructed based on different machine learning algorithms: (1) artificial neural network (ANN), (2) logistic regression (LR) and (3) support vector machine (SVM). Furthermore, to select an optimal clinical parameter set for the model construction, three strategies were adopted: (1) clonal selection algorithm (CSA) based selection strategy; (2) sequential forward selection (SFS) method; and (3) statistical analysis (SA) based strategy. 5-cross-validation is used to validate the performance of each predictive model. The accuracy was assessed by area under the receiver operating characteristic (ROC) curve (AUC), sensitivity and specificity of the system was also evaluated. The AUCs for ANN, LR and SVM were 0.75, 0.73, and 0.80, respectively. The sensitivity values for ANN, LR and SVM were 71.2%, 72.9% and 83.1%, while the specificity values for ANN, LR and SVM were 59.1%, 63.6% and 63.6%, respectively. Meanwhile, the CSA based strategy outperformed SFS and SA in terms of AUC, sensitivity and specificity. Based on clinical parameters, the SVM with the CSA optimal parameter set selection strategy achieves better performance than other strategies for predicting distant failure in lung SBRT patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Comparison of gating dynamics of different IP3R channels with immune algorithm searching for channel parameter distributions

    NASA Astrophysics Data System (ADS)

    Cai, Xiuhong; Li, Xiang; Qi, Hong; Wei, Fang; Chen, Jianyong; Shuai, Jianwei

    2016-10-01

    The gating properties of the inositol 1, 4, 5-trisphosphate (IP3) receptor (IP3R) are determined by the binding and unbinding capability of Ca2+ ions and IP3 messengers. With the patch clamp experiments, the stationary properties have been discussed for Xenopus oocyte type-1 IP3R (Oo-IP3R1), type-3 IP3R (Oo-IP3R3) and Spodoptera frugiperda IP3R (Sf-IP3R). In this paper, in order to provide insights about the relation between the observed gating characteristics and the gating parameters in different IP3Rs, we apply the immune algorithm to fit the parameters of a modified DeYoung-Keizer model. By comparing the fitting parameter distributions of three IP3Rs, we suggest that the three types of IP3Rs have the similar open sensitivity in responding to IP3. The Oo-IP3R3 channel is easy to open in responding to low Ca2+ concentration, while Sf-IP3R channel is easily inhibited in responding to high Ca2+ concentration. We also show that the IP3 binding rate is not a sensitive parameter for stationary gating dynamics for three IP3Rs, but the inhibitory Ca2+ binding/unbinding rates are sensitive parameters for gating dynamics for both Oo-IP3R1 and Oo-IP3R3 channels. Such differences may be important in generating the spatially and temporally complex Ca2+ oscillations in cells. Our study also demonstrates that the immune algorithm can be applied for model parameter searching in biological systems.

  1. Composite laminate failure parameter optimization through four-point flexure experimentation and analysis

    DOE PAGES

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    2016-05-06

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  2. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models

    PubMed Central

    2013-01-01

    Background Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring. PMID:23827014

  3. Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory

    PubMed Central

    Alster, Charlotte J.; Baas, Peter; Wallenstein, Matthew D.; Johnson, Nels G.; von Fischer, Joseph C.

    2016-01-01

    The activity of soil microbial extracellular enzymes is strongly controlled by temperature, yet the degree to which temperature sensitivity varies by microbe and enzyme type is unclear. Such information would allow soil microbial enzymes to be incorporated in a traits-based framework to improve prediction of ecosystem response to global change. If temperature sensitivity varies for specific soil enzymes, then determining the underlying causes of variation in temperature sensitivity of these enzymes will provide fundamental insights for predicting nutrient dynamics belowground. In this study, we characterized how both microbial taxonomic variation as well as substrate type affects temperature sensitivity. We measured β-glucosidase, leucine aminopeptidase, and phosphatase activities at six temperatures: 4, 11, 25, 35, 45, and 60°C, for seven different soil microbial isolates. To calculate temperature sensitivity, we employed two models, Arrhenius, which predicts an exponential increase in reaction rate with temperature, and Macromolecular Rate Theory (MMRT), which predicts rate to peak and then decline as temperature increases. We found MMRT provided a more accurate fit and allowed for more nuanced interpretation of temperature sensitivity in all of the enzyme × isolate combinations tested. Our results revealed that both the enzyme type and soil isolate type explain variation in parameters associated with temperature sensitivity. Because we found temperature sensitivity to be an inherent and variable property of an enzyme, we argue that it can be incorporated as a microbial functional trait, but only when using the MMRT definition of temperature sensitivity. We show that the Arrhenius metrics of temperature sensitivity are overly sensitive to test conditions, with activation energy changing depending on the temperature range it was calculated within. Thus, we propose the use of the MMRT definition of temperature sensitivity for accurate interpretation of temperature sensitivity of soil microbial enzymes. PMID:27909429

  4. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.

    PubMed

    Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba

    2017-11-01

    The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the aforementioned parameters. This optimization yielded a set of data that can considerably improve orthopedic osteosynthesis outcomes.

  5. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error‐based weighting and one objective function

    USGS Publications Warehouse

    Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.

    2009-01-01

    We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.

  6. Automated Processing of Dynamic Contrast-Enhanced MRI: Correlation of Advanced Pharmacokinetic Metrics with Tumor Grade in Pediatric Brain Tumors.

    PubMed

    Vajapeyam, S; Stamoulis, C; Ricci, K; Kieran, M; Poussaint, T Young

    2017-01-01

    Pharmacokinetic parameters from dynamic contrast-enhanced MR imaging have proved useful for differentiating brain tumor grades in adults. In this study, we retrospectively reviewed dynamic contrast-enhanced perfusion data from children with newly diagnosed brain tumors and analyzed the pharmacokinetic parameters correlating with tumor grade. Dynamic contrast-enhanced MR imaging data from 38 patients were analyzed by using commercially available software. Subjects were categorized into 2 groups based on pathologic analyses consisting of low-grade (World Health Organization I and II) and high-grade (World Health Organization III and IV) tumors. Pharmacokinetic parameters were compared between the 2 groups by using linear regression models. For parameters that were statistically distinct between the 2 groups, sensitivity and specificity were also estimated. Eighteen tumors were classified as low-grade, and 20, as high-grade. Transfer constant from the blood plasma into the extracellular extravascular space (K trans ), rate constant from extracellular extravascular space back into blood plasma (K ep ), and extracellular extravascular volume fraction (V e ) were all significantly correlated with tumor grade; high-grade tumors showed higher K trans , higher K ep , and lower V e . Although all 3 parameters had high specificity (range, 82%-100%), K ep had the highest specificity for both grades. Optimal sensitivity was achieved for V e , with a combined sensitivity of 76% (compared with 71% for K trans and K ep ). Pharmacokinetic parameters derived from dynamic contrast-enhanced MR imaging can effectively discriminate low- and high-grade pediatric brain tumors. © 2017 by American Journal of Neuroradiology.

  7. Gait cycle analysis: parameters sensitive for functional evaluation of peripheral nerve recovery in rat hind limbs.

    PubMed

    Rui, Jing; Runge, M Brett; Spinner, Robert J; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2014-10-01

    Video-assisted gait kinetics analysis has been a sensitive method to assess rat sciatic nerve function after injury and repair. However, in conduit repair of sciatic nerve defects, previously reported kinematic measurements failed to be a sensitive indicator because of the inferior recovery and inevitable joint contracture. This study aimed to explore the role of physiotherapy in mitigating joint contracture and to seek motion analysis indices that can sensitively reflect motor function. Data were collected from 26 rats that underwent sciatic nerve transection and conduit repair. Regular postoperative physiotherapy was applied. Parameters regarding step length, phase duration, and ankle angle were acquired and analyzed from video recording of gait kinetics preoperatively and at regular postoperative intervals. Stride length ratio (step length of uninjured foot/step length of injured foot), percent swing of the normal paw (percentage of the total stride duration when the uninjured paw is in the air), propulsion angle (toe-off angle subtracted by midstance angle), and clearance angle (ankle angle change from toe off to midswing) decreased postoperatively comparing with baseline values. The gradual recovery of these measurements had a strong correlation with the post-nerve repair time course. Ankle joint contracture persisted despite rigorous physiotherapy. Parameters acquired from a 2-dimensional motion analysis system, that is, stride length ratio, percent swing of the normal paw, propulsion angle, and clearance angle, could sensitively reflect nerve function impairment and recovery in the rat sciatic nerve conduit repair model despite the existence of joint contractures.

  8. Colorado River basin sensitivity to disturbance impacts

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing, dependent on the strength and direction of the forcing. These results indicate the importance of understanding model sensitivities under disturbance impacts to manage these shifts; plan for future water resource changes and determine how the impacts will affect the sustainability and adaptability of food-energy-water systems.

  9. Emission rate modeling and risk assessment at an automobile plant from painting operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A.; Shrivastava, A.; Kulkarni, A.

    Pollution from automobile plants from painting operations has been addressed in the Clean Act Amendments (1990). The estimation of pollutant emissions from automobile painting operation were done mostly by approximate procedures than by actual calculations. The purpose of this study was to develop a methodology for calculating the emissions of the pollutants from painting operation in an automobile plant. Five scenarios involving an automobile painting operation, located in Columbus (Ohio), were studied for pollutant emission and concomitant risk associated with that. In the study of risk, a sensitivity analysis was done using Crystal Ball{reg{underscore}sign} on the parameters involved in risk.more » This software uses the Monte Carlo principle. The most sensitive factor in the risk analysis was the ground level concentration of the pollutants. All scenarios studied met the safety goal (a risk value of 1 x 10{sup {minus}6}) with different confidence levels. The highest level of confidence in meeting the safety goal was displayed by Scenario 1 (Alpha Industries). The results from the scenarios suggest that risk is associated with the quantity of released toxic pollutants. The sensitivity analysis of the various parameter shows that average spray rate of paint is the most important parameter in the estimation of pollutants from the painting operations. The entire study is a complete module that can be used by the environmental pollution control agencies for estimation of pollution levels and estimation of associated risk. The study can be further extended to other operations in an automobile industry or to different industries.« less

  10. Modelling phosphorus transport and its response to climate change at upper stream of Poyang Lake-the largest fresh water lake in China

    NASA Astrophysics Data System (ADS)

    Jiang, Sanyuan; Zhang, Qi

    2017-04-01

    Phosphorus losses from excessive fertilizer application and improper land exploitation were found to be the limiting factor for freshwater quality deterioration and eutrophication. Phosphorus transport from uplands to river is related to hydrological, soil erosion and sediment transport processes, which is impacted by several physiographic and meteorological factors. The objective of this study was to investigate the spatiotemporal variation of phosphorus losses and response to climate change at a typical upstream tributary (Le'An river) of Poyang Lake. To this end, a process-oriented hydrological and nutrient transport model HYPE (Hydrological Predictions for the Environment) was set up for discharge and phosphorus transport simulation at Le'An catchment. Parameter ESTimator (PEST) was combined with HYPE model for parameter sensitivity analysis and optimisation. In runoff modelling, potential evapotranspiration rate of the dominant land use (forest) is most sensitive; parameters of surface runoff rate and percolation capacity for the red soil are also very sensitive. In phosphorus transport modelling, the exponent of equation for soil erosion processes induced by surface runoff is most sensitive, coefficient of adsorption/desorption processes for red soil is also very sensitive. Flow dynamics and water balance were simulated well at all sites for the whole period (1978-1986) with NSE≥0.80 and PBIAS≤14.53%. The optimized hydrological parameter set were transferable for the independent period (2009-2010) with NSE≥0.90 and highest PBIAS of -7.44% in stream flow simulation. Seasonal dynamics and balance of stream water TP (Total Phosphorus ) concentrations were captured satisfactorily indicated by NSE≥0.53 and highest PBIAS of 16.67%. In annual scale, most phosphorus is transported via surface runoff during heavy storm flow events, which may account for about 70% of annual TP loads. Based on future climate change analysis under three different emission scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), there is no considerable change in average annual rainfall amount in 2020-2035 while increasing occurrence frequency and intensity of extreme rainfall events were predicted. The validated HYPE model was run on the three emission scenarios. Overall increase of TP loads was found in future with the largest increase of annual TP loads under the high emission scenario (RCP 8.5). The outcomes of this study (i) verified the transferability of HYPE model at humid subtropical and heterogeneous catchment; (ii) revealed the sensitive hydrological and phosphorus transport processes and relevant parameters; (iii) implied more TP losses in future in response to increasing extreme rainfall events.

  11. Accuracy of self-reported survey data on assisted reproductive technology treatment parameters and reproductive history.

    PubMed

    Stern, Judy E; McLain, Alexander C; Buck Louis, Germaine M; Luke, Barbara; Yeung, Edwina H

    2016-08-01

    It is unknown whether data obtained from maternal self-report for assisted reproductive technology treatment parameters and reproductive history are accurate for use in research studies. We evaluated the accuracy of self-reported in assisted reproductive technology treatment and reproductive history from the Upstate KIDS study in comparison with clinical data reported to the Society for Assisted Reproductive Technology Clinic Outcome Reporting System. Upstate KIDS maternal questionnaire data from deliveries between 2008 and 2010 were linked to data reported to Society for Assisted Reproductive Technology Clinic Outcome Reporting System. The 617 index deliveries were compared as to treatment type (frozen embryo transfer and donor egg or sperm) and use of intracytoplasmic sperm injection and assisted hatching. Use of injectable medications, self-report for assisted reproductive technology, or frozen embryo transfer prior to the index deliveries were also compared. We report agreement in which both sources had yes or both no and sensitivity of maternal report using Society for Assisted Reproductive Technology Clinic Outcome Reporting System as the gold standard. Significance was determined using χ(2) at P < 0.05. Universal agreement was not reached on any parameter but was best for treatment type of frozen embryo transfer (agreement, 96%; sensitivity, 93%) and use of donor eggs (agreement, 97%; sensitivity, 82%) or sperm (agreement, 98%; sensitivity, 82%). Use of intracytoplasmic sperm injection (agreement, 78%: sensitivity, 78%) and assisted hatching (agreement, 57%; sensitivity, 38%) agreed less well with self-reported use (P < .0001). In vitro fertilization (agreement, 82%) and frozen embryo transfer (agreement, 90%) prior to the index delivery were more consistently reported than was use of injectable medication (agreement, 76%) (P < .0001). Women accurately report in vitro fertilization treatment but are less accurate about procedures handled in the laboratory (intracytoplasmic sperm injection or assisted hatching). Clinics might better communicate with patients on the use of these procedures, and researchers should use caution when using self-reported treatment data. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Uncertainty, Sensitivity Analysis, and Causal Identification in the Arctic using a Perturbed Parameter Ensemble of the HiLAT Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark

    Coupled climate models have a large number of input parameters that can affect output uncertainty. We conducted a sensitivity analysis of sea ice proper:es and Arc:c related climate variables to 5 parameters in the HiLAT climate model: air-ocean turbulent exchange parameter (C), conversion of water vapor to clouds (cldfrc_rhminl) and of ice crystals to snow (micro_mg_dcs), snow thermal conduc:vity (ksno), and maximum snow grain size (rsnw_mlt). We used an elementary effect (EE) approach to rank their importance for output uncertainty. EE is an extension of one-at-a-time sensitivity analyses, but it is more efficient in sampling multi-dimensional parameter spaces. We lookedmore » for emerging relationships among climate variables across the model ensemble, and used causal discovery algorithms to establish potential pathways for those relationships.« less

  13. Sensitivity of predicted bioaerosol exposure from open windrow composting facilities to ADMS dispersion model parameters.

    PubMed

    Douglas, P; Tyrrel, S F; Kinnersley, R P; Whelan, M; Longhurst, P J; Walsh, K; Pollard, S J T; Drew, G H

    2016-12-15

    Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are not well understood, and require improved exposure classification. Dispersion modelling has great potential to improve exposure classification, but has not yet been extensively used or validated in this context. We present a sensitivity analysis of the ADMS dispersion model specific to input parameter ranges relevant to bioaerosol emissions from open windrow composting. This analysis provides an aid for model calibration by prioritising parameter adjustment and targeting independent parameter estimation. Results showed that predicted exposure was most sensitive to the wet and dry deposition modules and the majority of parameters relating to emission source characteristics, including pollutant emission velocity, source geometry and source height. This research improves understanding of the accuracy of model input data required to provide more reliable exposure predictions. Copyright © 2016. Published by Elsevier Ltd.

  14. Feasibility study of basic characterization of MAGAT polymer gel using CBCT attached in linear accelerator: Preliminary study

    NASA Astrophysics Data System (ADS)

    Sathiyaraj, P.; Samuel, E. James jebaseelan

    2018-01-01

    The aim of this study is to evaluate the methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride gel (MAGAT) by cone beam computed tomography (CBCT) attached with modern linear accelerator. To compare the results of standard diagnostic computed tomography (CT) with CBCT, different parameters such as linearity, sensitivity and temporal stability were checked. MAGAT gel showed good linearity for both diagnostic CT and CBCT measurements. Sensitivity and temporal stability were also comparable with diagnostic CT measurements. In both the modalities, the sensitivity of the MAGAT increased to 4 days and decreased till the 10th day of post irradiation. Since all measurements (linearity, sensitivity and temporal stability) from diagnostic CT and CBCT were comparable, CBCT could be a potential tool for dose analysis study for polymer gel dosimeter.

  15. Stereometric parameters change vs. Topographic Change Analysis (TCA) agreement in Heidelberg Retina Tomography III (HRT-3) early detection of clinical significant glaucoma progression.

    PubMed

    Dascalu, A M; Cherecheanu, A P; Stana, D; Voinea, L; Ciuluvica, R; Savlovschi, C; Serban, D

    2014-01-01

    to investigate the sensitivity and specificity of the stereometric parameters change analysis vs. Topographic Change Analysis in early detection of glaucoma progression. 81 patients with POAG were monitored for 4 years (GAT monthly, SAP at every 6 months, optic disc photographs and HRT3 yearly). The exclusion criteria were other optic disc or retinal pathology; topographic standard deviation (TSD>30; inter-test variation of reference height>25 μm. The criterion for structural progression was the following: at least 20 adjacent super-pixels with a clinically significant decrease in height (>5%). 16 patients of the total 81 presented structural progression on TCA. The most useful stereometric parameters for the early detection of glaucoma progression were the following: Rim Area change (sensitivity 100%, specificity 74.2% for a "cut-off " value of -0.05), C/D Area change (sensitivity 85.7%, specificity 71.5% for a "cut off " value of 0.02), C/D linear change (sensitivity 85.7%, specificity 71.5% for a "cut-off " value of 0.02), Rim Volume change (sensitivity 71.4%, specificity 88.8% for a "cut-off " value of -0.04). RNFL Thickness change (<0) was highly sensitive (82%), but less specific for glaucoma progression (45,2%). Changes of the other stereometric parameters have a limited diagnostic value for the early detection of glaucoma progression. TCA is a valuable tool for the assessment of the structural progression in glaucoma patients and its inter-test variability is low. On long-term, the quantitative analysis according to stereometric parameters change is also very important. The most relevant parameters to detect progression are RA, C/D Area, Linear C/D and RV.

  16. Linear regression metamodeling as a tool to summarize and present simulation model results.

    PubMed

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  17. Calculating the sensitivity and robustness of binding free energy calculations to force field parameters

    PubMed Central

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.

    2013-01-01

    Binding free energy calculations offer a thermodynamically rigorous method to compute protein-ligand binding, and they depend on empirical force fields with hundreds of parameters. We examined the sensitivity of computed binding free energies to the ligand’s electrostatic and van der Waals parameters. Dielectric screening and cancellation of effects between ligand-protein and ligand-solvent interactions reduce the parameter sensitivity of binding affinity by 65%, compared with interaction strengths computed in the gas-phase. However, multiple changes to parameters combine additively on average, which can lead to large changes in overall affinity from many small changes to parameters. Using these results, we estimate that random, uncorrelated errors in force field nonbonded parameters must be smaller than 0.02 e per charge, 0.06 Å per radius, and 0.01 kcal/mol per well depth in order to obtain 68% (one standard deviation) confidence that a computed affinity for a moderately-sized lead compound will fall within 1 kcal/mol of the true affinity, if these are the only sources of error considered. PMID:24015114

  18. Distillation tray structural parameter study: Phase 1

    NASA Technical Reports Server (NTRS)

    Winter, J. Ronald

    1991-01-01

    The purpose here is to identify the structural parameters (plate thickness, liquid level, beam size, number of beams, tray diameter, etc.) that affect the structural integrity of distillation trays in distillation columns. Once the sensitivity of the trays' dynamic response to these parameters has been established, the designer will be able to use this information to prepare more accurate specifications for the construction of new trays. Information is given on both static and dynamic analysis, modal response, and tray failure details.

  19. Application of artificial neural networks to assess pesticide contamination in shallow groundwater

    USGS Publications Warehouse

    Sahoo, G.B.; Ray, C.; Mehnert, E.; Keefer, D.A.

    2006-01-01

    In this study, a feed-forward back-propagation neural network (BPNN) was developed and applied to predict pesticide concentrations in groundwater monitoring wells. Pesticide concentration data are challenging to analyze because they tend to be highly censored. Input data to the neural network included the categorical indices of depth to aquifer material, pesticide leaching class, aquifer sensitivity to pesticide contamination, time (month) of sample collection, well depth, depth to water from land surface, and additional travel distance in the saturated zone (i.e., distance from land surface to midpoint of well screen). The output of the neural network was the total pesticide concentration detected in the well. The model prediction results produced good agreements with observed data in terms of correlation coefficient (R = 0.87) and pesticide detection efficiency (E = 89%), as well as good match between the observed and predicted "class" groups. The relative importance of input parameters to pesticide occurrence in groundwater was examined in terms of R, E, mean error (ME), root mean square error (RMSE), and pesticide occurrence "class" groups by eliminating some key input parameters to the model. Well depth and time of sample collection were the most sensitive input parameters for predicting the pesticide contamination potential of a well. This infers that wells tapping shallow aquifers are more vulnerable to pesticide contamination than those wells tapping deeper aquifers. Pesticide occurrences during post-application months (June through October) were found to be 2.5 to 3 times higher than pesticide occurrences during other months (November through April). The BPNN was used to rank the input parameters with highest potential to contaminate groundwater, including two original and five ancillary parameters. The two original parameters are depth to aquifer material and pesticide leaching class. When these two parameters were the only input parameters for the BPNN, they were not able to predict contamination potential. However, when they were used with other parameters, the predictive performance efficiency of the BPNN in terms of R, E, ME, RMSE, and pesticide occurrence "class" groups increased. Ancillary data include data collected during the study such as well depth and time of sample collection. The BPNN indicated that the ancillary data had more predictive power than the original data. The BPNN results will help researchers identify parameters to improve maps of aquifer sensitivity to pesticide contamination. ?? 2006 Elsevier B.V. All rights reserved.

  20. Preserving Differential Privacy in Degree-Correlation based Graph Generation

    PubMed Central

    Wang, Yue; Wu, Xintao

    2014-01-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987

  1. Influence of cadmium on life-history characteristics of Folsomia candida (Willem) in an artificial soil substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crommentuijn, T.; Brils, J.; Van Straalen, N.M.

    1993-10-01

    To understand the consequences of soil pollution on higher levels of biological organization, the chain of effects of cadmium on several interrelated responses was studied in a chronic toxicity experiment using the collembolan species Folsomia candida (Willem) in an artificial soil. The individual parameters survival, growth, and number of offspring were determined after different time intervals up to 9 weeks. The accumulation of cadmium in springtails and the population increase during the experimental period were also determined. By combining all the mentioned parameters and their development in time, a detailed picture of the action of cadmium on F. candida wasmore » obtained. In order of decreasing sensitivity the EC50 values for Von Bertalanffy growth, number of offspring, population increase, and survival were 256, > 326, 475, and 850 micrograms Cd/g dry soil, respectively. The ultimate LC50 value and also the equilibrium body burden were reached after about 20 days. Reproduction started later because of retarded growth, but was not affected directly and eventually reached the control level. The results are discussed in light of the seemingly contradictory ideas of Halbach (1984, Hydrobiologia 109, 79-96) and Meyer et al. (1987, Environ. Toxicol. Chem. 6, 115-126) about the sensitivity of individual and population parameters. It appears to be very important to know how individual parameters develop in time so that the most sensitive parameter and the consequences for higher levels of biological organization can be determined.« less

  2. Modelling ecological and human exposure to POPs in Venice lagoon - Part II: Quantitative uncertainty and sensitivity analysis in coupled exposure models.

    PubMed

    Radomyski, Artur; Giubilato, Elisa; Ciffroy, Philippe; Critto, Andrea; Brochot, Céline; Marcomini, Antonio

    2016-11-01

    The study is focused on applying uncertainty and sensitivity analysis to support the application and evaluation of large exposure models where a significant number of parameters and complex exposure scenarios might be involved. The recently developed MERLIN-Expo exposure modelling tool was applied to probabilistically assess the ecological and human exposure to PCB 126 and 2,3,7,8-TCDD in the Venice lagoon (Italy). The 'Phytoplankton', 'Aquatic Invertebrate', 'Fish', 'Human intake' and PBPK models available in MERLIN-Expo library were integrated to create a specific food web to dynamically simulate bioaccumulation in various aquatic species and in the human body over individual lifetimes from 1932 until 1998. MERLIN-Expo is a high tier exposure modelling tool allowing propagation of uncertainty on the model predictions through Monte Carlo simulation. Uncertainty in model output can be further apportioned between parameters by applying built-in sensitivity analysis tools. In this study, uncertainty has been extensively addressed in the distribution functions to describe the data input and the effect on model results by applying sensitivity analysis techniques (screening Morris method, regression analysis, and variance-based method EFAST). In the exposure scenario developed for the Lagoon of Venice, the concentrations of 2,3,7,8-TCDD and PCB 126 in human blood turned out to be mainly influenced by a combination of parameters (half-lives of the chemicals, body weight variability, lipid fraction, food assimilation efficiency), physiological processes (uptake/elimination rates), environmental exposure concentrations (sediment, water, food) and eating behaviours (amount of food eaten). In conclusion, this case study demonstrated feasibility of MERLIN-Expo to be successfully employed in integrated, high tier exposure assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Negative measurement sensitivity values of planar capacitive imaging probes

    NASA Astrophysics Data System (ADS)

    Yin, Xiaokang; Chen, Guoming; Li, Wei; Hutchins, David

    2014-02-01

    The measurement sensitivity distribution of planar capacitive imaging (CI) probes describes how effectively each region in the sensing area is contributing to the measured charge signal on the sensing electrode. It can be used to determine the imaging ability of a CI probe. It is found in previous work that, there are regions in the sensing area where the change of the charge output and the change of targeting physical parameter are of opposite trends. This opposite correlation implies that the measurement sensitivity values in such regions are negative. In this work, the cause of negative sensitivity is discussed. Experiments are also designed and performed so as to verify the existence of negative sensitivity and study the factors that may affect the negative sensitivity distributions.

  4. Sensitivity analysis of add-on price estimate for select silicon wafering technologies

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.

    1982-01-01

    The cost of producing wafers from silicon ingots is a major component of the add-on price of silicon sheet. Economic analyses of the add-on price estimates and their sensitivity internal-diameter (ID) sawing, multiblade slurry (MBS) sawing and fixed-abrasive slicing technique (FAST) are presented. Interim price estimation guidelines (IPEG) are used for estimating a process add-on price. Sensitivity analysis of price is performed with respect to cost parameters such as equipment, space, direct labor, materials (blade life) and utilities, and the production parameters such as slicing rate, slices per centimeter and process yield, using a computer program specifically developed to do sensitivity analysis with IPEG. The results aid in identifying the important cost parameters and assist in deciding the direction of technology development efforts.

  5. Universally Sloppy Parameter Sensitivities in Systems Biology Models

    PubMed Central

    Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P

    2007-01-01

    Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a “sloppy” spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters. PMID:17922568

  6. Universally sloppy parameter sensitivities in systems biology models.

    PubMed

    Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P

    2007-10-01

    Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.

  7. Critique and sensitivity analysis of the compensation function used in the LMS Hudson River striped bass models. Environmental Sciences Division publication No. 944

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Winkle, W.; Christensen, S.W.; Kauffman, G.

    1976-12-01

    The description and justification for the compensation function developed and used by Lawler, Matusky and Skelly Engineers (LMS) (under contract to Consolidated Edison Company of New York) in their Hudson River striped bass models are presented. A sensitivity analysis of this compensation function is reported, based on computer runs with a modified version of the LMS completely mixed (spatially homogeneous) model. Two types of sensitivity analysis were performed: a parametric study involving at least five levels for each of the three parameters in the compensation function, and a study of the form of the compensation function itself, involving comparison ofmore » the LMS function with functions having no compensation at standing crops either less than or greater than the equilibrium standing crops. For the range of parameter values used in this study, estimates of percent reduction are least sensitive to changes in YS, the equilibrium standing crop, and most sensitive to changes in KXO, the minimum mortality rate coefficient. Eliminating compensation at standing crops either less than or greater than the equilibrium standing crops results in higher estimates of percent reduction. For all values of KXO and for values of YS and KX at and above the baseline values, eliminating compensation at standing crops less than the equilibrium standing crops results in a greater increase in percent reduction than eliminating compensation at standing crops greater than the equilibrium standing crops.« less

  8. Simulation-based sensitivity analysis for non-ignorably missing data.

    PubMed

    Yin, Peng; Shi, Jian Q

    2017-01-01

    Sensitivity analysis is popular in dealing with missing data problems particularly for non-ignorable missingness, where full-likelihood method cannot be adopted. It analyses how sensitively the conclusions (output) may depend on assumptions or parameters (input) about missing data, i.e. missing data mechanism. We call models with the problem of uncertainty sensitivity models. To make conventional sensitivity analysis more useful in practice we need to define some simple and interpretable statistical quantities to assess the sensitivity models and make evidence based analysis. We propose a novel approach in this paper on attempting to investigate the possibility of each missing data mechanism model assumption, by comparing the simulated datasets from various MNAR models with the observed data non-parametrically, using the K-nearest-neighbour distances. Some asymptotic theory has also been provided. A key step of this method is to plug in a plausibility evaluation system towards each sensitivity parameter, to select plausible values and reject unlikely values, instead of considering all proposed values of sensitivity parameters as in the conventional sensitivity analysis method. The method is generic and has been applied successfully to several specific models in this paper including meta-analysis model with publication bias, analysis of incomplete longitudinal data and mean estimation with non-ignorable missing data.

  9. Sensitivity of Dynamical Systems to Banach Space Parameters

    DTIC Science & Technology

    2005-02-13

    We consider general nonlinear dynamical systems in a Banach space with dependence on parameters in a second Banach space. An abstract theoretical ... framework for sensitivity equations is developed. An application to measure dependent delay differential systems arising in a class of HIV models is presented.

  10. Local Sensitivity of Predicted CO 2 Injectivity and Plume Extent to Model Inputs for the FutureGen 2.0 site

    DOE PAGES

    Zhang, Z. Fred; White, Signe K.; Bonneville, Alain; ...

    2014-12-31

    Numerical simulations have been used for estimating CO2 injectivity, CO2 plume extent, pressure distribution, and Area of Review (AoR), and for the design of CO2 injection operations and monitoring network for the FutureGen project. The simulation results are affected by uncertainties associated with numerous input parameters, the conceptual model, initial and boundary conditions, and factors related to injection operations. Furthermore, the uncertainties in the simulation results also vary in space and time. The key need is to identify those uncertainties that critically impact the simulation results and quantify their impacts. We introduce an approach to determine the local sensitivity coefficientmore » (LSC), defined as the response of the output in percent, to rank the importance of model inputs on outputs. The uncertainty of an input with higher sensitivity has larger impacts on the output. The LSC is scalable by the error of an input parameter. The composite sensitivity of an output to a subset of inputs can be calculated by summing the individual LSC values. We propose a local sensitivity coefficient method and applied it to the FutureGen 2.0 Site in Morgan County, Illinois, USA, to investigate the sensitivity of input parameters and initial conditions. The conceptual model for the site consists of 31 layers, each of which has a unique set of input parameters. The sensitivity of 11 parameters for each layer and 7 inputs as initial conditions is then investigated. For CO2 injectivity and plume size, about half of the uncertainty is due to only 4 or 5 of the 348 inputs and 3/4 of the uncertainty is due to about 15 of the inputs. The initial conditions and the properties of the injection layer and its neighbour layers contribute to most of the sensitivity. Overall, the simulation outputs are very sensitive to only a small fraction of the inputs. However, the parameters that are important for controlling CO2 injectivity are not the same as those controlling the plume size. The three most sensitive inputs for injectivity were the horizontal permeability of Mt Simon 11 (the injection layer), the initial fracture-pressure gradient, and the residual aqueous saturation of Mt Simon 11, while those for the plume area were the initial salt concentration, the initial pressure, and the initial fracture-pressure gradient. The advantages of requiring only a single set of simulation results, scalability to the proper parameter errors, and easy calculation of the composite sensitivities make this approach very cost-effective for estimating AoR uncertainty and guiding cost-effective site characterization, injection well design, and monitoring network design for CO2 storage projects.« less

  11. Accuracy and sensitivity analysis on seismic anisotropy parameter estimation

    NASA Astrophysics Data System (ADS)

    Yan, Fuyong; Han, De-Hua

    2018-04-01

    There is significant uncertainty in measuring the Thomsen’s parameter δ in laboratory even though the dimensions and orientations of the rock samples are known. It is expected that more challenges will be encountered in the estimating of the seismic anisotropy parameters from field seismic data. Based on Monte Carlo simulation of vertical transversely isotropic layer cake model using the database of laboratory anisotropy measurement from the literature, we apply the commonly used quartic non-hyperbolic reflection moveout equation to estimate the seismic anisotropy parameters and test its accuracy and sensitivities to the source-receive offset, vertical interval velocity error and time picking error. The testing results show that the methodology works perfectly for noise-free synthetic data with short spread length. However, this method is extremely sensitive to the time picking error caused by mild random noises, and it requires the spread length to be greater than the depth of the reflection event. The uncertainties increase rapidly for the deeper layers and the estimated anisotropy parameters can be very unreliable for a layer with more than five overlain layers. It is possible that an isotropic formation can be misinterpreted as a strong anisotropic formation. The sensitivity analysis should provide useful guidance on how to group the reflection events and build a suitable geological model for anisotropy parameter inversion.

  12. Computer simulation of the last support phase of the long jump.

    PubMed

    Chow, John W; Hay, James G

    2005-01-01

    The purpose was to examine the interacting roles played by the approach velocity, the explosive strength (represented by vertical ground reaction force [VGRF]), and the change in angular momentum about a transverse axis through the jumper's center of mass (deltaHzz) during the last support phase of the long jump, using a computer simulation technique. A two-dimensional inverted-pendulum-plus-foot segment model was developed to simulate the last support phase. Using a reference jump derived from a jump performance reported in the literature, the effects of varying individual parameters were studied using sensitivity analyses. In each sensitivity analysis, the kinematic characteristics of the longest jumps with the deltaHzz considered and not considered when the parameter of interest was altered were noted. A sensitivity analysis examining the influence of altering both approach velocity and VGRF at the same time was also conducted. The major findings were that 1) the jump distance was more sensitive to changes in approach velocity (e.g., a 10% increase yielded a 10.0% increase in jump distance) than to changes in the VGRF (e.g., a 10% increase yielded a 7.2% increase in jump distance); 2) the relatively large change in jump distance when both the approach velocity and VGRF were altered (e.g., a 10% increase in both parameters yielded a 20.4% increase in jump distance), suggesting that these two parameters are not independent factors in determining the jump distance; and 3) the jump distance was overestimated if the deltaHzz was not considered in the analysis.

  13. Assessing uncertainty in ecological systems using global sensitivity analyses: a case example of simulated wolf reintroduction effects on elk

    USGS Publications Warehouse

    Fieberg, J.; Jenkins, Kurt J.

    2005-01-01

    Often landmark conservation decisions are made despite an incomplete knowledge of system behavior and inexact predictions of how complex ecosystems will respond to management actions. For example, predicting the feasibility and likely effects of restoring top-level carnivores such as the gray wolf (Canis lupus) to North American wilderness areas is hampered by incomplete knowledge of the predator-prey system processes and properties. In such cases, global sensitivity measures, such as Sobola?? indices, allow one to quantify the effect of these uncertainties on model predictions. Sobola?? indices are calculated by decomposing the variance in model predictions (due to parameter uncertainty) into main effects of model parameters and their higher order interactions. Model parameters with large sensitivity indices can then be identified for further study in order to improve predictive capabilities. Here, we illustrate the use of Sobola?? sensitivity indices to examine the effect of parameter uncertainty on the predicted decline of elk (Cervus elaphus) population sizes following a hypothetical reintroduction of wolves to Olympic National Park, Washington, USA. The strength of density dependence acting on survival of adult elk and magnitude of predation were the most influential factors controlling elk population size following a simulated wolf reintroduction. In particular, the form of density dependence in natural survival rates and the per-capita predation rate together accounted for over 90% of variation in simulated elk population trends. Additional research on wolf predation rates on elk and natural compensations in prey populations is needed to reliably predict the outcome of predatora??prey system behavior following wolf reintroductions.

  14. Diagnostic accuracy of electrocardiographic P wave related parameters in the assessment of left atrial size in dogs with degenerative mitral valve disease.

    PubMed

    Soto-Bustos, Ángel; Caro-Vadillo, Alicia; Martínez-DE-Merlo, Elena; Alonso-Alegre, Elisa González

    2017-10-07

    The purpose of this research was to compare the accuracy of newly described P wave-related parameters (P wave area, Macruz index and mean electrical axis) with classical P wave-related parameters (voltage and duration of P wave) for the assessment of left atrial (LA) size in dogs with degenerative mitral valve disease. One hundred forty-six dogs (37 healthy control dogs and 109 dogs with degenerative mitral valve disease) were prospectively studied. Two-dimensional echocardiography examinations and a 6-lead ECG were performed prospectively in all dogs. Echocardiography parameters, including determination of the ratios LA diameter/aortic root diameter and LA area/aortic root area, were compared to P wave-related parameters: P wave area, Macruz index, mean electrical axis voltage and duration of P wave. The results showed that P wave-related parameters (classical and newly described) had low sensitivity (range=52.3 to 77%; median=60%) and low to moderate specificity (range=47.2 to 82.5%; median 56.3%) for the prediction of left atrial enlargement. The areas under the curve of P wave-related parameters were moderate to low due to poor sensitivity. In conclusion, newly P wave-related parameters do not increase the diagnostic capacity of ECG as a predictor of left atrial enlargement in dogs with degenerative mitral valve disease.

  15. Diagnostic accuracy of electrocardiographic P wave related parameters in the assessment of left atrial size in dogs with degenerative mitral valve disease

    PubMed Central

    SOTO-BUSTOS, Ángel; CARO-VADILLO, Alicia; MARTÍNEZ-DE-MERLO, Elena; ALONSO-ALEGRE, Elisa González

    2017-01-01

    The purpose of this research was to compare the accuracy of newly described P wave-related parameters (P wave area, Macruz index and mean electrical axis) with classical P wave-related parameters (voltage and duration of P wave) for the assessment of left atrial (LA) size in dogs with degenerative mitral valve disease. One hundred forty-six dogs (37 healthy control dogs and 109 dogs with degenerative mitral valve disease) were prospectively studied. Two-dimensional echocardiography examinations and a 6-lead ECG were performed prospectively in all dogs. Echocardiography parameters, including determination of the ratios LA diameter/aortic root diameter and LA area/aortic root area, were compared to P wave-related parameters: P wave area, Macruz index, mean electrical axis voltage and duration of P wave. The results showed that P wave-related parameters (classical and newly described) had low sensitivity (range=52.3 to 77%; median=60%) and low to moderate specificity (range=47.2 to 82.5%; median 56.3%) for the prediction of left atrial enlargement. The areas under the curve of P wave-related parameters were moderate to low due to poor sensitivity. In conclusion, newly P wave-related parameters do not increase the diagnostic capacity of ECG as a predictor of left atrial enlargement in dogs with degenerative mitral valve disease. PMID:28845021

  16. Effects of railway track design on the expected degradation: Parametric study on energy dissipation

    NASA Astrophysics Data System (ADS)

    Sadri, Mehran; Steenbergen, Michaël

    2018-04-01

    This paper studies the effect of railway track design parameters on the expected long-term degradation of track geometry. The study assumes a geometrically perfect and straight track along with spatial invariability, except for the presence of discrete sleepers. A frequency-domain two-layer model is used of a discretely supported rail coupled with a moving unsprung mass. The susceptibility of the track to degradation is objectively quantified by calculating the mechanical energy dissipated in the substructure under a moving train axle for variations of different track parameters. Results show that, apart from the operational train speed, the ballast/substructure stiffness is the most significant parameter influencing energy dissipation. Generally, the degradation increases with the train speed and with softer substructures. However, stiff subgrades appear more sensitive to particular train velocities, in a regime which is mostly relevant for conventional trains (100-200 km/h) and less for high-speed operation, where a stiff subgrade is always favorable and can reduce the sensitivity to degradation substantially, with roughly a factor up to 7. Also railpad stiffness, sleeper distance and rail cross-sectional properties are found to have considerable effect, with higher expected degradation rates for increasing railpad stiffness, increasing sleeper distance and decreasing rail profile bending stiffness. Unsprung vehicle mass and sleeper mass have no significant influence, however, only against the background of the assumption of an idealized (invariant and straight) track. Apart from dissipated mechanical energy, the suitability of the dynamic track stiffness is explored as an engineering parameter to assess the sensitivity to degradation. It is found that this quantity is inappropriate to assess the design of an idealized track.

  17. Energy dissipation in polymer-polymer adhesion contacts

    NASA Astrophysics Data System (ADS)

    Garif, Yev Skip

    This study focuses on self-adhesion in elastomers as a way of approaching a broader polymer adhesion problem. The model systems studied are cross-linked acrylic pressure-sensitive adhesives (PSA-LNs) synthesized to attain four surface types: neutral, acidic, basic, and polar. As the study progressed, it distinguished itself as the first of its kind to consistently report the effect of temperature on measurable intrinsic parameters of polymer adhesion. The main goal of the study was to understand why the magnitude of the practical adhesion energies of the four PSA-LN systems tested varies disproportionately greater than their respective surface energies. To achieve this goal, continuous sweeps of adhesion energy as a function of rate of interfacial separation were performed using three different adhesion-probing techniques--- peel, micro-scratch, and normal contact. The answer was found in the sub-micron-per-second limit of separation rates. In approaching this limit, the power law behavior of adhesion gradually transitioned into a linear region of markedly weaker sensitivity to rate. Referred to as the "intrinsic window", this linear region was characterized by three parameters: (1) the intrinsic adhesion energy at zero rate of separation; (2) the intrinsic rate sensitivity equal to the proportionality constant of the linear fit; and (3) the critical separation rate in the middle of the transition to the power law. All three were found to be thermally activated. Activation energies suggested that interfacial processes are attributed mainly to dispersive and electrostatic molecular interactions such as hydrogen bonding or van der Waals attraction. Comparative analysis of the intrinsic window of the four PSA-LNs tested showed that an increase in the intrinsic adhesion energy associated with higher surface energy is inherently coupled with an increase in the intrinsic rate sensitivity and reduction in the critical separation rate. When combined, the three parameters reshape the intrinsic window such that the entire power-law portion of the adhesion response is shifted to a level that appears disproportionately high based on the false assumption that there is only one intrinsic parameter contributing to the shift. Thus, the goal of explaining this disproportionality was achieved.

  18. Modelling the effect of heterogeneity of shedding on the within herd Coxiella burnetii spread and identification of key parameters by sensitivity analysis.

    PubMed

    Courcoul, Aurélie; Monod, Hervé; Nielen, Mirjam; Klinkenberg, Don; Hogerwerf, Lenny; Beaudeau, François; Vergu, Elisabeta

    2011-09-07

    Coxiella burnetii is the bacterium responsible for Q fever, a worldwide zoonosis. Ruminants, especially cattle, are recognized as the most important source of human infections. Although a great heterogeneity between shedder cows has been described, no previous studies have determined which features such as shedding route and duration or the quantity of bacteria shed have the strongest impact on the environmental contamination and thus on the zoonotic risk. Our objective was to identify key parameters whose variation highly influences C. burnetii spread within a dairy cattle herd, especially those related to the heterogeneity of shedding. To compare the impact of epidemiological parameters on different dynamical aspects of C. burnetii infection, we performed a sensitivity analysis on an original stochastic model describing the bacterium spread and representing the individual variability of the shedding duration, routes and intensity as well as herd demography. This sensitivity analysis consisted of a principal component analysis followed by an ANOVA. Our findings show that the most influential parameters are the probability distribution governing the levels of shedding, especially in vaginal mucus and faeces, the characteristics of the bacterium in the environment (i.e. its survival and the fraction of bacteria shed reaching the environment), and some physiological parameters related to the intermittency of shedding (transition probability from a non-shedding infected state to a shedding state) or to the transition from one type of shedder to another one (transition probability from a seronegative shedding state to a seropositive shedding state). Our study is crucial for the understanding of the dynamics of C. burnetii infection and optimization of control measures. Indeed, as control measures should impact the parameters influencing the bacterium spread most, our model can now be used to assess the effectiveness of different control strategies of Q fever within dairy cattle herds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. TU-F-CAMPUS-I-01: Head and Neck Squamous Cell Carcinoma: Short-Term Repeatability of Apparent Diffusion Coefficient and Intravoxel Incoherent Motion Parameters at 3.0T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Y; Fuller, C; Mohamed, A

    2015-06-15

    Purpose: Many published studies have recently demonstrated the potential value of intravoxel incoherent motion (IVIM) analysis for disease evaluation. However, few have questioned its measurement repeatability/reproducibility when applied. The purpose of this study was to determine the short-term measurement repeatability of apparent diffusion coefficient ADC, true diffusion coefficient D, pseudodiffusion coefficient D* and perfusion fraction f, in head and neck squamous cell carcinoma (HNSCC) primary tumors and metastatic nodes. Methods: Ten patients with known HNSCC were examined twice using echo-planar DW-MRI with 12 b values (0 to 800 s/mm2) 1hour to 24 hours apart before radiation treatment. All patients weremore » scanned with the customized radiation treatment immobilization devices to reduce motion artifacts and to improve image registration in repeat scans. Regions of interests were drawn in primary tumor and metastases node in each patient (Fig. 1). ADC and IVIM parameters D, D* and f were calculated by least squares data fitting. Short-term test–retest repeatability of ADC and IVIM parameters were assessed by measuring Bland–Altman limits of agreements (BA-LA). Results: Sixteen HNSCC lesions were assessed in 10 patients. Repeatability of perfusion-sensitive parameters, D* and f, in HNSCC lesions was poor (BA-LA: -144% to 88% and −57% to 96% for D* and f, respectively); a lesser extent was observed for the diffusion-sensitive parameters of ADC and D (BA-LA: −34% to 39% and −37% to 40%, for ADC and D, respectively) (Fig. 2). Conclusion: Poor repeatability of D*/f and good repeatability for ADC/D were observed in HNSCC primary tumors and metastatic nodes. Efforts should be made to improve the measurement repeatability of perfusion-sensitive IVIM parameters.« less

  20. Experimental study on the measurement of uranium casting enrichment by time-dependent coincidence method

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Xiong; Li, Jian-Sheng; Gong, Jian; Zhu, Jian-Yu; Huang, Po

    2013-10-01

    Based on the time-dependent coincidence method, a preliminary experiment has been performed on uranium metal castings with similar quality (about 8-10 kg) and shape (hemispherical shell) in different enrichments using neutron from Cf fast fission chamber and timing DT accelerator. Groups of related parameters can be obtained by analyzing the features of time-dependent coincidence counts between source-detector and two detectors to characterize the fission signal. These parameters have high sensitivity to the enrichment, the sensitivity coefficient (defined as (ΔR/Δm)/R¯) can reach 19.3% per kg of 235U. We can distinguish uranium castings with different enrichments to hold nuclear weapon verification.

  1. FAST TRACK COMMUNICATION: Phenomenology of the equivalence principle with light scalars

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Donoghue, John F.

    2010-10-01

    Light scalar particles with couplings of sub-gravitational strength, which can generically be called 'dilatons', can produce violations of the equivalence principle. However, in order to understand experimental sensitivities one must know the coupling of these scalars to atomic systems. We report here on a study of the required couplings. We give a general Lagrangian with five independent dilaton parameters and calculate the 'dilaton charge' of atomic systems for each of these. Two combinations are particularly important. One is due to the variations in the nuclear binding energy, with a sensitivity scaling with the atomic number as A-1/3. The other is due to electromagnetism. We compare limits on the dilaton parameters from existing experiments.

  2. An investigation of new methods for estimating parameter sensitivities

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1989-01-01

    The method proposed for estimating sensitivity derivatives is based on the Recursive Quadratic Programming (RQP) method and in conjunction a differencing formula to produce estimates of the sensitivities. This method is compared to existing methods and is shown to be very competitive in terms of the number of function evaluations required. In terms of accuracy, the method is shown to be equivalent to a modified version of the Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS method employed by the RQP algorithm. Initial testing on a test set with known sensitivities demonstrates that the method can accurately calculate the parameter sensitivity.

  3. Some considerations in the evaluation of Seasat-A scatterometer /SASS/ measurements

    NASA Technical Reports Server (NTRS)

    Halberstam, I.

    1980-01-01

    A study is presented of the geophysical algorithms relating the Seasat-A scatterometer (SASS) backscatter measurements with a wind parameter. Although these measurements are closely related to surface features, an identification with surface layer parameters such as friction velocity or the roughness length is difficult. It is shown how surface truth in the form of wind speeds and coincident stability can be used to derive friction velocity or the equivalent neutral wind at an arbitrary height; it is also shown that the derived friction velocity values are sensitive to contested formulations relating friction velocity to the roughness length, while the derived values of the equivalent neutral wind are not. Examples of geophysical verification are demonstrated using values obtained from the Gulf of Alaska Seasat Experiment; these results show very little sensitivity to the type of wind parameter employed, suggesting that this insensitivity is mainly due to a large scatter in the SASS and surface truth data.

  4. Multiple angles on the sterile neutrino - a combined view of cosmological and oscillation limits

    NASA Astrophysics Data System (ADS)

    Guzowski, Pawel

    2017-09-01

    The possible existence of sterile neutrinos is an important unresolved question for both particle physics and cosmology. Data sensitive to a sterile neutrino is coming from both particle physics experiments and from astrophysical measurements of the Cosmic Microwave Background. In this study, we address the question whether these two contrasting data sets provide complementary information about sterile neutrinos. We focus on the muon disappearance oscillation channel, taking data from the MINOS, ICECUBE and Planck experiments, converting the limits into particle physics and cosmological parameter spaces, to illustrate the different regions of parameter space where the data sets have the best sensitivity. For the first time, we combine the data sets into a single analysis to illustrate how the limits on the parameters of the sterile-neutrino model are strengthened. We investigate how data from a future accelerator neutrino experiment (SBN) will be able to further constrain this picture.

  5. Application of impulse oscillometry and bronchial dilation test for analysis in patients with asthma and chronic obstructive pulmonary disease

    PubMed Central

    Li, Yueyue; Chen, Yang; Wang, Ping

    2015-01-01

    Impulse oscillometry (IOS) is a good method for measuring airway resistance. The aim of this study was to assess the diagnostic contribution of IOS combined with bronchial dilation test (BDT) when distinguishing between patients with asthma and those with chronic obstructive pulmonary disease (COPD). 870 were enrolled in the study including 561 patients with asthma, 100 patients with COPD and 209 patients with chronic coughing or normal subjects. All the participants underwent routine pulmonary function tests, IOS and BDT examination. And IOS examination was before and after BDT. IOS parameters (R5, R20, R25, R35, X5, X20, X25, X35, Fres, Zrs & RP) and forced expiratory volume in one second (FEV1) were recorded. Receiver operating characteristics (ROC) curve analysis was performed to evaluate the diagnostic ability to differentiate asthma and COPD. The discriminative power of the various parameters studied was determined by means of ROC curves: the area under the curve (AUC), sensitivity and specificity. The X5, X20, X25, X35, Fres, Zrs and Rp correlated better with COPD. In particular, X5, Fres and X25 have been found to be significantly correlated with COPD. The diagnostic efficiency of X5, Fres and X25 when diagnosis COPD, expressed by ROC curve parameters, was as follows: AUC (0.725, 0.730, 0.724), sensitivity (67%, 77%, 83%) and specificity (68%, 65%, 58%), respectively. The diagnostic efficiency of Zrs, R5 and X35 when diagnosis asthma, expressed by ROC curve parameters, was as follows: AUC (0.721, 0.710, 0.695), sensitivity (62%, 72%, 53%) and specificity (72%, 61%, 76%), respectively. Our findings show, that X5, X25 and Fres may be useful for predictions and evaluations for COPD. And R5, X35 and Zrs may provide useful IOS parameters for asthma. IOS combined BDT could be useful diagnostic and differential diagnosis between asthma and COPD. PMID:25785124

  6. Application of impulse oscillometry and bronchial dilation test for analysis in patients with asthma and chronic obstructive pulmonary disease.

    PubMed

    Li, Yueyue; Chen, Yang; Wang, Ping

    2015-01-01

    Impulse oscillometry (IOS) is a good method for measuring airway resistance. The aim of this study was to assess the diagnostic contribution of IOS combined with bronchial dilation test (BDT) when distinguishing between patients with asthma and those with chronic obstructive pulmonary disease (COPD). 870 were enrolled in the study including 561 patients with asthma, 100 patients with COPD and 209 patients with chronic coughing or normal subjects. All the participants underwent routine pulmonary function tests, IOS and BDT examination. And IOS examination was before and after BDT. IOS parameters (R5, R20, R25, R35, X5, X20, X25, X35, Fres, Zrs & RP) and forced expiratory volume in one second (FEV1) were recorded. Receiver operating characteristics (ROC) curve analysis was performed to evaluate the diagnostic ability to differentiate asthma and COPD. The discriminative power of the various parameters studied was determined by means of ROC curves: the area under the curve (AUC), sensitivity and specificity. The X5, X20, X25, X35, Fres, Zrs and Rp correlated better with COPD. In particular, X5, Fres and X25 have been found to be significantly correlated with COPD. The diagnostic efficiency of X5, Fres and X25 when diagnosis COPD, expressed by ROC curve parameters, was as follows: AUC (0.725, 0.730, 0.724), sensitivity (67%, 77%, 83%) and specificity (68%, 65%, 58%), respectively. The diagnostic efficiency of Zrs, R5 and X35 when diagnosis asthma, expressed by ROC curve parameters, was as follows: AUC (0.721, 0.710, 0.695), sensitivity (62%, 72%, 53%) and specificity (72%, 61%, 76%), respectively. Our findings show, that X5, X25 and Fres may be useful for predictions and evaluations for COPD. And R5, X35 and Zrs may provide useful IOS parameters for asthma. IOS combined BDT could be useful diagnostic and differential diagnosis between asthma and COPD.

  7. Theoretical Studies on Structures and Relative Stability for Polynitrohexaazaadamantanes

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-juan; Xiao, He-ming; Wang, Gui-xiang; Ju, Xue-hai

    2006-10-01

    The density function theory at the B3LYP/6-31G* level was employed to study the structures, including the total energies (EZPE), the geometries, the oxygen balances (OB100), the dipole moments, of polynitro-hexaazaadamantanes (PNHAAs) and the potential candidates of high energy density compounds (HEDCs). The structural parameters of PNHAAs, such as the the maximum N—NO2 bond length (LBmax), the least N—N Mulliken population (BN—N), the least negative charge on the nitro group (QNO2) and OB100, were studied to predict their relative stability or sensitivity (the easiness for initiating a detonation, high sensitivity means low stability). It was found that the same conclusion was drawn from the four parameters. With the number of nitro groups increasing, the stabilities of these compounds decrease. OB100 failed in identifying the isomers, but the EZPE energy and the dipole moment were considered to give more reliable results for the isomers.

  8. Mössbauer studies of malaria

    NASA Astrophysics Data System (ADS)

    Bauminger, E. R.; Ginsburg, H.; Ofer, S.; Yayon, A.

    1983-12-01

    Mössbauer studies of rat and human erythrocytes infected by malarial parasites have been carried out. Different parameters of the pigment iron were obtained in human and rat infected red blood cells. No difference was found between the parameters obtained in rat erythrocytes infected by drug sensitive and drug resistant strains of p. berghei, both before and after the treatment with chloroquine. The pigment was shown to contain a trivalent, high spin iron compound, which is different from hematin.

  9. Sensitivity analysis in economic evaluation: an audit of NICE current practice and a review of its use and value in decision-making.

    PubMed

    Andronis, L; Barton, P; Bryan, S

    2009-06-01

    To determine how we define good practice in sensitivity analysis in general and probabilistic sensitivity analysis (PSA) in particular, and to what extent it has been adhered to in the independent economic evaluations undertaken for the National Institute for Health and Clinical Excellence (NICE) over recent years; to establish what policy impact sensitivity analysis has in the context of NICE, and policy-makers' views on sensitivity analysis and uncertainty, and what use is made of sensitivity analysis in policy decision-making. Three major electronic databases, MEDLINE, EMBASE and the NHS Economic Evaluation Database, were searched from inception to February 2008. The meaning of 'good practice' in the broad area of sensitivity analysis was explored through a review of the literature. An audit was undertaken of the 15 most recent NICE multiple technology appraisal judgements and their related reports to assess how sensitivity analysis has been undertaken by independent academic teams for NICE. A review of the policy and guidance documents issued by NICE aimed to assess the policy impact of the sensitivity analysis and the PSA in particular. Qualitative interview data from NICE Technology Appraisal Committee members, collected as part of an earlier study, were also analysed to assess the value attached to the sensitivity analysis components of the economic analyses conducted for NICE. All forms of sensitivity analysis, notably both deterministic and probabilistic approaches, have their supporters and their detractors. Practice in relation to univariate sensitivity analysis is highly variable, with considerable lack of clarity in relation to the methods used and the basis of the ranges employed. In relation to PSA, there is a high level of variability in the form of distribution used for similar parameters, and the justification for such choices is rarely given. Virtually all analyses failed to consider correlations within the PSA, and this is an area of concern. Uncertainty is considered explicitly in the process of arriving at a decision by the NICE Technology Appraisal Committee, and a correlation between high levels of uncertainty and negative decisions was indicated. The findings suggest considerable value in deterministic sensitivity analysis. Such analyses serve to highlight which model parameters are critical to driving a decision. Strong support was expressed for PSA, principally because it provides an indication of the parameter uncertainty around the incremental cost-effectiveness ratio. The review and the policy impact assessment focused exclusively on documentary evidence, excluding other sources that might have revealed further insights on this issue. In seeking to address parameter uncertainty, both deterministic and probabilistic sensitivity analyses should be used. It is evident that some cost-effectiveness work, especially around the sensitivity analysis components, represents a challenge in making it accessible to those making decisions. This speaks to the training agenda for those sitting on such decision-making bodies, and to the importance of clear presentation of analyses by the academic community.

  10. CASL L2 milestone report : VUQ.Y1.03, %22Enable statistical sensitivity and UQ demonstrations for VERA.%22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Yixing; Adams, Brian M.; Witkowski, Walter R.

    2011-04-01

    The CASL Level 2 Milestone VUQ.Y1.03, 'Enable statistical sensitivity and UQ demonstrations for VERA,' was successfully completed in March 2011. The VUQ focus area led this effort, in close partnership with AMA, and with support from VRI. DAKOTA was coupled to VIPRE-W thermal-hydraulics simulations representing reactors of interest to address crud-related challenge problems in order to understand the sensitivity and uncertainty in simulation outputs with respect to uncertain operating and model form parameters. This report summarizes work coupling the software tools, characterizing uncertainties, selecting sensitivity and uncertainty quantification algorithms, and analyzing the results of iterative studies. These demonstration studies focusedmore » on sensitivity and uncertainty of mass evaporation rate calculated by VIPRE-W, a key predictor for crud-induced power shift (CIPS).« less

  11. Using global sensitivity analysis of demographic models for ecological impact assessment.

    PubMed

    Aiello-Lammens, Matthew E; Akçakaya, H Resit

    2017-02-01

    Population viability analysis (PVA) is widely used to assess population-level impacts of environmental changes on species. When combined with sensitivity analysis, PVA yields insights into the effects of parameter and model structure uncertainty. This helps researchers prioritize efforts for further data collection so that model improvements are efficient and helps managers prioritize conservation and management actions. Usually, sensitivity is analyzed by varying one input parameter at a time and observing the influence that variation has over model outcomes. This approach does not account for interactions among parameters. Global sensitivity analysis (GSA) overcomes this limitation by varying several model inputs simultaneously. Then, regression techniques allow measuring the importance of input-parameter uncertainties. In many conservation applications, the goal of demographic modeling is to assess how different scenarios of impact or management cause changes in a population. This is challenging because the uncertainty of input-parameter values can be confounded with the effect of impacts and management actions. We developed a GSA method that separates model outcome uncertainty resulting from parameter uncertainty from that resulting from projected ecological impacts or simulated management actions, effectively separating the 2 main questions that sensitivity analysis asks. We applied this method to assess the effects of predicted sea-level rise on Snowy Plover (Charadrius nivosus). A relatively small number of replicate models (approximately 100) resulted in consistent measures of variable importance when not trying to separate the effects of ecological impacts from parameter uncertainty. However, many more replicate models (approximately 500) were required to separate these effects. These differences are important to consider when using demographic models to estimate ecological impacts of management actions. © 2016 Society for Conservation Biology.

  12. Ocimum basilicum affects tracheal responsiveness, lung inflammatory cells and oxidant-antioxidant biomarkers in sensitized rats.

    PubMed

    Eftekhar, Naeima; Moghimi, Ali; Hossein Boskabady, Mohammad; Kaveh, Mahsa; Shakeri, Farzaneh

    2018-04-23

    The anti-inflammatory and antioxidant effects of Ocimum basilicum (O. basilicum) was shown previously. In the present study, the effect of O. basilicum on tracheal responsiveness (TR) to methacholine and ovalbumin (OVA), bronchoalveolar lavage fluid (BALF) levels of oxidant-antioxidant biomarkers as well as total and differential white blood cell (WBC) in sensitized rats was examined. Six groups of rats including control (group C), sensitized rats to OVA (group S), S groups treated with three concentrations of O. basilicum (0.75, 1.50, and 3.00 mg/ml) and one concentration of dexamethasone (1.25 μg/ml) (n = 8 for all groups) were studied. TR to methacholine and OVA, total WBC count, percentages of eosinophils, monocytes, neutrophils, and levels of oxidant biomarkers were significantly increased but other measured parameters were significantly decreased in group S compared to group C. TR to methacholine and OVA, percentages of eosinophils, monocytes, neutrophils, and levels of oxidant biomarkers were significantly decreased but lymphocytes and antioxidant biomarkers were significantly increased in S groups treated with dexamethasone and at least two higher concentrations of the extract compared to group S. Total WBC count was also decreased in treated S groups with dexamethasone and high extract concentration. The effect of extract on most measured parameters was significantly lower than dexamethasone treatment. The effects of two higher concentrations of the extract on most variables were significantly higher than the effect of low extract concentration. These results showed the concentration-dependent effect of O. basilicum on tracheal responses, lung inflammatory cells, and oxidant-antioxidant parameters in sensitized rats.

  13. Plantar pressure measurements and running-related injury: A systematic review of methods and possible associations.

    PubMed

    Mann, Robert; Malisoux, Laurent; Urhausen, Axel; Meijer, Kenneth; Theisen, Daniel

    2016-06-01

    Pressure-sensitive measuring devices have been identified as appropriate tools for measuring an array of parameters during running. It is unclear which biomechanical characteristics relate to running-related injury (RRI) and which data-processing techniques are most promising to detect this relationship. This systematic review aims to identify pertinent methodologies and characteristics measured using plantar pressure devices, and to summarise their associations with RRI. PubMed, Embase, CINAHL, ScienceDirect and Scopus were searched up until March 2015. Retrospective and prospective, biomechanical studies on running using any kind of pressure-sensitive device with RRI as an outcome were included. All studies involving regular or recreational runners were considered. The study quality was assessed and the measured parameters were summarised. One low quality, two moderate quality and five high quality studies were included. Five different subdivisions of plantar area were identified, as well as five instants and four phases of measurement during foot-ground contact. Overall many parameters were collated and subdivided as plantar pressure and force, plantar pressure and force location, contact area, timing and stride parameters. Differences between the injured and control group were found for mediolateral and anteroposterior displacement of force, contact area, velocity of force displacement, relative force-time integral, mediolateral force ratio, time to peak force and inter-stride correlative patterns. However, no consistent results were found between studies and no biomechanical risk patterns were apparent. Additionally, conflicting findings were reported for peak force in three studies. Based on these observations, we provide suggestions for improved methodology measurement of pertinent parameters for future studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Net thrust calculation sensitivity of an afterburning turbofan engine to variations in input parameters

    NASA Technical Reports Server (NTRS)

    Hughes, D. L.; Ray, R. J.; Walton, J. T.

    1985-01-01

    The calculated value of net thrust of an aircraft powered by a General Electric F404-GE-400 afterburning turbofan engine was evaluated for its sensitivity to various input parameters. The effects of a 1.0-percent change in each input parameter on the calculated value of net thrust with two calculation methods are compared. This paper presents the results of these comparisons and also gives the estimated accuracy of the overall net thrust calculation as determined from the influence coefficients and estimated parameter measurement accuracies.

  15. Sensitivity to mental effort and test-retest reliability of heart rate variability measures in healthy seniors.

    PubMed

    Mukherjee, Shalini; Yadav, Rajeev; Yung, Iris; Zajdel, Daniel P; Oken, Barry S

    2011-10-01

    To determine (1) whether heart rate variability (HRV) was a sensitive and reliable measure in mental effort tasks carried out by healthy seniors and (2) whether non-linear approaches to HRV analysis, in addition to traditional time and frequency domain approaches were useful to study such effects. Forty healthy seniors performed two visual working memory tasks requiring different levels of mental effort, while ECG was recorded. They underwent the same tasks and recordings 2 weeks later. Traditional and 13 non-linear indices of HRV including Poincaré, entropy and detrended fluctuation analysis (DFA) were determined. Time domain, especially mean R-R interval (RRI), frequency domain and, among non-linear parameters - Poincaré and DFA were the most reliable indices. Mean RRI, time domain and Poincaré were also the most sensitive to different mental effort task loads and had the largest effect size. Overall, linear measures were the most sensitive and reliable indices to mental effort. In non-linear measures, Poincaré was the most reliable and sensitive, suggesting possible usefulness as an independent marker in cognitive function tasks in healthy seniors. A large number of HRV parameters was both reliable as well as sensitive indices of mental effort, although the simple linear methods were the most sensitive. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Assessing Sexual Dicromatism: The Importance of Proper Parameterization in Tetrachromatic Visual Models

    PubMed Central

    Janisse, Kevyn; Doucet, Stéphanie M.

    2017-01-01

    Perceptual models of animal vision have greatly contributed to our understanding of animal-animal and plant-animal communication. The receptor-noise model of color contrasts has been central to this research as it quantifies the difference between two colors for any visual system of interest. However, if the properties of the visual system are unknown, assumptions regarding parameter values must be made, generally with unknown consequences. In this study, we conduct a sensitivity analysis of the receptor-noise model using avian visual system parameters to systematically investigate the influence of variation in light environment, photoreceptor sensitivities, photoreceptor densities, and light transmission properties of the ocular media and the oil droplets. We calculated the chromatic contrast of 15 plumage patches to quantify a dichromatism score for 70 species of Galliformes, a group of birds that display a wide range of sexual dimorphism. We found that the photoreceptor densities and the wavelength of maximum sensitivity of the short-wavelength-sensitive photoreceptor 1 (SWS1) can change dichromatism scores by 50% to 100%. In contrast, the light environment, transmission properties of the oil droplets, transmission properties of the ocular media, and the peak sensitivities of the cone photoreceptors had a smaller impact on the scores. By investigating the effect of varying two or more parameters simultaneously, we further demonstrate that improper parameterization could lead to differences between calculated and actual contrasts of more than 650%. Our findings demonstrate that improper parameterization of tetrachromatic visual models can have very large effects on measures of dichromatism scores, potentially leading to erroneous inferences. We urge more complete characterization of avian retinal properties and recommend that researchers either determine whether their species of interest possess an ultraviolet or near-ultraviolet sensitive SWS1 photoreceptor, or present models for both. PMID:28076391

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  18. Estimating the Geocenter from GNSS Observations

    NASA Astrophysics Data System (ADS)

    Dach, Rolf; Michael, Meindl; Beutler, Gerhard; Schaer, Stefan; Lutz, Simon; Jäggi, Adrian

    2014-05-01

    The satellites of the Global Navigation Satellite Systems (GNSS) are orbiting the Earth according to the laws of celestial mechanics. As a consequence, the satellites are sensitive to the coordinates of the center of mass of the Earth. The coordinates of the (ground) tracking stations are referring to the center of figure as the conventional origin of the reference frame. The difference between the center of mass and center of figure is the instantaneous geocenter. Following this definition the global GNSS solutions are sensitive to the geocenter. Several studies demonstrated strong correlations of the GNSS-derived geocenter coordinates with parameters intended to absorb radiation pressure effects acting on the GNSS satellites, and with GNSS satellite clock parameters. One should thus pose the question to what extent these satellite-related parameters absorb (or hide) the geocenter information. A clean simulation study has been performed to answer this question. The simulation environment allows it in particular to introduce user-defined shifts of the geocenter (systematic inconsistencies between the satellite's and station's reference frames). These geocenter shifts may be recovered by the mentioned parameters - provided they were set up in the analysis. If the geocenter coordinates are not estimated, one may find out which other parameters absorb the user-defined shifts of the geocenter and to what extent. Furthermore, the simulation environment also allows it to extract the correlation matrix from the a posteriori covariance matrix to study the correlations between different parameter types of the GNSS analysis system. Our results show high degrees of correlations between geocenter coordinates, orbit-related parameters, and satellite clock parameters. These correlations are of the same order of magnitude as the correlations between station heights, troposphere, and receiver clock parameters in each regional or global GNSS network analysis. If such correlations are accepted in a GNSS analysis when estimating station coordinates, geocenter coordinates must be considered as mathematically estimable in a global GNSS analysis. The geophysical interpretation may of course become difficult, e.g., if insufficient orbit models are used.

  19. Event-scale power law recession analysis: quantifying methodological uncertainty

    NASA Astrophysics Data System (ADS)

    Dralle, David N.; Karst, Nathaniel J.; Charalampous, Kyriakos; Veenstra, Andrew; Thompson, Sally E.

    2017-01-01

    The study of single streamflow recession events is receiving increasing attention following the presentation of novel theoretical explanations for the emergence of power law forms of the recession relationship, and drivers of its variability. Individually characterizing streamflow recessions often involves describing the similarities and differences between model parameters fitted to each recession time series. Significant methodological sensitivity has been identified in the fitting and parameterization of models that describe populations of many recessions, but the dependence of estimated model parameters on methodological choices has not been evaluated for event-by-event forms of analysis. Here, we use daily streamflow data from 16 catchments in northern California and southern Oregon to investigate how combinations of commonly used streamflow recession definitions and fitting techniques impact parameter estimates of a widely used power law recession model. Results are relevant to watersheds that are relatively steep, forested, and rain-dominated. The highly seasonal mediterranean climate of northern California and southern Oregon ensures study catchments explore a wide range of recession behaviors and wetness states, ideal for a sensitivity analysis. In such catchments, we show the following: (i) methodological decisions, including ones that have received little attention in the literature, can impact parameter value estimates and model goodness of fit; (ii) the central tendencies of event-scale recession parameter probability distributions are largely robust to methodological choices, in the sense that differing methods rank catchments similarly according to the medians of these distributions; (iii) recession parameter distributions are method-dependent, but roughly catchment-independent, such that changing the choices made about a particular method affects a given parameter in similar ways across most catchments; and (iv) the observed correlative relationship between the power-law recession scale parameter and catchment antecedent wetness varies depending on recession definition and fitting choices. Considering study results, we recommend a combination of four key methodological decisions to maximize the quality of fitted recession curves, and to minimize bias in the related populations of fitted recession parameters.

  20. Parameter Tuning and Calibration of RegCM3 with MIT-Emanuel Cumulus Parameterization Scheme over CORDEX East Asian Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Liwei; Qian, Yun; Zhou, Tianjun

    2014-10-01

    In this study, we calibrated the performance of regional climate model RegCM3 with Massachusetts Institute of Technology (MIT)-Emanuel cumulus parameterization scheme over CORDEX East Asia domain by tuning the selected seven parameters through multiple very fast simulated annealing (MVFSA) sampling method. The seven parameters were selected based on previous studies, which customized the RegCM3 with MIT-Emanuel scheme through three different ways by using the sensitivity experiments. The responses of model results to the seven parameters were investigated. Since the monthly total rainfall is constrained, the simulated spatial pattern of rainfall and the probability density function (PDF) distribution of daily rainfallmore » rates are significantly improved in the optimal simulation. Sensitivity analysis suggest that the parameter “relative humidity criteria” (RH), which has not been considered in the default simulation, has the largest effect on the model results. The responses of total rainfall over different regions to RH were examined. Positive responses of total rainfall to RH are found over northern equatorial western Pacific, which are contributed by the positive responses of explicit rainfall. Followed by an increase of RH, the increases of the low-level convergence and the associated increases in cloud water favor the increase of the explicit rainfall. The identified optimal parameters constrained by the total rainfall have positive effects on the low-level circulation and the surface air temperature. Furthermore, the optimized parameters based on the extreme case are suitable for a normal case and the model’s new version with mixed convection scheme.« less

Top