Atmospheric environment for Space Shuttle (STS-41D) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Jasper, G.; Batts, G. W.
1984-01-01
Selected atmospheric conditions observed near Space Shuttle STS-41D launch time on August 30, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given as well as wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final atmospheric tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-41D vehicle ascent and SRB descent/impact were constructed. The STS-41D ascent meteorological data tape was constructed by Marshall Space Flight Center's Atmospheric Science Division to provide an internally consistent data set for use in post flight performance assessments.
Physics issues of gamma ray burst emissions
NASA Technical Reports Server (NTRS)
Liang, Edison
1987-01-01
The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.
Nana, Roger; Hu, Xiaoping
2010-01-01
k-space-based reconstruction in parallel imaging depends on the reconstruction kernel setting, including its support. An optimal choice of the kernel depends on the calibration data, coil geometry and signal-to-noise ratio, as well as the criterion used. In this work, data consistency, imposed by the shift invariance requirement of the kernel, is introduced as a goodness measure of k-space-based reconstruction in parallel imaging and demonstrated. Data consistency error (DCE) is calculated as the sum of squared difference between the acquired signals and their estimates obtained based on the interpolation of the estimated missing data. A resemblance between DCE and the mean square error in the reconstructed image was found, demonstrating DCE's potential as a metric for comparing or choosing reconstructions. When used for selecting the kernel support for generalized autocalibrating partially parallel acquisition (GRAPPA) reconstruction and the set of frames for calibration as well as the kernel support in temporal GRAPPA reconstruction, DCE led to improved images over existing methods. Data consistency error is efficient to evaluate, robust for selecting reconstruction parameters and suitable for characterizing and optimizing k-space-based reconstruction in parallel imaging.
Construction of non-Abelian gauge theories on noncommutative spaces
NASA Astrophysics Data System (ADS)
Jurčo, B.; Möller, L.; Schraml, S.; Schupp, P.; Wess, J.
We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories.
Clustering fossils in solid inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhshik, Mohammad, E-mail: m.akhshik@ipm.ir
In solid inflation the single field non-Gaussianity consistency condition is violated. As a result, the long tenor perturbation induces observable clustering fossils in the form of quadrupole anisotropy in large scale structure power spectrum. In this work we revisit the bispectrum analysis for the scalar-scalar-scalar and tensor-scalar-scalar bispectrum for the general parameter space of solid. We consider the parameter space of the model in which the level of non-Gaussianity generated is consistent with the Planck constraints. Specializing to this allowed range of model parameter we calculate the quadrupole anisotropy induced from the long tensor perturbations on the power spectrum ofmore » the scalar perturbations. We argue that the imprints of clustering fossil from primordial gravitational waves on large scale structures can be detected from the future galaxy surveys.« less
Adaptive Parameter Estimation of Person Recognition Model in a Stochastic Human Tracking Process
NASA Astrophysics Data System (ADS)
Nakanishi, W.; Fuse, T.; Ishikawa, T.
2015-05-01
This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.
Atmospheric environment for Space Shuttle (STS-11) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Batts, G. W.
1984-01-01
Atmospheric conditions observed near Space Shuttle STS-11 launch time on February 3, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles are reported. Wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area are presented. Meteorological tapes, which consist of wind and thermodynamic parameters vesus altitude, for STS-11 vehicle ascent and SRB descent/impact were constructed.
Linear system identification via backward-time observer models
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh
1993-01-01
This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.
Combined loading criterial influence on structural performance
NASA Technical Reports Server (NTRS)
Kuchta, B. J.; Sealey, D. M.; Howell, L. J.
1972-01-01
An investigation was conducted to determine the influence of combined loading criteria on the space shuttle structural performance. The study consisted of four primary phases: Phase (1) The determination of the sensitivity of structural weight to various loading parameters associated with the space shuttle. Phase (2) The determination of the sensitivity of structural weight to various levels of loading parameter variability and probability. Phase (3) The determination of shuttle mission loading parameters variability and probability as a function of design evolution and the identification of those loading parameters where inadequate data exists. Phase (4) The determination of rational methods of combining both deterministic time varying and probabilistic loading parameters to provide realistic design criteria. The study results are presented.
Atmospheric environment for Space Shuttle (STS-51D)
NASA Technical Reports Server (NTRS)
Jasper, G. L.; Johnson, D. L.; Hill, C. K.; Batts, G. W.
1985-01-01
A summary of selected atmospheric conditions observed near the space shuttle STS-51D launch time on April 12, 1985, at Kennedy Space Center Florida is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51D vehicle ascent is constructed. The STS-51D ascent atmospheric data tape is compiled by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post-flight performance assessments.
Atmospheric environment for Space Shuttle (STS-3) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Brown, S. C.; Batts, G. W.
1982-01-01
Selected atmospheric conditions observed near Space Shuttle STS-3 launch time on March 22, 1982, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prlaunch Jimsphere measured vertical wind profiles and the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area are presented. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-3 vehicle ascent and SRB descent were constructed. The STS-3 ascent meteorological data tape is constructed.
Asymmetric Wormholes via Electrically Charged Lightlike Branes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guendelman, E.; Kaganovich, A.; Nissimov, E.
2010-06-17
We consider a self-consistent Einstein-Maxwell-Kalb-Ramond system in the bulk D = 4 space-time interacting with a variable-tension electrically charged lightlike brane. The latter serves both as a material and charge source for gravity and electromagnetism, as well as it dynamically generates a bulk space varying cosmological constant. We find an asymmetric wormhole solution describing two 'universes' with different spherically symmetric black-hole-type geometries connected through a 'throat' occupied by the lightlike brane. The electrically neutral 'left universe' comprises the exterior region of Schwarzschild-de-Sitter (or pure Schwarzschild) space-time above the inner(Schwarzschild-type) horizon, whereas the electrically charged 'right universe' consists of the exteriormore » Reissner-Nordstroem (or Reissner-Nordstroem-de-Sitter) black hole region beyond the outer Reissner-Nordstroem horizon. All physical parameters of the wormhole are uniquely determined by two free parameters - the electric charge and Kalb-Ramond coupling of the lightlike brane.« less
Sensitivity study of Space Station Freedom operations cost and selected user resources
NASA Technical Reports Server (NTRS)
Accola, Anne; Fincannon, H. J.; Williams, Gregory J.; Meier, R. Timothy
1990-01-01
The results of sensitivity studies performed to estimate probable ranges for four key Space Station parameters using the Space Station Freedom's Model for Estimating Space Station Operations Cost (MESSOC) are discussed. The variables examined are grouped into five main categories: logistics, crew, design, space transportation system, and training. The modification of these variables implies programmatic decisions in areas such as orbital replacement unit (ORU) design, investment in repair capabilities, and crew operations policies. The model utilizes a wide range of algorithms and an extensive trial logistics data base to represent Space Station operations. The trial logistics data base consists largely of a collection of the ORUs that comprise the mature station, and their characteristics based on current engineering understanding of the Space Station. A nondimensional approach is used to examine the relative importance of variables on parameters.
Genetic Algorithm-Based Model Order Reduction of Aeroservoelastic Systems with Consistant States
NASA Technical Reports Server (NTRS)
Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter M.; Brenner, Martin J.
2017-01-01
This paper presents a model order reduction framework to construct linear parameter-varying reduced-order models of flexible aircraft for aeroservoelasticity analysis and control synthesis in broad two-dimensional flight parameter space. Genetic algorithms are used to automatically determine physical states for reduction and to generate reduced-order models at grid points within parameter space while minimizing the trial-and-error process. In addition, balanced truncation for unstable systems is used in conjunction with the congruence transformation technique to achieve locally optimal realization and weak fulfillment of state consistency across the entire parameter space. Therefore, aeroservoelasticity reduced-order models at any flight condition can be obtained simply through model interpolation. The methodology is applied to the pitch-plant model of the X-56A Multi-Use Technology Testbed currently being tested at NASA Armstrong Flight Research Center for flutter suppression and gust load alleviation. The present studies indicate that the reduced-order model with more than 12× reduction in the number of states relative to the original model is able to accurately predict system response among all input-output channels. The genetic-algorithm-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The interpolated aeroservoelasticity reduced order models exhibit smooth pole transition and continuously varying gains along a set of prescribed flight conditions, which verifies consistent state representation obtained by congruence transformation. The present model order reduction framework can be used by control engineers for robust aeroservoelasticity controller synthesis and novel vehicle design.
Method for using global optimization to the estimation of surface-consistent residual statics
Reister, David B.; Barhen, Jacob; Oblow, Edward M.
2001-01-01
An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.
A generalized analysis of solar space heating
NASA Astrophysics Data System (ADS)
Clark, J. A.
A life-cycle model is developed for solar space heating within the United States. The model consists of an analytical relationship among five dimensionless parameters that include all pertinent technical, climatological, solar, operating and economic factors that influence the performance of a solar space heating system. An important optimum condition presented is the break-even metered cost of conventional fuel at which the cost of the solar system is equal to that of a conventional heating system. The effect of Federal (1980) and State (1979) income tax credits on these costs is determined. A parameter that includes both solar availability and solar system utilization is derived and plotted on a map of the U.S. This parameter shows the most favorable present locations for solar space heating application to be in the Central and Mountain States. The data employed are related to the rehabilitated solar data recently made available by the National Climatic Center.
Atmospheric environment for Space Shuttle (STS-5) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Batts, G. W.
1983-01-01
This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-5 launch time on November 11, 1982, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Also presented are the wind and thermodynamic parameters measured at the surface and aloft in he SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-5 vehicle ascent and SRB descent have been constructed. The STS-5 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 936-53-22-368 with Johnson Space Center.
Utilization of Expert Knowledge in a Multi-Objective Hydrologic Model Automatic Calibration Process
NASA Astrophysics Data System (ADS)
Quebbeman, J.; Park, G. H.; Carney, S.; Day, G. N.; Micheletty, P. D.
2016-12-01
Spatially distributed continuous simulation hydrologic models have a large number of parameters for potential adjustment during the calibration process. Traditional manual calibration approaches of such a modeling system is extremely laborious, which has historically motivated the use of automatic calibration procedures. With a large selection of model parameters, achieving high degrees of objective space fitness - measured with typical metrics such as Nash-Sutcliffe, Kling-Gupta, RMSE, etc. - can easily be achieved using a range of evolutionary algorithms. A concern with this approach is the high degree of compensatory calibration, with many similarly performing solutions, and yet grossly varying parameter set solutions. To help alleviate this concern, and mimic manual calibration processes, expert knowledge is proposed for inclusion within the multi-objective functions, which evaluates the parameter decision space. As a result, Pareto solutions are identified with high degrees of fitness, but also create parameter sets that maintain and utilize available expert knowledge resulting in more realistic and consistent solutions. This process was tested using the joint SNOW-17 and Sacramento Soil Moisture Accounting method (SAC-SMA) within the Animas River basin in Colorado. Three different elevation zones, each with a range of parameters, resulted in over 35 model parameters simultaneously calibrated. As a result, high degrees of fitness were achieved, in addition to the development of more realistic and consistent parameter sets such as those typically achieved during manual calibration procedures.
NASA Technical Reports Server (NTRS)
Ebeling, Charles
1991-01-01
The primary objective is to develop a methodology for predicting operational and support parameters and costs of proposed space systems. The first phase consists of: (1) the identification of data sources; (2) the development of a methodology for determining system reliability and maintainability parameters; (3) the implementation of the methodology through the use of prototypes; and (4) support in the development of an integrated computer model. The phase 1 results are documented and a direction is identified to proceed to accomplish the overall objective.
LAMOST DR1: Stellar Parameters and Chemical Abundances with SP_Ace
NASA Astrophysics Data System (ADS)
Boeche, C.; Smith, M. C.; Grebel, E. K.; Zhong, J.; Hou, J. L.; Chen, L.; Stello, D.
2018-04-01
We present a new analysis of the LAMOST DR1 survey spectral database performed with the code SP_Ace, which provides the derived stellar parameters {T}{{eff}}, {log}g, [Fe/H], and [α/H] for 1,097,231 stellar objects. We tested the reliability of our results by comparing them to reference results from high spectral resolution surveys. The expected errors can be summarized as ∼120 K in {T}{{eff}}, ∼0.2 in {log}g, ∼0.15 dex in [Fe/H], and ∼0.1 dex in [α/Fe] for spectra with S/N > 40, with some differences between dwarf and giant stars. SP_Ace provides error estimations consistent with the discrepancies observed between derived and reference parameters. Some systematic errors are identified and discussed. The resulting catalog is publicly available at the LAMOST and CDS websites.
NASA Astrophysics Data System (ADS)
Krenn, Julia; Zangerl, Christian; Mergili, Martin
2017-04-01
r.randomwalk is a GIS-based, multi-functional, conceptual open source model application for forward and backward analyses of the propagation of mass flows. It relies on a set of empirically derived, uncertain input parameters. In contrast to many other tools, r.randomwalk accepts input parameter ranges (or, in case of two or more parameters, spaces) in order to directly account for these uncertainties. Parameter spaces represent a possibility to withdraw from discrete input values which in most cases are likely to be off target. r.randomwalk automatically performs multiple calculations with various parameter combinations in a given parameter space, resulting in the impact indicator index (III) which denotes the fraction of parameter value combinations predicting an impact on a given pixel. Still, there is a need to constrain the parameter space used for a certain process type or magnitude prior to performing forward calculations. This can be done by optimizing the parameter space in terms of bringing the model results in line with well-documented past events. As most existing parameter optimization algorithms are designed for discrete values rather than for ranges or spaces, the necessity for a new and innovative technique arises. The present study aims at developing such a technique and at applying it to derive guiding parameter spaces for the forward calculation of rock avalanches through back-calculation of multiple events. In order to automatize the work flow we have designed r.ranger, an optimization and sensitivity analysis tool for parameter spaces which can be directly coupled to r.randomwalk. With r.ranger we apply a nested approach where the total value range of each parameter is divided into various levels of subranges. All possible combinations of subranges of all parameters are tested for the performance of the associated pattern of III. Performance indicators are the area under the ROC curve (AUROC) and the factor of conservativeness (FoC). This strategy is best demonstrated for two input parameters, but can be extended arbitrarily. We use a set of small rock avalanches from western Austria, and some larger ones from Canada and New Zealand, to optimize the basal friction coefficient and the mass-to-drag ratio of the two-parameter friction model implemented with r.randomwalk. Thereby we repeat the optimization procedure with conservative and non-conservative assumptions of a set of complementary parameters and with different raster cell sizes. Our preliminary results indicate that the model performance in terms of AUROC achieved with broad parameter spaces is hardly surpassed by the performance achieved with narrow parameter spaces. However, broad spaces may result in very conservative or very non-conservative predictions. Therefore, guiding parameter spaces have to be (i) broad enough to avoid the risk of being off target; and (ii) narrow enough to ensure a reasonable level of conservativeness of the results. The next steps will consist in (i) extending the study to other types of mass flow processes in order to support forward calculations using r.randomwalk; and (ii) in applying the same strategy to the more complex, dynamic model r.avaflow.
A generalized analysis of solar space heating in the United States
NASA Astrophysics Data System (ADS)
Clark, J. A.
A life-cycle model is developed for solar space heating within the United States that is based on the solar design data from the Los Alamos Scientific Laboratory. The model consists of an analytical relationship among five dimensionless parameters that include all pertinent technical, climatological, solar, operating and economic factors that influence the performance of a Solar Space Heating System. An important optimum condition presented is the 'Breakeven' metered cost of conventional fuel at which the cost of the solar system is equal to that of a conventional heating system. The effect of Federal (1980) and State (1979) income tax credits on these costs is determined. A parameter that includes both solar availability and solar system utilization is derived and plotted on a map of the U.S. This parameter shows the most favorable present locations for solar space heating application to be in the Central and Mountain States. The data employed are related to the rehabilitated solar data recently made available by the National Climatic Center (SOLMET).
Quantum space and quantum completeness
NASA Astrophysics Data System (ADS)
Jurić, Tajron
2018-05-01
Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.
Modeling and analysis of the space shuttle nose-gear tire with semianalytic finite elements
NASA Technical Reports Server (NTRS)
Kim, Kyun O.; Noor, Ahmed K.; Tanner, John A.
1990-01-01
A computational procedure is presented for the geometrically nonlinear analysis of aircraft tires. The Space Shuttle Orbiter nose gear tire was modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The four key elements of the procedure are: (1) semianalytic finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynominals in the meridional direction; (2) a mixed formulation with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized displacements; (3) multilevel operator splitting to effect successive simplifications, and to uncouple the equations associated with different Fourier harmonics; and (4) multilevel iterative procedures and reduction techniques to generate the response of the shell. Numerical results of the Space Shuttle Orbiter nose gear tire model are compared with experimental measurements of the tire subjected to inflation loading.
A pictorial study of an invariant torus in phase space of four dimensions.
NASA Technical Reports Server (NTRS)
Baxter, R.; Eiserike, H.; Stokes, A.
1972-01-01
An investigation was conducted with the aid of a computer graphics device at Goddard Space Flight Center to study the behavior of the invariant manifolds of a particular fourth-order equation, as a parameter in the equation is varied over the interval from 0 to 1. The equation consists of two coupled Van der Pol equations. For a small parameter value, the manifold is an asymptotically stable torus, where the flow on the torus is simply a rotation. As the value of the parameter is increased, the only thing that changes is the nature of the flow on the torus, which itself persists throughout the parameter variation. It is shown that ultimately the four periodic cycles which appear play a more significant part in the phase profile of the system than does the torus itself.
Recovering area-to-mass ratio of resident space objects through data mining
NASA Astrophysics Data System (ADS)
Peng, Hao; Bai, Xiaoli
2018-01-01
The area-to-mass ratio (AMR) of a resident space object (RSO) is an important parameter for improved space situation awareness capability due to its effect on the non-conservative forces including the atmosphere drag force and the solar radiation pressure force. However, information about AMR is often not provided in most space catalogs. The present paper investigates recovering the AMR information from the consistency error, which refers to the difference between the orbit predicted from an earlier estimate and the orbit estimated at the current epoch. A data mining technique, particularly the random forest (RF) method, is used to discover the relationship between the consistency error and the AMR. Using a simulation-based space catalog environment as the testbed, this paper demonstrates that the classification RF model can determine the RSO's category AMR and the regression RF model can generate continuous AMR values, both with good accuracies. Furthermore, the paper reveals that by recording additional information besides the consistency error, the RF model can estimate the AMR with even higher accuracy.
Parameter estimation uncertainty: Comparing apples and apples?
NASA Astrophysics Data System (ADS)
Hart, D.; Yoon, H.; McKenna, S. A.
2012-12-01
Given a highly parameterized ground water model in which the conceptual model of the heterogeneity is stochastic, an ensemble of inverse calibrations from multiple starting points (MSP) provides an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. Parameter estimation uncertainty can also be modeled by decomposing the parameterization into a solution space and a null space. From a single calibration (single starting point) a single set of parameters defining the solution space can be extracted. The solution space is held constant while Monte Carlo sampling of the parameter set covering the null space creates an ensemble of the null space parameter set. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution space parameters with the ensemble of null space parameters, creating sets of calibration-constrained parameters for input to the follow-on transport predictions. Here, we examine the consistency between probabilistic ensembles of parameter estimates and predictions using the MSP calibration and the NSMC approaches. A highly parameterized model of the Culebra dolomite previously developed for the WIPP project in New Mexico is used as the test case. A total of 100 estimated fields are retained from the MSP approach and the ensemble of results defining the model fit to the data, the reproduction of the variogram model and prediction of an advective travel time are compared to the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibration model can be significantly constrained by the calibrated solution space and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC approach (M-NSMC) are evaluated. Comparison of the M-NSMC and MSP methods suggests that M-NSMC can provide a computationally efficient and practical solution for predictive uncertainty analysis in highly nonlinear and complex subsurface flow and transport models. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Risk of defeats in the central nervous system during deep space missions.
Kokhan, Viktor S; Matveeva, Marina I; Mukhametov, Azat; Shtemberg, Andrey S
2016-12-01
Space flight factors (SFF) significantly affect the operating activity of astronauts during deep space missions. Gravitational overloads, hypo-magnetic field and ionizing radiation are the main SFF that perturb the normal activity of the central nervous system (CNS). Acute and chronic CNS risks include alterations in cognitive abilities, reduction of motor functions and behavioural changes. Multiple experimental works have been devoted to the SFF effects on integrative functional activity of the brain; however, the model parameters utilized have not always been ideal and consistent. Even less is known regarding the combined effects of these SFF in a real interplanetary mission, for example to Mars. Our review aims to systemize and analyse the last advancements in astrobiology, with a focus on the combined effects of SFF; as well as to discuss on unification of the parameters for ground-based models of deep space missions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Poberezhskiy, Ilya; Chang, Daniel; Erlig, Hernan
2011-01-01
Non Planar Ring Oscillator (NPRO) lasers are highly attractive for metrology applications. NPRO reliability for prolonged space missions is limited by reliability of 808 nm pump diodes. Combined laser farm aging parameter allows comparing different bias approaches. Monte-Carlo software developed to calculate the reliability of laser pump architecture, perform parameter sensitivity studies To meet stringent Space Interferometry Mission (SIM) Lite lifetime reliability / output power requirements, we developed a single-mode Laser Pump Module architecture that: (1) provides 2 W of power at 808 nm with >99.7% reliability for 5.5 years (2) consists of 37 de-rated diode lasers operating at -5C, with outputs combined in a very low loss 37x1 all-fiber coupler
Identifying parameter regions for multistationarity
Conradi, Carsten; Mincheva, Maya; Wiuf, Carsten
2017-01-01
Mathematical modelling has become an established tool for studying the dynamics of biological systems. Current applications range from building models that reproduce quantitative data to identifying systems with predefined qualitative features, such as switching behaviour, bistability or oscillations. Mathematically, the latter question amounts to identifying parameter values associated with a given qualitative feature. We introduce a procedure to partition the parameter space of a parameterized system of ordinary differential equations into regions for which the system has a unique or multiple equilibria. The procedure is based on the computation of the Brouwer degree, and it creates a multivariate polynomial with parameter depending coefficients. The signs of the coefficients determine parameter regions with and without multistationarity. A particular strength of the procedure is the avoidance of numerical analysis and parameter sampling. The procedure consists of a number of steps. Each of these steps might be addressed algorithmically using various computer programs and available software, or manually. We demonstrate our procedure on several models of gene transcription and cell signalling, and show that in many cases we obtain a complete partitioning of the parameter space with respect to multistationarity. PMID:28972969
NASA Astrophysics Data System (ADS)
Ying, Shen; Li, Lin; Gao, Yurong
2009-10-01
Spatial visibility analysis is the important direction of pedestrian behaviors because our visual conception in space is the straight method to get environment information and navigate your actions. Based on the agent modeling and up-tobottom method, the paper develop the framework about the analysis of the pedestrian flow depended on visibility. We use viewshed in visibility analysis and impose the parameters on agent simulation to direct their motion in urban space. We analyze the pedestrian behaviors in micro-scale and macro-scale of urban open space. The individual agent use visual affordance to determine his direction of motion in micro-scale urban street on district. And we compare the distribution of pedestrian flow with configuration in macro-scale urban environment, and mine the relationship between the pedestrian flow and distribution of urban facilities and urban function. The paper first computes the visibility situations at the vantage point in urban open space, such as street network, quantify the visibility parameters. The multiple agents use visibility parameters to decide their direction of motion, and finally pedestrian flow reach to a stable state in urban environment through the simulation of multiple agent system. The paper compare the morphology of visibility parameters and pedestrian distribution with urban function and facilities layout to confirm the consistence between them, which can be used to make decision support in urban design.
Learning Hierarchical Feature Extractors for Image Recognition
2012-09-01
space as a natural criterion for devising better pools. Finally, we propose ways to make coding faster and more powerful through fast convolutional...parameter is the set of pools over which the summary statistic is computed. We propose locality in feature configuration space as a natural criterion for...pooling (dotted lines) is consistently higher than average pooling (solid lines), but the gap is much less signif - icant with intersection kernel (closed
Ascent trajectory dispersion analysis for WTR heads-up space shuttle trajectory
NASA Technical Reports Server (NTRS)
1986-01-01
The results of a Space Transportation System ascent trajectory dispersion analysis are discussed. The purpose is to provide critical trajectory parameter values for assessing the Space Shuttle in a heads-up configuration launched from the Western Test Range (STR). This analysis was conducted using a trajectory profile based on a launch from the WTR in December. The analysis consisted of the following steps: (1) nominal trajectories were simulated under the conditions as specified by baseline reference mission guidelines; (2) dispersion trajectories were simulated using predetermined parametric variations; (3) requirements for a system-related composite trajectory were determined by a root-sum-square (RSS) analysis of the positive deviations between values of the aerodynamic heating indicator (AHI) generated by the dispersion and nominal trajectories; (4) using the RSS assessment as a guideline, the system related composite trajectory was simulated by combinations of dispersion parameters which represented major contributors; (5) an assessment of environmental perturbations via a RSS analysis was made by the combination of plus or minus 2 sigma atmospheric density variation and 95% directional design wind dispersions; (6) maximum aerodynamic heating trajectories were simulated by variation of dispersion parameters which would emulate the summation of the system-related RSS and environmental RSS values of AHI. The maximum aerodynamic heating trajectories were simulated consistent with the directional winds used in the environmental analysis.
Adaptive Bayes classifiers for remotely sensed data
NASA Technical Reports Server (NTRS)
Raulston, H. S.; Pace, M. O.; Gonzalez, R. C.
1975-01-01
An algorithm is developed for a learning, adaptive, statistical pattern classifier for remotely sensed data. The estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest, and (2) a projection of the parameters in time and space. The results reported are for Gaussian data in which the mean vector of each class may vary with time or position after the classifier is trained.
VizieR Online Data Catalog: LAMOST/SP_Ace DR1 catalog (Boeche+, 2018)
NASA Astrophysics Data System (ADS)
Boeche, C.; Smith, M. C.; Grebel, E. K.; Zhong, J.; Hou, J. L.; Chen, L.; Stello, D.
2018-04-01
The catalog contains stellar parameters including effective temperature (Teff), gravity (log g), metallicity [M/H], together with chemical abundances [Fe/H] and [alpha/H], derived with the code SP_Ace. It consists of 2,052,662 spectra, mostly Milky Way stars, from which 1,097,231 have measured parameters. The confidence intervals of the stellar parameters are expressed along with their upper and lower limits. Together with these main parameters we report other auxiliary information such as object designation, RA, DE, and other diagnostics as indicated in the table description. (1 data file).
Covey, Curt; Lucas, Donald D.; Tannahill, John; ...
2013-07-01
Modern climate models contain numerous input parameters, each with a range of possible values. Since the volume of parameter space increases exponentially with the number of parameters N, it is generally impossible to directly evaluate a model throughout this space even if just 2-3 values are chosen for each parameter. Sensitivity screening algorithms, however, can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination.This can aid both model development and the uncertainty quantification (UQ) process. Here we report results from a parameter sensitivity screening algorithm hitherto untested in climate modeling,more » the Morris one-at-a-time (MOAT) method. This algorithm drastically reduces the computational cost of estimating sensitivities in a high dimensional parameter space because the sample size grows linearly rather than exponentially with N. It nevertheless samples over much of the N-dimensional volume and allows assessment of parameter interactions, unlike traditional elementary one-at-a-time (EOAT) parameter variation. We applied both EOAT and MOAT to the Community Atmosphere Model (CAM), assessing CAM’s behavior as a function of 27 uncertain input parameters related to the boundary layer, clouds, and other subgrid scale processes. For radiation balance at the top of the atmosphere, EOAT and MOAT rank most input parameters similarly, but MOAT identifies a sensitivity that EOAT underplays for two convection parameters that operate nonlinearly in the model. MOAT’s ranking of input parameters is robust to modest algorithmic variations, and it is qualitatively consistent with model development experience. Supporting information is also provided at the end of the full text of the article.« less
Life support system definition for a low cost shuttle launched space station.
NASA Technical Reports Server (NTRS)
Nelson, W. G.; Cody, J.
1972-01-01
Discussion of the tradeoffs and EC/LS definition for a low cost shuttle launched space station to be launched in the late 1970s for use as a long-term manned scientific laboratory. The space station consists of 14-ft-diam modules, clustered together to support a six-man crew at the initial space station (ISS) level and a 12-man crew at the growth space station (GSS) level. Key design guidelines specify low initial cost and low total program cost and require two separate pressurized habitable compartments with independent lift support capability. The methodology used to select the EC/LS design consisted of systematically reducing quantitative parameters to a common denominator of cost. This approach eliminates many of the inconsistencies that can occur in such decision making. The EC/LS system selected is a partially closed system which recovers urine, condensate, and wash water and concentrates crew expired CO2 for use in a low thrust resistojet propulsion system.
Ground-based testing of the dynamics of flexible space structures using band mechanisms
NASA Technical Reports Server (NTRS)
Yang, L. F.; Chew, Meng-Sang
1991-01-01
A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.
Optimizing microstimulation using a reinforcement learning framework.
Brockmeier, Austin J; Choi, John S; Distasio, Marcello M; Francis, Joseph T; Príncipe, José C
2011-01-01
The ability to provide sensory feedback is desired to enhance the functionality of neuroprosthetics. Somatosensory feedback provides closed-loop control to the motor system, which is lacking in feedforward neuroprosthetics. In the case of existing somatosensory function, a template of the natural response can be used as a template of desired response elicited by electrical microstimulation. In the case of no initial training data, microstimulation parameters that produce responses close to the template must be selected in an online manner. We propose using reinforcement learning as a framework to balance the exploration of the parameter space and the continued selection of promising parameters for further stimulation. This approach avoids an explicit model of the neural response from stimulation. We explore a preliminary architecture--treating the task as a k-armed bandit--using offline data recorded for natural touch and thalamic microstimulation, and we examine the methods efficiency in exploring the parameter space while concentrating on promising parameter forms. The best matching stimulation parameters, from k = 68 different forms, are selected by the reinforcement learning algorithm consistently after 334 realizations.
The application of neural networks to the SSME startup transient
NASA Technical Reports Server (NTRS)
Meyer, Claudia M.; Maul, William A.
1991-01-01
Feedforward neural networks were used to model three parameters during the Space Shuttle Main Engine startup transient. The three parameters were the main combustion chamber pressure, a controlled parameter, the high pressure oxidizer turbine discharge temperature, a redlined parameter, and the high pressure fuel pump discharge pressure, a failure-indicating performance parameter. Network inputs consisted of time windows of data from engine measurements that correlated highly to the modeled parameter. A standard backpropagation algorithm was used to train the feedforward networks on two nominal firings. Each trained network was validated with four additional nominal firings. For all three parameters, the neural networks were able to accurately predict the data in the validation sets as well as the training set.
Crystal structure of low-symmetry rondorfite
NASA Astrophysics Data System (ADS)
Rastsvetaeva, R. K.; Zadov, A. E.; Chukanov, N. V.
2008-03-01
The crystal structure of an aluminum-rich variety of the mineral rondorfite with the composition Ca16[Mg2(Si7Al)(O31OH)]Cl4 from the skarns of the Verkhne-Chegemskoe plateau (the Kabardino-Balkarian Republic, the Northern Caucasus Region, Russia) was solved in the triclinic space group with the unit-cell parameters a = 15.100(2) Å, b = 15.110(2) Å, c = 15.092(2) Å, α = 90.06(1)°, β = 90.01(1)°, γ = 89.93(1)°, Z = 4, sp. gr. P1. The structural model consisting of 248 independent atoms was determined by the phase-correction method and refined to R = 3.8% with anisotropic displacement parameters based on all 7156 independent reflections with 7156 F > 3σ( F). The crystal structure is based on pentamers consisting of four Si tetrahedra linked by the central Mg tetrahedron. The structure can formally be refined in the cubic space group ( a = 15.105 Å, sp. gr. Fd overline 3 , seven independent positions) with anisotropic displacement parameters to R = 2.74% based on 579 reflections with F > 3σ( F) without accounting for more than 1000 observed reflections, which are inconsistent with the cubic symmetry of the crystal structure.
Implications of improved Higgs mass calculations for supersymmetric models.
Buchmueller, O; Dolan, M J; Ellis, J; Hahn, T; Heinemeyer, S; Hollik, W; Marrouche, J; Olive, K A; Rzehak, H; de Vries, K J; Weiglein, G
We discuss the allowed parameter spaces of supersymmetric scenarios in light of improved Higgs mass predictions provided by FeynHiggs 2.10.0. The Higgs mass predictions combine Feynman-diagrammatic results with a resummation of leading and subleading logarithmic corrections from the stop/top sector, which yield a significant improvement in the region of large stop masses. Scans in the pMSSM parameter space show that, for given values of the soft supersymmetry-breaking parameters, the new logarithmic contributions beyond the two-loop order implemented in FeynHiggs tend to give larger values of the light CP-even Higgs mass, [Formula: see text], in the region of large stop masses than previous predictions that were based on a fixed-order Feynman-diagrammatic result, though the differences are generally consistent with the previous estimates of theoretical uncertainties. We re-analyse the parameter spaces of the CMSSM, NUHM1 and NUHM2, taking into account also the constraints from CMS and LHCb measurements of [Formula: see text]and ATLAS searches for [Formula: see text] events using 20/fb of LHC data at 8 TeV. Within the CMSSM, the Higgs mass constraint disfavours [Formula: see text], though not in the NUHM1 or NUHM2.
NASA Astrophysics Data System (ADS)
Ares, A. E.; Gassa, L. M.; Gueijman, S. F.; Schvezov, C. E.
2008-04-01
The columnar to equiaxed transition (CET) has been examined for many years and the significance of CET has been treated in several articles. Experimental observations in different alloy systems have shown that the position of the transition is dependent on parameters like cooling rate, velocity of the liquidus and solidus fronts, local solidification time, temperature gradients and recalescence. The dendritic structure in alloys results in microsegregation of solute species which affects significantly the mechanical properties of the material. The main parameters characterizing the microstructure and the length range of microsegregation is the spacing which is classified as primary, secondary and tertiary. Properties like mechanical resistance and ductility are influenced by the dimensions and continuity of the primary branches, while the secondary and tertiary branches permit the isolation of interdendritic phases which can deteriorate the mechanical behavior of the material. Since the morphology and dimensions of the dendritic structure is related to the solidification parameters mentioned above, for each type of alloy it is essential to correlate dimensions and solidification conditions in order to control the structure. The objective of the present research consists on studying the influence of solidification thermal parameters with the type of structure (columnar, equiaxial or with the CET); and with grain size and dendritic spacing (primary and secondary) in Zn-Al (ZA) alloys (Zn—4 wt%Al, Zn—16 wt%Al and Zn—27 wt%Al, weight percent). Also, correlate the thermal parameters, type of structure, grain size and dendritic spacing with the corrosion resistance of these alloys.
Towards conformal loop quantum gravity
NASA Astrophysics Data System (ADS)
H-T Wang, Charles
2006-03-01
A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity.
NASA Technical Reports Server (NTRS)
Howell, L. W.
2001-01-01
A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
Searching for dark absorption with direct detection experiments
Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku; ...
2017-06-16
We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less
Torsion as a dark matter candidate from the Higgs portal
NASA Astrophysics Data System (ADS)
Belyaev, Alexander S.; Thomas, Marc C.; Shapiro, Ilya L.
2017-05-01
Torsion is a metric-independent component of gravitation, which may provide a more general geometry than the one taking place within general relativity. On the other hand, torsion could lead to interesting phenomenology in both particle physics and cosmology. In the present work it is shown that a torsion field interacting with the SM Higgs doublet and having a negligible coupling to standard model (SM) fermions is protected from decaying by a Z2 symmetry, and therefore becomes a promising dark matter (DM) candidate. This model provides a good motivation for Higgs portal vector DM scenario. We evaluate the DM relic density and explore direct DM detection and collider constraints on this model to understand its consistency with experimental data and establish the most up-to-date limits on its parameter space. We have found in the model when the Higgs boson is only partly responsible for the generation of torsion mass, there is a region of parameter space where torsion contributes 100% to the DM budget of the Universe. Furthermore, we present the first results on the potential of the LHC to probe the parameter space of minimal scenario with Higgs portal vector DM using mono-jet searches and have found that LHC at high luminosity will be sensitive to the substantial part of model parameter space which cannot be probed by other experiments.
Searching for dark absorption with direct detection experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku
We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less
1981-07-01
process is observed over all of (0,1], the reproducing kernel Hilbert space (RKHS) techniques developed by Parzen (1961a, 1961b) 2 may be used to construct...covariance kernel,R, for the process (1.1) is the reproducing kernel for a reproducing kernel Hilbert space (RKHS) which will be denoted as H(R) (c.f...2.6), it is known that (c.f. Eubank, Smith and Smith (1981a, 1981b)), i) H(R) is a Hilbert function space consisting of functions which satisfy for fEH
Models of H II regions - Heavy element opacity, variation of temperature
NASA Technical Reports Server (NTRS)
Rubin, R. H.
1985-01-01
A detailed set of H II region models that use the same physics and self-consistent input have been computed and are used to examine where in parameter space the effects of heavy element opacity is important. The models are briefly described, and tabular data for the input parameters and resulting properties of the models are presented. It is found that the opacities of C, Ne, O, and to a lesser extent N play a vital role over a large region of parameter space, while S and Ar opacities are negligible. The variation of the average electron temperature T(e) of the models with metal abundance, density, and T(eff) is investigated. It is concluded that by far the most important determinator of T(e) is metal abundance; an almost 7000 K difference is expected over the factor of 10 change from up to down abundances.
NASA Technical Reports Server (NTRS)
Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.
2014-01-01
As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.
Autonomous Modal Identification of the Space Shuttle Tail Rudder
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; James, George H., III; Zimmerman, David C.
1997-01-01
Autonomous modal identification automates the calculation of natural vibration frequencies, damping, and mode shapes of a structure from experimental data. This technology complements damage detection techniques that use continuous or periodic monitoring of vibration characteristics. The approach shown in the paper incorporates the Eigensystem Realization Algorithm (ERA) as a data analysis engine and an autonomous supervisor to condense multiple estimates of modal parameters using ERA's Consistent-Mode Indicator and correlation of mode shapes. The procedure was applied to free-decay responses of a Space Shuttle tail rudder and successfully identified the seven modes of the structure below 250 Hz. The final modal parameters are a condensed set of results for 87 individual ERA cases requiring approximately five minutes of CPU time on a DEC Alpha computer.
Control of Groundwater Remediation Process as Distributed Parameter System
NASA Astrophysics Data System (ADS)
Mendel, M.; Kovács, T.; Hulkó, G.
2014-12-01
Pollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of controlled system is made in the program MODFLOW using the finitedifference method as distributed parameter system. Control problem is solved by DPS Blockset for MATLAB & Simulink.
A Hardware Model Validation Tool for Use in Complex Space Systems
NASA Technical Reports Server (NTRS)
Davies, Misty Dawn; Gundy-Burlet, Karen L.; Limes, Gregory L.
2010-01-01
One of the many technological hurdles that must be overcome in future missions is the challenge of validating as-built systems against the models used for design. We propose a technique composed of intelligent parameter exploration in concert with automated failure analysis as a scalable method for the validation of complex space systems. The technique is impervious to discontinuities and linear dependencies in the data, and can handle dimensionalities consisting of hundreds of variables over tens of thousands of experiments.
Space charge induced surface stresses: implications in ceria and other ionic solids.
Sheldon, Brian W; Shenoy, Vivek B
2011-05-27
Volume changes associated with point defects in space charge layers can produce strains that substantially alter thermodynamic equilibrium near surfaces in ionic solids. For example, near-surface compressive stresses exceeding -10 GPa are predicted for ceria. The magnitude of this effect is consistent with anomalous lattice parameter increases that occur in ceria nanoparticles. These stresses should significantly alter defect concentrations and key transport properties in a wide range of materials (e.g., ceria electrolytes in fuel cells). © 2011 American Physical Society
Adaptive control of space based robot manipulators
NASA Technical Reports Server (NTRS)
Walker, Michael W.; Wee, Liang-Boon
1991-01-01
For space based robots in which the base is free to move, motion planning and control is complicated by uncertainties in the inertial properties of the manipulator and its load. A new adaptive control method is presented for space based robots which achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. A partition is made of the fifteen degree of freedom system dynamics into two parts: a nine degree of freedom invertible portion and a six degree of freedom noninvertible portion. The controller is then designed to achieve trajectory tracking of the invertible portion of the system. This portion consist of the manipulator joint positions and the orientation of the base. The motion of the noninvertible portion is bounded, but unpredictable. This portion consist of the position of the robot's base and the position of the reaction wheel.
Methods for consistent forewarning of critical events across multiple data channels
Hively, Lee M.
2006-11-21
This invention teaches further method improvements to forewarn of critical events via phase-space dissimilarity analysis of data from biomedical equipment, mechanical devices, and other physical processes. One improvement involves conversion of time-serial data into equiprobable symbols. A second improvement is a method to maximize the channel-consistent total-true rate of forewarning from a plurality of data channels over multiple data sets from the same patient or process. This total-true rate requires resolution of the forewarning indications into true positives, true negatives, false positives and false negatives. A third improvement is the use of various objective functions, as derived from the phase-space dissimilarity measures, to give the best forewarning indication. A fourth improvement uses various search strategies over the phase-space analysis parameters to maximize said objective functions. A fifth improvement shows the usefulness of the method for various biomedical and machine applications.
THE LITTLEST HIGGS MODEL AND ONE-LOOP ELECTROWEAK PRECISION CONSTRAINTS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHEN, M.C.; DAWSON,S.
2004-06-16
We present in this talk the one-loop electroweak precision constraints in the Littlest Higgs model, including the logarithmically enhanced contributions from both fermion and scalar loops. We find the one-loop contributions are comparable to the tree level corrections in some regions of parameter space. A low cutoff scale is allowed for a non-zero triplet VEV. Constraints on various other parameters in the model are also discussed. The role of triplet scalars in constructing a consistent renormalization scheme is emphasized.
NASA Technical Reports Server (NTRS)
Whitlock, Charles H.; Lecroy, Stuart R.; Rossow, William B.; Bell, Ken L.
1989-01-01
Maps and tables are presented which show 45 satellite derived physical, radiation, or cloud parameters from ISCCP CX tapes during the FIRE/SRB Wisconsin experiment region from October 14 through November 2, 1986. Pixel locations selected for presentation are for an area which coincided with a 100 x 100 km array of evenly spaced ground truth sites. Area-averaged parameters derived from the ISSCP data should be consistent with area averages from the groundtruth stations.
An improved numerical method for the kernel density functional estimation of disperse flow
NASA Astrophysics Data System (ADS)
Smith, Timothy; Ranjan, Reetesh; Pantano, Carlos
2014-11-01
We present an improved numerical method to solve the transport equation for the one-point particle density function (pdf), which can be used to model disperse flows. The transport equation, a hyperbolic partial differential equation (PDE) with a source term, is derived from the Lagrangian equations for a dilute particle system by treating position and velocity as state-space variables. The method approximates the pdf by a discrete mixture of kernel density functions (KDFs) with space and time varying parameters and performs a global Rayleigh-Ritz like least-square minimization on the state-space of velocity. Such an approximation leads to a hyperbolic system of PDEs for the KDF parameters that cannot be written completely in conservation form. This system is solved using a numerical method that is path-consistent, according to the theory of non-conservative hyperbolic equations. The resulting formulation is a Roe-like update that utilizes the local eigensystem information of the linearized system of PDEs. We will present the formulation of the base method, its higher-order extension and further regularization to demonstrate that the method can predict statistics of disperse flows in an accurate, consistent and efficient manner. This project was funded by NSF Project NSF-DMS 1318161.
Pedrini, Paolo; Bragalanti, Natalia; Groff, Claudio
2017-01-01
Recently-developed methods that integrate multiple data sources arising from the same ecological processes have typically utilized structured data from well-defined sampling protocols (e.g., capture-recapture and telemetry). Despite this new methodological focus, the value of opportunistic data for improving inference about spatial ecological processes is unclear and, perhaps more importantly, no procedures are available to formally test whether parameter estimates are consistent across data sources and whether they are suitable for integration. Using data collected on the reintroduced brown bear population in the Italian Alps, a population of conservation importance, we combined data from three sources: traditional spatial capture-recapture data, telemetry data, and opportunistic data. We developed a fully integrated spatial capture-recapture (SCR) model that included a model-based test for data consistency to first compare model estimates using different combinations of data, and then, by acknowledging data-type differences, evaluate parameter consistency. We demonstrate that opportunistic data lend itself naturally to integration within the SCR framework and highlight the value of opportunistic data for improving inference about space use and population size. This is particularly relevant in studies of rare or elusive species, where the number of spatial encounters is usually small and where additional observations are of high value. In addition, our results highlight the importance of testing and accounting for inconsistencies in spatial information from structured and unstructured data so as to avoid the risk of spurious or averaged estimates of space use and consequently, of population size. Our work supports the use of a single modeling framework to combine spatially-referenced data while also accounting for parameter consistency. PMID:28973034
NASA Astrophysics Data System (ADS)
Zhmud, V. A.; Reva, I. L.; Dimitrov, L. V.
2017-01-01
The design of robust feedback systems by means of the numerical optimization method is mostly accomplished with modeling of the several systems simultaneously. In each such system, regulators are similar. But the object models are different. It includes all edge values from the possible variants of the object model parameters. With all this, not all possible sets of model parameters are taken into account. Hence, the regulator can be not robust, i. e. it can not provide system stability in some cases, which were not tested during the optimization procedure. The paper proposes an alternative method. It consists in sequent changing of all parameters according to harmonic low. The frequencies of changing of each parameter are aliquant. It provides full covering of the parameters space.
Photosynthesis-irradiance parameters of marine phytoplankton: synthesis of a global data set
NASA Astrophysics Data System (ADS)
Bouman, Heather A.; Platt, Trevor; Doblin, Martina; Figueiras, Francisco G.; Gudmundsson, Kristinn; Gudfinnsson, Hafsteinn G.; Huang, Bangqin; Hickman, Anna; Hiscock, Michael; Jackson, Thomas; Lutz, Vivian A.; Mélin, Frédéric; Rey, Francisco; Pepin, Pierre; Segura, Valeria; Tilstone, Gavin H.; van Dongen-Vogels, Virginie; Sathyendranath, Shubha
2018-02-01
The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis-irradiance (P-E) parameters from a range of oceanographic regimes as an aid to examining the basin-scale variability in the photophysiological response of marine phytoplankton and to use this information to improve the assignment of P-E parameters in the estimation of global marine primary production using satellite data. The MAPPS P-E database, which consists of over 5000 P-E experiments, provides information on the spatio-temporal variability in the two P-E parameters (the assimilation number, PmB, and the initial slope, αB, where the superscripts B indicate normalisation to concentration of chlorophyll) that are fundamental inputs for models (satellite-based and otherwise) of marine primary production that use chlorophyll as the state variable. Quality-control measures consisted of removing samples with abnormally high parameter values and flags were added to denote whether the spectral quality of the incubator lamp was used to calculate a broad-band value of αB. The MAPPS database provides a photophysiological data set that is unprecedented in number of observations and in spatial coverage. The database will be useful to a variety of research communities, including marine ecologists, biogeochemical modellers, remote-sensing scientists and algal physiologists. The compiled data are available at https://doi.org/10.1594/PANGAEA.874087 (Bouman et al., 2017).
Self-consistent pseudopotential calculation of the bulk properties of Mo and W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zunger, A.; Cohen, M.L.
The bulk properties of Mo and W are calculated using the recently developed momentum-space approach for calculating total energy via a nonlocal pseudopotential. This approach avoids any shape approximation to the variational charge density (e.g., muffin tins), is fully self-consistent, and replaces the multidimensional and multicenter integrals akin to real-space representations by simple and readily convergent reciprocal-space lattice sums. We use first-principles atomic pseudopotentials which have been previously demonstrated to yield band structures and charge densities for both semiconductors and transition metals in good agreement with experiment and all-electron calculations. Using a mixed-basis representation for the crystalline wave function, wemore » are able to accurately reproduce both the localized and itinerant features of the electronic states in these systems. These first-principles pseudopotentials, together with the self-consistent density-functional representation for both the exchange and the correlation screening, yields agreement with experiment of 0.2% in the lattice parameters, 2% and 11% for the binding energies of Mo and W, respectively, and 12% and 7% for the bulk moduli of Mo and W, respectively.« less
NASA Astrophysics Data System (ADS)
Allanach, Ben; Kvellestad, Anders; Raklev, Are
2015-06-01
The CMS experiment recently reported an excess consistent with an invariant mass edge in opposite-sign same flavor leptons, when produced in conjunction with at least two jets and missing transverse momentum. We provide an interpretation of the edge in terms of (anti)squark pair production followed by the "golden cascade" decay for one of the squarks: q ˜ →χ˜2 0q →l ˜ l q →χ˜1 0q l l in the minimal supersymmetric standard model. A simplified model involving binos, winos, an on-shell slepton, and the first two generations of squarks fits the event rate and the invariant mass edge. We check consistency with a recent ATLAS search in a similar region, finding that much of the good-fit parameter space is still allowed at the 95% confidence level (C.L.). However, a combination of other LHC searches, notably two-lepton stop pair searches and jets plus p T, rule out all of the remaining parameter space at the 95% C.L.
Nagasaki, Masao; Yamaguchi, Rui; Yoshida, Ryo; Imoto, Seiya; Doi, Atsushi; Tamada, Yoshinori; Matsuno, Hiroshi; Miyano, Satoru; Higuchi, Tomoyuki
2006-01-01
We propose an automatic construction method of the hybrid functional Petri net as a simulation model of biological pathways. The problems we consider are how we choose the values of parameters and how we set the network structure. Usually, we tune these unknown factors empirically so that the simulation results are consistent with biological knowledge. Obviously, this approach has the limitation in the size of network of interest. To extend the capability of the simulation model, we propose the use of data assimilation approach that was originally established in the field of geophysical simulation science. We provide genomic data assimilation framework that establishes a link between our simulation model and observed data like microarray gene expression data by using a nonlinear state space model. A key idea of our genomic data assimilation is that the unknown parameters in simulation model are converted as the parameter of the state space model and the estimates are obtained as the maximum a posteriori estimators. In the parameter estimation process, the simulation model is used to generate the system model in the state space model. Such a formulation enables us to handle both the model construction and the parameter tuning within a framework of the Bayesian statistical inferences. In particular, the Bayesian approach provides us a way of controlling overfitting during the parameter estimations that is essential for constructing a reliable biological pathway. We demonstrate the effectiveness of our approach using synthetic data. As a result, parameter estimation using genomic data assimilation works very well and the network structure is suitably selected.
Space Biology Initiative. Trade Studies, volume 2
NASA Technical Reports Server (NTRS)
1989-01-01
The six studies which are the subjects of this report are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves as a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.
Space Biology Initiative. Trade Studies, volume 1
NASA Technical Reports Server (NTRS)
1989-01-01
The six studies which are addressed are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves has a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.
Consistency criteria for generalized Cuddeford systems
NASA Astrophysics Data System (ADS)
Ciotti, Luca; Morganti, Lucia
2010-01-01
General criteria to check the positivity of the distribution function (phase-space consistency) of stellar systems of assigned density and anisotropy profile are useful starting points in Jeans-based modelling. Here, we substantially extend previous results, and present the inversion formula and the analytical necessary and sufficient conditions for phase-space consistency of the family of multicomponent Cuddeford spherical systems: the distribution function of each density component of these systems is defined as the sum of an arbitrary number of Cuddeford distribution functions with arbitrary values of the anisotropy radius, but identical angular momentum exponent. The radial trend of anisotropy that can be realized by these models is therefore very general. As a surprising byproduct of our study, we found that the `central cusp-anisotropy theorem' (a necessary condition for consistency relating the values of the central density slope and of the anisotropy parameter) holds not only at the centre but also at all radii in consistent multicomponent generalized Cuddeford systems. This last result suggests that the so-called mass-anisotropy degeneracy could be less severe than what is sometimes feared.
Expanding the catalog of binary black-hole simulations: aligned-spin configurations
NASA Astrophysics Data System (ADS)
Chu, Tony; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration
2015-04-01
A major goal of numerical relativity is to model the inspiral and merger of binary black holes through sufficiently accurate and long simulations, to enable the successful detection of gravitational waves. However, covering the full parameter space of binary configurations is a computationally daunting task. The SXS Collaboration has made important progress in this direction recently, with a catalog of 174 publicly available binary black-hole simulations [black-holes.org/waveforms]. Nevertheless, the parameter-space coverage remains sparse, even for non-precessing binaries. In this talk, I will describe an addition to the SXS catalog to improve its coverage, consisting of 95 new simulations of aligned-spin binaries with moderate mass ratios and dimensionless spins as high as 0.9. Some applications of these new simulations will also be mentioned.
Design of the soft x-ray tomography beamline at Taiwan photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yi-Jr, E-mail: su.yj@nsrrc.org.tw; Fu, Huang-Wen; Chung, Shih-Chun
2016-07-27
The optical design of the varied-line-spacing plane-grating monochromator for transmission full-field imaging of frozen-hydrated biological samples at NSRRC is presented. This monochromator consists of a plane mirror and three interchangeable gratings with groove densities 600, 1200 and 2400 l/mm to cover the energy range 260 – 2600 eV. The groove parameters of the varied-line-spacing plane gratings are designed to minimize the effect of coma and spherical aberration to maintain the exit slit in focus for any value of incident angle. All parameters of optical components at the beamline are verified with a ray-tracing method. In the beamline design, the calculatedmore » results from the ray-tracing codes and the expected performances are discussed.« less
A realistic intersecting D6-brane model after the first LHC run
NASA Astrophysics Data System (ADS)
Li, Tianjun; Nanopoulos, D. V.; Raza, Shabbar; Wang, Xiao-Chuan
2014-08-01
With the Higgs boson mass around 125 GeV and the LHC supersymmetry search constraints, we revisit a three-family Pati-Salam model from intersecting D6-branes in Type IIA string theory on the T 6/(ℤ2 × ℤ2) orientifold which has a realistic phenomenology. We systematically scan the parameter space for μ < 0 and μ > 0, and find that the gravitino mass is generically heavier than about 2 TeV for both cases due to the Higgs mass low bound 123 GeV. In particular, we identify a region of parameter space with the electroweak fine-tuning as small as Δ EW ~ 24-32 (3-4%). In the viable parameter space which is consistent with all the current constraints, the mass ranges for gluino, the first two-generation squarks and sleptons are respectively [3, 18] TeV, [3, 16] TeV, and [2, 7] TeV. For the third-generation sfermions, the light stop satisfying 5 σ WMAP bounds via neutralino-stop coannihilation has mass from 0.5 to 1.2 TeV, and the light stau can be as light as 800 GeV. We also show various coannihilation and resonance scenarios through which the observed dark matter relic density is achieved. Interestingly, the certain portions of parameter space has excellent t- b- τ and b- τ Yukawa coupling unification. Three regions of parameter space are highlighted as well where the dominant component of the lightest neutralino is a bino, wino or higgsino. We discuss various scenarios in which such solutions may avoid recent astrophysical bounds in case if they satisfy or above observed relic density bounds. Prospects of finding higgsino-like neutralino in direct and indirect searches are also studied. And we display six tables of benchmark points depicting various interesting features of our model. Note that the lightest neutralino can be heavy up to 2.8 TeV, and there exists a natural region of parameter space from low-energy fine-tuning definition with heavy gluino and first two-generation squarks/sleptons, we point out that the 33 TeV and 100 TeV proton-proton colliders are indeed needed to probe our D-brane model.
NASA Astrophysics Data System (ADS)
Bulatova, Dr.
2012-04-01
Modern research in the domains of Earth sciences is developing from the descriptions of each individual natural phenomena to the systematic complex research in interdisciplinary areas. For studies of its kind in the form numerical analysis of three-dimensional (3D) systems, the author proposes space-time Technology (STT), based on a Ptolemaic geocentric system, consist of two modules, each with its own coordinate system: (1) - 3D model of a Earth, the coordinates of which provides databases of the Earth's events (here seismic), and (2) - a compact model of the relative motion of celestial bodies in space - time on Earth known as the "Method of a moving source" (MDS), which was developed in MDS (Bulatova, 1998-2000) for the 3D space. Module (2) was developed as a continuation of the geocentric Ptolemaic system of the world, built on the astronomical parameters heavenly bodies. Based on the aggregation data of Space and Earth Sciences, systematization, and cooperative analysis, this is an attempt to establish a cause-effect relationship between the position of celestial bodies (Moon, Sun) and Earth's seismic events.
Fusion of AIRSAR and TM Data for Parameter Classification and Estimation in Dense and Hilly Forests
NASA Technical Reports Server (NTRS)
Moghaddam, Mahta; Dungan, J. L.; Coughlan, J. C.
2000-01-01
The expanded remotely sensed data space consisting of coincident radar backscatter and optical reflectance data provides for a more complete description of the Earth surface. This is especially useful where many parameters are needed to describe a certain scene, such as in the presence of dense and complex-structured vegetation or where there is considerable underlying topography. The goal of this paper is to use a combination of radar and optical data to develop a methodology for parameter classification for dense and hilly forests, and further, class-specific parameter estimation. The area to be used in this study is the H. J. Andrews Forest in Oregon, one of the Long-Term Ecological Research (LTER) sites in the US. This area consists of various dense old-growth conifer stands, and contains significant topographic relief. The Andrews forest has been the subject of many ecological studies over several decades, resulting in an abundance of ground measurements. Recently, biomass and leaf-area index (LAI) values for approximately 30 reference stands have also become available which span a large range of those parameters. The remote sensing data types to be used are the C-, L-, and P-band polarimetric radar data from the JPL airborne SAR (AIRSAR), the C-band single-polarization data from the JPL topographic SAR (TOPSAR), and the Thematic Mapper (TM) data from Landsat, all acquired in late April 1998. The total number of useful independent data channels from the AIRSAR is 15 (three frequencies, each with three unique polarizations and amplitude and phase of the like-polarized correlation), from the TOPSAR is 2 (amplitude and phase of the interferometric correlation), and from the TM is 6 (the thermal band is not used). The range pixel spacing of the AIRSAR is 3.3m for C- and L-bands and 6.6m for P-band. The TOPSAR pixel spacing is 10m, and the TM pixel size is 30m. To achieve parameter classification, first a number of parameters are defined which are of interest to ecologists for forest process modeling. These parameters include total biomass, leaf biomass, LAI, and tree height. The remote sensing data from radar and TM are used to formulate a multivariate analysis problem given the ground measurements of the parameters. Each class of each parameter is defined by a probability density function (pdf), the spread of which defines the range of that class. High classification accuracy results from situations in which little overlap occurs between pdfs. Classification results provide the basis for the future work of class-specific parameter estimation using radar and optical data. This work was performed in part by the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, and in part by the NASA Ames Research Center, Moffett Field, CA, both under contract from the National Aeronautics and Space Administration.
The Supernovae Analysis Application (SNAP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayless, Amanda J.; Fryer, Christopher Lee; Wollaeger, Ryan Thomas
The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of a publicly available relational database with observational light curve, theoretical light curve, and correlation table sets with statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users upload new SN models or new SN observations and run the comparison software to determine correlations via the website. There are problems looming on the horizon that SNAP is beginningmore » to solve. For example, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Second, there is no rapidly available, systematic way to determine degeneracies between parameters, or even what physics is needed to model a realistic SN. The correlations made within the SNAP system are beginning to solve these problems.« less
The Supernovae Analysis Application (SNAP)
Bayless, Amanda J.; Fryer, Christopher Lee; Wollaeger, Ryan Thomas; ...
2017-09-06
The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of a publicly available relational database with observational light curve, theoretical light curve, and correlation table sets with statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users upload new SN models or new SN observations and run the comparison software to determine correlations via the website. There are problems looming on the horizon that SNAP is beginningmore » to solve. For example, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Second, there is no rapidly available, systematic way to determine degeneracies between parameters, or even what physics is needed to model a realistic SN. The correlations made within the SNAP system are beginning to solve these problems.« less
The Supernovae Analysis Application (SNAP)
NASA Astrophysics Data System (ADS)
Bayless, Amanda J.; Fryer, Chris L.; Wollaeger, Ryan; Wiggins, Brandon; Even, Wesley; de la Rosa, Janie; Roming, Peter W. A.; Frey, Lucy; Young, Patrick A.; Thorpe, Rob; Powell, Luke; Landers, Rachel; Persson, Heather D.; Hay, Rebecca
2017-09-01
The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of a publicly available relational database with observational light curve, theoretical light curve, and correlation table sets with statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users upload new SN models or new SN observations and run the comparison software to determine correlations via the website. There are problems looming on the horizon that SNAP is beginning to solve. For example, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Second, there is no rapidly available, systematic way to determine degeneracies between parameters, or even what physics is needed to model a realistic SN. The correlations made within the SNAP system are beginning to solve these problems.
Rouiller, Yolande; Solacroup, Thomas; Deparis, Véronique; Barbafieri, Marco; Gleixner, Ralf; Broly, Hervé; Eon-Duval, Alex
2012-06-01
The production bioreactor step of an Fc-Fusion protein manufacturing cell culture process was characterized following Quality by Design principles. Using scientific knowledge derived from the literature and process knowledge gathered during development studies and manufacturing to support clinical trials, potential critical and key process parameters with a possible impact on product quality and process performance, respectively, were determined during a risk assessment exercise. The identified process parameters were evaluated using a design of experiment approach. The regression models generated from the data allowed characterizing the impact of the identified process parameters on quality attributes. The main parameters having an impact on product titer were pH and dissolved oxygen, while those having the highest impact on process- and product-related impurities and variants were pH and culture duration. The models derived from characterization studies were used to define the cell culture process design space. The design space limits were set in such a way as to ensure that the drug substance material would consistently have the desired quality. Copyright © 2012 Elsevier B.V. All rights reserved.
Inverse design of bulk morphologies in block copolymers using particle swarm optimization
NASA Astrophysics Data System (ADS)
Khadilkar, Mihir; Delaney, Kris; Fredrickson, Glenn
Multiblock polymers are a versatile platform for creating a large range of nanostructured materials with novel morphologies and properties. However, achieving desired structures or property combinations is difficult due to a vast design space comprised of parameters including monomer species, block sequence, block molecular weights and dispersity, copolymer architecture, and binary interaction parameters. Navigating through such vast design spaces to achieve an optimal formulation for a target structure or property set requires an efficient global optimization tool wrapped around a forward simulation technique such as self-consistent field theory (SCFT). We report on such an inverse design strategy utilizing particle swarm optimization (PSO) as the global optimizer and SCFT as the forward prediction engine. To avoid metastable states in forward prediction, we utilize pseudo-spectral variable cell SCFT initiated from a library of defect free seeds of known block copolymer morphologies. We demonstrate that our approach allows for robust identification of block copolymers and copolymer alloys that self-assemble into a targeted structure, optimizing parameters such as block fractions, blend fractions, and Flory chi parameters.
Modelling of Cosmic Molecular Masers: Introduction to a Computation Cookbook
NASA Astrophysics Data System (ADS)
Sobolev, Andrej M.; Gray, Malcolm D.
2012-07-01
Numerical modeling of molecular masers is necessary in order to understand their nature and diagnostic capabilities. Model construction requires elaboration of a basic description which allows computation, that is a definition of the parameter space and basic physical relations. Usually, this requires additional thorough studies that can consist of the following stages/parts: relevant molecular spectroscopy and collisional rate coefficients; conditions in and around the masing region (that part of space where population inversion is realized); geometry and size of the masing region (including the question of whether maser spots are discrete clumps or line-of-sight correlations in a much bigger region) and propagation of maser radiation. Output of the maser computer modeling can have the following forms: exploration of parameter space (where do inversions appear in particular maser transitions and their combinations, which parameter values describe a `typical' source, and so on); modeling of individual sources (line flux ratios, spectra, images and their variability); analysis of the pumping mechanism; predictions (new maser transitions, correlations in variability of different maser transitions, and the like). Described schemes (constituents and hierarchy) of the model input and output are based mainly on the experience of the authors and make no claim to be dogmatic.
Observability of ionospheric space-time structure with ISR: A simulation study
NASA Astrophysics Data System (ADS)
Swoboda, John; Semeter, Joshua; Zettergren, Matthew; Erickson, Philip J.
2017-02-01
The sources of error from electronically steerable array (ESA) incoherent scatter radar (ISR) systems are investigated both theoretically and with use of an open-source ISR simulator, developed by the authors, called Simulator for ISR (SimISR). The main sources of error incorporated in the simulator include statistical uncertainty, which arises due to nature of the measurement mechanism and the inherent space-time ambiguity from the sensor. SimISR can take a field of plasma parameters, parameterized by time and space, and create simulated ISR data at the scattered electric field (i.e., complex receiver voltage) level, subsequently processing these data to show possible reconstructions of the original parameter field. To demonstrate general utility, we show a number of simulation examples, with two cases using data from a self-consistent multifluid transport model. Results highlight the significant influence of the forward model of the ISR process and the resulting statistical uncertainty on plasma parameter measurements and the core experiment design trade-offs that must be made when planning observations. These conclusions further underscore the utility of this class of measurement simulator as a design tool for more optimal experiment design efforts using flexible ESA class ISR systems.
Thermionic energy converter investigations
NASA Technical Reports Server (NTRS)
Goodale, D. B.; Lee, C.; Lieb, D.; Oettinger, P. E.
1979-01-01
This paper presents evaluation of a variety of thermionic converter configurations to obtain improved efficiency. A variable-spacing diode using an iridium emitter gave emission properties comparable to platinum, but the power output from a sintered LaB6 collector diode was not consistent with its work function. Reflectivities above 0.5 were measured at thermal energies on oxygenated-cesiated surfaces using a field emission retarding potential gun. Performance of converters with structured electrodes and the characteristics of a pulsed triode were studied as a function of emitter, collector, cesium reservoir, interelectrode spacing, xenon pressure, and pulsing parameters.
On The Computation Of The Best-fit Okada-type Tsunami Source
NASA Astrophysics Data System (ADS)
Miranda, J. M. A.; Luis, J. M. F.; Baptista, M. A.
2017-12-01
The forward simulation of earthquake-induced tsunamis usually assumes that the initial sea surface elevation mimics the co-seismic deformation of the ocean bottom described by a simple "Okada-type" source (rectangular fault with constant slip in a homogeneous elastic half space). This approach is highly effective, in particular in far-field conditions. With this assumption, and a given set of tsunami waveforms recorded by deep sea pressure sensors and (or) coastal tide stations it is possible to deduce the set of parameters of the Okada-type solution that best fits a set of sea level observations. To do this, we build a "space of possible tsunami sources-solution space". Each solution consists of a combination of parameters: earthquake magnitude, length, width, slip, depth and angles - strike, rake, and dip. To constrain the number of possible solutions we use the earthquake parameters defined by seismology and establish a range of possible values for each parameter. We select the "best Okada source" by comparison of the results of direct tsunami modeling using the solution space of tsunami sources. However, direct tsunami modeling is a time-consuming process for the whole solution space. To overcome this problem, we use a precomputed database of Empirical Green Functions to compute the tsunami waveforms resulting from unit water sources and search which one best matches the observations. In this study, we use as a test case the Solomon Islands tsunami of 6 February 2013 caused by a magnitude 8.0 earthquake. The "best Okada" source is the solution that best matches the tsunami recorded at six DART stations in the area. We discuss the differences between the initial seismic solution and the final one obtained from tsunami data This publication received funding of FCT-project UID/GEO/50019/2013-Instituto Dom Luiz.
Scaling relations and the fundamental line of the local group dwarf galaxies
NASA Astrophysics Data System (ADS)
Woo, Joanna; Courteau, Stéphane; Dekel, Avishai
2008-11-01
We study the scaling relations between global properties of dwarf galaxies in the local group. In addition to quantifying the correlations between pairs of variables, we explore the `shape' of the distribution of galaxies in log parameter space using standardized principal component analysis, the analysis is performed first in the 3D structural parameter space of stellar mass M*, internal velocity V and characteristic radius R* (or surface brightness μ*). It is then extended to a 4D space that includes a stellar population parameter such as metallicity Z or star formation rate . We find that the local group dwarfs basically define a one-parameter `fundamental line' (FL), primarily driven by stellar mass, M*. A more detailed inspection reveals differences between the star formation properties of dwarf irregulars (dI's) and dwarf ellipticals (dE's), beyond the tendency of the latter to be more massive. In particular, the metallicities of dI's are typically lower by a factor of 3 at a given M* and they grow faster with increasing M*, showing a tighter FL in the 4D space for the dE's. The structural scaling relations of dI's resemble those of the more massive spirals, but the dI's have lower star formation rates for a given M* which also grow faster with increasing M*. On the other hand, the FL of the dE's departs from the fundamental plane of bigger ellipticals. While the one-parameter nature of the FL and the associated slopes of the scaling relations are consistent with the general predictions of supernova feedback from Dekel & Woo, the differences between the FL's of the dE's and the dI's remain a challenge and should serve as a guide for the secondary physical processes responsible for these two types.
Chimera states in Gaussian coupled map lattices
NASA Astrophysics Data System (ADS)
Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian
2018-04-01
We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.
NASA Technical Reports Server (NTRS)
Metcalf, David
1995-01-01
Multimedia Information eXchange (MIX) is a multimedia information system that accommodates multiple data types and provides consistency across platforms. Information from all over the world can be accessed quickly and efficiently with the Internet-based system. I-NET's MIX uses the World Wide Web and Mosaic graphical user interface. Mosaic is available on all platforms used at I-NET's Kennedy Space Center (KSC) facilities. Key information system design concepts and benefits are reviewed. The MIX system also defines specific configuration and helper application parameters to ensure consistent operations across the entire organization. Guidelines and procedures for other areas of importance in information systems design are also addressed. Areas include: code of ethics, content, copyright, security, system administration, and support.
Inverse problem for multispecies ferromagneticlike mean-field models in phase space with many states
NASA Astrophysics Data System (ADS)
Fedele, Micaela; Vernia, Cecilia
2017-10-01
In this paper we solve the inverse problem for the Curie-Weiss model and its multispecies version when multiple thermodynamic states are present as in the low temperature phase where the phase space is clustered. The inverse problem consists of reconstructing the model parameters starting from configuration data generated according to the distribution of the model. We demonstrate that, without taking into account the presence of many states, the application of the inversion procedure produces very poor inference results. To overcome this problem, we use the clustering algorithm. When the system has two symmetric states of positive and negative magnetizations, the parameter reconstruction can also be obtained with smaller computational effort simply by flipping the sign of the magnetizations from positive to negative (or vice versa). The parameter reconstruction fails when the system undergoes a phase transition: In that case we give the correct inversion formulas for the Curie-Weiss model and we show that they can be used to measure how close the system gets to being critical.
Wing optimization for space shuttle orbiter vehicles
NASA Technical Reports Server (NTRS)
Surber, T. E.; Bornemann, W. E.; Miller, W. D.
1972-01-01
The results were presented of a parametric study performed to determine the optimum wing geometry for a proposed space shuttle orbiter. The results of the study establish the minimum weight wing for a series of wing-fuselage combinations subject to constraints on aerodynamic heating, wing trailing edge sweep, and wing over-hang. The study consists of a generalized design evaluation which has the flexibility of arbitrarily varying those wing parameters which influence the vehicle system design and its performance. The study is structured to allow inputs of aerodynamic, weight, aerothermal, structural and material data in a general form so that the influence of these parameters on the design optimization process can be isolated and identified. This procedure displays the sensitivity of the system design of variations in wing geometry. The parameters of interest are varied in a prescribed fashion on a selected fuselage and the effect on the total vehicle weight is determined. The primary variables investigated are: wing loading, aspect ratio, leading edge sweep, thickness ratio, and taper ratio.
[Visual and motor functions in schizophrenic patients].
Del Vecchio, S; Gargiulo, P A
1992-12-01
In the present work, visual and motor functions have been explored in 26 chronic schizophrenic patients, and 7 acute schizophrenic patients, compared with 26 normal controls, by means of the Bender-Gestalt Test. Parameters under consideration were: Form distortion, rotation, integration, perseveration, use of space, subtle motricity, score (global parameter), and time employed. As regards distortion and rotation there have been highly significant differences between chronic patients and control group. Among acute patients, it was observed that perseveration was also highly significant. Conversely, integration and use of space did not differ significantly among the three groups involved. The global score, resulting from all the above mentioned parameters showed important differences between both patient groups on the one hand, and control group on the other hand. Taking into account that patients were being administered neuroleptic drugs, it can safely be said, however, that the Bender-Gestalt Test allows to recognize alteration in perceptual closure consistent with a loss of the objective structure of perceived phenomena, in both chronic and acute patients.
NASA Astrophysics Data System (ADS)
Alexander, LYSENKO; Iurii, VOLK
2018-03-01
We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
A Model for the Vortex Pair Associated with a Jet in a Cross Flow
NASA Technical Reports Server (NTRS)
Sellers, William L.
1975-01-01
A model is presented for the contrarotating vortex pair that is formed by a round, turbulent, subsonic jet directed normally into a uniform, subsonic cross flow. The model consists of a set of algebraic equations that describe the properties of the vortex pair as a function of their location in the jet plume. The parameters of the model are physical characteristics of the vortices such as the vortex strength, spacing, and core size. These parameters are determined by velocity measurements at selective points in the jet plume.
NASA Astrophysics Data System (ADS)
Santos, Léonard; Thirel, Guillaume; Perrin, Charles
2018-04-01
In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called operator splitting
. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall-runoff models and make the resolution of the representation difficult, are first replaced by a so-called Nash cascade
and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.
Space-to-Space Communications System
NASA Technical Reports Server (NTRS)
Tu, Kwei; Gaylor, Kent; Vitalpur, Sharada; Sham, Cathy
1999-01-01
The Space-to-Space Communications System (SSCS) is an Ultra High Frequency (UHF) Time-Division-Multiple Access (TDMA) system that is designed, developed, and deployed by the NASA Johnson Space Center (JSC) to provide voice, commands, telemetry and data services in close proximity among three space elements: International Space Station (ISS), Space Shuttle Orbiter, and Extravehicular Mobility Units (EMU). The SSCS consists of a family of three radios which are, Space-to-Space Station Radio (SSSR), Space-to-Space Orbiter Radio (SSOR), and Space-to-Space Extravehicular Mobility Radio (SSER). The SSCS can support up to five such radios at a time. Each user has its own time slot within which to transmit voice and data. Continuous Phase Frequency Shift Keying (CPFSK) carrier modulation with a burst data rate of 695 kbps and a frequency deviation of 486.5 kHz is employed by the system. Reed-Solomon (R-S) coding is also adopted to ensure data quality. In this paper, the SSCS system requirements, operational scenario, detailed system architecture and parameters, link acquisition strategy, and link performance analysis will be presented and discussed
Characterizing the 21-cm absorption trough with pattern recognition and a numerical sampler
NASA Astrophysics Data System (ADS)
Tauscher, Keith A.; Rapetti, David; Burns, Jack O.; Monsalve, Raul A.; Bowman, Judd D.
2018-06-01
The highly redshifted sky-averaged 21-cm spectrum from neutral hydrogen is a key probe to a period of the Universe never before studied. Recent experimental advances have led to increasingly tightened constraints and the Experiment to Detect the Global Eor Signal (EDGES) has presented evidence for a detection of this global signal. In order to glean scientifically valuable information from these new measurements in a consistent manner, sophisticated fitting procedures must be applied. Here, I present a pipeline known as pylinex which takes advantage of Singular Value Decomposition (SVD), a pattern recognition tool, to leverage structure in the data induced by the design of an experiment to fit for signals in the experiment's data in the presence of large systematics (such as the beam-weighted foregrounds), especially those without parametric forms. This method requires training sets for each component of the data. Once the desired signal is extracted in SVD eigenmode coefficient space, the posterior distribution must be consistently transformed into a physical parameter space. This is done with the combination of a numerical least squares fitter and a Markov Chain Monte Carlo (MCMC) distribution sampler. After describing the pipeline's procedures and techniques, I present preliminary results of applying it to the EDGES low-band data used for their detection. The results include estimates of the signal in frequency space with errors and relevant parameter distributions.
Atmospheric seeing measurements obtained with MISOLFA in the framework of the PICARD Mission
NASA Astrophysics Data System (ADS)
Ikhlef, R.; Corbard, T.; Irbah, A.; Morand, F.; Fodil, M.; Chauvineau, B.; Assus, P.; Renaud, C.; Meftah, M.; Abbaki, S.; Borgnino, J.; Cissé, E. M.; D'Almeida, E.; Hauchecorne, A.; Laclare, F.; Lesueur, P.; Lin, M.; Martin, F.; Poiet, G.; Rouzé, M.; Thuillier, G.; Ziad, A.
2012-09-01
PICARD is a space mission launched in June 2010 to study mainly the geometry of the Sun. The PICARD mission has a ground program consisting mostly in four instruments based at the Calern Observatory (Observatoire de la Côte d’Azur). They allow recording simultaneous solar images and various atmospheric data from ground. The ground instruments consist in the qualification model of the PICARD space instrument (SODISM II: Solar Diameter Imager and Surface Mapper), standard sun-photometers, a pyranometer for estimating a global sky quality index, and MISOLFA a generalized daytime seeing monitor. Indeed, astrometric observations of the Sun using ground-based telescopes need an accurate modeling of optical effects induced by atmospheric turbulence. MISOLFA is founded on the observation of Angle-of-Arrival (AA) fluctuations and allows us to analyze atmospheric turbulence optical effects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried parameter r0, size of the isoplanatic patch, the spatial coherence outer scale L0 and atmospheric correlation times). We present in this paper simulations showing how the Fried parameter infered from MISOLFA records can be used to interpret radius measurements extracted from SODISM II images. We show an example of daily and monthly evolution of r0 and present its statistics over 2 years at Calern Observatory with a global mean value of 3.5cm.
NASA Astrophysics Data System (ADS)
Carrano, C. S.; Groves, K. M.; Basu, S.; Mackenzie, E.; Sheehan, R. E.
2013-12-01
In a previous work, we demonstrated that ionospheric turbulence parameters may be inferred from amplitude scintillations well into in the strong scatter regime [Carrano et al., International Journal of Geophysics, 2012]. This technique, called Iterative Parameter Estimation (IPE), uses the strong scatter theory and numerical inversion to estimate the parameters of an ionospheric phase screen (turbulent intensity, phase spectral index, and irregularity zonal drift) consistent with the observed scintillations. The optimal screen parameters are determined such that the theoretical intensity spectrum on the ground best matches the measured intensity spectrum in a least squares sense. We use this technique to interpret scintillation measurements collected during a campaign at Ascension Island (7.96°S, 14.41°W) in March 2000, led by Santimay Basu and his collaborators from Air Force Research Laboratory. Geostationary satellites broadcasting radio signals at VHF and L-band were monitored along nearly co-linear links, enabling a multi-frequency analysis of scintillations with the same propagation geometry. The VHF data were acquired using antennas spaced in the magnetic east-west direction, which enabled direct measurement of the zonal irregularity drift. We show that IPE analysis of the VHF and L-Band scintillations, which exhibited very different statistics due to the wide frequency separation, yields similar estimates of the phase screen parameters that specify the disturbed ionospheric medium. This agreement provides confidence in our phase screen parameter estimates. It also suggests a technique for extrapolating scintillation measurements to frequencies other than those observed that is valid in the case of strong scatter. We find that IPE estimates of the zonal irregularity drift, made using scintillation observations along single space-to-ground link, are consistent with those measured independently using the spaced antenna technique. This encouraging result suggests one may measure the zonal irregularity drift at scintillation monitoring stations equipped with only a single channel receiver, so that the spaced-antenna technique cannot be employed. We noted that the scintillation index (S4) at L-band commonly exceeded that at VHF early in the evening when the irregularities were most intense, followed by one or more reversals of this trend at later local times as aging irregularities decayed and newly formed bubbles drifted over the station. We use the strong scatter theory to explain this perhaps counter-intuitive situation (one would normally expect a higher S4 at the lower frequency) in terms of strong refractive focusing.
Island of stability for consistent deformations of Einstein's gravity.
Berkhahn, Felix; Dietrich, Dennis D; Hofmann, Stefan; Kühnel, Florian; Moyassari, Parvin
2012-03-30
We construct deformations of general relativity that are consistent and phenomenologically viable, since they respect, in particular, cosmological backgrounds. These deformations have unique symmetries in accordance with their Minkowski cousins (Fierz-Pauli theory for massive gravitons) and incorporate a background curvature induced self-stabilizing mechanism. Self-stabilization is essential in order to guarantee hyperbolic evolution in and unitarity of the covariantized theory, as well as the deformation's uniqueness. We show that the deformation's parameter space contains islands of absolute stability that are persistent through the entire cosmic evolution.
Neutrino oscillation parameter sampling with MonteCUBES
NASA Astrophysics Data System (ADS)
Blennow, Mattias; Fernandez-Martinez, Enrique
2010-01-01
We present MonteCUBES ("Monte Carlo Utility Based Experiment Simulator"), a software package designed to sample the neutrino oscillation parameter space through Markov Chain Monte Carlo algorithms. MonteCUBES makes use of the GLoBES software so that the existing experiment definitions for GLoBES, describing long baseline and reactor experiments, can be used with MonteCUBES. MonteCUBES consists of two main parts: The first is a C library, written as a plug-in for GLoBES, implementing the Markov Chain Monte Carlo algorithm to sample the parameter space. The second part is a user-friendly graphical Matlab interface to easily read, analyze, plot and export the results of the parameter space sampling. Program summaryProgram title: MonteCUBES (Monte Carlo Utility Based Experiment Simulator) Catalogue identifier: AEFJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 69 634 No. of bytes in distributed program, including test data, etc.: 3 980 776 Distribution format: tar.gz Programming language: C Computer: MonteCUBES builds and installs on 32 bit and 64 bit Linux systems where GLoBES is installed Operating system: 32 bit and 64 bit Linux RAM: Typically a few MBs Classification: 11.1 External routines: GLoBES [1,2] and routines/libraries used by GLoBES Subprograms used:Cat Id ADZI_v1_0, Title GLoBES, Reference CPC 177 (2007) 439 Nature of problem: Since neutrino masses do not appear in the standard model of particle physics, many models of neutrino masses also induce other types of new physics, which could affect the outcome of neutrino oscillation experiments. In general, these new physics imply high-dimensional parameter spaces that are difficult to explore using classical methods such as multi-dimensional projections and minimizations, such as those used in GLoBES [1,2]. Solution method: MonteCUBES is written as a plug-in to the GLoBES software [1,2] and provides the necessary methods to perform Markov Chain Monte Carlo sampling of the parameter space. This allows an efficient sampling of the parameter space and has a complexity which does not grow exponentially with the parameter space dimension. The integration of the MonteCUBES package with the GLoBES software makes sure that the experimental definitions already in use by the community can also be used with MonteCUBES, while also lowering the learning threshold for users who already know GLoBES. Additional comments: A Matlab GUI for interpretation of results is included in the distribution. Running time: The typical running time varies depending on the dimensionality of the parameter space, the complexity of the experiment, and how well the parameter space should be sampled. The running time for our simulations [3] with 15 free parameters at a Neutrino Factory with O(10) samples varied from a few hours to tens of hours. References:P. Huber, M. Lindner, W. Winter, Comput. Phys. Comm. 167 (2005) 195, hep-ph/0407333. P. Huber, J. Kopp, M. Lindner, M. Rolinec, W. Winter, Comput. Phys. Comm. 177 (2007) 432, hep-ph/0701187. S. Antusch, M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon, arXiv:0903.3986 [hep-ph].
Meng, Yilin; Roux, Benoît
2015-08-11
The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost.
2015-01-01
The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost. PMID:26574437
The swiss army knife of job submission tools: grid-control
NASA Astrophysics Data System (ADS)
Stober, F.; Fischer, M.; Schleper, P.; Stadie, H.; Garbers, C.; Lange, J.; Kovalchuk, N.
2017-10-01
grid-control is a lightweight and highly portable open source submission tool that supports all common workflows in high energy physics (HEP). It has been used by a sizeable number of HEP analyses to process tasks that sometimes consist of up to 100k jobs. grid-control is built around a powerful plugin and configuration system, that allows users to easily specify all aspects of the desired workflow. Job submission to a wide range of local or remote batch systems or grid middleware is supported. Tasks can be conveniently specified through the parameter space that will be processed, which can consist of any number of variables and data sources with complex dependencies on each other. Dataset information is processed through a configurable pipeline of dataset filters, partition plugins and partition filters. The partition plugins can take the number of files, size of the work units, metadata or combinations thereof into account. All changes to the input datasets or variables are propagated through the processing pipeline and can transparently trigger adjustments to the parameter space and the job submission. While the core functionality is completely experiment independent, full integration with the CMS computing environment is provided by a small set of plugins.
Maintenance of the catalog of artificial objects in space.
NASA Astrophysics Data System (ADS)
Khutorovskij, Z. N.
1994-01-01
The catalog of artificial objects in space (AOS) is useful for estimating the safety of space flights, for constructing temporal and spatial models of the flux of AOS, for determining when and where dangerous AOS will break up, for tracking inoperative instruments and space stations, for eliminating false alarms that are triggered by observations of AOS in the Ballistic Missile Early Warning System and in the Anti-Missile system, etc. At present, the Space Surveillance System (located in the former USSR) automatically maintains a catalog consisting of more than 5000 AOS with dimensions of at least 10 cm. The orbital parameters are continuously updated from radar tracking data. The author describes the software which is used to process the information. He presents some of the features of the system itself, including the number of objects in various stages of the tracking process, the orbital parameters of AOS which break up, and how the fragments are detected, the accuracy of tracking and predicting the orbits of the AOS, and the accuracy with which we can estimate when and where an AOS will break up. As an example, the author presents the results of determination of the time when the orbiting complex Salyut-7 - Kosmos-1686 will break up, and where it will impact.
Tippett, Michael K; Cohen, Joel E
2016-02-29
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from 'outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.
Tippett, Michael K.; Cohen, Joel E.
2016-01-01
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from ‘outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954–2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related. PMID:26923210
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Cohen, Joel E.
2016-02-01
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from `outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.
NASA Technical Reports Server (NTRS)
1990-01-01
Structural Reliability Consultants' computer program creates graphic plots showing the statistical parameters of glue laminated timbers, or 'glulam.' The company president, Dr. Joseph Murphy, read in NASA Tech Briefs about work related to analysis of Space Shuttle surface tile strength performed for Johnson Space Center by Rockwell International Corporation. Analysis led to a theory of 'consistent tolerance bounds' for statistical distributions, applicable in industrial testing where statistical analysis can influence product development and use. Dr. Murphy then obtained the Tech Support Package that covers the subject in greater detail. The TSP became the basis for Dr. Murphy's computer program PC-DATA, which he is marketing commercially.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petiteau, Antoine; Babak, Stanislav; Sesana, Alberto
Gravitational wave (GW) signals from coalescing massive black hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space-based GW observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters, we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated with the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here themore » possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low-redshift (z < 3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a {Lambda}CDM universe, and we use data from the Millennium simulation to model the galaxy distribution in the LISA error box. We show that, assuming that all the other cosmological parameters are known, the parameter w describing the dark energy equation of state can be constrained to a 4%-8% level (2{sigma} error), competitive with current uncertainties obtained by type Ia supernovae measurements, providing an independent test of our cosmological model.« less
Cui, Xiang-Long; Xu, Bing; Sun, Fei; Dai, Sheng-Yun; Shi, Xin-Yuan; Qiao, Yan-Jiang
2017-03-01
In this paper, under the guidance of quality by design (QbD) concept, the control strategy of the high shear wet granulation process of the ginkgo leaf tablet based on the design space was established to improve the process controllability and product quality consistency. The median granule size (D50) and bulk density (Da) of granules were identified as critical quality attributes (CQAs) and potential critical process parameters (pCPPs) were determined by the failure modes and effect analysis (FMEA). The Plackeet-Burmann experimental design was used to screen pCPPs and the results demonstrated that the binder amount, the wet massing time and the wet mixing impeller speed were critical process parameters (CPPs). The design space of the high shear wet granulation process was developed within pCPPs range based on the Box-Behnken design and quadratic polynomial regression models. ANOVA analysis showed that the P-values of model were less than 0.05 and the values of lack of fit test were more than 0.1, indicating that the relationship between CQAs and CPPs could be well described by the mathematical models. D₅₀ could be controlled within 170 to 500 μm, and the bulk density could be controlled within 0.30 to 0.44 g•cm⁻³ by using any CPPs combination within the scope of design space. Besides, granules produced by process parameters within the design space region could also meet the requirement of tensile strength of the ginkgo leaf tablet.. Copyright© by the Chinese Pharmaceutical Association.
Taipale-Kovalainen, Krista; Karttunen, Anssi-Pekka; Ketolainen, Jarkko; Korhonen, Ossi
2018-03-30
The objective of this study was to devise robust and stable continuous manufacturing process settings, by exploring the design space after an investigation of the lubrication-based parameters influencing the continuous direct compression tableting of high dose paracetamol tablets. Experimental design was used to generate a structured study plan which involved 19 runs. The formulation variables studied were the type of lubricant (magnesium stearate or stearic acid) and its concentration (0.5, 1.0 and 1.5%). Process variables were total production feed rate (5, 10.5 and 16kg/h), mixer speed rpm (500, 850 and 1200rpm), and mixer inlet port for lubricant (A or B). The continuous direct compression tableting line consisted of loss-in-weight feeders, a continuous mixer and a tablet press. The Quality Target Product Profile (QTPP) was defined for the final product, as the flowability of powder blends (2.5s), tablet strength (147N), dissolution in 2.5min (90%) and ejection force (425N). A design space was identified which fulfilled all the requirements of QTPP. The type and concentration of lubricant exerted the greatest influence on the design space. For example, stearic acid increased the tablet strength. Interestingly, the studied process parameters had only a very minor effect on the quality of the final product and the design space. It is concluded that the continuous direct compression tableting process itself is insensitive and can cope with changes in lubrication, whereas formulation parameters exert a major influence on the end product quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Stellar Parameters in an Instant with Machine Learning. Application to Kepler LEGACY Targets
NASA Astrophysics Data System (ADS)
Bellinger, Earl P.; Angelou, George C.; Hekker, Saskia; Basu, Sarbani; Ball, Warrick H.; Guggenberger, Elisabet
2017-10-01
With the advent of dedicated photometric space missions, the ability to rapidly process huge catalogues of stars has become paramount. Bellinger and Angelou et al. [1] recently introduced a new method based on machine learning for inferring the stellar parameters of main-sequence stars exhibiting solar-like oscillations. The method makes precise predictions that are consistent with other methods, but with the advantages of being able to explore many more parameters while costing practically no time. Here we apply the method to 52 so-called "LEGACY" main-sequence stars observed by the Kepler space mission. For each star, we present estimates and uncertainties of mass, age, radius, luminosity, core hydrogen abundance, surface helium abundance, surface gravity, initial helium abundance, and initial metallicity as well as estimates of their evolutionary model parameters of mixing length, overshooting coeffcient, and diffusion multiplication factor. We obtain median uncertainties in stellar age, mass, and radius of 14.8%, 3.6%, and 1.7%, respectively. The source code for all analyses and for all figures appearing in this manuscript can be found electronically at
Regularized estimation of Euler pole parameters
NASA Astrophysics Data System (ADS)
Aktuğ, Bahadir; Yildirim, Ömer
2013-07-01
Euler vectors provide a unified framework to quantify the relative or absolute motions of tectonic plates through various geodetic and geophysical observations. With the advent of space geodesy, Euler parameters of several relatively small plates have been determined through the velocities derived from the space geodesy observations. However, the available data are usually insufficient in number and quality to estimate both the Euler vector components and the Euler pole parameters reliably. Since Euler vectors are defined globally in an Earth-centered Cartesian frame, estimation with the limited geographic coverage of the local/regional geodetic networks usually results in highly correlated vector components. In the case of estimating the Euler pole parameters directly, the situation is even worse, and the position of the Euler pole is nearly collinear with the magnitude of the rotation rate. In this study, a new method, which consists of an analytical derivation of the covariance matrix of the Euler vector in an ideal network configuration, is introduced and a regularized estimation method specifically tailored for estimating the Euler vector is presented. The results show that the proposed method outperforms the least squares estimation in terms of the mean squared error.
Dynamics of large-scale brain activity in normal arousal states and epileptic seizures
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Rennie, C. J.; Rowe, D. L.
2002-04-01
Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.
Electroweak baryogenesis in two Higgs doublet models and B meson anomalies
NASA Astrophysics Data System (ADS)
Cline, James M.; Kainulainen, Kimmo; Trott, Michael
2011-11-01
Motivated by 3.9 σ evidence of a CP-violating phase beyond the standard model in the like-sign dimuon asymmetry reported by D∅, we examine the potential for two Higgs doublet models (2HDMs) to achieve successful electroweak baryogenesis (EWBG) while explaining the dimuon anomaly. Our emphasis is on the minimal flavour violating 2HDM, but our numerical scans of model parameter space include type I and type II models as special cases. We incorporate relevant particle physics constraints, including electroweak precision data, b → sγ, the neutron electric dipole moment, R b , and perturbative coupling bounds to constrain the model. Surprisingly, we find that a large enough baryon asymmetry is only consistently achieved in a small subset of parameter space in 2HDMs, regardless of trying to simultaneously account for any B physics anomaly. There is some tension between simultaneous explanation of the dimuon anomaly and baryogenesis, but using a Markov chain Monte Carlo we find several models within 1 σ of the central values. We point out shortcomings with previous studies that reached different conclusions. The restricted parameter space that allows for EWBG makes this scenario highly predictive for collider searches. We discuss the most promising signatures to pursue at the LHC for EWBG-compatible models.
M$^3$: A New Muon Missing Momentum Experiment to Probe $$(g-2)_{\\mu}$$ and Dark Matter at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahn, Yonatan; Krnjaic, Gordan; Tran, Nhan
New light, weakly-coupled particles are commonly invoked to address the persistentmore » $$\\sim 4\\sigma$$ anomaly in $$(g-2)_\\mu$$ and serve as mediators between dark and visible matter. If such particles couple predominantly to heavier generations and decay invisibly, much of their best-motivated parameter space is inaccessible with existing experimental techniques. In this paper, we present a new fixed-target, missing-momentum search strategy to probe invisibly decaying particles that couple preferentially to muons. In our setup, a relativistic muon beam impinges on a thick active target. The signal consists of events in which a muon loses a large fraction of its incident momentum inside the target without initiating any detectable electromagnetic or hadronic activity in downstream veto systems. We propose a two-phase experiment, M$^3$ (Muon Missing Momentum), based at Fermilab. Phase 1 with $$\\sim 10^{10}$$ muons on target can test the remaining parameter space for which light invisibly-decaying particles can resolve the $$(g-2)_\\mu$$ anomaly, while Phase 2 with $$\\sim 10^{13}$$ muons on target can test much of the predictive parameter space over which sub-GeV dark matter achieves freeze-out via muon-philic forces, including gauged $$U(1)_{L_\\mu - L_\\tau}$$.« less
An MCMC determination of the primordial helium abundance
NASA Astrophysics Data System (ADS)
Aver, Erik; Olive, Keith A.; Skillman, Evan D.
2012-04-01
Spectroscopic observations of the chemical abundances in metal-poor H II regions provide an independent method for estimating the primordial helium abundance. H II regions are described by several physical parameters such as electron density, electron temperature, and reddening, in addition to y, the ratio of helium to hydrogen. It had been customary to estimate or determine self-consistently these parameters to calculate y. Frequentist analyses of the parameter space have been shown to be successful in these parameter determinations, and Markov Chain Monte Carlo (MCMC) techniques have proven to be very efficient in sampling this parameter space. Nevertheless, accurate determination of the primordial helium abundance from observations of H II regions is constrained by both systematic and statistical uncertainties. In an attempt to better reduce the latter, and continue to better characterize the former, we apply MCMC methods to the large dataset recently compiled by Izotov, Thuan, & Stasińska (2007). To improve the reliability of the determination, a high quality dataset is needed. In pursuit of this, a variety of cuts are explored. The efficacy of the He I λ4026 emission line as a constraint on the solutions is first examined, revealing the introduction of systematic bias through its absence. As a clear measure of the quality of the physical solution, a χ2 analysis proves instrumental in the selection of data compatible with the theoretical model. Nearly two-thirds of the observations fall outside a standard 95% confidence level cut, which highlights the care necessary in selecting systems and warrants further investigation into potential deficiencies of the model or data. In addition, the method also allows us to exclude systems for which parameter estimations are statistical outliers. As a result, the final selected dataset gains in reliability and exhibits improved consistency. Regression to zero metallicity yields Yp = 0.2534 ± 0.0083, in broad agreement with the WMAP result. The inclusion of more observations shows promise for further reducing the uncertainty, but more high quality spectra are required.
On the impact of reducing global geophysical fluid model deformations in SLR data processing
NASA Astrophysics Data System (ADS)
Weigelt, Matthias; Thaller, Daniela
2016-04-01
Mass redistributions in the atmosphere, oceans and the continental hydrology cause elastic loading deformations of the Earth's crust and thus systematically influence Earth-bound observation systems such as VLBI, GNSS or SLR. Causing non-linear station variations, these loading deformations have a direct impact on the estimated station coordinates and an indirect impact on other parameters of global space-geodetic solutions, e.g. Earth orientation parameters, geocenter coordinates, satellite orbits or troposphere parameters. Generally, the impact can be mitigated by co-parameterisation or by reducing deformations derived from global geophysical fluid models. Here, we focus on the latter approach. A number of data sets modelling the (non-tidal) loading deformations are generated by various groups. They show regionally and locally significant differences and consequently the impact on the space-geodetic solutions heavily depends on the available network geometry. We present and discuss the differences between these models and choose SLR as the speace-geodetic technique of interest in order to discuss the impact of atmospheric, oceanic and hydrological loading on the parameters of space-geodetic solutions when correcting for the global geophysical fluid models at the observation level. Special emphasis is given to a consistent usage of models for geometric and gravimetric corrections during the data processing. We quantify the impact of the different deformation models on the station coordinates and discuss the improvement in the Earth orientation parameters and the geocenter motion. We also show that a significant reduction in the RMS of the station coordinates can be achieved depending on the model of choice.
On the consistency among different approaches for nuclear track scanning and data processing
NASA Astrophysics Data System (ADS)
Inozemtsev, K. O.; Kushin, V. V.; Kodaira, S.; Shurshakov, V. A.
2018-04-01
The article describes various approaches for space radiation track measurement using CR-39™ detector (Tastrak). The results of comparing different methods for track scanning and data processing are presented. Basic algorithms for determination of track parameters are described. Every approach involves individual set of measured track parameters. For two sets, track scanning is sufficient in the plane of detector surface (2-D measurement), third set requires scanning in the additional projection (3-D measurement). An experimental comparison of considered techniques was made with the use of accelerated heavy ions Ar, Fe and Kr.
Energy landscapes for a machine-learning prediction of patient discharge
NASA Astrophysics Data System (ADS)
Das, Ritankar; Wales, David J.
2016-06-01
The energy landscapes framework is applied to a configuration space generated by training the parameters of a neural network. In this study the input data consists of time series for a collection of vital signs monitored for hospital patients, and the outcomes are patient discharge or continued hospitalisation. Using machine learning as a predictive diagnostic tool to identify patterns in large quantities of electronic health record data in real time is a very attractive approach for supporting clinical decisions, which have the potential to improve patient outcomes and reduce waiting times for discharge. Here we report some preliminary analysis to show how machine learning might be applied. In particular, we visualize the fitting landscape in terms of locally optimal neural networks and the connections between them in parameter space. We anticipate that these results, and analogues of thermodynamic properties for molecular systems, may help in the future design of improved predictive tools.
Flush-mounted probe diagnostics for argon glow discharge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Liang, E-mail: xld02345@mail.ustc.edu.cn; Cao, Jinxiang; Liu, Yu
2014-09-15
A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges.more » These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.« less
NASA Astrophysics Data System (ADS)
Chaudhury, Soumini; Bhattacharjee, Pijushpani; Cowsik, Ramanath
2010-09-01
Direct detection of Weakly Interacting Massive Particle (WIMP) candidates of Dark Matter (DM) is studied within the context of a self-consistent truncated isothermal model of the finite-size dark halo of the Galaxy. The halo model, based on the ``King model'' of the phase space distribution function of collisionless DM particles, takes into account the modifications of the phase-space structure of the halo due to the gravitational influence of the observed visible matter in a self-consistent manner. The parameters of the halo model are determined by a fit to a recently determined circular rotation curve of the Galaxy that extends up to ~ 60 kpc. Unlike in the Standard Halo Model (SHM) customarily used in the analysis of the results of WIMP direct detection experiments, the velocity distribution of the WIMPs in our model is non-Maxwellian with a cut-off at a maximum velocity that is self-consistently determined by the model itself. For our halo model that provides the best fit to the rotation curve data, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section from the recent results of the CDMS-II experiment, for example, is ~ 5.3 × 10-8 pb at a WIMP mass of ~ 71 GeV. We also find, using the original 2-bin annual modulation amplitude data on the nuclear recoil event rate seen in the DAMA experiment, that there exists a range of small WIMP masses, typically ~ 2-16 GeV, within which DAMA collaboration's claimed annual modulation signal purportedly due to WIMPs is compatible with the null results of other experiments. These results, based as they are on a self-consistent model of the dark matter halo of the Galaxy, strengthen the possibility of low-mass (lsim10 GeV) WIMPs as a candidate for dark matter as indicated by several earlier studies performed within the context of the SHM. A more rigorous analysis using DAMA bins over smaller intervals should be able to better constrain the ``DAMA regions'' in the WIMP parameter space within the context of our model.
2013-04-01
Forces can be computed at specific angular positions, and geometrical parameters can be evaluated. Much higher resolution models are required, along...composition engines (C#, C++, Python, Java ) Desert operates on the CyPhy model, converting from a design space alternative structure to a set of design...consists of scripts to execute dymola, post-processing of results to create metrics, and general management of the job sequence. An earlier version created
Evidence for inflation in an axion landscape
NASA Astrophysics Data System (ADS)
Nath, Pran; Piskunov, Maksim
2018-03-01
We discuss inflation models within supersymmetry and supergravity frameworks with a landscape of chiral superfields and one U(1) shift symmetry which is broken by non-perturbative symmetry breaking terms in the superpotential. We label the pseudo scalar component of the chiral fields axions and their real parts saxions. Thus in the models only one combination of axions will be a pseudo-Nambu-Goldstone-boson which will act as the inflaton. The proposed models constitute consistent inflation for the following reasons: the inflation potential arises dynamically with stabilized saxions, the axion decay constant can lie in the sub-Planckian region, and consistency with the Planck data is achieved. The axion landscape consisting of m axion pairs is assumed with the axions in each pair having opposite charges. A fast roll-slow roll splitting mechanism for the axion potential is proposed which is realized with a special choice of the axion basis. In this basis the 2 m coupled equations split into 2 m - 1 equations which enter in the fast roll and there is one unique linear combination of the 2 m fields which controls the slow roll and thus the power spectrum of curvature and tensor perturbations. It is shown that a significant part of the parameter space exists where inflation is successful, i.e., N pivot = [50, 60], the spectral index n s of curvature perturbations, and the ratio r of the power spectrum of tensor perturbations and curvature perturbations, lie in the experimentally allowed regions given by the Planck experiment. Further, it is shown that the model allows for a significant region of the parameter space where the effective axion decay constant can lie in the sub-Planckian domain. An analysis of the tensor spectral index n t is also given and the future experimental data which constraints n t will further narrow down the parameter space of the proposed inflationary models. Topics of further interest include implications of the model for gravitational waves and non-Gaussianities in the curvature perturbations. Also of interest is embedding of the model in strings which are expected to possess a large axionic landscape.
A periodic table of effective field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Clifford; Kampf, Karol; Novotny, Jiri
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less
A periodic table of effective field theories
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; ...
2017-02-06
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less
Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation
Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui
2014-01-01
Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904
Schmidt, Julia C; Astasov-Frauenhoffer, Monika; Waltimo, Tuomas; Weiger, Roland; Walter, Clemens
2017-06-01
The objective of this study was to evaluate the efficacy of four different side-to-side toothbrushes and the impact of various brushing parameters on noncontact biofilm removal in an adjustable interdental space model. A three-species biofilm, consisting of Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus sanguinis, was formed in vitro on protein-coated titanium disks using a flow chamber combined with a static biofilm growth model. Subsequently, the biofilm-coated disks were exposed to four different powered toothbrushes (A, B, C, D). The parameters distance (0 and 1 mm), brushing time (2, 4, and 6 s), interdental space width (1, 2, and 3 mm), and toothbrush angulation (45° and 90°) were tested. The biofilm volumes were determined using volumetric analyses with confocal laser scanning microscope (Zeiss LSM700) images and Imaris version 7.7.2 software. The median percentages of simulated interdental biofilm reduction by the tested toothbrushes ranged from 7 to 64 %. The abilities of the analyzed toothbrushes to reduce the in vitro biofilm differed significantly (p < 0.05). Three of the tested toothbrushes (A, B, C) were able to significantly reduce a simulated interdental biofilm by noncontact brushing (p ≤ 0.005). The brushing parameters and their combinations tested in the experiments revealed only minor effects on in vitro interdental biofilm reduction (p > 0.05). A three-species in vitro biofilm could be altered by noncontact brushing with toothbrushes A, B, and C in an artificial interdental space model. Certain side-to-side toothbrushes demonstrate in vitro a high efficacy in interdental biofilm removal without bristle-to-biofilm contact.
Evaluation of powertrain solutions for future tactical truck vehicle systems
NASA Astrophysics Data System (ADS)
Pisu, Pierluigi; Cantemir, Codrin-Gruie; Dembski, Nicholas; Rizzoni, Giorgio; Serrao, Lorenzo; Josephson, John R.; Russell, James
2006-05-01
The article presents the results of a large scale design space exploration for the hybridization of two off-road vehicles, part of the Future Tactical Truck System (FTTS) family: Maneuver Sustainment Vehicle (MSV) and Utility Vehicle (UV). Series hybrid architectures are examined. The objective of the paper is to illustrate a novel design methodology that allows for the choice of the optimal values of several vehicle parameters. The methodology consists in an extensive design space exploration, which involves running a large number of computer simulations with systematically varied vehicle design parameters, where each variant is paced through several different mission profiles, and multiple attributes of performance are measured. The resulting designs are filtered to choose the design tradeoffs that better satisfy the performance and fuel economy requirements. At the end, few promising vehicle configuration designs will be selected that will need additional detailed investigation including neglected metrics like ride and drivability. Several powertrain architectures have been simulated. The design parameters include the number of axles in the vehicle (2 or 3), the number of electric motors per axle (1 or 2), the type of internal combustion engine, the type and quantity of energy storage system devices (batteries, electrochemical capacitors or both together). An energy management control strategy has also been developed to provide efficiency and performance. The control parameters are tunable and have been included into the design space exploration. The results show that the internal combustion engine and the energy storage system devices are extremely important for the vehicle performance.
Genetic Algorithm-Guided, Adaptive Model Order Reduction of Flexible Aircrafts
NASA Technical Reports Server (NTRS)
Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter; Brenner, Martin J.
2017-01-01
This paper presents a methodology for automated model order reduction (MOR) of flexible aircrafts to construct linear parameter-varying (LPV) reduced order models (ROM) for aeroservoelasticity (ASE) analysis and control synthesis in broad flight parameter space. The novelty includes utilization of genetic algorithms (GAs) to automatically determine the states for reduction while minimizing the trial-and-error process and heuristics requirement to perform MOR; balanced truncation for unstable systems to achieve locally optimal realization of the full model; congruence transformation for "weak" fulfillment of state consistency across the entire flight parameter space; and ROM interpolation based on adaptive grid refinement to generate a globally functional LPV ASE ROM. The methodology is applied to the X-56A MUTT model currently being tested at NASA/AFRC for flutter suppression and gust load alleviation. Our studies indicate that X-56A ROM with less than one-seventh the number of states relative to the original model is able to accurately predict system response among all input-output channels for pitch, roll, and ASE control at various flight conditions. The GA-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The adaptive refinement allows selective addition of the grid points in the parameter space where flight dynamics varies dramatically to enhance interpolation accuracy without over-burdening controller synthesis and onboard memory efforts downstream. The present MOR framework can be used by control engineers for robust ASE controller synthesis and novel vehicle design.
NASA Astrophysics Data System (ADS)
Wells, James D.; Zhang, Zhengkang
2018-05-01
Dismissing traditional naturalness concerns while embracing the Higgs boson mass measurement and unification motivates careful analysis of trans-TeV supersymmetric theories. We take an effective field theory (EFT) approach, matching the Minimal Supersymmetric Standard Model (MSSM) onto the Standard Model (SM) EFT by integrating out heavy superpartners, and evolving MSSM and SMEFT parameters according to renormalization group equations in each regime. Our matching calculation is facilitated by the recent covariant diagrams formulation of functional matching techniques, with the full one-loop SUSY threshold corrections encoded in just 30 diagrams. Requiring consistent matching onto the SMEFT with its parameters (those in the Higgs potential in particular) measured at low energies, and in addition requiring unification of bottom and tau Yukawa couplings at the scale of gauge coupling unification, we detail the solution space of superpartner masses from the TeV scale to well above. We also provide detailed views of parameter space where Higgs coupling measurements have probing capability at future colliders beyond the reach of direct superpartner searches at the LHC.
NASA Technical Reports Server (NTRS)
Rhee, Ihnseok; Speyer, Jason L.
1990-01-01
A game theoretic controller is developed for a linear time-invariant system with parameter uncertainties in system and input matrices. The input-output decomposition modeling for the plant uncertainty is adopted. The uncertain dynamic system is represented as an internal feedback loop in which the system is assumed forced by fictitious disturbance caused by the parameter uncertainty. By considering the input and the fictitious disturbance as two noncooperative players, a differential game problem is constructed. It is shown that the resulting time invariant controller stabilizes the uncertain system for a prescribed uncertainty bound. This game theoretic controller is applied to the momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Inclusion of the external disturbance torque to the design procedure results in a dynamical feedback controller which consists of conventional PID control and cyclic disturbance rejection filter. It is shown that the game theoretic design, comparing to the LQR design or pole placement design, improves the stability robustness with respect to inertia variations.
NASA Astrophysics Data System (ADS)
Cary, J. R.; Shasharina, S.; Bruhwiler, D. L.
1998-04-01
The MAPA code is a fully interactive accelerator modeling and design tool consisting of a GUI and two object-oriented C++ libraries: a general library suitable for treatment of any dynamical system, and an accelerator library including many element types plus an accelerator class. The accelerator library inherits directly from the system library, which uses hash tables to store any relevant parameters or strings. The GUI can access these hash tables in a general way, allowing the user to invoke a window displaying all relevant parameters for a particular element type or for the accelerator class, with the option to change those parameters. The system library can advance an arbitrary number of dynamical variables through an arbitrary mapping. The accelerator class inherits this capability and overloads the relevant functions to advance the phase space variables of a charged particle through a string of elements. Among other things, the GUI makes phase space plots and finds fixed points of the map. We discuss the object hierarchy of the two libraries and use of the code.
Tcherniavski, Iouri; Kahrizi, Mojtaba
2008-11-20
Using a gradient optimization method with objective functions formulated in terms of a signal-to-noise ratio (SNR) calculated at given values of the prescribed spatial ground resolution, optimization problems of geometrical parameters of a distributed optical system and a charge-coupled device of a space-based optical-electronic system are solved for samples of the optical systems consisting of two and three annular subapertures. The modulation transfer function (MTF) of the distributed aperture is expressed in terms of an average MTF taking residual image alignment (IA) and optical path difference (OPD) errors into account. The results show optimal solutions of the optimization problems depending on diverse variable parameters. The information on the magnitudes of the SNR can be used to determine the number of the subapertures and their sizes, while the information on the SNR decrease depending on the IA and OPD errors can be useful in design of a beam combination control system to produce the necessary requirements to its accuracy on the basis of the permissible deterioration in the image quality.
NASA Astrophysics Data System (ADS)
Pan, Supriya; Chakraborty, Subenoy
2013-09-01
In this work we consider the evolution of the interactive dark fluids in the background of homogeneous and isotropic FRW model of the universe. The dark fluids consist of a warm dark matter and a dark energy and both are described as perfect fluid with barotropic equation of state. The dark species interact non-gravitationally through an additional term in the energy conservation equations. An autonomous system is formed in the energy density spaces and fixed points are analyzed. A general expression for the deceleration parameter has been obtained and it is possible to have more than one zero of the deceleration parameter. Finally, vanishing of the deceleration parameter has been examined with some examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Jesse D.; Grace Chang; Jason Magalen
A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deploymentmore » location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .« less
Qian, Yun; Yan, Huiping; Hou, Zhangshuan; ...
2015-04-10
We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics.more » Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.« less
NASA Astrophysics Data System (ADS)
Bringi, V. N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W. L.; Schoenhuber, M.
2003-01-01
The application of polarimetric radar data to the retrieval of raindrop size distribution parameters and rain rate in samples of convective and stratiform rain types is presented. Data from the Colorado State University (CSU), CHILL, NCAR S-band polarimetric (S-Pol), and NASA Kwajalein radars are analyzed for the statistics and functional relation of these parameters with rain rate. Surface drop size distribution measurements using two different disdrometers (2D video and RD-69) from a number of climatic regimes are analyzed and compared with the radar retrievals in a statistical and functional approach. The composite statistics based on disdrometer and radar retrievals suggest that, on average, the two parameters (generalized intercept and median volume diameter) for stratiform rain distributions lie on a straight line with negative slope, which appears to be consistent with variations in the microphysics of stratiform precipitation (melting of larger, dry snow particles versus smaller, rimed ice particles). In convective rain, `maritime-like' and `continental-like' clusters could be identified in the same two-parameter space that are consistent with the different multiplicative coefficients in the Z = aR1.5 relations quoted in the literature for maritime and continental regimes.
Nonlinear ARMA models for the D(st) index and their physical interpretation
NASA Technical Reports Server (NTRS)
Vassiliadis, D.; Klimas, A. J.; Baker, D. N.
1996-01-01
Time series models successfully reproduce or predict geomagnetic activity indices from solar wind parameters. A method is presented that converts a type of nonlinear filter, the nonlinear Autoregressive Moving Average (ARMA) model to the nonlinear damped oscillator physical model. The oscillator parameters, the growth and decay, the oscillation frequencies and the coupling strength to the input are derived from the filter coefficients. Mathematical methods are derived to obtain unique and consistent filter coefficients while keeping the prediction error low. These methods are applied to an oscillator model for the Dst geomagnetic index driven by the solar wind input. A data set is examined in two ways: the model parameters are calculated as averages over short time intervals, and a nonlinear ARMA model is calculated and the model parameters are derived as a function of the phase space.
Satellite orbit considerations for a global change technology architecture trade study
NASA Technical Reports Server (NTRS)
Harrison, Edwin F.; Gibson, Gary G.; Suttles, John T.; Buglia, James J.; Taback, Israel
1991-01-01
A study was conducted to determine satellite orbits for earth observation missions aimed at obtaining data for assessing data global climate change. A multisatellite system is required to meet the scientific requirements for temporal coverage over the globe. The best system consists of four sun-synchronous satellites equally spaced in local time of equatorial crossing. This system can obtain data every three hours for all regions. Several other satellite systems consisting of combinations of sun-synchronous orbits and either the Space Station Freedom or a mid-altitude equatorial satellite can provide three to six hour temporal coverage, which is sufficient for measuring many of the parameters required for the global change monitoring mission. Geosynchronous satellites are required to study atmospheric and surface processes involving variations on the order of a few minutes to an hour. One or two geosynchronous satellites can be relocated in longitude to study processes over selected regions of earth.
Scientific support for an orbiter middeck experiment on solid surface combustion
NASA Technical Reports Server (NTRS)
Altenkirch, Robert A.; Vedha-Nayagam, M.; Srikantaiah, Nataraj
1988-01-01
The objective is to determine the mechanism of gas-phase flame spread over solid fuel surfaces in the absence of any buoyancy or externally imposed gas-phase flow. Such understanding can be used to improve the fire safety aspects of space travel by providing information that will allow judicious selections of spacecraft materials and environments to be made. The planned experiment consists of measuring the flame spread rate over thermally thin and thermally thick fuels in a closed container in the low-gravity environment of the Space Shuttle. Measurements consist of flame spread rate and shape obtained from two views of the process as recorded on movie film and surface and gas-phase temperatures obtained from fine-wire thermocouples. The temperature measurements along with appropriate modeling provide information about the gas-to-solid heat flux. Environmental parameters to be varied are the oxygen concentration and pressure.
NASA Astrophysics Data System (ADS)
Tyler, R.
2017-12-01
Resonant tidal excitation of an atmosphere will arrive in predictable situations where there is a match in form and frequency between tidal forces and the atmosphere's eigenmodes of oscillation. The resonant response is typically several orders of magnitude more energetic than in non-resonant configurations involving only slight differences in parameters, and the behavior can be quite different because different oscillation modes are favored in each. The work presented provides first a generic description of these resonant states by demonstrating the behavior of solutions within the very large parameter space of potential scenarios. This generic description of the range of atmospheric tidal response scenarios is further used to create a taxonomy for organizing and understanding various tidally driven dynamic regimes. The resonances are easily identified by associated peaks in the power. But because these peaks may be relatively narrow, millions of solutions can be required to complete the description of the solution's dependence over the range of parameter values. (Construction of these large solution spaces is performed using a fast, semi-analytical method that solves the forced, dissipative, Laplace Tidal Equations subject to the constraint of dynamical consistency (through a separation constant) with solutions describing the vertical structure.) Filling in the solution space in this way is used not only to locate the parameter coordinates of resonant scenarios but also to study allowed migration paths through this space. It is suggested that resonant scenarios do not arrive through happenstance but rather because secular variations in parameters make the configuration move into the resonant scenario, with associated feedbacks either accelerating or halting the configuration migration. These results are then used to show strong support for the hypothesis by R. Lindzen that the regular banding (belts/zones/jets) on Jupiter and Saturn are driven by tides. The results also provide important, though less specific, support for a second hypothesis that inflated atmospheres inferred for a number of giant extra-solar planets are due to thermal or gravitational tides.
In-Space Radiator Shape Optimization using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael
2006-01-01
Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in-space radiators for unique situations. Preliminary results indicate an optimized shape following that of the temperature distribution regions in the "cooler" portions of the radiator. The results closely follow the expected radiator shape.
Engineering Low Dimensional Materials with van der Waals Interaction
NASA Astrophysics Data System (ADS)
Jin, Chenhao
Two-dimensional van der Waals materials grow into a hot and big field in condensed matter physics in the past decade. One particularly intriguing thing is the possibility to stack different layers together as one wish, like playing a Lego game, which can create artificial structures that do not exist in nature. These new structures can enable rich new physics from interlayer interaction: The interaction is strong, because in low-dimension materials electrons are exposed to the interface and are susceptible to other layers; and the screening of interaction is less prominent. The consequence is rich, not only from the extensive list of two-dimensional materials available nowadays, but also from the freedom of interlayer configuration, such as displacement and twist angle, which creates a gigantic parameter space to play with. On the other hand, however, the huge parameter space sometimes can make it challenging to describe consistently with a single picture. For example, the large periodicity or even incommensurability in van der Waals systems creates difficulty in using periodic boundary condition. Worse still, the huge superlattice unit cell and overwhelming computational efforts involved to some extent prevent the establishment of a simple physical picture to understand the evolution of system properties in the parameter space of interlayer configuration. In the first part of the dissertation, I will focus on classification of the huge parameter space into subspaces, and introduce suitable theoretical approaches for each subspace. For each approach, I will discuss its validity, limitation, general solution, as well as a specific example of application demonstrating how one can obtain the most important effects of interlayer interaction with little computation efforts. Combining all the approaches introduced will provide an analytic solution to cover majority of the parameter space, which will be very helpful in understanding the intuitive physical picture behind the consequence of interlayer interaction, as well as its systematic evolution in the parameter space. Experimentally, optical spectroscopy is a powerful tool to investigate properties of materials, owing to its insusceptibility to extrinsic effects like defects, capability of obtaining information in large spectral range, and the sensitivity to not only density of states but also wavefunction through transition matrix element. Following the classification of interlayer interaction, I will present optical spectroscopy studies of three van der Waals systems: Two-dimensional few layer phosphorene, one-dimensional double-walled nanotubes, and two-dimensional graphene/hexagonal Boron Nitride heterostructure. Experimental results exhibit rich and distinctively different effects of interlayer interaction in these systems, as a demonstration of the colorful physics from the large parameter space. On the other hand, all these cases can be well-described by the methods developed in the theory part, which explains experimental results quantitatively through only a few parameters each with clear physical meaning. Therefore, the formalism given here, both from theoretical and experimental aspects, offers a generally useful methodology to study, understand and design van der Waals materials for both fascinating physics and novel applications.
The INAF/IAPS Plasma Chamber for ionospheric simulation experiment
NASA Astrophysics Data System (ADS)
Diego, Piero
2016-04-01
The plasma chamber is particularly suitable to perform studies for the following applications: - plasma compatibility and functional tests on payloads envisioned to operate in the ionosphere (e.g. sensors onboard satellites, exposed to the external plasma environment); - calibration/testing of plasma diagnostic sensors; - characterization and compatibility tests on components for space applications (e.g. optical elements, harness, satellite paints, photo-voltaic cells, etc.); - experiments on satellite charging in a space plasma environment; - tests on active experiments which use ion, electron or plasma sources (ion thrusters, hollow cathodes, field effect emitters, plasma contactors, etc.); - possible studies relevant to fundamental space plasma physics. The facility consists of a large volume vacuum tank (a cylinder of length 4.5 m and diameter 1.7 m) equipped with a Kaufman type plasma source, operating with Argon gas, capable to generate a plasma beam with parameters (i.e. density and electron temperature) close to the values encountered in the ionosphere at F layer altitudes. The plasma beam (A+ ions and electrons) is accelerated into the chamber at a velocity that reproduces the relative motion between an orbiting satellite and the ionosphere (≈ 8 km/s). This feature, in particular, allows laboratory simulations of the actual compression and depletion phenomena which take place in the ram and wake regions around satellites moving through the ionosphere. The reproduced plasma environment is monitored using Langmuir Probes (LP) and Retarding Potential Analyzers (RPA). These sensors can be automatically moved within the experimental space using a sled mechanism. Such a feature allows the acquisition of the plasma parameters all around the space payload installed into the chamber for testing. The facility is currently in use to test the payloads of CSES satellite (Chinese Seismic Electromagnetic Satellite) devoted to plasma parameters and electric field measurements in a polar orbit at 500 km altitude.
NASA Astrophysics Data System (ADS)
Verardo, E.; Atteia, O.; Rouvreau, L.
2015-12-01
In-situ bioremediation is a commonly used remediation technology to clean up the subsurface of petroleum-contaminated sites. Forecasting remedial performance (in terms of flux and mass reduction) is a challenge due to uncertainties associated with source properties and the uncertainties associated with contribution and efficiency of concentration reducing mechanisms. In this study, predictive uncertainty analysis of bio-remediation system efficiency is carried out with the null-space Monte Carlo (NSMC) method which combines the calibration solution-space parameters with the ensemble of null-space parameters, creating sets of calibration-constrained parameters for input to follow-on remedial efficiency. The first step in the NSMC methodology for uncertainty analysis is model calibration. The model calibration was conducted by matching simulated BTEX concentration to a total of 48 observations from historical data before implementation of treatment. Two different bio-remediation designs were then implemented in the calibrated model. The first consists in pumping/injection wells and the second in permeable barrier coupled with infiltration across slotted piping. The NSMC method was used to calculate 1000 calibration-constrained parameter sets for the two different models. Several variants of the method were implemented to investigate their effect on the efficiency of the NSMC method. The first variant implementation of the NSMC is based on a single calibrated model. In the second variant, models were calibrated from different initial parameter sets. NSMC calibration-constrained parameter sets were sampled from these different calibrated models. We demonstrate that in context of nonlinear model, second variant avoids to underestimate parameter uncertainty which may lead to a poor quantification of predictive uncertainty. Application of the proposed approach to manage bioremediation of groundwater in a real site shows that it is effective to provide support in management of the in-situ bioremediation systems. Moreover, this study demonstrates that the NSMC method provides a computationally efficient and practical methodology of utilizing model predictive uncertainty methods in environmental management.
NASA Technical Reports Server (NTRS)
Markley, F. Landis
2005-01-01
A new method is presented for the simultaneous estimation of the attitude of a spacecraft and an N-vector of bias parameters. This method uses a probability distribution function defined on the Cartesian product of SO(3), the group of rotation matrices, and the Euclidean space W N .The Fokker-Planck equation propagates the probability distribution function between measurements, and Bayes s formula incorporates measurement update information. This approach avoids all the issues of singular attitude representations or singular covariance matrices encountered in extended Kalman filters. In addition, the filter has a consistent initialization for a completely unknown initial attitude, owing to the fact that SO(3) is a compact space.
NASA Astrophysics Data System (ADS)
Sagkrioti, E.; Sfetsos, K.; Siampos, K.
2018-05-01
We study the renormalization group equations of the fully anisotropic λ-deformed CFTs involving the direct product of two current algebras at different levels k1,2 for general semi-simple groups. The exact, in the deformation parameters, β-function is found via the effective action of the quantum fluctuations around a classical background as well as from gravitational techniques. Furthermore, agreement with known results for symmetric couplings and/or for equal levels, is demonstrated. We study in detail the two coupling case arising by splitting the group into a subgroup and the corresponding coset manifold which consistency requires to be either a symmetric-space one or a non-symmetric Einstein-space.
Thermodynamical transcription of density functional theory with minimum Fisher information
NASA Astrophysics Data System (ADS)
Nagy, Á.
2018-03-01
Ghosh, Berkowitz and Parr designed a thermodynamical transcription of the ground-state density functional theory and introduced a local temperature that varies from point to point. The theory, however, is not unique because the kinetic energy density is not uniquely defined. Here we derive the expression of the phase-space Fisher information in the GBP theory taking the inverse temperature as the Fisher parameter. It is proved that this Fisher information takes its minimum for the case of constant temperature. This result is consistent with the recently proven theorem that the phase-space Shannon information entropy attains its maximum at constant temperature.
Broadband impedance-matched electromagnetic structured ferrite composite in the megahertz range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parke, L.; Hibbins, A. P.; Sambles, J. R.
2014-06-02
A high refractive-index structured ferrite composite is designed to experimentally demonstrate broadband impedance matching to free-space. It consists of an array of ferrite cubes that are anisotropically spaced, thereby allowing for independent control of the effective complex permeability and permittivity. Despite having a refractive index of 9.5, the array gives less than 1% reflection and over 90% transmission of normally incident radiation up to 70 MHz for one of the orthogonal linear polarisations lying in a symmetry plane of the array. This result presents a route to the design of MHz-frequency ferrite composites with bespoke electromagnetic parameters for antenna miniaturisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Weiwei; Cava, Robert J.; Miller, Gordon J.
A new cubic complex metallic alloy phase, Cr 22Zn 72Sn 24, with a lattice parameter near 2.5 nm was discovered in crystals grown using a Zn/Sn flux. The structure consists of Russian doll clusters or a 3-d network of Cr-centered icosahedra (shown) with bcc-metal fragments in void spaces.
Xie, Weiwei; Cava, Robert J.; Miller, Gordon J.
2017-07-03
A new cubic complex metallic alloy phase, Cr 22Zn 72Sn 24, with a lattice parameter near 2.5 nm was discovered in crystals grown using a Zn/Sn flux. The structure consists of Russian doll clusters or a 3-d network of Cr-centered icosahedra (shown) with bcc-metal fragments in void spaces.
Safety Ellipse Motion with Coarse Sun Angle Optimization
NASA Technical Reports Server (NTRS)
Naasz, Bo
2005-01-01
The Hubble Space Telescope Robotic Servicing and De-orbit Mission (HRSDM) was t o be performed by the unmanned Hubble Robotic Vehicle (HRV) consisting of a Deorbit Module (DM), responsible for the ultimate disposal of Hubble Space Telescope (HST) at the end of science operations, and an Ejection Module (EM), responsible for robotically servicing the HST to extend its useful operational lifetime. HRSDM consisted of eight distinct phases, including: launch, pursuit, proximity operations, capture, servicing, EM jettison and disposal, science operations, and deorbit. The scope of this paper is limited to the Proximity Operations phase of HRSDM. It introduces a relative motion strategy useful for Autonomous Rendezvous and Docking (AR&D) or Formation Flying missions where safe circumnavigation trajectories, or close proximity operations (tens or hundreds of meters) are required for extended periods of time. Parameters and algorithms used to model the relative motion of HRV with respect to HST during the Proximity Operations phase of the HRSDM are described. Specifically, the Safety Ellipse (SE) concept, convenient parameters for describing SE motion, and a concept for initializing SE motion around a target vehicle to coarsely optimize sun and relative navigation sensor angles are presented. The effects of solar incidence angle variations on sun angle optimization, and the effects of orbital perturbations and navigation uncertainty on long term SE motion are discussed.
Spherically symmetric conformal gravity and ''gravitational bubbles''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezin, V.A.; Dokuchaev, V.I.; Eroshenko, Yu.N., E-mail: berezin@inr.ac.ru, E-mail: dokuchaev@inr.ac.ru, E-mail: eroshenko@inr.ac.ru
2016-01-01
The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the ''gravitational bubbles'', which is compact and with zero Weyl tensor. Thus, we obtained the pure vacuum curved space-timesmore » (without any material sources, including the cosmological constant) what is absolutely impossible in General Relativity. Such a phenomenon makes it easier to create the universe from ''nothing''. The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly some features of non-vacuum solutions. Two of them are explicitly written, namely, the metrics à la Vaidya, and the electrovacuum space-time metrics.« less
Entropy-Based Search Algorithm for Experimental Design
NASA Astrophysics Data System (ADS)
Malakar, N. K.; Knuth, K. H.
2011-03-01
The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.
Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders
NASA Astrophysics Data System (ADS)
Azatov, Aleksandr; Galloway, Jamison
2013-01-01
In this review, we discuss methods of parsing direct information from collider experiments regarding the Higgs boson and describe simple ways in which experimental likelihoods can be consistently reconstructed and interfaced with model predictions in pertinent parameter spaces. We review prevalent scenarios for extending the electroweak symmetry breaking sector and emphasize their predictions for nonstandard Higgs phenomenology that could be observed in large hadron collider (LHC) data if naturalness is realized in particular ways. Specifically we identify how measurements of Higgs couplings can be used to imply the existence of new physics at particular scales within various contexts. The most dominant production and decay modes of the Higgs-like state observed in the early data sets have proven to be consistent with predictions of the Higgs boson of the Standard Model, though interesting directions in subdominant channels still exist and will require our careful attention in further experimental tests. Slightly anomalous rates in certain channels at the early LHC have spurred effort in model building and spectra analyses of particular theories, and we discuss these developments in some detail. Finally, we highlight some parameter spaces of interest in order to give examples of how the data surrounding the new state can most effectively be used to constrain specific models of weak scale physics.
Progress towards an effective model for FeSe from high-accuracy first-principles quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Busemeyer, Brian; Wagner, Lucas K.
While the origin of superconductivity in the iron-based materials is still controversial, the proximity of the superconductivity to magnetic order is suggestive that magnetism may be important. Our previous work has suggested that first-principles Diffusion Monte Carlo (FN-DMC) can capture magnetic properties of iron-based superconductors that density functional theory (DFT) misses, but which are consistent with experiment. We report on the progress of efforts to find simple effective models consistent with the FN-DMC description of the low-lying Hilbert space of the iron-based superconductor, FeSe. We utilize a procedure outlined by Changlani et al.[1], which both produces parameter values and indications of whether the model is a good description of the first-principles Hamiltonian. Using this procedure, we evaluate several models of the magnetic part of the Hilbert space found in the literature, as well as the Hubbard model, and a spin-fermion model. We discuss which interaction parameters are important for this material, and how the material-specific properties give rise to these interactions. U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program under Award No. FG02-12ER46875, as well as the NSF Graduate Research Fellowship Program.
You, Daekeun; Kim, Michelle M; Aryal, Madhava P; Parmar, Hemant; Piert, Morand; Lawrence, Theodore S; Cao, Yue
2018-01-01
To create tumor "habitats" from the "signatures" discovered from multimodality metabolic and physiological images, we developed a framework of a processing pipeline. The processing pipeline consists of six major steps: (1) creating superpixels as a spatial unit in a tumor volume; (2) forming a data matrix [Formula: see text] containing all multimodality image parameters at superpixels; (3) forming and clustering a covariance or correlation matrix [Formula: see text] of the image parameters to discover major image "signatures;" (4) clustering the superpixels and organizing the parameter order of the [Formula: see text] matrix according to the one found in step 3; (5) creating "habitats" in the image space from the superpixels associated with the "signatures;" and (6) pooling and clustering a matrix consisting of correlation coefficients of each pair of image parameters from all patients to discover subgroup patterns of the tumors. The pipeline was applied to a dataset of multimodality images in glioblastoma (GBM) first, which consisted of 10 image parameters. Three major image "signatures" were identified. The three major "habitats" plus their overlaps were created. To test generalizability of the processing pipeline, a second image dataset from GBM, acquired on the scanners different from the first one, was processed. Also, to demonstrate the clinical association of image-defined "signatures" and "habitats," the patterns of recurrence of the patients were analyzed together with image parameters acquired prechemoradiation therapy. An association of the recurrence patterns with image-defined "signatures" and "habitats" was revealed. These image-defined "signatures" and "habitats" can be used to guide stereotactic tissue biopsy for genetic and mutation status analysis and to analyze for prediction of treatment outcomes, e.g., patterns of failure.
Population Coding of Visual Space: Modeling
Lehky, Sidney R.; Sereno, Anne B.
2011-01-01
We examine how the representation of space is affected by receptive field (RF) characteristics of the encoding population. Spatial responses were defined by overlapping Gaussian RFs. These responses were analyzed using multidimensional scaling to extract the representation of global space implicit in population activity. Spatial representations were based purely on firing rates, which were not labeled with RF characteristics (tuning curve peak location, for example), differentiating this approach from many other population coding models. Because responses were unlabeled, this model represents space using intrinsic coding, extracting relative positions amongst stimuli, rather than extrinsic coding where known RF characteristics provide a reference frame for extracting absolute positions. Two parameters were particularly important: RF diameter and RF dispersion, where dispersion indicates how broadly RF centers are spread out from the fovea. For large RFs, the model was able to form metrically accurate representations of physical space on low-dimensional manifolds embedded within the high-dimensional neural population response space, suggesting that in some cases the neural representation of space may be dimensionally isomorphic with 3D physical space. Smaller RF sizes degraded and distorted the spatial representation, with the smallest RF sizes (present in early visual areas) being unable to recover even a topologically consistent rendition of space on low-dimensional manifolds. Finally, although positional invariance of stimulus responses has long been associated with large RFs in object recognition models, we found RF dispersion rather than RF diameter to be the critical parameter. In fact, at a population level, the modeling suggests that higher ventral stream areas with highly restricted RF dispersion would be unable to achieve positionally-invariant representations beyond this narrow region around fixation. PMID:21344012
NASA Astrophysics Data System (ADS)
Zhuang, Bin; Wang, Yuming; Shen, Chenglong; Liu, Siqing; Wang, Jingjing; Pan, Zonghao; Li, Huimin; Liu, Rui
2017-08-01
As one of the most violent astrophysical phenomena, coronal mass ejections (CMEs) have strong potential space weather effects. However, not all Earth-directed CMEs encounter the Earth and produce geo-effects. One reason is the deflected propagation of CMEs in interplanetary space. Although there have been several case studies clearly showing such deflections, it has not yet been statistically assessed how significantly the deflected propagation would influence the CME’s arrival at Earth. We develop an integrated CME-arrival forecasting (iCAF) system, assembling the modules of CME detection, three-dimensional (3D) parameter derivation, and trajectory reconstruction to predict whether or not a CME arrives at Earth, and we assess the deflection influence on the CME-arrival forecasting. The performance of iCAF is tested by comparing the two-dimensional (2D) parameters with those in the Coordinated Data Analysis Workshop (CDAW) Data Center catalog, comparing the 3D parameters with those of the gradual cylindrical shell model, and estimating the success rate of the CME Earth-arrival predictions. It is found that the 2D parameters provided by iCAF and the CDAW catalog are consistent with each other, and the 3D parameters derived by the ice cream cone model based on single-view observations are acceptable. The success rate of the CME-arrival predictions by iCAF with deflection considered is about 82%, which is 19% higher than that without deflection, indicating the importance of the CME deflection for providing a reliable forecasting. Furthermore, iCAF is a worthwhile project since it is a completely automatic system with deflection taken into account.
Consistency relation and non-Gaussianity in a Galileon inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asadi, Kosar; Nozari, Kourosh, E-mail: k.asadi@stu.umz.ac.ir, E-mail: knozari@umz.ac.ir
2016-12-01
We study a particular Galileon inflation in the light of Planck2015 observational data in order to constraint the model parameter space. We study the spectrum of the primordial modes of the density perturbations by expanding the action up to the second order in perturbations. Then we pursue by expanding the action up to the third order and find the three point correlation functions to find the amplitude of the non-Gaussianity of the primordial perturbations in this setup. We study the amplitude of the non-Gaussianity both in equilateral and orthogonal configurations and test the model with recent observational data. Our analysismore » shows that for some ranges of the non-minimal coupling parameter, the model is consistent with observation and it is also possible to have large non-Gaussianity which would be observable by future improvements in experiments. Moreover, we obtain the tilt of the tensor power spectrum and test the standard inflationary consistency relation ( r = −8 n {sub T} ) against the latest bounds from the Planck2015 dataset. We find a slight deviation from the standard consistency relation in this setup. Nevertheless, such a deviation seems not to be sufficiently remarkable to be detected confidently.« less
Effective theories of universal theories
Wells, James D.; Zhang, Zhengkang
2016-01-20
It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. The oblique parameters should not be associated with Wilson coefficients in a particular operator basis in the effective field theory (EFT) framework, unless restrictions have been imposed on the EFT so that it describes universal theories. Here, we work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16more » parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h 3, hff, hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order yf 2. Furthermore, all these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.« less
Effective theories of universal theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, James D.; Zhang, Zhengkang
It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. The oblique parameters should not be associated with Wilson coefficients in a particular operator basis in the effective field theory (EFT) framework, unless restrictions have been imposed on the EFT so that it describes universal theories. Here, we work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16more » parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h 3, hff, hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order yf 2. Furthermore, all these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.« less
An analysis of penetration and ricochet phenomena in oblique hypervelocity impact
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Taylor, Roy A.; Horn, Jennifer R.
1988-01-01
An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.
Conceptual spacecraft systems design and synthesis
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Interactive systems design and synthesis of future spacecraft concepts
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced spacecraft (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze and conduct parametric studies and modify Earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Towards a Refined Realisation of the Terrestrial Reference System
NASA Astrophysics Data System (ADS)
Angermann, D.; Drewes, H.; Meisel, B.; Kruegel, M.; Tesmer, V.
2004-12-01
Global reference frames provide the framework for scientific investigations of the Earth's system (e.g. plate tectonics, sea level change, seasonal and secular loading signals, atmosphere dynamics, Earth orientation excitation), as well as for many practical applications (e.g. surveying and navigation). Today, space geodetic techniques allow to determine geodetic parameters (e.g. station positions, Earth rotation) with a precision of a few millimeters (or even better). However, this high accuracy is not reflected by current realisations of the terrestrial reference system. To fully exploit the potential of the space geodetic observations for investigations of various global and regional, short-term, seasonal and secular phenomena of the Earth's system, the reference frame must be realised with the highest accuracy, spatial and temporal consistency and stability over decades. Furthermore, future progress in Earth sciences will fundamentally depend on understanding the Earth as a system, into which the three areas of geodetic research (geometry/deformation, Earth rotation, gravity) are to be integrated. The presentation focusses on various aspects that must be considered for a refined realisation of the terrestrial reference system, such as the development of suitable methods for the combination of the contributing space geodetic observations, the realisation of the TRF datum and the parameterisation of site motions. For this purpose we investigated time series of station positions and datum parameters obtained from VLBI, SLR, GPS and DORIS solutions, and compared the results at co-location sites and with other studies. Furthermore, we present results obtained from a TRS realisation based on epoch (weekly/daily) normal equations with station positions and daily Earth Orientation Parameters (EOP) using five years (1999-2004) of VLBI, SLR, GPS and DORIS data. This refined approach has major advantages compared to past TRF realisations based on multi-year solutions with station positions at a given epoch and constant velocities, as for instance non-linear effects of site positions and datum parameters can be considered, and consistency between TRF and EOPs can be achieved. First results of this new approach are promising.
NASA Technical Reports Server (NTRS)
Larsen, D. C.; Sievert, J. L.
1975-01-01
The potential of producing the glassy form of selected materials in the weightless, containerless nature of space processing is examined through the development of kinetic relationships describing nucleation and crystallization phenomena. Transformation kinetics are applied to a well-characterized system (SiO2), an excellent glass former (B2O3), and a poor glass former (Al2O3) by conventional earth processing methods. Viscosity and entropy of fusion are shown to be the primary materials parameters controlling the glass forming tendency. For multicomponent systems diffusion-controlled kinetics and heterogeneous nucleation effects are considered. An analytical empirical approach is used to analyze the mullite system. Results are consistent with experimentally observed data and indicate the promise of mullite as a future space processing candidate.
Recursive Branching Simulated Annealing Algorithm
NASA Technical Reports Server (NTRS)
Bolcar, Matthew; Smith, J. Scott; Aronstein, David
2012-01-01
This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.
NASA Astrophysics Data System (ADS)
Andersen, P. H.
Forsvarets forskningsinstitutt (FFI, the Norwegian Defence Research Establishment) has during the last 17 years developed a software system called GEOSAT, for the analysis of any type of high precision space geodetic observations. A unique feature of GEOSAT is the possibility of combining any combination of different space geode- tic data at the observation level with one consistent model and one consistent strategy. This is a much better strategy than the strategy in use today where different types of observations are processed separately using analysis software developed specifically for each technique. The results from each technique are finally combined a posteriori. In practice the models implemented in the software packages differ at the 1-cm level which is almost one order of magnitude larger than the internal precision of the most precise techniques. Another advantage of the new proposed combination method is that for example VLBI and GPS can use the same tropospheric model with common parameterization. The same is the case for the Earth orientation parameters, the geo- center coordinates and other geodetic or geophysical parameters where VLBI, GPS and SLR can have a common estimate for each of the parameters. The analysis with GEOSAT is automated for the combination of VLBI, SLR and GPS observations. The data are analyzed in batches of one day where the result from each daily arc is a SRIF array (Square Root Information Filter). A large number of SRIF arrays can be combined into a multi-year solution using the CSRIFS program (Com- bination Square Root Information Filter and Smoother). Four parameter levels are available and any parameter can, at each level, either be represented as a constant or a stochastic parameter (white noise, colored noise, or random walk). The batch length (i.e. the time interval between the addition of noise to the SRIF array) can be made time- and parameter dependent. GEOSAT and CSRIFS have been applied in the analysis of selected VLBI and SLR data (LAGEOS I &II) from the period January 1993 to July 2001. A selected number of arcs also include GPS data. Earth orientation parameters, geocenter motion, sta- tion coordinates and velocities were estimated simultaneously with the coordinates of the radio sources and satellite orbital parameters. Recent software improvements and 1 results of analyses will be presented at the meeting. 2
Space Radiation and Manned Mission: Interface Between Physics and Biology
NASA Astrophysics Data System (ADS)
Hei, Tom
2012-07-01
The natural radiation environment in space consists of a mixed field of high energy protons, heavy ions, electrons and alpha particles. Interplanetary travel to the International Space Station and any planned establishment of satellite colonies on other solar system implies radiation exposure to the crew and is a major concern to space agencies. With shielding, the radiation exposure level in manned space missions is likely to be chronic, low dose irradiation. Traditionally, our knowledge of biological effects of cosmic radiation in deep space is almost exclusively derived from ground-based accelerator experiments with heavy ions in animal or in vitro models. Radiobiological effects of low doses of ionizing radiation are subjected to modulations by various parameters including bystander effects, adaptive response, genomic instability and genetic susceptibility of the exposed individuals. Radiation dosimetry and modeling will provide conformational input in areas where data are difficult to acquire experimentally. However, modeling is only as good as the quality of input data. This lecture will discuss the interdependent nature of physics and biology in assessing the radiobiological response to space radiation.
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
Ou, Yangming; Resnick, Susan M.; Gur, Ruben C.; Gur, Raquel E.; Satterthwaite, Theodore D.; Furth, Susan; Davatzikos, Christos
2016-01-01
Atlas-based automated anatomical labeling is a fundamental tool in medical image segmentation, as it defines regions of interest for subsequent analysis of structural and functional image data. The extensive investigation of multi-atlas warping and fusion techniques over the past 5 or more years has clearly demonstrated the advantages of consensus-based segmentation. However, the common approach is to use multiple atlases with a single registration method and parameter set, which is not necessarily optimal for every individual scan, anatomical region, and problem/data-type. Different registration criteria and parameter sets yield different solutions, each providing complementary information. Herein, we present a consensus labeling framework that generates a broad ensemble of labeled atlases in target image space via the use of several warping algorithms, regularization parameters, and atlases. The label fusion integrates two complementary sources of information: a local similarity ranking to select locally optimal atlases and a boundary modulation term to refine the segmentation consistently with the target image's intensity profile. The ensemble approach consistently outperforms segmentations using individual warping methods alone, achieving high accuracy on several benchmark datasets. The MUSE methodology has been used for processing thousands of scans from various datasets, producing robust and consistent results. MUSE is publicly available both as a downloadable software package, and as an application that can be run on the CBICA Image Processing Portal (https://ipp.cbica.upenn.edu), a web based platform for remote processing of medical images. PMID:26679328
Population Synthesis of Radio & Gamma-Ray Millisecond Pulsars
NASA Astrophysics Data System (ADS)
Frederick, Sara; Gonthier, P. L.; Harding, A. K.
2014-01-01
In recent years, the number of known gamma-ray millisecond pulsars (MSPs) in the Galactic disk has risen substantially thanks to confirmed detections by Fermi Gamma-ray Space Telescope (Fermi). We have developed a new population synthesis of gamma-ray and radio MSPs in the galaxy which uses Markov Chain Monte Carlo techniques to explore the large and small worlds of the model parameter space and allows for comparisons of the simulated and detected MSP distributions. The simulation employs empirical radio and gamma-ray luminosity models that are dependent upon the pulsar period and period derivative with freely varying exponents. Parameters associated with the birth distributions are also free to vary. The computer code adjusts the magnitudes of the model luminosities to reproduce the number of MSPs detected by a group of ten radio surveys, thus normalizing the simulation and predicting the MSP birth rates in the Galaxy. Computing many Markov chains leads to preferred sets of model parameters that are further explored through two statistical methods. Marginalized plots define confidence regions in the model parameter space using maximum likelihood methods. A secondary set of confidence regions is determined in parallel using Kuiper statistics calculated from comparisons of cumulative distributions. These two techniques provide feedback to affirm the results and to check for consistency. Radio flux and dispersion measure constraints have been imposed on the simulated gamma-ray distributions in order to reproduce realistic detection conditions. The simulated and detected distributions agree well for both sets of radio and gamma-ray pulsar characteristics, as evidenced by our various comparisons.
NASA Technical Reports Server (NTRS)
Levinskikh, M. A.; Sychev, V. N.; Signalova, O. B.; Derendiaeva, T. A.; Podol'skii, I. G.; Masgreiv, M. E.; Bingheim, G. E.; Musgrave, M. E. (Principal Investigator); Campbell, W. F. (Principal Investigator)
2001-01-01
The purpose was to study characteristic features of growth and development of several plant generations in space flight in experiment GREENHOUSE-3 as a part of the Russian-US space research program MIR/NASA in 1997. The experiment consisted of cultivation of Brassica rapa L. in board greenhouse Svet. Two vegetative cycles were fully completed and the third vegetation was terminated on day 13 on the phase of budding. The total duration of the space experiment was 122 days, i.e. same as in the ground controls. In the experiment with Brassica rapa L. viable seeds produced by the first crop were planted in space flight and yielded next crop. Crops raised from the ground and space seeds were found to differ in height and number of buds. Both parameters were lowered in the plants grown from the space seeds. The prime course for smaller size and reduced organogenic potential of plantTs reproductive system seems to be a less content of nutrients in seeds that had matured in the space flight. Experiment GREENHOUSE-3 demonstrated principle feasibility of plant reproduction in space greenhouse from seeds developed in microgravity.
Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions.
Zhang, Peng
2015-05-19
When two conductors are separated by a sufficiently thin insulator, electrical current can flow between them by quantum tunneling. This paper presents a self-consistent model of tunneling current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the effects of space charge and exchange correlation potential. It is found that the J-V curve of the junction may be divided into three regimes: direct tunneling, field emission, and space-charge-limited regime. In general, the space charge inside the insulator reduces current transfer across the junction, whereas the exchange-correlation potential promotes current transfer. It is shown that these effects may modify the current density by orders of magnitude from the widely used Simmons' formula, which is only accurate for a limited parameter space (insulator thickness > 1 nm and barrier height > 3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and material properties (i.e. work function of the electrodes, electron affinity and permittivity of the insulator) are examined in detail in various regimes. Our simple model and the general scaling for tunneling current may provide insights to new regimes of quantum plasmonics.
Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions
Zhang, Peng
2015-01-01
When two conductors are separated by a sufficiently thin insulator, electrical current can flow between them by quantum tunneling. This paper presents a self-consistent model of tunneling current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the effects of space charge and exchange correlation potential. It is found that the J-V curve of the junction may be divided into three regimes: direct tunneling, field emission, and space-charge-limited regime. In general, the space charge inside the insulator reduces current transfer across the junction, whereas the exchange-correlation potential promotes current transfer. It is shown that these effects may modify the current density by orders of magnitude from the widely used Simmons’ formula, which is only accurate for a limited parameter space (insulator thickness > 1 nm and barrier height > 3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and material properties (i.e. work function of the electrodes, electron affinity and permittivity of the insulator) are examined in detail in various regimes. Our simple model and the general scaling for tunneling current may provide insights to new regimes of quantum plasmonics. PMID:25988951
Heat transfer measurements for Stirling machine cylinders
NASA Technical Reports Server (NTRS)
Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.
1994-01-01
The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially generated noise, but it failed with the actual experimental data. This is evidence that the models used in the parameter optimization procedure (and to generate the simulated data) were not correct. Data from the surface heat flux sensors indicated that the primary shortcoming of these models was that they assumed turbulence levels to be constant over the cycle. Sensor data in the varying volume space showed a large increase in heat flux, probably due to turbulence, during the expansion stroke.
Mesz, Bruno; Trevisan, Marcos A; Sigman, Mariano
2011-01-01
Zarlino, one of the most important music theorists of the XVI century, described the minor consonances as 'sweet' (dolci) and 'soft' (soavi) (Zarlino 1558/1983, in On the Modes New Haven, CT: Yale University Press, 1983). Hector Berlioz, in his Treatise on Modern Instrumentation and Orchestration (London: Novello, 1855), speaks about the 'small acid-sweet voice' of the oboe. In line with this tradition of describing musical concepts in terms of taste words, recent empirical studies have found reliable associations between taste perception and low-level sound and musical parameters, like pitch and phonetic features. Here we investigated whether taste words elicited consistent musical representations by asking trained musicians to improvise on the basis of the four canonical taste words: sweet, sour, bitter, and salty. Our results showed that, even in free improvisation, taste words elicited very reliable and consistent musical patterns:'bitter' improvisations are low-pitched and legato (without interruption between notes), 'salty' improvisations are staccato (notes sharply detached from each other), 'sour' improvisations are high-pitched and dissonant, and 'sweet' improvisations are consonant, slow, and soft. Interestingly, projections of the improvisations of taste words to musical space (a vector space defined by relevant musical parameters) revealed that, in musical space, improvisations based on different taste words were nearly orthogonal or opposite. Decoding methods could classify binary choices of improvisations (i.e., identify the improvisation word from the melody) at performance of around 80%--well above chance. In a second experiment we investigated the mapping from perception of music to taste words. Fifty-seven non-musical experts listened to a fraction of the improvisations. We found that listeners classified with high performance the taste word which had elicited the improvisation. Our results, furthermore, show that associations of taste and music go beyond basic sensory attributes into the domain of semantics, and open a new venue of investigation to understand the origins of these consistent taste-musical patterns.
Heat Rejection Concepts for Brayton Power Conversion Systems
NASA Technical Reports Server (NTRS)
Siamidis, John; Mason, Lee; Beach, Duane; Yuko, James
2005-01-01
This paper describes potential heat rejection design concepts for closed Brayton cycle (CBC) power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) applications. The Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped sodium-potassium (NaK) heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a sandwich construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. Heat transfer from the NaK fluid to the heat pipes is accomplished by inserting the evaporator sections into the NaK duct channel. The paper evaluates various design parameters including heat pipe diameter, heat pipe spacing, and facesheet thickness. Parameters were varied to compare design options on the basis of NaK pump pressure rise and required power, heat pipe unit power and radial flux, radiator panel areal mass, and overall HRS mass.
[Characteristics of night sleep of monkeys on the ground and during space flight on "Kosmos-1667"].
Shlyk, G G; Rotenberg, V S; Shirvinskaia, M A; Koro'lkov, V I; Magedov, V S
1989-01-01
The data on the sleep structure of two rhesus monkeys, Vernyi and Gordyi, during their 7-day space flight on Cosmos-1667 and a control study staged a month after recovery are discussed. Sleep structure was changed to the greatest extent the night before launch when additional stress factors were involved. During the first night in space Vernyi showed the so-called recoil effect. Later his sleep structure became stabilized: the specific weight of fast sleep diminished and the fast sleep/delta/sleep index in the first two cycles decreased. In the ground-based control study, sleep parameters pointed to a deteriorated health status of the animal: his fast sleep patterns changed and delta-sleep often reached its maximum after a fast sleep episode. In this animal adaptation was associated with fast sleep restructuring. In the second primate, Gordyi, the process of adaptation was extended and took three nights. This animal consistently showed low parameters of delta-sleep during both fright and postflight control study; it exhibited no recoil phenomenon after its reduction in the prelaunch night. The structure of sleep indicated that it played a lesser role in the overall process of adaptation.
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Wallin, Ragnar; Boyle, Richard D.
2013-01-01
The vestibulo-ocular reflex (VOR) is a well-known dual mode bifurcating system that consists of slow and fast modes associated with nystagmus and saccade, respectively. Estimation of continuous-time parameters of nystagmus and saccade models are known to be sensitive to estimation methodology, noise and sampling rate. The stable and accurate estimation of these parameters are critical for accurate disease modelling, clinical diagnosis, robotic control strategies, mission planning for space exploration and pilot safety, etc. This paper presents a novel indirect system identification method for the estimation of continuous-time parameters of VOR employing standardised least-squares with dual sampling rates in a sparse structure. This approach permits the stable and simultaneous estimation of both nystagmus and saccade data. The efficacy of this approach is demonstrated via simulation of a continuous-time model of VOR with typical parameters found in clinical studies and in the presence of output additive noise.
Csorba, Zsofia; Petak, Ferenc; Nevery, Kitti; Tolnai, Jozsef; Balogh, Adam L; Rarosi, Ferenc; Fodor, Gergely H; Babik, Barna
2016-05-01
Although the mechanical status of the lungs affects the shape of the capnogram, the relations between the capnographic parameters and those reflecting the airway and lung tissue mechanics have not been established in mechanically ventilated patients. We, therefore, set out to characterize how the mechanical properties of the airways and lung tissues modify the indices obtained from the different phases of the time and volumetric capnograms and how the lung mechanical changes are reflected in the altered capnographic parameters after a cardiopulmonary bypass (CPB). Anesthetized, mechanically ventilated patients (n = 101) undergoing heart surgery were studied in a prospective consecutive cross-sectional study under the open-chest condition before and 5 minutes after CPB. Forced oscillation technique was applied to measure airway resistance (Raw), tissue damping (G), and elastance (H). Time and volumetric capnography were performed to assess parameters reflecting the phase II (SII) and phase III slopes (SIII), their transition (D2min), the dead-space indices according to Fowler, Bohr, and Enghoff and the intrapulmonary shunt. Before CPB, SII and D2min exhibited the closest (P = 0.006) associations with H (0.65 and -0.57; P < 0.0001, respectively), whereas SIII correlated most strongly (P < 0.0001) with Raw (r = 0.63; P < 0.0001). CPB induced significant elevations in Raw and G and H (P < 0.0001). These adverse mechanical changes were reflected consistently in SII, SIII, and D2min, with weaker correlations with the dead-space indices (P < 0.0001). The intrapulmonary shunt expressed as the difference between the Enghoff and Bohr dead-space parameters was increased after CPB (95% ± 5% [SEM] vs 143% ± 6%; P < 0.001). In mechanically ventilated patients, the capnographic parameters from the early phase of expiration (SII and D2min) are linked to the pulmonary elastic recoil, whereas the effect of airway patency on SIII dominates over the lung tissue stiffness. However, severe deterioration in lung resistance or elastance affects both capnogram slopes.
Light stops and observation of supersymmetry at LHC run II
NASA Astrophysics Data System (ADS)
Kaufman, Bryan; Nath, Pran; Nelson, Brent D.; Spisak, Andrew B.
2015-11-01
Light stops consistent with the Higgs boson mass of ˜126 GeV are investigated within the framework of minimal supergravity. It is shown that models with light stops which are also consistent with the thermal relic density constraints require stop coannihilation with the neutralino LSP. The analysis shows that the residual set of parameter points with light stops satisfying both the Higgs mass and the relic density constraints lie within a series of thin strips in the m0-m1 /2 plane for different values of A0/m0. Consequently, this region of minimal supergravity parameter space makes a number of very precise predictions. It is found that light stops of mass down to 400 GeV or lower can exist consistent with all constraints. A signal analysis for this class of models at LHC run II is carried out and the dominant signals for their detection identified. Also computed is the minimum integrated luminosity for 5 σ discovery of the models analyzed. If supersymmetry is realized in this manner, the stop masses can be as low as 400 GeV or lower, and the mass gap between the lightest neutralino and lightest stop will be approximately 30-40 GeV. We have optimized the ATLAS signal regions specifically for stop searches in the parameter space and find that a stop with mass ˜375 GeV can be discovered with as little as ˜60 fb-1 of integrated luminosity at run II of the LHC; the integrated luminosity needed for discovery could be further reduced with more efficient signature analyses. The direct detection of dark matter in this class of models is also discussed. It is found that dark matter cross sections lie close to, but above, coherent neutrino scattering and would require multiton detectors such as LZ to see a signal of dark matter for this class of models.
Syndromes of collateral-reported psychopathology for ages 18-59 in 18 Societies
Ivanova, Masha Y.; Achenbach, Thomas M.; Rescorla, Leslie A.; Turner, Lori V.; Árnadóttir, Hervör Alma; Au, Alma; Caldas, J. Carlos; Chaalal, Nebia; Chen, Yi Chuen; da Rocha, Marina M.; Decoster, Jeroen; Fontaine, Johnny R.J.; Funabiki, Yasuko; Guðmundsson, Halldór S.; Kim, Young Ah; Leung, Patrick; Liu, Jianghong; Malykh, Sergey; Marković, Jasminka; Oh, Kyung Ja; Petot, Jean-Michel; Samaniego, Virginia C.; Silvares, Edwiges Ferreira de Mattos; Šimulionienė, Roma; Šobot, Valentina; Sokoli, Elvisa; Sun, Guiju; Talcott, Joel B.; Vázquez, Natalia; Zasępa, Ewa
2017-01-01
The purpose was to advance research and clinical methodology for assessing psychopathology by testing the international generalizability of an 8-syndrome model derived from collateral ratings of adult behavioral, emotional, social, and thought problems. Collateral informants rated 8,582 18–59-year-old residents of 18 societies on the Adult Behavior Checklist (ABCL). Confirmatory factor analyses tested the fit of the 8-syndrome model to ratings from each society. The primary model fit index (Root Mean Square Error of Approximation) showed good model fit for all societies, while secondary indices (Tucker Lewis Index, Comparative Fit Index) showed acceptable to good fit for 17 societies. Factor loadings were robust across societies and items. Of the 5,007 estimated parameters, 4 (0.08%) were outside the admissible parameter space, but 95% confidence intervals included the admissible space, indicating that the 4 deviant parameters could be due to sampling fluctuations. The findings are consistent with previous evidence for the generalizability of the 8-syndrome model in self-ratings from 29 societies, and support the 8-syndrome model for operationalizing phenotypes of adult psychopathology from multi-informant ratings in diverse societies. PMID:29399019
A robust momentum management and attitude control system for the space station
NASA Technical Reports Server (NTRS)
Speyer, J. L.; Rhee, Ihnseok
1991-01-01
A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very assurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance.
Exponential Sum-Fitting of Dwell-Time Distributions without Specifying Starting Parameters
Landowne, David; Yuan, Bin; Magleby, Karl L.
2013-01-01
Fitting dwell-time distributions with sums of exponentials is widely used to characterize histograms of open- and closed-interval durations recorded from single ion channels, as well as for other physical phenomena. However, it can be difficult to identify the contributing exponential components. Here we extend previous methods of exponential sum-fitting to present a maximum-likelihood approach that consistently detects all significant exponentials without the need for user-specified starting parameters. Instead of searching for exponentials, the fitting starts with a very large number of initial exponentials with logarithmically spaced time constants, so that none are missed. Maximum-likelihood fitting then determines the areas of all the initial exponentials keeping the time constants fixed. In an iterative manner, with refitting after each step, the analysis then removes exponentials with negligible area and combines closely spaced adjacent exponentials, until only those exponentials that make significant contributions to the dwell-time distribution remain. There is no limit on the number of significant exponentials and no starting parameters need be specified. We demonstrate fully automated detection for both experimental and simulated data, as well as for classical exponential-sum-fitting problems. PMID:23746510
Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling
Barranca, Victor J.; Kovačič, Gregor; Zhou, Douglas; Cai, David
2016-01-01
Compressive sensing (CS) theory demonstrates that by using uniformly-random sampling, rather than uniformly-spaced sampling, higher quality image reconstructions are often achievable. Considering that the structure of sampling protocols has such a profound impact on the quality of image reconstructions, we formulate a new sampling scheme motivated by physiological receptive field structure, localized random sampling, which yields significantly improved CS image reconstructions. For each set of localized image measurements, our sampling method first randomly selects an image pixel and then measures its nearby pixels with probability depending on their distance from the initially selected pixel. We compare the uniformly-random and localized random sampling methods over a large space of sampling parameters, and show that, for the optimal parameter choices, higher quality image reconstructions can be consistently obtained by using localized random sampling. In addition, we argue that the localized random CS optimal parameter choice is stable with respect to diverse natural images, and scales with the number of samples used for reconstruction. We expect that the localized random sampling protocol helps to explain the evolutionarily advantageous nature of receptive field structure in visual systems and suggests several future research areas in CS theory and its application to brain imaging. PMID:27555464
Robust momentum management and attitude control system for the Space Station
NASA Technical Reports Server (NTRS)
Rhee, Ihnseok; Speyer, Jason L.
1992-01-01
A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very accurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance.
A method and data for video monitor sizing. [human CRT viewing requirements
NASA Technical Reports Server (NTRS)
Kirkpatrick, M., III; Shields, N. L., Jr.; Malone, T. B.; Guerin, E. G.
1976-01-01
The paper outlines an approach consisting of using analytical methods and empirical data to determine monitor size constraints based on the human operator's CRT viewing requirements in a context where panel space and volume considerations for the Space Shuttle aft cabin constrain the size of the monitor to be used. Two cases are examined: remote scene imaging and alphanumeric character display. The central parameter used to constrain monitor size is the ratio M/L where M is the monitor dimension and L the viewing distance. The study is restricted largely to 525 line video systems having an SNR of 32 db and bandwidth of 4.5 MHz. Degradation in these parameters would require changes in the empirically determined visual angle constants presented. The data and methods described are considered to apply to cases where operators are required to view via TV target objects which are well differentiated from the background and where the background is relatively sparse. It is also necessary to identify the critical target dimensions and cues.
Emborsky, Christopher P; Cox, Kenneth R; Chapman, Walter G
2011-08-28
The ubiquitous use of surfactants in commercial and industrial applications has led to many experimental, theoretical, and simulation based studies. These efforts seek to provide a molecular level understanding of the effects on structuring behavior and the corresponding impacts on observable properties (e.g., interfacial tension). With such physical detail, targeted system design can be improved over typical techniques of observational trends and phenomenological correlations by taking advantage of predictive system response. This research provides a systematic study of part of the broad parameter space effects on equilibrium microstructure and interfacial properties of amphiphiles at a liquid-liquid interface using the interfacial statistical associating fluid theory density functional theory as a molecular model for the system from the bulk to the interface. Insights into the molecular level physics and thermodynamics governing the system behavior are discussed as they relate to both predictions qualitatively consistent with experimental observations and extensions beyond currently available studies. © 2011 American Institute of Physics
Data Analysis of the Floating Potential Measurement Unit aboard the International Space Station
NASA Technical Reports Server (NTRS)
Barjatya, Aroh; Swenson, Charles M.; Thompson, Donald C.; Wright, Kenneth H., Jr.
2009-01-01
We present data from the Floating Potential Measurement Unit (FPMU), that is deployed on the starboard (S1) truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of: a Floating Potential Probe, a Wide-sweeping spherical Langmuir probe, a Narrow-sweeping cylindrical Langmuir Probe, and a Plasma Impedance Probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data is presented from August 5th, 2006 and March 3rd, 2007. The FPMU derived plasma density and temperatures are compared with the International Reference Ionosphere (IRI) and USU-Global Assimilation of Ionospheric Measurement (USU-GAIM) models. Our results show that the derived in-situ density matches the USU-GAIM model better than the IRI, and the derived in-situ temperatures are comparable to the average temperatures given by the IRI.
NASA Technical Reports Server (NTRS)
Switzer, Eric Ryan; Watts, Duncan J.
2016-01-01
The B-mode polarization of the cosmic microwave background provides a unique window into tensor perturbations from inflationary gravitational waves. Survey effects complicate the estimation and description of the power spectrum on the largest angular scales. The pixel-space likelihood yields parameter distributions without the power spectrum as an intermediate step, but it does not have the large suite of tests available to power spectral methods. Searches for primordial B-modes must rigorously reject and rule out contamination. Many forms of contamination vary or are uncorrelated across epochs, frequencies, surveys, or other data treatment subsets. The cross power and the power spectrum of the difference of subset maps provide approaches to reject and isolate excess variance. We develop an analogous joint pixel-space likelihood. Contamination not modeled in the likelihood produces parameter-dependent bias and complicates the interpretation of the difference map. We describe a null test that consistently weights the difference map. Excess variance should either be explicitly modeled in the covariance or be removed through reprocessing the data.
An, Yan; Zou, Zhihong; Li, Ranran
2014-01-01
A large number of parameters are acquired during practical water quality monitoring. If all the parameters are used in water quality assessment, the computational complexity will definitely increase. In order to reduce the input space dimensions, a fuzzy rough set was introduced to perform attribute reduction. Then, an attribute recognition theoretical model and entropy method were combined to assess water quality in the Harbin reach of the Songhuajiang River in China. A dataset consisting of ten parameters was collected from January to October in 2012. Fuzzy rough set was applied to reduce the ten parameters to four parameters: BOD5, NH3-N, TP, and F. coli (Reduct A). Considering that DO is a usual parameter in water quality assessment, another reduct, including DO, BOD5, NH3-N, TP, TN, F, and F. coli (Reduct B), was obtained. The assessment results of Reduct B show a good consistency with those of Reduct A, and this means that DO is not always necessary to assess water quality. The results with attribute reduction are not exactly the same as those without attribute reduction, which can be attributed to the α value decided by subjective experience. The assessment results gained by the fuzzy rough set obviously reduce computational complexity, and are acceptable and reliable. The model proposed in this paper enhances the water quality assessment system. PMID:24675643
A new Bayesian Earthquake Analysis Tool (BEAT)
NASA Astrophysics Data System (ADS)
Vasyura-Bathke, Hannes; Dutta, Rishabh; Jónsson, Sigurjón; Mai, Martin
2017-04-01
Modern earthquake source estimation studies increasingly use non-linear optimization strategies to estimate kinematic rupture parameters, often considering geodetic and seismic data jointly. However, the optimization process is complex and consists of several steps that need to be followed in the earthquake parameter estimation procedure. These include pre-describing or modeling the fault geometry, calculating the Green's Functions (often assuming a layered elastic half-space), and estimating the distributed final slip and possibly other kinematic source parameters. Recently, Bayesian inference has become popular for estimating posterior distributions of earthquake source model parameters given measured/estimated/assumed data and model uncertainties. For instance, some research groups consider uncertainties of the layered medium and propagate these to the source parameter uncertainties. Other groups make use of informative priors to reduce the model parameter space. In addition, innovative sampling algorithms have been developed that efficiently explore the often high-dimensional parameter spaces. Compared to earlier studies, these improvements have resulted in overall more robust source model parameter estimates that include uncertainties. However, the computational demands of these methods are high and estimation codes are rarely distributed along with the published results. Even if codes are made available, it is often difficult to assemble them into a single optimization framework as they are typically coded in different programing languages. Therefore, further progress and future applications of these methods/codes are hampered, while reproducibility and validation of results has become essentially impossible. In the spirit of providing open-access and modular codes to facilitate progress and reproducible research in earthquake source estimations, we undertook the effort of producing BEAT, a python package that comprises all the above-mentioned features in one single programing environment. The package is build on top of the pyrocko seismological toolbox (www.pyrocko.org) and makes use of the pymc3 module for Bayesian statistical model fitting. BEAT is an open-source package (https://github.com/hvasbath/beat) and we encourage and solicit contributions to the project. In this contribution, we present our strategy for developing BEAT, show application examples, and discuss future developments.
(abstract) Space Science with Commercial Funding
NASA Technical Reports Server (NTRS)
1994-01-01
The world-wide recession, and other factors, have led to reduced or flat budgets in real terms for space agencies around the world. Consequently space science projects and proposals have been under pressure and seemingly will continue to be pressured for some years into the future. A new concept for space science funding is underway at JPL. A partnership has been arranged with a commercial, for-profit, company that proposes to implement a (bandwidth-on-demand) information and telephone system through a network of low earth orbiting satellites (LEO). This network will consist of almost 1000 satellites operating in polar orbit at Ka-band. JPL has negotiated an agreement with this company that each satellite will also carry one or more science instruments for astrophysics, astronomy, and for earth observations. This paper discussed the details of the arrangement and the financial arrangements. It describes the technical parameters, such as the 60 GHz wideband inter-satellite links and the frequency, time, and position control, on which the science is based, and it also discusses the complementarity of this commercially funded space science with conventional space science.
Plasma layers near the electrodes of a cesium diode - Anode layer
NASA Astrophysics Data System (ADS)
Oganezov, Z. A.; Timoshenko, L. S.; Tskhakaya, V. K.
1982-08-01
A planar electron beam probe is used to study the plasma layer in contact with a nonemitting electrode. It is found that the field distribution in the space-charge region of the layer adjacent to a nonemitting electrode is linear and obeys a specific empirical relation over a large range of variation in the plasma parameters, while the potential distribution has a corresponding parabolic form. In order for these values to be consistent, it is necessary to assume that the potential at the boundary between the quasi-neutral plasma and the space-charge is equal to a value which is substantially larger than the theoretically permitted potential drop in a quasi-neutral plasma.
Doke, T; Hayashi, T; Hasebe, N; Kikuchi, J; Kono, S; Murakami, T; Sakaguchi, T; Takahashi, K; Takashima, T
1996-12-01
A new telescope consisting of three two-dimensional position-sensitive silicon detectors which can measure the linear energy transfer (LET) distribution over the range from 0.2 to 400keV/micrometers has been developed as a real-time radiation monitor in manned spacecraft. First, the principle of LET measurement and its design method are described. Second, suitable electronic parameters for the LET measurement are experimentally determined. Finally the telescope performance is investigated by using, relativistic heavy ions. The first in-flight test of this type of telescope on the US Space Shuttle (STS-84) is scheduled for May, 1997.
Latent degradation indicators estimation and prediction: A Monte Carlo approach
NASA Astrophysics Data System (ADS)
Zhou, Yifan; Sun, Yong; Mathew, Joseph; Wolff, Rodney; Ma, Lin
2011-01-01
Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.
Elastic and anelastic relaxations associated with the incommensurate structure of Pr0.48Ca0.52MnO3
NASA Astrophysics Data System (ADS)
Carpenter, Michael A.; Howard, Christopher J.; McKnight, Ruth E. A.; Migliori, Albert; Betts, Jon B.; Fanelli, Victor R.
2010-10-01
The elastic and anelastic properties of a polycrystalline sample of Pr0.48Ca0.52MnO3 have been investigated by resonant ultrasound spectroscopy, as a function of temperature (10-1130 K) and magnetic field strength (0-15 T). Marked softening of the shear modulus as the Pnma↔incommensurate phase transition at ˜235K in zero field is approached from either side is consistent with pseudoproper ferroelastic character, driven by an order parameter with Γ3+ symmetry associated with Jahn-Teller ordering. This is accompanied by an increase in attenuation just below the transition point. The attenuation remains relatively high down to ˜80K , where there is a distinct Debye peak. It is attributed to coupling of shear strain with the Γ3+ order parameter which, in turn, controls the repeat distance of the incommensurate structure. Kinetic data extracted from the Debye peak suggest that the rate-controlling process could be related to migration of polarons. Elastic softening and stiffening as a function of magnetic field at constant temperatures between 177 and ˜225K closely resembles the behavior as a function of temperature at 0, 5, and 10 T and is consistent with thermodynamically continuous behavior for the phase transition in both cases. This overall pattern can be rationalized in terms of linear/quadratic coupling between the Γ3+ order parameter and an order parameter with Σ1 or Σ2 symmetry. It is also consistent with a dominant role for spontaneous strains in determining the strength of coupling, evolution of the incommensurate microstructure, and equilibrium evolution of the Jahn-Teller ordered structure through multicomponent order-parameter space.
Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics
NASA Astrophysics Data System (ADS)
Rangan, Aaditya V.; Cai, David; Tao, Louis
2007-02-01
Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.
Coherent diffraction imaging: consistency of the assembled three-dimensional distribution.
Tegze, Miklós; Bortel, Gábor
2016-07-01
The short pulses of X-ray free-electron lasers can produce diffraction patterns with structural information before radiation damage destroys the particle. From the recorded diffraction patterns the structure of particles or molecules can be determined on the nano- or even atomic scale. In a coherent diffraction imaging experiment thousands of diffraction patterns of identical particles are recorded and assembled into a three-dimensional distribution which is subsequently used to solve the structure of the particle. It is essential to know, but not always obvious, that the assembled three-dimensional reciprocal-space intensity distribution is really consistent with the measured diffraction patterns. This paper shows that, with the use of correlation maps and a single parameter calculated from them, the consistency of the three-dimensional distribution can be reliably validated.
Transit Photometry of Recently Discovered Hot Jupiters
NASA Astrophysics Data System (ADS)
McCloat, Sean Peter
The University of North Dakota Space Studies Internet Observatory was used to observe the transits of hot Jupiter exoplanets. Targets for this research were selected from the list of currently confirmed exoplanets using the following criteria: radius > 0.5 Rjup, discovered since 2011, orbiting stars with apparent magnitude > 13. Eleven transits were observed distributed across nine targets with the goal of performing differential photometry for parameter refinement and transit timing variation analysis if data quality allowed. Data quality was ultimately insufficient for robust parameter refinement, but tentative calculations of mid-transit times were made of three of the observed transits. Mid-transit times for WASP-103b and WASP-48b were consistent with predictions and the existing database.
Load Balancing in Multi Cloud Computing Environment with Genetic Algorithm
NASA Astrophysics Data System (ADS)
Vhansure, Fularani; Deshmukh, Apurva; Sumathy, S.
2017-11-01
Cloud is a pool of resources that is available on pay per use model. It provides services to the user which is increasing rapidly. Load balancing is an issue because it cannot handle so many requests at a time. It is also known as NP complete problem. In traditional system the functions consist of various parameter values to maximise it in order to achieve best optimal individualsolutions. Challenge is when there are many parameters of solutionsin the system space. Another challenge is to optimize the function which is much more complex. In this paper, various techniques to handle load balancing virtually (VM) as well as physically (nodes) using genetic algorithm is discussed.
Dynamics of a neuron model in different two-dimensional parameter-spaces
NASA Astrophysics Data System (ADS)
Rech, Paulo C.
2011-03-01
We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades.
Transformation to equivalent dimensions—a new methodology to study earthquake clustering
NASA Astrophysics Data System (ADS)
Lasocki, Stanislaw
2014-05-01
A seismic event is represented by a point in a parameter space, quantified by the vector of parameter values. Studies of earthquake clustering involve considering distances between such points in multidimensional spaces. However, the metrics of earthquake parameters are different, hence the metric in a multidimensional parameter space cannot be readily defined. The present paper proposes a solution of this metric problem based on a concept of probabilistic equivalence of earthquake parameters. Under this concept the lengths of parameter intervals are equivalent if the probability for earthquakes to take values from either interval is the same. Earthquake clustering is studied in an equivalent rather than the original dimensions space, where the equivalent dimension (ED) of a parameter is its cumulative distribution function. All transformed parameters are of linear scale in [0, 1] interval and the distance between earthquakes represented by vectors in any ED space is Euclidean. The unknown, in general, cumulative distributions of earthquake parameters are estimated from earthquake catalogues by means of the model-free non-parametric kernel estimation method. Potential of the transformation to EDs is illustrated by two examples of use: to find hierarchically closest neighbours in time-space and to assess temporal variations of earthquake clustering in a specific 4-D phase space.
LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction
NASA Astrophysics Data System (ADS)
Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert
2012-10-01
The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.
Large-aperture Tunable Plasma Meta-material to Interact with Electromagnetic Waves
NASA Astrophysics Data System (ADS)
Corke, Thomas; Matlis, Eric
2016-11-01
The formation of spatially periodic arrangements of glow discharge plasma resulting from charge instabilities were investigated as a tuneable plasma meta-material. The plasma was formed between two 2-D parallel dielectric covered electrodes: one consisting of an Indium-Tin-Oxide coated glass sheet, and the other consisting of a glass-covered circular electrode. The dielectric covered electrodes were separated by a gap that formed a 2-D channel. The gap spacing was adjustable. The electrodes were powered by a variable amplitude AC generator. The parallel electrode arrangement was placed in a variable pressure vacuum chamber. Various combinations of gap spacing, pressure and voltage resulted in the formation of spatially periodic arrangements (lattice) of glow discharge plasma. The lattice spacing perfectly followed 2-D packing theory, and was fully adjustable through the three governing parameters. Lattice arrangements were designed to interact with electromagnetic (EM) waves in the frequency range between 10GHz-80GHz. Its feasibility was investigate through an EM wave simulation that we adapted to allow for plasma permittivity. The results showed a clear suppression of the EM wave amplitude through the plasma gratings. Supported by AFOSR.
Charting the parameter space of the global 21-cm signal
NASA Astrophysics Data System (ADS)
Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan; Lotem, Matan
2017-12-01
The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work, we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming haloes; the efficiency, spectral energy distribution and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range z = 6-40 for each of 193 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide selection of models, we still find clear correlations between the key features of the global 21-cm signal and underlying astrophysical properties of the high-redshift Universe, namely the Ly α intensity, the X-ray heating rate and the production rate of ionizing photons. These correlations can be used to directly link future measurements of the global 21-cm signal to astrophysical quantities in a mostly model-independent way. We identify additional correlations that can be used as consistency checks.
The cosmological analysis of X-ray cluster surveys. III. 4D X-ray observable diagrams
NASA Astrophysics Data System (ADS)
Pierre, M.; Valotti, A.; Faccioli, L.; Clerc, N.; Gastaud, R.; Koulouridis, E.; Pacaud, F.
2017-11-01
Context. Despite compelling theoretical arguments, the use of clusters as cosmological probes is, in practice, frequently questioned because of the many uncertainties surrounding cluster-mass estimates. Aims: Our aim is to develop a fully self-consistent cosmological approach of X-ray cluster surveys, exclusively based on observable quantities rather than masses. This procedure is justified given the possibility to directly derive the cluster properties via ab initio modelling, either analytically or by using hydrodynamical simulations. In this third paper, we evaluate the method on cluster toy-catalogues. Methods: We model the population of detected clusters in the count-rate - hardness-ratio - angular size - redshift space and compare the corresponding four-dimensional diagram with theoretical predictions. The best cosmology+physics parameter configuration is determined using a simple minimisation procedure; errors on the parameters are estimated by averaging the results from ten independent survey realisations. The method allows a simultaneous fit of the cosmological parameters of the cluster evolutionary physics and of the selection effects. Results: When using information from the X-ray survey alone plus redshifts, this approach is shown to be as accurate as the modelling of the mass function for the cosmological parameters and to perform better for the cluster physics, for a similar level of assumptions on the scaling relations. It enables the identification of degenerate combinations of parameter values. Conclusions: Given the considerably shorter computer times involved for running the minimisation procedure in the observed parameter space, this method appears to clearly outperform traditional mass-based approaches when X-ray survey data alone are available.
Vajapeyam, S; Stamoulis, C; Ricci, K; Kieran, M; Poussaint, T Young
2017-01-01
Pharmacokinetic parameters from dynamic contrast-enhanced MR imaging have proved useful for differentiating brain tumor grades in adults. In this study, we retrospectively reviewed dynamic contrast-enhanced perfusion data from children with newly diagnosed brain tumors and analyzed the pharmacokinetic parameters correlating with tumor grade. Dynamic contrast-enhanced MR imaging data from 38 patients were analyzed by using commercially available software. Subjects were categorized into 2 groups based on pathologic analyses consisting of low-grade (World Health Organization I and II) and high-grade (World Health Organization III and IV) tumors. Pharmacokinetic parameters were compared between the 2 groups by using linear regression models. For parameters that were statistically distinct between the 2 groups, sensitivity and specificity were also estimated. Eighteen tumors were classified as low-grade, and 20, as high-grade. Transfer constant from the blood plasma into the extracellular extravascular space (K trans ), rate constant from extracellular extravascular space back into blood plasma (K ep ), and extracellular extravascular volume fraction (V e ) were all significantly correlated with tumor grade; high-grade tumors showed higher K trans , higher K ep , and lower V e . Although all 3 parameters had high specificity (range, 82%-100%), K ep had the highest specificity for both grades. Optimal sensitivity was achieved for V e , with a combined sensitivity of 76% (compared with 71% for K trans and K ep ). Pharmacokinetic parameters derived from dynamic contrast-enhanced MR imaging can effectively discriminate low- and high-grade pediatric brain tumors. © 2017 by American Journal of Neuroradiology.
NASA Technical Reports Server (NTRS)
Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.
2015-01-01
The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.
Sequential Bayesian geoacoustic inversion for mobile and compact source-receiver configuration.
Carrière, Olivier; Hermand, Jean-Pierre
2012-04-01
Geoacoustic characterization of wide areas through inversion requires easily deployable configurations including free-drifting platforms, underwater gliders and autonomous vehicles, typically performing repeated transmissions during their course. In this paper, the inverse problem is formulated as sequential Bayesian filtering to take advantage of repeated transmission measurements. Nonlinear Kalman filters implement a random-walk model for geometry and environment and an acoustic propagation code in the measurement model. Data from MREA/BP07 sea trials are tested consisting of multitone and frequency-modulated signals (bands: 0.25-0.8 and 0.8-1.6 kHz) received on a shallow vertical array of four hydrophones 5-m spaced drifting over 0.7-1.6 km range. Space- and time-coherent processing are applied to the respective signal types. Kalman filter outputs are compared to a sequence of global optimizations performed independently on each received signal. For both signal types, the sequential approach is more accurate but also more efficient. Due to frequency diversity, the processing of modulated signals produces a more stable tracking. Although an extended Kalman filter provides comparable estimates of the tracked parameters, the ensemble Kalman filter is necessary to properly assess uncertainty. In spite of mild range dependence and simplified bottom model, all tracked geoacoustic parameters are consistent with high-resolution seismic profiling, core logging P-wave velocity, and previous inversion results with fixed geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.
We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less
Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; ...
2016-05-10
We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less
NASA Astrophysics Data System (ADS)
Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W.
2013-08-01
We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for spatio-temporal ICS (STICS) that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and intercellular adhesion molecule 1 (ICAM-1) ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrin-ligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.
Numerical study of the motion of a flagellated swimmer inside a tube in the Stokes regime
NASA Astrophysics Data System (ADS)
Zhang, Ji; Jiao, Yusheng; Xu, Xinliang; Ding, Yang
2017-11-01
Confined environments are common to micro-swimmers such bacteria and previous studies have shown that confinements such as a wall can influenced the trajectory of the micro-swimmers. Here we study whether some micro-swimmers can achieve a higher speed and energetic efficiency within a long tube comparing to the free-space case using a numerical model. The swimmer consists of an elliptical head and two helical flagella. To solve the governing Stokes equations inside an infinite tube, we combine the method of fundamental solution (MSF) and the method of Stokeslet. The geometry parameters, including shape and size of head and flagella, and relative spatial position of these components, are varied. Our results show that the geometry of the swimmer and the tube can greatly affect the speed of the micro-swimmer. For certain geometric parameters of the micro-swimmer, a greater confinement leads to a higher speed, which is consistent with the results from our robotic experiments.
NASA Astrophysics Data System (ADS)
Eon, Rehman S.; Gerace, Aaron D.; Montanaro, Matthew; Ambeau, Brittany L.; McCorkel, Joel T.
2018-01-01
The ability of sensors to detect changes in the Earth's environment is dependent on retrieving radiometrically consistent and calibrated measurements from its surface. Intercalibration provides consistency among satellite instruments and ensures fidelity of scientific information. Intercalibration is especially important for spaceborne satellites without any on-board calibration, as accuracy of instruments is significantly affected by changes that occur postlaunch. To better understand the key parameters that impact the intercalibration process, this paper describes a simulation environment that was developed to support the primary mission of the Algodones Dunes campaign. Specifically, measurements obtained from the campaign were utilized to create a synthetic landscape to assess the feasibility of using the Algodones Dunes system as an intercalibration site for spaceborne instruments. The impact of two key parameters (differing view-angles and temporal offsets between instruments) on the intercalibration process was assessed. Results of these studies indicate that although the accuracy of intercalibration is sensitive to these parameters, proper knowledge of their impact leads to situations that minimize their effect. This paper concludes with a case study that addresses the feasibility of performing intercalibration on the International Space Station's platform to support NASA's CLARREO, the climate absolute radiance and refractivity observatory, mission.
Filter parameter tuning analysis for operational orbit determination support
NASA Technical Reports Server (NTRS)
Dunham, J.; Cox, C.; Niklewski, D.; Mistretta, G.; Hart, R.
1994-01-01
The use of an extended Kalman filter (EKF) for operational orbit determination support is being considered by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). To support that investigation, analysis was performed to determine how an EKF can be tuned for operational support of a set of earth-orbiting spacecraft. The objectives of this analysis were to design and test a general purpose scheme for filter tuning, evaluate the solution accuracies, and develop practical methods to test the consistency of the EKF solutions in an operational environment. The filter was found to be easily tuned to produce estimates that were consistent, agreed with results from batch estimation, and compared well among the common parameters estimated for several spacecraft. The analysis indicates that there is not a sharply defined 'best' tunable parameter set, especially when considering only the position estimates over the data arc. The comparison of the EKF estimates for the user spacecraft showed that the filter is capable of high-accuracy results and can easily meet the current accuracy requirements for the spacecraft included in the investigation. The conclusion is that the EKF is a viable option for FDD operational support.
Material and shape optimization for multi-layered vocal fold models using transient loadings.
Schmidt, Bastian; Leugering, Günter; Stingl, Michael; Hüttner, Björn; Agaimy, Abbas; Döllinger, Michael
2013-08-01
Commonly applied models to study vocal fold vibrations in combination with air flow distributions are self-sustained physical models of the larynx consisting of artificial silicone vocal folds. Choosing appropriate mechanical parameters and layer geometries for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In earlier work by Schmidt et al. [J. Acoust. Soc. Am. 129, 2168-2180 (2011)], the authors presented an approach in which material parameters of a static numerical vocal fold model were optimized to achieve an agreement of the displacement field with data retrieved from hemilarynx experiments. This method is now generalized to a fully transient setting. Moreover in addition to the material parameters, the extended approach is capable of finding optimized layer geometries. Depending on chosen material restriction, significant modifications of the reference geometry are predicted. The additional flexibility in the design space leads to a significantly more realistic deformation behavior. At the same time, the predicted biomechanical and geometrical results are still feasible for manufacturing physical vocal fold models consisting of several silicone layers. As a consequence, the proposed combined experimental and numerical method is suited to guide the construction of physical vocal fold models.
Conceptual analysis of a lunar base transportation system
NASA Technical Reports Server (NTRS)
Hoy, Trevor D.; Johnson, Lloyd B., III; Persons, Mark B.; Wright, Robert L.
1992-01-01
Important to the planning for a lunar base is the development of transportation requirements for the establishment and maintenance of that base. This was accomplished as part of a lunar base systems assessment study conducted by the NASA Langley Research Center in conjunction with the NASA Johnson Space Center. Lunar base parameters are presented using a baseline lunar facility concept and timeline of developmental phases. Masses for habitation and scientific modules, power systems, life support systems, and thermal control systems were generated, assuming space station technology as a starting point. The masses were manifested by grouping various systems into cargo missions and interspersing manned flights consistent with construction and base maintenance timelines. A computer program that sizes the orbital transfer vehicles (OTV's), lunar landers, lunar ascenders, and the manned capsules was developed. This program consists of an interative technique to solve the rocket equation successively for each velocity correction (delta V) in a mission. The delta V values reflect integrated trajectory values and include gravity losses. As the program computed fuel masses, it matched structural masses from General Dynamics' modular space-based OTV design. Variables in the study included the operation mode (i.e., expendable vs. reusable and single-stage vs. two-stage OTV's), cryogenic specific impulse, reflecting different levels of engine technology, and aerobraking vs. all-propulsive return to Earth orbit. The use of lunar-derived oxygen was also examined for its general impact. For each combination of factors, the low-Earth orbit (LEO) stack masses and Earth-to-orbit (ETO) lift requirements are summarized by individual mission and totaled for the developmental phase. In addition to these discrete data, trends in the variation of study parameters are presented.
Theoretical accuracy in cosmological growth estimation
NASA Astrophysics Data System (ADS)
Bose, Benjamin; Koyama, Kazuya; Hellwing, Wojciech A.; Zhao, Gong-Bo; Winther, Hans A.
2017-07-01
We elucidate the importance of the consistent treatment of gravity-model specific nonlinearities when estimating the growth of cosmological structures from redshift space distortions (RSD). Within the context of standard perturbation theory (SPT), we compare the predictions of two theoretical templates with redshift space data from COLA (comoving Lagrangian acceleration) simulations in the normal branch of DGP gravity (nDGP) and general relativity (GR). Using COLA for these comparisons is validated using a suite of full N-body simulations for the same theories. The two theoretical templates correspond to the standard general relativistic perturbation equations and those same equations modeled within nDGP. Gravitational clustering nonlinear effects are accounted for by modeling the power spectrum up to one-loop order and redshift space clustering anisotropy is modeled using the Taruya, Nishimichi and Saito (TNS) RSD model. Using this approach, we attempt to recover the simulation's fiducial logarithmic growth parameter f . By assigning the simulation data with errors representing an idealized survey with a volume of 10 Gpc3/h3 , we find the GR template is unable to recover fiducial f to within 1 σ at z =1 when we match the data up to kmax=0.195 h /Mpc . On the other hand, the DGP template recovers the fiducial value within 1 σ . Further, we conduct the same analysis for sets of mock data generated for generalized models of modified gravity using SPT, where again we analyze the GR template's ability to recover the fiducial value. We find that for models with enhanced gravitational nonlinearity, the theoretical bias of the GR template becomes significant for stage IV surveys. Thus, we show that for the future large data volume galaxy surveys, the self-consistent modeling of non-GR gravity scenarios will be crucial in constraining theory parameters.
Information gains from cosmological probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandis, S.; Seehars, S.; Refregier, A.
In light of the growing number of cosmological observations, it is important to develop versatile tools to quantify the constraining power and consistency of cosmological probes. Originally motivated from information theory, we use the relative entropy to compute the information gained by Bayesian updates in units of bits. This measure quantifies both the improvement in precision and the 'surprise', i.e. the tension arising from shifts in central values. Our starting point is a WMAP9 prior which we update with observations of the distance ladder, supernovae (SNe), baryon acoustic oscillations (BAO), and weak lensing as well as the 2015 Planck release.more » We consider the parameters of the flat ΛCDM concordance model and some of its extensions which include curvature and Dark Energy equation of state parameter w . We find that, relative to WMAP9 and within these model spaces, the probes that have provided the greatest gains are Planck (10 bits), followed by BAO surveys (5.1 bits) and SNe experiments (3.1 bits). The other cosmological probes, including weak lensing (1.7 bits) and (H{sub 0}) measures (1.7 bits), have contributed information but at a lower level. Furthermore, we do not find any significant surprise when updating the constraints of WMAP9 with any of the other experiments, meaning that they are consistent with WMAP9. However, when we choose Planck15 as the prior, we find that, accounting for the full multi-dimensionality of the parameter space, the weak lensing measurements of CFHTLenS produce a large surprise of 4.4 bits which is statistically significant at the 8 σ level. We discuss how the relative entropy provides a versatile and robust framework to compare cosmological probes in the context of current and future surveys.« less
System cost/performance analysis (study 2.3). Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Kazangey, T.
1973-01-01
The relationships between performance, safety, cost, and schedule parameters were identified and quantified in support of an overall effort to generate program models and methodology that provide insight into a total space vehicle program. A specific space vehicle system, the attitude control system (ACS), was used, and a modeling methodology was selected that develops a consistent set of quantitative relationships among performance, safety, cost, and schedule, based on the characteristics of the components utilized in candidate mechanisms. These descriptive equations were developed for a three-axis, earth-pointing, mass expulsion ACS. A data base describing typical candidate ACS components was implemented, along with a computer program to perform sample calculations. This approach, implemented on a computer, is capable of determining the effect of a change in functional requirements to the ACS mechanization and the resulting cost and schedule. By a simple extension of this modeling methodology to the other systems in a space vehicle, a complete space vehicle model can be developed. Study results and recommendations are presented.
Modeling Advance Life Support Systems
NASA Technical Reports Server (NTRS)
Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan
1996-01-01
Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.
NASA Astrophysics Data System (ADS)
Ryblewski, Radoslaw; Strickland, Michael
2015-07-01
We compute dilepton production from the deconfined phase of the quark-gluon plasma using leading-order (3 +1 )-dimensional anisotropic hydrodynamics. The anisotropic hydrodynamics equations employed describe the full spatiotemporal evolution of the transverse temperature, spheroidal momentum-space anisotropy parameter, and the associated three-dimensional collective flow of the matter. The momentum-space anisotropy is also taken into account in the computation of the dilepton production rate, allowing for a self-consistent description of dilepton production from the quark-gluon plasma. For our final results, we present predictions for high-energy dilepton yields as a function of invariant mass, transverse momentum, and pair rapidity. We demonstrate that high-energy dilepton production is extremely sensitive to the assumed level of initial momentum-space anisotropy of the quark-gluon plasma. As a result, it may be possible to experimentally constrain the early-time momentum-space anisotropy of the quark-gluon plasma generated in relativistic heavy-ion collisions using high-energy dilepton yields.
Changes of catecholamine excretion during long-duration confinement.
Kraft, N; Inoue, N; Ohshima, H; Sekiguchi, C
2002-06-01
Simulation studies have become the main source of data about small group interactions during prolonged isolation, from which it should be possible to anticipate crew problems during actual space missions. International Space Station (ISS) astronauts and cosmonauts will form one international crew, although living in different national modules. They will have joint flight protocols, and at the same time, fulfill a number of different tasks in accord with their national flight programs. Consistent with these concepts, we studied two simultaneously functioning groups in a simulation of ISS flight. The objective of this study was to investigate physiological parameters (such as catecholamine excretions) related to long-duration confinement in the hermetic chamber, simulating International Space Station flight conditions. We also planned to evaluate the relationship between epinephrine/norepinephrine with group dynamics and social events to predict unfavorable changes in health and work capability of the subjects related to psychological interaction in the isolation chamber.
A space-frequency multiplicative regularization for force reconstruction problems
NASA Astrophysics Data System (ADS)
Aucejo, M.; De Smet, O.
2018-05-01
Dynamic forces reconstruction from vibration data is an ill-posed inverse problem. A standard approach to stabilize the reconstruction consists in using some prior information on the quantities to identify. This is generally done by including in the formulation of the inverse problem a regularization term as an additive or a multiplicative constraint. In the present article, a space-frequency multiplicative regularization is developed to identify mechanical forces acting on a structure. The proposed regularization strategy takes advantage of one's prior knowledge of the nature and the location of excitation sources, as well as that of their spectral contents. Furthermore, it has the merit to be free from the preliminary definition of any regularization parameter. The validity of the proposed regularization procedure is assessed numerically and experimentally. It is more particularly pointed out that properly exploiting the space-frequency characteristics of the excitation field to identify can improve the quality of the force reconstruction.
Attitude determination for high-accuracy submicroradian jitter pointing on space-based platforms
NASA Astrophysics Data System (ADS)
Gupta, Avanindra A.; van Houten, Charles N.; Germann, Lawrence M.
1990-10-01
A description of the requirement definition process is given for a new wideband attitude determination subsystem (ADS) for image motion compensation (IMC) systems. The subsystem consists of either lateral accelerometers functioning in differential pairs or gas-bearing gyros for high-frequency sensors using CCD-based star trackers for low-frequency sensors. To minimize error the sensor signals are combined so that the mixing filter does not allow phase distortion. The two ADS models are introduced in an IMC simulation to predict measurement error, correction capability, and residual image jitter for a variety of system parameters. The IMC three-axis testbed is utilized to simulate an incoming beam in inertial space. Results demonstrate that both mechanical and electronic IMC meet the requirements of image stabilization for space-based observation at submicroradian-jitter levels. Currently available technology may be employed to implement IMC systems.
Minsley, Burke J.
2011-01-01
A meaningful interpretation of geophysical measurements requires an assessment of the space of models that are consistent with the data, rather than just a single, ‘best’ model which does not convey information about parameter uncertainty. For this purpose, a trans-dimensional Bayesian Markov chain Monte Carlo (MCMC) algorithm is developed for assessing frequencydomain electromagnetic (FDEM) data acquired from airborne or ground-based systems. By sampling the distribution of models that are consistent with measured data and any prior knowledge, valuable inferences can be made about parameter values such as the likely depth to an interface, the distribution of possible resistivity values as a function of depth and non-unique relationships between parameters. The trans-dimensional aspect of the algorithm allows the number of layers to be a free parameter that is controlled by the data, where models with fewer layers are inherently favoured, which provides a natural measure of parsimony and a significant degree of flexibility in parametrization. The MCMC algorithm is used with synthetic examples to illustrate how the distribution of acceptable models is affected by the choice of prior information, the system geometry and configuration and the uncertainty in the measured system elevation. An airborne FDEM data set that was acquired for the purpose of hydrogeological characterization is also studied. The results compare favorably with traditional least-squares analysis, borehole resistivity and lithology logs from the site, and also provide new information about parameter uncertainty necessary for model assessment.
Fienen, Michael N.; D'Oria, Marco; Doherty, John E.; Hunt, Randall J.
2013-01-01
The application bgaPEST is a highly parameterized inversion software package implementing the Bayesian Geostatistical Approach in a framework compatible with the parameter estimation suite PEST. Highly parameterized inversion refers to cases in which parameters are distributed in space or time and are correlated with one another. The Bayesian aspect of bgaPEST is related to Bayesian probability theory in which prior information about parameters is formally revised on the basis of the calibration dataset used for the inversion. Conceptually, this approach formalizes the conditionality of estimated parameters on the specific data and model available. The geostatistical component of the method refers to the way in which prior information about the parameters is used. A geostatistical autocorrelation function is used to enforce structure on the parameters to avoid overfitting and unrealistic results. Bayesian Geostatistical Approach is designed to provide the smoothest solution that is consistent with the data. Optionally, users can specify a level of fit or estimate a balance between fit and model complexity informed by the data. Groundwater and surface-water applications are used as examples in this text, but the possible uses of bgaPEST extend to any distributed parameter applications.
On-off intermittency and intermingledlike basins in a granular medium.
Schmick, Malte; Goles, Eric; Markus, Mario
2002-12-01
Molecular dynamic simulations of a medium consisting of disks in a periodically tilted box yield two dynamic modes differing considerably in the total potential and kinetic energies of the disks. Depending on parameters, these modes display the following features: (i) hysteresis (coexistence of the two modes in phase space); (ii) intermingledlike basins of attraction (uncertainty exponent indistinguishable from zero); (iii) two-state on-off intermittency; and (iv) bimodal velocity distributions. Bifurcations are defined by a cross-shaped phase diagram.
Computational model of a vector-mediated epidemic
NASA Astrophysics Data System (ADS)
Dickman, Adriana Gomes; Dickman, Ronald
2015-05-01
We discuss a lattice model of vector-mediated transmission of a disease to illustrate how simulations can be applied in epidemiology. The population consists of two species, human hosts and vectors, which contract the disease from one another. Hosts are sedentary, while vectors (mosquitoes) diffuse in space. Examples of such diseases are malaria, dengue fever, and Pierce's disease in vineyards. The model exhibits a phase transition between an absorbing (infection free) phase and an active one as parameters such as infection rates and vector density are varied.
NASA Astrophysics Data System (ADS)
Tosi, Luis Phillipe; Colonius, Tim; Lee, Hyeong Jae; Sherrit, Stewart; Jet Propulsion Laboratory Collaboration; California Institute of Technology Collaboration
2016-11-01
Aeroelastic flutter arises when the motion of a structure and its surrounding flowing fluid are coupled in a constructive manner, causing large amplitudes of vibration in the immersed solid. A cantilevered beam in axial flow within a nozzle-diffuser geometry exhibits interesting resonance behavior that presents good prospects for internal flow energy harvesting. Different modes can be excited as a function of throat velocity, nozzle geometry, fluid and cantilever material parameters. Similar behavior has been also observed in elastically mounted rigid plates, enabling new designs for such devices. This work explores the relationship between the aeroelastic flutter instability boundaries and relevant non-dimensional parameters via experiments, numerical, and stability analyses. Parameters explored consist of a non-dimensional stiffness, a non-dimensional mass, non-dimensional throat size, and Reynolds number. A map of the system response in this parameter space may serve as a guide to future work concerning possible electrical output and failure prediction in harvesting devices.
The compensation of quadrupole errors and space charge effects by using trim quadrupoles
NASA Astrophysics Data System (ADS)
An, YuWen; Wang, Sheng
2011-12-01
The China Spallation Neutron Source (CSNS) accelerators consist of an H-linac and a proton Rapid Cycling Synchrotron (RCS). RCS is designed to accumulate and accelerate proton beam from 80 MeV to 1.6 GeV with a repetition rate of 25 Hz. The main dipole and quadruple magnet will operate in AC mode. Due to the adoption of the resonant power supplies, saturation errors of magnetic field cannot be compensated by power supplies. These saturation errors will disturb the linear optics parameters, such as tunes, beta function and dispersion function. The strong space charge effects will cause emittance growth. The compensation of these effects by using trim quadruples is studied, and the corresponding results are presented.
Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle
NASA Technical Reports Server (NTRS)
Wang, Pao-Lien
1991-01-01
This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.
Parameter redundancy in discrete state-space and integrated models.
Cole, Diana J; McCrea, Rachel S
2016-09-01
Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang Beom; Dsilva, Carmeline J.; Debenedetti, Pablo G., E-mail: pdebene@princeton.edu
Understanding the mechanisms by which proteins fold from disordered amino-acid chains to spatially ordered structures remains an area of active inquiry. Molecular simulations can provide atomistic details of the folding dynamics which complement experimental findings. Conventional order parameters, such as root-mean-square deviation and radius of gyration, provide structural information but fail to capture the underlying dynamics of the protein folding process. It is therefore advantageous to adopt a method that can systematically analyze simulation data to extract relevant structural as well as dynamical information. The nonlinear dimensionality reduction technique known as diffusion maps automatically embeds the high-dimensional folding trajectories inmore » a lower-dimensional space from which one can more easily visualize folding pathways, assuming the data lie approximately on a lower-dimensional manifold. The eigenvectors that parametrize the low-dimensional space, furthermore, are determined systematically, rather than chosen heuristically, as is done with phenomenological order parameters. We demonstrate that diffusion maps can effectively characterize the folding process of a Trp-cage miniprotein. By embedding molecular dynamics simulation trajectories of Trp-cage folding in diffusion maps space, we identify two folding pathways and intermediate structures that are consistent with the previous studies, demonstrating that this technique can be employed as an effective way of analyzing and constructing protein folding pathways from molecular simulations.« less
An approach to determination of shunt circuits parameters for damping vibrations
NASA Astrophysics Data System (ADS)
Matveenko; Iurlova; Oshmarin; Sevodina; Iurlov
2018-04-01
This paper considers the problem of natural vibrations of a deformable structure containing elements made of piezomaterials. The piezoelectric elements are connected through electrodes to an external electric circuit, which consists of resistive, inductive and capacitive elements. Based on the solution of this problem, the parameters of external electric circuits are searched for to allow optimal passive control of the structural vibrations. The solution to the problem is complex natural vibration frequencies, the real part of which corresponds to the circular eigenfrequency of vibrations and the imaginary part corresponds to its damping rate (damping ratio). The analysis of behaviour of the imaginary parts of complex eigenfrequencies in the space of external circuit parameters allows one to damp given modes of structure vibrations. The effectiveness of the proposed approach is demonstrated using a cantilever-clamped plate and a shell structure in the form of a semi-cylinder connected to series resonant ? circuits.
Zhang, Ridong; Tao, Jili; Lu, Renquan; Jin, Qibing
2018-02-01
Modeling of distributed parameter systems is difficult because of their nonlinearity and infinite-dimensional characteristics. Based on principal component analysis (PCA), a hybrid modeling strategy that consists of a decoupled linear autoregressive exogenous (ARX) model and a nonlinear radial basis function (RBF) neural network model are proposed. The spatial-temporal output is first divided into a few dominant spatial basis functions and finite-dimensional temporal series by PCA. Then, a decoupled ARX model is designed to model the linear dynamics of the dominant modes of the time series. The nonlinear residual part is subsequently parameterized by RBFs, where genetic algorithm is utilized to optimize their hidden layer structure and the parameters. Finally, the nonlinear spatial-temporal dynamic system is obtained after the time/space reconstruction. Simulation results of a catalytic rod and a heat conduction equation demonstrate the effectiveness of the proposed strategy compared to several other methods.
Multidimensional Skyrme-density-functional study of the spontaneous fission of 238U
Sadhukhan, J.; Mazurek, K.; Dobaczewski, J.; ...
2015-01-01
We determined the spontaneous fission lifetime of 238U by a minimization of the action integral in a three-dimensional space of collective variables. Apart from the mass-distribution multipole moments Q 20 (elongation) and Q 30 (left–right asymmetry), we also considered the pairing-fluctuation parameter λ 2 as a collective coordinate. The collective potential was obtained self-consistently using the Skyrme energy density functional SkM*. The inertia tensor was obtained within the nonperturbative cranking approximation to the adiabatic time-dependent Hartree–Fock–Bogoliubov approach. As a result, the pairing-fluctuation parameter λ 2 allowed us to control the pairing gap along the fission path, which significantly changed themore » spontaneous fission lifetime.« less
NASA Astrophysics Data System (ADS)
Clayton, J. D.
2017-02-01
A theory of deformation of continuous media based on concepts from Finsler differential geometry is presented. The general theory accounts for finite deformations, nonlinear elasticity, and changes in internal state of the material, the latter represented by elements of a state vector of generalized Finsler space whose entries consist of one or more order parameter(s). Two descriptive representations of the deformation gradient are considered. The first invokes an additive decomposition and is applied to problems involving localized inelastic deformation mechanisms such as fracture. The second invokes a multiplicative decomposition and is applied to problems involving distributed deformation mechanisms such as phase transformations or twinning. Appropriate free energy functions are posited for each case, and Euler-Lagrange equations of equilibrium are derived. Solutions are obtained for specific problems of tensile fracture of an elastic cylinder and for amorphization of a crystal under spherical and uniaxial compression. The Finsler-based approach is demonstrated to be more general and potentially more physically descriptive than existing hyperelasticity models couched in Riemannian geometry or Euclidean space, without incorporation of supplementary ad hoc equations or spurious fitting parameters. Predictions for single crystals of boron carbide ceramic agree qualitatively, and in many instances quantitatively, with results from physical experiments and atomic simulations involving structural collapse and failure of the crystal along its c-axis.
Ab Initio Crystal Field for Lanthanides.
Ungur, Liviu; Chibotaru, Liviu F
2017-03-13
An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc) 2 ] - (Pc=phthalocyanine) and Dy 4 K 2 ([Dy 4 K 2 O(OtBu) 12 ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H 3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ground-based solar astrometric measurements during the PICARD mission
NASA Astrophysics Data System (ADS)
Irbah, A.; Meftah, M.; Corbard, T.; Ikhlef, R.; Morand, F.; Assus, P.; Fodil, M.; Lin, M.; Ducourt, E.; Lesueur, P.; Poiet, G.; Renaud, C.; Rouze, M.
2011-11-01
PICARD is a space mission developed mainly to study the geometry of the Sun. The satellite was launched in June 2010. The PICARD mission has a ground program which is based at the Calern Observatory (Observatoire de la C^ote d'Azur). It will allow recording simultaneous solar images from ground. Astrometric observations of the Sun using ground-based telescopes need however an accurate modelling of optical e®ects induced by atmospheric turbulence. Previous works have revealed a dependence of the Sun radius measurements with the observation conditions (Fried's parameter, atmospheric correlation time(s) ...). The ground instruments consist mainly in SODISM II, replica of the PICARD space instrument and MISOLFA, a generalized daytime seeing monitor. They are complemented by standard sun-photometers and a pyranometer for estimating a global sky quality index. MISOLFA is founded on the observation of Angle-of-Arrival (AA) °uctuations and allows us to analyze atmospheric turbulence optical e®ects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried's parameter, size of the isoplanatic patch, the spatial coherence outer scale and atmospheric correlation times). This paper presents an overview of the ground based instruments of PICARD and some results obtained from observations performed at Calern observatory in 2011.
Kinetic analysis of single molecule FRET transitions without trajectories
NASA Astrophysics Data System (ADS)
Schrangl, Lukas; Göhring, Janett; Schütz, Gerhard J.
2018-03-01
Single molecule Förster resonance energy transfer (smFRET) is a popular tool to study biological systems that undergo topological transitions on the nanometer scale. smFRET experiments typically require recording of long smFRET trajectories and subsequent statistical analysis to extract parameters such as the states' lifetimes. Alternatively, analysis of probability distributions exploits the shapes of smFRET distributions at well chosen exposure times and hence works without the acquisition of time traces. Here, we describe a variant that utilizes statistical tests to compare experimental datasets with Monte Carlo simulations. For a given model, parameters are varied to cover the full realistic parameter space. As output, the method yields p-values which quantify the likelihood for each parameter setting to be consistent with the experimental data. The method provides suitable results even if the actual lifetimes differ by an order of magnitude. We also demonstrated the robustness of the method to inaccurately determine input parameters. As proof of concept, the new method was applied to the determination of transition rate constants for Holliday junctions.
Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang
2017-01-01
The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space (H, L, and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved. PMID:28106806
Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang
2017-01-18
The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space ( H , L , and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved.
Renormalization group evolution of the universal theories EFT
Wells, James D.; Zhang, Zhengkang
2016-06-21
The conventional oblique parameters analyses of precision electroweak data can be consistently cast in the modern framework of the Standard Model effective field theory (SMEFT) when restrictions are imposed on the SMEFT parameter space so that it describes universal theories. However, the usefulness of such analyses is challenged by the fact that universal theories at the scale of new physics, where they are matched onto the SMEFT, can flow to nonuniversal theories with renormalization group (RG) evolution down to the electroweak scale, where precision observables are measured. The departure from universal theories at the electroweak scale is not arbitrary, butmore » dictated by the universal parameters at the matching scale. But to define oblique parameters, and more generally universal parameters at the electroweak scale that directly map onto observables, additional prescriptions are needed for the treatment of RG-induced nonuniversal effects. Finally, we perform a RG analysis of the SMEFT description of universal theories, and discuss the impact of RG on simplified, universal-theories-motivated approaches to fitting precision electroweak and Higgs data.« less
Renormalization group evolution of the universal theories EFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, James D.; Zhang, Zhengkang
The conventional oblique parameters analyses of precision electroweak data can be consistently cast in the modern framework of the Standard Model effective field theory (SMEFT) when restrictions are imposed on the SMEFT parameter space so that it describes universal theories. However, the usefulness of such analyses is challenged by the fact that universal theories at the scale of new physics, where they are matched onto the SMEFT, can flow to nonuniversal theories with renormalization group (RG) evolution down to the electroweak scale, where precision observables are measured. The departure from universal theories at the electroweak scale is not arbitrary, butmore » dictated by the universal parameters at the matching scale. But to define oblique parameters, and more generally universal parameters at the electroweak scale that directly map onto observables, additional prescriptions are needed for the treatment of RG-induced nonuniversal effects. Finally, we perform a RG analysis of the SMEFT description of universal theories, and discuss the impact of RG on simplified, universal-theories-motivated approaches to fitting precision electroweak and Higgs data.« less
Cantrell, Keri B; Martin, Jerry H
2012-02-01
The concept of a designer biochar that targets the improvement of a specific soil property imposes the need for production processes to generate biochars with both high consistency and quality. These important production parameters can be affected by variations in process temperature that must be taken into account when controlling the pyrolysis of agricultural residues such as manures and other feedstocks. A novel stochastic state-space temperature regulator was developed to accurately match biochar batch production to a defined temperature input schedule. This was accomplished by describing the system's state-space with five temperature variables--four directly measured and one change in temperature. Relationships were derived between the observed state and the desired, controlled state. When testing the unit at two different temperatures, the actual pyrolytic temperature was within 3 °C of the control with no overshoot. This state-space regulator simultaneously controlled the indirect heat source and sample temperature by employing difficult-to-measure variables such as temperature stability in the description of the pyrolysis system's state-space. These attributes make a state-space controller an optimum control scheme for the production of a predictable, repeatable designer biochar. Published 2011 by John Wiley & Sons, Ltd.
Pázmándi, Tamás; Deme, Sándor; Láng, Edit
2006-01-01
One of the many risks of long-duration space flights is the excessive exposure to cosmic radiation, which has great importance particularly during solar flares and higher sun activity. Monitoring of the cosmic radiation on board space vehicles is carried out on the basis of wide international co-operation. Since space radiation consists mainly of charged heavy particles (protons, alpha and heavier particles), the equivalent dose differs significantly from the absorbed dose. A radiation weighting factor (w(R)) is used to convert absorbed dose (Gy) to equivalent dose (Sv). w(R) is a function of the linear energy transfer of the radiation. Recently used equipment is suitable for measuring certain radiation field parameters changing in space and over time, so a combination of different measurements and calculations is required to characterise the radiation field in terms of dose equivalent. The objectives of this project are to develop and manufacture a three-axis silicon detector telescope, called Tritel, and to develop software for data evaluation of the measured energy deposition spectra. The device will be able to determine absorbed dose and dose equivalent of the space radiation.
Light weakly coupled axial forces: models, constraints, and projections
Kahn, Yonatan; Krnjaic, Gordan; Mishra-Sharma, Siddharth; ...
2017-05-01
Here, we investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the e ects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a darkmore » photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, brie y commenting on the relevance of the allowed parameter space to low-energy anomalies in π 0 and 8Be* decay.« less
Light weakly coupled axial forces: models, constraints, and projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahn, Yonatan; Krnjaic, Gordan; Mishra-Sharma, Siddharth
Here, we investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the e ects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a darkmore » photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, brie y commenting on the relevance of the allowed parameter space to low-energy anomalies in π 0 and 8Be* decay.« less
Cosmic structures and gravitational waves in ghost-free scalar-tensor theories of gravity
NASA Astrophysics Data System (ADS)
Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino; Scomparin, Mattia
2018-05-01
We study cosmic structures in the quadratic Degenerate Higher Order Scalar Tensor (qDHOST) model, which has been proposed as the most general scalar-tensor theory (up to quadratic dependence on the covariant derivatives of the scalar field), which is not plagued by the presence of ghost instabilities. We then study a static, spherically symmetric object embedded in de Sitter space-time for the qDHOST model. This model exhibits breaking of the Vainshtein mechanism inside the cosmic structure and Schwarzschild-de Sitter space-time outside, where General Relativity (GR) can be recovered within the Vainshtein radius. We constrained the parameters of the qDHOST model by requiring the validity of the Vainshtein screening mechanism inside the cosmic structures and the consistency with the recently established bounds on gravitational wave speed from GW170817/GRB170817A event. We find that these two constraints rule out the same set of parameters, corresponding to the Lagrangians that are quadratic in second-order derivatives of the scalar field, for the shift symmetric qDHOST.
Ballistic Majorana nanowire devices
NASA Astrophysics Data System (ADS)
Gül, Ã.-nder; Zhang, Hao; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Geresdi, Attila; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.
2018-01-01
Majorana modes are zero-energy excitations of a topological superconductor that exhibit non-Abelian statistics1-3. Following proposals for their detection in a semiconductor nanowire coupled to an s-wave superconductor4,5, several tunnelling experiments reported characteristic Majorana signatures6-11. Reducing disorder has been a prime challenge for these experiments because disorder can mimic the zero-energy signatures of Majoranas12-16, and renders the topological properties inaccessible17-20. Here, we show characteristic Majorana signatures in InSb nanowire devices exhibiting clear ballistic transport properties. Application of a magnetic field and spatial control of carrier density using local gates generates a zero bias peak that is rigid over a large region in the parameter space of chemical potential, Zeeman energy and tunnel barrier potential. The reduction of disorder allows us to resolve separate regions in the parameter space with and without a zero bias peak, indicating topologically distinct phases. These observations are consistent with the Majorana theory in a ballistic system21, and exclude the known alternative explanations that invoke disorder12-16 or a nonuniform chemical potential22,23.
The Behavioral Space of Zebrafish Locomotion and Its Neural Network Analog.
Girdhar, Kiran; Gruebele, Martin; Chemla, Yann R
2015-01-01
How simple is the underlying control mechanism for the complex locomotion of vertebrates? We explore this question for the swimming behavior of zebrafish larvae. A parameter-independent method, similar to that used in studies of worms and flies, is applied to analyze swimming movies of fish. The motion itself yields a natural set of fish "eigenshapes" as coordinates, rather than the experimenter imposing a choice of coordinates. Three eigenshape coordinates are sufficient to construct a quantitative "postural space" that captures >96% of the observed zebrafish locomotion. Viewed in postural space, swim bouts are manifested as trajectories consisting of cycles of shapes repeated in succession. To classify behavioral patterns quantitatively and to understand behavioral variations among an ensemble of fish, we construct a "behavioral space" using multi-dimensional scaling (MDS). This method turns each cycle of a trajectory into a single point in behavioral space, and clusters points based on behavioral similarity. Clustering analysis reveals three known behavioral patterns-scoots, turns, rests-but shows that these do not represent discrete states, but rather extremes of a continuum. The behavioral space not only classifies fish by their behavior but also distinguishes fish by age. With the insight into fish behavior from postural space and behavioral space, we construct a two-channel neural network model for fish locomotion, which produces strikingly similar postural space and behavioral space dynamics compared to real zebrafish.
The Behavioral Space of Zebrafish Locomotion and Its Neural Network Analog
Girdhar, Kiran; Gruebele, Martin; Chemla, Yann R.
2015-01-01
How simple is the underlying control mechanism for the complex locomotion of vertebrates? We explore this question for the swimming behavior of zebrafish larvae. A parameter-independent method, similar to that used in studies of worms and flies, is applied to analyze swimming movies of fish. The motion itself yields a natural set of fish "eigenshapes" as coordinates, rather than the experimenter imposing a choice of coordinates. Three eigenshape coordinates are sufficient to construct a quantitative "postural space" that captures >96% of the observed zebrafish locomotion. Viewed in postural space, swim bouts are manifested as trajectories consisting of cycles of shapes repeated in succession. To classify behavioral patterns quantitatively and to understand behavioral variations among an ensemble of fish, we construct a "behavioral space" using multi-dimensional scaling (MDS). This method turns each cycle of a trajectory into a single point in behavioral space, and clusters points based on behavioral similarity. Clustering analysis reveals three known behavioral patterns—scoots, turns, rests—but shows that these do not represent discrete states, but rather extremes of a continuum. The behavioral space not only classifies fish by their behavior but also distinguishes fish by age. With the insight into fish behavior from postural space and behavioral space, we construct a two-channel neural network model for fish locomotion, which produces strikingly similar postural space and behavioral space dynamics compared to real zebrafish. PMID:26132396
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2003-04-01
A new theory of space is suggested. It represents the new point of view which has arisen from the critical analysis of the foundations of physics (in particular the theory of relativity and quantum mechanics), mathematics, cosmology and philosophy. The main idea following from the analysis is that the concept of movement represents a key to understanding of the essence of space. The starting-point of the theory is represented by the following philosophical (dialectical materialistic) principles. (a) The principle of the materiality (of the objective reality) of the Nature: the Nature (the Universe) is a system (a set) of material objects (particles, bodies, fields); each object has properties, features, and the properties, the features are inseparable characteristics of material object and belong only to material object. (b) The principle of the existence of material object: an object exists as the objective reality, and movement is a form of existence of object. (c) The principle (definition) of movement of object: the movement is change (i.e. transition of some states into others) in general; the movement determines a direction, and direction characterizes the movement. (d) The principle of existence of time: the time exists as the parameter of the system of reference. These principles lead to the following statements expressing the essence of space. (1) There is no space in general, and there exist space only as a form of existence of the properties and features of the object. It means that the space is a set of the measures of the object (the measure is the philosophical category meaning unity of the qualitative and quantitative determinacy of the object). In other words, the space of the object is a set of the states of the object. (2) The states of the object are manifested only in a system of reference. The main informational property of the unitary system researched physical object + system of reference is that the system of reference determines (measures, calculates) the parameters of the subsystem researched physical object (for example, the coordinates of the object M); the parameters characterize the system of reference (for example, the system of coordinates S). (3) Each parameter of the object is its measure. Total number of the mutually independent parameters of the object is called dimension of the space of the object. (4) The set of numerical values (i.e. the range, the spectrum) of each parameter is the subspace of the object. (The coordinate space, the momentum space and the energy space are examples of the subspaces of the object). (5) The set of the parameters of the object is divided into two non intersecting (opposite) classes: the class of the internal parameters and the class of the non internal (i.e. external) parameters. The class of the external parameters is divided into two non intersecting (opposite) subclasses: the subclass of the absolute parameters (characterizing the form, the sizes of the object) and the subclass of the non absolute (relative) parameters (characterizing the position, the coordinates of the object). (6) Set of the external parameters forms the external space of object. It is called geometrical space of object. (7) Since a macroscopic object has three mutually independent sizes, the dimension of its external absolute space is equal to three. Consequently, the dimension of its external relative space is also equal to three. Thus, the total dimension of the external space of the macroscopic object is equal to six. (8) In general case, the external absolute space (i.e. the form, the sizes) and the external relative space (i.e. the position, the coordinates) of any object are mutually dependent because of influence of a medium. The geometrical space of such object is called non Euclidean space. If the external absolute space and the external relative space of some object are mutually independent, then the external relative space of such object is the homogeneous and isotropic geometrical space. It is called Euclidean space of the object. Consequences: (i) the question of true geometry of the Universe is incorrect; (ii) the theory of relativity has no physical meaning.
Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; ...
2016-02-05
Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamicmore » integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.« less
Free-Space Measurements of Dielectrics and Three-Dimensional Periodic Metamaterials
NASA Astrophysics Data System (ADS)
Kintner, Clifford E.
This thesis presents the free-space measurements of a periodic metamaterial structure. The metamaterial unit cell consists of two dielectric sheets intersecting at 90 degrees. The dielectric is a polyetherimide-based material 0.001" thick. Each sheet has a copper capacitively-loaded loop (CLL) structure on the front and a cut-wire structure on the back. Foam material is used to support the unit cells. The unit cell repeats 40 times in the x-direction, 58 times in the y-direction and 5 times in the z-direction. The sample measures 12" x 12" x 1" in total. We use a free-space broadband system comprised of a pair of dielectric-lens horn antennas with bandwidth from 5.8 GHz to 110 GHz, which are connected to a HP PNA series network analyzer. The dielectric lenses focus the incident beam to a footprint measuring 1 wavelength by 1 wavelength. The sample holder is positioned at the focal point between the two antennas. In this work, the coefficients of transmission and reflection (the S-parameters S21 and S11) are measured at frequencies from 12.4 GHz up to 30 GHz. Simulations are used to validate the measurements, using the Ansys HFSS commercial software package on the Arkansas High Performance Computing Center cluster. The simulation results successfully validate the S-parameters measurements, in particular the amplitudes. An algorithm based on the Nicolson-Ross-Weir (NRW) method is implemented to extract the permittivity and permeability values of the metamaterial under test. The results show epsilon-negative, mu-negative and double-negative parameters within the measured frequency range.
NASA Astrophysics Data System (ADS)
Atanasov, Victor
2017-07-01
We extend the superconductor's free energy to include an interaction of the order parameter with the curvature of space-time. This interaction leads to geometry dependent coherence length and Ginzburg-Landau parameter which suggests that the curvature of space-time can change the superconductor's type. The curvature of space-time doesn't affect the ideal diamagnetism of the superconductor but acts as chemical potential. In a particular circumstance, the geometric field becomes order-parameter dependent, therefore the superconductor's order parameter dynamics affects the curvature of space-time and electrical or internal quantum mechanical energy can be channelled into the curvature of space-time. Experimental consequences are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang,X.; Hew, C.
2007-01-01
White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapor-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 Mmore » sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 {angstrom} resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 {angstrom}. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 {angstrom}, and diffracts to 2.0 {angstrom} resolution.« less
de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R
2013-08-01
Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.
Evenly spaced Detrended Fluctuation Analysis: Selecting the number of points for the diffusion plot
NASA Astrophysics Data System (ADS)
Liddy, Joshua J.; Haddad, Jeffrey M.
2018-02-01
Detrended Fluctuation Analysis (DFA) has become a widely-used tool to examine the correlation structure of a time series and provided insights into neuromuscular health and disease states. As the popularity of utilizing DFA in the human behavioral sciences has grown, understanding its limitations and how to properly determine parameters is becoming increasingly important. DFA examines the correlation structure of variability in a time series by computing α, the slope of the log SD- log n diffusion plot. When using the traditional DFA algorithm, the timescales, n, are often selected as a set of integers between a minimum and maximum length based on the number of data points in the time series. This produces non-uniformly distributed values of n in logarithmic scale, which influences the estimation of α due to a disproportionate weighting of the long-timescale regions of the diffusion plot. Recently, the evenly spaced DFA and evenly spaced average DFA algorithms were introduced. Both algorithms compute α by selecting k points for the diffusion plot based on the minimum and maximum timescales of interest and improve the consistency of α estimates for simulated fractional Gaussian noise and fractional Brownian motion time series. Two issues that remain unaddressed are (1) how to select k and (2) whether the evenly-spaced DFA algorithms show similar benefits when assessing human behavioral data. We manipulated k and examined its effects on the accuracy, consistency, and confidence limits of α in simulated and experimental time series. We demonstrate that the accuracy and consistency of α are relatively unaffected by the selection of k. However, the confidence limits of α narrow as k increases, dramatically reducing measurement uncertainty for single trials. We provide guidelines for selecting k and discuss potential uses of the evenly spaced DFA algorithms when assessing human behavioral data.
Can we use the equivalent sphere model to approximate organ doses in space radiation environments?
NASA Astrophysics Data System (ADS)
Lin, Zi-Wei
For space radiation protection one often calculates the dose or dose equivalent in blood forming organs (BFO). It has been customary to use a 5cm equivalent sphere to approximate the BFO dose. However, previous studies have concluded that a 5cm sphere gives a very different dose from the exact BFO dose. One study concludes that a 9cm sphere is a reasonable approximation for the BFO dose in solar particle event (SPE) environments. In this study we investigate the reason behind these observations and extend earlier studies by studying whether BFO, eyes or the skin can be approximated by the equivalent sphere model in different space radiation environments such as solar particle events and galactic cosmic ray (GCR) environments. We take the thickness distribution functions of the organs from the CAM (Computerized Anatomical Man) model, then use a deterministic radiation transport to calculate organ doses in different space radiation environments. The organ doses have been evaluated with a water or aluminum shielding from 0 to 20 g/cm2. We then compare these exact doses with results from the equivalent sphere model and determine in which cases and at what radius parameters the equivalent sphere model is a reasonable approximation. Furthermore, we propose to use a modified equivalent sphere model with two radius parameters to represent the skin or eyes. For solar particle events, we find that the radius parameters for the organ dose equivalent increase significantly with the shielding thickness, and the model works marginally for BFO but is unacceptable for eyes or the skin. For galactic cosmic rays environments, the equivalent sphere model with one organ-specific radius parameter works well for the BFO dose equivalent, marginally well for the BFO dose and the dose equivalent of eyes or the skin, but is unacceptable for the dose of eyes or the skin. The BFO radius parameters are found to be significantly larger than 5 cm in all cases, consistent with the conclusion of an earlier study. The radius parameters for the dose equivalent in GCR environments are approximately between 10 and 11 cm for the BFO, 3.7 to 4.8 cm for eyes, and 3.5 to 5.6 cm for the skin; while the radius parameters are between 10 and 13 cm for the BFO dose. In the proposed modified equivalent sphere model, the range of each of the two radius parameters for the skin (or eyes) is much tighter than that in the equivalent sphere model with one radius parameter. Our results thus show that the equivalent sphere model works better in galactic cosmic rays environments than in solar particle events. The model works well or marginally well for BFO but usually does not work for eyes or the skin. A modified model with two radius parameters works much better in approximating the dose and dose equivalent in eyes or the skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creminelli, Paolo; Gleyzes, Jérôme; Vernizzi, Filippo
2014-06-01
The recently derived consistency relations for Large Scale Structure do not hold if the Equivalence Principle (EP) is violated. We show it explicitly in a toy model with two fluids, one of which is coupled to a fifth force. We explore the constraints that galaxy surveys can set on EP violation looking at the squeezed limit of the 3-point function involving two populations of objects. We find that one can explore EP violations of order 10{sup −3}÷10{sup −4} on cosmological scales. Chameleon models are already very constrained by the requirement of screening within the Solar System and only a verymore » tiny region of the parameter space can be explored with this method. We show that no violation of the consistency relations is expected in Galileon models.« less
Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao
2018-03-01
We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.
NASA Astrophysics Data System (ADS)
Petersson, George A.; Malick, David K.; Frisch, Michael J.; Braunstein, Matthew
2006-07-01
Examination of the convergence of full valence complete active space self-consistent-field configuration interaction including all single and double excitation (CASSCF-CISD) energies with expansion of the one-electron basis set reveals a pattern very similar to the convergence of single determinant energies. Calculations on the lowest four singlet states and the lowest four triplet states of N2 with the sequence of n-tuple-ζ augmented polarized (nZaP) basis sets (n =2, 3, 4, 5, and 6) are used to establish the complete basis set limits. Full configuration-interaction (CI) and core electron contributions must be included for very accurate potential energy surfaces. However, a simple extrapolation scheme that has no adjustable parameters and requires nothing more demanding than CAS(10e -,8orb)-CISD/3ZaP calculations gives the Re, ωe, ωeXe, Te, and De for these eight states with rms errors of 0.0006Å, 4.43cm-1, 0.35cm-1, 0.063eV, and 0.018eV, respectively.
14 CFR 1214.813 - Computation of sharing and pricing parameters.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Computation of sharing and pricing parameters. 1214.813 Section 1214.813 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for Spacelab Services § 1214.813 Computation of sharing and pricing...
Minsley, B.J.
2011-01-01
A meaningful interpretation of geophysical measurements requires an assessment of the space of models that are consistent with the data, rather than just a single, 'best' model which does not convey information about parameter uncertainty. For this purpose, a trans-dimensional Bayesian Markov chain Monte Carlo (MCMC) algorithm is developed for assessing frequency-domain electromagnetic (FDEM) data acquired from airborne or ground-based systems. By sampling the distribution of models that are consistent with measured data and any prior knowledge, valuable inferences can be made about parameter values such as the likely depth to an interface, the distribution of possible resistivity values as a function of depth and non-unique relationships between parameters. The trans-dimensional aspect of the algorithm allows the number of layers to be a free parameter that is controlled by the data, where models with fewer layers are inherently favoured, which provides a natural measure of parsimony and a significant degree of flexibility in parametrization. The MCMC algorithm is used with synthetic examples to illustrate how the distribution of acceptable models is affected by the choice of prior information, the system geometry and configuration and the uncertainty in the measured system elevation. An airborne FDEM data set that was acquired for the purpose of hydrogeological characterization is also studied. The results compare favourably with traditional least-squares analysis, borehole resistivity and lithology logs from the site, and also provide new information about parameter uncertainty necessary for model assessment. ?? 2011. Geophysical Journal International ?? 2011 RAS.
The Kormendy relation of galaxies in the Frontier Fields clusters: Abell S1063 and MACS J1149.5+2223
NASA Astrophysics Data System (ADS)
Tortorelli, Luca; Mercurio, Amata; Paolillo, Maurizio; Rosati, Piero; Gargiulo, Adriana; Gobat, Raphael; Balestra, Italo; Caminha, G. B.; Annunziatella, Marianna; Grillo, Claudio; Lombardi, Marco; Nonino, Mario; Rettura, Alessandro; Sartoris, Barbara; Strazzullo, Veronica
2018-06-01
We analyse the Kormendy relations (KRs) of the two Frontier Fields clusters, Abell S1063, at z = 0.348, and MACS J1149.5+2223, at z = 0.542, exploiting very deep Hubble Space Telescope photometry and Very Large Telescope (VLT)/Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopy. With this novel data set, we are able to investigate how the KR parameters depend on the cluster galaxy sample selection and how this affects studies of galaxy evolution based on the KR. We define and compare four different galaxy samples according to (a) Sérsic indices: early-type (`ETG'), (b) visual inspection: `ellipticals', (c) colours: `red', (d) spectral properties: `passive'. The classification is performed for a complete sample of galaxies with mF814W ≤ 22.5 ABmag (M* ≳ 1010.0 M⊙). To derive robust galaxy structural parameters, we use two methods: (1) an iterative estimate of structural parameters using images of increasing size, in order to deal with closely separated galaxies and (2) different background estimations, to deal with the intracluster light contamination. The comparison between the KRs obtained from the different samples suggests that the sample selection could affect the estimate of the best-fitting KR parameters. The KR built with ETGs is fully consistent with the one obtained for ellipticals and passive. On the other hand, the KR slope built on the red sample is only marginally consistent with those obtained with the other samples. We also release the photometric catalogue with structural parameters for the galaxies included in the present analysis.
A Low-threshold Analysis of Data from the Cryogenic Dark Matter Search Experiment
NASA Astrophysics Data System (ADS)
Bunker, Raymond A., III
Although dark matter appears to constitute over 80% of the matter in the Universe, its composition is a mystery. Astrophysical observations suggest that the luminous portions of the Galaxy are embedded in a halo of darkmatter particles. Weakly Interacting Massive Particles (WIMPs) are the most studied class of dark-matter candidates and arise naturally within the context of many weak-scale supersymmetric theories. Direct-detection experiments like the Cryogenic Dark Matter Search (CDMS) strive to discern the kinetic energy of recoiling nuclei resulting from WIMP interactions with terrestrial matter. This is a considerable challenge in which the low (expected) rate of WIMP interactions must be distinguished from an overwhelming rate due to known types of radiation. An incontrovertible positive detection has remained elusive. However, a few experiments have recorded data that appear consistent with a low-mass WIMP. This thesis describes an attempt to probe the favored parameter space. To increase sensitivity to low-mass WIMPs, a low-threshold technique with improved sensitivity to small energy depositions is applied to CDMS shallow-site data. Four germanium and two silicon detectors were operated between December 2001 and June 2002, yielding 118 days of exposure. By sacrificing some of the CDMS detectors' ability to discriminate signal from background, energy thresholds of ˜1 and ˜2 keV were achieved for three of the germanium and both silicon detectors, respectively. A large number of WIMP candidate events are observed, most of which can be accounted for by misidentification of background sources. No conclusive evidence for a low-mass WIMP signal is found. The observed event rates are used to set upper limits on the WIMPnucleon scattering cross section as a function of WIMP mass. Interesting parameter space is excluded for WIMPs with masses below ˜9GeV/c 2. Under standard assumptions, the parameter space favored by interpretations of other experiments' data as low-mass WIMP signals is partially excluded, and new parameter space is excluded for WIMP masses between 3 and 4GeV/ c2.
Primordial anisotropies in gauged hybrid inflation
NASA Astrophysics Data System (ADS)
Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan
2014-05-01
We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.
Scatterometry-based metrology for SAQP pitch walking using virtual reference
NASA Astrophysics Data System (ADS)
Kagalwala, Taher; Vaid, Alok; Mahendrakar, Sridhar; Lenahan, Michael; Fang, Fang; Isbester, Paul; Shifrin, Michael; Etzioni, Yoav; Cepler, Aron; Yellai, Naren; Dasari, Prasad; Bozdog, Cornel
2016-03-01
Advanced technology nodes, 10nm and beyond, employing multi-patterning techniques for pitch reduction pose new process and metrology challenges in maintaining consistent positioning of structural features. Self-Aligned Quadruple Patterning (SAQP) process is used to create the Fins in FinFET devices with pitch values well below optical lithography limits. The SAQP process bares compounding effects from successive Reactive Ion Etch (RIE) and spacer depositions. These processes induce a shift in the pitch value from one fin compared to another neighboring fin. This is known as pitch walking. Pitch walking affects device performance as well as later processes which work on an assumption that there is consistent spacing between fins. In SAQP there are 3 pitch walking parameters of interest, each linked to specific process steps in the flow. These pitch walking parameters are difficult to discriminate at a specific process step by singular evaluation technique or even with reference metrology such as Transmission Electron Microscopy (TEM). In this paper we will utilize a virtual reference to generate a scatterometry model to measure pitch walk for SAQP process flow.
NASA Astrophysics Data System (ADS)
Kagalwala, Taher; Vaid, Alok; Mahendrakar, Sridhar; Lenahan, Michael; Fang, Fang; Isbester, Paul; Shifrin, Michael; Etzioni, Yoav; Cepler, Aron; Yellai, Naren; Dasari, Prasad; Bozdog, Cornel
2016-10-01
Advanced technology nodes, 10 nm and beyond, employing multipatterning techniques for pitch reduction pose new process and metrology challenges in maintaining consistent positioning of structural features. A self-aligned quadruple patterning (SAQP) process is used to create the fins in FinFET devices with pitch values well below optical lithography limits. The SAQP process bears the compounding effects from successive reactive ion etch and spacer depositions. These processes induce a shift in the pitch value from one fin compared to another neighboring fin. This is known as pitch walking. Pitch walking affects device performance as well as later processes, which work on an assumption that there is consistent spacing between fins. In SAQP, there are three pitch walking parameters of interest, each linked to specific process steps in the flow. These pitch walking parameters are difficult to discriminate at a specific process step by singular evaluation technique or even with reference metrology, such as transmission electron microscopy. We will utilize a virtual reference to generate a scatterometry model to measure pitch walk for SAQP process flow.
The middeck 0-gravity dynamics experiment
NASA Technical Reports Server (NTRS)
Crawley, Edward F.; Vanschoor, Marthinus C.; Bokhour, Edward B.
1993-01-01
The Middeck 0-Gravity Dynamics Experiment (MODE), flown onboard the Shuttle STS-48 Mission, consists of three major elements: the Experiment Support Module, a dynamics test bed providing computer experiment control, analog signal conditioning, power conditioning, an operator interface consisting of a keypad and display, experiment electrical and thermal control, and archival data storage: the Fluid Test Article assembly, used to investigate the dynamics of fluid-structure interaction in 0-gravity; and the Structural Test Article for investigating the open-loop dynamics of structures in 0-gravity. Deployable, erectable, and rotary modules were assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. Change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity. An experimental study of the lateral slosh behavior of contained fluids is also presented. A comparison of the measured earth and space results identifies and highlights the effects of gravity on the linear and nonlinear slosh behavior of these fluids.
A MS-lesion pattern discrimination plot based on geostatistics.
Marschallinger, Robert; Schmidt, Paul; Hofmann, Peter; Zimmer, Claus; Atkinson, Peter M; Sellner, Johann; Trinka, Eugen; Mühlau, Mark
2016-03-01
A geostatistical approach to characterize MS-lesion patterns based on their geometrical properties is presented. A dataset of 259 binary MS-lesion masks in MNI space was subjected to directional variography. A model function was fit to express the observed spatial variability in x, y, z directions by the geostatistical parameters Range and Sill. Parameters Range and Sill correlate with MS-lesion pattern surface complexity and total lesion volume. A scatter plot of ln(Range) versus ln(Sill), classified by pattern anisotropy, enables a consistent and clearly arranged presentation of MS-lesion patterns based on geometry: the so-called MS-Lesion Pattern Discrimination Plot. The geostatistical approach and the graphical representation of results are considered efficient exploratory data analysis tools for cross-sectional, follow-up, and medication impact analysis.
Oscillations and chaos in neural networks: an exactly solvable model.
Wang, L P; Pichler, E E; Ross, J
1990-01-01
We consider a randomly diluted higher-order network with noise, consisting of McCulloch-Pitts neurons that interact by Hebbian-type connections. For this model, exact dynamical equations are derived and solved for both parallel and random sequential updating algorithms. For parallel dynamics, we find a rich spectrum of different behaviors including static retrieving and oscillatory and chaotic phenomena in different parts of the parameter space. The bifurcation parameters include first- and second-order neuronal interaction coefficients and a rescaled noise level, which represents the combined effects of the random synaptic dilution, interference between stored patterns, and additional background noise. We show that a marked difference in terms of the occurrence of oscillations or chaos exists between neural networks with parallel and random sequential dynamics. Images PMID:2251287
Constraining the optical potential in the search for η-mesic 4He
NASA Astrophysics Data System (ADS)
Skurzok, M.; Moskal, P.; Kelkar, N. G.; Hirenzaki, S.; Nagahiro, H.; Ikeno, N.
2018-07-01
A consistent description of the dd →4Heη and dd → (4Heη)bound→ X cross sections was recently proposed with a broad range of real (V0) and imaginary (W0), η-4He optical potential parameters leading to a good agreement with the dd →4Heη data. Here we compare the predictions of the model below the η production threshold, with the WASA-at-COSY excitation functions for the dd →3HeNπ reactions to put stronger constraints on (V0 ,W0). The allowed parameter space (with |V0 | < ∼ 60 MeV and |W0 | < ∼ 7 MeV estimated at 90% CL) excludes most optical model predictions of η-4He nuclei except for some loosely bound narrow states.
The reduced basis method for the electric field integral equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fares, M., E-mail: fares@cerfacs.f; Hesthaven, J.S., E-mail: Jan_Hesthaven@Brown.ed; Maday, Y., E-mail: maday@ann.jussieu.f
We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, formore » many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.« less
Positive signs in massive gravity
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Remmen, Grant N.
2016-04-01
We derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. The high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small island in the parameter space of ghost-free massive gravity. While the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Clifford; Remmen, Grant N.
Here, we derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. Furthermore, the high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small islandmore » in the parameter space of ghost-free massive gravity. And while the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.« less
Calibration Laboratory Capabilities Listing as of April 2009
NASA Technical Reports Server (NTRS)
Kennedy, Gary W.
2009-01-01
This document reviews the Calibration Laboratory capabilities for various NASA centers (i.e., Glenn Research Center and Plum Brook Test Facility Kennedy Space Center Marshall Space Flight Center Stennis Space Center and White Sands Test Facility.) Some of the parameters reported are: Alternating current, direct current, dimensional, mass, force, torque, pressure and vacuum, safety, and thermodynamics parameters. Some centers reported other parameters.
Mouse Drawer System (MDS): An autonomous hardware for supporting mice space research
NASA Astrophysics Data System (ADS)
Liu, Y.; Biticchi, R.; Alberici, G.; Tenconi, C.; Cilli, M.; Fontana, V.; Cancedda, R.; Falcetti, G.
2005-08-01
For the scientific community the ability of flying mice under weightless conditions in space, compared to other rodents, offers many valuable advantages. These include the option of testing a wide range of wild-type and mutant animals, an increased animal number for flight, and a reduced demand on shuttle resources and crew time. In this study, we describe a spaceflight hardware for mice, the Mouse Drawer System (MDS). MDS can interface with Space Shuttle middeck and International Space Station Express Rack. It consists of Mice Chamber, Liquid Handling Subsystem, Food Delivery Subsystem, Air Conditioning Subsystem, Illumination Subsystem, Observation Subsystem and Payload Control Unit. It offers single or paired containment for 6-8 mice with a mean weight of 40 grams/mouse for a period of up to 3 months. Animal tests were conducted in a MDS breadboard to validate the biocompatibility of various subsystems. Mice survived in all tests of short and long duration. Results of blood parameters, histology and air/waste composition analysis showed that MDS subsystems meet the NIH guidelines for temperature, humidity, food and water access, air quality, odour and waste management.
Monte Carlo generators for studies of the 3D structure of the nucleon
Avakian, Harut; D'Alesio, U.; Murgia, F.
2015-01-23
In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.
The nonlinear wave equation for higher harmonics in free-electron lasers
NASA Technical Reports Server (NTRS)
Colson, W. B.
1981-01-01
The nonlinear wave equation and self-consistent pendulum equation are generalized to describe free-electron laser operation in higher harmonics; this can significantly extend their tunable range to shorter wavelengths. The dynamics of the laser field's amplitude and phase are explored for a wide range of parameters using families of normalized gain curves applicable to both the fundamental and harmonics. The electron phase-space displays the fundamental physics driving the wave, and this picture is used to distinguish between the effects of high gain and Coulomb forces.
Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales.
Loveridge-Smith, A; Allen, A; Belak, J; Boehly, T; Hauer, A; Holian, B; Kalantar, D; Kyrala, G; Lee, R W; Lomdahl, P; Meyers, M A; Paisley, D; Pollaine, S; Remington, B; Swift, D C; Weber, S; Wark, J S
2001-03-12
We have used x-ray diffraction with subnanosecond temporal resolution to measure the lattice parameters of orthogonal planes in shock compressed single crystals of silicon (Si) and copper (Cu). Despite uniaxial compression along the (400) direction of Si reducing the lattice spacing by nearly 11%, no observable changes occur in planes with normals orthogonal to the shock propagation direction. In contrast, shocked Cu shows prompt hydrostaticlike compression. These results are consistent with simple estimates of plastic strain rates based on dislocation velocity data.
Experimental Investigation on Thermal Physical Properties of an Advanced Polyester Material
NASA Astrophysics Data System (ADS)
Guangfa, Gao; Shujie, Yuan; Ruiyuan, Huang; Yongchi, Li
Polyester materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced polyester material, a series of experiments for thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.
Detonation initiation in a model of explosive: Comparative atomistic and hydrodynamics simulations
NASA Astrophysics Data System (ADS)
Murzov, S. A.; Sergeev, O. V.; Dyachkov, S. A.; Egorova, M. S.; Parshikov, A. N.; Zhakhovsky, V. V.
2016-11-01
Here we extend consistent simulations to reactive materials by the example of AB model explosive. The kinetic model of chemical reactions observed in a molecular dynamics (MD) simulation of self-sustained detonation wave can be used in hydrodynamic simulation of detonation initiation. Kinetic coefficients are obtained by minimization of difference between profiles of species calculated from the kinetic model and observed in MD simulations of isochoric thermal decomposition with a help of downhill simplex method combined with random walk in multidimensional space of fitting kinetic model parameters.
Self-similar expansion of adiabatic electronegative dusty plasma
NASA Astrophysics Data System (ADS)
Shahmansouri, M.; Bemooni, A.; Mamun, A. A.
2017-12-01
The self-similar expansion of an adiabatic electronegative dusty plasma (consisting of inertialess adiabatic electrons, inertialess adiabatic ions and inertial adiabatic negatively charged dust fluids) is theoretically investigated by employing the self-similar approach. It is found that the effects of the plasma adiabaticity (represented by the adiabatic index ) and dusty plasma parameters (determined by dust temperature and initial dust population) significantly modify the nature of the plasma expansion. The implications of our results are expected to play an important role in understanding the physics of the expansion of space and laboratory electronegative dusty plasmas.
A technique for determining cloud free versus cloud contaminated pixels in satellite imagery
NASA Technical Reports Server (NTRS)
Wohlman, Richard A.
1994-01-01
Weather forecasting has been called the second oldest profession. To do so accurately and with some consistency requires an ability to understand the processes which create the clouds, drive the winds, and produce the ever changing atmospheric conditions. Measurement of basic parameters such as temperature, water vapor content, pressure, windspeed and wind direction throughout the three dimensional atmosphere form the foundation upon which a modern forecast is created. Doppler radar, and space borne remote sensing have provided forecasters the new tools with which to ply their trade.
Cosmic velocity-gravity relation in redshift space
NASA Astrophysics Data System (ADS)
Colombi, Stéphane; Chodorowski, Michał J.; Teyssier, Romain
2007-02-01
We propose a simple way to estimate the parameter β ~= Ω0.6/b from 3D galaxy surveys, where Ω is the non-relativistic matter-density parameter of the Universe and b is the bias between the galaxy distribution and the total matter distribution. Our method consists in measuring the relation between the cosmological velocity and gravity fields, and thus requires peculiar velocity measurements. The relation is measured directly in redshift space, so there is no need to reconstruct the density field in real space. In linear theory, the radial components of the gravity and velocity fields in redshift space are expected to be tightly correlated, with a slope given, in the distant observer approximation, by We test extensively this relation using controlled numerical experiments based on a cosmological N-body simulation. To perform the measurements, we propose a new and rather simple adaptive interpolation scheme to estimate the velocity and the gravity field on a grid. One of the most striking results is that non-linear effects, including `fingers of God', affect mainly the tails of the joint probability distribution function (PDF) of the velocity and gravity field: the 1-1.5 σ region around the maximum of the PDF is dominated by the linear theory regime, both in real and redshift space. This is understood explicitly by using the spherical collapse model as a proxy of non-linear dynamics. Applications of the method to real galaxy catalogues are discussed, including a preliminary investigation on homogeneous (volume-limited) `galaxy' samples extracted from the simulation with simple prescriptions based on halo and substructure identification, to quantify the effects of the bias between the galaxy distribution and the total matter distribution, as well as the effects of shot noise.
Some general aspects of torsional sensitivity and the GG-effect
NASA Astrophysics Data System (ADS)
Yu, C.-H.; Schäfer, L.; Ramek, M.; Miller, D. M.; Teppen, B. J.
1999-08-01
The geometries of 28 compounds of type X-C1-C2-C3-Y, with X,Y=CH 3, F, Cl, OH, NH 2, COH, and COOH, were fully optimized by ab initio HF/4-21G calculations at 30° grid points in their respective φ(X-C1-C2-C3), ψ(C1-C2-C3-Y)-torsional spaces. The results make it possible to construct parameter surfaces and their gradients in φ, ψ-space. The magnitude of the gradient, |∇ P|=[( ∂P/ ∂φ) 2+( ∂P/ ∂ψ) 2] 1/2, of a structural parameter P (a bond length, bond angle, or non-bonded distance) in φ, ψ-torsional space is a measure of torsional sensitivity (TS); i.e. a measure of the extent to which bond lengths, bond angles, and non-bonded distances change at a point in φ, ψ-space with backbone torsional angles. It is found that TS is not constant throughout the conformational space of a molecule, but varies in a characteristic way. It seems that, regardless of the nature of X or Y, extended forms are typically in regions of low TS; puckered conformations, of high TS. Conformations with two sequential gauche torsional angles (GG sequences) are characterized by high TS of 1,5-non-bonded distances concomitant with relatively low TS of other internal coordinates. This property of GG sequences is the source of a stabilizing and cooperative energy increment that is not afforded by other torsional sequences, such as trans- trans or trans- gauche. A structural data base, consisting of thousands of HF/4-21G structures of X-C-C-Y and X-C-C-C-Y systems has been assembled and is available on a CD.
Kalicka, Renata; Mazur, Kamila; Wolf, Jacek; Frydrychowski, Andrzej F; Narkiewicz, Krzysztof; Winklewski, Pawel J
2017-09-01
During apnoea, the pial artery is subjected to two opposite physiological processes: vasoconstriction due to elevated blood pressure and vasorelaxation driven by rising pH in the brain parenchyma. We hypothesized that the pial artery response to apnoea may vary, depending on which process dominate. Apnoea experiments were performed in a group of 19 healthy, non-smoking volunteers (9 men and 10 women). The following parameters were obtained for further analysis: blood pressure, the cardiac (from 0.5 to 5.0Hz) and slow (<0.5Hz) components of subarachnoid space width, heart rate, mean cerebral blood flow velocity in the internal carotid artery, pulsatility and resistivity index, internal carotid artery diameter, blood oxygen saturation and end-tidal carbon dioxide. The experiment consisted of three apnoeas, sequentially: 30s, 60s and maximal apnoea. The breath-hold was separated for 5minute rest. The control process is sophisticated, involving internal cross-couplings and cross-dependences. The aim of work was to find a mathematical dependence between data. Unexpectedly, the modelling revealed two different reactions, on the same experimental procedure. As a consequence, there are two subsets of cardiac subarachnoid space width responses to breath-hold in humans. A positive cardiac subarachnoid space width change to apnoea depends on changes in heart rate and cerebral blood flow velocity. A negative cardiac subarachnoid space width change to apnoea is driven by heart rate, mean arterial pressure and pulsatility index changes. The described above two different reactions to experimental breath-hold provides new insights into our understanding of the complex mechanisms governing the adaptation to apnoea in humans. We proposed a mathematical methodology that can be used in further clinical research. Copyright © 2017 Elsevier Inc. All rights reserved.
Can the Equivalent Sphere Model Approximate Organ Doses in Space?
NASA Technical Reports Server (NTRS)
Lin, Zi-Wei
2007-01-01
For space radiation protection it is often useful to calculate dose or dose,equivalent in blood forming organs (BFO). It has been customary to use a 5cm equivalent sphere to. simulate the BFO dose. However, many previous studies have concluded that a 5cm sphere gives very different dose values from the exact BFO values. One study [1] . concludes that a 9 cm sphere is a reasonable approximation for BFO'doses in solar particle event environments. In this study we use a deterministic radiation transport [2] to investigate the reason behind these observations and to extend earlier studies. We take different space radiation environments, including seven galactic cosmic ray environments and six large solar particle events, and calculate the dose and dose equivalent in the skin, eyes and BFO using their thickness distribution functions from the CAM (Computerized Anatomical Man) model [3] The organ doses have been evaluated with a water or aluminum shielding of an areal density from 0 to 20 g/sq cm. We then compare with results from the equivalent sphere model and determine in which cases and at what radius parameters the equivalent sphere model is a reasonable approximation. Furthermore, we address why the equivalent sphere model is not a good approximation in some cases. For solar particle events, we find that the radius parameters for the organ dose equivalent increase significantly with the shielding thickness, and the model works marginally for BFO but is unacceptable for the eye or the skin. For galactic cosmic rays environments, the equivalent sphere model with an organ-specific constant radius parameter works well for the BFO dose equivalent, marginally well for the BFO dose and the dose equivalent of the eye or the skin, but is unacceptable for the dose of the eye or the skin. The ranges of the radius parameters are also being investigated, and the BFO radius parameters are found to be significantly, larger than 5 cm in all cases, consistent with the conclusion of an earlier study [I]. The radius parameters for the dose equivalent in GCR environments are approximately between 10 and I I cm for the BFO, 3.7 to 4.8 cm for the eye, and 3.5 to 5.6 cm for the skin; while the radius parameters are between 10 and 13 cm for the BFO dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konno, Kohkichi, E-mail: kohkichi@tomakomai-ct.ac.jp; Nagasawa, Tomoaki, E-mail: nagasawa@tomakomai-ct.ac.jp; Takahashi, Rohta, E-mail: takahashi@tomakomai-ct.ac.jp
We consider the scattering of a quantum particle by two independent, successive parity-invariant point interactions in one dimension. The parameter space for the two point interactions is given by the direct product of two tori, which is described by four parameters. By investigating the effects of the two point interactions on the transmission probability of plane wave, we obtain the conditions for the parameter space under which perfect resonant transmission occur. The resonance conditions are found to be described by symmetric and anti-symmetric relations between the parameters.
Mapping an operator's perception of a parameter space
NASA Technical Reports Server (NTRS)
Pew, R. W.; Jagacinski, R. J.
1972-01-01
Operators monitored the output of two versions of the crossover model having a common random input. Their task was to make discrete, real-time adjustments of the parameters k and tau of one of the models to make its output time history converge to that of the other, fixed model. A plot was obtained of the direction of parameter change as a function of position in the (tau, k) parameter space relative to the nominal value. The plot has a great deal of structure and serves as one form of representation of the operator's perception of the parameter space.
STS-74/Mir photogrammetric appendage structural dynamics experiment
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Gilbert, Michael G.
1996-01-01
The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) is an International Space Station (ISS) Phase-1 risk mitigation experiment. Phase-1 experiments are performed during docking missions of the U.S. Space Shuttle to the Russian Space Station Mir. The purpose of the experiment is to demonstrate the use of photogrammetric techniques for determination of structural dynamic mode parameters of solar arrays and other spacecraft appendages. Photogrammetric techniques are a low cost alternative to appendage mounted accelerometers for the ISS program. The objective of the first flight of PASDE, on STS-74 in November 1995, was to obtain video images of Mir Kvant-2 solar array response to various structural dynamic excitation events. More than 113 minutes of high quality structural response video data was collected during the mission. The PASDE experiment hardware consisted of three instruments each containing two video cameras, two video tape recorders, a modified video signal time inserter, and associated avionics boxes. The instruments were designed, fabricated, and tested at the NASA Langley Research Center in eight months. The flight hardware was integrated into standard Hitchhiker canisters at the NASA Goddard Space Flight Center and then installed into the Space Shuttle cargo bay in locations selected to achieve good video coverage and photogrammetric geometry.
INTEGRAL/SPI γ-ray line spectroscopy. Response and background characteristics
NASA Astrophysics Data System (ADS)
Diehl, Roland; Siegert, Thomas; Greiner, Jochen; Krause, Martin; Kretschmer, Karsten; Lang, Michael; Pleintinger, Moritz; Strong, Andrew W.; Weinberger, Christoph; Zhang, Xiaoling
2018-03-01
Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors. Aim. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background. Methods: We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors. Results: Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.
Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas
2013-01-01
Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.
Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas
2013-01-01
Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum. PMID:23766941
Size-density scaling in protists and the links between consumer-resource interaction parameters.
DeLong, John P; Vasseur, David A
2012-11-01
Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are widely observed but apparently have little influence on population size and fitness, at least at this level of organization. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
NASA Astrophysics Data System (ADS)
Brunner, Raimund; Schmidtke, Gerhard; Konz, Werner; Pfeffer, Wilfried
A low-cost monitor to measure the EUV and plasma environment in space is presented. The device consists of three (or more) isolated spheres, a metallic sphere, one or more highly trans-parent Inner Grids and Outer Grids. Each one is being connected to a sensitive floating elec-trometer. By setting different potentials to the grids as well as to the sphere and varying one or more of their voltages, measurements of spectral solar EUV irradiance (15-200 nm), of local plasma parameters such as electron and ion densities, electron energies and temperatures as well as ion compositions and debris events can be derived from the current recordings. This detector does not require any (solar) pointing device. The primary goal is to study the impact of solar activity events (e.g. CMEs) as well as subsequent reactions of the ionospheric/thermospheric systems (including space weather occurences). The capability of SEPS for measuring EUV pho-ton fluxes as well as plasma parameters in the energy range from 0 to +/-70 eV is demonstrated by laboratory measurements as performed in the IPM laboratory, at BESSY-PTB electron syn-chrotron in Berlin and at ESA/ESTEC plasma chamber. Based on the laboratory recording of plasma recombination EUV emission the sensor is suitable to detect also auroral and airglow radiations. -The state of the art in the development of this device is reported.
NASA Astrophysics Data System (ADS)
Aleshin, A. N.; Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.
2016-03-01
The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In0.4Ga0.6As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In x Ga1- x As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.
Sensitivity analysis of eigenvalues for an electro-hydraulic servomechanism
NASA Astrophysics Data System (ADS)
Stoia-Djeska, M.; Safta, C. A.; Halanay, A.; Petrescu, C.
2012-11-01
Electro-hydraulic servomechanisms (EHSM) are important components of flight control systems and their role is to control the movement of the flying control surfaces in response to the movement of the cockpit controls. As flight-control systems, the EHSMs have a fast dynamic response, a high power to inertia ratio and high control accuracy. The paper is devoted to the study of the sensitivity for an electro-hydraulic servomechanism used for an aircraft aileron action. The mathematical model of the EHSM used in this paper includes a large number of parameters whose actual values may vary within some ranges of uncertainty. It consists in a nonlinear ordinary differential equation system composed by the mass and energy conservation equations, the actuator movement equations and the controller equation. In this work the focus is on the sensitivities of the eigenvalues of the linearized homogeneous system, which are the partial derivatives of the eigenvalues of the state-space system with respect the parameters. These are obtained using a modal approach based on the eigenvectors of the state-space direct and adjoint systems. To calculate the eigenvalues and their sensitivity the system's Jacobian and its partial derivatives with respect the parameters are determined. The calculation of the derivative of the Jacobian matrix with respect to the parameters is not a simple task and for many situations it must be done numerically. The system stability is studied in relation with three parameters: m, the equivalent inertial load of primary control surface reduced to the actuator rod; B, the bulk modulus of oil and p a pressure supply proportionality coefficient. All the sensitivities calculated in this work are in good agreement with those obtained through recalculations.
14 CFR 1214.117 - Launch and orbit parameters for a standard launch.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Launch from Kennedy Space Center (KSC) into the customer's choice of two standard mission orbits: 160 NM... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Launch and orbit parameters for a standard launch. 1214.117 Section 1214.117 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION...
14 CFR 1214.117 - Launch and orbit parameters for a standard launch.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Launch from Kennedy Space Center (KSC) into the customer's choice of two standard mission orbits: 160 NM... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Launch and orbit parameters for a standard launch. 1214.117 Section 1214.117 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION...
14 CFR 1214.117 - Launch and orbit parameters for a standard launch.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Launch from Kennedy Space Center (KSC) into the customer's choice of two standard mission orbits: 160 NM... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Launch and orbit parameters for a standard launch. 1214.117 Section 1214.117 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION...
NASA Astrophysics Data System (ADS)
Jiménez-Forteza, Xisco; Keitel, David; Husa, Sascha; Hannam, Mark; Khan, Sebastian; Pürrer, Michael
2017-03-01
Numerical relativity is an essential tool in studying the coalescence of binary black holes (BBHs). It is still computationally prohibitive to cover the BBH parameter space exhaustively, making phenomenological fitting formulas for BBH waveforms and final-state properties important for practical applications. We describe a general hierarchical bottom-up fitting methodology to design and calibrate fits to numerical relativity simulations for the three-dimensional parameter space of quasicircular nonprecessing merging BBHs, spanned by mass ratio and by the individual spin components orthogonal to the orbital plane. Particular attention is paid to incorporating the extreme-mass-ratio limit and to the subdominant unequal-spin effects. As an illustration of the method, we provide two applications, to the final spin and final mass (or equivalently: radiated energy) of the remnant black hole. Fitting to 427 numerical relativity simulations, we obtain results broadly consistent with previously published fits, but improving in overall accuracy and particularly in the approach to extremal limits and for unequal-spin configurations. We also discuss the importance of data quality studies when combining simulations from diverse sources, how detailed error budgets will be necessary for further improvements of these already highly accurate fits, and how this first detailed study of unequal-spin effects helps in choosing the most informative parameters for future numerical relativity runs.
Nagashima, Hiroaki; Watari, Akiko; Shinoda, Yasuharu; Okamoto, Hiroshi; Takuma, Shinya
2013-12-01
This case study describes the application of Quality by Design elements to the process of culturing Chinese hamster ovary cells in the production of a monoclonal antibody. All steps in the cell culture process and all process parameters in each step were identified by using a cause-and-effect diagram. Prospective risk assessment using failure mode and effects analysis identified the following four potential critical process parameters in the production culture step: initial viable cell density, culture duration, pH, and temperature. These parameters and lot-to-lot variability in raw material were then evaluated by process characterization utilizing a design of experiments approach consisting of a face-centered central composite design integrated with a full factorial design. Process characterization was conducted using a scaled down model that had been qualified by comparison with large-scale production data. Multivariate regression analysis was used to establish statistical prediction models for performance indicators and quality attributes; with these, we constructed contour plots and conducted Monte Carlo simulation to clarify the design space. The statistical analyses, especially for raw materials, identified set point values, which were most robust with respect to the lot-to-lot variability of raw materials while keeping the product quality within the acceptance criteria. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Jia, Bing
2014-03-01
A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh—Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces.
NASA Astrophysics Data System (ADS)
Carmona, A. M.; Poveda, G.; Sivapalan, M.; Vallejo-Bernal, S. M.; Bustamante, E.
2015-10-01
This paper studies a 3-D generalization of Budyko's framework designed to capture the mutual interdependence among long-term mean actual evapotranspiration (E), potential evapotranspiration (Ep) and precipitation (P). For this purpose we use three dimensionless and dependent quantities: Ψ = E/P, Φ = Ep/P and Ω = E/Ep. This 3-D space and its 2-D projections provide an interesting setting to test the physical soundness of Budyko's hypothesis. We demonstrate analytically that Budyko-type equations are unable to capture the physical limit of the relation between Ω and Φ in humid environments, owing to the unfeasibility of Ep/P → 0 at E/Ep = 1. Using data from 146 sub-catchments in the Amazon River basin we overcome this inconsistency by proposing a physically consistent power law: Ψ = k Φe, with k = 0.66, and e = 0.83 (R2 = 0.93). This power law is compared with two other Budyko-type equations. Taking into account the goodness of fits and the ability to comply with the physical limits of the 3-D space, our results show that the power law is better suited to model the coupled water and energy balances within the Amazon River basin. Moreover, k is found to be related to the partitioning of energy via evapotranspiration in terms of Ω. This suggests that our power law implicitly incorporates the complementary relationship of evapotranspiration into the Budyko curve, which is a consequence of the dependent nature of the studied variables within our 3-D space. This scaling approach is also consistent with the asymmetrical nature of the complementary relationship of evapotranspiration. Looking for a physical explanation for the parameters k and e, the inter-annual variability of individual catchments is studied. Evidence of space-time symmetry in Amazonia emerges, since both between-catchment and between-year variability follow the same Budyko curves. Finally, signs of co-evolution of catchments are explored by linking spatial patterns of the power law parameters with fundamental characteristics of the Amazon River basin. In general, k and e are found to be related to vegetation, topography and water in soils.
Parameter-space metric of semicoherent searches for continuous gravitational waves
NASA Astrophysics Data System (ADS)
Pletsch, Holger J.
2010-08-01
Continuous gravitational-wave (CW) signals such as emitted by spinning neutron stars are an important target class for current detectors. However, the enormous computational demand prohibits fully coherent broadband all-sky searches for prior unknown CW sources over wide ranges of parameter space and for yearlong observation times. More efficient hierarchical “semicoherent” search strategies divide the data into segments much shorter than one year, which are analyzed coherently; then detection statistics from different segments are combined incoherently. To optimally perform the incoherent combination, understanding of the underlying parameter-space structure is requisite. This problem is addressed here by using new coordinates on the parameter space, which yield the first analytical parameter-space metric for the incoherent combination step. This semicoherent metric applies to broadband all-sky surveys (also embedding directed searches at fixed sky position) for isolated CW sources. Furthermore, the additional metric resolution attained through the combination of segments is studied. From the search parameters (sky position, frequency, and frequency derivatives), solely the metric resolution in the frequency derivatives is found to significantly increase with the number of segments.
Investigation of epi-thermal shape-parameter needed for precision analysis of activation
NASA Astrophysics Data System (ADS)
Elmaghraby, Elsayed K.
2017-06-01
The present work aims to expose factors that alter the isotope's effective resonance energy and its resonance integral in order to have consistency between the experimental observation of integral experiments and the prediction of the reaction rate. The investigation is based on disclosing the interference among resonances in Breit-Wigner and Reich-Moore representations to make the investigation of the statistical nature of resonances possible. The shape-parameter influence on the isotope's behavior in epi-thermal neutron field was investigated in the range from -0.1 to 0.1. Evaluated resonance data given in Evaluated Nuclear Data Files (ENDF/B VII.1) and temperature-dependent cross-sections of Point2015 are used. Only resolved resonances are considered in the present assessment. Tabulated values of resonance integrals and effective resonance energies with their moments are given for the majority of ENDF's isotopes. The reported data can be used, directly, to compute the integral parameters for any value of shape-parameter without the need to use numerical software tools. Correlations among effective resonance energy, experimental level spacing and resonance integral are discussed.
General ecological models for human subsistence, health and poverty.
Ngonghala, Calistus N; De Leo, Giulio A; Pascual, Mercedes M; Keenan, Donald C; Dobson, Andrew P; Bonds, Matthew H
2017-08-01
The world's rural poor rely heavily on their immediate natural environment for subsistence and suffer high rates of morbidity and mortality from infectious diseases. We present a general framework for modelling subsistence and health of the rural poor by coupling simple dynamic models of population ecology with those for economic growth. The models show that feedbacks between the biological and economic systems can lead to a state of persistent poverty. Analyses of a wide range of specific systems under alternative assumptions show the existence of three possible regimes corresponding to a globally stable development equilibrium, a globally stable poverty equilibrium and bistability. Bistability consistently emerges as a property of generalized disease-economic systems for about a fifth of the feasible parameter space. The overall proportion of parameters leading to poverty is larger than that resulting in healthy/wealthy development. All the systems are found to be most sensitive to human disease parameters. The framework highlights feedbacks, processes and parameters that are important to measure in studies of rural poverty to identify effective pathways towards sustainable development.
NASA Astrophysics Data System (ADS)
Keeney, Brian A.; Stocke, John T.; Danforth, Charles W.; Shull, J. Michael; Pratt, Cameron T.; Froning, Cynthia S.; Green, James C.; Penton, Steven V.; Savage, Blair D.
2017-05-01
We present basic data and modeling for a survey of the cool, photoionized circumgalactic medium (CGM) of low-redshift galaxies using far-UV QSO absorption-line probes. This survey consists of “targeted” and “serendipitous” CGM subsamples, originally described in Stocke et al. (Paper I). The targeted subsample probes low-luminosity, late-type galaxies at z< 0.02 with small impact parameters (< ρ > =71 kpc), and the serendipitous subsample probes higher luminosity galaxies at z≲ 0.2 with larger impact parameters (< ρ > =222 kpc). Hubble Space Telescope and FUSE UV spectroscopy of the absorbers and basic data for the associated galaxies, derived from ground-based imaging and spectroscopy, are presented. We find broad agreement with the COS-Halos results, but our sample shows no evidence for changing ionization parameter or hydrogen density with distance from the CGM host galaxy, probably because the COS-Halos survey probes the CGM at smaller impact parameters. We find at least two passive galaxies with H I and metal-line absorption, confirming the intriguing COS-Halos result that galaxies sometimes have cool gas halos despite no on-going star formation. Using a new methodology for fitting H I absorption complexes, we confirm the CGM cool gas mass of Paper I, but this value is significantly smaller than that found by the COS-Halos survey. We trace much of this difference to the specific values of the low-z metagalactic ionization rate assumed. After accounting for this difference, a best-value for the CGM cool gas mass is found by combining the results of both surveys to obtain {log}(M/{M}⊙ )=10.5+/- 0.3, or ˜30% of the total baryon reservoir of an L≥slant {L}* , star-forming galaxy. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
[Bone marrow mononuclear cells from murine tibia after the space flight on biosatellite "Bion-M1"].
Andreeva, E R; Goncharova, E A; Gornostaeva, A N; Grigor'eva, O V; Buravkova, L B
2014-01-01
Cellularity, viability and immunophenotype of mononuclear cells derived from the tibial marrow of C57bL/6 mice were measured after the 30-day "Bion-M1" space flight and subsequent 7-day recovery. Cell number in the flight group was significantly less than in the group of vivarium control. There was no difference in the parameter between the flight and control groups after the recovery. Viability of mononuclear cells was more than 95% in all examined groups. Flow cytometric analysis failed to show differences in bone marrow cell immunophenotype (CD45, CD34, CD90.1 (Thy1); however, the flight animals had more large-sized CD45+ mononuclears than the control groups of mice. These results indicate that spaceflight factors did not have significant damaging effects on the number or immunophenotype of murine bone marrow mononuclears. These observations are consistent with the previously made assumption of a moderate and reversible stress reaction of mammals to space flight.
Lin, Feng-Chang; Zhu, Jun
2012-01-01
We develop continuous-time models for the analysis of environmental or ecological monitoring data such that subjects are observed at multiple monitoring time points across space. Of particular interest are additive hazards regression models where the baseline hazard function can take on flexible forms. We consider time-varying covariates and take into account spatial dependence via autoregression in space and time. We develop statistical inference for the regression coefficients via partial likelihood. Asymptotic properties, including consistency and asymptotic normality, are established for parameter estimates under suitable regularity conditions. Feasible algorithms utilizing existing statistical software packages are developed for computation. We also consider a simpler additive hazards model with homogeneous baseline hazard and develop hypothesis testing for homogeneity. A simulation study demonstrates that the statistical inference using partial likelihood has sound finite-sample properties and offers a viable alternative to maximum likelihood estimation. For illustration, we analyze data from an ecological study that monitors bark beetle colonization of red pines in a plantation of Wisconsin.
An interim overview of LDEF materials findings
NASA Technical Reports Server (NTRS)
Stein, Brad A.
1992-01-01
The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effects (SEE) on materials that is unparalleled in the history of the U.S. Space Program. The remarkable flight attitude stability of LDEF enables specific analyses of various individual and combined effects of LEO environmental parameters on identical materials on the same space vehicle. This paper provides an overview of the interim LDEF materials findings of the Principal Investigators and the Materials Special Investigation Group. In general, the LDEF data is remarkably consistent; LDEF will provide a 'benchmark' for materials design data bases for satellites in low-Earth orbit. Some materials were identified to be encouragingly resistant to LEO SEE for 5.8 years; other 'space qualified' materials displayed significant environmental degradation. Molecular contamination was widespread; LDEF offers an unprecedented opportunity to provide a unified perspective of unmanned LEO spacecraft contamination mechanisms. New material development requirements for long-term LEO missions have been identified and current ground simulation testing methods/data for new, durable materials concepts can be validated with LDEF results. LDEF findings are already being integrated into the design of Space Station Freedom.
NASA Astrophysics Data System (ADS)
Clanton, Christian Dwain
Over the past 20 years, we have learned that exoplanets are ubiquitous throughout our Galaxy and show a diverse set of demographics, yet there is much work to be done to understand this diversity. Determining the distributions of the fundamental properties of exoplanets will provide vital clues regarding their formation and evolution. This is a difficult task, as exoplanet surveys are not uniformly sensitive to the full range of planet parameter space. Various observational biases and selection effects intrinsic to each of the different discovery techniques constrain the types of planets to which they are sensitive. Herein, I record a collection of the first studies to develop and apply the methodology of synthesizing results from multiple detection techniques to construct a statistically-complete census of planetary companions to M dwarfs that samples a wide region of their parameter space. I present a robust comparison of exoplanet discoveries from microlensing and radial velocity (RV) surveys of M dwarfs which infer giant planet frequencies that differ by more than an order of magnitude and are, prima facie, in direct conflict. I demonstrate that current, state-of-the-art RV surveys are capable of detecting only the high-mass tail of the population of planets beyond the ice line inferred by microlensing studies, engendering a large, apparent difference in giant planet frequency. This comparison further establishes that results from these types of surveys are, in fact, consistent over the region of parameter space wherein their sensitivities overlap. A synthesis of results from microlensing and RV surveys yields planet occurrence rates for M dwarfs that span several orders of magnitude in mass and orbital period. On average, each M dwarf hosts about two planets, and while Jupiter and super-Jupiter companions are relatively rare ( 3%), gas giants, in general, are quite common ( 15%). These occurrence rates are significantly lower than those inferred around FGK stars and are thus, at least qualitatively, consistent with the predictions of core accretion theory. Finally, I present a synthesis of results from microlensing, RV, and direct imaging surveys that improve constraints on the demographics of long-period, massive planetary companions to M dwarfs. I demonstrate that the results of five different surveys for exoplanets employing these three independent techniques are consistent with a single population of planets described by a simple, joint power-law distribution function in mass and semimajor axis, and provide constraints on the parameters of such a population. The final result is the most statistically-complete census of exoplanets that has hitherto been constructed for a given type of host star, spanning a mass range of 1-104 M⊕ and an orbital period range of 1-105 days. This work represents an important benchmark for all future exoplanet population studies, and the methodologies developed herein are applicable to new and larger data sets of forthcoming "next-generation" surveys.
NASA Astrophysics Data System (ADS)
Carmona, A. M.; Poveda, G.; Sivapalan, M.; Vallejo-Bernal, S. M.; Bustamante, E.
2016-02-01
This paper studies a 3-D state space representation of Budyko's framework designed to capture the mutual interdependence among long-term mean actual evapotranspiration (E), potential evapotranspiration (Ep) and precipitation (P). For this purpose we use three dimensionless and dependent quantities: Ψ = E ⁄ P, Φ = Ep ⁄ P and Ω = E ⁄ Ep. This 3-D space and its 2-D projections provide an interesting setting to test the physical soundness of Budyko's hypothesis. We demonstrate analytically that Budyko-type equations are unable to capture the physical limit of the relation between Ω and Φ in humid environments, owing to the unfeasibility of Ep ⁄ P = 0 when E ⁄ Ep → 1. Using data from 146 sub-catchments in the Amazon River basin we overcome this inconsistency by proposing a physically consistent power law: Ψ = kΦe, with k = 0.66, and e = 0.83 (R2 = 0.93). This power law is compared with two other Budyko-type equations. Taking into account the goodness of fits and the ability to comply with the physical limits of the 3-D space, our results show that the power law is better suited to model the coupled water and energy balances within the Amazon River basin. Moreover, k is found to be related to the partitioning of energy via evapotranspiration in terms of Ω. This suggests that our power law implicitly incorporates the complementary relationship of evapotranspiration into the Budyko curve, which is a consequence of the dependent nature of the studied variables within our 3-D space. This scaling approach is also consistent with the asymmetrical nature of the complementary relationship of evapotranspiration. Looking for a physical explanation for the parameters k and e, the inter-annual variability of individual catchments is studied. Evidence of space-time symmetry in Amazonia emerges, since both between-catchment and between-year variability follow the same Budyko curves. Finally, signs of co-evolution of catchments are explored by linking spatial patterns of the power law parameters with fundamental characteristics of the Amazon River basin. In general, k and e are found to be related to vegetation, topography and water in soils.
Using evolutionary computation to optimize an SVM used in detecting buried objects in FLIR imagery
NASA Astrophysics Data System (ADS)
Paino, Alex; Popescu, Mihail; Keller, James M.; Stone, Kevin
2013-06-01
In this paper we describe an approach for optimizing the parameters of a Support Vector Machine (SVM) as part of an algorithm used to detect buried objects in forward looking infrared (FLIR) imagery captured by a camera installed on a moving vehicle. The overall algorithm consists of a spot-finding procedure (to look for potential targets) followed by the extraction of several features from the neighborhood of each spot. The features include local binary pattern (LBP) and histogram of oriented gradients (HOG) as these are good at detecting texture classes. Finally, we project and sum each hit into UTM space along with its confidence value (obtained from the SVM), producing a confidence map for ROC analysis. In this work, we use an Evolutionary Computation Algorithm (ECA) to optimize various parameters involved in the system, such as the combination of features used, parameters on the Canny edge detector, the SVM kernel, and various HOG and LBP parameters. To validate our approach, we compare results obtained from an SVM using parameters obtained through our ECA technique with those previously selected by hand through several iterations of "guess and check".
Adding source positions to the IVS Combination
NASA Astrophysics Data System (ADS)
Bachmann, S.; Thaller, D.
2016-12-01
Simultaneous estimation of source positions, Earth orientation parameters (EOPs) and station positions in one common adjustment is crucial for a consistent generation of celestial and terrestrial reference frame (CRF and TRF, respectively). VLBI is the only technique to guarantee this consistency. Previous publications showed that the VLBI intra-technique combination could improve the quality of the EOPs and station coordinates compared to the individual contributions. By now, the combination of EOP and station coordinates is well established within the IVS and in combination with other space geodetic techniques (e.g. inter-technique combined TRF like the ITRF). Most of the contributing IVS Analysis Centers (AC) now provide source positions as a third parameter type (besides EOP and station coordinates), which have not been used for an operational combined solution yet. A strategy for the combination of source positions has been developed and integrated into the routine IVS combination. Investigations are carried out to compare the source positions derived from different IVS ACs with the combined estimates to verify whether the source positions are improved by the combination, as it has been proven for EOP and station coordinates. Furthermore, global solutions of source positions, i.e., so-called catalogues describing a CRF, are generated consistently with the TRF similar to the IVS operational combined quarterly solution. The combined solutions of the source positions time series and the consistently generated TRF and CRF are compared internally to the individual solutions of the ACs as well as to external CRF catalogues and TRFs. Additionally, comparisons of EOPs based on different CRF solutions are presented as an outlook for consistent EOP, CRF and TRF realizations.
Adaptive control of space-based robot manipulators
NASA Technical Reports Server (NTRS)
Walker, Michael W.; Wee, Liang-Boon
1991-01-01
A control method is presented that achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. The 15-DOF system dynamics are divided into two components: a 9-DOF invertible portion and 6-DOF noninvertible portion. A controller is then designed to achieve trajectory tracking of the invertible portion of the system, which consists of the manipulator-joint positions and the orientation of the base. The motion of the noninvertible portion is bounded but otherwise unspecified. This portion of the system consists of the position of the robot's base and the position of the reaction wheels. A simulation is presented to demonstrate the effectiveness of the controller. A quadratic polynomial is used to generate the desired trajectory to illustrate the trajectory-tracking capability of the controller.
Adhesives for bonding RSI tile to GrPI structure for advanced space transportation systems
NASA Technical Reports Server (NTRS)
Smith, K. E.; Hamermesh, C. L.; Hogenson, P. A.
1979-01-01
A system was developed for bonding RSI tiles to a graphite/polymide composite substrate which would withstand the full range of environmental conditions. The bonding system, designated RA59, consists of a mixture of glass (sesquisiloxane) resin in RTV 560 silicone. A significant number of data points for the RA59 are in the 65-psi failure range both when tested, and after exposure to 700 F. This is over two times the best shear and tensile values obtained with RV60 at this temperature. It is concluded that with a thorough understanding of the critical parameters involved, the higher values should be obtained consistently with the RA59. This is of particular significance if higher strength tiles were to be used in a hard-bonded configuration.
NASA Astrophysics Data System (ADS)
Arp, Trevor; Pleskot, Dennis; Gabor, Nathaniel
We have developed a new photoresponse imaging technique that utilizes extensive data acquisition over a large parameter space. By acquiring a multi-dimensional data set, we fully capture the intrinsic optoelectronic response of two-dimensional heterostructure devices. Using this technique we have investigated the behavior of heterostructures consisting of molybdenum ditelluride (MoTe2) sandwiched between graphene top and bottom contacts. Under near-infrared optical excitation, the ultra-thin heterostructure devices exhibit sub-linear photocurrent response that recovers within several dozen picoseconds. As the optical power increases, the dynamics of the photoresponse, consistent with 3-body annihilation, precede a sudden suppression of photocurrent. The observed dynamics near the threshold to photocurrent suppression may indicate the onset to a strongly interacting population of electrons and holes.
NASA Astrophysics Data System (ADS)
Wells, J. R.; Kim, J. B.
2011-12-01
Parameters in dynamic global vegetation models (DGVMs) are thought to be weakly constrained and can be a significant source of errors and uncertainties. DGVMs use between 5 and 26 plant functional types (PFTs) to represent the average plant life form in each simulated plot, and each PFT typically has a dozen or more parameters that define the way it uses resource and responds to the simulated growing environment. Sensitivity analysis explores how varying parameters affects the output, but does not do a full exploration of the parameter solution space. The solution space for DGVM parameter values are thought to be complex and non-linear; and multiple sets of acceptable parameters may exist. In published studies, PFT parameters are estimated from published literature, and often a parameter value is estimated from a single published value. Further, the parameters are "tuned" using somewhat arbitrary, "trial-and-error" methods. BIOMAP is a new DGVM created by fusing MAPSS biogeography model with Biome-BGC. It represents the vegetation of North America using 26 PFTs. We are using simulated annealing, a global search method, to systematically and objectively explore the solution space for the BIOMAP PFTs and system parameters important for plant water use. We defined the boundaries of the solution space by obtaining maximum and minimum values from published literature, and where those were not available, using +/-20% of current values. We used stratified random sampling to select a set of grid cells representing the vegetation of the conterminous USA. Simulated annealing algorithm is applied to the parameters for spin-up and a transient run during the historical period 1961-1990. A set of parameter values is considered acceptable if the associated simulation run produces a modern potential vegetation distribution map that is as accurate as one produced by trial-and-error calibration. We expect to confirm that the solution space is non-linear and complex, and that multiple acceptable parameter sets exist. Further we expect to demonstrate that the multiple parameter sets produce significantly divergent future forecasts in NEP, C storage, and ET and runoff; and thereby identify a highly important source of DGVM uncertainty
LDEF materials: An overview of the interim findings
NASA Technical Reports Server (NTRS)
Stein, Bland A.
1992-01-01
The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effect (SEE) on materials that are unparalleled in the history of the U.S. space program. The 5.8-year flight of LDEF greatly enhanced the potential value of materials data from LDEF to the international SEE community, compared to that of the original 1-year flight plan. The remarkable flight attitude stability of LDEF enables specific analyses of various individual and combined effects of LEO environmental parameters on identical materials of the same space vehicle. NASA recognized the potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) to address the greatly expanded materials and LEO space environment parameter analysis opportunities available in the LDEF structure, experiment trays, and corollary measurements, so that the combined value of all LDEF materials data to current and future space missions will be assessed and documented. This paper provides an overview of the interim LDEF materials findings of the Principal Investigators and the Materials Special Investigation Group. These revelations are based on observations of LEO environmental effects on materials made in-space during LDEF retrieval and during LDEF tray deintegration at the Kennedy Space Center, and on findings of approximately 1.5 years of laboratory analyses of LDEF materials by the LDEF materials scientists. These findings were extensively reviewed and discussed at the MSIG-sponsored LDEF Materials Workshop '91. The results are presented in a format which categorizes the revelations as 'clear findings' or 'confusing/unexplained findings' and resultant needs for new space materials developments and ground simulation testing/analytical modeling in seven categories: environmental parameters and data bases; LDEF contamination; thermal control coatings and protective treatments; polymers and films; polymer-matrix composites; metals, ceramics, and optical materials; and systems-related materials. General outlines of findings of the other LDEF Special Investigation Groups (Ionizing Radiation, Meteoroid and Debris, and Systems) are also included. The utilization of LDEF materials data for future low-earth orbit missions is also discussed, concentrating on Space Station Freedom. Some directions for continuing studies of LDEF materials are outlined. In general, the LDEF data is remarkable consistent; LDEF will provide a 'benchmark' for materials design data bases for satellites in low-Earth orbit. Some materials were identified to be encouragingly resistant to LEO SEE for 5.8-years; other 'space qualified' materials displayed significant environmental degradation. Molecular contamination was widespread; LDEF offers an unprecedented opportunity to provide a unified perspective of unmanned LEO spacecraft contamination mechanisms. New material development requirements for long-term LEO missions have been identified and current ground simulation testing methods/data for new, durable materials concepts can be validated with LDEF results. LDEF findings are already being integrated into the design of Space Station Freedom.
14 CFR § 1214.117 - Launch and orbit parameters for a standard launch.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flights: (1) Launch from Kennedy Space Center (KSC) into the customer's choice of two standard mission... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Launch and orbit parameters for a standard launch. § 1214.117 Section § 1214.117 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE...
NASA Astrophysics Data System (ADS)
Yoon, Mijin; Jee, Myungkook James; Tyson, Tony
2018-01-01
The Deep Lens Survey (DLS), a precursor to the Large Synoptic Survey Telescope (LSST), is a 20 sq. deg survey carried out with NOAO’s Blanco and Mayall telescopes. The strength of the survey lies in its depth reaching down to ~27th mag in BVRz bands. This enables a broad redshift baseline study and allows us to investigate cosmological evolution of the large-scale structure. In this poster, we present the first cosmological analysis from the DLS using galaxy-shear correlations and galaxy clustering signals. Our DLS shear calibration accuracy has been validated through the most recent public weak-lensing data challenge. Photometric redshift systematic errors are tested by performing lens-source flip tests. Instead of real-space correlations, we reconstruct band-limited power spectra for cosmological parameter constraints. Our analysis puts a tight constraint on the matter density and the power spectrum normalization parameters. Our results are highly consistent with our previous cosmic shear analysis and also with the Planck CMB results.
NASA Astrophysics Data System (ADS)
D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice
2018-05-01
In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.
Metric Calibration of a Focused Plenoptic Camera Based on a 3d Calibration Target
NASA Astrophysics Data System (ADS)
Zeller, N.; Noury, C. A.; Quint, F.; Teulière, C.; Stilla, U.; Dhome, M.
2016-06-01
In this paper we present a new calibration approach for focused plenoptic cameras. We derive a new mathematical projection model of a focused plenoptic camera which considers lateral as well as depth distortion. Therefore, we derive a new depth distortion model directly from the theory of depth estimation in a focused plenoptic camera. In total the model consists of five intrinsic parameters, the parameters for radial and tangential distortion in the image plane and two new depth distortion parameters. In the proposed calibration we perform a complete bundle adjustment based on a 3D calibration target. The residual of our optimization approach is three dimensional, where the depth residual is defined by a scaled version of the inverse virtual depth difference and thus conforms well to the measured data. Our method is evaluated based on different camera setups and shows good accuracy. For a better characterization of our approach we evaluate the accuracy of virtual image points projected back to 3D space.
NASA Astrophysics Data System (ADS)
Harigaya, Keisuke; Nomura, Yasunori
2016-08-01
An interesting possibility for dark matter is a scalar particle of mass of order 10 MeV-1 GeV, interacting with a U (1 ) gauge boson (dark photon) which mixes with the photon. We present a simple and natural model realizing this possibility. The dark matter arises as a composite pseudo-Nambu-Goldstone boson (dark pion) in a non-Abelian gauge sector, which also gives a mass to the dark photon. For a fixed non-Abelian gauge group, S U (N ) , and a U (1 ) charge of the constituent dark quarks, the model has only three free parameters: the dynamical scale of the non-Abelian gauge theory, the gauge coupling of the dark photon, and the mixing parameter between the dark and standard model photons. In particular, the gauge symmetry of the model does not allow any mass term for the dark quarks, and the stability of the dark pion is understood as a result of an accidental global symmetry. The model has a significant parameter space in which thermal relic dark pions comprise all of the dark matter, consistently with all experimental and cosmological constraints. In a corner of the parameter space, the discrepancy of the muon g -2 between experiments and the standard model prediction can also be ameliorated due to a loop contribution of the dark photon. Smoking-gun signatures of the model include a monophoton signal from the e+e- collision into a photon and a "dark rho meson." Observation of two processes in e+e- collision—the mode into the dark photon and that into the dark rho meson—would provide strong evidence for the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillman, Y.; Prialnik, D.; Kovetz, A.
Can a white dwarf (WD), accreting hydrogen-rich matter from a non-degenerate companion star, ever exceed the Chandrasekhar mass and explode as a SN Ia? We explore the range of accretion rates that allow a WD to secularly grow in mass, and derive limits on the accretion rate and on the initial mass that will allow it to reach 1.4M{sub ⊙}—the Chandrasekhar mass. We follow the evolution through a long series of hydrogen flashes, during which a thick helium shell accumulates. This determines the effective helium mass accretion rate for long-term, self-consistent evolutionary runs with helium flashes. We find that netmore » mass accumulation always occurs despite helium flashes. Although the amount of mass lost during the first few helium shell flashes is a significant fraction of that accumulated prior to the flash, that fraction decreases with repeated helium shell flashes. Eventually no mass is ejected at all during subsequent flashes. This unexpected result occurs because of continual heating of the WD interior by the helium shell flashes near its surface. The effect of heating is to lower the electron degeneracy throughout the WD, especially in the outer layers. This key result yields helium burning that is quasi-steady state, instead of explosive. We thus find a remarkably large parameter space within which long-term, self-consistent simulations show that a WD can grow in mass and reach the Chandrasekhar limit, despite its helium flashes.« less
Consistent realization of Celestial and Terrestrial Reference Frames
NASA Astrophysics Data System (ADS)
Kwak, Younghee; Bloßfeld, Mathis; Schmid, Ralf; Angermann, Detlef; Gerstl, Michael; Seitz, Manuela
2018-03-01
The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005-2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of Δ UT1 results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several μas. Moreover, the CRF is influenced by up to 50 μas if the station coordinates and EOP are dominated by the satellite techniques.
SLS-SPEC-159 Cross-Program Design Specification for Natural Environments (DSNE) Revision E
NASA Technical Reports Server (NTRS)
Roberts, Barry C.
2017-01-01
The DSNE completes environment-related specifications for architecture, system-level, and lower-tier documents by specifying the ranges of environmental conditions that must be accounted for by NASA ESD Programs. To assure clarity and consistency, and to prevent requirements documents from becoming cluttered with extensive amounts of technical material, natural environment specifications have been compiled into this document. The intent is to keep a unified specification for natural environments that each Program calls out for appropriate application. This document defines the natural environments parameter limits (maximum and minimum values, energy spectra, or precise model inputs, assumptions, model options, etc.), for all ESD Programs. These environments are developed by the NASA Marshall Space Flight Center (MSFC) Natural Environments Branch (MSFC organization code: EV44). Many of the parameter limits are based on experience with previous programs, such as the Space Shuttle Program. The parameter limits contain no margin and are meant to be evaluated individually to ensure they are reasonable (i.e., do not apply unrealistic extreme-on-extreme conditions). The natural environments specifications in this document should be accounted for by robust design of the flight vehicle and support systems. However, it is understood that in some cases the Programs will find it more effective to account for portions of the environment ranges by operational mitigation or acceptance of risk in accordance with an appropriate program risk management plan and/or hazard analysis process. The DSNE is not intended as a definition of operational models or operational constraints, nor is it adequate, alone, for ground facilities which may have additional requirements (for example, building codes and local environmental constraints). "Natural environments," as the term is used here, refers to the environments that are not the result of intended human activity or intervention. It consists of a variety of external environmental factors (most of natural origin and a few of human origin) which impose restrictions or otherwise impact the development or operation of flight vehicles and destination surface systems.
Saa, Pedro; Nielsen, Lars K.
2015-01-01
Kinetic models provide the means to understand and predict the dynamic behaviour of enzymes upon different perturbations. Despite their obvious advantages, classical parameterizations require large amounts of data to fit their parameters. Particularly, enzymes displaying complex reaction and regulatory (allosteric) mechanisms require a great number of parameters and are therefore often represented by approximate formulae, thereby facilitating the fitting but ignoring many real kinetic behaviours. Here, we show that full exploration of the plausible kinetic space for any enzyme can be achieved using sampling strategies provided a thermodynamically feasible parameterization is used. To this end, we developed a General Reaction Assembly and Sampling Platform (GRASP) capable of consistently parameterizing and sampling accurate kinetic models using minimal reference data. The former integrates the generalized MWC model and the elementary reaction formalism. By formulating the appropriate thermodynamic constraints, our framework enables parameterization of any oligomeric enzyme kinetics without sacrificing complexity or using simplifying assumptions. This thermodynamically safe parameterization relies on the definition of a reference state upon which feasible parameter sets can be efficiently sampled. Uniform sampling of the kinetics space enabled dissecting enzyme catalysis and revealing the impact of thermodynamics on reaction kinetics. Our analysis distinguished three reaction elasticity regions for common biochemical reactions: a steep linear region (0> ΔGr >-2 kJ/mol), a transition region (-2> ΔGr >-20 kJ/mol) and a constant elasticity region (ΔGr <-20 kJ/mol). We also applied this framework to model more complex kinetic behaviours such as the monomeric cooperativity of the mammalian glucokinase and the ultrasensitive response of the phosphoenolpyruvate carboxylase of Escherichia coli. In both cases, our approach described appropriately not only the kinetic behaviour of these enzymes, but it also provided insights about the particular features underpinning the observed kinetics. Overall, this framework will enable systematic parameterization and sampling of enzymatic reactions. PMID:25874556
NASA Astrophysics Data System (ADS)
Burmeister, Soenke; Berger, Thomas; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Kortmann, Onno; Labrenz, Johannes; Reitz, Guenther
Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the DLR experiment DOSIS (Dose Distribution Inside the ISS) was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists in a first part of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory. The second part are two active radiation detectors (DOSTELs) with a DDPU (DOSIS Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module (EPM) inside COLUMBUS. After the successful installation the active part has been activated on the 18th July 2009. Each of the DOSTEL units consists of two 6.93 cm PIPS silicon detectors forming a telescope with an opening angle of 120. The two DOSTELs are mounted with their telescope axis perpendicular to each other to investigate anisotropies of the radiation field inside the COLUMBUS module especially during the passes through the South Atlantic Anomaly (SAA) and during Solar Particle Events (SPEs). The data from the DOSTEL units are transferred to ground via the EPM rack which is activated approximately every four weeks for this action. The first data downlink was performed on July 31st 2009. First Results for the DOSTEL measurements such as count rate profiles, dose rates and LET spectra will be presented in comparison to the data obtained by other experiments.
Dark Matter in B – L supersymmetric Standard Model with inverse seesaw
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdallah, W.; Khalil, S., E-mail: awaleed@sci.cu.edu.eg, E-mail: s.khalil@zewailcity.edu.eg
We show that the B – L Supersymmetric Standard Model with Inverse Seesaw (BLSSMIS) provides new Dark Matter (DM) candidates (lightest right-handed sneutrino and lightest B – L neutralino) with mass of order few hundreds GeV, while most of other SUSY spectrum can be quite heavy, consistently with the current Large Hadron Collider (LHC) constraints. We emphasize that the thermal relic abundance and direct detection experiments via relic neutralino scattering with nuclei impose stringent constraints on the B – L neutralinos. These constraints can be satisfied by few points in the parameter space where the B – L lightest neutralinomore » is higgsino-like, which cannot explain the observed Galactic Center (GC) gamma-ray excess measured by Fermi-LAT. The lightest right-handed sneutrino DM is analysed. We show that for a wide region of parameter space the lightest right-handed sneutrino, with mass between 80 GeV and 1.2 TeV, can satisfy the limits of the relic abundance and the scattering cross section with nuclei. We also show that the lightest right-handed sneutrino with mass O(100) GeV can account for the observed GC gamma-ray results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashikawa, Yuji; Uchimura, Hiromasa; Fujimoto, Zui
2007-06-01
The NAD(P)H:ferredoxin oxidoreductase in carbazole 1,9a-dioxygenase from Janthinobacterium sp. J3 was crystallized and diffraction data were collected to 2.60 Å resolution. Carbazole 1,9a-dioxygenase (CARDO), which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. CARDO-R was crystallized at 277 K using the hanging-drop vapour-diffusion method with the precipitant PEG 8000. Two crystal types (types I and II) were obtained. The type I crystal diffracted to a maximum resolution of 2.80 Å and belonged to space group P4{sub 2}2{sub 1}2, with unit-cell parameters amore » = b = 158.7, c = 81.4 Å. The type II crystal was obtained in drops from which type I crystals had been removed; it diffracted to 2.60 Å resolution and belonged to the same space group, with unit-cell parameters a = b = 161.8, c = 79.5 Å.« less
NASA Astrophysics Data System (ADS)
Belyaev, Alexander; Cacciapaglia, Giacomo; Ivanov, Igor P.; Rojas-Abatte, Felipe; Thomas, Marc
2018-02-01
The inert two-Higgs-doublet model (i2HDM) is a theoretically well-motivated example of a minimal consistent dark matter (DM) model which provides monojet, mono-Z , mono-Higgs, and vector-boson-fusion +ETmiss signatures at the LHC, complemented by signals in direct and indirect DM search experiments. In this paper we have performed a detailed analysis of the constraints in the full five-dimensional parameter space of the i2HDM, coming from perturbativity, unitarity, electroweak precision data, Higgs data from the LHC, DM relic density, direct/indirect DM detection, and LHC monojet analysis, as well as implications of experimental LHC studies on disappearing charged tracks relevant to a high DM mass region. We demonstrate the complementarity of the above constraints and present projections for future LHC data and direct DM detection experiments to probe further i2HDM parameter space. The model is implemented into the CalcHEP and micrOMEGAs packages, which are publicly available at the HEPMDB database, and it is ready for a further exploration in the context of the LHC, relic density, and DM direct detection.
Thermal dark matter through the Dirac neutrino portal
NASA Astrophysics Data System (ADS)
Batell, Brian; Han, Tao; McKeen, David; Haghi, Barmak Shams Es
2018-04-01
We study a simple model of thermal dark matter annihilating to standard model neutrinos via the neutrino portal. A (pseudo-)Dirac sterile neutrino serves as a mediator between the visible and the dark sectors, while an approximate lepton number symmetry allows for a large neutrino Yukawa coupling and, in turn, efficient dark matter annihilation. The dark sector consists of two particles, a Dirac fermion and complex scalar, charged under a symmetry that ensures the stability of the dark matter. A generic prediction of the model is a sterile neutrino with a large active-sterile mixing angle that decays primarily invisibly. We derive existing constraints and future projections from direct detection experiments, colliders, rare meson and tau decays, electroweak precision tests, and small scale structure observations. Along with these phenomenological tests, we investigate the consequences of perturbativity and scalar mass fine tuning on the model parameter space. A simple, conservative scheme to confront the various tests with the thermal relic target is outlined, and we demonstrate that much of the cosmologically-motivated parameter space is already constrained. We also identify new probes of this scenario such as multibody kaon decays and Drell-Yan production of W bosons at the LHC.
Dark forces in the sky: signals from Z{sup ′} and the dark Higgs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Nicole F.; Cai, Yi; Leane, Rebecca K.
2016-08-01
We consider the indirect detection signals for a self-consistent hidden U(1) model containing a Majorana dark matter candidate, χ, a dark gauge boson, Z{sup ′}, and a dark Higgs, s. Compared with a model containing only a dark matter candidate and Z{sup ′} mediator, the addition of the scalar provides a mass generation mechanism for the dark sector particles and is required in order to avoid unitarity violation at high energies. We find that the inclusion of the two mediators opens up a new two-body s-wave annihilation channel, χχ→sZ{sup ′}. This new process, which is missed in the usual single-mediatormore » simplified model approach, can be the dominant annihilation channel. This provides rich phenomenology for indirect detection searches, allows indirect searches to explore regions of parameter space not accessible with other commonly considered s-wave annihilation processes, and enables both the Z{sup ′} and scalar couplings to be probed. We examine the phenomenology of the sector with a focus on this new process, and determine the limits on the model parameter space from Fermi data on dwarf spheriodal galaxies and other relevant experiments.« less
One-month validation of the Space Weather Modeling Framework geospace model
NASA Astrophysics Data System (ADS)
Haiducek, J. D.; Welling, D. T.; Ganushkina, N. Y.; Morley, S.; Ozturk, D. S.
2017-12-01
The Space Weather Modeling Framework (SWMF) geospace model consists of a magnetohydrodynamic (MHD) simulation coupled to an inner magnetosphere model and an ionosphere model. This provides a predictive capability for magnetopsheric dynamics, including ground-based and space-based magnetic fields, geomagnetic indices, currents and densities throughout the magnetosphere, cross-polar cap potential, and magnetopause and bow shock locations. The only inputs are solar wind parameters and F10.7 radio flux. We have conducted a rigorous validation effort consisting of a continuous simulation covering the month of January, 2005 using three different model configurations. This provides a relatively large dataset for assessment of the model's predictive capabilities. We find that the model does an excellent job of predicting the Sym-H index, and performs well at predicting Kp and CPCP during active times. Dayside magnetopause and bow shock positions are also well predicted. The model tends to over-predict Kp and CPCP during quiet times and under-predicts the magnitude of AL during disturbances. The model under-predicts the magnitude of night-side geosynchronous Bz, and over-predicts the radial distance to the flank magnetopause and bow shock. This suggests that the model over-predicts stretching of the magnetotail and the overall size of the magnetotail. With the exception of the AL index and the nightside geosynchronous magnetic field, we find the results to be insensitive to grid resolution.
Numerical investigation of a laser gun injector at CEBAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byung Yunn; Charles Sinclair; David Neuffer
1993-08-23
A laser gun injector is being developed based on the superconducting rf technologies established at CEBAF. This injector will serve as a high charge cw source for a high power free electron laser. It consists of a dc laser gun, a buncher, a cryounit and a chicane. Its space-charge-dominated performance has been thoroughly investigated using the time-consuming but more appropriate point-by-point space charge calculation method in PARMELA. The notion of ``conditioning for final bunching'' will be introduced. This concept has been built into the code and has greatly facilitated the optimization of the whole system to achieve the highest possiblemore » peak current while maintaining low emittance and low energy spread. Extensive parameter variation studies have shown that the design will perform better than the specifications.« less
Choi, U Hyeok; Park, Ji Hun; Kim, Jaekyun
2018-06-21
Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.
Forecasts of non-Gaussian parameter spaces using Box-Cox transformations
NASA Astrophysics Data System (ADS)
Joachimi, B.; Taylor, A. N.
2011-09-01
Forecasts of statistical constraints on model parameters using the Fisher matrix abound in many fields of astrophysics. The Fisher matrix formalism involves the assumption of Gaussianity in parameter space and hence fails to predict complex features of posterior probability distributions. Combining the standard Fisher matrix with Box-Cox transformations, we propose a novel method that accurately predicts arbitrary posterior shapes. The Box-Cox transformations are applied to parameter space to render it approximately multivariate Gaussian, performing the Fisher matrix calculation on the transformed parameters. We demonstrate that, after the Box-Cox parameters have been determined from an initial likelihood evaluation, the method correctly predicts changes in the posterior when varying various parameters of the experimental setup and the data analysis, with marginally higher computational cost than a standard Fisher matrix calculation. We apply the Box-Cox-Fisher formalism to forecast cosmological parameter constraints by future weak gravitational lensing surveys. The characteristic non-linear degeneracy between matter density parameter and normalization of matter density fluctuations is reproduced for several cases, and the capabilities of breaking this degeneracy by weak-lensing three-point statistics is investigated. Possible applications of Box-Cox transformations of posterior distributions are discussed, including the prospects for performing statistical data analysis steps in the transformed Gaussianized parameter space.
Sensitivity of Dynamical Systems to Banach Space Parameters
2005-02-13
We consider general nonlinear dynamical systems in a Banach space with dependence on parameters in a second Banach space. An abstract theoretical ... framework for sensitivity equations is developed. An application to measure dependent delay differential systems arising in a class of HIV models is presented.
Tethered Satellites as Enabling Platforms for an Operational Space Weather Monitoring System
NASA Technical Reports Server (NTRS)
Krause, L. Habash; Gilchrist, B. E.; Bilen, S.; Owens, J.; Voronka, N.; Furhop, K.
2013-01-01
Space weather nowcasting and forecasting models require assimilation of near-real time (NRT) space environment data to improve the precision and accuracy of operational products. Typically, these models begin with a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g. via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative physics-based forward-prediction calculations. The issue of required space weather observatories to meet the spatial and temporal requirements of these models is a complex one, and we do not address that with this poster. Instead, we present some examples of how tethered satellites can be used to address the shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include very long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements will be presented for each space weather parameter considered in this study.
NASA Astrophysics Data System (ADS)
Kang, Jai Young
2005-12-01
The objectives of this study are to perform extensive analysis on internal mass motion for a wider parameter space and to provide suitable design criteria for a broader applicability for the class of spinning space vehicles. In order to examine the stability criterion determined by a perturbation method, some numerical simulations will be performed and compared at various parameter points. In this paper, Ince-Strutt diagram for determination of stable-unstable regions of the internal mass motion of the spinning thrusting space vehicle in terms of design parameters will be obtained by an analytical method. Also, phase trajectories of the motion will be obtained for various parameter values and their characteristics are compared.
On Gravitational Effects in the Schrödinger Equation
NASA Astrophysics Data System (ADS)
Pollock, M. D.
2014-04-01
The Schrödinger equation for a particle of rest mass and electrical charge interacting with a four-vector potential can be derived as the non-relativistic limit of the Klein-Gordon equation for the wave function , where and , or equivalently from the one-dimensional action for the corresponding point particle in the semi-classical approximation , both methods yielding the equation in Minkowski space-time , where and . We show that these two methods generally yield equations that differ in a curved background space-time , although they coincide when if is replaced by the effective mass in both the Klein-Gordon action and , allowing for non-minimal coupling to the gravitational field, where is the Ricci scalar and is a constant. In this case , where and , the correctness of the gravitational contribution to the potential having been verified to linear order in the thermal-neutron beam interferometry experiment due to Colella et al. Setting and regarding as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space-time. Conservation of probability and electrical current requires both electromagnetic gauge and space-time coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div, where and . The quantum-cosmological Schrödinger (Wheeler-DeWitt) equation is also discussed in the -dimensional mini-superspace idealization, with particular regard to the vacuum potential and the characteristics of the ground state, assuming a gravitational Lagrangian which contains higher-derivative terms up to order . For the heterotic superstring theory , consists of an infinite series in , where is the Regge slope parameter, and in the perturbative approximation , is positive semi-definite for . The maximally symmetric ground state satisfying the field equations is Minkowski space for and anti-de Sitter space for.
Calculations of the conditions for bunch leakage in the Los Alamos proton storage ring
NASA Astrophysics Data System (ADS)
Neuffer, D.; Ohmori, C.
1994-04-01
Observations are consistent with the possibility of an "ep" instability in the Los Alamos Proton Storage Ring (PSR) with both bunched and unbunched beam. The instability requires electrons to be trapped within the beam, and calculations have shown that such trapping requires leakage of beam into the interbunch gap. Observationally, leakage of beam into the gap appears necessary for the onset of the instability. In this paper we present results of studies of the longitudinal beam dynamics at PSR parameters. The studies indicate that the combined effects of the rf buncher, longitudinal space charge, and injection mismatch are sufficient to cause the observed bunch leakage. Simulation results are presented and compared with PSR observations. Variations of PSR performance parameters are considered, and methods of improving bunch confinement are suggested and studied.
Positive signs in massive gravity
Cheung, Clifford; Remmen, Grant N.
2016-04-01
Here, we derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. Furthermore, the high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small islandmore » in the parameter space of ghost-free massive gravity. And while the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.« less
Addendum to "Colored-noise-induced discontinuous transitions in symbiotic ecosystems".
Sauga, Ako; Mankin, Romi
2005-06-01
A symbiotic ecosystem with Gompertz self-regulation and with adaptive competition between populations is studied by means of a N-species Lotka-Volterra stochastic model. The influence of fluctuating environment on the carrying capacity of a population is modeled as a dichotomous noise. The study is a follow up of previous investigations of symbiotic ecosystems subjected to the generalized Verhulst self-regulation [Phys. Rev. E 69, 061106 (2004); 65, 051108 (2002)]. In the framework of mean-field approximation the behavior of the solutions of the self-consistency equation for a stationary system is examined analytically in the full phase space of system parameters. Depending on the mutual interplay of symbiosis and competition of species, variation of noise parameters (amplitude, correlation time) can induce doubly unidirectional discontinuous transitions as well as single unidirectional discontinuous transitions of the mean population size.
Addendum to ``Colored-noise-induced discontinuous transitions in symbiotic ecosystems''
NASA Astrophysics Data System (ADS)
Sauga, Ako; Mankin, Romi
2005-06-01
A symbiotic ecosystem with Gompertz self-regulation and with adaptive competition between populations is studied by means of a N -species Lotka-Volterra stochastic model. The influence of fluctuating environment on the carrying capacity of a population is modeled as a dichotomous noise. The study is a follow up of previous investigations of symbiotic ecosystems subjected to the generalized Verhulst self-regulation [Phys. Rev. E 69, 061106 (2004); 65, 051108 (2002)]. In the framework of mean-field approximation the behavior of the solutions of the self-consistency equation for a stationary system is examined analytically in the full phase space of system parameters. Depending on the mutual interplay of symbiosis and competition of species, variation of noise parameters (amplitude, correlation time) can induce doubly unidirectional discontinuous transitions as well as single unidirectional discontinuous transitions of the mean population size.
Identification of geostationary satellites using polarization data from unresolved images
NASA Astrophysics Data System (ADS)
Speicher, Andy
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight satellites were identical buses to determine if identical buses could be correctly differentiated. When Stokes parameters were plotted against time and solar phase angle, the data indicates that there were distinguishing features in S0 (total intensity) and S1 (linear polarization) that may lead to positive identification or classification of each satellite.
NASA Technical Reports Server (NTRS)
Wiese, D. N.; Nerem, R. S.; Lemoine, F. G.
2011-01-01
Future satellite missions dedicated to measuring time-variable gravity will need to address the concern of temporal aliasing errors; i.e., errors due to high-frequency mass variations. These errors have been shown to be a limiting error source for future missions with improved sensors. One method of reducing them is to fly multiple satellite pairs, thus increasing the sampling frequency of the mission. While one could imagine a system architecture consisting of dozens of satellite pairs, this paper explores the more economically feasible option of optimizing the orbits of two pairs of satellites. While the search space for this problem is infinite by nature, steps have been made to reduce it via proper assumptions regarding some parameters and a large number of numerical simulations exploring appropriate ranges for other parameters. A search space originally consisting of 15 variables is reduced to two variables with the utmost impact on mission performance: the repeat period of both pairs of satellites (shown to be near-optimal when they are equal to each other), as well as the inclination of one of the satellite pairs (the other pair is assumed to be in a polar orbit). To arrive at this conclusion, we assume circular orbits, repeat groundtracks for both pairs of satellites, a 100-km inter-satellite separation distance, and a minimum allowable operational satellite altitude of 290 km based on a projected 10-year mission lifetime. Given the scientific objectives of determining time-variable hydrology, ice mass variations, and ocean bottom pressure signals with higher spatial resolution, we find that an optimal architecture consists of a polar pair of satellites coupled with a pair inclined at 72deg, both in 13-day repeating orbits. This architecture provides a 67% reduction in error over one pair of satellites, in addition to reducing the longitudinal striping to such a level that minimal post-processing is required, permitting a substantial increase in the spatial resolution of the gravity field products. It should be emphasized that given different sets of scientific objectives for the mission, or a different minimum allowable satellite altitude, different architectures might be selected.
Charge Density Waves and the Hidden Nesting of Purple Bronze KMo6O17
NASA Astrophysics Data System (ADS)
Su, Lei; Pereira, Vitor
The layered purple bronze KMo6O17, with its robust triple CDW phase up to high temperatures, became the emblematic example of the ''hidden nesting'' concept. Recent experiments suggest that, on the surface layers, its CDW phase can be stabilized at much higher temperatures, and with a tenfold increase in the electronic gap in comparison with the bulk. Despite such interesting fermiology and properties, the K and Na purple bronzes remain largely unexplored systems, most particularly so at the theoretical level. We introduce the first multi-orbital effective tight-binding model to describe the effect of electron-electron interactions in this system. Upon fixing all the effective hopping parameters in the normal state against an ab-initio band structure, and with only the overall scale of the interactions as sole adjustable parameter, we find that a self-consistent Hartree-Fock solution reproduces extremely well the experimental behavior of the charge density wave (CDW) order parameter in the full range 0 < T < Tc , as well as the precise reciprocal space locations of the partial gap opening and Fermi arc development. The interaction strengths extracted from fitting to the experimental CDW gap are consistent with those derived from an independent Stoner-type analysis This work was supported by the Singapore National Research Foundation under Grant NRF-CRP6-2010-05.
Plate motions and deformations from geologic and geodetic data
NASA Technical Reports Server (NTRS)
Jordan, T. H.
1986-01-01
Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also used to provide constraints on deformation in the western U.S. using very long baseline interferometry observations over a two-year period.
Stroet, Martin; Koziara, Katarzyna B; Malde, Alpeshkumar K; Mark, Alan E
2017-12-12
A general method for parametrizing atomic interaction functions is presented. The method is based on an analysis of surfaces corresponding to the difference between calculated and target data as a function of alternative combinations of parameters (parameter space mapping). The consideration of surfaces in parameter space as opposed to local values or gradients leads to a better understanding of the relationships between the parameters being optimized and a given set of target data. This in turn enables for a range of target data from multiple molecules to be combined in a robust manner and for the optimal region of parameter space to be trivially identified. The effectiveness of the approach is illustrated by using the method to refine the chlorine 6-12 Lennard-Jones parameters against experimental solvation free enthalpies in water and hexane as well as the density and heat of vaporization of the liquid at atmospheric pressure for a set of 10 aromatic-chloro compounds simultaneously. Single-step perturbation is used to efficiently calculate solvation free enthalpies for a wide range of parameter combinations. The capacity of this approach to parametrize accurate and transferrable force fields is discussed.
On Markov parameters in system identification
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.
A Bayesian state-space formulation of dynamic occupancy models
Royle, J. Andrew; Kery, M.
2007-01-01
Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by nondetection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and Win BUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site-specific heterogeneity in model parameters. The results indicate relatively low turnover and a stable distribution of Cerulean Warblers which is in contrast to analyses of counts of individuals from the same survey that indicate important declines. This discrepancy illustrates the inertia in occupancy relative to actual abundance. Furthermore, the model reveals a declining patch survival probability, and increasing turnover, toward the edge of the range of the species, which is consistent with metapopulation perspectives on the genesis of range edges. Given detection/non-detection data, dynamic occupancy models as described here have considerable potential for the study of distributions and range dynamics.
Influence of Constraint in Parameter Space on Quantum Games
NASA Astrophysics Data System (ADS)
Zhao, Hai-Jun; Fang, Xi-Ming
2004-04-01
We study the influence of the constraint in the parameter space on quantum games. Decomposing SU(2) operator into product of three rotation operators and controlling one kind of them, we impose a constraint on the parameter space of the players' operator. We find that the constraint can provide a tuner to make the bilateral payoffs equal, so that the mismatch of the players' action at multi-equilibrium could be avoided. We also find that the game exhibits an intriguing structure as a function of the parameter of the controlled operators, which is useful for making game models.
Bouhrara, Mustapha; Spencer, Richard G.
2015-01-01
Myelin water fraction (MWF) mapping with magnetic resonance imaging has led to the ability to directly observe myelination and demyelination in both the developing brain and in disease. Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) has been proposed as a rapid approach for multicomponent relaxometry and has been applied to map MWF in human brain. However, even for the simplest two-pool signal model consisting of MWF and non-myelin-associated water, the dimensionality of the parameter space for obtaining MWF estimates remains high. This renders parameter estimation difficult, especially at low-to-moderate signal-to-noise ratios (SNR), due to the presence of local minima and the flatness of the fit residual energy surface used for parameter determination using conventional nonlinear least squares (NLLS)-based algorithms. In this study, we introduce three Bayesian approaches for analysis of the mcDESPOT signal model to determine MWF. Given the high dimensional nature of mcDESPOT signal model, and, thereby, the high dimensional marginalizations over nuisance parameters needed to derive the posterior probability distribution of MWF parameter, the introduced Bayesian analyses use different approaches to reduce the dimensionality of the parameter space. The first approach uses normalization by average signal amplitude, and assumes that noise can be accurately estimated from signal-free regions of the image. The second approach likewise uses average amplitude normalization, but incorporates a full treatment of noise as an unknown variable through marginalization. The third approach does not use amplitude normalization and incorporates marginalization over both noise and signal amplitude. Through extensive Monte Carlo numerical simulations and analysis of in-vivo human brain datasets exhibiting a range of SNR and spatial resolution, we demonstrated the markedly improved accuracy and precision in the estimation of MWF using these Bayesian methods as compared to the stochastic region contraction (SRC) implementation of NLLS. PMID:26499810
NASA Astrophysics Data System (ADS)
Nicholl, Matt; Guillochon, James; Berger, Edo
2017-11-01
We use the new Modular Open Source Fitter for Transients to model 38 hydrogen-poor superluminous supernovae (SLSNe). We fit their multicolor light curves with a magnetar spin-down model and present posterior distributions of magnetar and ejecta parameters. The color evolution can be fit with a simple absorbed blackbody. The medians (1σ ranges) for key parameters are spin period 2.4 ms (1.2-4 ms), magnetic field 0.8× {10}14 G (0.2{--}1.8× {10}14 G), ejecta mass 4.8 {M}⊙ (2.2-12.9 {M}⊙ ), and kinetic energy 3.9× {10}51 erg (1.9{--}9.8× {10}51 erg). This significantly narrows the parameter space compared to our uninformed priors, showing that although the magnetar model is flexible, the parameter space relevant to SLSNe is well constrained by existing data. The requirement that the instantaneous engine power is ˜1044 erg at the light-curve peak necessitates either large rotational energy (P < 2 ms), or more commonly that the spin-down and diffusion timescales be well matched. We find no evidence for separate populations of fast- and slow-declining SLSNe, which instead form a continuum in light-curve widths and inferred parameters. Variations in the spectra are explained through differences in spin-down power and photospheric radii at maximum light. We find no significant correlations between model parameters and host galaxy properties. Comparing our posteriors to stellar evolution models, we show that SLSNe require rapidly rotating (fastest 10%) massive stars (≳ 20 {M}⊙ ), which is consistent with their observed rate. High mass, low metallicity, and likely binary interaction all serve to maintain rapid rotation essential for magnetar formation. By reproducing the full set of light curves, our posteriors can inform photometric searches for SLSNe in future surveys.
Crystal growth and magnetic characterization of a tetragonal polymorph of NiNb2O6
NASA Astrophysics Data System (ADS)
Munsie, T. J. S.; Millington, A.; Dube, P. A.; Dabkowska, H. A.; Britten, J.; Luke, G. M.; Greedan, J. E.
2016-04-01
A previously unidentified polymorph of nickel niobate, NiNb2O6, was grown and stabilized in single crystalline form using an optical floating zone furnace. Key parameters of the growth procedure involved use of a slight excess of NiO (1.2% by mol), an O2 atmosphere and a growth rate of 25 mm/h. The resulting boule consisted of a polycrystalline exterior shell of the columbite structure - columbite is the thermodynamically stable form of NiNb2O6 under ambient conditions - and a core region consisting of transparent yellow-green single crystals up to 5 mm×2 mm×1 mm in dimension of the previously unidentified phase. The crystal structure, solved from single crystal x-ray diffraction data, is described in the P42/n space group. Interestingly, this is not a subgroup of P42/mnm, the rutile space group. The Ni2+ ions form layers which are displaced such that interlayer magnetic frustration is anticipated. Magnetic susceptibility data shows a broad maximum at approximately 22 K and evidence for long range antiferromagnetic order at approximately 14 K, obtained by Fisher heat capacity analysis as well as heat capacity measurements. The susceptibility data for T > 25 K are well fit by a square lattice S = 1 model, consistent with the Ni sublattice topology.
Linear and Nonlinear Time-Frequency Analysis for Parameter Estimation of Resident Space Objects
2017-02-22
AFRL-AFOSR-UK-TR-2017-0023 Linear and Nonlinear Time -Frequency Analysis for Parameter Estimation of Resident Space Objects Marco Martorella...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...Nonlinear Time -Frequency Analysis for Parameter Estimation of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0183 5c. PROGRAM
NASA Technical Reports Server (NTRS)
Myers, J. G.; Eke, Chika; Werner, C.; Nelson, E. S.; Mulugeta, L.; Feola, A.; Raykin, J.; Samuels, B.; Ethier, C. R.
2016-01-01
Space flight impacts human physiology in many ways, the most immediate being the marked cephalad (headward) shift of fluid upon introduction into the microgravity environment. This physiological response to microgravity points to the redistribution of blood and interstitial fluid as a major factor in the loss of venous tone and reduction in heart muscle efficiency which impact astronaut performance. In addition, researchers have hypothesized that a reduction in astronaut visual acuity, part of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, is associated with this redistribution of fluid. VIIP arises within several months of beginning space flight and includes a variety of ophthalmic changes including posterior globe flattening, distension of the optic nerve sheath, and kinking of the optic nerve. We utilize a suite of lumped parameter models to simulate microgravity-induced fluid redistribution in the cardiovascular, central nervous and ocular systems to provide initial and boundary data to a 3D finite element simulation of ocular biomechanics in VIIP. Specifically, the lumped parameter cardiovascular model acts as the primary means of establishing how microgravity, and the associated lack of hydrostatic gradient, impacts fluid redistribution. The cardiovascular model consists of 16 compartments, including three cerebrospinal fluid (CSF) compartments, three cranial blood compartments, and 10 thoracic and lower limb blood compartments. To assess the models capability to address variations in physiological parameters, we completed a formal uncertainty and sensitivity analysis that evaluated the relative importance of 42 input parameters required in the model on relative compartment flows and compartment pressures. Utilizing the model in a pulsatile flow configuration, the sensitivity analysis identified the ten parameters that most influenced each compartment pressure. Generally, each compartment responded appropriately to parameter variations associated with itself and adjacent compartments. However, several unexpected interactions between components, such as between the choroid plexus and the lower capillaries, were found, and are due to simplifications in the formulation of the model. The analysis illustrates that highly influential parameters and those that have unique influences within the model formulation must be tightly controlled for successful model application.
Reducing the Knowledge Tracing Space
ERIC Educational Resources Information Center
Ritter, Steven; Harris, Thomas K.; Nixon, Tristan; Dickison, Daniel; Murray, R. Charles; Towle, Brendon
2009-01-01
In Cognitive Tutors, student skill is represented by estimates of student knowledge on various knowledge components. The estimate for each knowledge component is based on a four-parameter model developed by Corbett and Anderson [Nb]. In this paper, we investigate the nature of the parameter space defined by these four parameters by modeling data…
Crystallization of isotactic polypropylene in different shear regimes
NASA Astrophysics Data System (ADS)
Spina, Roberto; Spekowius, Marcel; Hopmann, Christian
2017-10-01
The investigation of the shear-induced crystallization of isotactic polypropylene in isothermal conditions in different shear regimes is the aim of the present research. A multiscale framework is developed and implemented to compute the nucleation and growth of spherulites, based on material parameters needed to connect crystallization kinetics to the molecular material properties. The framework consists of a macro-model based on a Finite Element Method linked to a micro-model based on Cellular Automata. The main results are the evolution of the crystallization degree and spherulite space filling as a function of imposed temperature ash shear rate.
NASA Astrophysics Data System (ADS)
El-Bedwehy, N. A.; El-Attafi, M. A.; El-Labany, S. K.
2016-09-01
The properties of solitary waves in an unmagnetized, collisionless dusty plasma consisting of nonthermal ions, cold and hot dust grains and Maxwellian electrons have been investigated. Under a suitable coordinate transformation, the three-dimensional cylindrical Kadomtsev-Petviashvili (3D-CKP) equation is obtained. The effect of the nonthermal parameter, the negative charge number of hot and cold dust on the solitary properties are investigated. Furthermore, the solitary profile in the radial, axial, and polar angle coordinates with the time is examined. The present investigation may be applicable in space plasma such as F-ring of Saturn.
NASA Astrophysics Data System (ADS)
Guangfa, Gao; Yongchi, Li; Zheng, Jing; Shujie, Yuan
Fiber reinforced composite materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced glass fiber reinforced composite material, a series of experiments for measuring thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.
Pendini, Nicole R; Polyak, Steve W; Booker, Grant W; Wallace, John C; Wilce, Matthew C J
2008-06-01
Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 A resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P4(2)2(1)2, with unit-cell parameters a = b = 93.665, c = 131.95.
NΩ interaction from two approaches in lattice QCD
NASA Astrophysics Data System (ADS)
Etminan, Faisal; Firoozabadi, Mohammad Mehdi
2014-10-01
We compare the standard finite volume method by Lüscher with the potential method by HAL QCD collaboration, by calculating the ground state energy of N(nucleon)-Ω(Omega) system in 5 S2 channel. We employ 2+1 flavor full QCD configurations on a (1.9 fm)3×3.8 fm lattice at the lattice spacing a≃0.12 fm, whose ud(s) quark mass corresponds to mπ = 875(1) (mK = 916(1)) MeV. We have found that both methods give reasonably consistent results that there is one NΩ bound state at this parameter.
Optical trapping performance of dielectric-metallic patchy particles
Lawson, Joseph L.; Jenness, Nathan J.; Clark, Robert L.
2015-01-01
We demonstrate a series of simulation experiments examining the optical trapping behavior of composite micro-particles consisting of a small metallic patch on a spherical dielectric bead. A full parameter space of patch shapes, based on current state of the art manufacturing techniques, and optical properties of the metallic film stack is examined. Stable trapping locations and optical trap stiffness of these particles are determined based on the particle design and potential particle design optimizations are discussed. A final test is performed examining the ability to incorporate these composite particles with standard optical trap metrology technologies. PMID:26832054
Utility of an airframe referenced spatial auditory display for general aviation operations
NASA Astrophysics Data System (ADS)
Naqvi, M. Hassan; Wigdahl, Alan J.; Ranaudo, Richard J.
2009-05-01
The University of Tennessee Space Institute (UTSI) completed flight testing with an airframe-referenced localized audio cueing display. The purpose was to assess its affect on pilot performance, workload, and situational awareness in two scenarios simulating single-pilot general aviation operations under instrument meteorological conditions. Each scenario consisted of 12 test procedures conducted under simulated instrument meteorological conditions, half with the cue off, and half with the cue on. Simulated aircraft malfunctions were strategically inserted at critical times during each test procedure. Ten pilots participated in the study; half flew a moderate workload scenario consisting of point to point navigation and holding pattern operations and half flew a high workload scenario consisting of non precision approaches and missed approach procedures. Flight data consisted of aircraft and navigation state parameters, NASA Task Load Index (TLX) assessments, and post-flight questionnaires. With localized cues there was slightly better pilot technical performance, a reduction in workload, and a perceived improvement in situational awareness. Results indicate that an airframe-referenced auditory display has utility and pilot acceptance in general aviation operations.
A Time-dependent Heliospheric Model Driven by Empirical Boundary Conditions
NASA Astrophysics Data System (ADS)
Kim, T. K.; Arge, C. N.; Pogorelov, N. V.
2017-12-01
Consisting of charged particles originating from the Sun, the solar wind carries the Sun's energy and magnetic field outward through interplanetary space. The solar wind is the predominant source of space weather events, and modeling the solar wind propagation to Earth is a critical component of space weather research. Solar wind models are typically separated into coronal and heliospheric parts to account for the different physical processes and scales characterizing each region. Coronal models are often coupled with heliospheric models to propagate the solar wind out to Earth's orbit and beyond. The Wang-Sheeley-Arge (WSA) model is a semi-empirical coronal model consisting of a potential field source surface model and a current sheet model that takes synoptic magnetograms as input to estimate the magnetic field and solar wind speed at any distance above the coronal region. The current version of the WSA model takes the Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model as input to provide improved time-varying solutions for the ambient solar wind structure. When heliospheric MHD models are coupled with the WSA model, density and temperature at the inner boundary are treated as free parameters that are tuned to optimal values. For example, the WSA-ENLIL model prescribes density and temperature assuming momentum flux and thermal pressure balance across the inner boundary of the ENLIL heliospheric MHD model. We consider an alternative approach of prescribing density and temperature using empirical correlations derived from Ulysses and OMNI data. We use our own modeling software (Multi-scale Fluid-kinetic Simulation Suite) to drive a heliospheric MHD model with ADAPT-WSA input. The modeling results using the two different approaches of density and temperature prescription suggest that the use of empirical correlations may be a more straightforward, consistent method.
Determination of the Parameter Sets for the Best Performance of IPS-driven ENLIL Model
NASA Astrophysics Data System (ADS)
Yun, Jongyeon; Choi, Kyu-Cheol; Yi, Jonghyuk; Kim, Jaehun; Odstrcil, Dusan
2016-12-01
Interplanetary scintillation-driven (IPS-driven) ENLIL model was jointly developed by University of California, San Diego (UCSD) and National Aeronaucics and Space Administration/Goddard Space Flight Center (NASA/GSFC). The model has been in operation by Korean Space Weather Cetner (KSWC) since 2014. IPS-driven ENLIL model has a variety of ambient solar wind parameters and the results of the model depend on the combination of these parameters. We have conducted researches to determine the best combination of parameters to improve the performance of the IPS-driven ENLIL model. The model results with input of 1,440 combinations of parameters are compared with the Advanced Composition Explorer (ACE) observation data. In this way, the top 10 parameter sets showing best performance were determined. Finally, the characteristics of the parameter sets were analyzed and application of the results to IPS-driven ENLIL model was discussed.
NASA Technical Reports Server (NTRS)
Jones, L. D.
1979-01-01
The Space Environment Test Division Post-Test Data Reduction Program processes data from test history tapes generated on the Flexible Data System in the Space Environment Simulation Laboratory at the National Aeronautics and Space Administration/Lyndon B. Johnson Space Center. The program reads the tape's data base records to retrieve the item directory conversion file, the item capture file and the process link file to determine the active parameters. The desired parameter names are read in by lead cards after which the periodic data records are read to determine parameter data level changes. The data is considered to be compressed rather than full sample rate. Tabulations and/or a tape for generating plots may be output.
Tests of a Semi-Analytical Case 1 and Gelbstoff Case 2 SeaWiFS Algorithm with a Global Data Set
NASA Technical Reports Server (NTRS)
Carder, Kendall L.; Hawes, Steve K.; Lee, Zhongping
1997-01-01
A semi-analytical algorithm was tested with a total of 733 points of either unpackaged or packaged-pigment data, with corresponding algorithm parameters for each data type. The 'unpackaged' type consisted of data sets that were generally consistent with the Case 1 CZCS algorithm and other well calibrated data sets. The 'packaged' type consisted of data sets apparently containing somewhat more packaged pigments, requiring modification of the absorption parameters of the model consistent with the CalCOFI study area. This resulted in two equally divided data sets. A more thorough scrutiny of these and other data sets using a semianalytical model requires improved knowledge of the phytoplankton and gelbstoff of the specific environment studied. Since the semi-analytical algorithm is dependent upon 4 spectral channels including the 412 nm channel, while most other algorithms are not, a means of testing data sets for consistency was sought. A numerical filter was developed to classify data sets into the above classes. The filter uses reflectance ratios, which can be determined from space. The sensitivity of such numerical filters to measurement resulting from atmospheric correction and sensor noise errors requires further study. The semi-analytical algorithm performed superbly on each of the data sets after classification, resulting in RMS1 errors of 0.107 and 0.121, respectively, for the unpackaged and packaged data-set classes, with little bias and slopes near 1.0. In combination, the RMS1 performance was 0.114. While these numbers appear rather sterling, one must bear in mind what mis-classification does to the results. Using an average or compromise parameterization on the modified global data set yielded an RMS1 error of 0.171, while using the unpackaged parameterization on the global evaluation data set yielded an RMS1 error of 0.284. So, without classification, the algorithm performs better globally using the average parameters than it does using the unpackaged parameters. Finally, the effects of even more extreme pigment packaging must be examined in order to improve algorithm performance at high latitudes. Note, however, that the North Sea and Mississippi River plume studies contributed data to the packaged and unpackaged classess, respectively, with little effect on algorithm performance. This suggests that gelbstoff-rich Case 2 waters do not seriously degrade performance of the semi-analytical algorithm.
Suprachoroidal Drug Delivery to the Back of the Eye Using Hollow Microneedles
Patel, Samirkumar R.; Lin, Angela S. P.; Edelhauser, Henry F.
2011-01-01
Purpose In this work, we tested the hypothesis that microneedles provide a minimally invasive method to inject particles into the suprachoroidal space for drug delivery to the back of the eye. Methods A single, hollow microneedle was inserted into the sclera, and infused nanoparticle and microparticle suspensions into the suprachoroidal space. Experiments were performed on whole rabbit, pig, and human eyes ex vivo. Particle delivery was imaged using brightfield and fluorescence microscopy as well as microcomputed tomography. Results Microneedles were shown to deliver sulforhodamine B as well as nanoparticle and microparticle suspensions into the suprachoroidal space of rabbit, pig, and human eyes. Volumes up to 35 μL were administered consistently. Optimization of the delivery device parameters showed that microneedle length, pressure, and particle size played an important role in determining successful delivery into the suprachoroidal space. Needle lengths of 800–1,000 μm and applied pressures of 250–300 kPa provided most reliable delivery. Conclusions Microneedles were shown for the first time to deliver nanoparticle and microparticle suspensions into the suprachoroidal space of rabbit, pig and human eyes. This shows that microneedles may provide a minimally invasive method for controlled drug delivery to the back of the eye. PMID:20857178
NASA Astrophysics Data System (ADS)
Speicher, Andy; Matin, Mohammad; Tippets, Roger; Chun, Francis
2014-09-01
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. The objective of this study was to calibrate a system to exploit the optical signature of unresolved geosynchronous satellite images by collecting polarization data in the visible wavelengths for the purpose of revealing discriminating features. These features may lead to positive identification or classification of each satellite. The system was calibrated with an algorithm and process that takes raw observation data from a two-channel polarimeter and converts it to Stokes parameters S0 and S1. This instrumentation is a new asset for the United States Air Force Academy (USAFA) Department of Physics and consists of one 20-inch Ritchey-Chretien telescope and a dual focal plane system fed with a polarizing beam splitter. This study calibrated the system and collected preliminary polarization data on five geosynchronous satellites to validate performance. Preliminary data revealed that each of the five satellites had a different polarization signature that could potentially lead to identification in future studies.
NASA Astrophysics Data System (ADS)
Degenfeld-Schonburg, Peter; Navarrete-Benlloch, Carlos; Hartmann, Michael J.
2015-05-01
Nonlinear quantum optical systems are of paramount relevance for modern quantum technologies, as well as for the study of dissipative phase transitions. Their nonlinear nature makes their theoretical study very challenging and hence they have always served as great motivation to develop new techniques for the analysis of open quantum systems. We apply the recently developed self-consistent projection operator theory to the degenerate optical parametric oscillator to exemplify its general applicability to quantum optical systems. We show that this theory provides an efficient method to calculate the full quantum state of each mode with a high degree of accuracy, even at the critical point. It is equally successful in describing both the stationary limit and the dynamics, including regions of the parameter space where the numerical integration of the full problem is significantly less efficient. We further develop a Gaussian approach consistent with our theory, which yields sensibly better results than the previous Gaussian methods developed for this system, most notably standard linearization techniques.
NASA Astrophysics Data System (ADS)
Berg, Matthew; Hartley, Brian; Richters, Oliver
2015-01-01
By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotasidis, Fotis A., E-mail: Fotis.Kotasidis@unige.ch; Zaidi, Habib; Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva
2014-06-15
Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailedmore » investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function superposition and keeping the image representation error to a minimum, is feasible, with the parameter combination range depending upon the scanner's intrinsic resolution characteristics. Conclusions: Using the printed point source array as a MR compatible methodology for experimentally measuring the scanner's PSF, the system's spatially variant resolution properties were successfully evaluated in image space. Overall the PET subsystem exhibits excellent resolution characteristics mainly due to the fact that the raw data are not under-sampled/rebinned, enabling the spatial resolution to be dictated by the scanner's intrinsic resolution and the image reconstruction parameters. Due to the impact of these parameters on the resolution properties of the reconstructed images, the image space PSF varies both under spatial transformations and due to basis function parameter selection. Nonetheless, for a range of basis function parameters, the image space PSF remains unaffected, with the range depending on the scanner's intrinsic resolution properties.« less
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.
1992-01-01
This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).
Self-consistent Hartree-Fock RPA calculations in 208Pb
NASA Astrophysics Data System (ADS)
Taqi, Ali H.; Ali, Mohammed S.
2018-01-01
The nuclear structure of 208Pb is studied in the framework of the self-consistent random phase approximation (SCRPA). The Hartree-Fock mean field and single particle states are used to implement a completely SCRPA with Skyrme-type interactions. The Hamiltonian is diagonalised within a model space using five Skyrme parameter sets, namely LNS, SkI3, SkO, SkP and SLy4. In view of the huge number of the existing Skyrme-force parameterizations, the question remains which of them provide the best description of data. The approach attempts to accurately describe the structure of the spherical even-even nucleus 208Pb. To illustrate our approach, we compared the binding energy, charge density distribution, excitation energy levels scheme with the available experimental data. Moreover, we calculated isoscalar and isovector monopole, dipole, and quadrupole transition densities and strength functions.
Space Shuttle Pad Exposure Period Meteorological Parameters STS-1 Through STS-107
NASA Technical Reports Server (NTRS)
Overbey, B. G.; Roberts, B. C.
2005-01-01
During the 113 missions of the Space Transportation System (STS) to date, the Space Shuttle fleet has been exposed to the elements on the launch pad for approx. 4,195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This Technical Memorandum (TM) provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Parameters included in this TM are temperature, relative humidity, wind speed, wind direction, sea level pressure, and precipitation. Extremes for each of these parameters for each mission are also summarized. Sources for the data include meteorological towers and hourly surface observations. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.
Estimating linear temporal trends from aggregated environmental monitoring data
Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.
2017-01-01
Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.
Optimal Constellation Design for Maximum Continuous Coverage of Targets Against a Space Background
2012-05-31
constellation is considered with the properties shown in Table 13. The parameter hres refers to the number of equally spaced offset planes in which cross...mean anomaly 180 ◦ M0i mean anomaly of lead satellite at epoch 0 ◦ R omni-directional sensor range 5000 km m initial polygon resolution 50 PPC hres ...a Walker Star. Idealized parameters for the Iridium constellation are shown in Table 14. The parameter hres refers to the number of equally spaced
NASA Astrophysics Data System (ADS)
Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes; Kortmann, Onno
2012-07-01
Besides the effects of the microgravity environment, and the psychological and psychosocial problems experienced in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The DOSTELs measured during the lowest solar minimum conditions in the space age from July 18th 2009 to June 16th 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the DOSIS-3D experiment. The hardware will be launched with the Soyuz 30S flight to the ISS on May 15th 2012 and activated approximately ten days later. Data will be transferred from the DOSTEL units to ground via the EPM rack which is activated approximately every four weeks for this action. First Results for the active DOSIS-3D measurements such as count rate profiles, dose rates and LET spectra will be presented in comparison to the data of the DOSIS experiment as well as the DOSMAP experiment which has been performed during solar maximum in 2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S.; Ermakova, M. A.
2016-03-15
The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In{sub 0.4}Ga{sub 0.6}As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for themore » 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In{sub x}Ga{sub 1–x}As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.« less
CIEL*a*b* color space predictive models for colorimetry devices--analysis of perfume quality.
Korifi, Rabia; Le Dréau, Yveline; Antinelli, Jean-François; Valls, Robert; Dupuy, Nathalie
2013-01-30
Color perception plays a major role in the consumer evaluation of perfume quality. Consumers need first to be entirely satisfied with the sensory properties of products, before other quality dimensions become relevant. The evaluation of complex mixtures color presents a challenge even for modern analytical techniques. A variety of instruments are available for color measurement. They can be classified as tristimulus colorimeters and spectrophotometers. Obsolescence of the electronics of old tristimulus colorimeter arises from the difficulty in finding repair parts and leads to its replacement by more modern instruments. High quality levels in color measurement, i.e., accuracy and reliability in color control are the major advantages of the new generation of color instrumentation, the integrating sphere spectrophotometer. Two models of spectrophotometer were tested in transmittance mode, employing the d/0° geometry. The CIEL(*)a(*)b(*) color space parameters were measured with each instrument for 380 samples of raw materials and bases used in the perfume compositions. The results were graphically compared between the colorimeter device and the spectrophotometer devices. All color space parameters obtained with the colorimeter were used as dependent variables to generate regression equations with values obtained from the spectrophotometers. The data was statistically analyzed to create predictive model between the reference and the target instruments through two methods. The first method uses linear regression analysis and the second method consists of partial least square regression (PLS) on each component. Copyright © 2012 Elsevier B.V. All rights reserved.
Estimability of geodetic parameters from space VLBI observables
NASA Technical Reports Server (NTRS)
Adam, Jozsef
1990-01-01
The feasibility of space very long base interferometry (VLBI) observables for geodesy and geodynamics is investigated. A brief review of space VLBI systems from the point of view of potential geodetic application is given. A selected notational convention is used to jointly treat the VLBI observables of different types of baselines within a combined ground/space VLBI network. The basic equations of the space VLBI observables appropriate for convariance analysis are derived and included. The corresponding equations for the ground-to-ground baseline VLBI observables are also given for a comparison. The simplified expression of the mathematical models for both space VLBI observables (time delay and delay rate) include the ground station coordinates, the satellite orbital elements, the earth rotation parameters, the radio source coordinates, and clock parameters. The observation equations with these parameters were examined in order to determine which of them are separable or nonseparable. Singularity problems arising from coordinate system definition and critical configuration are studied. Linear dependencies between partials are analytically derived. The mathematical models for ground-space baseline VLBI observables were tested with simulation data in the frame of some numerical experiments. Singularity due to datum defect is confirmed.
Dynamics in the Parameter Space of a Neuron Model
NASA Astrophysics Data System (ADS)
Paulo, C. Rech
2012-06-01
Some two-dimensional parameter-space diagrams are numerically obtained by considering the largest Lyapunov exponent for a four-dimensional thirteen-parameter Hindmarsh—Rose neuron model. Several different parameter planes are considered, and it is shown that depending on the combination of parameters, a typical scenario can be preserved: for some choice of two parameters, the parameter plane presents a comb-shaped chaotic region embedded in a large periodic region. It is also shown that there exist regions close to these comb-shaped chaotic regions, separated by the comb teeth, organizing themselves in period-adding bifurcation cascades.
Gomez-Cardona, Daniel; Hayes, John W; Zhang, Ran; Li, Ke; Cruz-Bastida, Juan Pablo; Chen, Guang-Hong
2018-05-01
Different low-signal correction (LSC) methods have been shown to efficiently reduce noise streaks and noise level in CT to provide acceptable images at low-radiation dose levels. These methods usually result in CT images with highly shift-variant and anisotropic spatial resolution and noise, which makes the parameter optimization process highly nontrivial. The purpose of this work was to develop a local task-based parameter optimization framework for LSC methods. Two well-known LSC methods, the adaptive trimmed mean (ATM) filter and the anisotropic diffusion (AD) filter, were used as examples to demonstrate how to use the task-based framework to optimize filter parameter selection. Two parameters, denoted by the set P, for each LSC method were included in the optimization problem. For the ATM filter, these parameters are the low- and high-signal threshold levels p l and p h ; for the AD filter, the parameters are the exponents δ and γ in the brightness gradient function. The detectability index d' under the non-prewhitening (NPW) mathematical observer model was selected as the metric for parameter optimization. The optimization problem was formulated as an unconstrained optimization problem that consisted of maximizing an objective function d'(P), where i and j correspond to the i-th imaging task and j-th spatial location, respectively. Since there is no explicit mathematical function to describe the dependence of d' on the set of parameters P for each LSC method, the optimization problem was solved via an experimentally measured d' map over a densely sampled parameter space. In this work, three high-contrast-high-frequency discrimination imaging tasks were defined to explore the parameter space of each of the LSC methods: a vertical bar pattern (task I), a horizontal bar pattern (task II), and a multidirectional feature (task III). Two spatial locations were considered for the analysis, a posterior region-of-interest (ROI) located within the noise streaks region and an anterior ROI, located further from the noise streaks region. Optimal results derived from the task-based detectability index metric were compared to other operating points in the parameter space with different noise and spatial resolution trade-offs. The optimal operating points determined through the d' metric depended on the interplay between the major spatial frequency components of each imaging task and the highly shift-variant and anisotropic noise and spatial resolution properties associated with each operating point in the LSC parameter space. This interplay influenced imaging performance the most when the major spatial frequency component of a given imaging task coincided with the direction of spatial resolution loss or with the dominant noise spatial frequency component; this was the case of imaging task II. The performance of imaging tasks I and III was influenced by this interplay in a smaller scale than imaging task II, since the major frequency component of task I was perpendicular to imaging task II, and because imaging task III did not have strong directional dependence. For both LSC methods, there was a strong dependence of the overall d' magnitude and shape of the contours on the spatial location within the phantom, particularly for imaging tasks II and III. The d' value obtained at the optimal operating point for each spatial location and imaging task was similar when comparing the LSC methods studied in this work. A local task-based detectability framework to optimize the selection of parameters for LSC methods was developed. The framework takes into account the potential shift-variant and anisotropic spatial resolution and noise properties to maximize the imaging performance of the CT system. Optimal parameters for a given LSC method depend strongly on the spatial location within the image object. © 2018 American Association of Physicists in Medicine.
Gauge-independent renormalization of the N2HDM
NASA Astrophysics Data System (ADS)
Krause, Marcel; López-Val, David; Mühlleitner, Margarete; Santos, Rui
2017-12-01
The Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) is an interesting benchmark model for a Higgs sector consisting of two complex doublet and one real singlet fields. Like the Next-to-Minimal Supersymmetric extension (NMSSM) it features light Higgs bosons that could have escaped discovery due to their singlet admixture. Thereby, the model allows for various different Higgs-to-Higgs decay modes. Contrary to the NMSSM, however, the model is not subject to supersymmetric relations restraining its allowed parameter space and its phenomenology. For the correct determination of the allowed parameter space, the correct interpretation of the LHC Higgs data and the possible distinction of beyond-the-Standard Model Higgs sectors higher order corrections to the Higgs boson observables are crucial. This requires not only their computation but also the development of a suitable renormalization scheme. In this paper we have worked out the renormalization of the complete N2HDM and provide a scheme for the gauge-independent renormalization of the mixing angles. We discuss the renormalization of the Z_2 soft breaking parameter m 12 2 and the singlet vacuum expectation value v S . Both enter the Higgs self-couplings relevant for Higgs-to-Higgs decays. We apply our renormalization scheme to different sample processes such as Higgs decays into Z bosons and decays into a lighter Higgs pair. Our results show that the corrections may be sizable and have to be taken into account for reliable predictions.
Resliced image space construction for coronary artery collagen fibers.
Luo, Tong; Chen, Huan; Kassab, Ghassan S
2017-01-01
Collagen fibers play an important role in the biomechanics of the blood vessel wall. The objective of this study was to determine the 3D microstructure of collagen fibers in the media and adventitia of coronary arteries. We present a novel optimal angle consistence algorithm to reform image slices in the visualization and analysis of 3D collagen images. 3D geometry was reconstructed from resliced image space where the 3D skeleton was extracted as the primary feature for accurate reconstruction of geometrical parameters. Collagen fibers (range 80-200) were reconstructed from the porcine coronary artery wall for the measurement of various morphological parameters. Collagen waviness and diameters were 1.37 ± 0.19 and 2.61 ± 0.89 μm, respectively. The biaxial distributions of orientation had two different peaks at 110.7 ± 25.2° and 18.4 ± 19.3°. Results for width, waviness, and orientation were found to be in good agreement with manual measurements. In addition to accurately measuring 2D features more efficiently than the manual approach, the present method produced 3D features that could not be measured in the 2D manual approach. These additional parameters included the tilt angle (5.10 ± 2.95°) and cross-sectional area (CSA; 5.98 ± 3.79 μm2) of collagen fibers. These 3D collagen reconstructions provide accurate and reliable microstructure for biomechanical modeling of vessel wall mechanics.
A new Bayesian recursive technique for parameter estimation
NASA Astrophysics Data System (ADS)
Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis
2006-08-01
The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.
Sun, Xiaodian; Jin, Li; Xiong, Momiao
2008-01-01
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286
NASA Astrophysics Data System (ADS)
Günther, Uwe; Zhuk, Alexander; Bezerra, Valdir B.; Romero, Carlos
2005-08-01
We study multi-dimensional gravitational models with scalar curvature nonlinearities of types R-1 and R4. It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with a warped product structure. Special attention has been paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the R-1 model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R4 model, we obtain that the stability region in parameter space depends on the total dimension D = dim(M) of the higher dimensional spacetime M. For D > 8 the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For D < 8 an additional (metastable) sector exists which is separated from the conformal singularity by a potential barrier of finite height and width so that systems in this sector are prone to collapse into the conformal singularity. This second sector is not smoothly connected with the first (absolutely stable) one. Several limiting cases and the possibility of inflation are discussed for the R4 model.
Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O
2014-11-01
A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.
NASA Astrophysics Data System (ADS)
Wallace, Jon Michael
2003-10-01
Reliability prediction of components operating in complex systems has historically been conducted in a statistically isolated manner. Current physics-based, i.e. mechanistic, component reliability approaches focus more on component-specific attributes and mathematical algorithms and not enough on the influence of the system. The result is that significant error can be introduced into the component reliability assessment process. The objective of this study is the development of a framework that infuses the needs and influence of the system into the process of conducting mechanistic-based component reliability assessments. The formulated framework consists of six primary steps. The first three steps, identification, decomposition, and synthesis, are primarily qualitative in nature and employ system reliability and safety engineering principles to construct an appropriate starting point for the component reliability assessment. The following two steps are the most unique. They involve a step to efficiently characterize and quantify the system-driven local parameter space and a subsequent step using this information to guide the reduction of the component parameter space. The local statistical space quantification step is accomplished using two proposed multivariate probability models: Multi-Response First Order Second Moment and Taylor-Based Inverse Transformation. Where existing joint probability models require preliminary distribution and correlation information of the responses, these models combine statistical information of the input parameters with an efficient sampling of the response analyses to produce the multi-response joint probability distribution. Parameter space reduction is accomplished using Approximate Canonical Correlation Analysis (ACCA) employed as a multi-response screening technique. The novelty of this approach is that each individual local parameter and even subsets of parameters representing entire contributing analyses can now be rank ordered with respect to their contribution to not just one response, but the entire vector of component responses simultaneously. The final step of the framework is the actual probabilistic assessment of the component. Although the same multivariate probability tools employed in the characterization step can be used for the component probability assessment, variations of this final step are given to allow for the utilization of existing probabilistic methods such as response surface Monte Carlo and Fast Probability Integration. The overall framework developed in this study is implemented to assess the finite-element based reliability prediction of a gas turbine airfoil involving several failure responses. Results of this implementation are compared to results generated using the conventional 'isolated' approach as well as a validation approach conducted through large sample Monte Carlo simulations. The framework resulted in a considerable improvement to the accuracy of the part reliability assessment and an improved understanding of the component failure behavior. Considerable statistical complexity in the form of joint non-normal behavior was found and accounted for using the framework. Future applications of the framework elements are discussed.
Space Station Freedom Environmental Health Care Program
NASA Technical Reports Server (NTRS)
Richard, Elizabeth E.; Russo, Dane M.
1992-01-01
The paper discusses the environmental planning and monitoring aspects of the Space Station Freedom (SSF) Environmental Health Care Program, which encompasses all phases of the SSF assembly and operation from the first element entry at MB-6 through the Permanent Manned Capability and beyond. Environmental planning involves the definition of acceptability limits and monitoring requirements for the radiation dose barothermal parameters and potential contaminants in the SSF air and water and on internal surfaces. Inflight monitoring will be implemented through the Environmental Health System, which consists of five subsystems: Microbiology, Toxicology, Water Quality, Radiation, and Barothermal Physiology. In addition to the environmental data interpretation and analysis conducted after each mission, the new data will be compared to archived data for statistical and long-term trend analysis and determination of risk exposures. Results of these analyses will be used to modify the acceptability limits and monitoring requirements for the future.
A state interaction spin-orbit coupling density matrix renormalization group method
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2016-06-01
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.
Quantum metabolism explains the allometric scaling of metabolic rates.
Demetrius, Lloyd; Tuszynski, J A
2010-03-06
A general model explaining the origin of allometric laws of physiology is proposed based on coupled energy-transducing oscillator networks embedded in a physical d-dimensional space (d = 1, 2, 3). This approach integrates Mitchell's theory of chemi-osmosis with the Debye model of the thermal properties of solids. We derive a scaling rule that relates the energy generated by redox reactions in cells, the dimensionality of the physical space and the mean cycle time. Two major regimes are found corresponding to classical and quantum behaviour. The classical behaviour leads to allometric isometry while the quantum regime leads to scaling laws relating metabolic rate and body size that cover a broad range of exponents that depend on dimensionality and specific parameter values. The regimes are consistent with a range of behaviours encountered in micelles, plants and animals and provide a conceptual framework for a theory of the metabolic function of living systems.
Gravity modulates Listing's plane orientation during both pursuit and saccades
NASA Technical Reports Server (NTRS)
Hess, Bernhard J M.; Angelaki, Dora E.
2003-01-01
Previous studies have shown that the spatial organization of all eye orientations during visually guided saccadic eye movements (Listing's plane) varies systematically as a function of static and dynamic head orientation in space. Here we tested if a similar organization also applies to the spatial orientation of eye positions during smooth pursuit eye movements. Specifically, we characterized the three-dimensional distribution of eye positions during horizontal and vertical pursuit (0.1 Hz, +/-15 degrees and 0.5 Hz, +/-8 degrees) at different eccentricities and elevations while rhesus monkeys were sitting upright or being statically tilted in different roll and pitch positions. We found that the spatial organization of eye positions during smooth pursuit depends on static orientation in space, similarly as during visually guided saccades and fixations. In support of recent modeling studies, these results are consistent with a role of gravity on defining the parameters of Listing's law.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J.; Chen, S. Y., E-mail: sychen531@163.com; Tang, C. J.
2014-01-15
The physical mechanism of the synergy current driven by lower hybrid wave (LHW) and electron cyclotron wave (ECW) in tokamaks is investigated using theoretical analysis and simulation methods in the present paper. Research shows that the synergy relationship between the two waves in velocity space strongly depends on the frequency ω and parallel refractive index N{sub //} of ECW. For a given spectrum of LHW, the parameter range of ECW, in which the synergy current exists, can be predicted by theoretical analysis, and these results are consistent with the simulation results. It is shown that the synergy effect is mainlymore » caused by the electrons accelerated by both ECW and LHW, and the acceleration of these electrons requires that there is overlap of the resonance regions of the two waves in velocity space.« less
Rapid Temporal Changes of Midtropospheric Winds
NASA Technical Reports Server (NTRS)
Merceret, Francis J.
1997-01-01
The statistical distribution of the magnitude of the vector wind change over 0.25-, 1-, 2-. and 4-h periods based on data from October 1995 through March 1996 over central Florida is presented. The wind changes at altitudes from 6 to 17 km were measured using the Kennedy Space Center 50-MHz Doppler radar wind profiler. Quality controlled profiles were produced every 5 min for 112 gates, each representing 150 m in altitude. Gates 28 through 100 were selected for analysis because of their significance to ascending space launch vehicles. The distribution was found to be lognormal. The parameters of the lognormal distribution depend systematically on the time interval. This dependence is consistent with the behavior of structure functions in the f(exp 5/3) spectral regime. There is a small difference between the 1995 data and the 1996 data, which may represent a weak seasonal effect.
Concept for an International Standard related to Space Weather Effects on Space Systems
NASA Astrophysics Data System (ADS)
Tobiska, W. Kent; Tomky, Alyssa
There is great interest in developing an international standard related to space weather in order to specify the tools and parameters needed for space systems operations. In particular, a standard is important for satellite operators who may not be familiar with space weather. In addition, there are others who participate in space systems operations that would also benefit from such a document. For example, the developers of software systems that provide LEO satellite orbit determination, radio communication availability for scintillation events (GEO-to-ground L and UHF bands), GPS uncertainties, and the radiation environment from ground-to-space for commercial space tourism. These groups require recent historical data, current epoch specification, and forecast of space weather events into their automated or manual systems. Other examples are national government agencies that rely on space weather data provided by their organizations such as those represented in the International Space Environment Service (ISES) group of 14 national agencies. Designers, manufacturers, and launchers of space systems require real-time, operational space weather parameters that can be measured, monitored, or built into automated systems. Thus, a broad scope for the document will provide a useful international standard product to a variety of engineering and science domains. The structure of the document should contain a well-defined scope, consensus space weather terms and definitions, and internationally accepted descriptions of the main elements of space weather, its sources, and its effects upon space systems. Appendices will be useful for describing expanded material such as guidelines on how to use the standard, how to obtain specific space weather parameters, and short but detailed descriptions such as when best to use some parameters and not others; appendices provide a path for easily updating the standard since the domain of space weather is rapidly changing with new advances in scientific and engineering understanding. We present a draft outline that can be used as the basis for such a standard.
Harigaya, Keisuke; Nomura, Yasunori
2016-08-11
An interesting possibility for dark matter is a scalar particle of mass of order 10 MeV-1 GeV, interacting with a U(1) gauge boson (dark photon) which mixes with the photon. We present a simple and natural model realizing this possibility. The dark matter arises as a composite pseudo-Nambu-Goldstone boson (dark pion) in a non-Abelian gauge sector, which also gives a mass to the dark photon. For a fixed non-Abelian gauge group, SU(N), and a U(1) charge of the constituent dark quarks, the model has only three free parameters: the dynamical scale of the non-Abelian gauge theory, the gauge coupling ofmore » the dark photon, and the mixing parameter between the dark and standard model photons. In particular, the gauge symmetry of the model does not allow any mass term for the dark quarks, and the stability of the dark pion is understood as a result of an accidental global symmetry. The model has a significant parameter space in which thermal relic dark pions comprise all of the dark matter, consistently with all experimental and cosmological constraints. In a corner of the parameter space, the discrepancy of the muon g-2 between experiments and the standard model prediction can also be ameliorated due to a loop contribution of the dark photon. Smoking-gun signatures of the model include a monophoton signal from the e +e - collision into a photon and a "dark rho meson." Observation of two processes in e +e - collision - the mode into the dark photon and that into the dark rho meson - would provide strong evidence for the model.« less
Study of constrained minimal supersymmetry
NASA Astrophysics Data System (ADS)
Kane, G. L.; Kolda, Chris; Roszkowski, Leszek; Wells, James D.
1994-06-01
Taking seriously the phenomenological indications for supersymmetry we have made a detailed study of unified minimal SUSY, including many effects at the few percent level in a consistent fashion. We report here a general analysis of what can be studied without choosing a particular gauge group at the unification scale. Firstly, we find that the encouraging SUSY unification results of recent years do survive the challenge of a more complete and accurate analysis. Taking into account effects at the 5-10 % level leads to several improvements of previous results and allows us to sharpen our predictions for SUSY in the light of unification. We perform a thorough study of the parameter space and look for patterns to indicate SUSY predictions, so that they do not depend on arbitrary choices of some parameters or untested assumptions. Our results can be viewed as a fully constrained minimal SUSY standard model. The resulting model forms a well-defined basis for comparing the physics potential of different facilities. Very little of the acceptable parameter space has been excluded by CERN LEP or Fermilab so far, but a significant fraction can be covered when these accelerators are upgraded. A number of initial applications to the understanding of the values of mh and mt, the SUSY spectrum, detectability of SUSY at LEP II or Fermilab, B(b-->sγ), Γ(Z-->bb¯), dark matter, etc., are included in a separate section that might be of more interest to some readers than the technical aspects of model building. We formulate an approach to extracting SUSY parameters from data when superpartners are detected. For small tanβ or large mt both m1/2 and m0 are entirely bounded from above at ~1 TeV without having to use a fine-tuning constraint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harigaya, Keisuke; Nomura, Yasunori
An interesting possibility for dark matter is a scalar particle of mass of order 10 MeV-1 GeV, interacting with a U(1) gauge boson (dark photon) which mixes with the photon. We present a simple and natural model realizing this possibility. The dark matter arises as a composite pseudo-Nambu-Goldstone boson (dark pion) in a non-Abelian gauge sector, which also gives a mass to the dark photon. For a fixed non-Abelian gauge group, SU(N), and a U(1) charge of the constituent dark quarks, the model has only three free parameters: the dynamical scale of the non-Abelian gauge theory, the gauge coupling ofmore » the dark photon, and the mixing parameter between the dark and standard model photons. In particular, the gauge symmetry of the model does not allow any mass term for the dark quarks, and the stability of the dark pion is understood as a result of an accidental global symmetry. The model has a significant parameter space in which thermal relic dark pions comprise all of the dark matter, consistently with all experimental and cosmological constraints. In a corner of the parameter space, the discrepancy of the muon g-2 between experiments and the standard model prediction can also be ameliorated due to a loop contribution of the dark photon. Smoking-gun signatures of the model include a monophoton signal from the e +e - collision into a photon and a "dark rho meson." Observation of two processes in e +e - collision - the mode into the dark photon and that into the dark rho meson - would provide strong evidence for the model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagherian, Z.; Ettefaghi, M.M.; Haghgouyan, Z.
We consider the standard model (SM) extended by a gauge singlet fermion as cold dark matter (SFCDM) and a gauge singlet scalar (singlet Higgs) as a mediator. The parameter space of the SM is enlarged by seven new ones. We obtain the total annihilation cross section of singlet fermions to the SM particles and singlet Higgs at tree level. Regarding the relic abundance constraint obtained by WMAP observations, we study the dependency on each parameter separately, for dark matter masses up to 1 TeV. In particular, the coupling of SFCDM to singlet Higgs g{sub s}, the SFCDM mass m{sub ψ},more » the second Higgs mass m{sub h{sub 2}}, and the Higgs bosons mixing angel θ are investigated accurately. Three other parameters play no significant role. For a maximal mixing of Higgs bosons or at resonances, g{sub s} is applicable for the perturbation theory at tree level. We also obtain the scattering cross section of SFCDM off nucleons and compare our results with experiments which have already reported data in this mass range; XENON100, LUX, COUPP and PICASSO collaborations. Our results show that the SFCDM is excluded by these experiments for choosing parameters which are consistent with perturbation theory and relic abundance constraints.« less
[Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].
Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin
2017-07-01
In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.
Parameter space of experimental chaotic circuits with high-precision control parameters.
de Sousa, Francisco F G; Rubinger, Rero M; Sartorelli, José C; Albuquerque, Holokx A; Baptista, Murilo S
2016-08-01
We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (∼21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.
Dust Ion-Acoustic Shock Waves in a Multicomponent Magnetorotating Plasma
NASA Astrophysics Data System (ADS)
Kaur, Barjinder; Saini, N. S.
2018-02-01
The nonlinear properties of dust ion-acoustic (DIA) shock waves in a magnetorotating plasma consisting of inertial ions, nonextensive electrons and positrons, and immobile negatively charged dust are examined. The effects of dust charge fluctuations are not included in the present investigation, but the ion kinematic viscosity (collisions) is a source of dissipation, leading to the formation of stable shock structures. The Zakharov-Kuznetsov-Burgers (ZKB) equation is derived using the reductive perturbation technique, and from its solution the effects of different physical parameters, i.e. nonextensivity of electrons and positrons, kinematic viscosity, rotational frequency, and positron and dust concentrations, on the characteristics of shock waves are examined. It is observed that physical parameters play a very crucial role in the formation of DIA shocks. This study could be useful in understanding the electrostatic excitations in dusty plasmas in space (e.g. interstellar medium).
Towards the engineering of in vitro systems.
Hold, Christoph; Panke, Sven
2009-08-06
Synthetic biology aims at rationally implementing biological systems from scratch. Given the complexity of living systems and our current lack of understanding of many aspects of living cells, this is a major undertaking. The design of in vitro systems can be considerably easier, because they can consist of fewer constituents, are quasi time invariant, their parameter space can be better accessed and they can be much more easily perturbed and then analysed chemically and mathematically. However, even for simplified in vitro systems, following a comprehensively rational design procedure is still difficult. When looking at a comparatively simple system, such as a medium-sized enzymatic reaction network as it is represented by glycolysis, major issues such as a lack of comprehensive enzyme kinetics and of suitable knowledge on crucial design parameters remain. Nevertheless, in vitro systems are very suitable to overcome these obstacles and therefore well placed to act as a stepping stone to engineering living systems.
NASA Astrophysics Data System (ADS)
Kaliuzhnyi, Mykola; Bushuev, Felix; Shulga, Oleksandr; Sybiryakova, Yevgeniya; Shakun, Leonid; Bezrukovs, Vladislavs; Moskalenko, Sergiy; Kulishenko, Vladislav; Malynovskyi, Yevgen
2016-12-01
An international network of passive correlation ranging of a geostationary telecommunication satellite is considered in the article. The network is developed by the RI "MAO". The network consists of five spatially separated stations of synchronized reception of DVB-S signals of digital satellite TV. The stations are located in Ukraine and Latvia. The time difference of arrival (TDOA) on the network stations of the DVB-S signals, radiated by the satellite, is a measured parameter. The results of TDOA estimation obtained by the network in May-August 2016 are presented in the article. Orbital parameters of the tracked satellite are determined using measured values of the TDOA and two models of satellite motion: the analytical model SGP4/SDP4 and the model of numerical integration of the equations of satellite motion. Both models are realized using the free low-level space dynamics library OREKIT (ORbit Extrapolation KIT).
Multiple regimes of robust patterns between network structure and biodiversity
NASA Astrophysics Data System (ADS)
Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.
2015-12-01
Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities.
Integrated numerical modeling of a laser gun injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H.; Benson, S.; Bisognano, J.
1993-06-01
CEBAF is planning to incorporate a laser gun injector into the linac front end as a high-charge cw source for a high-power free electron laser and nuclear physics. This injector consists of a DC laser gun, a buncher, a cryounit and a chicane. The performance of the injector is predicted based on integrated numerical modeling using POISSON, SUPERFISH and PARMELA. The point-by-point method incorporated into PARMELA by McDonald is chosen for space charge treatment. The concept of ``conditioning for final bunching`` is employed to vary several crucial parameters of the system for achieving highest peak current while maintaining low emittancemore » and low energy spread. Extensive parameter variation studies show that the design will perform beyond the specifications for FEL operations aimed at industrial applications and fundamental scientific research. The calculation also shows that the injector will perform as an extremely bright cw electron source.« less
Observable gravitational waves in pre-big bang cosmology: an update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperini, M., E-mail: gasperini@ba.infn.it
In the light of the recent results concerning CMB observations and GW detection we address the question of whether it is possible, in a self-consistent inflationary framework, to simultaneously generate a spectrum of scalar metric perturbations in agreement with Planck data and a stochastic background of primordial gravitational radiation compatible with the design sensitivity of aLIGO/Virgo and/or eLISA. We suggest that this is possible in a string cosmology context, for a wide region of the parameter space of the so-called pre-big bang models. We also discuss the associated values of the tensor-to-scalar ratio relevant to the CMB polarization experiments. Wemore » conclude that future, cross-correlated results from CMB observations and GW detectors will be able to confirm or disprove pre-big bang models and—in any case—will impose new significant constraints on the basic string theory/cosmology parameters.« less
Multiple regimes of robust patterns between network structure and biodiversity
Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.
2015-01-01
Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities. PMID:26632996
An approximation theory for the identification of linear thermoelastic systems
NASA Technical Reports Server (NTRS)
Rosen, I. G.; Su, Chien-Hua Frank
1990-01-01
An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.
NASA Technical Reports Server (NTRS)
Gorjian, V.; Cleary, K.; Werner, M. W.; Lawrence, C. R.
2007-01-01
We present a strong correlation between the [Ne v] 14.3 mm and [Ne III] 15.6 mm emission lines arising from the narrow-line regions (NLRs) of active galactic nuclei (AGNs), spanning 4 orders of magnitude in luminosity. The data are compiled primarily from Spitzer Space Telescope observations of nearby Seyfert galaxies (median z p 0.01) and 3C radio sources (median z p 0.52). This correlation is consistent with earlier studies in the optical/UV bands showing that line ratios arising in the NLRs are remarkably constant across AGNs. We also show that the correlation allows only a very narrow range in ionization parameter for simple photoionization models. The observed correlation will place tight constraints on alternative models, which predict constant line ratios over a broader range in ionization parameter.
Search for neutral MSSM Higgs bosons at LEP
NASA Astrophysics Data System (ADS)
Schael, S.; Barate, R.; Brunelière, R.; de Bonis, I.; Decamp, D.; Goy, C.; Jézéquel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocmé, B.; Bravo, S.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmüller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Hansen, J. B.; Harvey, J.; Hutchcroft, D. E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J. M.; Perret, P.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Kraan, A. C.; Nilsson, B. S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Mannocchi, G.; Laurelli, P.; Mannocchi, G.; Murtas, G. P.; Passalacqua, L.; Kennedy, J.; Lynch, J. G.; Negus, P.; O'Shea, V.; Thompson, A. S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P. J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S. A.; Sedgbeer, J. K.; Thompson, J. C.; White, R.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C. K.; Clarke, D. P.; Ellis, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Pearson, M. R.; Robertson, N. A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Hölldorfer, F.; Jakobs, K.; Kayser, F.; Müller, A.-S.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Männer, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Foà, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P. G.; Awunor, O.; Blair, G. A.; Cowan, G.; Garcia-Bellido, A.; Green, M. G.; Medcalf, T.; Misiejuk, A.; Strong, J. A.; Teixeira-Dias, P.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Tomalin, I. R.; Ward, J. J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Fabbro, B.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Litke, A. M.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Hodgson, P. N.; Lehto, M.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S. R.; Berkelman, K.; Cranmer, K.; Ferguson, D. P. S.; Gao, Y.; González, S.; Hayes, O. J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P. A., III; Nielsen, J.; Pan, Y. B.; von Wimmersperg-Toeller, J. H.; Wiedenmann, W.; Wu, J.; Wu, S. L.; Wu, X.; Zobernig, G.; Dissertori, G.; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, P.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, T. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M. G.; Anderhub, H.; Andreev, V. P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S. V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillère, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Böhm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y. H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de La Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Déglon, P.; Debreczeni, J.; Degré, A.; Dehmelt, K.; Deiters, K.; Della Volpe, D.; Delmeire, E.; Denes, P.; Denotaristefani, F.; de Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Extermann, P.; Falagan, M. A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Fisher, W.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S. N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z. F.; Grenier, G.; Grimm, O.; Gruenewald, M. W.; Guida, M.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Hervé, A.; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S. R.; Hu, J.; Jin, B. N.; Jindal, P.; Jones, L. W.; de Jong, P.; Josa-Mutuberría, I.; Kaur, M.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.; Kittel, W.; Klimentov, A.; König, A. C.; Kopal, M.; Koutsenko, V.; Kräber, M.; Kraemer, R. W.; Krüger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J. M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C. H.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, Y. S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W. G.; Malgeri, L.; Malinin, A.; Ma Na, C.; Mans, J.; Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W. J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G. B.; Muanza, G. S.; Muijs, A. J. M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Razis, P.; Rembeczki, S.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, K.; Roe, B. P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, S.; Rubio, J. A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schäfer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D. J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Sushkov, S.; Suter, H.; Swain, J. D.; Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, S. C. C.; Ting, S. M.; Tonwar, S. C.; Tóth, J.; Tully, C.; Tung, K. L.; Ulbricht, J.; Valente, E.; van de Walle, R. T.; Vasquez, R.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Wadhwa, M.; Wang, Q.; Wang, X. L.; Wang, Z. M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z. Z.; Yamamoto, J.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yeh, S. C.; Zalite, An.; Zalite, Yu.; Zhang, Z. P.; Zhao, J.; Zhu, G. Y.; Zhu, R. Y.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zöller, M.; Abbiendi, G.; Ainsley, C.; Åkesson, P. F.; Alexander, G.; Allison, J.; Amaral, P.; Anagnostou, G.; Anderson, K. J.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R. J.; Batley, R. J.; Bechtle, P.; Behnke, T.; Bell, K. W.; Bell, P. J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, R. M.; Buesser, K.; Burckhart, H. J.; Campana, S.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; de Jong, S.; de Roeck, A.; de Wolf, E. A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, J. W.; Gascon-Shotkin, S. M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, M.; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwé, M.; Günther, P. O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G. G.; Harel, A.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Hemingway, R. J.; Herten, G.; Heuer, R. D.; Hill, J. C.; Hoffman, K.; Horváth, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jost, U.; Jovanovic, P.; Junk, T. R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Krämer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G. D.; Landsman, H.; Lanske, D.; Layter, J. G.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S. L.; Loebinger, F. K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A. J.; Masetti, G.; Mashimo, T.; Mättig, P.; McKenna, J.; McPherson, R. A.; Meijers, F.; Menges, W.; Merritt, F. S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D. J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H. A.; Nisius, R.; O'Neale, S. W.; Oh, A.; Oreglia, M. J.; Orito, S.; Pahl, C.; Pásztor, G.; Pater, J. R.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Poli, B.; Pooth, O.; Przybycień, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J. M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E. K. G.; Schaile, A. D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schörner-Sadenius, T.; Schröder, M.; Schumacher, M.; Scott, W. G.; Seuster, R.; Shears, T. G.; Shen, B. C.; Sherwood, P.; Skuja, A.; Smith, A. M.; Sobie, R.; Söldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, D.; Ströhmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M. A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trócsányi, Z.; Tsur, E.; Turner-Watson, M. F.; Ueda, I.; Ujvári, B.; Vollmer, C. F.; Vannerem, P.; Vértesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wengler, T.; Wermes, N.; Wilson, G. W.; Wilson, J. A.; Wolf, G.; Wyatt, T. R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, L.; Heinemeyer, S.; Pilaftsis, A.; Weiglein, G.
2006-09-01
The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for the neutral Higgs bosons which are predicted by the Minimal Supersymmetric standard model (MSSM). The data of the four collaborations are statistically combined and examined for their consistency with the background hypothesis and with a possible Higgs boson signal. The combined LEP data show no significant excess of events which would indicate the production of Higgs bosons. The search results are used to set upper bounds on the cross-sections of various Higgs-like event topologies. The results are interpreted within the MSSM in a number of “benchmark” models, including CP-conserving and CP-violating scenarios. These interpretations lead in all cases to large exclusions in the MSSM parameter space. Absolute limits are set on the parameter cosβ and, in some scenarios, on the masses of neutral Higgs bosons.
Parametrizing the Reionization History with the Redshift Midpoint, Duration, and Asymmetry
NASA Astrophysics Data System (ADS)
Trac, Hy
2018-05-01
A new parametrization of the reionization history is presented to facilitate robust comparisons between different observations and with theory. The evolution of the ionization fraction with redshift can be effectively captured by specifying the midpoint, duration, and asymmetry parameters. Lagrange interpolating functions are then used to construct analytical curves that exactly fit corresponding ionization points. The shape parametrizations are excellent matches to theoretical results from radiation-hydrodynamic simulations. The comparative differences for reionization observables are: ionization fraction | {{Δ }}{x}{{i}}| ≲ 0.03, 21 cm brightness temperature | {{Δ }}{T}{{b}}| ≲ 0.7 {mK}, Thomson optical depth | {{Δ }}τ | ≲ 0.001, and patchy kinetic Sunyaev–Zel’dovich angular power | {{Δ }}{D}{\\ell }| ≲ 0.1 μ {{{K}}}2. This accurate and flexible approach will allow parameter-space studies and self-consistent constraints on the reionization history from 21 cm, cosmic microwave background (CMB), and high-redshift galaxies and quasars.
Williams, Mobolaji
2018-01-01
The field of disordered systems in statistical physics provides many simple models in which the competing influences of thermal and nonthermal disorder lead to new phases and nontrivial thermal behavior of order parameters. In this paper, we add a model to the subject by considering a disordered system where the state space consists of various orderings of a list. As in spin glasses, the disorder of such "permutation glasses" arises from a parameter in the Hamiltonian being drawn from a distribution of possible values, thus allowing nominally "incorrect orderings" to have lower energies than "correct orderings" in the space of permutations. We analyze a Gaussian, uniform, and symmetric Bernoulli distribution of energy costs, and, by employing Jensen's inequality, derive a simple condition requiring the permutation glass to always transition to the correctly ordered state at a temperature lower than that of the nondisordered system, provided that this correctly ordered state is accessible. We in turn find that in order for the correctly ordered state to be accessible, the probability that an incorrectly ordered component is energetically favored must be less than the inverse of the number of components in the system. We show that all of these results are consistent with a replica symmetric ansatz of the system. We conclude by arguing that there is no distinct permutation glass phase for the simplest model considered here and by discussing how to extend the analysis to more complex Hamiltonians capable of novel phase behavior and replica symmetry breaking. Finally, we outline an apparent correspondence between the presented system and a discrete-energy-level fermion gas. In all, the investigation introduces a class of exactly soluble models into statistical mechanics and provides a fertile ground to investigate statistical models of disorder.
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES.
Wadiasingh, Zorawar; Harding, Alice K; Venter, Christo; Böttcher, Markus; Baring, Matthew G
2017-04-20
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R 0 . We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R 0 ~ 0.15-0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R 0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R 0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
Beyond the Standard Model: The pragmatic approach to the gauge hierarchy problem
NASA Astrophysics Data System (ADS)
Mahbubani, Rakhi
The current favorite solution to the gauge hierarchy problem, the Minimal Supersymmetric Standard Model (MSSM), is looking increasingly fine tuned as recent results from LEP-II have pushed it to regions of its parameter space where a light higgs seems unnatural. Given this fact it seems sensible to explore other approaches to this problem; we study three alternatives here. The first is a Little Higgs theory, in which the Higgs particle is realized as the pseudo-Goldstone boson of an approximate global chiral symmetry and so is naturally light. We analyze precision electroweak observables in the Minimal Moose model, one example of such a theory, and look for regions in its parameter space that are consistent with current limits on these. It is also possible to find a solution within a supersymmetric framework by adding to the MSSM superpotential a lambdaSHuH d term and UV completing with new strong dynamics under which S is a composite before lambda becomes non-perturbative. This allows us to increase the MSSM tree level higgs mass bound to a value that alleviates the supersymmetric fine-tuning problem with elementary higgs fields, maintaining gauge coupling unification in a natural way. Finally we try an entirely different tack, in which we do not attempt to solve the hierarchy problem, but rather assume that the tuning of the higgs can be explained in some unnatural way, from environmental considerations for instance. With this philosophy in mind we study in detail the low-energy phenomenology of the minimal extension to the Standard Model with a dark matter candidate and gauge coupling unification, consisting of additional fermions with the quantum numbers of SUSY higgsinos, and a singlet.
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.
2018-01-01
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Xuhua; Hew, Choy Leong, E-mail: dbshewcl@nus.edu.sg
2007-07-01
The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals ofmore » SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution.« less
Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries
NASA Technical Reports Server (NTRS)
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.
2017-01-01
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
Constraining Relativistic Bow Shock Properties in Rotation-powered Millisecond Pulsar Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadiasingh, Zorawar; Venter, Christo; Böttcher, Markus
2017-04-20
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase centering of the double-peaked X-ray orbital modulation originating from mildly relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock standoff R {sub 0}. We develop synthetic X-ray synchrotron orbital light curvesmore » and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the standoff is R {sub 0} ∼ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R {sub 0} ≲ 0.4, while X-ray light curves suggest 0.1 ≲ R {sub 0} ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy dependence in the shape of light curves, motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.« less
NASA Astrophysics Data System (ADS)
Brunetti, G.; Zimmer, S.; Zandanel, F.
2017-12-01
The Fermi-LAT (Large Area Telescope) collaboration recently published deep upper limits to the gamma-ray emission of the Coma cluster, a cluster hosting the prototype of giant radio haloes. In this paper, we extend previous studies and use a formalism that combines particle reacceleration by turbulence and the generation of secondary particles in the intracluster medium to constrain relativistic protons and their role for the origin of the radio halo. We conclude that a pure hadronic origin of the halo is clearly disfavoured as it would require excessively large magnetic fields. However, secondary particles can still generate the observed radio emission if they are reaccelerated. For the first time the deep gamma-ray limits allow us to derive meaningful constraints if the halo is generated during phases of reacceleration of relativistic protons and their secondaries by cluster-scale turbulence. In this paper, we explore a relevant range of parameter space of reacceleration models of secondaries. Within this parameter space, a fraction of model configurations is already ruled out by current gamma-ray limits, including the cases that assume weak magnetic fields in the cluster core, B ≤ 2-3 μG. Interestingly, we also find that the flux predicted by a large fraction of model configurations assuming magnetic fields consistent with Faraday rotation measures (RMs) is not far from the limits. This suggests that a detection of gamma-rays from the cluster might be possible in the near future, provided that the electrons generating the radio halo are secondaries reaccelerated and the magnetic field in the cluster is consistent with that inferred from RM.
Study on the mapping of dark matter clustering from real space to redshift space
NASA Astrophysics Data System (ADS)
Zheng, Yi; Song, Yong-Seon
2016-08-01
The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.
The quantum measurement of time
NASA Technical Reports Server (NTRS)
Shepard, Scott R.
1994-01-01
Traditionally, in non-relativistic Quantum Mechanics, time is considered to be a parameter, rather than an observable quantity like space. In relativistic Quantum Field Theory, space and time are treated equally by reducing space to also be a parameter. Herein, after a brief review of other measurements, we describe a third possibility, which is to treat time as a directly observable quantity.
NASA Astrophysics Data System (ADS)
Nevodovskyi, P. V.; Vidmachenko, A. P.; Geraimchuk, M. D.; Ivahiv, O. V.
2016-10-01
Remote polarization studies are a very powerful method of solving of astronomical tasks with the study of the physical properties of the planets and their atmospheres. It allows research of objects as in situ, so in vitro, and has many other advantages. To use this method has already been developed and are continuing the development of many various special instruments called polarimeters. The essence of the space experiment consists in the fact to using the polarimeter installed on board a micro satellite, systematically, during each of its revolutions around the Earth, to monitor a polarization components of a diffusely reflected by atmosphere solar radiation in different, previously stipulated wavelengths. There are a lot of the optical schemes, which are used in devices of measuring and monitoring of parameters of polarized radiation, including those into space experiments of probing of the Earth's atmosphere from orbit of satellites. In this paper we analyze the potential for use of filter-polarimeter to measure the Stokes vector components.
Libration Orbit Mission Design: Applications of Numerical & Dynamical Methods
NASA Technical Reports Server (NTRS)
Bauer, Frank (Technical Monitor); Folta, David; Beckman, Mark
2002-01-01
Sun-Earth libration point orbits serve as excellent locations for scientific investigations. These orbits are often selected to minimize environmental disturbances and maximize observing efficiency. Trajectory design in support of libration orbits is ever more challenging as more complex missions are envisioned in the next decade. Trajectory design software must be further enabled to incorporate better understanding of the libration orbit solution space and thus improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple libration missions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes algorithm and software development. The recently launched Microwave Anisotropy Probe (MAP) and upcoming James Webb Space Telescope (JWST) and Constellation-X missions are examples of the use of improved numerical methods for attaining constrained orbital parameters and controlling their dynamical evolution at the collinear libration points. This paper presents a history of libration point missions, a brief description of the numerical and dynamical design techniques including software used, and a sample of future GSFC mission designs.
NASA Astrophysics Data System (ADS)
Akarsu, Özgür; Dereli, Tekin
2013-02-01
We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.
NASA Technical Reports Server (NTRS)
Fink, Richard
2015-01-01
The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.
On safe configurations of a natural-artificial space tether system
NASA Astrophysics Data System (ADS)
Rodnikov, A. V.
2018-05-01
We study the dynamics of a particle moving under gravitation of precessing dynamically symmetric rigid body if the particle motion is restricted by two unilateral (flexible) constraints realized by two weightless unstretchable tethers with ends fixed at body poles, formed as the intersection of the body surface with the axis of its dynamical symmetry. The system under consideration is a simple model of an original natural-artificial space construction consisting of an asteroid and a space station tethered to each other via two cables. We note that the problem is integrable for the system safe configurations, i.e. for motions along the constraints common boundary (both tethers are tensed) if the body gravitational potential is invariant with respect to rotation about the axis of dynamical symmetry. We study these motions depicting phase portraits for possible values of system parameters. We also deduce conditions for the particle coming off the boundary of constraint(s) (if the tether(s) are slackened) and analyze these conditions, eliminating corresponding areas from phase portraits. We also formulate some statements, concerning the particle safety.
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Baetz, B. W.; Huang, W.
2015-11-01
This paper presents a polynomial chaos ensemble hydrologic prediction system (PCEHPS) for an efficient and robust uncertainty assessment of model parameters and predictions, in which possibilistic reasoning is infused into probabilistic parameter inference with simultaneous consideration of randomness and fuzziness. The PCEHPS is developed through a two-stage factorial polynomial chaos expansion (PCE) framework, which consists of an ensemble of PCEs to approximate the behavior of the hydrologic model, significantly speeding up the exhaustive sampling of the parameter space. Multiple hypothesis testing is then conducted to construct an ensemble of reduced-dimensionality PCEs with only the most influential terms, which is meaningful for achieving uncertainty reduction and further acceleration of parameter inference. The PCEHPS is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability. A detailed comparison between the HYMOD hydrologic model, the ensemble of PCEs, and the ensemble of reduced PCEs is performed in terms of accuracy and efficiency. Results reveal temporal and spatial variations in parameter sensitivities due to the dynamic behavior of hydrologic systems, and the effects (magnitude and direction) of parametric interactions depending on different hydrological metrics. The case study demonstrates that the PCEHPS is capable not only of capturing both expert knowledge and probabilistic information in the calibration process, but also of implementing an acceleration of more than 10 times faster than the hydrologic model without compromising the predictive accuracy.
A probabilistic approach for the estimation of earthquake source parameters from spectral inversion
NASA Astrophysics Data System (ADS)
Supino, M.; Festa, G.; Zollo, A.
2017-12-01
The amplitude spectrum of a seismic signal related to an earthquake source carries information about the size of the rupture, moment, stress and energy release. Furthermore, it can be used to characterize the Green's function of the medium crossed by the seismic waves. We describe the earthquake amplitude spectrum assuming a generalized Brune's (1970) source model, and direct P- and S-waves propagating in a layered velocity model, characterized by a frequency-independent Q attenuation factor. The observed displacement spectrum depends indeed on three source parameters, the seismic moment (through the low-frequency spectral level), the corner frequency (that is a proxy of the fault length) and the high-frequency decay parameter. These parameters are strongly correlated each other and with the quality factor Q; a rigorous estimation of the associated uncertainties and parameter resolution is thus needed to obtain reliable estimations.In this work, the uncertainties are characterized adopting a probabilistic approach for the parameter estimation. Assuming an L2-norm based misfit function, we perform a global exploration of the parameter space to find the absolute minimum of the cost function and then we explore the cost-function associated joint a-posteriori probability density function around such a minimum, to extract the correlation matrix of the parameters. The global exploration relies on building a Markov chain in the parameter space and on combining a deterministic minimization with a random exploration of the space (basin-hopping technique). The joint pdf is built from the misfit function using the maximum likelihood principle and assuming a Gaussian-like distribution of the parameters. It is then computed on a grid centered at the global minimum of the cost-function. The numerical integration of the pdf finally provides mean, variance and correlation matrix associated with the set of best-fit parameters describing the model. Synthetic tests are performed to investigate the robustness of the method and uncertainty propagation from the data-space to the parameter space. Finally, the method is applied to characterize the source parameters of the earthquakes occurring during the 2016-2017 Central Italy sequence, with the goal of investigating the source parameter scaling with magnitude.
NASA Astrophysics Data System (ADS)
Wolff, Schuyler G.; Perrin, Marshall D.; Stapelfeldt, Karl; Duchêne, Gaspard; Ménard, Francois; Padgett, Deborah; Pinte, Christophe; Pueyo, Laurent; Fischer, William J.
2017-12-01
We present new Hubble Space Telescope (HST) Advanced Camera for Surveys observations and detailed models for a recently discovered edge-on protoplanetary disk around ESO-Hα 569 (a low-mass T Tauri star in the Cha I star-forming region). Using radiative transfer models, we probe the distribution of the grains and overall shape of the disk (inclination, scale height, dust mass, flaring exponent, and surface/volume density exponent) by model fitting to multiwavelength (F606W and F814W) HST observations together with a literature-compiled spectral energy distribution. A new tool set was developed for finding optimal fits of MCFOST radiative transfer models using the MCMC code emcee to efficiently explore the high-dimensional parameter space. It is able to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties. We confirm that ESO-Hα 569 is an optically thick nearly edge-on protoplanetary disk. The shape of the disk is well-described by a flared disk model with an exponentially tapered outer edge, consistent with models previously advocated on theoretical grounds and supported by millimeter interferometry. The scattered-light images and spectral energy distribution are best fit by an unusually high total disk mass (gas+dust assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.
Verification of Space Station Secondary Power System Stability Using Design of Experiment
NASA Technical Reports Server (NTRS)
Karimi, Kamiar J.; Booker, Andrew J.; Mong, Alvin C.; Manners, Bruce
1998-01-01
This paper describes analytical methods used in verification of large DC power systems with applications to the International Space Station (ISS). Large DC power systems contain many switching power converters with negative resistor characteristics. The ISS power system presents numerous challenges with respect to system stability such as complex sources and undefined loads. The Space Station program has developed impedance specifications for sources and loads. The overall approach to system stability consists of specific hardware requirements coupled with extensive system analysis and testing. Testing of large complex distributed power systems is not practical due to size and complexity of the system. Computer modeling has been extensively used to develop hardware specifications as well as to identify system configurations for lab testing. The statistical method of Design of Experiments (DoE) is used as an analysis tool for verification of these large systems. DOE reduces the number of computer runs which are necessary to analyze the performance of a complex power system consisting of hundreds of DC/DC converters. DoE also provides valuable information about the effect of changes in system parameters on the performance of the system. DoE provides information about various operating scenarios and identification of the ones with potential for instability. In this paper we will describe how we have used computer modeling to analyze a large DC power system. A brief description of DoE is given. Examples using applications of DoE to analysis and verification of the ISS power system are provided.
An open-source job management framework for parameter-space exploration: OACIS
NASA Astrophysics Data System (ADS)
Murase, Y.; Uchitane, T.; Ito, N.
2017-11-01
We present an open-source software framework for parameter-space exporation, named OACIS, which is useful to manage vast amount of simulation jobs and results in a systematic way. Recent development of high-performance computers enabled us to explore parameter spaces comprehensively, however, in such cases, manual management of the workflow is practically impossible. OACIS is developed aiming at reducing the cost of these repetitive tasks when conducting simulations by automating job submissions and data management. In this article, an overview of OACIS as well as a getting started guide are presented.
Research on the space-borne coherent wind lidar technique and the prototype experiment
NASA Astrophysics Data System (ADS)
Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao
2016-10-01
Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.
Q-space trajectory imaging for multidimensional diffusion MRI of the human brain
Westin, Carl-Fredrik; Knutsson, Hans; Pasternak, Ofer; Szczepankiewicz, Filip; Özarslan, Evren; van Westen, Danielle; Mattisson, Cecilia; Bogren, Mats; O’Donnell, Lauren; Kubicki, Marek; Topgaard, Daniel; Nilsson, Markus
2016-01-01
This work describes a new diffusion MR framework for imaging and modeling of microstructure that we call q-space trajectory imaging (QTI). The QTI framework consists of two parts: encoding and modeling. First we propose q-space trajectory encoding, which uses time-varying gradients to probe a trajectory in q-space, in contrast to traditional pulsed field gradient sequences that attempt to probe a point in q-space. Then we propose a microstructure model, the diffusion tensor distribution (DTD) model, which takes advantage of additional information provided by QTI to estimate a distributional model over diffusion tensors. We show that the QTI framework enables microstructure modeling that is not possible with the traditional pulsed gradient encoding as introduced by Stejskal and Tanner. In our analysis of QTI, we find that the well-known scalar b-value naturally extends to a tensor-valued entity, i.e., a diffusion measurement tensor, which we call the b-tensor. We show that b-tensors of rank 2 or 3 enable estimation of the mean and covariance of the DTD model in terms of a second order tensor (the diffusion tensor) and a fourth order tensor. The QTI framework has been designed to improve discrimination of the sizes, shapes, and orientations of diffusion microenvironments within tissue. We derive rotationally invariant scalar quantities describing intuitive microstructural features including size, shape, and orientation coherence measures. To demonstrate the feasibility of QTI on a clinical scanner, we performed a small pilot study comparing a group of five healthy controls with five patients with schizophrenia. The parameter maps derived from QTI were compared between the groups, and 9 out of the 14 parameters investigated showed differences between groups. The ability to measure and model the distribution of diffusion tensors, rather than a quantity that has already been averaged within a voxel, has the potential to provide a powerful paradigm for the study of complex tissue architecture. PMID:26923372
Consistency problems associated to the improvement of precession-nutation theories
NASA Astrophysics Data System (ADS)
Ferrandiz, J. M.; Escapa, A.; Baenas, T.; Getino, J.; Navarro, J. F.; Belda, S.
2014-12-01
The complexity of the modelling of the rotational motion of the Earth in space has produced that no single theory has been adopted to describe it in full. Hence, it is customary using at least a theory for precession and another one for nutation. The classic approach proceeds by deriving some of the fundamentals parameters from the precession theory at hand, like, e.g. the dynamical ellipticity H, and then using that valuesin the nutation theory. The former IAU1976 precession and IAU1980 nutation theories followed that scheme. Along with the improvement of the accuracy of the determination of EOP (Earth orientation parameters), IAU1980 was superseded by IAU2000, based on the application of the MHB2000 (Mathews et al 2002) transfer function to the previous rigid earth analytical theory REN2000 (Souchay et al 1999). The latter was derived while the precession model IAU1976 was still in force therefore it used the corresponding values for some of the fundamental parameters, as the precession rate, associated to the dynamical ellipticity, and the obliquity of the ecliptic at the reference epoch. The new precession model P03 was adopted as IAU2006. That change introduced some inconsistency since P03 used different values for some of the fundamental parameters that MHB2000 inherited from REN2000. Besides, the derivation of the basic earth parameters of MHB2000 itself comprised a fitted variation of the dynamical ellipticity adopted in the background rigid theory. Due to the strict requirements of accuracy of the present and coming times, the magnitude of the inconsistencies originated by this two-fold approach is no longer negligible as earlier. Some corrections have been proposed by Capitaine et al (2005) and Escapa et al (2014) in order to reach a better level of consistency between precession and nutation theories and parameters. In this presentation we revisit the problem taking into account some of the advances in precession theory not accounted for yet, stemming from the non-rigid nature of the Earth. Special attention is paid to the assessment of the level of consistency between the current IAU precession and nutation models and its impact on the adopted reference values. We suggest potential corrections and possibilities to incorporate theoretical advances and improve accuracy while being compliant with IAU resolutions.
NASA Astrophysics Data System (ADS)
Berger, Thomas
The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station (ISS) is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European Columbus module the experiment “Dose Distribution Inside the ISS” (DOSIS), under the project and science lead of the German Aerospace Center (DLR), was launched on July 15th 2009 with STS-127 to the ISS. The DOSIS experiment consists of a combination of “Passive Detector Packages” (PDP) distributed at eleven locations inside Columbus for the measurement of the spatial variation of the radiation field and two active Dosimetry Telescopes (DOSTELs) with a Data and Power Unit (DDPU) in a dedicated nomex pouch mounted at a fixed location beneath the European Physiology Module rack (EPM) for the measurement of the temporal variation of the radiation field parameters. The DOSIS experiment suite measured during the lowest solar minimum conditions in the space age from July 2009 to June 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the follow up DOSIS 3D experiment. The hardware for DOSIS 3D was launched with Soyuz 30S to the ISS on May 15th 2012. The PDPs are replaced with each even number Soyuz flight starting with Soyuz 30S. Data from the active detectors is transferred to ground via the EPM rack which is activated once a month for this action. The presentation will give an overview of the DOSIS and DOSIS 3D experiment and focus on the results from the passive radiation detectors from the DOSIS 3D experiment (2012 - 2014) in comparison to the data of the DOSIS experiment (2009 - 2011). The Polish contribution was supported by the National Science Centre (No DEC-2012/06/M/ST9/00423). The CAU contributions to DOSIS and DOSIS 3D are financially supported by BMWi under Grants 50WB0826, 50WB1026 and 50WB1232.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical-loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
Wingard, Jeffrey C; Goodman, Jarid; Leong, Kah-Chung; Packard, Mark G
2015-09-01
Studies employing brain lesion or intracerebral drug infusions in rats have demonstrated a double dissociation between the roles of the hippocampus and dorsolateral striatum in place and response learning. The hippocampus mediates a rapid cognitive learning process underlying place learning, whereas the dorsolateral striatum mediates a relatively slower learning process in which stimulus-response habits underlying response learning are acquired in an incremental fashion. One potential implication of these findings is that hippocampus-dependent learning may benefit from a relative massing of training trials, whereas dorsal striatum-dependent learning may benefit from a relative distribution of training trials. In order to examine this hypothesis, the present study compared the effects of massed (30s inter-trial interval; ITI) or spaced (30min ITI) training on acquisition of a hippocampus-dependent place learning task, and a dorsolateral striatum-dependent response task in a plus-maze. In the place task rats swam from varying start points (N or S) to a hidden escape platform located in a consistent spatial location (W). In the response task rats swam from varying start points (N or S) to a hidden escape platform located in the maze arm consistent with a body-turn response (left). In the place task, rats trained with the massed trial schedule acquired the task quicker than rats trained with the spaced trial schedule. In the response task, rats trained with the spaced trial schedule acquired the task quicker than rats trained with the massed trial schedule. The double dissociation observed suggests that the reinforcement parameters most conducive to effective learning in hippocampus-dependent and dorsolateral striatum-dependent learning may have differential temporal characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.
Method of measuring the dc electric field and other tokamak parameters
Fisch, Nathaniel J.; Kirtz, Arnold H.
1992-01-01
A method including externally imposing an impulsive momentum-space flux to perturb hot tokamak electrons thereby producing a transient synchrotron radiation signal, in frequency-time space, and the inference, using very fast algorithms, of plasma parameters including the effective ion charge state Z.sub.eff, the direction of the magnetic field, and the position and width in velocity space of the impulsive momentum-space flux, and, in particular, the dc toroidal electric field.
NASA Technical Reports Server (NTRS)
Klaus, David M.; Benoit, Michael R.; Nelson, Emily S.; Hammond, Timmothy G.
2004-01-01
Conducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell. Weight can be broken down to include the formation of hydrostatic gradients, structural load (stress) or physical deformation (strain). Gravitationally induced motion within or near individual cells in a fluid includes sedimentation (or buoyancy) of the cell and associated shear forces, displacement of cytoskeleton or organelles, and factors associated with intra- or extracellular mass transport. Finally, and of particular importance for cell culture experiments, the collective effects of gravity must be considered for the overall system consisting of the cells, their environment and the device in which they are contained. This does not, however, rule out other confounding variables such as launch acceleration, on orbit vibration, transient acceleration impulses or radiation, which can be isolated using onboard centrifuges or vibration isolation techniques. A framework is offered for characterizing specific cause-and-effect relationships for gravity-dependent responses as a function of the above parameters.
Vitale, Salvatore
2016-07-29
With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.
Perturbed-input-data ensemble modeling of magnetospheric dynamics
NASA Astrophysics Data System (ADS)
Morley, S.; Steinberg, J. T.; Haiducek, J. D.; Welling, D. T.; Hassan, E.; Weaver, B. P.
2017-12-01
Many models of Earth's magnetospheric dynamics - including global magnetohydrodynamic models, reduced complexity models of substorms and empirical models - are driven by solar wind parameters. To provide consistent coverage of the upstream solar wind these measurements are generally taken near the first Lagrangian point (L1) and algorithmically propagated to the nose of Earth's bow shock. However, the plasma and magnetic field measured near L1 is a point measurement of an inhomogeneous medium, so the individual measurement may not be sufficiently representative of the broader region near L1. The measured plasma may not actually interact with the Earth, and the solar wind structure may evolve between L1 and the bow shock. To quantify uncertainties in simulations, as well as to provide probabilistic forecasts, it is desirable to use perturbed input ensembles of magnetospheric and space weather forecasting models. By using concurrent measurements of the solar wind near L1 and near the Earth, we construct a statistical model of the distributions of solar wind parameters conditioned on their upstream value. So that we can draw random variates from our model we specify the conditional probability distributions using Kernel Density Estimation. We demonstrate the utility of this approach using ensemble runs of selected models that can be used for space weather prediction.
Bianchi cosmologies with p-form gauge fields
NASA Astrophysics Data System (ADS)
Normann, Ben David; Hervik, Sigbjørn; Ricciardone, Angelo; Thorsrud, Mikjel
2018-05-01
In this paper the dynamics of free gauge fields in Bianchi type I–VII h space-times is investigated. The general equations for a matter sector consisting of a p-form field strength (p \\in \\{1, 3\\} ), a cosmological constant (4-form) and perfect fluid in Bianchi type I–VII h space-times are computed using the orthonormal frame method. The number of independent components of a p-form in all Bianchi types I–IX are derived and, by means of the dynamical systems approach, the behaviour of such fields in Bianchi type I and V are studied. Both a local and a global analysis are performed and strong global results regarding the general behaviour are obtained. New self-similar cosmological solutions appear both in Bianchi type I and Bianchi type V, in particular, a one-parameter family of self-similar solutions, ‘Wonderland (λ)’ appears generally in type V and in type I for λ=0 . Depending on the value of the equation of state parameter other new stable solutions are also found (‘The Rope’ and ‘The Edge’) containing a purely spatial field strength that rotates relative to the co-moving inertial tetrad. Using monotone functions, global results are given and the conditions under which exact solutions are (global) attractors are found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamasaki, Masayuki; Ogura, Kohei; Moriwaki, Satoko
The crystallization and preliminary characterization of the family PL-7 alginate lyases A1-II and A1-II′ from Sphingomonas sp. A1 are presented. Alginate lyases depolymerize alginate, a heteropolysaccharide consisting of α-l-guluronate and β-d-mannuronate, through a β-elimination reaction. The alginate lyases A1-II (25 kDa) and A1-II′ (25 kDa) from Sphingomonas sp. A1, which belong to polysaccharide lyase family PL-7, exhibit 68% homology in primary structure but have different substrate specificities. To determine clearly the structural basis for substrate recognition in the depolymerization mechanism by alginate lyases, both proteins were crystallized at 293 K using the vapour-diffusion method. A crystal of A1-II belonged tomore » space group P2{sub 1} and diffracted to 2.2 Å resolution, with unit-cell parameters a = 51.3, b = 30.1, c = 101.6 Å, β = 100.2°, while a crystal of A1-II′ belonged to space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.0 Å resolution, with unit-cell parameters a = 34.6, b = 68.5, c = 80.3 Å.« less
Perturbations and moduli space dynamics of tachyon kinks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindmarsh, Mark; Li Huiquan
2008-03-15
The dynamic process of unstable D-branes decaying into stable ones with one dimension lower can be described by a tachyon field with a Dirac-Born-Infeld effective action. In this paper we investigate the fluctuation modes of the tachyon field around a two-parameter family of static solutions representing an array of brane-antibrane pairs. Besides a pair of zero modes associated with the parameters of the solution, and instabilities associated with annihilation of the brane-antibrane pairs, we find states corresponding to excitations of the tachyon field around the brane and in the bulk. In the limit that the brane thickness tends to zero,more » the support of the eigenmodes is limited to the brane, consistent with the idea that propagating tachyon modes drop out of the spectrum as the tachyon field approaches its ground state. The zero modes, and other low-lying excited states, show a fourfold degeneracy in this limit, which can be identified with some of the massless superstring modes in the brane-antibrane system. Finally, we also discuss the slow motion of the solution corresponding to the decay process in the moduli space, finding a trajectory which oscillates periodically between the unstable D-brane and the brane-antibrane pairs of one dimension lower.« less
Woerd, Hendrik J van der; Wernand, Marcel R
2015-10-09
The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne "ocean colour" instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10) of narrow (≈10 nm) bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data. In this paper we re-introduce colour as a valuable parameter that can be expressed mainly by the hue angle (α). Based on a set of 500 synthetic spectra covering a broad range of natural waters a simple algorithm is developed to derive the hue angle from SeaWiFS, MODIS, MERIS and OLCI data. The algorithm consists of a weighted linear sum of the remote sensing reflectance in all visual bands plus a correction term for the specific band-setting of each instrument. The algorithm is validated by a set of 603 hyperspectral measurements from inland-, coastal- and near-ocean waters. We conclude that the hue angle is a simple objective parameter of natural waters that can be retrieved uniformly for all space-borne ocean colour instruments.
Heat Rejection Concepts for Lunar Fission Surface Power Applications
NASA Technical Reports Server (NTRS)
Siamidis, John
2006-01-01
This paper describes potential heat rejection design concepts for lunar surface Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for surface power applications. Surface reactors may be used for the moon to power human outposts enabling extended stays and closed loop life support. The Brayton Heat Rejection System (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 K to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped water heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a tube and fin construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. The water heat pipes interface to the coolant through curved sections partially contained within the cooling loop. The paper evaluates various design parameters including radiator panel orientation, coolant flow path, and facesheet thickness. Parameters were varied to compare design options on the basis of H2O pump pressure rise and required power, heat pipe unit power and radial flux, radiator area, radiator panel areal mass, and overall HRS mass.
NASA Astrophysics Data System (ADS)
Ashenfelter, J.; Balantekin, A. B.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bignell, L.; Bowden, N. S.; Bowes, A.; Brodsky, J. P.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Commeford, K.; Conant, A. J.; Davee, D.; Dean, D.; Deichert, G.; Diwan, M. V.; Dolinski, M. J.; Dolph, J.; DuVernois, M.; Erikson, A. S.; Febbraro, M. T.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Goddard, B. W.; Green, M.; Hackett, B. T.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Insler, J.; Jaffe, D. E.; Jones, D.; Langford, T. J.; Littlejohn, B. R.; Martinez Caicedo, D. A.; Matta, J. T.; McKeown, R. D.; Mendenhall, M. P.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Neilson, R.; Nikkel, J. A.; Norcini, D.; Pushin, D.; Qian, X.; Romero, E.; Rosero, R.; Seilhan, B. S.; Sharma, R.; Sheets, S.; Surukuchi, P. T.; Trinh, C.; Varner, R. L.; Viren, B.; Wang, W.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zangakis, G. Z.; Zhang, C.; Zhang, X.; PROSPECT Collaboration
2016-11-01
The precision reactor oscillation and spectrum experiment, PROSPECT, is designed to make a precise measurement of the antineutrino spectrum from a highly-enriched uranium reactor and probe eV-scale sterile neutrinos by searching for neutrino oscillations over a distance of several meters. PROSPECT is conceived as a 2-phase experiment utilizing segmented 6Li-doped liquid scintillator detectors for both efficient detection of reactor antineutrinos through the inverse beta decay reaction and excellent background discrimination. PROSPECT Phase I consists of a movable 3 ton antineutrino detector at distances of 7-12 m from the reactor core. It will probe the best-fit point of the {ν }e disappearance experiments at 4σ in 1 year and the favored region of the sterile neutrino parameter space at \\gt 3σ in 3 years. With a second antineutrino detector at 15-19 m from the reactor, Phase II of PROSPECT can probe the entire allowed parameter space below 10 eV2 at 5σ in 3 additional years. The measurement of the reactor antineutrino spectrum and the search for short-baseline oscillations with PROSPECT will test the origin of the spectral deviations observed in recent {θ }13 experiments, search for sterile neutrinos, and conclusively address the hypothesis of sterile neutrinos as an explanation of the reactor anomaly.
Honjo, Eijiro; Tamada, Taro; Maeda, Yoshitake; Koshiba, Takumi; Matsukura, Yasuko; Okamoto, Tomoyuki; Ishibashi, Matsujiro; Tokunaga, Masao; Kuroki, Ryota
2005-01-01
The granulocyte-colony stimulating factor (GCSF) receptor receives signals for regulating the maturation, proliferation and differentiation of the precursor cells of neutrophilic granulocytes. The signalling complex composed of two GCSFs (GCSF, 19 kDa) and two GCSF receptors (GCSFR, 34 kDa) consisting of an Ig-like domain and a cytokine-receptor homologous (CRH) domain was crystallized. A crystal of the complex was grown in 1.0 M sodium formate and 0.1 M sodium acetate pH 4.6 and belongs to space group P41212 (or its enantiomorph P43212), with unit-cell parameters a = b = 110.1, c = 331.8 Å. Unfortunately, this crystal form did not diffract beyond 5 Å resolution. Since the heterogeneity of GCSF receptor appeared to prevent the growth of good-quality crystals, the GCSF receptor was fractionated by anion-exchange chromatography. Crystals of the GCSF–fractionated GCSF receptor complex were grown as a new crystal form in 0.2 M ammonium phosphate. This new crystal form diffracted to beyond 3.0 Å resolution and belonged to space group P3121 (or its enantiomorph P3221), with unit-cell parameters a = b = 134.8, c = 105.7 Å. PMID:16511159
NASA Technical Reports Server (NTRS)
Smith, O. E.; Adelfang, S. I.; Tubbs, J. D.
1982-01-01
A five-parameter gamma distribution (BGD) having two shape parameters, two location parameters, and a correlation parameter is investigated. This general BGD is expressed as a double series and as a single series of the modified Bessel function. It reduces to the known special case for equal shape parameters. Practical functions for computer evaluations for the general BGD and for special cases are presented. Applications to wind gust modeling for the ascent flight of the space shuttle are illustrated.
NASA Astrophysics Data System (ADS)
Carpenter, Matthew H.; Jernigan, J. G.
2007-05-01
We present examples of an analysis progression consisting of a synthesis of the Photon Clean Method (Carpenter, Jernigan, Brown, Beiersdorfer 2007) and bootstrap methods to quantify errors and variations in many-parameter models. The Photon Clean Method (PCM) works well for model spaces with large numbers of parameters proportional to the number of photons, therefore a Monte Carlo paradigm is a natural numerical approach. Consequently, PCM, an "inverse Monte-Carlo" method, requires a new approach for quantifying errors as compared to common analysis methods for fitting models of low dimensionality. This presentation will explore the methodology and presentation of analysis results derived from a variety of public data sets, including observations with XMM-Newton, Chandra, and other NASA missions. Special attention is given to the visualization of both data and models including dynamic interactive presentations. This work was performed under the auspices of the Department of Energy under contract No. W-7405-Eng-48. We thank Peter Beiersdorfer and Greg Brown for their support of this technical portion of a larger program related to science with the LLNL EBIT program.
``Simplest Molecule'' Clarifies Modern Physics II. Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Harter, William; Reimer, Tyle
2015-05-01
A ``simplest molecule'' consisting of CW- laser beam pairs helps to clarify relativity from poster board - I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and antimatter. Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: ``All colors go c.''
"simplest Molecule" Clarifies Modern Physics II. Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Reimer, T. C.; Harter, W. G.
2014-06-01
A "simplest molecule" consisting of CW-laser beam pairs helps to clarify relativity in Talk I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and anti-matter. *Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: "All colors go c."
Taming parallel I/O complexity with auto-tuning
Behzad, Babak; Luu, Huong Vu Thanh; Huchette, Joseph; ...
2013-11-17
We present an auto-tuning system for optimizing I/O performance of HDF5 applications and demonstrate its value across platforms, applications, and at scale. The system uses a genetic algorithm to search a large space of tunable parameters and to identify effective settings at all layers of the parallel I/O stack. The parameter settings are applied transparently by the auto-tuning system via dynamically intercepted HDF5 calls. To validate our auto-tuning system, we applied it to three I/O benchmarks (VPIC, VORPAL, and GCRM) that replicate the I/O activity of their respective applications. We tested the system with different weak-scaling configurations (128, 2048, andmore » 4096 CPU cores) that generate 30 GB to 1 TB of data, and executed these configurations on diverse HPC platforms (Cray XE6, IBM BG/P, and Dell Cluster). In all cases, the auto-tuning framework identified tunable parameters that substantially improved write performance over default system settings. In conclusion, we consistently demonstrate I/O write speedups between 2x and 100x for test configurations.« less
Constraints on supersymmetric dark matter for heavy scalar superpartners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Peisi; Roglans, Roger A.; Spiegel, Daniel D.
2017-05-01
We study the constraints on neutralino dark matter in minimal low energy supersymmetry models and the case of heavy lepton and quark scalar superpartners. For values of the Higgsino and gaugino mass parameters of the order of the weak scale, direct detection experiments are already putting strong bounds on models in which the dominant interactions between the dark matter candidates and nuclei are governed by Higgs boson exchange processes, particularly for positive values of the Higgsino mass parameter mu. For negative values of mu, there can be destructive interference between the amplitudes associated with the exchange of the standard CP-evenmore » Higgs boson and the exchange of the nonstandard one. This leads to specific regions of parameter space which are consistent with the current experimental constraints and a thermal origin of the observed relic density. In this article, we study the current experimental constraints on these scenarios, as well as the future experimental probes, using a combination of direct and indirect dark matter detection and heavy Higgs and electroweakino searches at hadron colliders« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
EL-Shamy, E. F., E-mail: emadel-shamy@hotmail.com; Department of Physics, College of Science, King Khalid University, P.O. 9004, Abha; Al-Asbali, A. M., E-mail: aliaa-ma@hotmail.com
A theoretical investigation is carried out to study the propagation and the head-on collision of dust-acoustic (DA) shock waves in a strongly coupled dusty plasma consisting of negative dust fluid, Maxwellian distributed electrons and ions. Applying the extended Poincaré–Lighthill–Kuo method, a couple of Korteweg–deVries–Burgers equations for describing DA shock waves are derived. This study is a first attempt to deduce the analytical phase shifts of DA shock waves after collision. The impacts of physical parameters such as the kinematic viscosity, the unperturbed electron-to-dust density ratio, parameter determining the effect of polarization force, the ion-to-electron temperature ratio, and the effective dustmore » temperature-to-ion temperature ratio on the structure and the collision of DA shock waves are examined. In addition, the results reveal the increase of the strength and the steepness of DA shock waves as the above mentioned parameters increase, which in turn leads to the increase of the phase shifts of DA shock waves after collision. The present model may be useful to describe the structure and the collision of DA shock waves in space and laboratory dusty plasmas.« less
NASA Astrophysics Data System (ADS)
Amsallem, David; Tezaur, Radek; Farhat, Charbel
2016-12-01
A comprehensive approach for real-time computations using a database of parametric, linear, projection-based reduced-order models (ROMs) based on arbitrary underlying meshes is proposed. In the offline phase of this approach, the parameter space is sampled and linear ROMs defined by linear reduced operators are pre-computed at the sampled parameter points and stored. Then, these operators and associated ROMs are transformed into counterparts that satisfy a certain notion of consistency. In the online phase of this approach, a linear ROM is constructed in real-time at a queried but unsampled parameter point by interpolating the pre-computed linear reduced operators on matrix manifolds and therefore computing an interpolated linear ROM. The proposed overall model reduction framework is illustrated with two applications: a parametric inverse acoustic scattering problem associated with a mockup submarine, and a parametric flutter prediction problem associated with a wing-tank system. The second application is implemented on a mobile device, illustrating the capability of the proposed computational framework to operate in real-time.
NASA Astrophysics Data System (ADS)
Cervelli, P.; Murray, M. H.; Segall, P.; Aoki, Y.; Kato, T.
2001-06-01
We have applied two Monte Carlo optimization techniques, simulated annealing and random cost, to the inversion of deformation data for fault and magma chamber geometry. These techniques involve an element of randomness that permits them to escape local minima and ultimately converge to the global minimum of misfit space. We have tested the Monte Carlo algorithms on two synthetic data sets. We have also compared them to one another in terms of their efficiency and reliability. We have applied the bootstrap method to estimate confidence intervals for the source parameters, including the correlations inherent in the data. Additionally, we present methods that use the information from the bootstrapping procedure to visualize the correlations between the different model parameters. We have applied these techniques to GPS, tilt, and leveling data from the March 1997 earthquake swarm off of the Izu Peninsula, Japan. Using the two Monte Carlo algorithms, we have inferred two sources, a dike and a fault, that fit the deformation data and the patterns of seismicity and that are consistent with the regional stress field.
NASA Astrophysics Data System (ADS)
Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes
Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR has been launched on July 15 (th) 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18 (th) . It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (Dosimetry Telescopes = DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a Nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The active components of the DOSIS experiment were operational from July 18 (th) 2009 to June 16 (th) 2011. After refurbishment the hardware has been reactivated on May 15 (th) 2012 as active part of the DOSIS 3D experiment and provides continuous data since this activation. The presentation will focus on the latest results from the two DOSTEL instruments as absorbed dose, dose equivalent and the related LET spectra gathered within the DOSIS (2009 - 2011) and DOSIS 3D (2012 - 2014) experiment. The CAU contributions to DOSIS and DOSIS 3D are financially supported by BMWi under Grants 50WB0826, 50WB1026 and 50WB1232
A naturally-occurring new lead-based halocuprate(I)
NASA Astrophysics Data System (ADS)
Welch, Mark D.; Rumsey, Michael S.; Kleppe, Annette K.
2016-06-01
Pb2Cu(OH)2I3 is a new type of halocuprate(I) that is a framework of alternating [Pb4(OH)4]4+ and [Cu2I6]4- units. The structure has been determined in orthorhombic space group Fddd to R1=0.037, wR2=0.057, GoF=1.016. Unit cell parameters are a=16.7082(9) Å, b=20.8465(15) Å, c=21.0159(14) Å, V=7320.0(8) Å3 (Z=32). There is no synthetic counterpart. The structure is based upon a cubane-like Pb4(OH)4 nucleus that is coordinated to sixteen iodide ions. Cu+ ions are inserted into pairs of adjacent edge-sharing tetrahedral sites in the iodide motif to form [Cu2I6]4- groups. The Raman spectrum of Pb2Cu(OH)2I3 has two O-H stretching modes and as such is consistent with space group Fddd, with two non-equivalent OH groups, rather than the related space group I41/acd which has only one non-equivalent OH group. Consideration of the 18-electron rule implies that there is a Cu=Cu double bond, which may be consistent with the short Cu…Cu distance of 2.78 Å, although the dearth of published data on the interpretation of Cu…Cu distances in halocuprate(I) compounds does not allow a clear-cut interpretation of this interatomic distance. The orthorhombic structure is compared with that of the synthetic halocuprate(I) compound Pb2Cu(OH)2BrI2 with space group I41/acd and having chains of corner-linked CuI4 tetrahedra rather than isolated Cu2I6 pairs. The paired motif found in Pb2Cu(OH)2I3 cannot be achieved in space group I41/acd and, conversely, the chain motif cannot be achieved in space group Fddd. As such, the space group defines either a chain or an isolated-pair motif. The existence of Pb2Cu(OH)2I3 suggests a new class of inorganic halocuprate(I)s based upon the Pb4(OH)4 group.
Dynamic large eddy simulation: Stability via realizability
NASA Astrophysics Data System (ADS)
Mokhtarpoor, Reza; Heinz, Stefan
2017-10-01
The concept of dynamic large eddy simulation (LES) is highly attractive: such methods can dynamically adjust to changing flow conditions, which is known to be highly beneficial. For example, this avoids the use of empirical, case dependent approximations (like damping functions). Ideally, dynamic LES should be local in physical space (without involving artificial clipping parameters), and it should be stable for a wide range of simulation time steps, Reynolds numbers, and numerical schemes. These properties are not trivial, but dynamic LES suffers from such problems over decades. We address these questions by performing dynamic LES of periodic hill flow including separation at a high Reynolds number Re = 37 000. For the case considered, the main result of our studies is that it is possible to design LES that has the desired properties. It requires physical consistency: a PDF-realizable and stress-realizable LES model, which requires the inclusion of the turbulent kinetic energy in the LES calculation. LES models that do not honor such physical consistency can become unstable. We do not find support for the previous assumption that long-term correlations of negative dynamic model parameters are responsible for instability. Instead, we concluded that instability is caused by the stable spatial organization of significant unphysical states, which are represented by wall-type gradient streaks of the standard deviation of the dynamic model parameter. The applicability of our realizability stabilization to other dynamic models (including the dynamic Smagorinsky model) is discussed.
Transition disks: four candidates for ongoing giant planet formation in Ophiuchus
NASA Astrophysics Data System (ADS)
Orellana, M.; Cieza, L. A.; Schreiber, M. R.; Merín, B.; Brown, J. M.; Pellizza, L. J.; Romero, G. A.
2012-03-01
Among the large set of Spitzer-selected transitional disks that we have examined in the Ophiuchus molecular, four disks have been identified as (giant) planet-forming candidates based on the morphology of their spectral energy distributions (SEDs), their apparent lack of stellar companions, and evidence of accretion. Here we characterize the structures of these disks modeling their optical, infrared, and (sub)millimeter SEDs. We use the Monte Carlo radiative transfer package RADMC to construct a parametric model of the dust distribution in a flared disk with an inner cavity and calculate the temperature structure that is consistent with the density profile, when the disk is in thermal equilibrium with the irradiating star. For each object, we conducted a Bayesian exploration of the parameter space generating Monte Carlo Markov chains (MCMC) that allow the identification of the best-fit model parameters and to constrain their range of statistical confidence. Our calculations imply that evacuated cavities with radii ~2-8 AU are present that appear to have been carved by embedded giant planets. We found parameter values that are consistent with those previously given in the literature, indicating that there has been a mild degree of grain growth and dust settling, which deserves to be investigated with further modeling and follow-up observations. Resolved images with (sub)millimeter interferometers would be required to break some of the degeneracies of the models and more tightly constrain the physical properties of these fascinating disks.
Naden, Levi N; Shirts, Michael R
2016-04-12
We show how thermodynamic properties of molecular models can be computed over a large, multidimensional parameter space by combining multistate reweighting analysis with a linear basis function approach. This approach reduces the computational cost to estimate thermodynamic properties from molecular simulations for over 130,000 tested parameter combinations from over 1000 CPU years to tens of CPU days. This speed increase is achieved primarily by computing the potential energy as a linear combination of basis functions, computed from either modified simulation code or as the difference of energy between two reference states, which can be done without any simulation code modification. The thermodynamic properties are then estimated with the Multistate Bennett Acceptance Ratio (MBAR) as a function of multiple model parameters without the need to define a priori how the states are connected by a pathway. Instead, we adaptively sample a set of points in parameter space to create mutual configuration space overlap. The existence of regions of poor configuration space overlap are detected by analyzing the eigenvalues of the sampled states' overlap matrix. The configuration space overlap to sampled states is monitored alongside the mean and maximum uncertainty to determine convergence, as neither the uncertainty or the configuration space overlap alone is a sufficient metric of convergence. This adaptive sampling scheme is demonstrated by estimating with high precision the solvation free energies of charged particles of Lennard-Jones plus Coulomb functional form with charges between -2 and +2 and generally physical values of σij and ϵij in TIP3P water. We also compute entropy, enthalpy, and radial distribution functions of arbitrary unsampled parameter combinations using only the data from these sampled states and use the estimates of free energies over the entire space to examine the deviation of atomistic simulations from the Born approximation to the solvation free energy.
Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.
Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph
2015-08-01
Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.
Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks
Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph
2015-01-01
Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is “non-intrusive” and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design. PMID:26317784
Oliveira, G M; de Oliveira, P P; Omar, N
2001-01-01
Cellular automata (CA) are important as prototypical, spatially extended, discrete dynamical systems. Because the problem of forecasting dynamic behavior of CA is undecidable, various parameter-based approximations have been developed to address the problem. Out of the analysis of the most important parameters available to this end we proposed some guidelines that should be followed when defining a parameter of that kind. Based upon the guidelines, new parameters were proposed and a set of five parameters was selected; two of them were drawn from the literature and three are new ones, defined here. This article presents all of them and makes their qualities evident. Then, two results are described, related to the use of the parameter set in the Elementary Rule Space: a phase transition diagram, and some general heuristics for forecasting the dynamics of one-dimensional CA. Finally, as an example of the application of the selected parameters in high cardinality spaces, results are presented from experiments involving the evolution of radius-3 CA in the Density Classification Task, and radius-2 CA in the Synchronization Task.
An Optimized Trajectory Planning for Welding Robot
NASA Astrophysics Data System (ADS)
Chen, Zhilong; Wang, Jun; Li, Shuting; Ren, Jun; Wang, Quan; Cheng, Qunchao; Li, Wentao
2018-03-01
In order to improve the welding efficiency and quality, this paper studies the combined planning between welding parameters and space trajectory for welding robot and proposes a trajectory planning method with high real-time performance, strong controllability and small welding error. By adding the virtual joint at the end-effector, the appropriate virtual joint model is established and the welding process parameters are represented by the virtual joint variables. The trajectory planning is carried out in the robot joint space, which makes the control of the welding process parameters more intuitive and convenient. By using the virtual joint model combined with the B-spline curve affine invariant, the welding process parameters are indirectly controlled by controlling the motion curve of the real joint. To solve the optimal time solution as the goal, the welding process parameters and joint space trajectory joint planning are optimized.
Observational constraints on the inter-binary stellar flare hypothesis for the gamma-ray bursts
NASA Astrophysics Data System (ADS)
Rao, A. R.; Vahia, M. N.
1994-01-01
The Gamma Ray Observatory/Burst and Transient Source Experiment (GRO/BATSE) results on the Gamma Ray Bursts (GRBs) have given an internally consistent set of observations of about 260 GRBs which have been released for analysis by the BATSE team. Using this database we investigate our earlier suggestion (Vahia and Rao, 1988) that GRBs are inter-binary stellar flares from a group of objects classified as Magnetically Active Stellar Systems (MASS) which includes flare stars, RS CVn binaries and cataclysmic variables. We show that there exists an observationally consistent parameter space for the number density, scale height and flare luminosity of MASS which explains the complete log(N) - log(P) distribution of GRBs as also the observed isotropic distribution. We further use this model to predict anisotropy in the GRB distribution at intermediate luminosities. We make definite predictions under the stellar flare hypothesis that can be tested in the near future.
Copula-based analysis of rhythm
NASA Astrophysics Data System (ADS)
García, J. E.; González-López, V. A.; Viola, M. L. Lanfredi
2016-06-01
In this paper we establish stochastic profiles of the rhythm for three languages: English, Japanese and Spanish. We model the increase or decrease of the acoustical energy, collected into three bands coming from the acoustic signal. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination of the partitions corresponding to the three marginal processes, one for each band of energy, and the partition coming from to the multivariate Markov chain. Then, all the partitions are linked using a copula, in order to estimate the transition probabilities.
NASA Astrophysics Data System (ADS)
Nath, Shyamal K.; McCoy, John D.; Curro, John G.; Saunders, Randall S.
1997-02-01
Polymer reference interaction site model (PRISM) based density functional (DF) theory is used to evaluate the structure and thermodynamics of structurally symmetric, freely jointed, diblock chains with 0.50 volume fraction. These results are compared to the results of self-consistent-field (SCF) theory. Agreement between the predictions of the SCF and DF theories is found for the lamella spacing well above the order-disorder transition (ODT) and for the qualitative behavior of the interfacial thickness as a function of both chain length and Flory-Huggins χ parameter. Disagreement is found for the magnitude of the interfacial thickness where DF theory indicates that the thickness is 1.7±0.2 times larger than that predicted by SCF theory. It appears that behavior on the monomer length scale is sensitive to system specific details which are neglected by SCF theory.
Focusing light in a bianisotropic slab with negatively refracting materials.
Liu, Yan; Guenneau, Sebastien; Gralak, Boris; Ramakrishna, S Anantha
2013-04-03
We investigate the electromagnetic response of a pair of complementary bianisotropic media, which consist of a medium with positive refractive index (+ε, +μ, +ξ) and a medium with negative refractive index(-ε, -μ, -ξ). We show that this idealized system has peculiar imaging properties in that it reproduces images of a source, in principle, with unlimited resolution. We then consider an infinite array of line sources regularly spaced in a 1D photonic crystal (PC) consisting of 2n layers of bianisotropic complementary media. Using coordinate transformations, we map this system into 2D corner chiral lenses of 2n heterogeneous anisotropic complementary media sharing a vertex, within which light circles around closed trajectories. Alternatively, one can consider corner lenses with homogeneous isotropic media and map them into 1D PCs with heterogeneous bianisotropic layers. Interestingly, such complementary media are described by scalar, or matrix valued, sign-shifting parameters, which satisfy a new version of the generalized lens theorem of Pendry and Ramakrishna. This theorem can be derived using Fourier series solutions of the Maxwell-Tellegen equations, or from space-time symmetry arguments. Also of interest are 2D periodic checkerboards consisting of alternating rectangular cells of complementary media which are such that one point source in one cell gives rise to an infinite set of images with an image in every other cell. Such checkerboards can themselves be mapped into a class of 3D corner lenses of complementary bianisotropic media. These theoretical results are illustrated by finite element computations.
NASA Astrophysics Data System (ADS)
Becerra, Marley; Frid, Henrik; Vázquez, Pedro A.
2017-12-01
This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. ["Dynamics of electrohydrodynamic laminar plumes: Scaling analysis and integral model," Phys. Fluids 12, 2809 (2000)] when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a high-density charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the finite element method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.
Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center
NASA Astrophysics Data System (ADS)
Maddox, Marlo M.; Mullinix, Richard; Mays, M. Leila; Kuznetsova, Maria; Zheng, Yihua; Pulkkinen, Antti; Rastaetter, Lutz
2013-03-01
Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Research Center at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 300 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities including the utilization of data from the Solar Dynamics Observatory mission. http://iswa.gsfc.nasa.gov/
Mdluli, Thembi; Buzzard, Gregery T; Rundell, Ann E
2015-09-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm's scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements.
Lever, Teresa E.; Braun, Sabrina M.; Brooks, Ryan T.; Harris, Rebecca A.; Littrell, Loren L.; Neff, Ryan M.; Hinkel, Cameron J.; Allen, Mitchell J.; Ulsas, Mollie A.
2015-01-01
This study adapted human videofluoroscopic swallowing study (VFSS) methods for use with murine disease models for the purpose of facilitating translational dysphagia research. Successful outcomes are dependent upon three critical components: test chambers that permit self-feeding while standing unrestrained in a confined space, recipes that mask the aversive taste/odor of commercially-available oral contrast agents, and a step-by-step test protocol that permits quantification of swallow physiology. Elimination of one or more of these components will have a detrimental impact on the study results. Moreover, the energy level capability of the fluoroscopy system will determine which swallow parameters can be investigated. Most research centers have high energy fluoroscopes designed for use with people and larger animals, which results in exceptionally poor image quality when testing mice and other small rodents. Despite this limitation, we have identified seven VFSS parameters that are consistently quantifiable in mice when using a high energy fluoroscope in combination with the new murine VFSS protocol. We recently obtained a low energy fluoroscopy system with exceptionally high imaging resolution and magnification capabilities that was designed for use with mice and other small rodents. Preliminary work using this new system, in combination with the new murine VFSS protocol, has identified 13 swallow parameters that are consistently quantifiable in mice, which is nearly double the number obtained using conventional (i.e., high energy) fluoroscopes. Identification of additional swallow parameters is expected as we optimize the capabilities of this new system. Results thus far demonstrate the utility of using a low energy fluoroscopy system to detect and quantify subtle changes in swallow physiology that may otherwise be overlooked when using high energy fluoroscopes to investigate murine disease models. PMID:25866882
Mdluli, Thembi; Buzzard, Gregery T.; Rundell, Ann E.
2015-01-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements. PMID:26379275
Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers
NASA Astrophysics Data System (ADS)
Tombesi, Francesco; Cappi, M.; Reeves, J.; Nemmen, R.; Braito, V.; Gaspari, M.; Reynolds, C. S.
2013-04-01
The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60%, consistent with previous studies. The fraction of sources with UFOs is >34%, >67% of which also show WAs. The large dynamic range obtained when considering all the absorbers together allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. The absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. This strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The observed parameters and correlations are consistent with both radiation pressure through Compton scattering and MHD processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, have a sufficiently high mechanical power to significantly contribute to the AGN feedback.
Gravitational Wave Oscillations in Bigravity.
Max, Kevin; Platscher, Moritz; Smirnov, Juri
2017-09-15
We derive consistent equations for gravitational wave oscillations in bigravity. In this framework a second dynamical tensor field is introduced in addition to general relativity and coupled such that one massless and one massive linear combination arise. Only one of the two tensors is the physical metric coupling to matter, and thus the basis in which gravitational waves propagate is different from the basis where the wave is produced and detected. Therefore, one should expect-in analogy to neutrino oscillations-to observe an oscillatory behavior. We show for the first time how this behavior arises explicitly, discuss phenomenological implications, and present new limits on the graviton parameter space in bigravity.
Pendini, Nicole R.; Polyak, Steve W.; Booker, Grant W.; Wallace, John C.; Wilce, Matthew C. J.
2008-01-01
Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 Å resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P42212, with unit-cell parameters a = b = 93.665, c = 131.95. PMID:18540065
NASA Technical Reports Server (NTRS)
Simon, M. K.; Udalov, S.; Huth, G. K.
1976-01-01
The forward link of the overall Ku-band communication system consists of the ground- TDRS-orbiter communication path. Because the last segment of the link is directed towards a relatively low orbiting shuttle, a PN code is used to reduce the spectral density. A method is presented for incorporating code acquisition and tracking functions into the orbiter's Ku-band receiver. Optimization of a three channel multiplexing technique is described. The importance of Costas loop parameters to provide false lock immunity for the receiver, and the advantage of using a sinusoidal subcarrier waveform, rather than square wave, are discussed.
Cubic polynomial maps with periodic critical orbit, Part II
NASA Astrophysics Data System (ADS)
Bonifant, Araceli; Kiwi, Jan; Milnor, John
The parameter space S_p for monic centered cubic polynomial maps with a marked critical point of period p is a smooth affine algebraic curve whose genus increases rapidly with p . Each S_p consists of a compact connectedness locus together with finitely many escape regions, each of which is biholomorphic to a punctured disk and is characterized by an essentially unique Puiseux series. This note will describe the topology of S_p , and of its smooth compactification, in terms of these escape regions. In particular, it computes the Euler characteristic. It concludes with a discussion of the real sub-locus of S_p .
Symplectic multiparticle tracking model for self-consistent space-charge simulation
Qiang, Ji
2017-01-23
Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.
Symplectic multiparticle tracking model for self-consistent space-charge simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiang, Ji
Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.
Consistent searches for SMEFT effects in non-resonant dijet events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alte, Stefan; Konig, Matthias; Shepherd, William
Here, we investigate the bounds which can be placed on generic new-physics contributions to dijet production at the LHC using the framework of the Standard Model Effective Field Theory, deriving the first consistently-treated EFT bounds from non-resonant high-energy data. We recast an analysis searching for quark compositeness, equivalent to treating the SM with one higher-dimensional operator as a complete UV model. In order to reach consistent, model-independent EFT conclusions, it is necessary to truncate the EFT effects consistently at ordermore » $$1/\\Lambda^2$$ and to include the possibility of multiple operators simultaneously contributing to the observables, neither of which has been done in previous searches of this nature. Furthermore, it is important to give consistent error estimates for the theoretical predictions of the signal model, particularly in the region of phase space where the probed energy is approaching the cutoff scale of the EFT. There are two linear combinations of operators which contribute to dijet production in the SMEFT with distinct angular behavior; we identify those linear combinations and determine the ability of LHC searches to constrain them simultaneously. Consistently treating the EFT generically leads to weakened bounds on new-physics parameters. These constraints will be a useful input to future global analyses in the SMEFT framework, and the techniques used here to consistently search for EFT effects are directly applicable to other off-resonance signals.« less
Consistent searches for SMEFT effects in non-resonant dijet events
Alte, Stefan; Konig, Matthias; Shepherd, William
2018-01-19
Here, we investigate the bounds which can be placed on generic new-physics contributions to dijet production at the LHC using the framework of the Standard Model Effective Field Theory, deriving the first consistently-treated EFT bounds from non-resonant high-energy data. We recast an analysis searching for quark compositeness, equivalent to treating the SM with one higher-dimensional operator as a complete UV model. In order to reach consistent, model-independent EFT conclusions, it is necessary to truncate the EFT effects consistently at ordermore » $$1/\\Lambda^2$$ and to include the possibility of multiple operators simultaneously contributing to the observables, neither of which has been done in previous searches of this nature. Furthermore, it is important to give consistent error estimates for the theoretical predictions of the signal model, particularly in the region of phase space where the probed energy is approaching the cutoff scale of the EFT. There are two linear combinations of operators which contribute to dijet production in the SMEFT with distinct angular behavior; we identify those linear combinations and determine the ability of LHC searches to constrain them simultaneously. Consistently treating the EFT generically leads to weakened bounds on new-physics parameters. These constraints will be a useful input to future global analyses in the SMEFT framework, and the techniques used here to consistently search for EFT effects are directly applicable to other off-resonance signals.« less
NASA Astrophysics Data System (ADS)
Cui, Tiangang; Marzouk, Youssef; Willcox, Karen
2016-06-01
Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.