Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying
2018-01-01
The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial heterogeneity under the three vegetation types. According to the temporal and spatial heterogeneity of the optimal values, the parameters of the BIOME-BGC model could be classified in order to adopt different parameter strategies in practical application. The conclusion could help to deeply understand the parameters and the optimal values of the ecological process models, and provide a way or reference for obtaining the reasonable values of parameters in models application.
A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images.
Forgacs, Attila; Pall Jonsson, Hermann; Dahlbom, Magnus; Daver, Freddie; D DiFranco, Matthew; Opposits, Gabor; K Krizsan, Aron; Garai, Ildiko; Czernin, Johannes; Varga, Jozsef; Tron, Lajos; Balkay, Laszlo
2016-01-01
Textural analysis might give new insights into the quantitative characterization of metabolically active tumors. More than thirty textural parameters have been investigated in former F18-FDG studies already. The purpose of the paper is to declare basic requirements as a selection strategy to identify the most appropriate heterogeneity parameters to measure textural features. Our predefined requirements were: a reliable heterogeneity parameter has to be volume independent, reproducible, and suitable for expressing quantitatively the degree of heterogeneity. Based on this criteria, we compared various suggested measures of homogeneity. A homogeneous cylindrical phantom was measured on three different PET/CT scanners using the commonly used protocol. In addition, a custom-made inhomogeneous tumor insert placed into the NEMA image quality phantom was imaged with a set of acquisition times and several different reconstruction protocols. PET data of 65 patients with proven lung lesions were retrospectively analyzed as well. Four heterogeneity parameters out of 27 were found as the most attractive ones to characterize the textural properties of metabolically active tumors in FDG PET images. These four parameters included Entropy, Contrast, Correlation, and Coefficient of Variation. These parameters were independent of delineated tumor volume (bigger than 25-30 ml), provided reproducible values (relative standard deviation< 10%), and showed high sensitivity to changes in heterogeneity. Phantom measurements are a viable way to test the reliability of heterogeneity parameters that would be of interest to nuclear imaging clinicians.
A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images
Forgacs, Attila; Pall Jonsson, Hermann; Dahlbom, Magnus; Daver, Freddie; D. DiFranco, Matthew; Opposits, Gabor; K. Krizsan, Aron; Garai, Ildiko; Czernin, Johannes; Varga, Jozsef; Tron, Lajos; Balkay, Laszlo
2016-01-01
Textural analysis might give new insights into the quantitative characterization of metabolically active tumors. More than thirty textural parameters have been investigated in former F18-FDG studies already. The purpose of the paper is to declare basic requirements as a selection strategy to identify the most appropriate heterogeneity parameters to measure textural features. Our predefined requirements were: a reliable heterogeneity parameter has to be volume independent, reproducible, and suitable for expressing quantitatively the degree of heterogeneity. Based on this criteria, we compared various suggested measures of homogeneity. A homogeneous cylindrical phantom was measured on three different PET/CT scanners using the commonly used protocol. In addition, a custom-made inhomogeneous tumor insert placed into the NEMA image quality phantom was imaged with a set of acquisition times and several different reconstruction protocols. PET data of 65 patients with proven lung lesions were retrospectively analyzed as well. Four heterogeneity parameters out of 27 were found as the most attractive ones to characterize the textural properties of metabolically active tumors in FDG PET images. These four parameters included Entropy, Contrast, Correlation, and Coefficient of Variation. These parameters were independent of delineated tumor volume (bigger than 25–30 ml), provided reproducible values (relative standard deviation< 10%), and showed high sensitivity to changes in heterogeneity. Phantom measurements are a viable way to test the reliability of heterogeneity parameters that would be of interest to nuclear imaging clinicians. PMID:27736888
Determination techniques of Archie’s parameters: a, m and n in heterogeneous reservoirs
NASA Astrophysics Data System (ADS)
Mohamad, A. M.; Hamada, G. M.
2017-12-01
The determination of water saturation in a heterogeneous reservoir is becoming more challenging, as Archie’s equation is only suitable for clean homogeneous formation and Archie’s parameters are highly dependent on the properties of the rock. This study focuses on the measurement of Archie’s parameters in carbonate and sandstone core samples around Malaysian heterogeneous carbonate and sandstone reservoirs. Three techniques for the determination of Archie’s parameters a, m and n will be implemented: the conventional technique, core Archie parameter estimation (CAPE) and the three-dimensional regression technique (3D). By using the results obtained by the three different techniques, water saturation graphs were produced to observe the symbolic difference of Archie’s parameter and its relevant impact on water saturation values. The difference in water saturation values can be primarily attributed to showing the uncertainty level of Archie’s parameters, mainly in carbonate and sandstone rock samples. It is obvious that the accuracy of Archie’s parameters has a profound impact on the calculated water saturation values in carbonate sandstone reservoirs due to regions of high stress reducing electrical conduction resulting from the raised electrical heterogeneity of the heterogeneous carbonate core samples. Due to the unrealistic assumptions involved in the conventional method, it is better to use either the CAPE or 3D method to accurately determine Archie’s parameters in heterogeneous as well as homogeneous reservoirs.
Optimizing the Hydrological and Biogeochemical Simulations on a Hillslope with Stony Soil
NASA Astrophysics Data System (ADS)
Zhu, Q.
2017-12-01
Stony soils are widely distributed in the hilly area. However, traditional pedotransfer functions are not reliable in predicting the soil hydraulic parameters for these soils due to the impacts of rock fragments. Therefore, large uncertainties and errors may exist in the hillslope hydrological and biogeochemical simulations in stony soils due to poor estimations of soil hydraulic parameters. In addition, homogenous soil hydraulic parameters are usually used in traditional hillslope simulations. However, soil hydraulic parameters are spatially heterogeneous on the hillslope. This may also cause the unreliable simulations. In this study, we obtained soil hydraulic parameters using five different approaches on a tea hillslope in Taihu Lake basin, China. These five approaches included (1) Rossetta predicted and spatially homogenous, (2) Rossetta predicted and spatially heterogeneous), (3) Rossetta predicted, rock fragment corrected and spatially homogenous, (4) Rossetta predicted, rock fragment corrected and spatially heterogeneous, and (5) extracted from observed soil-water retention curves fitted by dual-pore function and spatially heterogeneous (observed). These five sets of soil hydraulic properties were then input into Hydrus-3D and DNDC to simulate the soil hydrological and biogeochemical processes. The aim of this study is testing two hypotheses. First, considering the spatial heterogeneity of soil hydraulic parameters will improve the simulations. Second, considering the impact of rock fragment on soil hydraulic parameters will improve the simulations.
Phenotypic Intratumoral Heterogeneity of Endometrial Carcinomas.
Silva, Cátia; Pires-Luís, Ana S; Rocha, Eduardo; Bartosch, Carla; Lopes, José M
2018-03-01
Intratumoral heterogeneity has been shown to play an important role in diagnostic accuracy, development of treatment resistance, and prognosis of cancer patients. Recent studies have proposed quantitative measurement of phenotypic intratumoral heterogeneity, but no study is yet available in endometrial carcinomas. In our study we evaluated the phenotypic intratumoral heterogeneity of a consecutive series of 10 endometrial carcinomas using measures of dispersion and diversity. Morphometric architectural (%tumor cells, %solid tumor, %differentiated tumor, and %lumens) and nuclear [volume-weighted mean nuclear volume ((Equation is included in full-text article.))] parameters, as well as estrogen receptor, progesterone receptor, p53, vimentin, and beta-catenin immunoexpression (H-score) were digitally analyzed in 20 microscopic fields per carcinoma. Quantitative measures of intratumoral heterogeneity included coefficient of variation (CV) and relative quadratic entropy (rQE). In each endometrial carcinoma there was slight variation of architecture from field to field, resulting in globally low levels of heterogeneity measures (mean CV %tumor cells: 0.10, %solid tumor: 0.73, %differentiated tumor: 0.19, %lumens: 0.61 and mean rQE %tumor cells: 18.5, %solid tumor: 20.3, %differentiated tumor: 25.6, %lumens: 21.8). Nuclear intratumoral heterogeneity was also globally low (mean (Equation is included in full-text article.)CV: 0.23 and rQE: 27.3), but significantly higher than the heterogeneity of architectural parameters within most carcinomas. In general, there was low to moderate variability of immunoexpression markers within each carcinoma, but estrogen receptor (mean CV: 0.56 and rQE: 46.2) and progesterone receptor (mean CV: 0.60 and rQE: 39.3) displayed the highest values of heterogeneity measures. Intratumoral heterogeneity of immunoexpression was significantly higher than that observed for morphometric parameters. In conclusion, our study indicates that endometrial carcinomas present a variable but predominantly low degree of phenotypic intratumoral heterogeneity.
Tixier, Florent; Hatt, Mathieu; Le Rest, Catherine Cheze; Le Pogam, Adrien; Corcos, Laurent; Visvikis, Dimitris
2012-05-01
(18)F-FDG PET measurement of standardized uptake value (SUV) is increasingly used for monitoring therapy response and predicting outcome. Alternative parameters computed through textural analysis were recently proposed to quantify the heterogeneity of tracer uptake by tumors as a significant predictor of response. The primary objective of this study was to evaluate the reproducibility of these heterogeneity measurements. Double baseline (18)F-FDG PET scans were acquired within 4 d of each other for 16 patients before any treatment was considered. A Bland-Altman analysis was performed on 8 parameters based on histogram measurements and 17 parameters based on textural heterogeneity features after discretization with values between 8 and 128. The reproducibility of maximum and mean SUV was similar to that in previously reported studies, with a mean percentage difference of 4.7% ± 19.5% and 5.5% ± 21.2%, respectively. By comparison, better reproducibility was measured for some textural features describing local heterogeneity of tracer uptake, such as entropy and homogeneity, with a mean percentage difference of -2% ± 5.4% and 1.8% ± 11.5%, respectively. Several regional heterogeneity parameters such as variability in the intensity and size of regions of homogeneous activity distribution had reproducibility similar to that of SUV measurements, with 95% confidence intervals of -22.5% to 3.1% and -1.1% to 23.5%, respectively. These parameters were largely insensitive to the discretization range. Several parameters derived from textural analysis describing heterogeneity of tracer uptake by tumors on local and regional scales had reproducibility similar to or better than that of simple SUV measurements. These reproducibility results suggest that these (18)F-FDG PET-derived parameters, which have already been shown to have predictive and prognostic value in certain cancer models, may be used to monitor therapy response and predict patient outcome.
Tixier, Florent; Hatt, Mathieu; Le Rest, Catherine Cheze; Le Pogam, Adrien; Corcos, Laurent; Visvikis, Dimitris
2012-01-01
18F-FDG PET measurement of standardized uptake values (SUV) is increasingly used for monitoring therapy response or predicting outcome. Alternative parameters computed through textural analysis were recently proposed to quantify the tumor tracer uptake heterogeneity as significant predictors of response. The primary objective of this study was the evaluation of the reproducibility of these heterogeneity measurements. Methods Double-baseline 18F-FDG PET scans of 16 patients acquired within a period of 4 days prior to any treatment were considered. A Bland-Altman analysis was carried out on six parameters based on histogram measurements and 17 heterogeneity parameters based on textural features obtained after discretization with values between 8 and 128. Results SUVmax and SUVmean reproducibility were similar to previously reported studies with a mean percentage difference of 4.7±19.5% and 5.5±21.2% respectively. By comparison better reproducibility was measured for some of the textural features describing tumor tracer local heterogeneity, such as entropy and homogeneity with a mean percentage difference of −2±5.4% and 1.8±11.5% respectively. Several of the tumor regional heterogeneity parameters such as the variability in the intensity and size of homogeneous tumor activity distribution regions had similar reproducibility to the SUV measurements with 95% confidence intervals of −22.5% to 3.1% and −1.1% to 23.5% respectively. These parameters were largely insensitive to the discretization range values. Conclusion Several of the parameters derived from textural analysis describing tumor tracer heterogeneity at local and regional scales had similar or better reproducibility as simple SUV measurements. These reproducibility results suggest that these FDG PET image derived parameters which have already been shown to have a predictive and prognostic value in certain cancer models, may be used within the context of therapy response monitoring or predicting patient outcome. PMID:22454484
Not simply more of the same: distinguishing between patient heterogeneity and parameter uncertainty.
Vemer, Pepijn; Goossens, Lucas M A; Rutten-van Mölken, Maureen P M H
2014-11-01
In cost-effectiveness (CE) Markov models, heterogeneity in the patient population is not automatically taken into account. We aimed to compare methods of dealing with heterogeneity on estimates of CE, using a case study in chronic obstructive pulmonary disease (COPD). We first present a probabilistic sensitivity analysis (PSA) in which we sampled only from distributions representing parameter uncertainty. This ignores any heterogeneity. Next, we explored heterogeneity by presenting results for subgroups, using a method that samples parameter uncertainty simultaneously with heterogeneity in a single-loop PSA. Finally, we distinguished parameter uncertainty from heterogeneity in a double-loop PSA by performing a nested simulation within each PSA iteration. Point estimates and uncertainty differed substantially between methods. The incremental CE ratio (ICER) ranged from € 4900 to € 13,800. The single-loop PSA led to a substantially different shape of the CE plane and an overestimation of the uncertainty compared with the other 3 methods. The CE plane for the double-loop PSA showed substantially less uncertainty and a stronger negative correlation between the difference in costs and the difference in effects compared with the other methods. This came at the cost of higher calculation times. Not accounting for heterogeneity, subgroup analysis and the double-loop PSA can be viable options, depending on the decision makers' information needs. The single-loop PSA should not be used in CE research. It disregards the fundamental differences between heterogeneity and sampling uncertainty and overestimates uncertainty as a result. © The Author(s) 2014.
Adaptive Control of Synchronization in Delay-Coupled Heterogeneous Networks of FitzHugh-Nagumo Nodes
NASA Astrophysics Data System (ADS)
Plotnikov, S. A.; Lehnert, J.; Fradkov, A. L.; Schöll, E.
We study synchronization in delay-coupled neural networks of heterogeneous nodes. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. We show that an adaptive tuning of the overall coupling strength can be used to counteract the effect of the heterogeneity. Our adaptive controller is demonstrated on ring networks of FitzHugh-Nagumo systems which are paradigmatic for excitable dynamics but can also — depending on the system parameters — exhibit self-sustained periodic firing. We show that the adaptively tuned time-delayed coupling enables synchronization even if parameter heterogeneities are so large that excitable nodes coexist with oscillatory ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weissmann, Gary S
2013-12-06
The objective of this project was to characterize the influence that naturally complex geologic media has on anomalous dispersion and to determine if the nature of dispersion can be estimated from the underlying heterogeneous media. The UNM portion of this project was to provide detailed representations of aquifer heterogeneity through producing highly-resolved models of outcrop analogs to aquifer materials. This project combined outcrop-scale heterogeneity characterization (conducted at the University of New Mexico), laboratory experiments (conducted at Sandia National Laboratory), and numerical simulations (conducted at Sandia National Laboratory and Colorado School of Mines). The study was designed to test whether establishedmore » dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work was based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project explored the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. We also evaluated methods for simulating the heterogeneity to see whether these approaches (e.g., geostatistical) could reasonably replicate realistic heterogeneity. The UNM portion of this study focused on capturing realistic geologic heterogeneity of aquifer analogs using advanced outcrop mapping methods.« less
Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity
NASA Astrophysics Data System (ADS)
Kumari, Nirmala; Chattopadhyay, Amares; Singh, Abhishek K.; Sahu, Sanjeev A.
2017-03-01
The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker's asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot's gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.
NASA Astrophysics Data System (ADS)
Kardanpour, Z.; Jacobsen, O. S.; Esbensen, K. H.
2015-06-01
This study is a contribution to development of a heterogeneity characterisation facility for "next generation" sampling aimed at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity on quantification of a set of exemplar parameters, organic matter, loss on ignition (LOI), biomass, soil microbiology, MCPA sorption and mineralization is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The Theory of Sampling (TOS) and variographic analysis has been applied to develop a fit-for-purpose heterogeneity characterization approach. All parameters were assessed in large-scale profile (1-100 m) vs. small-scale (0.1-1 m) replication sampling pattern. Variographic profiles of experimental analytical results concludes that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among soils types. This study has a significant carrying-over potential for related research areas e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.
NASA Astrophysics Data System (ADS)
Ibrahim, M. Z.; Alrozi, R.; Zubir, N. A.; Bashah, N. A.; Ali, S. A. Md; Ibrahim, N.
2018-05-01
The oxidation process such as heterogeneous Fenton and/or Fenton-like reactions is considered as an effective and efficient method for treatment of dye degradation. In this study, the degradation of Acid Orange 7 (AO7) was investigated by using Fe3-xCoxO4 as a heterogeneous Fenton-like catalyst. Response surface methodology (RSM) was used to optimize the operational parameters condition and the interaction of two or more parameters. The parameter studies were catalyst dosage (X1 ), pH (X2 ) and H2O2 concentration (X3 ) towards AO7 degradation. Based on analysis of variance (ANOVA), the derived quadratic polynomial model was significant whereby the predicted values matched the experimental values with regression coefficient of R2 = 0.9399. The optimum condition for AO7 degradation was obtained at catalyst dosage of 0.84 g/L, pH of 3 and H2O2 concentration of 46.70 mM which resulted in 86.30% removal of AO7 dye. These findings present new insights into the influence of operational parameters in the heterogeneous Fenton-like oxidation of AO7 using Fe3-xCoxO4 catalyst.
Heterogeneity, histological features and DNA ploidy in oral carcinoma by image-based analysis.
Diwakar, N; Sperandio, M; Sherriff, M; Brown, A; Odell, E W
2005-04-01
Oral squamous carcinomas appear heterogeneous on DNA ploidy analysis. However, this may be partly a result of sample dilution or the detection limit of techniques. The aim of this study was to determine whether oral squamous carcinomas are heterogeneous for ploidy status using image-based ploidy analysis and to determine whether ploidy status correlates with histological parameters. Multiple samples from 42 oral squamous carcinomas were analysed for DNA ploidy using an image-based system and scored for histological parameters. 22 were uniformly aneuploid, 1 uniformly tetraploid and 3 uniformly diploid. 16 appeared heterogeneous but only 8 appeared to be genuinely heterogeneous when minor ploidy histogram peaks were taken into account. Ploidy was closely related to nuclear pleomorphism but not differentiation. Sample variation, detection limits and diagnostic criteria account for much of the ploidy heterogeneity observed. Confident diagnosis of diploid status in an oral squamous cell carcinoma requires a minimum of 5 samples.
Chan, Sheng-Chieh; Chang, Kai-Ping; Fang, Yu-Hua Dean; Tsang, Ngan-Ming; Ng, Shu-Hang; Hsu, Cheng-Lung; Liao, Chun-Ta; Yen, Tzu-Chen
2017-01-01
Plasma Epstein-Barr virus (EBV) DNA concentrations predict prognosis in patients with nasopharyngeal carcinoma (NPC). Recent evidence also indicates that intratumor heterogeneity on F-18 fluorodeoxyglucose positron emission tomography ( 18 F-FDG PET) scans is predictive of treatment outcomes in different solid malignancies. Here, we sought to investigate the prognostic value of heterogeneity parameters in patients with primary NPC. Retrospective cohort study. We examined 101 patients with primary NPC who underwent pretreatment 18 F-FDG PET/computed tomography. Circulating levels of EBV DNA were measured in all participants. The following PET heterogeneity parameters were collected: histogram-based heterogeneity parameters, second-order texture features (uniformity, contrast, entropy, homogeneity, dissimilarity, inverse difference moment), and higher-order (coarseness, contrast, busyness, complexity, strength) texture features. The median follow-up time was 5.14 years. Total lesion glycolysis (TLG), tumor heterogeneity measured by histogram-based parameter skewness, and the majority of second-order or higher-order texture features were significantly associated with overall survival (OS) and/or recurrence-free survival (RFS). In multivariate analysis, age (P =.005), EBV DNA load (P = .0002), and uniformity (P = .001) independently predicted OS. Only skewness retained the independent prognostic significance for RFS. Tumor stage, standardized uptake value, or TLG did not show an independent association with survival endpoints. The combination of uniformity, EBV DNA load, and age resulted in a more reliable prognostic stratification (P < .001). Tumor heterogeneity is superior to traditional PET parameters for predicting outcomes in primary NPC. The combination of uniformity with EBV DNA load can improve prognostic stratification in this clinical entity. 4 Laryngoscope, 127:E22-E28, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Guo, Songfeng; Qi, Shengwen; Zou, Yu; Zheng, Bowen
2017-01-01
In rocks or rock-like materials, the constituents, e.g. quartz, calcite and biotite, as well as the microdefects have considerably different mechanical properties that make such materials heterogeneous at different degrees. The failure of materials subjected to external loads is a cracking process accompanied with stress redistribution due to material heterogeneity. However, the latter cannot be observed from the experiments in laboratory directly. In this study, the cracking and stress features during uniaxial compression process are numerically studied based on a presented approach. A plastic strain dependent strength model is implemented into the continuous numerical tool—Fast Lagrangian Analysis of Continua in three Dimensions (FLAC3D), and the Gaussian statistical function is adopted to depict the heterogeneity of mechanical parameters including elastic modulus, friction angle, cohesion and tensile strength. The mean parameter μ and the coefficient of variance (hcv, the ratio of mean parameter to standard deviation) in the function are used to define the mean value and heterogeneity degree of the parameters, respectively. The results show that this numerical approach can perfectly capture the general features of brittle materials including fracturing process, AE events as well as stress-strain curves. Furthermore, the local stress disturbance is analyzed and the crack initiation stress threshold is identified based on the AE events process and stress-strain curves. It is shown that the stress concentration always appears in the undamaged elements near the boundary of damaged sites. The peak stress and crack initiation stress are both heterogeneity dependent, i.e., a linear relation exists between the two stress thresholds and hcv. The range of hcv is suggested as 0.12 to 0.21 for most rocks. The stress concentration degree is represented by a stress concentration factor and found also heterogeneity dominant. Finally, it is found that there exists a consistent tendency between the local stress difference and the AE events process. PMID:28772738
Guo, Songfeng; Qi, Shengwen; Zou, Yu; Zheng, Bowen
2017-04-01
In rocks or rock-like materials, the constituents, e.g. quartz, calcite and biotite, as well as the microdefects have considerably different mechanical properties that make such materials heterogeneous at different degrees. The failure of materials subjected to external loads is a cracking process accompanied with stress redistribution due to material heterogeneity. However, the latter cannot be observed from the experiments in laboratory directly. In this study, the cracking and stress features during uniaxial compression process are numerically studied based on a presented approach. A plastic strain dependent strength model is implemented into the continuous numerical tool-Fast Lagrangian Analysis of Continua in three Dimensions (FLAC 3D ), and the Gaussian statistical function is adopted to depict the heterogeneity of mechanical parameters including elastic modulus, friction angle, cohesion and tensile strength. The mean parameter μ and the coefficient of variance ( h cv , the ratio of mean parameter to standard deviation) in the function are used to define the mean value and heterogeneity degree of the parameters, respectively. The results show that this numerical approach can perfectly capture the general features of brittle materials including fracturing process, AE events as well as stress-strain curves. Furthermore, the local stress disturbance is analyzed and the crack initiation stress threshold is identified based on the AE events process and stress-strain curves. It is shown that the stress concentration always appears in the undamaged elements near the boundary of damaged sites. The peak stress and crack initiation stress are both heterogeneity dependent, i.e., a linear relation exists between the two stress thresholds and h cv . The range of h cv is suggested as 0.12 to 0.21 for most rocks. The stress concentration degree is represented by a stress concentration factor and found also heterogeneity dominant. Finally, it is found that there exists a consistent tendency between the local stress difference and the AE events process.
Ozcelik, Ramazan; Gul, Altay Ugur; Merganic, Jan; Merganicova, Katarina
2008-05-01
We studied the effects of stand parameters (crown closure, basal area, stand volume, age, mean stand diameter number of trees, and heterogeneity index) and geomorphology features (elevation, aspect and slope) on tree species diversity in an example of untreated natural mixed forest stands in the eastern Black Sea region of Turkey. Tree species diversity and basal area heterogeneity in forest ecosystems are quantified using the Shannon-Weaver and Simpson indices. The relationship between tree species diversity basal area heterogeneity stand parameters and geomorphology features are examined using regression analysis. Our work revealed that the relationship between tree species diversity and stand parameters is loose with a correlation coefficient between 0.02 and 0.70. The correlation of basal area heterogeneity with stand parameters fluctuated between 0.004 and 0.77 (R2). According to our results, stands with higher tree species diversity are characterised by higher mean stand diameter number of diameter classes, basal area and lower homogeneity index value. Considering the effect of geomorphology features on tree species or basal area heterogeneity we found that all investigated relationships are loose with R < or = 0.24. A significant correlation was detected only between tree species diversity and aspect. Future work is required to verify the detected trends in behaviour of tree species diversity if it is to estimate from the usual forest stand parameters and topography characteristics.
ERIC Educational Resources Information Center
Hollingsworth, Holly H.
This study shows that the test statistic for Analysis of Covariance (ANCOVA) has a noncentral F-districution with noncentrality parameter equal to zero if and only if the regression planes are homogeneous and/or the vector of overall covariate means is the null vector. The effect of heterogeneous regression slope parameters is to either increase…
Screening Models of Aquifer Heterogeneity Using the Flow Dimension
NASA Astrophysics Data System (ADS)
Walker, D. D.; Cello, P. A.; Roberts, R. M.; Valocchi, A. J.
2007-12-01
Despite advances in test interpretation and modeling, typical groundwater modeling studies only indirectly use the parameters and information inferred from hydraulic tests. In particular, the Generalized Radial Flow approach to test interpretation infers the flow dimension, a parameter describing the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling.
NASA Astrophysics Data System (ADS)
Wang, Neng; Xia, Shuman
2017-01-01
A combined modeling and experimental effort is made in this work to examine the cohesive fracture mechanisms of heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough engineering and biological materials, is selected as a model material system. Theoretical and finite element analyses with cohesive zone modeling are performed to study the effective fracture resistance of the heterogeneous material associated with unstable crack propagation and arrest. A crack-tip-position controlled algorithm is implemented in the finite element analysis to overcome the inherent instability issues resulting from crack pinning and depinning at local heterogeneities. Systematic parametric studies are carried out to investigate the effects of various material and geometrical parameters, including the modulus mismatch ratio, phase volume fraction, cohesive zone size, and cohesive law shape. Concurrently, a novel stereolithography-based three-dimensional (3D) printing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of the specimens is performed using the tapered double-cantilever beam (TDCB) test method. With optimal material and geometrical parameters, heterogeneous TDCB specimens are shown to exhibit enhanced effective fracture energy and effective fracture toughness than their homogeneous counterparts, which is in good agreement with the modeling predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of tough materials through patterned heterogeneities.
NASA Astrophysics Data System (ADS)
Berg, Steven J.; Illman, Walter A.
2012-11-01
SummaryInterpretation of pumping tests in unconfined aquifers has largely been based on analytical solutions that disregard aquifer heterogeneity. In this study, we investigate whether the prediction of drawdown responses in a heterogeneous unconfined aquifer and the unsaturated zone above it with a variably saturated groundwater flow model can be improved by including information on hydraulic conductivity (K) and specific storage (Ss) from transient hydraulic tomography (THT). We also investigate whether these predictions are affected by the use of unsaturated flow parameters estimated through laboratory hanging column experiments or calibration of in situ drainage curves. To investigate these issues, we designed and conducted laboratory sandbox experiments to characterize the saturated and unsaturated properties of a heterogeneous unconfined aquifer. Specifically, we conducted pumping tests under fully saturated conditions and interpreted the drawdown responses by treating the medium to be either homogeneous or heterogeneous. We then conducted another pumping test and allowed the water table to drop, similar to a pumping test in an unconfined aquifer. Simulations conducted using a variably saturated flow model revealed: (1) homogeneous parameters in the saturated and unsaturated zones have a difficult time predicting the responses of the heterogeneous unconfined aquifer; (2) heterogeneous saturated hydraulic parameter distributions obtained via THT yielded significantly improved drawdown predictions in the saturated zone of the unconfined aquifer; and (3) considering heterogeneity of unsaturated zone parameters produced a minor improvement in predictions in the unsaturated zone, but not the saturated zone. These results seem to support the finding by Mao et al. (2011) that spatial variability in the unsaturated zone plays a minor role in the formation of the S-shape drawdown-time curve observed during pumping in an unconfined aquifer.
NASA Astrophysics Data System (ADS)
Zhang, Chunhua
Heterogeneity, the degree of dissimilarity, is one of the most important and widely applicable concepts in ecology. It is highly related to ecosystem conditions and features wildlife habitat. Grasslands have been described as inherently heterogeneous because their composition and productivity are highly variable across multiple scales. Therefore, biological heterogeneity can be an indicator of ecosystem health. The mixed prairie in Canada, characterized by its semiarid environment, sparse canopy, and plant litter, offers a challenging region for environmental research using remote sensing techniques. This thesis dwells with the plant canopy heterogeneity of the mixed prairie ecosystem in the Grasslands National Park (GNP) and surrounding pastures by combining field biological parameters (e.g., grass cover, leaf area index, and biomass), field collected hyperspectral data, and hierarchical resolution satellite imagery. The thesis scrutinized four aspects of heterogeneity study: the importance of scale in grassland research, relationships between biological parameters and remotely collected data, methodology of measuring biological heterogeneity, and the influence of climatic variation on grasslands biological heterogeneity. First, the importance of scale is examined by applying the semivariogram analysis on field collected hyperspectral and biophysical data. Results indicate that 15 - 20 m should be the appropriate resolution when variations of biological parameters and canopy reflectance are sampled. Therefore, it is reasonable to use RADARSAT 1, Landsat TM, and SPOT images, whose resolutions are around 20 m, to assess the variation of biological heterogeneity. Second, the efficiency of vegetation indices derived from SPOT 4 and Landsat 5 TM images in monitoring the northern mixed prairie health was examined using Pearson's correlation and stepwise regression analyses. Results show that the spectral curve of the grass canopy is similar to that of the bare soil with lower reflectance at each band. Therefore, vegetation indices are not necessarily better than reflectance at green and red wavelength regions in extracting biological information. Two new indices, combining reflectance from red and mid infrared wavelength regions, are proposed to measure biological parameters in the northern mixed prairie. Third, texture analysis was applied to quantify the biological variation in the grasslands. The textural parameters of RADARSAT imagery correlated highly with standard deviation of the field collected canopy parameters. Therefore, textural parameters can be applied to study the variations within the mixed prairie. Finally, the impacts of climatic variation on grassland heterogeneity at a long time scale were evaluated using Advanced Very High Resolution Radiometer (AVHRR), Normalized Difference Vegetation Index (NDVI), Maximum Value Composite (MVC), and SPOT Vegetation NDVI MVC imagery from 1993 to 2004. A drought index based on precipitation data was used to represent soil moisture for the study area. It was found that changes of temperature and precipitation explain about 50% of the variation in AVHRR NDVI (i.e., temporal heterogeneity) of the northern mixed prairie. Trend line analysis indicates that the removal of grazing cattle carry multiple influences such as decreasing NDVI in some parts of the upland and valley grassland and increasing NDVI in the valley grassland. Results from this thesis are relevant for park management by adjusting grassland management strategies and monitoring the changes in community sizes. The other output of the thesis is furthering the remote sensing investigation of the mixed prairie based on information of the most appropriate resolution imagery.
Yip, Connie; Tacelli, Nunzia; Remy-Jardin, Martine; Scherpereel, Arnaud; Cortot, Alexis; Lafitte, Jean-Jacques; Wallyn, Frederic; Remy, Jacques; Bassett, Paul; Siddique, Musib; Cook, Gary J R; Landau, David B; Goh, Vicky
2015-09-01
We aimed to assess computed tomography (CT) intratumoral heterogeneity changes, and compared the prognostic ability of the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, an alternate response method (Crabb), and CT heterogeneity in non-small cell lung cancer treated with chemotherapy with and without bevacizumab. Forty patients treated with chemotherapy (group C) or chemotherapy and bevacizumab (group BC) underwent contrast-enhanced CT at baseline and after 1, 3, and 6 cycles of chemotherapy. Radiologic response was assessed using RECIST 1.1 and an alternate method. CT heterogeneity analysis generating global and locoregional parameters depicting tumor image spatial intensity characteristics was performed. Heterogeneity parameters between the 2 groups were compared using the Mann-Whitney U test. Associations between heterogeneity parameters and radiologic response with overall survival were assessed using Cox regression. Global and locoregional heterogeneity parameters changed with treatment, with increased tumor heterogeneity in group BC. Entropy [group C: median -0.2% (interquartile range -2.2, 1.7) vs. group BC: 0.7% (-0.7, 3.5), P=0.10] and busyness [-27.7% (-62.2, -5.0) vs. -11.5% (-29.1, 92.4), P=0.10] showed a greater reduction in group C, whereas uniformity [1.9% (-8.0, 9.8) vs. -5.0% (-13.9, 5.6), P=0.10] showed a relative increase after 1 cycle but did not reach statistical significance. Two (9%) and 1 (6%) additional responders were identified using the alternate method compared with RECIST in group C and group BC, respectively. Heterogeneity parameters were not significant prognostic factors. The alternate response method described by Crabb identified more responders compared with RECIST. However, both criteria and baseline imaging heterogeneity parameters were not prognostic of survival.
Three-dimensional biofilm structure quantification.
Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary
2004-12-01
Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.
Antunes, Danielle M F; Kalmbach, Keri H; Wang, Fang; Dracxler, Roberta C; Seth-Smith, Michelle L; Kramer, Yael; Buldo-Licciardi, Julia; Kohlrausch, Fabiana B; Keefe, David L
2015-11-01
The effect of age on telomere length heterogeneity in men has not been studied previously. Our aims were to determine the relationship between variation in sperm telomere length (STL), men's age, and semen parameters in spermatozoa from men undergoing in vitro fertilization (IVF) treatment. To perform this prospective cross-sectional pilot study, telomere length was estimated in 200 individual spermatozoa from men undergoing IVF treatment at the NYU Fertility Center. A novel single-cell telomere content assay (SCT-pqPCR) measured telomere length in individual spermatozoa. Telomere length among individual spermatozoa within an ejaculate varies markedly and increases with age. Older men not only have longer STL but also have more variable STL compared to younger men. STL from samples with normal semen parameters was significantly longer than that from samples with abnormal parameters, but STL did not differ between spermatozoa with normal versus abnormal morphology. The marked increase in STL heterogeneity as men age is consistent with a role for ALT during spermatogenesis. No data have yet reported the effect of age on STL heterogeneity. Based on these results, future studies should expand this modest sample size to search for molecular evidence of ALT in human testes during spermatogenesis.
NASA Astrophysics Data System (ADS)
Grippa, Tais; Georganos, Stefanos; Lennert, Moritz; Vanhuysse, Sabine; Wolff, Eléonore
2017-10-01
Mapping large heterogeneous urban areas using object-based image analysis (OBIA) remains challenging, especially with respect to the segmentation process. This could be explained both by the complex arrangement of heterogeneous land-cover classes and by the high diversity of urban patterns which can be encountered throughout the scene. In this context, using a single segmentation parameter to obtain satisfying segmentation results for the whole scene can be impossible. Nonetheless, it is possible to subdivide the whole city into smaller local zones, rather homogeneous according to their urban pattern. These zones can then be used to optimize the segmentation parameter locally, instead of using the whole image or a single representative spatial subset. This paper assesses the contribution of a local approach for the optimization of segmentation parameter compared to a global approach. Ouagadougou, located in sub-Saharan Africa, is used as case studies. First, the whole scene is segmented using a single globally optimized segmentation parameter. Second, the city is subdivided into 283 local zones, homogeneous in terms of building size and building density. Each local zone is then segmented using a locally optimized segmentation parameter. Unsupervised segmentation parameter optimization (USPO), relying on an optimization function which tends to maximize both intra-object homogeneity and inter-object heterogeneity, is used to select the segmentation parameter automatically for both approaches. Finally, a land-use/land-cover classification is performed using the Random Forest (RF) classifier. The results reveal that the local approach outperforms the global one, especially by limiting confusions between buildings and their bare-soil neighbors.
Paeng, Jin Chul; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Heo, Dae Seog
2018-01-01
Intratumoral heterogeneity has been suggested to be an important resistance mechanism leading to treatment failure. We hypothesized that radiologic images could be an alternative method for identification of tumor heterogeneity. We tested heterogeneity textural parameters on pretreatment FDG-PET/CT in order to assess the predictive value of target therapy. Recurred or metastatic non-small cell lung cancer (NSCLC) subjects with an activating EGFR mutation treated with either gefitinib or erlotinib were reviewed. An exploratory data set (n = 161) and a validation data set (n = 21) were evaluated, and eight parameters were selected for survival analysis. The optimal cutoff value was determined by the recursive partitioning method, and the predictive value was calculated using Harrell’s C-index. Univariate analysis revealed that all eight parameters showed an increased hazard ratio (HR) for progression-free survival (PFS). The highest HR was 6.41 (P<0.01) with co-occurrence (Co) entropy. Increased risk remained present after adjusting for initial stage, performance status (PS), and metabolic volume (MV) (aHR: 4.86, P<0.01). Textural parameters were found to have an incremental predictive value of early EGFR tyrosine kinase inhibitor (TKI) failure compared to that of the base model of the stage and PS (C-index 0.596 vs. 0.662, P = 0.02, by Co entropy). Heterogeneity textural parameters acquired from pretreatment FDG-PET/CT are highly predictive factors for PFS of EGFR TKI in EGFR-mutated NSCLC patients. These parameters are easily applicable to the identification of a subpopulation at increased risk of early EGFR TKI failure. Correlation to genomic alteration should be determined in future studies. PMID:29385152
Dong, Xinzhe; Xing, Ligang; Wu, Peipei; Fu, Zheng; Wan, Honglin; Li, Dengwang; Yin, Yong; Sun, Xiaorong; Yu, Jinming
2013-01-01
To explore the relationship of a new PET image parameter, (18)F-fluorodeoxyglucose ((18)F-FDG) uptake heterogeneity assessed by texture analysis, with maximum standardized uptake value (SUV(max)) and tumor TNM staging. Forty consecutive patients with esophageal squamous cell carcinoma were enrolled. All patients underwent whole-body preoperative (18)F-FDG PET/CT. Heterogeneity of intratumoral (18)F-FDG uptake was assessed on the basis of the textural features (entropy and energy) of the three-dimensional images using MATLAB software. The correlations between the textural parameters and SUV(max), histological grade, tumor location, and TNM stage were analyzed. Tumors with higher SUV(max) were seen to be more heterogenous on (18)F-FDG uptake. Significant correlations were observed between T stage and SUV(max) (r(s)=0.390, P=0.013), entropy (rs=0.693, P<0.001), and energy (r(s)=-0.469, P=0.002). Correlations were also found between SUV(max), entropy, energy, and N stage (r(s)=0.326, P=0.04; r(s)=0.501, P=0.001; r(s)=-0.413, P=0.008). The American Joint Committee on Cancer stage correlated significantly with all metabolic parameters. The receiver-operating characteristic curve demonstrated an entropy of 4.699 as the optimal cutoff point for detecting tumors above stage II(b) with an areas under the ROC curve of 0.789 (P<0.001). This study provides initial evidence for the relationship between the new parameter of tumor uptake heterogeneity and the commonly used simplistic parameter of SUV and tumor stage. Our findings suggest a complementary role of these parameters in the staging and prognosis of esophageal squamous cell carcinoma.
Dynamical heterogeneities of cold 2D Yukawa liquids
NASA Astrophysics Data System (ADS)
Wang, Kang; Huang, Dong; Feng, Yan
2018-06-01
Dynamical heterogeneities of 2D liquid dusty plasmas at different temperatures are investigated systematically using Langevin dynamical simulations. From the simulated trajectories, various heterogeneity measures have been calculated, such as the distance matrix, the averaged squared displacement, the non-Gaussian parameter, and the four-point susceptibility. It is found that, for 2D Yukawa liquids, both spatial and temporal heterogeneities in dynamics are more severe at a lower temperature near the melting point. For various temperatures, the calculated non-Gaussian parameter of 2D Yukawa liquids contains two peaks at different times, indicating the most heterogeneous dynamics, which are attributed to the transition of different motions and the α relaxation time, respectively. In the diffusive motion, the most heterogeneous dynamics for a colder Yukawa liquid happen more slowly, as indicated by both the non-Gaussian parameter and the four-point susceptibility.
Hayat, T.; Hussain, Zakir; Alsaedi, A.; Farooq, M.
2016-01-01
This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ—perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears. PMID:27280883
Hayat, T; Hussain, Zakir; Alsaedi, A; Farooq, M
2016-01-01
This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ-perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears.
Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance
NASA Technical Reports Server (NTRS)
Molina, Mario J.
2004-01-01
The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HCl vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow-chemical ionization mass spectrometry and optical ellipsometry, among others.
Bursts of Vertex Activation and Epidemics in Evolving Networks
Rocha, Luis E. C.; Blondel, Vincent D.
2013-01-01
The dynamic nature of contact patterns creates diverse temporal structures. In particular, empirical studies have shown that contact patterns follow heterogeneous inter-event time intervals, meaning that periods of high activity are followed by long periods of inactivity. To investigate the impact of these heterogeneities in the spread of infection from a theoretical perspective, we propose a stochastic model to generate temporal networks where vertices make instantaneous contacts following heterogeneous inter-event intervals, and may leave and enter the system. We study how these properties affect the prevalence of an infection and estimate , the number of secondary infections of an infectious individual in a completely susceptible population, by modeling simulated infections (SI and SIR) that co-evolve with the network structure. We find that heterogeneous contact patterns cause earlier and larger epidemics in the SIR model in comparison to homogeneous scenarios for a vast range of parameter values, while smaller epidemics may happen in some combinations of parameters. In the case of SI and heterogeneous patterns, the epidemics develop faster in the earlier stages followed by a slowdown in the asymptotic limit. For increasing vertex turnover rates, heterogeneous patterns generally cause higher prevalence in comparison to homogeneous scenarios with the same average inter-event interval. We find that is generally higher for heterogeneous patterns, except for sufficiently large infection duration and transmission probability. PMID:23555211
DOE-EPSCOR SPONSORED PROJECT FINAL REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jianting
Concern over the quality of environmental management and restoration has motivated the model development for predicting water and solute transport in the vadose zone. Soil hydraulic properties are required inputs to subsurface models of water flow and contaminant transport in the vadose zone. Computer models are now routinely used in research and management to predict the movement of water and solutes into and through the vadose zone of soils. Such models can be used successfully only if reliable estimates of the soil hydraulic parameters are available. The hydraulic parameters considered in this project consist of the saturated hydraulic conductivity andmore » four parameters of the water retention curves. To quantify hydraulic parameters for heterogeneous soils is both difficult and time consuming. The overall objective of this project was to better quantify soil hydraulic parameters which are critical in predicting water flows and contaminant transport in the vadose zone through a comprehensive and quantitative study to predict heterogeneous soil hydraulic properties and the associated uncertainties. Systematic and quantitative consideration of the parametric heterogeneity and uncertainty can properly address and further reduce predictive uncertainty for contamination characterization and environmental restoration at DOE-managed sites. We conducted a comprehensive study to assess soil hydraulic parameter heterogeneity and uncertainty. We have addressed a number of important issues related to the soil hydraulic property characterizations. The main focus centered on new methods to characterize anisotropy of unsaturated hydraulic property typical of layered soil formations, uncertainty updating method, and artificial neural network base pedo-transfer functions to predict hydraulic parameters from easily available data. The work also involved upscaling of hydraulic properties applicable to large scale flow and contaminant transport modeling in the vadose zone and geostatistical characterization of hydraulic parameter heterogeneity. The project also examined the validity of the some simple average schemes for unsaturated hydraulic properties widely used in previous studies. A new suite of pedo-transfer functions were developed to improve the predictability of hydraulic parameters. We also explored the concept of tension-dependent hydraulic conductivity anisotropy of unsaturated layered soils. This project strengthens collaboration between researchers at the Desert Research Institute in the EPSCoR State of Nevada and their colleagues at the Pacific Northwest National Laboratory. The results of numerical simulations of a field injection experiment at Hanford site in this project could be used to provide insights to the DOE mission of appropriate contamination characterization and environmental remediation.« less
Gondim Teixeira, Pedro Augusto; Leplat, Christophe; Chen, Bailiang; De Verbizier, Jacques; Beaumont, Marine; Badr, Sammy; Cotten, Anne; Blum, Alain
2017-12-01
To evaluate intra-tumour and striated muscle T1 value heterogeneity and the influence of different methods of T1 estimation on the variability of quantitative perfusion parameters. Eighty-two patients with a histologically confirmed musculoskeletal tumour were prospectively included in this study and, with ethics committee approval, underwent contrast-enhanced MR perfusion and T1 mapping. T1 value variations in viable tumour areas and in normal-appearing striated muscle were assessed. In 20 cases, normal muscle perfusion parameters were calculated using three different methods: signal based and gadolinium concentration based on fixed and variable T1 values. Tumour and normal muscle T1 values were significantly different (p = 0.0008). T1 value heterogeneity was higher in tumours than in normal muscle (variation of 19.8% versus 13%). The T1 estimation method had a considerable influence on the variability of perfusion parameters. Fixed T1 values yielded higher coefficients of variation than variable T1 values (mean 109.6 ± 41.8% and 58.3 ± 14.1% respectively). Area under the curve was the least variable parameter (36%). T1 values in musculoskeletal tumours are significantly different and more heterogeneous than normal muscle. Patient-specific T1 estimation is needed for direct inter-patient comparison of perfusion parameters. • T1 value variation in musculoskeletal tumours is considerable. • T1 values in muscle and tumours are significantly different. • Patient-specific T1 estimation is needed for comparison of inter-patient perfusion parameters. • Technical variation is higher in permeability than semiquantitative perfusion parameters.
NASA Astrophysics Data System (ADS)
Li, Yu-Ye; Ding, Xue-Li
2014-12-01
Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.
Digernes, Ingrid; Bjørnerud, Atle; Vatnehol, Svein Are S; Løvland, Grete; Courivaud, Frédéric; Vik-Mo, Einar; Meling, Torstein R; Emblem, Kyrre E
2017-06-01
Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.
NASA Astrophysics Data System (ADS)
Thingbijam, Kiran Kumar; Galis, Martin; Vyas, Jagdish; Mai, P. Martin
2017-04-01
We examine the spatial interdependence between kinematic parameters of earthquake rupture, which include slip, rise-time (total duration of slip), acceleration time (time-to-peak slip velocity), peak slip velocity, and rupture velocity. These parameters were inferred from dynamic rupture models obtained by simulating spontaneous rupture on faults with varying degree of surface-roughness. We observe that the correlations between these parameters are better described by non-linear correlations (that is, on logarithm-logarithm scale) than by linear correlations. Slip and rise-time are positively correlated while these two parameters do not correlate with acceleration time, peak slip velocity, and rupture velocity. On the other hand, peak slip velocity correlates positively with rupture velocity but negatively with acceleration time. Acceleration time correlates negatively with rupture velocity. However, the observed correlations could be due to weak heterogeneity of the slip distributions given by the dynamic models. Therefore, the observed correlations may apply only to those parts of rupture plane with weak slip heterogeneity if earthquake-rupture associate highly heterogeneous slip distributions. Our findings will help to improve pseudo-dynamic rupture generators for efficient broadband ground-motion simulations for seismic hazard studies.
Liu, Dungang; Liu, Regina; Xie, Minge
2014-01-01
Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating heterogeneous studies, which arise often in applications due to different study designs, populations or outcomes. For heterogeneous studies, the parameter of interest may not be estimable for certain studies, and in such a case, these studies are typically excluded from conventional meta-analysis. The exclusion of part of the studies can lead to a non-negligible loss of information. This paper introduces a metaanalysis for heterogeneous studies by combining the confidence density functions derived from the summary statistics of individual studies, hence referred to as the CD approach. It includes all the studies in the analysis and makes use of all information, direct as well as indirect. Under a general likelihood inference framework, this new approach is shown to have several desirable properties, including: i) it is asymptotically as efficient as the maximum likelihood approach using individual participant data (IPD) from all studies; ii) unlike the IPD analysis, it suffices to use summary statistics to carry out the CD approach. Individual-level data are not required; and iii) it is robust against misspecification of the working covariance structure of the parameter estimates. Besides its own theoretical significance, the last property also substantially broadens the applicability of the CD approach. All the properties of the CD approach are further confirmed by data simulated from a randomized clinical trials setting as well as by real data on aircraft landing performance. Overall, one obtains an unifying approach for combining summary statistics, subsuming many of the existing meta-analysis methods as special cases. PMID:26190875
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashouf, Shahram; Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario; Fleury, Emmanuelle
Purpose: The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Methods and Materials: Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43more » dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Results: Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V{sub 100} and V{sub 90} are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. Conclusions: The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases.« less
Mashouf, Shahram; Fleury, Emmanuelle; Lai, Priscilla; Merino, Tomas; Lechtman, Eli; Kiss, Alex; McCann, Claire; Pignol, Jean-Philippe
2016-03-15
The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43 dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V100 and V90 are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases. Copyright © 2016 Elsevier Inc. All rights reserved.
Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach.
Xu, Pengpeng; Huang, Helai; Dong, Ni; Wong, S C
2017-01-01
This study was performed to investigate the spatially varying relationships between crash frequency and related risk factors. A Bayesian spatially varying coefficients model was elaborately introduced as a methodological alternative to simultaneously account for the unstructured and spatially structured heterogeneity of the regression coefficients in predicting crash frequencies. The proposed method was appealing in that the parameters were modeled via a conditional autoregressive prior distribution, which involved a single set of random effects and a spatial correlation parameter with extreme values corresponding to pure unstructured or pure spatially correlated random effects. A case study using a three-year crash dataset from the Hillsborough County, Florida, was conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both unstructured and spatially correlated variations in the effects of contributory factors on severe crash occurrences. The findings also suggested that ignoring spatially structured heterogeneity may result in biased parameter estimates and incorrect inferences, while assuming the regression coefficients to be spatially clustered only is probably subject to the issue of over-smoothness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bertalan, Tom; Wu, Yan; Laing, Carlo; Gear, C. William; Kevrekidis, Ioannis G.
2017-01-01
Finding accurate reduced descriptions for large, complex, dynamically evolving networks is a crucial enabler to their simulation, analysis, and ultimately design. Here, we propose and illustrate a systematic and powerful approach to obtaining good collective coarse-grained observables—variables successfully summarizing the detailed state of such networks. Finding such variables can naturally lead to successful reduced dynamic models for the networks. The main premise enabling our approach is the assumption that the behavior of a node in the network depends (after a short initial transient) on the node identity: a set of descriptors that quantify the node properties, whether intrinsic (e.g., parameters in the node evolution equations) or structural (imparted to the node by its connectivity in the particular network structure). The approach creates a natural link with modeling and “computational enabling technology” developed in the context of Uncertainty Quantification. In our case, however, we will not focus on ensembles of different realizations of a problem, each with parameters randomly selected from a distribution. We will instead study many coupled heterogeneous units, each characterized by randomly assigned (heterogeneous) parameter value(s). One could then coin the term Heterogeneity Quantification for this approach, which we illustrate through a model dynamic network consisting of coupled oscillators with one intrinsic heterogeneity (oscillator individual frequency) and one structural heterogeneity (oscillator degree in the undirected network). The computational implementation of the approach, its shortcomings and possible extensions are also discussed. PMID:28659781
Simple heterogeneity parametrization for sea surface temperature and chlorophyll
NASA Astrophysics Data System (ADS)
Skákala, Jozef; Smyth, Timothy J.
2016-06-01
Using satellite maps this paper offers a complex analysis of chlorophyll & SST heterogeneity in the shelf seas around the southwest of the UK. The heterogeneity scaling follows a simple power law and is consequently parametrized by two parameters. It is shown that in most cases these two parameters vary only relatively little with time. The paper offers a detailed comparison of field heterogeneity between different regions. How much heterogeneity is in each region preserved in the annual median data is also determined. The paper explicitly demonstrates how one can use these results to calculate representative measurement area for in situ networks.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sumaira; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
Flow of second grade fluid by a rotating disk with heat and mass transfer is discussed. Additional effects of heat generation/absorption are also analyzed. Flow is also subjected to homogeneous-heterogeneous reactions. The convergence of computed solution is assured through appropriate choices of initial guesses and auxiliary parameters. Investigation is made for the effects of involved parameters on velocities (radial, axial, tangential), temperature and concentration. Skin friction and Nusselt number are also analyzed. Graphical results depict that an increase in viscoelastic parameter enhances the axial, radial and tangential velocities. Opposite behavior of temperature is observed for larger values of viscoelastic and heat generation/absorption parameters. Concentration profile is increasing function of Schmidt number, viscoelastic parameter and heterogeneous reaction parameter. Magnitude of skin friction and Nusselt number are enhanced for larger viscoelastic parameter.
NASA Astrophysics Data System (ADS)
Sarkar, Amit; Kundu, Prabir Kumar
2017-12-01
This specific article unfolds the efficacy of Cattaneo-Christov heat flux on the heat and mass transport of Maxwell nanofluid flow over a stretched sheet with changeable thickness. Homogeneous/heterogeneous reactions in the fluid are additionally considered. The Cattaneo-Christov heat flux model is initiated in the energy equation. Appropriate similarity transformations are taken up to form a system of nonlinear ODEs. The impact of related parameters on the nanoparticle concentration and temperature is inspected through tables and diagrams. It is renowned that temperature distribution increases for lower values of the thermal relaxation parameter. The rate of mass transfer is enhanced for increasing in the heterogeneous reaction parameter but the reverse tendency is ensued for the homogeneous reaction parameter. On the other side, the rate of heat transfer is getting enhanced for the Cattaneo-Christov model compared to the classical Fourier's model for some flow factors. Thus the implication of the current study is to delve its unique effort towards the generalized version of traditional Fourier's law at nano level.
Vicini, P; Bonadonna, R C; Lehtovirta, M; Groop, L C; Cobelli, C
1998-01-01
Distributed models of blood-tissue exchange are widely used to measure kinetic events of various solutes from multiple tracer dilution experiments. Their use requires, however, a careful description of blood flow heterogeneity along the capillary bed. Since they have mostly been applied in animal studies, direct measurement of the heterogeneity distribution was possible, e.g., with the invasive microsphere method. Here we apply distributed modeling to a dual tracer experiment in humans, performed using an intravascular (indocyanine green dye, subject to distribution along the vascular tree and confined to the capillary bed) and an extracellular ([3H]-D-mannitol, tracing passive transcapillary transfer across the capillary membrane in the interstitial fluid) tracer. The goal is to measure relevant parameters of transcapillary exchange in human skeletal muscle. We show that assuming an accurate description of blood flow heterogeneity is crucial for modeling, and in particular that assuming for skeletal muscle the well-studied cardiac muscle blood flow heterogeneity is inappropriate. The same reason prevents the use of the common method of estimating the input function of the distributed model via deconvolution, which assumes a known blood flow heterogeneity, either defined from literature or measured, when possible. We present a novel approach for the estimation of blood flow heterogeneity in each individual from the intravascular tracer data. When this newly estimated blood flow heterogeneity is used, a more satisfactory model fit is obtained and it is possible to reliably measure parameters of capillary membrane permeability-surface product and interstitial fluid volume describing transcapillary transfer in vivo.
Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang
2015-06-01
This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.
Properties of the two-dimensional heterogeneous Lennard-Jones dimers: An integral equation study
Urbic, Tomaz
2016-01-01
Structural and thermodynamic properties of a planar heterogeneous soft dumbbell fluid are examined using Monte Carlo simulations and integral equation theory. Lennard-Jones particles of different sizes are the building blocks of the dimers. The site-site integral equation theory in two dimensions is used to calculate the site-site radial distribution functions and the thermodynamic properties. Obtained results are compared to Monte Carlo simulation data. The critical parameters for selected types of dimers were also estimated and the influence of the Lennard-Jones parameters was studied. We have also tested the correctness of the site-site integral equation theory using different closures. PMID:27875894
ERIC Educational Resources Information Center
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel
2012-01-01
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
A new assessment model for tumor heterogeneity analysis with [18]F-FDG PET images.
Wang, Ping; Xu, Wengui; Sun, Jian; Yang, Chengwen; Wang, Gang; Sa, Yu; Hu, Xin-Hua; Feng, Yuanming
2016-01-01
It has been shown that the intratumor heterogeneity can be characterized with quantitative analysis of the [18]F-FDG PET image data. The existing models employ multiple parameters for feature extraction which makes it difficult to implement in clinical settings for the quantitative characterization. This article reports an easy-to-use and differential SUV based model for quantitative assessment of the intratumor heterogeneity from 3D [18]F-FDG PET image data. An H index is defined to assess tumor heterogeneity by summing voxel-wise distribution of differential SUV from the [18]F-FDG PET image data. The summation is weighted by the distance of SUV difference among neighboring voxels from the center of the tumor and can thus yield increased values for tumors with peripheral sub-regions of high SUV that often serves as an indicator of augmented malignancy. Furthermore, the sign of H index is used to differentiate the rate of change for volume averaged SUV from its center to periphery. The new model with the H index has been compared with a widely-used model of gray level co-occurrence matrix (GLCM) for image texture characterization with phantoms of different configurations and the [18]F-FDG PET image data of 6 lung cancer patients to evaluate its effectiveness and feasibility for clinical uses. The comparison of the H index and GLCM parameters with the phantoms demonstrate that the H index can characterize the SUV heterogeneity in all of 6 2D phantoms while only 1 GLCM parameter can do for 1 and fail to differentiate for other 2D phantoms. For the 8 3D phantoms, the H index can clearly differentiate all of them while the 4 GLCM parameters provide complicated patterns in the characterization. Feasibility study with the PET image data from 6 lung cancer patients show that the H index provides an effective single-parameter metric to characterize tumor heterogeneity in terms of the local SUV variation, and it has higher correlation with tumor volume change after radiotherapy (R(2) = 0.83) than the 4 GLCM parameters (R(2) = 0.63, 0.73, 0.59 and 0.75 for Energy, Contrast, Local Homogeneity and Entropy respectively). The new model of the H index has the capacity to characterize the intratumor heterogeneity feature from 3D [18]F-FDG PET image data. As a single parameter with an intuitive definition, the H index offers potential for clinical applications.
Nonlinear consolidation in randomly heterogeneous highly compressible aquitards
NASA Astrophysics Data System (ADS)
Zapata-Norberto, Berenice; Morales-Casique, Eric; Herrera, Graciela S.
2018-05-01
Severe land subsidence due to groundwater extraction may occur in multiaquifer systems where highly compressible aquitards are present. The highly compressible nature of the aquitards leads to nonlinear consolidation where the groundwater flow parameters are stress-dependent. The case is further complicated by the heterogeneity of the hydrogeologic and geotechnical properties of the aquitards. The effect of realistic vertical heterogeneity of hydrogeologic and geotechnical parameters on the consolidation of highly compressible aquitards is investigated by means of one-dimensional Monte Carlo numerical simulations where the lower boundary represents the effect of an instant drop in hydraulic head due to groundwater pumping. Two thousand realizations are generated for each of the following parameters: hydraulic conductivity ( K), compression index ( C c), void ratio ( e) and m (an empirical parameter relating hydraulic conductivity and void ratio). The correlation structure, the mean and the variance for each parameter were obtained from a literature review about field studies in the lacustrine sediments of Mexico City. The results indicate that among the parameters considered, random K has the largest effect on the ensemble average behavior of the system when compared to a nonlinear consolidation model with deterministic initial parameters. The deterministic solution underestimates the ensemble average of total settlement when initial K is random. In addition, random K leads to the largest variance (and therefore largest uncertainty) of total settlement, groundwater flux and time to reach steady-state conditions.
Seidel, Clemens; Lautenschläger, Christine; Dunst, Jürgen; Müller, Arndt-Christian
2012-04-20
To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity.
NASA Astrophysics Data System (ADS)
Spannenberg, Jescica; Atangana, Abdon; Vermeulen, P. D.
2017-09-01
Fractional differentiation has adequate use for investigating real world scenarios related to geological formations associated with elasticity, heterogeneity, viscoelasticity, and the memory effect. Since groundwater systems exist in these geological formations, modelling groundwater recharge as a real world scenario is a challenging task to do because existing recharge estimation methods are governed by linear equations which make use of constant field parameters. This is inadequate because in reality these parameters are a function of both space and time. This study therefore concentrates on modifying the recharge equation governing the EARTH model, by application of the Eton approach. Accordingly, this paper presents a modified equation which is non-linear, and accounts for parameters in a way that it is a function of both space and time. To be more specific, herein, recharge and drainage resistance which are parameters within the equation, became a function of both space and time. Additionally, the study entailed solving the non-linear equation using an iterative method as well as numerical solutions by means of the Crank-Nicolson scheme. The numerical solutions were used alongside the Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu derivatives, so that account was taken for elasticity, heterogeneity, viscoelasticity, and the memory effect. In essence, this paper presents a more adequate model for recharge estimation.
The application of the pilot points in groundwater numerical inversion model
NASA Astrophysics Data System (ADS)
Hu, Bin; Teng, Yanguo; Cheng, Lirong
2015-04-01
Numerical inversion simulation of groundwater has been widely applied in groundwater. Compared to traditional forward modeling, inversion model has more space to study. Zones and inversing modeling cell by cell are conventional methods. Pilot points is a method between them. The traditional inverse modeling method often uses software dividing the model into several zones with a few parameters needed to be inversed. However, distribution is usually too simple for modeler and result of simulation deviation. Inverse cell by cell will get the most actual parameter distribution in theory, but it need computational complexity greatly and quantity of survey data for geological statistical simulation areas. Compared to those methods, pilot points distribute a set of points throughout the different model domains for parameter estimation. Property values are assigned to model cells by Kriging to ensure geological units within the parameters of heterogeneity. It will reduce requirements of simulation area geological statistics and offset the gap between above methods. Pilot points can not only save calculation time, increase fitting degree, but also reduce instability of numerical model caused by numbers of parameters and other advantages. In this paper, we use pilot point in a field which structure formation heterogeneity and hydraulics parameter was unknown. We compare inversion modeling results of zones and pilot point methods. With the method of comparative analysis, we explore the characteristic of pilot point in groundwater inversion model. First, modeler generates an initial spatially correlated field given a geostatistical model by the description of the case site with the software named Groundwater Vistas 6. Defining Kriging to obtain the value of the field functions over the model domain on the basis of their values at measurement and pilot point locations (hydraulic conductivity), then we assign pilot points to the interpolated field which have been divided into 4 zones. And add range of disturbance values to inversion targets to calculate the value of hydraulic conductivity. Third, after inversion calculation (PEST), the interpolated field will minimize an objective function measuring the misfit between calculated and measured data. It's an optimization problem to find the optimum value of parameters. After the inversion modeling, the following major conclusion can be found out: (1) In a field structure formation is heterogeneity, the results of pilot point method is more real: better fitting result of parameters, more stable calculation of numerical simulation (stable residual distribution). Compared to zones, it is better of reflecting the heterogeneity of study field. (2) Pilot point method ensures that each parameter is sensitive and not entirely dependent on other parameters. Thus it guarantees the relative independence and authenticity of parameters evaluation results. However, it costs more time to calculate than zones. Key words: groundwater; pilot point; inverse model; heterogeneity; hydraulic conductivity
NASA Astrophysics Data System (ADS)
Sege, J.; Li, Y.; Chang, C. F.; Chen, J.; Chen, Z.; Rubin, Y.; Li, X.; Hehua, Z.; Wang, C.; Osorio-Murillo, C. A.
2015-12-01
This study will develop a numerical model to characterize the perturbation of local groundwater systems by underground tunnel construction. Tunnels and other underground spaces act as conduits that remove water from the surrounding aquifer, and may lead to drawdown of the water table. Significant declines in water table elevation can cause environmental impacts by altering root zone soil moisture and changing inflows to surface waters. Currently, it is common to use analytical solutions to estimate groundwater fluxes through tunnel walls. However, these solutions often neglect spatial and temporal heterogeneity in aquifer parameters and system stresses. Some heterogeneous parameters, such as fracture densities, can significantly affect tunnel inflows. This study will focus on numerical approaches that incorporate heterogeneity across a range of scales. Time-dependent simulations will be undertaken to compute drawdown at various stages of excavation, and to model water table recovery after low-conductivity liners are applied to the tunnel walls. This approach will assist planners in anticipating environmental impacts to local surface waters and vegetation, and in computing the amount of tunnel inflow reduction required to meet environmental targets. The authors will also focus on managing uncertainty in model parameters. For greater planning applicability, extremes of a priori parameter ranges will be explored in order to anticipate best- and worst-case scenarios. For calibration and verification purposes, the model will be applied to a completed tunnel project in Mount Mingtang, China, where tunnel inflows were recorded throughout the construction process.
Cancer heterogeneity and multilayer spatial evolutionary games.
Świerniak, Andrzej; Krześlak, Michał
2016-10-13
Evolutionary game theory (EGT) has been widely used to simulate tumour processes. In almost all studies on EGT models analysis is limited to two or three phenotypes. Our model contains four main phenotypes. Moreover, in a standard approach only heterogeneity of populations is studied, while cancer cells remain homogeneous. A multilayer approach proposed in this paper enables to study heterogeneity of single cells. In the extended model presented in this paper we consider four strategies (phenotypes) that can arise by mutations. We propose multilayer spatial evolutionary games (MSEG) played on multiple 2D lattices corresponding to the possible phenotypes. It enables simulation and investigation of heterogeneity on the player-level in addition to the population-level. Moreover, it allows to model interactions between arbitrary many phenotypes resulting from the mixture of basic traits. Different equilibrium points and scenarios (monomorphic and polymorphic populations) have been achieved depending on model parameters and the type of played game. However, there is a possibility of stable quadromorphic population in MSEG games for the same set of parameters like for the mean-field game. The model assumes an existence of four possible phenotypes (strategies) in the population of cells that make up tumour. Various parameters and relations between cells lead to complex analysis of this model and give diverse results. One of them is a possibility of stable coexistence of different tumour cells within the population, representing almost arbitrary mixture of the basic phenotypes. This article was reviewed by Tomasz Lipniacki, Urszula Ledzewicz and Jacek Banasiak.
van Leeuwen, C M; Oei, A L; Crezee, J; Bel, A; Franken, N A P; Stalpers, L J A; Kok, H P
2018-05-16
Prediction of radiobiological response is a major challenge in radiotherapy. Of several radiobiological models, the linear-quadratic (LQ) model has been best validated by experimental and clinical data. Clinically, the LQ model is mainly used to estimate equivalent radiotherapy schedules (e.g. calculate the equivalent dose in 2 Gy fractions, EQD 2 ), but increasingly also to predict tumour control probability (TCP) and normal tissue complication probability (NTCP) using logistic models. The selection of accurate LQ parameters α, β and α/β is pivotal for a reliable estimate of radiation response. The aim of this review is to provide an overview of published values for the LQ parameters of human tumours as a guideline for radiation oncologists and radiation researchers to select appropriate radiobiological parameter values for LQ modelling in clinical radiotherapy. We performed a systematic literature search and found sixty-four clinical studies reporting α, β and α/β for tumours. Tumour site, histology, stage, number of patients, type of LQ model, radiation type, TCP model, clinical endpoint and radiobiological parameter estimates were extracted. Next, we stratified by tumour site and by tumour histology. Study heterogeneity was expressed by the I 2 statistic, i.e. the percentage of variance in reported values not explained by chance. A large heterogeneity in LQ parameters was found within and between studies (I 2 > 75%). For the same tumour site, differences in histology partially explain differences in the LQ parameters: epithelial tumours have higher α/β values than adenocarcinomas. For tumour sites with different histologies, such as in oesophageal cancer, the α/β estimates correlate well with histology. However, many other factors contribute to the study heterogeneity of LQ parameters, e.g. tumour stage, type of LQ model, TCP model and clinical endpoint (i.e. survival, tumour control and biochemical control). The value of LQ parameters for tumours as published in clinical radiotherapy studies depends on many clinical and methodological factors. Therefore, for clinical use of the LQ model, LQ parameters for tumour should be selected carefully, based on tumour site, histology and the applied LQ model. To account for uncertainties in LQ parameter estimates, exploring a range of values is recommended.
Mean-field models for heterogeneous networks of two-dimensional integrate and fire neurons.
Nicola, Wilten; Campbell, Sue Ann
2013-01-01
We analytically derive mean-field models for all-to-all coupled networks of heterogeneous, adapting, two-dimensional integrate and fire neurons. The class of models we consider includes the Izhikevich, adaptive exponential and quartic integrate and fire models. The heterogeneity in the parameters leads to different moment closure assumptions that can be made in the derivation of the mean-field model from the population density equation for the large network. Three different moment closure assumptions lead to three different mean-field systems. These systems can be used for distinct purposes such as bifurcation analysis of the large networks, prediction of steady state firing rate distributions, parameter estimation for actual neurons and faster exploration of the parameter space. We use the mean-field systems to analyze adaptation induced bursting under realistic sources of heterogeneity in multiple parameters. Our analysis demonstrates that the presence of heterogeneity causes the Hopf bifurcation associated with the emergence of bursting to change from sub-critical to super-critical. This is confirmed with numerical simulations of the full network for biologically reasonable parameter values. This change decreases the plausibility of adaptation being the cause of bursting in hippocampal area CA3, an area with a sizable population of heavily coupled, strongly adapting neurons.
Mean-field models for heterogeneous networks of two-dimensional integrate and fire neurons
Nicola, Wilten; Campbell, Sue Ann
2013-01-01
We analytically derive mean-field models for all-to-all coupled networks of heterogeneous, adapting, two-dimensional integrate and fire neurons. The class of models we consider includes the Izhikevich, adaptive exponential and quartic integrate and fire models. The heterogeneity in the parameters leads to different moment closure assumptions that can be made in the derivation of the mean-field model from the population density equation for the large network. Three different moment closure assumptions lead to three different mean-field systems. These systems can be used for distinct purposes such as bifurcation analysis of the large networks, prediction of steady state firing rate distributions, parameter estimation for actual neurons and faster exploration of the parameter space. We use the mean-field systems to analyze adaptation induced bursting under realistic sources of heterogeneity in multiple parameters. Our analysis demonstrates that the presence of heterogeneity causes the Hopf bifurcation associated with the emergence of bursting to change from sub-critical to super-critical. This is confirmed with numerical simulations of the full network for biologically reasonable parameter values. This change decreases the plausibility of adaptation being the cause of bursting in hippocampal area CA3, an area with a sizable population of heavily coupled, strongly adapting neurons. PMID:24416013
Seismic imaging in hardrock environments: The role of heterogeneity?
NASA Astrophysics Data System (ADS)
Bongajum, Emmanuel; Milkereit, Bernd; Adam, Erick; Meng, Yijian
2012-10-01
We investigate the effect of petrophysical scale parameters and structural dips on wave propagation and imaging in heterogeneous media. Seismic wave propagation effects within the heterogeneous media are studied for different velocity models with scale lengths determined via stochastic analysis of petrophysical logs from the Matagami mine, Quebec, Canada. The elastic modeling study reveals that provided certain conditions of the velocity fluctuations are met, strong local distortions of amplitude and arrival times of propagating waves are observed as the degree of scale length anisotropy in the P-wave velocity increases. The location of these local amplitude anomalies is related to the dips characterizing the fabric of the host rocks. This result is different from the elliptical shape of direct waves often defined by effective anisotropic parameters used for layered media. Although estimates of anisotropic parameters suggest weak anisotropy in the investigated models, these effective anisotropic parameters often used in VTI/TTI do not sufficiently describe the effects of scale length anisotropy in heterogeneous media that show such local amplitude, travel time, and phase distortions in the wavefields. Numerical investigations on the implications for reverse time migration (RTM) routines corroborate that mean P-wave velocity of the host rocks produces reliable imaging results. Based on the RTM results, we postulate the following: weak anisotropy in hardrock environments is a sufficient assumption for processing seismic data; and seismic scattering effects due to velocity heterogeneity with a dip component is not sufficient to cause mislocation errors of target structures as observed in the discrepancy between the location of the strong seismic reflections associated to the Matagami sulfide orebody and its true location. Future work will investigate other factors that may provide plausible explanations for these mislocation problems, with the objective of providing a mitigation strategy for incorporation into the seismic data processing sequence when imaging in hardrock settings.
Toward heterogeneity in feedforward network with synaptic delays based on FitzHugh-Nagumo model
NASA Astrophysics Data System (ADS)
Qin, Ying-Mei; Men, Cong; Zhao, Jia; Han, Chun-Xiao; Che, Yan-Qiu
2018-01-01
We focus on the role of heterogeneity on the propagation of firing patterns in feedforward network (FFN). Effects of heterogeneities both in parameters of neuronal excitability and synaptic delays are investigated systematically. Neuronal heterogeneity is found to modulate firing rates and spiking regularity by changing the excitability of the network. Synaptic delays are strongly related with desynchronized and synchronized firing patterns of the FFN, which indicate that synaptic delays may play a significant role in bridging rate coding and temporal coding. Furthermore, quasi-coherence resonance (quasi-CR) phenomenon is observed in the parameter domain of connection probability and delay-heterogeneity. All these phenomena above enable a detailed characterization of neuronal heterogeneity in FFN, which may play an indispensable role in reproducing the important properties of in vivo experiments.
2012-01-01
Background To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Methods Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Results Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Conclusions Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity. PMID:22520045
Cox, Melissa D; Myerscough, Mary R
2003-07-21
This paper develops and explores a model of foraging in honey bee colonies. The model may be applied to forage sources with various properties, and to colonies with different foraging-related parameters. In particular, we examine the effect of five foraging-related parameters on the foraging response and consequent nectar intake of a homogeneous colony. The parameters investigated affect different quantities critical to the foraging cycle--visit rate (affected by g), probability of dancing (mpd and bpd), duration of dancing (mcirc), or probability of abandonment (A). We show that one parameter, A, affects nectar intake in a nonlinear way. Further, we show that colonies with a midrange value of any foraging parameter perform better than the average of colonies with high- and low-range values, when profitable sources are available. Together these observations suggest that a heterogeneous colony, in which a range of parameter values are present, may perform better than a homogeneous colony. We modify the model to represent heterogeneous colonies and use it to show that the most important effect of heterogeneous foraging behaviour within the colony is to reduce the variance in the average quantity of nectar collected by heterogeneous colonies.
NASA Astrophysics Data System (ADS)
Gnaneswara Reddy, M.
2017-09-01
This communication presents the transportation of third order hydromagnetic fluid with thermal radiation by peristalsis through an irregular channel configuration filled a porous medium under the low Reynolds number and large wavelength approximations. Joule heating, Hall current and homogeneous-heterogeneous reactions effects are considered in the energy and species equations. The Second-order velocity and energy slip restrictions are invoked. Final dimensionless governing transport equations along the boundary restrictions are resolved numerically with the help of NDsolve in Mathematica package. Impact of involved sundry parameters on the non-dimensional axial velocity, fluid temperature and concentration characteristics have been analyzed via plots and tables. It is manifest that an increasing porosity parameter leads to maximum velocity in the core part of the channel. Fluid velocity boosts near the walls of the channel where as the reverse effect in the central part of the channel for higher values of first order slip. Larger values of thermal radiation parameter R reduce the fluid temperature field. Also, an increase in heterogeneous reaction parameter Ks magnifies the concentration profile. The present study has the crucial application of thermal therapy in biomedical engineering.
NASA Astrophysics Data System (ADS)
Yoo, Jin Woo
In my 1st essay, the study explores Pennsylvania residents. willingness to pay for development of renewable energy technologies such as solar power, wind power, biomass electricity, and other renewable energy using a choice experiment method. Principle component analysis identified 3 independent attitude components that affect the variation of preference, a desire for renewable energy and environmental quality and concern over cost. The results show that urban residents have a higher desire for environmental quality and concern less about cost than rural residents and consequently have a higher willingness to pay to increase renewable energy production. The results of sub-sample analysis show that a representative respondent in rural (urban) Pennsylvania is willing to pay 3.8(5.9) and 4.1(5.7)/month for increasing the share of Pennsylvania electricity generated from wind power and other renewable energy by 1 percent point, respectively. Mean WTP for solar and biomass electricity was not significantly different from zero. In my second essay, heterogeneity of individual WTP for various renewable energy technologies is investigated using several different variants of the multinomial logit model: a simple MNL with interaction terms, a latent class choice model, a random parameter mixed logit choice model, and a random parameter-latent class choice model. The results of all models consistently show that respondents. preference for individual renewable technology is heterogeneous, but the degree of heterogeneity differs for different renewable technologies. In general, the random parameter logit model with interactions and a hybrid random parameter logit-latent class model fit better than other models and better capture respondents. heterogeneity of preference for renewable energy. The impact of the land under agricultural conservation easement (ACE) contract on the values of nearby residential properties is investigated using housing sales data in two Pennsylvania Counties. The spatial-lag (SLM), the spatial error (SEM) and the spatial error component (SEC) models were compared. A geographically weighted regression (GWR) model is estimated to study the spatial heterogeneity of the marginal implicit prices of ACE impact within each county. New hybrid spatial hedonic models, the GWR-SEC and a modified GWR-SEM, are estimated such that both spatial autocorrelation and heterogeneity are accounted. The results show that the coefficient of land under easement contract varies spatially within one county, but not within the other county studied. Also, ACE's are found to have both positive and negative impacts on the values of nearby residential properties. Among global spatial models, the SEM fit better than the SLM and the SEC. Statistical goodness of fit measures showed that the GWR-SEC model fit better than the GWR or the GWR-SEC model. Finally, the GWR-SEC showed spatial autocorrelation is stronger in one county than in the other county.
ERIC Educational Resources Information Center
Luh, Wei-Ming; Guo, Jiin-Huarng
2011-01-01
Sample size determination is an important issue in planning research. In the context of one-way fixed-effect analysis of variance, the conventional sample size formula cannot be applied for the heterogeneous variance cases. This study discusses the sample size requirement for the Welch test in the one-way fixed-effect analysis of variance with…
Optimizing structure of complex technical system by heterogeneous vector criterion in interval form
NASA Astrophysics Data System (ADS)
Lysenko, A. V.; Kochegarov, I. I.; Yurkov, N. K.; Grishko, A. K.
2018-05-01
The article examines the methods of development and multi-criteria choice of the preferred structural variant of the complex technical system at the early stages of its life cycle in the absence of sufficient knowledge of parameters and variables for optimizing this structure. The suggested methods takes into consideration the various fuzzy input data connected with the heterogeneous quality criteria of the designed system and the parameters set by their variation range. The suggested approach is based on the complex use of methods of interval analysis, fuzzy sets theory, and the decision-making theory. As a result, the method for normalizing heterogeneous quality criteria has been developed on the basis of establishing preference relations in the interval form. The method of building preferential relations in the interval form on the basis of the vector of heterogeneous quality criteria suggest the use of membership functions instead of the coefficients considering the criteria value. The former show the degree of proximity of the realization of the designed system to the efficient or Pareto optimal variants. The study analyzes the example of choosing the optimal variant for the complex system using heterogeneous quality criteria.
Study on Silicon Microstructure Processing Technology Based on Porous Silicon
NASA Astrophysics Data System (ADS)
Shang, Yingqi; Zhang, Linchao; Qi, Hong; Wu, Yalin; Zhang, Yan; Chen, Jing
2018-03-01
Aiming at the heterogeneity of micro - sealed cavity in silicon microstructure processing technology, the technique of preparing micro - sealed cavity of porous silicon is proposed. The effects of different solutions, different substrate doping concentrations, different current densities, and different etching times on the rate, porosity, thickness and morphology of the prepared porous silicon were studied. The porous silicon was prepared by different process parameters and the prepared porous silicon was tested and analyzed. For the test results, optimize the process parameters and experiments. The experimental results show that the porous silicon can be controlled by optimizing the parameters of the etching solution and the doping concentration of the substrate, and the preparation of porous silicon with different porosity can be realized by different doping concentration, so as to realize the preparation of silicon micro-sealed cavity, to solve the sensor sensitive micro-sealed cavity structure heterogeneous problem, greatly increasing the application of the sensor.
NASA Astrophysics Data System (ADS)
Zhu, J.; Winter, C. L.; Wang, Z.
2015-11-01
Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow paths in groundwater fluxes that in turn reduce aquifer-stream exchanges. Since surface water-groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.
Spatial localization in heterogeneous systems
NASA Astrophysics Data System (ADS)
Kao, Hsien-Ching; Beaume, Cédric; Knobloch, Edgar
2014-01-01
We study spatial localization in the generalized Swift-Hohenberg equation with either quadratic-cubic or cubic-quintic nonlinearity subject to spatially heterogeneous forcing. Different types of forcing (sinusoidal or Gaussian) with different spatial scales are considered and the corresponding localized snaking structures are computed. The results indicate that spatial heterogeneity exerts a significant influence on the location of spatially localized structures in both parameter space and physical space, and on their stability properties. The results are expected to assist in the interpretation of experiments on localized structures where departures from spatial homogeneity are generally unavoidable.
ERIC Educational Resources Information Center
Zimmerman, Donald W.
2011-01-01
This study investigated how population parameters representing heterogeneity of variance, skewness, kurtosis, bimodality, and outlier-proneness, drawn from normal and eleven non-normal distributions, also characterized the ranks corresponding to independent samples of scores. When the parameters of population distributions from which samples were…
Concerning the relationship between evapotranspiration and soil moisture
NASA Technical Reports Server (NTRS)
Wetzel, Peter J.; Chang, Jy-Tai
1987-01-01
The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.
Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons.
Moon, Sung Joon; Cook, Katherine A; Rajendran, Karthikeyan; Kevrekidis, Ioannis G; Cisternas, Jaime; Laing, Carlo R
2015-12-01
The formation of oscillating phase clusters in a network of identical Hodgkin-Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a network of N neurons where this heterogeneity is characterized by a prescribed random variable, the oscillatory single-cluster state can transition-through [Formula: see text] (possibly perturbed) period-doubling and subsequent bifurcations-to a variety of multiple-cluster states. The clustering dynamic behavior is computationally studied both at the detailed and the coarse-grained levels, and a numerical approach that can enable studying the coarse-grained dynamics in a network of arbitrarily large size is suggested. Among a number of cluster states formed, double clusters, composed of nearly equal sub-network sizes are seen to be stable; interestingly, the heterogeneity parameter in each of the double-cluster components tends to be consistent with the random variable over the entire network: Given a double-cluster state, permuting the dynamical variables of the neurons can lead to a combinatorially large number of different, yet similar "fine" states that appear practically identical at the coarse-grained level. For weak heterogeneity we find that correlations rapidly develop, within each cluster, between the neuron's "identity" (its own value of the heterogeneity parameter) and its dynamical state. For single- and double-cluster states we demonstrate an effective coarse-graining approach that uses the Polynomial Chaos expansion to succinctly describe the dynamics by these quickly established "identity-state" correlations. This coarse-graining approach is utilized, within the equation-free framework, to perform efficient computations of the neuron ensemble dynamics.
Semiconductor Sensors for Studying the Heterogeneous Destruction of Ozone at Low Concentrations
NASA Astrophysics Data System (ADS)
Obvintseva, L. A.; Sharova, T. B.; Avetisov, A. K.; Sukhareva, I. P.
2018-06-01
Prospects for the use of semiconductor resistive sensors in studies of the heterogeneous destruction of ozone at low concentrations (5-400 μg/m3) were shown. The influence of various factors (sensor temperature, gas flow rate, ozone concentration) on the results of ozone concentration measurements with sensors of various types was studied. Methods for forming a sensitive layer of In2O3(3% Fe2O3) sensors with specified parameters of calibration curves were proposed. The optimum conditions for the operation of sensors in a flow mode were formulated. The results of the study of heterogeneous destruction of ozone on microfiber polymer and natural disperse (sand, coals) materials obtained by the developed method were presented.
Majority-Vote Model with Heterogeneous Agents on Square Lattice
NASA Astrophysics Data System (ADS)
Lima, F. W. S.
2013-11-01
We study a nonequilibrium model with up-down symmetry and a noise parameter q known as majority-vote model (MVM) of [M. J. Oliveira, J. Stat. Phys.66, 273 (1992)] with heterogeneous agents on square lattice (SL). By Monte Carlo (MC) simulations and finite-size scaling relations, the critical exponents β/ν, γ/ν and 1/ν and points qc and U* are obtained. After extensive simulations, we obtain β/ν = 0.35(1), γ/ν = 1.23(8) and 1/ν = 1.05(5). The calculated values of the critical noise parameter and Binder cumulant are qc = 0.1589(4) and U* = 0.604(7). Within the error bars, the exponents obey the relation 2β/ν + γ/ν = 2 and the results presented here demonstrate that the MVM heterogeneous agents belongs to a different universality class than the nonequilibrium MVM with homogeneous agents on SL.
Analyses of a heterogeneous lattice hydrodynamic model with low and high-sensitivity vehicles
NASA Astrophysics Data System (ADS)
Kaur, Ramanpreet; Sharma, Sapna
2018-06-01
Basic lattice model is extended to study the heterogeneous traffic by considering the optimal current difference effect on a unidirectional single lane highway. Heterogeneous traffic consisting of low- and high-sensitivity vehicles is modeled and their impact on stability of mixed traffic flow has been examined through linear stability analysis. The stability of flow is investigated in five distinct regions of the neutral stability diagram corresponding to the amount of higher sensitivity vehicles present on road. In order to investigate the propagating behavior of density waves non linear analysis is performed and near the critical point, the kink antikink soliton is obtained by driving mKdV equation. The effect of fraction parameter corresponding to high sensitivity vehicles is investigated and the results indicates that the stability rise up due to the fraction parameter. The theoretical findings are verified via direct numerical simulation.
Designing occupancy studies when false-positive detections occur
Clement, Matthew
2016-01-01
1.Recently, estimators have been developed to estimate occupancy probabilities when false-positive detections occur during presence-absence surveys. Some of these estimators combine different types of survey data to improve estimates of occupancy. With these estimators, there is a tradeoff between the number of sample units surveyed, and the number and type of surveys at each sample unit. Guidance on efficient design of studies when false positives occur is unavailable. 2.For a range of scenarios, I identified survey designs that minimized the mean square error of the estimate of occupancy. I considered an approach that uses one survey method and two observation states and an approach that uses two survey methods. For each approach, I used numerical methods to identify optimal survey designs when model assumptions were met and parameter values were correctly anticipated, when parameter values were not correctly anticipated, and when the assumption of no unmodelled detection heterogeneity was violated. 3.Under the approach with two observation states, false positive detections increased the number of recommended surveys, relative to standard occupancy models. If parameter values could not be anticipated, pessimism about detection probabilities avoided poor designs. Detection heterogeneity could require more or fewer repeat surveys, depending on parameter values. If model assumptions were met, the approach with two survey methods was inefficient. However, with poor anticipation of parameter values, with detection heterogeneity, or with removal sampling schemes, combining two survey methods could improve estimates of occupancy. 4.Ignoring false positives can yield biased parameter estimates, yet false positives greatly complicate the design of occupancy studies. Specific guidance for major types of false-positive occupancy models, and for two assumption violations common in field data, can conserve survey resources. This guidance can be used to design efficient monitoring programs and studies of species occurrence, species distribution, or habitat selection, when false positives occur during surveys.
NASA Astrophysics Data System (ADS)
Zhuang, Chao; Zhou, Zhifang; Illman, Walter A.; Guo, Qiaona; Wang, Jinguo
2017-09-01
The classical aquitard-drainage model COMPAC has been modified to simulate the compaction process of a heterogeneous aquitard consisting of multiple sub-units (Multi-COMPAC). By coupling Multi-COMPAC with the parameter estimation code PEST++, the vertical hydraulic conductivity ( K v) and elastic ( S ske) and inelastic ( S skp) skeletal specific-storage values of each sub-unit can be estimated using observed long-term multi-extensometer and groundwater level data. The approach was first tested through a synthetic case with known parameters. Results of the synthetic case revealed that it was possible to accurately estimate the three parameters for each sub-unit. Next, the methodology was applied to a field site located in Changzhou city, China. Based on the detailed stratigraphic information and extensometer data, the aquitard of interest was subdivided into three sub-units. Parameters K v, S ske and S skp of each sub-unit were estimated simultaneously and then were compared with laboratory results and with bulk values and geologic data from previous studies, demonstrating the reliability of parameter estimates. Estimated S skp values ranged within the magnitude of 10-4 m-1, while K v ranged over 10-10-10-8 m/s, suggesting moderately high heterogeneity of the aquitard. However, the elastic deformation of the third sub-unit, consisting of soft plastic silty clay, is masked by delayed drainage, and the inverse procedure leads to large uncertainty in the S ske estimate for this sub-unit.
Cam, E.; Monnat, J.-Y.
2000-01-01
Heterogeneity in individual quality can be a major obstacle when interpreting age-specific variation in life-history traits. Heterogeneity is likely to lead to within-generation selection, and patterns observed at the population level may result from the combination of hidden patterns specific to subpopulations. Population-level patterns are not relevant to hypotheses concerning the evolution of age-specific reproductive strategies if they differ from patterns at the individual level. We addressed the influence of age and a variable used as a surrogate of quality (yearly reproductive state) on survival and breeding probability in the kittiwake. We found evidence of an effect of age and quality on both demographic parameters. Patterns observed in breeders are consistent with the selection hypothesis, which predicts age-related increases in survival and traits positively correlated with survival. Our results also reveal unexpected age effects specific to subgroups: the influence of age on survival and future breeding probability is not the same in nonbreeders and breeders. These patterns are observed in higher-quality breeding habitats, where the influence of extrinsic factors on breeding state is the weakest. Moreover, there is slight evidence of an influence of sex on breeding probability (not on survival), but the same overall pattern is observed in both sexes. Our results support the hypothesis that age-related variation in demographic parameters observed at the population level is partly shaped by heterogeneity among individuals. They also suggest processes specific to subpopulations. Recent theoreticaI developments lay emphasis on integration of sources of heterogeneity in optimization models to account for apparently 'sub-optimal' empirical patterns. Incorporation of sources of heterogeneity is also the key to investigation of age-related reproductive strategies in heterogeneous populations. Thwarting 'heterogeneity's ruses' has become a major challenge: for detecting and understanding natural processes, and a constructive confrontation between empirical and theoretical studies.
Meta-Analysis of Rare Binary Adverse Event Data
Bhaumik, Dulal K.; Amatya, Anup; Normand, Sharon-Lise; Greenhouse, Joel; Kaizar, Eloise; Neelon, Brian; Gibbons, Robert D.
2013-01-01
We examine the use of fixed-effects and random-effects moment-based meta-analytic methods for analysis of binary adverse event data. Special attention is paid to the case of rare adverse events which are commonly encountered in routine practice. We study estimation of model parameters and between-study heterogeneity. In addition, we examine traditional approaches to hypothesis testing of the average treatment effect and detection of the heterogeneity of treatment effect across studies. We derive three new methods, simple (unweighted) average treatment effect estimator, a new heterogeneity estimator, and a parametric bootstrapping test for heterogeneity. We then study the statistical properties of both the traditional and new methods via simulation. We find that in general, moment-based estimators of combined treatment effects and heterogeneity are biased and the degree of bias is proportional to the rarity of the event under study. The new methods eliminate much, but not all of this bias. The various estimators and hypothesis testing methods are then compared and contrasted using an example dataset on treatment of stable coronary artery disease. PMID:23734068
Choi, E-Ryung; Lee, Ho Yun; Jeong, Ji Yun; Choi, Yoon-La; Kim, Jhingook; Bae, Jungmin; Lee, Kyung Soo; Shim, Young Mog
2016-10-11
We aimed to compare quantitative radiomic parameters from dual-energy computed tomography (DECT) of lung adenocarcinoma and pathologic complexity.A total 89 tumors with clinical stage I/II lung adenocarcinoma were prospectively included. Fifty one radiomic features were assessed both from iodine images and non-contrast images of DECT datasets. Comprehensive histologic subtyping was evaluated with all surgically resected tumors. The degree of pathologic heterogeneity was assessed using pathologic index and the number of mixture histologic subtypes in a tumor. Radiomic parameters were correlated with pathologic index. Tumors were classified as three groups according to the number of mixture histologic subtypes and radiomic parameters were compared between the three groups.Tumor density and 50th through 97.5th percentile Hounsfield units (HU) of histogram on non-contrast images showed strong correlation with the pathologic heterogeneity. Radiomic parameters including 75th and 97.5th percentile HU of histogram, entropy, and inertia on 1-, 2- and 3 voxel distance on non-contrast images showed incremental changes while homogeneity showed detrimental change according to the number of mixture histologic subtypes (all Ps < 0.05).Radiomic variables from DECT of lung adenocarcinoma reflect pathologic intratumoral heterogeneity, which may help in the prediction of intratumoral heterogeneity of the whole tumor.
Effect of homogenous-heterogeneous reactions on MHD Prandtl fluid flow over a stretching sheet
NASA Astrophysics Data System (ADS)
Khan, Imad; Malik, M. Y.; Hussain, Arif; Salahuddin, T.
An analysis is performed to explore the effects of homogenous-heterogeneous reactions on two-dimensional flow of Prandtl fluid over a stretching sheet. In present analysis, we used the developed model of homogeneous-heterogeneous reactions in boundary layer flow. The mathematical configuration of presented flow phenomenon yields the nonlinear partial differential equations. Using scaling transformations, the governing partial differential equations (momentum equation and homogenous-heterogeneous reactions equations) are transformed into non-linear ordinary differential equations (ODE's). Then, resulting non-linear ODE's are solved by computational scheme known as shooting method. The quantitative and qualitative manners of concerned physical quantities (velocity, concentration and drag force coefficient) are examined under prescribed physical constrained through figures and tables. It is observed that velocity profile enhances verses fluid parameters α and β while Hartmann number reduced it. The homogeneous and heterogeneous reactions parameters have reverse effects on concentration profile. Concentration profile shows retarding behavior for large values of Schmidt number. Skin fraction coefficient enhances with increment in Hartmann number H and fluid parameter α .
Uncertainty quantification and risk analyses of CO2 leakage in heterogeneous geological formations
NASA Astrophysics Data System (ADS)
Hou, Z.; Murray, C. J.; Rockhold, M. L.
2012-12-01
A stochastic sensitivity analysis framework is adopted to evaluate the impact of spatial heterogeneity in permeability on CO2 leakage risk. The leakage is defined as the total mass of CO2 moving into the overburden through the caprock-overburden interface, in both gaseous and liquid (dissolved) phases. The entropy-based framework has the ability to quantify the uncertainty associated with the input parameters in the form of prior pdfs (probability density functions). Effective sampling of the prior pdfs enables us to fully explore the parameter space and systematically evaluate the individual and combined effects of the parameters of interest on CO2 leakage risk. The parameters that are considered in the study include: mean, variance, and horizontal to vertical spatial anisotropy ratio for caprock permeability, and those same parameters for reservoir permeability. Given the sampled spatial variogram parameters, multiple realizations of permeability fields were generated using GSLIB subroutines. For each permeability field, a numerical simulator, STOMP, (in the water-salt-CO2-energy operational mode) is used to simulate the CO2 migration within the reservoir and caprock up to 50 years after injection. Due to intensive computational demand, we run both a scalable version simulator eSTOMP and serial STOMP on various supercomputers. We then perform statistical analyses and summarize the relationships between the parameters of interest (mean/variance/anisotropy ratio of caprock and reservoir permeability) and CO2 leakage ratio. We also present the effects of those parameters on CO2 plume radius and reservoir injectivity. The statistical analysis provides a reduced order model that can be used to estimate the impact of heterogeneity on caprock leakage.
Szczepankiewicz, Filip; van Westen, Danielle; Englund, Elisabet; Westin, Carl-Fredrik; Ståhlberg, Freddy; Lätt, Jimmy; Sundgren, Pia C; Nilsson, Markus
2016-11-15
The structural heterogeneity of tumor tissue can be probed by diffusion MRI (dMRI) in terms of the variance of apparent diffusivities within a voxel. However, the link between the diffusional variance and the tissue heterogeneity is not well-established. To investigate this link we test the hypothesis that diffusional variance, caused by microscopic anisotropy and isotropic heterogeneity, is associated with variable cell eccentricity and cell density in brain tumors. We performed dMRI using a novel encoding scheme for diffusional variance decomposition (DIVIDE) in 7 meningiomas and 8 gliomas prior to surgery. The diffusional variance was quantified from dMRI in terms of the total mean kurtosis (MK T ), and DIVIDE was used to decompose MK T into components caused by microscopic anisotropy (MK A ) and isotropic heterogeneity (MK I ). Diffusion anisotropy was evaluated in terms of the fractional anisotropy (FA) and microscopic fractional anisotropy (μFA). Quantitative microscopy was performed on the excised tumor tissue, where structural anisotropy and cell density were quantified by structure tensor analysis and cell nuclei segmentation, respectively. In order to validate the DIVIDE parameters they were correlated to the corresponding parameters derived from microscopy. We found an excellent agreement between the DIVIDE parameters and corresponding microscopy parameters; MK A correlated with cell eccentricity (r=0.95, p<10 -7 ) and MK I with the cell density variance (r=0.83, p<10 -3 ). The diffusion anisotropy correlated with structure tensor anisotropy on the voxel-scale (FA, r=0.80, p<10 -3 ) and microscopic scale (μFA, r=0.93, p<10 -6 ). A multiple regression analysis showed that the conventional MK T parameter reflects both variable cell eccentricity and cell density, and therefore lacks specificity in terms of microstructure characteristics. However, specificity was obtained by decomposing the two contributions; MK A was associated only to cell eccentricity, and MK I only to cell density variance. The variance in meningiomas was caused primarily by microscopic anisotropy (mean±s.d.) MK A =1.11±0.33 vs MK I =0.44±0.20 (p<10 -3 ), whereas in the gliomas, it was mostly caused by isotropic heterogeneity MK I =0.57±0.30 vs MK A =0.26±0.11 (p<0.05). In conclusion, DIVIDE allows non-invasive mapping of parameters that reflect variable cell eccentricity and density. These results constitute convincing evidence that a link exists between specific aspects of tissue heterogeneity and parameters from dMRI. Decomposing effects of microscopic anisotropy and isotropic heterogeneity facilitates an improved interpretation of tumor heterogeneity as well as diffusion anisotropy on both the microscopic and macroscopic scale. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes
Wood, Sossena; Krishnamurthy, Narayanan; Santini, Tales; Raval, Shailesh; Farhat, Nadim; Holmes, John Andy; Ibrahim, Tamer S.
2017-01-01
Objective The purpose of this study is to design an anthropomorphic heterogeneous head phantom that can be used for MRI and other electromagnetic applications. Materials and methods An eight compartment, physical anthropomorphic head phantom was developed from a 3T MRI dataset of a healthy male. The designed phantom was successfully built and preliminarily evaluated through an application that involves electromagnetic-tissue interactions: MRI (due to it being an available resource). The developed phantom was filled with media possessing electromagnetic constitutive parameters that correspond to biological tissues at ~297 MHz. A preliminary comparison between an in-vivo human volunteer (based on whom the anthropomorphic head phantom was created) and various phantoms types, one being the anthropomorphic heterogeneous head phantom, were performed using a 7 Tesla human MRI scanner. Results Echo planar imaging was performed and minimal ghosting and fluctuations were observed using the proposed anthropomorphic phantom. The magnetic field distributions (during MRI experiments at 7 Tesla) and the scattering parameter (measured using a network analyzer) were most comparable between the anthropomorphic heterogeneous head phantom and an in-vivo human volunteer. Conclusion The developed anthropomorphic heterogeneous head phantom can be used as a resource to various researchers in applications that involve electromagnetic-biological tissue interactions such as MRI. PMID:28806768
Hingerl, Ferdinand F.; Yang, Feifei; Pini, Ronny; ...
2016-02-02
In this paper we present the results of an extensive multiscale characterization of the flow properties and structural and capillary heterogeneities of the Heletz sandstone. We performed petrographic, porosity and capillary pressure measurements on several subsamples. We quantified mm-scale heterogeneity in saturation distributions in a rock core during multi-phase flow using conventional X-ray CT scanning. Core-flooding experiments were conducted under reservoirs conditions (9 MPa, 50 °C) to obtain primary drainage and secondary imbibition relative permeabilities and residual trapping was analyzed and quantified. We provide parameters for relative permeability, capillary pressure and trapping models for further modeling studies. A synchrotron-based microtomographymore » study complements our cm- to mm-scale investigation by providing links between the micromorphology and mm-scale saturation heterogeneities.« less
Radial solute transport in highly heterogeneous aquifers: Modeling and experimental comparison
NASA Astrophysics Data System (ADS)
Di Dato, Mariaines; Fiori, Aldo; de Barros, Felipe P. J.; Bellin, Alberto
2017-07-01
We analyze solute transport in a radially converging 3-D flow field in a porous medium with spatially heterogeneous hydraulic conductivity (K). The aim of the paper is to analyze the impact of heterogeneity and the mode of injection on BreakThrough Curves (BTCs) detected at a well pumping a contaminated aquifer. The aquifer is conceptualized as an ensemble of blocks of uniform but contrasting K and the analysis makes use of the travel time approach. Despite the approximations introduced, the model reproduces a laboratory experiment without calibration of transport parameters. Our results also show excellent agreement with numerical simulations for different levels of heterogeneity. We focus on the impact on the BTC of both heterogeneity in K and solute release conditions. It is shown that the injection mode matters, and the differences in the BTCs between uniform and flux-proportional injection increase with the heterogeneity of the K-field. Furthermore, we study the effect of heterogeneity and mode of injection on early and late arrivals at the well.
NASA Astrophysics Data System (ADS)
Wlodarczyk, Jakub; Kierdaszuk, Borys
2005-08-01
Decays of tyrosine fluorescence in protein-ligand complexes are described by a model of continuous distribution of fluorescence lifetimes. Resulted analytical power-like decay function provides good fits to highly complex fluorescence kinetics. Moreover, this is a manifestation of so-called Tsallis q-exponential function, which is suitable for description of the systems with long-range interactions, memory effect, as well as with fluctuations of the characteristic lifetime of fluorescence. The proposed decay functions were applied to analysis of fluorescence decays of tyrosine in a protein, i.e. the enzyme purine nucleoside phosphorylase from E. coli (the product of the deoD gene), free in aqueous solution and in a complex with formycin A (an inhibitor) and orthophosphate (a co-substrate). The power-like function provides new information about enzyme-ligand complex formation based on the physically justified heterogeneity parameter directly related to the lifetime distribution. A measure of the heterogeneity parameter in the enzyme systems is provided by a variance of fluorescence lifetime distribution. The possible number of deactivation channels and excited state mean lifetime can be easily derived without a priori knowledge of the complexity of studied system. Moreover, proposed model is simpler then traditional multi-exponential one, and better describes heterogeneous nature of studied systems.
Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance
NASA Technical Reports Server (NTRS)
Molina, Mario J.
2003-01-01
The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HC1 vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow- chemical ionization mass spectrometry and optical ellipsometry, among others. The next section summarizes our research activities during the first year of the project, and the section that follows consists of the statement of work for the second year.
NASA Astrophysics Data System (ADS)
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nadejde, C.; Neamtu, M.; Hodoroaba, V.-D.; Schneider, R. J.; Paul, A.; Ababei, G.; Panne, U.
2015-12-01
The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe3O4) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H2O2 dosage, and UV light irradiation) on the degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method.
Pandey, Vaibhav; Saini, Poonam
2018-06-01
MapReduce (MR) computing paradigm and its open source implementation Hadoop have become a de facto standard to process big data in a distributed environment. Initially, the Hadoop system was homogeneous in three significant aspects, namely, user, workload, and cluster (hardware). However, with growing variety of MR jobs and inclusion of different configurations of nodes in the existing cluster, heterogeneity has become an essential part of Hadoop systems. The heterogeneity factors adversely affect the performance of a Hadoop scheduler and limit the overall throughput of the system. To overcome this problem, various heterogeneous Hadoop schedulers have been proposed in the literature. Existing survey works in this area mostly cover homogeneous schedulers and classify them on the basis of quality of service parameters they optimize. Hence, there is a need to study the heterogeneous Hadoop schedulers on the basis of various heterogeneity factors considered by them. In this survey article, we first discuss different heterogeneity factors that typically exist in a Hadoop system and then explore various challenges that arise while designing the schedulers in the presence of such heterogeneity. Afterward, we present the comparative study of heterogeneous scheduling algorithms available in the literature and classify them by the previously said heterogeneity factors. Lastly, we investigate different methods and environment used for evaluation of discussed Hadoop schedulers.
Discovering network behind infectious disease outbreak
NASA Astrophysics Data System (ADS)
Maeno, Yoshiharu
2010-11-01
Stochasticity and spatial heterogeneity are of great interest recently in studying the spread of an infectious disease. The presented method solves an inverse problem to discover the effectively decisive topology of a heterogeneous network and reveal the transmission parameters which govern the stochastic spreads over the network from a dataset on an infectious disease outbreak in the early growth phase. Populations in a combination of epidemiological compartment models and a meta-population network model are described by stochastic differential equations. Probability density functions are derived from the equations and used for the maximal likelihood estimation of the topology and parameters. The method is tested with computationally synthesized datasets and the WHO dataset on the SARS outbreak.
Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.
2012-01-01
The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531
Sediment heterogeneity and mobility in the morphodynamic modelling of gravel-bed braided rivers
NASA Astrophysics Data System (ADS)
Singh, Umesh; Crosato, Alessandra; Giri, Sanjay; Hicks, Murray
2017-06-01
The effects of sediment heterogeneity and sediment mobility on the morphology of braided rivers are still poorly studied, especially when the partial sediment mobility occurs. Nevertheless, increasing the bed sediment heterogeneity by coarse sediment supply is becoming a common practice in river restoration projects and habitat improvement all over the world. This research provides a step forward in the identification of the effects of sediment sorting on the evolution of sediment bars and braiding geometry of gravel-bed rivers. A two-dimensional morphodynamic model was used to simulate the long-term developments of a hypothetical braided system with discharge regime and morphodynamic parameters derived from the Waimakariri River, New Zealand. Several scenarios, differing in bed sediment heterogeneity and sediment mobility, were considered. The results agree with the tendencies already identified in linear analyses and experimental studies, showing that a larger sediment heterogeneity increases the braiding indes and reduces the bars length and height. The analyses allowed identifying the applicability limits of uniform sediment and variable discharge modelling approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom; Su-Jong Yoon
2014-04-01
Computational Fluid Dynamics (CFD) evaluation of homogeneous and heterogeneous fuel models was performed as part of the Phase I calculations of the International Atomic Energy Agency (IAEA) Coordinate Research Program (CRP) on High Temperature Reactor (HTR) Uncertainties in Modeling (UAM). This study was focused on the nominal localized stand-alone fuel thermal response, as defined in Ex. I-3 and I-4 of the HTR UAM. The aim of the stand-alone thermal unit-cell simulation is to isolate the effect of material and boundary input uncertainties on a very simplified problem, before propagation of these uncertainties are performed in subsequent coupled neutronics/thermal fluids phasesmore » on the benchmark. In many of the previous studies for high temperature gas cooled reactors, the volume-averaged homogeneous mixture model of a single fuel compact has been applied. In the homogeneous model, the Tristructural Isotropic (TRISO) fuel particles in the fuel compact were not modeled directly and an effective thermal conductivity was employed for the thermo-physical properties of the fuel compact. On the contrary, in the heterogeneous model, the uranium carbide (UCO), inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers of the TRISO fuel particles are explicitly modeled. The fuel compact is modeled as a heterogeneous mixture of TRISO fuel kernels embedded in H-451 matrix graphite. In this study, a steady-state and transient CFD simulations were performed with both homogeneous and heterogeneous models to compare the thermal characteristics. The nominal values of the input parameters are used for this CFD analysis. In a future study, the effects of input uncertainties in the material properties and boundary parameters will be investigated and reported.« less
A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - I. Theory
Williams, Mark L.; Lee, Deokjung; Choi, Sooyoung
2015-03-04
A new methodology has been developed to treat resonance self-shielding in doubly heterogeneous very high temperature gas-cooled reactor systems in which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. This new method first homogenizes the fuel grain and matrix materials using an analytically derived disadvantage factor from a two-region problem with equivalence theory and intermediate resonance method. This disadvantage factor accounts for spatial self-shielding effects inside each grain within the framework of an infinite array of grains. Then the homogenized fuel compact is self-shielded using a Bondarenko method to accountmore » for interactions between the fuel compact regions in the fuel lattice. In the final form of the equations for actual implementations, the double-heterogeneity effects are accounted for by simply using a modified definition of a background cross section, which includes geometry parameters and cross sections for both the grain and fuel compact regions. With the new method, the doubly heterogeneous resonance self-shielding effect can be treated easily even with legacy codes programmed only for a singly heterogeneous system by simple modifications in the background cross section for resonance integral interpolations. This paper presents a detailed derivation of the new method and a sensitivity study of double-heterogeneity parameters introduced during the derivation. The implementation of the method and verification results for various test cases are presented in the companion paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lin; Dai, Zhenxue; Gong, Huili
Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less
Homogeneous-heterogeneous reactions in curved channel with porous medium
NASA Astrophysics Data System (ADS)
Hayat, T.; Ayub, Sadia; Alsaedi, A.
2018-06-01
Purpose of the present investigation is to examine the peristaltic flow through porous medium in a curved conduit. Problem is modeled for incompressible electrically conducting Ellis fluid. Influence of porous medium is tackled via modified Darcy's law. The considered model utilizes homogeneous-heterogeneous reactions with equal diffusivities for reactant and autocatalysis. Constitutive equations are formulated in the presence of viscous dissipation. Channel walls are compliant in nature. Governing equations are modeled and simplified under the assumptions of small Reynolds number and large wavelength. Graphical results for velocity, temperature, heat transfer coefficient and homogeneous-heterogeneous reaction parameters are examined for the emerging parameters entering into the problem. Results reveal an activation in both homogenous-heterogenous reaction effect and heat transfer rate with increasing curvature of the channel.
An open, object-based modeling approach for simulating subsurface heterogeneity
NASA Astrophysics Data System (ADS)
Bennett, J.; Ross, M.; Haslauer, C. P.; Cirpka, O. A.
2017-12-01
Characterization of subsurface heterogeneity with respect to hydraulic and geochemical properties is critical in hydrogeology as their spatial distribution controls groundwater flow and solute transport. Many approaches of characterizing subsurface heterogeneity do not account for well-established geological concepts about the deposition of the aquifer materials; those that do (i.e. process-based methods) often require forcing parameters that are difficult to derive from site observations. We have developed a new method for simulating subsurface heterogeneity that honors concepts of sequence stratigraphy, resolves fine-scale heterogeneity and anisotropy of distributed parameters, and resembles observed sedimentary deposits. The method implements a multi-scale hierarchical facies modeling framework based on architectural element analysis, with larger features composed of smaller sub-units. The Hydrogeological Virtual Reality simulator (HYVR) simulates distributed parameter models using an object-based approach. Input parameters are derived from observations of stratigraphic morphology in sequence type-sections. Simulation outputs can be used for generic simulations of groundwater flow and solute transport, and for the generation of three-dimensional training images needed in applications of multiple-point geostatistics. The HYVR algorithm is flexible and easy to customize. The algorithm was written in the open-source programming language Python, and is intended to form a code base for hydrogeological researchers, as well as a platform that can be further developed to suit investigators' individual needs. This presentation will encompass the conceptual background and computational methods of the HYVR algorithm, the derivation of input parameters from site characterization, and the results of groundwater flow and solute transport simulations in different depositional settings.
Toughening by crack bridging in heterogeneous ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtin, W.A.
1995-05-01
The toughening of a ceramic by crack bridging is considered, including the heterogeneity caused simply by spatial randomness in the bridge locations. The growth of a single planar crack is investigated numerically by representing the microstructure as an array of discrete springs with heterogeneity in the mechanical properties of each spring. The stresses on each microstructural element are determined, for arbitrary configurations of spring properties and heterogeneity, using a lattice Green function technique. For toughening by (heterogeneous) crack bridging for both elastic and Dugdale bridging mechanisms, the following key physical results are found: (1) growing cracks avoid regions which aremore » efficiently bridged, and do not propagate as self-similar penny cracks; (2) crack growth thus proceeds at lower applied stresses in a heterogeneous material than in an ordered material; (3) very little toughening is evident for moderate amounts of crack growth in many cases; and (4) a different R-curve is found for every particular spatial distribution of bridging elements. These results show that material reliability is determined by both the flaw distribution and the ``toughness`` distribution, or local environment, around each flaw. These results also demonstrate that the ``microstructural`` parameters derived from fitting an R-curve to a continuum model may not have an immediate relationship to the actual microstructure; the parameters are ``effective`` parameters that absorb the effects of the heterogeneity. The conceptual issues illuminated by these conclusions must be fully understood and appreciated to further develop microstructure-property relationships in ceramic materials.« less
Anomalous and non-Gaussian diffusion in Hertzian spheres
NASA Astrophysics Data System (ADS)
Ouyang, Wenze; Sun, Bin; Sun, Zhiwei; Xu, Shenghua
2018-09-01
By means of molecular dynamics simulations, we study the non-Gaussian diffusion in the fluid of Hertzian spheres. The time dependent non-Gaussian parameter, as an indicator of the dynamic heterogeneity, is increased with the increasing of temperature. When the temperature is high enough, the dynamic heterogeneity becomes very significant, and it seems counterintuitive that the maximum of non-Gaussian parameter and the position of its peak decrease monotonically with the increasing of density. By fitting the curves of self intermediate scattering function, we find that the character relaxation time τα is surprisingly not coupled with the time τmax where the non-Gaussian parameter reaches to a maximum. The intriguing features of non-Gaussian diffusion at high enough temperatures can be associated with the weakly correlated mean-field behavior of Hertzian spheres. Especially the time τmax is nearly inversely proportional to the density at extremely high temperatures.
Preference heterogeneity in a count data model of demand for off-highway vehicle recreation
Thomas P Holmes; Jeffrey E Englin
2010-01-01
This paper examines heterogeneity in the preferences for OHV recreation by applying the random parameters Poisson model to a data set of off-highway vehicle (OHV) users at four National Forest sites in North Carolina. The analysis develops estimates of individual consumer surplus and finds that estimates are systematically affected by the random parameter specification...
Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design.
Laukens, Debby; Brinkman, Brigitta M; Raes, Jeroen; De Vos, Martine; Vandenabeele, Peter
2016-01-01
Targeted manipulation of the gut flora is increasingly being recognized as a means to improve human health. Yet, the temporal dynamics and intra- and interindividual heterogeneity of the microbiome represent experimental limitations, especially in human cross-sectional studies. Therefore, rodent models represent an invaluable tool to study the host-microbiota interface. Progress in technical and computational tools to investigate the composition and function of the microbiome has opened a new era of research and we gradually begin to understand the parameters that influence variation of host-associated microbial communities. To isolate true effects from confounding factors, it is essential to include such parameters in model intervention studies. Also, explicit journal instructions to include essential information on animal experiments are mandatory. The purpose of this review is to summarize the factors that influence microbiota composition in mice and to provide guidelines to improve the reproducibility of animal experiments. © FEMS 2015.
Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design
Laukens, Debby; Brinkman, Brigitta M.; Raes, Jeroen; De Vos, Martine; Vandenabeele, Peter
2015-01-01
Targeted manipulation of the gut flora is increasingly being recognized as a means to improve human health. Yet, the temporal dynamics and intra- and interindividual heterogeneity of the microbiome represent experimental limitations, especially in human cross-sectional studies. Therefore, rodent models represent an invaluable tool to study the host–microbiota interface. Progress in technical and computational tools to investigate the composition and function of the microbiome has opened a new era of research and we gradually begin to understand the parameters that influence variation of host-associated microbial communities. To isolate true effects from confounding factors, it is essential to include such parameters in model intervention studies. Also, explicit journal instructions to include essential information on animal experiments are mandatory. The purpose of this review is to summarize the factors that influence microbiota composition in mice and to provide guidelines to improve the reproducibility of animal experiments. PMID:26323480
On evolutionary spatial heterogeneous games
NASA Astrophysics Data System (ADS)
Fort, H.
2008-03-01
How cooperation between self-interested individuals evolve is a crucial problem, both in biology and in social sciences, that is far from being well understood. Evolutionary game theory is a useful approach to this issue. The simplest model to take into account the spatial dimension in evolutionary games is in terms of cellular automata with just a one-parameter payoff matrix. Here, the effects of spatial heterogeneities of the environment and/or asymmetries in the interactions among the individuals are analysed through different extensions of this model. Instead of using the same universal payoff matrix, bimatrix games in which each cell at site ( i, j) has its own different ‘temptation to defect’ parameter T(i,j) are considered. First, the case in which these individual payoffs are constant in time is studied. Second, an evolving evolutionary spatial game such that T=T(i,j;t), i.e. besides depending on the position evolves (by natural selection), is used to explore the combination of spatial heterogeneity and natural selection of payoff matrices.
Lara, Alvaro R; Galindo, Enrique; Ramírez, Octavio T; Palomares, Laura A
2006-11-01
The presence of spatial gradients in fundamental culture parameters, such as dissolved gases, pH, concentration of substrates, and shear rate, among others, is an important problem that frequently occurs in large-scale bioreactors. This problem is caused by a deficient mixing that results from limitations inherent to traditional scale-up methods and practical constraints during large-scale bioreactor design and operation. When cultured in a heterogeneous environment, cells are continuously exposed to fluctuating conditions as they travel through the various zones of a bioreactor. Such fluctuations can affect cell metabolism, yields, and quality of the products of interest. In this review, the theoretical analyses that predict the existence of environmental gradients in bioreactors and their experimental confirmation are reviewed. The origins of gradients in common culture parameters and their effects on various organisms of biotechnological importance are discussed. In particular, studies based on the scale-down methodology, a convenient tool for assessing the effect of environmental heterogeneities, are surveyed.
Spatial Distribution of Fate and Transport Parameters Using Cxtfit in a Karstified Limestone Model
NASA Astrophysics Data System (ADS)
Toro, J.; Padilla, I. Y.
2017-12-01
Karst environments have a high capacity to transport and store large amounts of water. This makes karst aquifers a productive resource for human consumption and ecological integrity, but also makes them vulnerable to potential contamination of hazardous chemical substances. High heterogeneity and anisotropy of karst aquifer properties make them very difficult to characterize for accurate prediction of contaminant mobility and persistence in groundwater. Current technologies to characterize and quantify flow and transport processes at field-scale is limited by low resolution of spatiotemporal data. To enhance this resolution and provide the essential knowledge of karst groundwater systems, studies at laboratory scale can be conducted. This work uses an intermediate karstified lab-scale physical model (IKLPM) to study fate and transport processes and assess viable tools to characterize heterogeneities in karst systems. Transport experiments are conducted in the IKLPM using step injections of calcium chloride, uranine, and rhodamine wt tracers. Temporal concentration distributions (TCDs) obtained from the experiments are analyzed using the method of moments and CXTFIT to quantify fate and transport parameters in the system at various flow rates. The spatial distribution of the estimated fate and transport parameters for the tracers revealed high variability related to preferential flow heterogeneities and scale dependence. Results are integrated to define spatially-variable transport regions within the system and assess their fate and transport characteristics.
Guo, Yanyong; Li, Zhibin; Wu, Yao; Xu, Chengcheng
2018-06-01
Bicyclists running the red light at crossing facilities increase the potential of colliding with motor vehicles. Exploring the contributing factors could improve the prediction of running red-light probability and develop countermeasures to reduce such behaviors. However, individuals could have unobserved heterogeneities in running a red light, which make the accurate prediction more challenging. Traditional models assume that factor parameters are fixed and cannot capture the varying impacts on red-light running behaviors. In this study, we employed the full Bayesian random parameters logistic regression approach to account for the unobserved heterogeneous effects. Two types of crossing facilities were considered which were the signalized intersection crosswalks and the road segment crosswalks. Electric and conventional bikes were distinguished in the modeling. Data were collected from 16 crosswalks in urban area of Nanjing, China. Factors such as individual characteristics, road geometric design, environmental features, and traffic variables were examined. Model comparison indicates that the full Bayesian random parameters logistic regression approach is statistically superior to the standard logistic regression model. More red-light runners are predicted at signalized intersection crosswalks than at road segment crosswalks. Factors affecting red-light running behaviors are gender, age, bike type, road width, presence of raised median, separation width, signal type, green ratio, bike and vehicle volume, and average vehicle speed. Factors associated with the unobserved heterogeneity are gender, bike type, signal type, separation width, and bike volume. Copyright © 2018 Elsevier Ltd. All rights reserved.
How does informational heterogeneity affect the quality of forecasts?
NASA Astrophysics Data System (ADS)
Gualdi, S.; De Martino, A.
2010-01-01
We investigate a toy model of inductive interacting agents aiming to forecast a continuous, exogenous random variable E. Private information on E is spread heterogeneously across agents. Herding turns out to be the preferred forecasting mechanism when heterogeneity is maximal. However in such conditions aggregating information efficiently is hard even in the presence of learning, as the herding ratio rises significantly above the efficient market expectation of 1 and remarkably close to the empirically observed values. We also study how different parameters (interaction range, learning rate, cost of information and score memory) may affect this scenario and improve efficiency in the hard phase.
NASA Astrophysics Data System (ADS)
Singla, Tanu; Chandrasekhar, E.; Singh, B. P.; Parmananda, P.
2014-12-01
Complete and anticipation synchronization of nonlinear oscillators from different origins is attempted experimentally. This involves coupling these heterogeneous oscillators to a common dynamical environment. Initially, this phenomenon was studied using two parameter mismatched Chua circuits. Subsequently, three different timeseries: a) x variable of the Lorenz oscillator b) the X-component of Earth's magnetic field and c) per-day temperature variation of the Region Santa Cruz in Mumbai, India are environmentally coupled, under the master-slave scenario, with a Chua circuit. Our results indicate that environmental coupling is a potent tool to provoke complete and anticipation synchronization of heterogeneous oscillators from distinct origins.
NASA Astrophysics Data System (ADS)
Zhu, J.; Winter, C. L.; Wang, Z.
2015-08-01
Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River Basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow-paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW simulation environment, and the PEST tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop log-normally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow-paths in groundwater fluxes that in turn reduce aquifer-stream exchanges. Since surface water-groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.
NASA Astrophysics Data System (ADS)
Oshtrakh, M. I.; Alenkina, I. V.; Semionkin, V. A.
2016-12-01
Human liver ferritin and its iron-polymaltose pharmaceutical analogues Ferrum Lek, Maltofer® and Ferrifol® were studied using Mössbauer spectroscopy at 295 and 90 K. The Mössbauer spectra were fitted on the basis of a new model of heterogeneous iron core structure using five quadrupole doublets. These components were related to the corresponding more or less close-packed iron core layers/regions demonstrating some variations in the 57Fe hyperfine parameters for the studied samples.
Analysis of the dynamics of multi-team Bertrand game with heterogeneous players
NASA Astrophysics Data System (ADS)
Ding, Zhanwen; Hang, Qinglan; Yang, Honglin
2011-06-01
In this article, we study the dynamics of a two-team Bertrand game with players having heterogeneous expectations. We study the equilibrium solutions and the conditions of their locally asymptotic stability. Numerical simulations are used to illustrate the complex behaviours of the proposed model of the Bertrand game. We demonstrate that some parameters of the model have great influence on the stability of Nash equilibrium and on the speed of convergence to Nash equilibrium. The chaotic behaviour of the model has been controlled by using feedback control method.
Numerical simulation of backward erosion piping in heterogeneous fields
NASA Astrophysics Data System (ADS)
Liang, Yue; Yeh, Tian-Chyi Jim; Wang, Yu-Li; Liu, Mingwei; Wang, Junjie; Hao, Yonghong
2017-04-01
Backward erosion piping (BEP) is one of the major causes of seepage failures in levees. Seepage fields dictate the BEP behaviors and are influenced by the heterogeneity of soil properties. To investigate the effects of the heterogeneity on the seepage failures, we develop a numerical algorithm and conduct simulations to study BEP progressions in geologic media with spatially stochastic parameters. Specifically, the void ratio e, the hydraulic conductivity k, and the ratio of the particle contents r of the media are represented as the stochastic variables. They are characterized by means and variances, the spatial correlation structures, and the cross correlation between variables. Results of the simulations reveal that the heterogeneity accelerates the development of preferential flow paths, which profoundly increase the likelihood of seepage failures. To account for unknown heterogeneity, we define the probability of the seepage instability (PI) to evaluate the failure potential of a given site. Using Monte-Carlo simulation (MCS), we demonstrate that the PI value is significantly influenced by the mean and the variance of ln k and its spatial correlation scales. But the other parameters, such as means and variances of e and r, and their cross correlation, have minor impacts. Based on PI analyses, we introduce a risk rating system to classify the field into different regions according to risk levels. This rating system is useful for seepage failures prevention and assists decision making when BEP occurs.
Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra
2016-01-01
Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829
Pinker, Katja; Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra
2016-01-01
To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05-0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT.
Radiomics in Oncological PET/CT: Clinical Applications.
Lee, Jeong Won; Lee, Sang Mi
2018-06-01
18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely used for staging, evaluating treatment response, and predicting prognosis in malignant diseases. FDG uptake and volumetric PET parameters such as metabolic tumor volume have been used and are still used as conventional PET parameters to assess biological characteristics of tumors. However, in recent years, additional features derived from PET images by computational processing have been found to reflect intratumoral heterogeneity, which is related to biological tumor features, and to provide additional predictive and prognostic information, which leads to the concept of radiomics. In this review, we focus on recent clinical studies of malignant diseases that investigated intratumoral heterogeneity on PET/CT, and we discuss its clinical role in various cancers.
Parameter studies on the energy balance closure problem using large-eddy simulation
NASA Astrophysics Data System (ADS)
De Roo, Frederik; Banerjee, Tirtha; Mauder, Matthias
2017-04-01
The imbalance of the surface energy budget in eddy-covariance measurements is still a pending problem. A possible cause is the presence of land surface heterogeneity. Heterogeneities of the boundary layer scale or larger are most effective in influencing the boundary layer turbulence, and large-eddy simulations have shown that secondary circulations within the boundary layer can affect the surface energy budget. However, the precise influence of the surface characteristics on the energy imbalance and its partitioning is still unknown. To investigate the influence of surface variables on all the components of the flux budget under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, and we focus on idealized heterogeneity by considering spatially variable surface fluxes. The surface fluxes vary locally in intensity and these patches have different length scales. The main focus lies on heterogeneities of length scales of the kilometer scale and one decade smaller. For each simulation, virtual measurement towers are positioned at functionally different positions. We discriminate between the locally homogeneous towers, located within land use patches, with respect to the more heterogeneous towers, and find, among others, that the flux-divergence and the advection are strongly linearly related within each class. Furthermore, we seek correlators for the energy balance ratio and the energy residual in the simulations. Besides the expected correlation with measurable atmospheric quantities such as the friction velocity, boundary-layer depth and temperature and moisture gradients, we have also found an unexpected correlation with the temperature difference between sonic temperature and surface temperature. In additional simulations with a large number of virtual towers, we investigate higher order correlations, which can be linked to secondary circulations. In a companion presentation (EGU2017-2130) these correlations are investigated and confirmed with the help of micrometeorological measurements from the TERENO sites where the effects of landscape scale surface heterogeneities are deemed to be important.
NASA Technical Reports Server (NTRS)
Molina, Mario J.
2003-01-01
The objective of this study was to conduct measurements of chemical kinetics parameters for reactions of importance in the stratosphere and upper troposphere, and to study the interaction of trace gases with ice surfaces in order to elucidate the mechanism of heterogeneous chlorine activation processes, using both a theoretical and an experimental approach. The measurements were carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere. The main experimental technique employed was turbulent flow-chemical ionization mass spectrometry, which is particularly well suited for investigations of radical-radical reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jing; Lin, Jung-Fu; Jacobsen, Steven D.
2016-12-16
Deciphering the origin of seismic heterogeneity has been one of the major challenges in understanding the geochemistry and geodynamics of the deep mantle. Fully anisotropic elastic properties of constituent minerals at relevant pressure-temperature conditions of the lower mantle can be used to calculate seismic heterogeneity parameters in order to better understand chemically and thermally induced seismic heterogeneities. In this study, the single-crystal elastic properties of ferropericlase (Mg0.94Fe0.06)O were measured using Brillouin spectroscopy and X-ray diffraction at conditions up to 50 GPa and 900 K. The velocity-density results were modeled using third-order finite-strain theory and thermoelastic equations along a representative geothermmore » to investigate high pressure-temperature and compositional effects on the seismic heterogeneity parameters. Our results demonstrate that from 660 to 2000 km, compressional wave anisotropy of ferropericlase increased from 4% to 9.7%, while shear wave anisotropy increased from 9% to as high as 22.5%. The thermally induced lateral heterogeneity ratio (RS/P = ∂lnVS/∂lnVP) of ferropericlase was calculated to be 1.48 at ambient pressure but decreased to 1.43 at 40 GPa along a representative geotherm. The RS/P of a simplified pyrolite model consisting of 80% bridgmanite and 20% ferropericlase was approximately 1.5, consistent with seismic models at depths from 670 to 1500 km, but showed an increased mismatch at lower mantle depths below ~1500 km. This discrepancy below mid-lower mantle could be due to either a contribution from chemically induced heterogeneity or the effects of the Fe spin transition in the deeper parts of the Earth's lower mantle.« less
Kim, Eun Sook; Wang, Yan
2017-01-01
Population heterogeneity in growth trajectories can be detected with growth mixture modeling (GMM). It is common that researchers compute composite scores of repeated measures and use them as multiple indicators of growth factors (baseline performance and growth) assuming measurement invariance between latent classes. Considering that the assumption of measurement invariance does not always hold, we investigate the impact of measurement noninvariance on class enumeration and parameter recovery in GMM through a Monte Carlo simulation study (Study 1). In Study 2, we examine the class enumeration and parameter recovery of the second-order growth mixture modeling (SOGMM) that incorporates measurement models at the first order level. Thus, SOGMM estimates growth trajectory parameters with reliable sources of variance, that is, common factor variance of repeated measures and allows heterogeneity in measurement parameters between latent classes. The class enumeration rates are examined with information criteria such as AIC, BIC, sample-size adjusted BIC, and hierarchical BIC under various simulation conditions. The results of Study 1 showed that the parameter estimates of baseline performance and growth factor means were biased to the degree of measurement noninvariance even when the correct number of latent classes was extracted. In Study 2, the class enumeration accuracy of SOGMM depended on information criteria, class separation, and sample size. The estimates of baseline performance and growth factor mean differences between classes were generally unbiased but the size of measurement noninvariance was underestimated. Overall, SOGMM is advantageous in that it yields unbiased estimates of growth trajectory parameters and more accurate class enumeration compared to GMM by incorporating measurement models. PMID:28928691
Courcoul, Aurélie; Monod, Hervé; Nielen, Mirjam; Klinkenberg, Don; Hogerwerf, Lenny; Beaudeau, François; Vergu, Elisabeta
2011-09-07
Coxiella burnetii is the bacterium responsible for Q fever, a worldwide zoonosis. Ruminants, especially cattle, are recognized as the most important source of human infections. Although a great heterogeneity between shedder cows has been described, no previous studies have determined which features such as shedding route and duration or the quantity of bacteria shed have the strongest impact on the environmental contamination and thus on the zoonotic risk. Our objective was to identify key parameters whose variation highly influences C. burnetii spread within a dairy cattle herd, especially those related to the heterogeneity of shedding. To compare the impact of epidemiological parameters on different dynamical aspects of C. burnetii infection, we performed a sensitivity analysis on an original stochastic model describing the bacterium spread and representing the individual variability of the shedding duration, routes and intensity as well as herd demography. This sensitivity analysis consisted of a principal component analysis followed by an ANOVA. Our findings show that the most influential parameters are the probability distribution governing the levels of shedding, especially in vaginal mucus and faeces, the characteristics of the bacterium in the environment (i.e. its survival and the fraction of bacteria shed reaching the environment), and some physiological parameters related to the intermittency of shedding (transition probability from a non-shedding infected state to a shedding state) or to the transition from one type of shedder to another one (transition probability from a seronegative shedding state to a seropositive shedding state). Our study is crucial for the understanding of the dynamics of C. burnetii infection and optimization of control measures. Indeed, as control measures should impact the parameters influencing the bacterium spread most, our model can now be used to assess the effectiveness of different control strategies of Q fever within dairy cattle herds. Copyright © 2011 Elsevier Ltd. All rights reserved.
TDR method for determine IC's parameters
NASA Astrophysics Data System (ADS)
Timoshenkov, V.; Rodionov, D.; Khlybov, A.
2016-12-01
Frequency domain simulation is a widely used approach for determine integrated circuits parameters. This approach can be found in most of software tools used in IC industry. Time domain simulation approach shows intensive usage last years due to some advantages. In particular it applicable for analysis of nonlinear and nonstationary systems where frequency domain is inapplicable. Resolution of time domain systems allow see heterogeneities on distance 1mm, determine it parameters and properties. Authors used approach based on detecting reflected signals from heterogeneities - time domain reflectometry (TDR). Field effect transistor technology scaling up to 30-60nm gate length and 10nm gate dielectric, heterojunction bi-polar transistors with 10-30nm base width allows fabricate digital IC's with 20GHz clock frequency and RF-IC's with tens GHz bandwidth. Such devices and operation speed suppose transit signal by use microwave lines. There are local heterogeneities can be found inside of the signal path due to connections between different parts of signal lines (stripe line-RF-connector pin, stripe line - IC package pin). These heterogeneities distort signals that cause bandwidth decrease for RF-devices. Time domain research methods of transmission and reflected signals give the opportunities to determine heterogeneities, it properties, parameters and built up equivalent circuits. Experimental results are provided and show possibility for inductance and capacitance measurement up to 25GHz. Measurements contains result of signal path research on IC and printed circuit board (PCB) used for 12GHz RF chips. Also dielectric constant versus frequency was measured up to 35GHz.
Experimental validation of a new heterogeneous mechanical test design
NASA Astrophysics Data System (ADS)
Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.
2018-05-01
Standard material parameters identification strategies generally use an extensive number of classical tests for collecting the required experimental data. However, a great effort has been made recently by the scientific and industrial communities to support this experimental database on heterogeneous tests. These tests can provide richer information on the material behavior allowing the identification of a more complete set of material parameters. This is a result of the recent development of full-field measurements techniques, like digital image correlation (DIC), that can capture the heterogeneous deformation fields on the specimen surface during the test. Recently, new specimen geometries were designed to enhance the richness of the strain field and capture supplementary strain states. The butterfly specimen is an example of these new geometries, designed through a numerical optimization procedure where an indicator capable of evaluating the heterogeneity and the richness of strain information. However, no experimental validation was yet performed. The aim of this work is to experimentally validate the heterogeneous butterfly mechanical test in the parameter identification framework. For this aim, DIC technique and a Finite Element Model Up-date inverse strategy are used together for the parameter identification of a DC04 steel, as well as the calculation of the indicator. The experimental tests are carried out in a universal testing machine with the ARAMIS measuring system to provide the strain states on the specimen surface. The identification strategy is accomplished with the data obtained from the experimental tests and the results are compared to a reference numerical solution.
Revert Ventura, A J; Sanz Requena, R; Martí-Bonmatí, L; Pallardó, Y; Jornet, J; Gaspar, C
2014-01-01
To study whether the histograms of quantitative parameters of perfusion in MRI obtained from tumor volume and peritumor volume make it possible to grade astrocytomas in vivo. We included 61 patients with histological diagnoses of grade II, III, or IV astrocytomas who underwent T2*-weighted perfusion MRI after intravenous contrast agent injection. We manually selected the tumor volume and peritumor volume and quantified the following perfusion parameters on a voxel-by-voxel basis: blood volume (BV), blood flow (BF), mean transit time (TTM), transfer constant (K(trans)), washout coefficient, interstitial volume, and vascular volume. For each volume, we obtained the corresponding histogram with its mean, standard deviation, and kurtosis (using the standard deviation and kurtosis as measures of heterogeneity) and we compared the differences in each parameter between different grades of tumor. We also calculated the mean and standard deviation of the highest 10% of values. Finally, we performed a multiparametric discriminant analysis to improve the classification. For tumor volume, we found statistically significant differences among the three grades of tumor for the means and standard deviations of BV, BF, and K(trans), both for the entire distribution and for the highest 10% of values. For the peritumor volume, we found no significant differences for any parameters. The discriminant analysis improved the classification slightly. The quantification of the volume parameters of the entire region of the tumor with BV, BF, and K(trans) is useful for grading astrocytomas. The heterogeneity represented by the standard deviation of BF is the most reliable diagnostic parameter for distinguishing between low grade and high grade lesions. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
Mathematical models of tumor heterogeneity and drug resistance
NASA Astrophysics Data System (ADS)
Greene, James
In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of transition rates as a function of global density. Finally, we extend the model of cell-cycle heterogeneity to include spatial variables. Cells are modeled as soft spheres and exhibit attraction/repulsion/random forces. A fundamental hypothesis is that cell-cycle length increases with local density, thus producing a distribution of observed division lengths. Apoptosis occurs primarily through an extended period of unsuccessful proliferation, and the explicit mechanism of the drug (Paclitaxel) is modeled as an increase in cell-cycle duration. We show that the distribution of cell-cycle lengths is highly time-dependent, with close time-averaged agreement with the distribution used in the previous work. Furthermore, survival curves are calculated and shown to qualitatively agree with experimental data in different densities and geometries, thus relating the cellular microenvironment to drug resistance.
Effects of 3D Earth structure on W-phase CMT parameters
NASA Astrophysics Data System (ADS)
Morales, Catalina; Duputel, Zacharie; Rivera, Luis; Kanamori, Hiroo
2017-04-01
The source inversion of the W-phase has demonstrated a great potential to provide fast and reliable estimates of the centroid moment tensor (CMT) for moderate to large earthquakes. It has since been implemented in different operational environments (NEIC-USGS, PTWC, etc.) with the aim of providing rapid CMT solutions. These solutions are in particular useful for tsunami warning purposes. Computationally, W-phase waveforms are usually synthetized by summation of normal modes at long period (100 - 1000 s) for a spherical Earth model (e.g., PREM). Although the energy of these modes mainly stays in the mantle where lateral structural variations are relatively small, the impact of 3D heterogeneities on W-phase solutions have not yet been quantified. In this study, we investigate possible bias in W-phase source parameters due to unmodeled lateral structural heterogeneities. We generate a simulated dataset consisting of synthetic seismograms of large past earthquakes that accounts for the Earth's 3D structure. The W-phase algorithm is then used to invert the synthetic dataset for earthquake CMT parameters with and without added noise. Results show that the impact of 3D heterogeneities is generally larger for surface-waves than for W-phase waveforms. However, some discrepancies are noted between inverted W-phase parameters and target values. Particular attention is paid to the possible bias induced by the unmodeled 3D structure into the location of the W-phase centroid. Preliminary results indicate that the parameter that is most susceptible to 3D Earth structure seems to be the centroid depth.
Green, Christopher T.; Böhlke, John Karl; Bekins, Barbara A.; Phillips, Steven P.
2010-01-01
Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field‐scale (apparent) estimated reaction rates and isotopic fractionations and local‐scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample‐based estimates of “apparent” parameters with “true“ (intrinsic) values. For this aquifer, non‐Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport.
Modeling and analyzing malware propagation in social networks with heterogeneous infection rates
NASA Astrophysics Data System (ADS)
Jia, Peng; Liu, Jiayong; Fang, Yong; Liu, Liang; Liu, Luping
2018-10-01
With the rapid development of social networks, hackers begin to try to spread malware more widely by utilizing various kinds of social networks. Thus, studying malware epidemic dynamics in these networks is becoming a popular subject in the literature. Most of the previous works focus on the effects of factors, such as network topology and user behavior, on malware propagation. Some researchers try to analyze the heterogeneity of infection rates, but the common problem of their works is the factors they mentioned that could affect the heterogeneity are not comprehensive enough. In this paper, focusing on the effects of heterogeneous infection rates, we propose a novel model called HSID (heterogeneous-susceptible-infectious-dormant model) to characterize virus propagation in social networks, in which a connection factor is presented to evaluate the heterogeneous relationships between nodes, and a resistance factor is introduced to represent node's mutable resistant ability. We analyzed how key parameters in the two factors affect the heterogeneity and then performed simulations to explore the effects in three real-world social networks. The results indicate: heterogeneous relationship could lead to wider diffusion in directed network, and heterogeneous security awareness could lead to wider diffusion in both directed and undirected networks; heterogeneous relationship could restrain the outbreak of malware but heterogeneous initial security awareness would increase the probability; furthermore, the increasing resistibility along with infected times would lead to malware's disappearance in social networks.
Parameter Heterogeneity In Breast Cancer Cost Regressions – Evidence From Five European Countries
Banks, Helen; Campbell, Harry; Douglas, Anne; Fletcher, Eilidh; McCallum, Alison; Moger, Tron Anders; Peltola, Mikko; Sveréus, Sofia; Wild, Sarah; Williams, Linda J.; Forbes, John
2015-01-01
Abstract We investigate parameter heterogeneity in breast cancer 1‐year cumulative hospital costs across five European countries as part of the EuroHOPE project. The paper aims to explore whether conditional mean effects provide a suitable representation of the national variation in hospital costs. A cohort of patients with a primary diagnosis of invasive breast cancer (ICD‐9 codes 174 and ICD‐10 C50 codes) is derived using routinely collected individual breast cancer data from Finland, the metropolitan area of Turin (Italy), Norway, Scotland and Sweden. Conditional mean effects are estimated by ordinary least squares for each country, and quantile regressions are used to explore heterogeneity across the conditional quantile distribution. Point estimates based on conditional mean effects provide a good approximation of treatment response for some key demographic and diagnostic specific variables (e.g. age and ICD‐10 diagnosis) across the conditional quantile distribution. For many policy variables of interest, however, there is considerable evidence of parameter heterogeneity that is concealed if decisions are based solely on conditional mean results. The use of quantile regression methods reinforce the need to consider beyond an average effect given the greater recognition that breast cancer is a complex disease reflecting patient heterogeneity. © 2015 The Authors. Health Economics Published by John Wiley & Sons Ltd. PMID:26633866
Associative memory of phase-coded spatiotemporal patterns in leaky Integrate and Fire networks.
Scarpetta, Silvia; Giacco, Ferdinando
2013-04-01
We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at different time scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stable precise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units.
Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.
2014-08-01
In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demandingmore » simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.« less
An efficient soil water balance model based on hybrid numerical and statistical methods
NASA Astrophysics Data System (ADS)
Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei
2018-04-01
Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new model makes it particularly suitable for large-scale simulation of soil water movement, because the new model can be used with coarse discretization in space and time.
Modeling vaccination in a heterogeneous metapopulation system
NASA Astrophysics Data System (ADS)
Lachiany, Menachem
2016-09-01
We present here a multicity SIS epidemic model with vaccination. The model describes the dynamics of heterogeneous metapopulations that contain imperfectly vaccinated individuals. The effect of vaccination on heterogeneous multicity models has not been previously studied. We show that under very generic conditions, the epidemic threshold does not depend on the diffusion coefficient of the vaccinated individuals, but it does depend on the diffusion coefficient of the infected population. We then show, using a novel methodology, that the reproduction number is determined by the homogeneous model parameters and by the maximal number of neighbors a city can have, when the diffusion coefficient of the infected population is low. Finally, we present numerical simulations to support the analytical results.
Zhu, Lin; Dai, Zhenxue; Gong, Huili; ...
2015-06-12
Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less
Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...
2015-06-05
The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less
NASA Astrophysics Data System (ADS)
Lei, H.; Lu, Z.; Vesselinov, V. V.; Ye, M.
2017-12-01
Simultaneous identification of both the zonation structure of aquifer heterogeneity and the hydrogeological parameters associated with these zones is challenging, especially for complex subsurface heterogeneity fields. In this study, a new approach, based on the combination of the level set method and a parallel genetic algorithm is proposed. Starting with an initial guess for the zonation field (including both zonation structure and the hydraulic properties of each zone), the level set method ensures that material interfaces are evolved through the inverse process such that the total residual between the simulated and observed state variables (hydraulic head) always decreases, which means that the inversion result depends on the initial guess field and the minimization process might fail if it encounters a local minimum. To find the global minimum, the genetic algorithm (GA) is utilized to explore the parameters that define initial guess fields, and the minimal total residual corresponding to each initial guess field is considered as the fitness function value in the GA. Due to the expensive evaluation of the fitness function, a parallel GA is adapted in combination with a simulated annealing algorithm. The new approach has been applied to several synthetic cases in both steady-state and transient flow fields, including a case with real flow conditions at the chromium contaminant site at the Los Alamos National Laboratory. The results show that this approach is capable of identifying the arbitrary zonation structures of aquifer heterogeneity and the hydrogeological parameters associated with these zones effectively.
NASA Astrophysics Data System (ADS)
Lutz, Norbert W.; Bernard, Monique
2018-02-01
We recently suggested a new paradigm for statistical analysis of thermal heterogeneity in (semi-)aqueous materials by 1H NMR spectroscopy, using water as a temperature probe. Here, we present a comprehensive in silico and in vitro validation that demonstrates the ability of this new technique to provide accurate quantitative parameters characterizing the statistical distribution of temperature values in a volume of (semi-)aqueous matter. First, line shape parameters of numerically simulated water 1H NMR spectra are systematically varied to study a range of mathematically well-defined temperature distributions. Then, corresponding models based on measured 1H NMR spectra of agarose gel are analyzed. In addition, dedicated samples based on hydrogels or biological tissue are designed to produce temperature gradients changing over time, and dynamic NMR spectroscopy is employed to analyze the resulting temperature profiles at sub-second temporal resolution. Accuracy and consistency of the previously introduced statistical descriptors of temperature heterogeneity are determined: weighted median and mean temperature, standard deviation, temperature range, temperature mode(s), kurtosis, skewness, entropy, and relative areas under temperature curves. Potential and limitations of this method for quantitative analysis of thermal heterogeneity in (semi-)aqueous materials are discussed in view of prospective applications in materials science as well as biology and medicine.
Acknowledging patient heterogeneity in economic evaluation : a systematic literature review.
Grutters, Janneke P C; Sculpher, Mark; Briggs, Andrew H; Severens, Johan L; Candel, Math J; Stahl, James E; De Ruysscher, Dirk; Boer, Albert; Ramaekers, Bram L T; Joore, Manuela A
2013-02-01
Patient heterogeneity is the part of variability that can be explained by certain patient characteristics (e.g. age, disease stage). Population reimbursement decisions that acknowledge patient heterogeneity could potentially save money and increase population health. To date, however, economic evaluations pay only limited attention to patient heterogeneity. The objective of the present paper is to provide a comprehensive overview of the current knowledge regarding patient heterogeneity within economic evaluation of healthcare programmes. A systematic literature review was performed to identify methodological papers on the topic of patient heterogeneity in economic evaluation. Data were obtained using a keyword search of the PubMed database and manual searches. Handbooks were also included. Relevant data were extracted regarding potential sources of patient heterogeneity, in which of the input parameters of an economic evaluation these occur, methods to acknowledge patient heterogeneity and specific concerns associated with this acknowledgement. A total of 20 articles and five handbooks were included. The relevant sources of patient heterogeneity (demographics, preferences and clinical characteristics) and the input parameters where they occurred (baseline risk, treatment effect, health state utility and resource utilization) were combined in a framework. Methods were derived for the design, analysis and presentation phases of an economic evaluation. Concerns related mainly to the danger of false-positive results and equity issues. By systematically reviewing current knowledge regarding patient heterogeneity within economic evaluations of healthcare programmes, we provide guidance for future economic evaluations. Guidance is provided on which sources of patient heterogeneity to consider, how to acknowledge them in economic evaluation and potential concerns. The improved acknowledgement of patient heterogeneity in future economic evaluations may well improve the efficiency of healthcare.
Heterogeneous flow in multi-layer joint networks and its influence on incipient karst generation
NASA Astrophysics Data System (ADS)
Wang, X.; Jourde, H.
2017-12-01
Various dissolution types (e.g. pipe, stripe and sheet karstic features) have been observed in fractured layered limestones. Yet, due to a large range of structural and hydraulic parameters play a role in the karstification process, the dissolution mechanism, occurring either along fractures or bedding planes, is difficult to quantify. In this study, we use numerical models to investigate the influence of these parameters on the generation of different types of incipient karst. Specifically, we focus on two parameters: the fracture intensity contrast between adjacent layers and the aperture ratio between bedding planes and joints (abed/ajoint). The DFN models were generated using a pseudo-genetic code that considers the stress shadow zone. Flow simulations were performed using a combined finite-volume finite-element simulator under practical boundary conditions. The flow channeling within the fracture networks was characterized by applying a multi-fractal technique. The rock block equivalent permeability (keff) was also calculated to quantify the change in bulk hydraulic properties when changing the selected structural and hydraulic parameters. The flow simulation results show that the abed/ajoint ratio has a first-order control on the heterogeneous distribution of flow in the multi-layer system and on the magnitude of equivalent permeability. When abed/ajoint < 0.1, flow in the system is highly localized and controlled by joints, and the keff is low; while, when abed/ajoint > 0.1, the bedding plane has more control and flow becomes more pervasive and uniform, and the keff is accordingly high. A simple model, accounting for the calculation of the heterogeneous distributions of Damköhler number associated with different aperture ratios, is proposed to predict what type of incipient karst tends to develop under the studied flow conditions.
Peeks, Fabian; Steunenberg, Thomas A H; de Boer, Foekje; Rubio-Gozalbo, M Estela; Williams, Monique; Burghard, Rob; Rajas, Fabienne; Oosterveer, Maaike H; Weinstein, David A; Derks, Terry G J
2017-09-01
To study heterogeneity between patients with glycogen storage disease type Ia (GSD Ia), a rare inherited disorder of carbohydrate metabolism caused by the deficiency of glucose-6-phosphatase (G6Pase). Descriptive retrospective study of longitudinal clinical and biochemical data and long-term complications in 20 GSD Ia patients. We included 11 patients with homozygous G6PC mutations and siblings from four families carrying identical G6PC genotypes. To display subtle variations for repeated triglyceride measurements with respect to time for individual patients, CUSUM-analysis graphs were constructed. Patients with different homozygous G6PC mutations showed important differences in height, BMI, and biochemical parameters (i.e., lactate, uric acid, triglyceride, and cholesterol concentrations). Furthermore, CUSUM-analysis predicts and displays subtle changes in longitudinal blood triglyceride concentrations. Siblings in families also displayed important differences in biochemical parameters (i.e., lactate, uric acid, triglycerides, and cholesterol concentrations) and long-term complications (i.e., liver adenomas, nephropathy, and osteopenia/osteoporosis). Differences between GSD Ia patients reflect large clinical and biochemical heterogeneity. Heterogeneity between GSD Ia patients with homozygous G6PC mutations indicate an important role of the G6PC genotype/mutations. Differences between affected siblings suggest an additional role (genetic and/or environmental) of modifying factors defining the GSD Ia phenotype. CUSUM-analysis can facilitate single-patient monitoring of metabolic control and future application of this method may improve precision medicine for patients both with GSD and remaining inherited metabolic diseases.
Teunis, P F M; Ogden, I D; Strachan, N J C
2008-06-01
The infectivity of pathogenic microorganisms is a key factor in the transmission of an infectious disease in a susceptible population. Microbial infectivity is generally estimated from dose-response studies in human volunteers. This can only be done with mildly pathogenic organisms. Here a hierarchical Beta-Poisson dose-response model is developed utilizing data from human outbreaks. On the lowest level each outbreak is modelled separately and these are then combined at a second level to produce a group dose-response relation. The distribution of foodborne pathogens often shows strong heterogeneity and this is incorporated by introducing an additional parameter to the dose-response model, accounting for the degree of overdispersion relative to Poisson distribution. It was found that heterogeneity considerably influences the shape of the dose-response relationship and increases uncertainty in predicted risk. This uncertainty is greater than previously reported surrogate and outbreak models using a single level of analysis. Monte Carlo parameter samples (alpha, beta of the Beta-Poisson model) can be readily incorporated in risk assessment models built using tools such as S-plus and @ Risk.
NASA Astrophysics Data System (ADS)
Martins, J. M. P.; Thuillier, S.; Andrade-Campos, A.
2018-05-01
The identification of material parameters, for a given constitutive model, can be seen as the first step before any practical application. In the last years, the field of material parameters identification received an important boost with the development of full-field measurement techniques, such as Digital Image Correlation. These techniques enable the use of heterogeneous displacement/strain fields, which contain more information than the classical homogeneous tests. Consequently, different techniques have been developed to extract material parameters from full-field measurements. In this study, two of these techniques are addressed, the Finite Element Model Updating (FEMU) and the Virtual Fields Method (VFM). The main idea behind FEMU is to update the parameters of a constitutive model implemented in a finite element model until both numerical and experimental results match, whereas VFM makes use of the Principle of Virtual Work and does not require any finite element simulation. Though both techniques proved their feasibility in linear and non-linear constitutive models, it is rather difficult to rank their robustness in plasticity. The purpose of this work is to perform a comparative study in the case of elasto-plastic models. Details concerning the implementation of each strategy are presented. Moreover, a dedicated code for VFM within a large strain framework is developed. The reconstruction of the stress field is performed through a user subroutine. A heterogeneous tensile test is considered to compare FEMU and VFM strategies.
Assessing the scale of tumor heterogeneity by complete hierarchical segmentation of MRI.
Gensheimer, Michael F; Hawkins, Douglas S; Ermoian, Ralph P; Trister, Andrew D
2015-02-07
In many cancers, intratumoral heterogeneity has been found in histology, genetic variation and vascular structure. We developed an algorithm to interrogate different scales of heterogeneity using clinical imaging. We hypothesize that heterogeneity of perfusion at coarse scale may correlate with treatment resistance and propensity for disease recurrence. The algorithm recursively segments the tumor image into increasingly smaller regions. Each dividing line is chosen so as to maximize signal intensity difference between the two regions. This process continues until the tumor has been divided into single voxels, resulting in segments at multiple scales. For each scale, heterogeneity is measured by comparing each segmented region to the adjacent region and calculating the difference in signal intensity histograms. Using digital phantom images, we showed that the algorithm is robust to image artifacts and various tumor shapes. We then measured the primary tumor scales of contrast enhancement heterogeneity in MRI of 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival. Coarser scale of maximum signal intensity heterogeneity was prognostic of shorter survival (p = 0.05). By contrast, two fractal parameters and three Haralick texture features were not prognostic. In summary, our algorithm produces a biologically motivated segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. If validated on a larger dataset, this prognostic imaging biomarker could be useful to identify patients at higher risk for recurrence and candidates for alternative treatment.
Oblique contractional reactivation of inherited heterogeneities: Cause for arcuate orogens
Sokoutis, D.; Willingshofer, E.; Brun, J.‐P.; Gueydan, F.; Cloetingh, S.
2017-01-01
Abstract We use lithospheric‐scale analog models to study the reactivation of pre‐existing heterogeneities under oblique shortening and its relation to the origin of arcuate orogens. Reactivation of inherited rheological heterogeneities is an important mechanism for localization of deformation in compressional settings and consequent initiation of contractional structures during orogenesis. However, the presence of an inherited heterogeneity in the lithosphere is in itself not sufficient for its reactivation once the continental lithosphere is shortened. The heterogeneity orientation is important in determining if reactivation occurs and to which extent. This study aims at giving insights on this process by means of analog experiments in which a linear lithospheric heterogeneity trends with various angles to the shortening direction. In particular, the key parameter investigated is the orientation (angle α) of a strong domain (SD) with respect to the shortening direction. Experimental results show that angles α ≥ 75° (high obliquity) allow for reactivation along the entire SD and the development of a linear orogen. For α ≤ 60° (low obliquity) the models are characterized by the development of an arcuate orogen, with the SD remaining partially non‐reactivated. These results provide a new mechanism for the origin of some arcuate orogens, in which orocline formation was not driven by indentation or subduction processes, but by oblique shortening of inherited heterogeneities, as exemplified by the Ouachita orogen of the southern U.S. PMID:28670046
Catalysis and Sonocatalysis for the Synthesis of Biofuels
NASA Astrophysics Data System (ADS)
Deshmane, Vishwanath Ganpat
The goal of this study was to investigate the synthesis of biofuels from edible and non-edible sources using commercially available and laboratory synthesized heterogeneous catalysts with and without the aid of ultrasound. The transesterification of soybean oil using calcium methoxide as solid base catalyst and the process parameters affecting the yield of biodiesel such as the catalyst concentration, methanol/oil molar ratio and the reaction temperature were investigated in detail. The kinetics of this process with and without ultrasound was also evaluated using a previously reported kinetic and mass transfer model for heterogeneous systems. Nanocrystalline mesoporous ZrO 2 with high surface area and thermal stability was synthesized using ethylene diamine as precipitating agent. Sulfonation of obtained Zr(OH) 2 at different digestion times was carried out using sulfuric acid and chlorosulfonic acid as the sulfonating agents and the effects of process parameters including digestion time, pH, precursor concentration and calcination temperature on structural, textural and catalytic properties were studied. Parametric and optimization (Taguchi statistical methodology) studies were carried out to evaluate the effects of cellulase, cellobiase, cellulose concentration and ultrasonic power on the intensification of cellulose hydrolysis to glucose. The catalysts and cellulose were characterized by using BET, NH3-TPD, XRD, SEM, TGA-DSC, EDX and FTIR. The results of these studies suggest that synthesis of biofuels can be improved by heterogeneous catalysts and ultrasound with potential reduction in production costs compared with conventional methods.
Global electrical heterogeneity as a predictor of cardiovascular mortality in men and women.
Lipponen, Jukka A; Kurl, Sudhir; Laukkanen, Jari A
2018-06-02
The aim of this study was to investigate the contribution of depolarization and repolarization abnormalities, specially abnormalities in global electrical heterogeneity of heart in cardiovascular disease (CVD) and all-cause mortality. Eight hundred and forty men and 911 women, average age of 63 years participated in this study with average follow-up was 14 years. Six electrocardiogram/vector electrocardiogram (ECG/VECG) markers QRS-duration, QTc-interval, QRST-angle, sum of absolute QRST integral (SAI QRST), T-wave roundness, and TV1-amplitude were estimated from VECG measurements. Hazard ratios (HRs) for CVD events (164 deaths) and all-cause mortality (383 deaths) for ECG parameters were calculated. Electrocardiogram or vector electrocardiogram parameter models adjusted for risk clinical factors showed that strongest predictors for CVD mortality were QRST-angle (HR 3.44, 95% confidence interval 2.12-5.36), QTc-interval (2.72, 1.73-4.29), and T-wave roundness (2.09, 1.26-3.46) among men. The strongest ECG/VECG parameters for CVD death were QRST-angle (2.47, 1.37-4.45), SAI QRST (2.37, 1.23-4.6), and QTc-interval (2.15, 1.16-4.01) among female participants. Multivariable adjusted models revealed that strongest independent ECG predictors for CVD death were QRST-angle, QTc-interval, resting heart rate, and T-roundness for men, QRST-angle and SAI QRST for women. QRST-angle, QTc-interval, resting heart rate, and T-roundness were associated with all-cause mortality in male population, although none of the ECG/VECG parameters predicted all-cause mortality among women. Characteristics of global electrical heterogeneity QRST-angle and QTc-interval in men and QRST-angle and SAI QRST among females were strong and independent risk markers for cardiovascular mortality. These parameters provide new additional ECG tools for cardiovascular risk stratification.
Examining the influence of heterogeneous porosity fields on conservative solute transport
Hu, B.X.; Meerschaert, M.M.; Barrash, W.; Hyndman, D.W.; He, C.; Li, X.; Guo, Laodong
2009-01-01
It is widely recognized that groundwater flow and solute transport in natural media are largely controlled by heterogeneities. In the last three decades, many studies have examined the effects of heterogeneous hydraulic conductivity fields on flow and transport processes, but there has been much less attention to the influence of heterogeneous porosity fields. In this study, we use porosity and particle size measurements from boreholes at the Boise Hydrogeophysical Research Site (BHRS) to evaluate the importance of characterizing the spatial structure of porosity and grain size data for solute transport modeling. Then we develop synthetic hydraulic conductivity fields based on relatively simple measurements of porosity from borehole logs and grain size distributions from core samples to examine and compare the characteristics of tracer transport through these fields with and without inclusion of porosity heterogeneity. In particular, we develop horizontal 2D realizations based on data from one of the less heterogeneous units at the BHRS to examine effects where spatial variations in hydraulic parameters are not large. The results indicate that the distributions of porosity and the derived hydraulic conductivity in the study unit resemble fractal normal and lognormal fields respectively. We numerically simulate solute transport in stochastic fields and find that spatial variations in porosity have significant effects on the spread of an injected tracer plume including a significant delay in simulated tracer concentration histories.
Individual heterogeneity in life histories and eco-evolutionary dynamics
Vindenes, Yngvild; Langangen, Øystein
2015-01-01
Individual heterogeneity in life history shapes eco-evolutionary processes, and unobserved heterogeneity can affect demographic outputs characterising life history and population dynamical properties. Demographic frameworks like matrix models or integral projection models represent powerful approaches to disentangle mechanisms linking individual life histories and population-level processes. Recent developments have provided important steps towards their application to study eco-evolutionary dynamics, but so far individual heterogeneity has largely been ignored. Here, we present a general demographic framework that incorporates individual heterogeneity in a flexible way, by separating static and dynamic traits (discrete or continuous). First, we apply the framework to derive the consequences of ignoring heterogeneity for a range of widely used demographic outputs. A general conclusion is that besides the long-term growth rate lambda, all parameters can be affected. Second, we discuss how the framework can help advance current demographic models of eco-evolutionary dynamics, by incorporating individual heterogeneity. For both applications numerical examples are provided, including an empirical example for pike. For instance, we demonstrate that predicted demographic responses to climate warming can be reversed by increased heritability. We discuss how applications of this demographic framework incorporating individual heterogeneity can help answer key biological questions that require a detailed understanding of eco-evolutionary dynamics. PMID:25807980
Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst.
Baskar, G; Aberna Ebenezer Selvakumari, I; Aiswarya, R
2018-02-01
In the present study, castor oil with high free fatty acid was used for biodiesel production using heterogeneous Ni doped ZnO nanocatalyst. Ni doped ZnO nanocomposite calcinated at 800 °C has shown better catalytic activity. Process parameters on heterogeneous catalysis of castor oil into biodiesel were optimized using conventional and Response Surface Methodology (RSM). RSM was found more accurate in estimating the optimum conditions with higher biodiesel yield (95.20%). The optimum conditions for transesterification was found to be oil to methanol molar ratio of 1:8, catalyst loading 11% (w/w), reaction temperature of 55 °C for 60 min of reaction time by response surface method. The reusability studies showed that the nanocatalyst can be reused efficiently for 3 cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Okamoto, Kyosuke; Tsuno, Seiji
2015-10-01
In the earthquake early warning (EEW) system, the epicenter location and magnitude of earthquakes are estimated using the amplitude growth rate of initial P-waves. It has been empirically pointed out that the growth rate becomes smaller as epicentral distance becomes far regardless of the magnitude of earthquakes. So, the epicentral distance can be estimated from the growth rate using this empirical relationship. However, the growth rates calculated from different earthquakes at the same epicentral distance mark considerably different values from each other. Sometimes the growth rates of earthquakes having the same epicentral distance vary by 104 times. Qualitatively, it has been considered that the gap in the growth rates is due to differences in the local heterogeneities that the P-waves propagate through. In this study, we demonstrate theoretically how local heterogeneities in the subsurface disturb the relationship between the growth rate and the epicentral distance. Firstly, we calculate seismic scattered waves in a heterogeneous medium. First-ordered PP, PS, SP, and SS scatterings are considered. The correlation distance of the heterogeneities and fractional fluctuation of elastic parameters control the heterogeneous conditions for the calculation. From the synthesized waves, the growth rate of the initial P-wave is obtained. As a result, we find that a parameter (in this study, correlation distance) controlling heterogeneities plays a key role in the magnitude of the fluctuation of the growth rate. Then, we calculate the regional correlation distances in Japan that can account for the fluctuation of the growth rate of real earthquakes from 1997 to 2011 observed by K-NET and KiK-net. As a result, the spatial distribution of the correlation distance shows locality. So, it is revealed that the growth rates fluctuate according to the locality. When this local fluctuation is taken into account, the accuracy of the estimation of epicentral distances from initial P-waves can improve, which will in turn improve the accuracy of the EEW system.
Imaging Heterogeneity in Lung Cancer: Techniques, Applications, and Challenges.
Bashir, Usman; Siddique, Muhammad Musib; Mclean, Emma; Goh, Vicky; Cook, Gary J
2016-09-01
Texture analysis involves the mathematic processing of medical images to derive sets of numeric quantities that measure heterogeneity. Studies on lung cancer have shown that texture analysis may have a role in characterizing tumors and predicting patient outcome. This article outlines the mathematic basis of and the most recent literature on texture analysis in lung cancer imaging. We also describe the challenges facing the clinical implementation of texture analysis. Texture analysis of lung cancer images has been applied successfully to FDG PET and CT scans. Different texture parameters have been shown to be predictive of the nature of disease and of patient outcome. In general, it appears that more heterogeneous tumors on imaging tend to be more aggressive and to be associated with poorer outcomes and that tumor heterogeneity on imaging decreases with treatment. Despite these promising results, there is a large variation in the reported data and strengths of association.
Liu, Shuai; Feng, Zheng; Jiang, Zhaoxia; Wen, Hao; Xu, Junyan; Pan, Herong; Deng, Yu; Zhang, Lei; Ju, Xingzhu; Chen, Xiaojun; Wu, Xiaohua
2018-05-16
This study aimed to explore the clinical and prognostic significance of pretreatment positron-emission tomography/computed tomography (PET/CT) parameters, especially 2-deoxy-2-(F)fluoro-D-glucose-based heterogeneity, in high-grade serous ovarian cancer (HGSC). We retrospectively investigated 56 patients with HGSC who underwent PET/CT before primary surgery at our hospital between January 2010 and June 2015. None of these patients received neoadjuvant chemotherapy. PET/CT parameters, including maximum and mean standardized uptake value (SUVmax and SUVmean), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and intratumoral heterogeneity index (HI), were measured for all patients. Differences of each PET/CT parameter between primary tumors (-P) and omental metastatic lesions (-M) were compared by paired t tests. Progression-free survival (PFS) and overall survival were analyzed by the Kaplan-Meier method and log-rank tests in univariate analyses. Cox regression analyses were used for multivariate analysis. SUVmean-P was higher than SUVmean-M (P=0.001). However, there were no statistical differences of SUVmax, MTV, TLG, or HI between primary and omental lesions. Chemosensitive patients tended to have higher levels of SUVmax-P (P=0.011), MTV-P (P=0.014), TLG-P (P=0.035), and HI-P (P=0.002), respectively. In univariate analyses, higher HI-P was associated with better PFS (P=0.007). However, in multivariate analysis, HI-P was not an independent predictor of PFS (P=0.581). Neither HI-P nor HI-M was the prognostic predictor for overall survival (P=0.078 and 0.063, respectively). 2-Deoxy-2-(F)fluoro-D-glucose-based heterogeneity appears to be a predictive and prognostic factor for patients with HGSC. Parameters of primary tumors have predominant value compared with omental metastatic lesions.
Analyzing crash frequency in freeway tunnels: A correlated random parameters approach.
Hou, Qinzhong; Tarko, Andrew P; Meng, Xianghai
2018-02-01
The majority of past road safety studies focused on open road segments while only a few focused on tunnels. Moreover, the past tunnel studies produced some inconsistent results about the safety effects of the traffic patterns, the tunnel design, and the pavement conditions. The effects of these conditions therefore remain unknown, especially for freeway tunnels in China. The study presented in this paper investigated the safety effects of these various factors utilizing a four-year period (2009-2012) of data as well as three models: 1) a random effects negative binomial model (RENB), 2) an uncorrelated random parameters negative binomial model (URPNB), and 3) a correlated random parameters negative binomial model (CRPNB). Of these three, the results showed that the CRPNB model provided better goodness-of-fit and offered more insights into the factors that contribute to tunnel safety. The CRPNB was not only able to allocate the part of the otherwise unobserved heterogeneity to the individual model parameters but also was able to estimate the cross-correlations between these parameters. Furthermore, the study results showed that traffic volume, tunnel length, proportion of heavy trucks, curvature, and pavement rutting were associated with higher frequencies of traffic crashes, while the distance to the tunnel wall, distance to the adjacent tunnel, distress ratio, International Roughness Index (IRI), and friction coefficient were associated with lower crash frequencies. In addition, the effects of the heterogeneity of the proportion of heavy trucks, the curvature, the rutting depth, and the friction coefficient were identified and their inter-correlations were analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of Degree Heterogeneity on Attack Vulnerability of Interdependent Networks
NASA Astrophysics Data System (ADS)
Sun, Shiwen; Wu, Yafang; Ma, Yilin; Wang, Li; Gao, Zhongke; Xia, Chengyi
2016-09-01
The study of interdependent networks has become a new research focus in recent years. We focus on one fundamental property of interdependent networks: vulnerability. Previous studies mainly focused on the impact of topological properties upon interdependent networks under random attacks, the effect of degree heterogeneity on structural vulnerability of interdependent networks under intentional attacks, however, is still unexplored. In order to deeply understand the role of degree distribution and in particular degree heterogeneity, we construct an interdependent system model which consists of two networks whose extent of degree heterogeneity can be controlled simultaneously by a tuning parameter. Meanwhile, a new quantity, which can better measure the performance of interdependent networks after attack, is proposed. Numerical simulation results demonstrate that degree heterogeneity can significantly increase the vulnerability of both single and interdependent networks. Moreover, it is found that interdependent links between two networks make the entire system much more fragile to attacks. Enhancing coupling strength between networks can greatly increase the fragility of both networks against targeted attacks, which is most evident under the case of max-max assortative coupling. Current results can help to deepen the understanding of structural complexity of complex real-world systems.
Nucleation in Synoptically Forced Cirrostratus
NASA Technical Reports Server (NTRS)
Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.
2004-01-01
Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.
Ovchinnikov, M M; Podgornyĭ, G N
2004-03-01
The passing and optic-density parameters registered by a photometric device were estimated, on the basis of a simple modeled system, with respect to the ratio between the absorption band width and the heterogeneous radiation degree. The impacts of heterogeneous radiation on the validity of the Bueguer'-Lambert's-Baire's law were elucidated.
Study of selected phenotype switching strategies in time varying environment
NASA Astrophysics Data System (ADS)
Horvath, Denis; Brutovsky, Branislav
2016-03-01
Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback-Leibler functional distances and the Hamming distance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchen, D.G.; Hohn, M.E.; Aminian, K.
1993-04-01
The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchen, D.G.; Hohn, M.E.; Aminian, K.
1993-04-01
The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less
Kinetic and temporospatial gait parameters in a heterogeneous group of dogs.
Kano, Washington T; Rahal, Sheila C; Agostinho, Felipe S; Mesquita, Luciane R; Santos, Rogerio R; Monteiro, Frederico O B; Castilho, Maira S; Melchert, Alessandra
2016-01-04
A prime concern of the gait analysis in a heterogeneous group of dogs is the potential influence of factors such as individual body size, body mass, type of gait, and velocity. Thus, this study aimed to evaluate in a heterogeneous group of dogs a possible correlation of the stride frequency with kinetic and temporospatial variables, as well as the percentage of body weight distribution (%BWD), and compare symmetry index (SI) between trotting and walking dogs. Twenty-nine clinically healthy dogs moving in a controlled velocity were used. The dogs were organized into two groups based on duty factor. Group 1 comprised 15 walking dogs, aged from 9 months to 8 years and weighing about 22.3 kg. Group 2 had 14 trotting dogs, aged from 1 to 6 years and weighing about 6.5 kg. The kinetic data and temporospatial parameters were obtained using a pressure-sensing walkway. The velocity was 0.9-1.1 m/s. The peak vertical force (PVF), vertical impulse (VI), gait cycle time, stance time, swing time, stride length, and percentages of body weight distribution among the four limbs were determined. For each variable, the SIs were calculated. Pearson's coefficient was used to evaluate correlation between stride frequency and other variables, initially in each group and after including all animals. Except for the %BWD (approximately 60% for the forelimbs and 40% for the hind limbs), all other parameters differed between groups. Considering each Group individually a strong correlation was observed for most of the temporospatial parameters, but no significant correlation occurred between stride frequency and PVF, and stride frequency and %BWD. However, including all dogs a strong correlation was observed in all temporospatial parameters, and moderate correlation between stride frequency and VI, and weak correlation between stride frequency and PVF. There was no correlation between stride frequency and %BWD. Groups 1 and 2 did not differ statistically in SIs. In a heterogeneous group of dogs conducted at a controlled velocity, the %BWD and most of SIs presented low variability. However, %BWD seems to be the most accurate, since factors such as the magnitude of the variables may influence the SIs inducing wrong interpretation. Based on results obtained from correlations, the standardization of stride frequency could be an alternative to minimize the variability of temporospatial parameters.
Grootjans, Willem; Tixier, Florent; van der Vos, Charlotte S; Vriens, Dennis; Le Rest, Catherine C; Bussink, Johan; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Visvikis, Dimitris; Visser, Eric P
2016-11-01
Accurate measurement of intratumor heterogeneity using parameters of texture on PET images is essential for precise characterization of cancer lesions. In this study, we investigated the influence of respiratory motion and varying noise levels on quantification of textural parameters in patients with lung cancer. We used an optimal-respiratory-gating algorithm on the list-mode data of 60 lung cancer patients who underwent 18 F-FDG PET. The images were reconstructed using a duty cycle of 35% (percentage of the total acquired PET data). In addition, nongated images of varying statistical quality (using 35% and 100% of the PET data) were reconstructed to investigate the effects of image noise. Several global image-derived indices and textural parameters (entropy, high-intensity emphasis, zone percentage, and dissimilarity) that have been associated with patient outcome were calculated. The clinical impact of optimal respiratory gating and image noise on assessment of intratumor heterogeneity was evaluated using Cox regression models, with overall survival as the outcome measure. The threshold for statistical significance was adjusted for multiple comparisons using Bonferroni correction. In the lower lung lobes, respiratory motion significantly affected quantification of intratumor heterogeneity for all textural parameters (P < 0.007) except entropy (P > 0.007). The mean increase in entropy, dissimilarity, zone percentage, and high-intensity emphasis was 1.3% ± 1.5% (P = 0.02), 11.6% ± 11.8% (P = 0.006), 2.3% ± 2.2% (P = 0.002), and 16.8% ± 17.2% (P = 0.006), respectively. No significant differences were observed for lesions in the upper lung lobes (P > 0.007). Differences in the statistical quality of the PET images affected the textural parameters less than respiratory motion, with no significant difference observed. The median follow-up time was 35 mo (range, 7-39 mo). In multivariate analysis for overall survival, total lesion glycolysis and high-intensity emphasis were the two most relevant image-derived indices and were considered to be independent significant covariates for the model regardless of the image type considered. The tested textural parameters are robust in the presence of respiratory motion artifacts and varying levels of image noise. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
AXAF user interfaces for heterogeneous analysis environments
NASA Technical Reports Server (NTRS)
Mandel, Eric; Roll, John; Ackerman, Mark S.
1992-01-01
The AXAF Science Center (ASC) will develop software to support all facets of data center activities and user research for the AXAF X-ray Observatory, scheduled for launch in 1999. The goal is to provide astronomers with the ability to utilize heterogeneous data analysis packages, that is, to allow astronomers to pick the best packages for doing their scientific analysis. For example, ASC software will be based on IRAF, but non-IRAF programs will be incorporated into the data system where appropriate. Additionally, it is desired to allow AXAF users to mix ASC software with their own local software. The need to support heterogeneous analysis environments is not special to the AXAF project, and therefore finding mechanisms for coordinating heterogeneous programs is an important problem for astronomical software today. The approach to solving this problem has been to develop two interfaces that allow the scientific user to run heterogeneous programs together. The first is an IRAF-compatible parameter interface that provides non-IRAF programs with IRAF's parameter handling capabilities. Included in the interface is an application programming interface to manipulate parameters from within programs, and also a set of host programs to manipulate parameters at the command line or from within scripts. The parameter interface has been implemented to support parameter storage formats other than IRAF parameter files, allowing one, for example, to access parameters that are stored in data bases. An X Windows graphical user interface called 'agcl' has been developed, layered on top of the IRAF-compatible parameter interface, that provides a standard graphical mechanism for interacting with IRAF and non-IRAF programs. Users can edit parameters and run programs for both non-IRAF programs and IRAF tasks. The agcl interface allows one to communicate with any command line environment in a transparent manner and without any changes to the original environment. For example, the authors routinely layer the GUI on top of IRAF, ksh, SMongo, and IDL. The agcl, based on the facilities of a system called Answer Garden, also has sophisticated support for examining documentation and help files, asking questions of experts, and developing a knowledge base of frequently required information. Thus, the GUI becomes a total environment for running programs, accessing information, examining documents, and finding human assistance. Because the agcl can communicate with any command-line environment, most projects can make use of it easily. New applications are continually being found for these interfaces. It is the authors' intention to evolve the GUI and its underlying parameter interface in response to these needs - from users as well as developers - throughout the astronomy community. This presentation describes the capabilities and technology of the above user interface mechanisms and tools. It also discusses the design philosophies guiding the work, as well as hopes for the future.
Pajares, Silvia; Escalante, Ana E; Noguez, Ana M; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Cram, Silke S; Eguiarte, Luis Enrique; Souza, Valeria
2016-01-01
Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m(2) plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca(2), K(+)) and anions (HCO[Formula: see text], Cl(-), SO[Formula: see text]) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities.
Wrzus, Cornelia; Egloff, Boris; Riediger, Michaela
2017-08-01
Implicit association tests (IATs) are increasingly used to indirectly assess people's traits, attitudes, or other characteristics. In addition to measuring traits or attitudes, IAT scores also reflect differences in cognitive abilities because scores are based on reaction times (RTs) and errors. As cognitive abilities change with age, questions arise concerning the usage and interpretation of IATs for people of different age. To address these questions, the current study examined how cognitive abilities and cognitive processes (i.e., quad model parameters) contribute to IAT results in a large age-heterogeneous sample. Participants (N = 549; 51% female) in an age-stratified sample (range = 12-88 years) completed different IATs and 2 tasks to assess cognitive processing speed and verbal ability. From the IAT data, D2-scores were computed based on RTs, and quad process parameters (activation of associations, overcoming bias, detection, guessing) were estimated from individual error rates. Substantial IAT scores and quad processes except guessing varied with age. Quad processes AC and D predicted D2-scores of the content-specific IAT. Importantly, the effects of cognitive abilities and quad processes on IAT scores were not significantly moderated by participants' age. These findings suggest that IATs seem suitable for age-heterogeneous studies from adolescence to old age when IATs are constructed and analyzed appropriately, for example with D-scores and process parameters. We offer further insight into how D-scoring controls for method effects in IATs and what IAT scores capture in addition to implicit representations of characteristics. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
An adaptive Gaussian process-based iterative ensemble smoother for data assimilation
NASA Astrophysics Data System (ADS)
Ju, Lei; Zhang, Jiangjiang; Meng, Long; Wu, Laosheng; Zeng, Lingzao
2018-05-01
Accurate characterization of subsurface hydraulic conductivity is vital for modeling of subsurface flow and transport. The iterative ensemble smoother (IES) has been proposed to estimate the heterogeneous parameter field. As a Monte Carlo-based method, IES requires a relatively large ensemble size to guarantee its performance. To improve the computational efficiency, we propose an adaptive Gaussian process (GP)-based iterative ensemble smoother (GPIES) in this study. At each iteration, the GP surrogate is adaptively refined by adding a few new base points chosen from the updated parameter realizations. Then the sensitivity information between model parameters and measurements is calculated from a large number of realizations generated by the GP surrogate with virtually no computational cost. Since the original model evaluations are only required for base points, whose number is much smaller than the ensemble size, the computational cost is significantly reduced. The applicability of GPIES in estimating heterogeneous conductivity is evaluated by the saturated and unsaturated flow problems, respectively. Without sacrificing estimation accuracy, GPIES achieves about an order of magnitude of speed-up compared with the standard IES. Although subsurface flow problems are considered in this study, the proposed method can be equally applied to other hydrological models.
Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series
Li, Lucy M.; Grassly, Nicholas C.; Fraser, Christophe
2017-01-01
Abstract Heterogeneity in individual-level transmissibility can be quantified by the dispersion parameter k of the offspring distribution. Quantifying heterogeneity is important as it affects other parameter estimates, it modulates the degree of unpredictability of an epidemic, and it needs to be accounted for in models of infection control. Aggregated data such as incidence time series are often not sufficiently informative to estimate k. Incorporating phylogenetic analysis can help to estimate k concurrently with other epidemiological parameters. We have developed an inference framework that uses particle Markov Chain Monte Carlo to estimate k and other epidemiological parameters using both incidence time series and the pathogen phylogeny. Using the framework to fit a modified compartmental transmission model that includes the parameter k to simulated data, we found that more accurate and less biased estimates of the reproductive number were obtained by combining epidemiological and phylogenetic analyses. However, k was most accurately estimated using pathogen phylogeny alone. Accurately estimating k was necessary for unbiased estimates of the reproductive number, but it did not affect the accuracy of reporting probability and epidemic start date estimates. We further demonstrated that inference was possible in the presence of phylogenetic uncertainty by sampling from the posterior distribution of phylogenies. Finally, we used the inference framework to estimate transmission parameters from epidemiological and genetic data collected during a poliovirus outbreak. Despite the large degree of phylogenetic uncertainty, we demonstrated that incorporating phylogenetic data in parameter inference improved the accuracy and precision of estimates. PMID:28981709
McDonald, Scott A; Devleesschauwer, Brecht; Wallinga, Jacco
2016-12-08
Disease burden is not evenly distributed within a population; this uneven distribution can be due to individual heterogeneity in progression rates between disease stages. Composite measures of disease burden that are based on disease progression models, such as the disability-adjusted life year (DALY), are widely used to quantify the current and future burden of infectious diseases. Our goal was to investigate to what extent ignoring the presence of heterogeneity could bias DALY computation. Simulations using individual-based models for hypothetical infectious diseases with short and long natural histories were run assuming either "population-averaged" progression probabilities between disease stages, or progression probabilities that were influenced by an a priori defined individual-level frailty (i.e., heterogeneity in disease risk) distribution, and DALYs were calculated. Under the assumption of heterogeneity in transition rates and increasing frailty with age, the short natural history disease model predicted 14% fewer DALYs compared with the homogenous population assumption. Simulations of a long natural history disease indicated that assuming homogeneity in transition rates when heterogeneity was present could overestimate total DALYs, in the present case by 4% (95% quantile interval: 1-8%). The consequences of ignoring population heterogeneity should be considered when defining transition parameters for natural history models and when interpreting the resulting disease burden estimates.
Accounting for aquifer heterogeneity from geological data to management tools.
Blouin, Martin; Martel, Richard; Gloaguen, Erwan
2013-01-01
A nested workflow of multiple-point geostatistics (MPG) and sequential Gaussian simulation (SGS) was tested on a study area of 6 km(2) located about 20 km northwest of Quebec City, Canada. In order to assess its geological and hydrogeological parameter heterogeneity and to provide tools to evaluate uncertainties in aquifer management, direct and indirect field measurements are used as inputs in the geostatistical simulations to reproduce large and small-scale heterogeneities. To do so, the lithological information is first associated to equivalent hydrogeological facies (hydrofacies) according to hydraulic properties measured at several wells. Then, heterogeneous hydrofacies (HF) realizations are generated using a prior geological model as training image (TI) with the MPG algorithm. The hydraulic conductivity (K) heterogeneity modeling within each HF is finally computed using SGS algorithm. Different K models are integrated in a finite-element hydrogeological model to calculate multiple transport simulations. Different scenarios exhibit variations in mass transport path and dispersion associated with the large- and small-scale heterogeneity respectively. Three-dimensional maps showing the probability of overpassing different thresholds are presented as examples of management tools. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
The relationship between species detection probability and local extinction probability
Alpizar-Jara, R.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Pollock, K.H.; Rosenberry, C.S.
2004-01-01
In community-level ecological studies, generally not all species present in sampled areas are detected. Many authors have proposed the use of estimation methods that allow detection probabilities that are < 1 and that are heterogeneous among species. These methods can also be used to estimate community-dynamic parameters such as species local extinction probability and turnover rates (Nichols et al. Ecol Appl 8:1213-1225; Conserv Biol 12:1390-1398). Here, we present an ad hoc approach to estimating community-level vital rates in the presence of joint heterogeneity of detection probabilities and vital rates. The method consists of partitioning the number of species into two groups using the detection frequencies and then estimating vital rates (e.g., local extinction probabilities) for each group. Estimators from each group are combined in a weighted estimator of vital rates that accounts for the effect of heterogeneity. Using data from the North American Breeding Bird Survey, we computed such estimates and tested the hypothesis that detection probabilities and local extinction probabilities were negatively related. Our analyses support the hypothesis that species detection probability covaries negatively with local probability of extinction and turnover rates. A simulation study was conducted to assess the performance of vital parameter estimators as well as other estimators relevant to questions about heterogeneity, such as coefficient of variation of detection probabilities and proportion of species in each group. Both the weighted estimator suggested in this paper and the original unweighted estimator for local extinction probability performed fairly well and provided no basis for preferring one to the other.
Kim, Minjung; Lamont, Andrea E.; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M. Lee
2015-01-01
Regression mixture models are a novel approach for modeling heterogeneous effects of predictors on an outcome. In the model building process residual variances are often disregarded and simplifying assumptions made without thorough examination of the consequences. This simulation study investigated the impact of an equality constraint on the residual variances across latent classes. We examine the consequence of constraining the residual variances on class enumeration (finding the true number of latent classes) and parameter estimates under a number of different simulation conditions meant to reflect the type of heterogeneity likely to exist in applied analyses. Results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted estimated class sizes and showed the potential to greatly impact parameter estimates in each class. Results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions were made. PMID:26139512
Lagarde, Mylene; Pagaiya, Nonglak; Tangcharoensathian, Viroj; Blaauw, Duane
2013-12-01
This study investigates heterogeneity in Thai doctors' job preferences at the beginning of their career, with a view to inform the design of effective policies to retain them in rural areas. A discrete choice experiment was designed and administered to 198 young doctors. We analysed the data using several specifications of a random parameter model to account for various sources of preference heterogeneity. By modelling preference heterogeneity, we showed how sensitivity to different incentives varied in different sections of the population. In particular, doctors from rural backgrounds were more sensitive than others to a 45% salary increase and having a post near their home province, but they were less sensitive to a reduction in the number of on-call nights. On the basis of the model results, the effects of two types of interventions were simulated: introducing various incentives and modifying the population structure. The results of the simulations provide multiple elements for consideration for policy-makers interested in designing effective interventions. They also underline the interest of modelling preference heterogeneity carefully. Copyright © 2013 John Wiley & Sons, Ltd.
Overload cascading failure on complex networks with heterogeneous load redistribution
NASA Astrophysics Data System (ADS)
Hou, Yueyi; Xing, Xiaoyun; Li, Menghui; Zeng, An; Wang, Yougui
2017-09-01
Many real systems including the Internet, power-grid and financial networks experience rare but large overload cascading failures triggered by small initial shocks. Many models on complex networks have been developed to investigate this phenomenon. Most of these models are based on the load redistribution process and assume that the load on a failed node shifts to nearby nodes in the networks either evenly or according to the load distribution rule before the cascade. Inspired by the fact that real power-grid tends to place the excess load on the nodes with high remaining capacities, we study a heterogeneous load redistribution mechanism in a simplified sandpile model in this paper. We find that weak heterogeneity in load redistribution can effectively mitigate the cascade while strong heterogeneity in load redistribution may even enlarge the size of the final failure. With a parameter θ to control the degree of the redistribution heterogeneity, we identify a rather robust optimal θ∗ = 1. Finally, we find that θ∗ tends to shift to a larger value if the initial sand distribution is homogeneous.
Synchronization in networks with heterogeneous coupling delays
NASA Astrophysics Data System (ADS)
Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor
2018-01-01
Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.
NASA Astrophysics Data System (ADS)
Gebler, S.; Hendricks Franssen, H.-J.; Kollet, S. J.; Qu, W.; Vereecken, H.
2017-04-01
The prediction of the spatial and temporal variability of land surface states and fluxes with land surface models at high spatial resolution is still a challenge. This study compares simulation results using TerrSysMP including a 3D variably saturated groundwater flow model (ParFlow) coupled to the Community Land Model (CLM) of a 38 ha managed grassland head-water catchment in the Eifel (Germany), with soil water content (SWC) measurements from a wireless sensor network, actual evapotranspiration recorded by lysimeters and eddy covariance stations and discharge observations. TerrSysMP was discretized with a 10 × 10 m lateral resolution, variable vertical resolution (0.025-0.575 m), and the following parameterization strategies of the subsurface soil hydraulic parameters: (i) completely homogeneous, (ii) homogeneous parameters for different soil horizons, (iii) different parameters for each soil unit and soil horizon and (iv) heterogeneous stochastic realizations. Hydraulic conductivity and Mualem-Van Genuchten parameters in these simulations were sampled from probability density functions, constructed from either (i) soil texture measurements and Rosetta pedotransfer functions (ROS), or (ii) estimated soil hydraulic parameters by 1D inverse modelling using shuffle complex evolution (SCE). The results indicate that the spatial variability of SWC at the scale of a small headwater catchment is dominated by topography and spatially heterogeneous soil hydraulic parameters. The spatial variability of the soil water content thereby increases as a function of heterogeneity of soil hydraulic parameters. For lower levels of complexity, spatial variability of the SWC was underrepresented in particular for the ROS-simulations. Whereas all model simulations were able to reproduce the seasonal evapotranspiration variability, the poor discharge simulations with high model bias are likely related to short-term ET dynamics and the lack of information about bedrock characteristics and an on-site drainage system in the uncalibrated model. In general, simulation performance was better for the SCE setups. The SCE-simulations had a higher inverse air entry parameter resulting in SWC dynamics in better correspondence with data than the ROS simulations during dry periods. This illustrates that small scale measurements of soil hydraulic parameters cannot be transferred to the larger scale and that interpolated 1D inverse parameter estimates result in an acceptable performance for the catchment.
Saleem, Muhammad; Sharif, Kashif; Fahmi, Aliya
2018-04-27
Applications of Pareto distribution are common in reliability, survival and financial studies. In this paper, A Pareto mixture distribution is considered to model a heterogeneous population comprising of two subgroups. Each of two subgroups is characterized by the same functional form with unknown distinct shape and scale parameters. Bayes estimators have been derived using flat and conjugate priors using squared error loss function. Standard errors have also been derived for the Bayes estimators. An interesting feature of this study is the preparation of components of Fisher Information matrix.
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18
NASA Technical Reports Server (NTRS)
Burkholder, J. B.; Sander, S. P.; Abbatt, J. P. D.; Barker, J. R.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Orkin, V. L.; Wilmouth, D. M.; Wine, P. H.
2015-01-01
This is the eighteenth in a series of evaluated sets of rate constants, photochemical cross sections, heterogeneous parameters, and thermochemical parameters compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. The evaluation is available in electronic form from the following Internet URL: http://jpldataeval.jpl.nasa.gov/
Zhao, Xuefeng; Raghavan, Madhavan L; Lu, Jia
2011-05-01
Knowledge of elastic properties of cerebral aneurysms is crucial for understanding the biomechanical behavior of the lesion. However, characterizing tissue properties using in vivo motion data presents a tremendous challenge. Aside from the limitation of data accuracy, a pressing issue is that the in vivo motion does not expose the stress-free geometry. This is compounded by the nonlinearity, anisotropy, and heterogeneity of the tissue behavior. This article introduces a method for identifying the heterogeneous properties of aneurysm wall tissue under unknown stress-free configuration. In the proposed approach, an accessible configuration is taken as the reference; the unknown stress-free configuration is represented locally by a metric tensor describing the prestrain from the stress-free configuration to the reference configuration. Material parameters are identified together with the metric tensor pointwisely. The paradigm is tested numerically using a forward-inverse analysis loop. An image-derived sac is considered. The aneurysm tissue is modeled as an eightply laminate whose constitutive behavior is described by an anisotropic hyperelastic strain-energy function containing four material parameters. The parameters are assumed to vary continuously in two assigned patterns to represent two types of material heterogeneity. Nine configurations between the diastolic and systolic pressures are generated by forward quasi-static finite element analyses. These configurations are fed to the inverse analysis to delineate the material parameters and the metric tensor. The recovered and the assigned distributions are in good agreement. A forward verification is conducted by comparing the displacement solutions obtained from the recovered and the assigned material parameters at a different pressure. The nodal displacements are found in excellent agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duraes, L.; Portugal, A.; Plaksin, I.
2009-12-28
In this work, the radial combustion in thin circular samples of stoichiometric and over aluminized Fe{sub 2}O{sub 3}/Al mixtures is studied. Two confinement materials are tested: stainless steel and PVC. The combustion front profiles are registered by digital video-crono-photography. The radial geometry allows an easy detection of sample heterogeneities, via the circularity distortions of the combustion front profiles. The influence of the Al content in the mixtures and the type of confinement on the combustion propagation dynamics is analyzed. Additionally, an asymmetry parameter of the combustion front profiles is defined and statistically treated via ANOVA. Although the type of confinementmore » contributes more than the mixture composition to the variability of the asymmetry parameter, they both have a weak influence. The main source of variability is the intrinsic variations of the samples, which are due to their heterogeneous character.« less
Heterogeneity of allocation promotes cooperation in public goods games
NASA Astrophysics Data System (ADS)
Lei, Chuang; Wu, Te; Jia, Jian-Yuan; Cong, Rui; Wang, Long
2010-11-01
We investigate the effects of heterogeneous investment and distribution on the evolution of cooperation in the context of the public goods games. To do this, we develop a simple model in which each individual allocates differing funds to his direct neighbors based upon their difference in connectivity, because of the heterogeneity of real social ties. This difference is characterized by the weight of the link between paired individuals, with an adjustable parameter precisely controlling the heterogeneous level of ties. By numerical simulations, it is found that allocating both too much and too little funds to diverse neighbors can remarkably improve the cooperation level. However, there exists a worst mode of funds allocation leading to the most unfavorable cooperation induced by the moderate values of the parameter. In order to better reveal the potential causes behind these nontrivial phenomena we probe the microscopic characteristics including the average payoff and the cooperator density for individuals of different degrees. It demonstrates rather different dynamical behaviors between the modes of these two types of cooperation promoter. Besides, we also investigate the total link weights of individuals numerically and theoretically for negative values of the parameter, and conclude that the payoff magnitude of middle-degree nodes plays a crucial role in determining the cooperators’ fate.
Singer, Adam D; Pattany, Pradip M; Fayad, Laura M; Tresley, Jonathan; Subhawong, Ty K
2016-01-01
Determine interobserver concordance of semiautomated three-dimensional volumetric and two-dimensional manual measurements of apparent diffusion coefficient (ADC) values in soft tissue masses (STMs) and explore standard deviation (SD) as a measure of tumor ADC heterogeneity. Concordance correlation coefficients for mean ADC increased with more extensive sampling. Agreement on the SD of tumor ADC values was better for large regions of interest and multislice methods. Correlation between mean and SD ADC was low, suggesting that these parameters are relatively independent. Mean ADC of STMs can be determined by volumetric quantification with high interobserver agreement. STM heterogeneity merits further investigation as a potential imaging biomarker that complements other functional magnetic resonance imaging parameters. Copyright © 2016 Elsevier Inc. All rights reserved.
Sources and Sinks: A Stochastic Model of Evolution in Heterogeneous Environments
NASA Astrophysics Data System (ADS)
Hermsen, Rutger; Hwa, Terence
2010-12-01
We study evolution driven by spatial heterogeneity in a stochastic model of source-sink ecologies. A sink is a habitat where mortality exceeds reproduction so that a local population persists only due to immigration from a source. Immigrants can, however, adapt to conditions in the sink by mutation. To characterize the adaptation rate, we derive expressions for the first arrival time of adapted mutants. The joint effects of migration, mutation, birth, and death result in two distinct parameter regimes. These results may pertain to the rapid evolution of drug-resistant pathogens and insects.
Rate decline curves analysis of multiple-fractured horizontal wells in heterogeneous reservoirs
NASA Astrophysics Data System (ADS)
Wang, Jiahang; Wang, Xiaodong; Dong, Wenxiu
2017-10-01
In heterogeneous reservoir with multiple-fractured horizontal wells (MFHWs), due to the high density network of artificial hydraulic fractures, the fluid flow around fracture tips behaves like non-linear flow. Moreover, the production behaviors of different artificial hydraulic fractures are also different. A rigorous semi-analytical model for MFHWs in heterogeneous reservoirs is presented by combining source function with boundary element method. The model are first validated by both analytical model and simulation model. Then new Blasingame type curves are established. Finally, the effects of critical parameters on the rate decline characteristics of MFHWs are discussed. The results show that heterogeneity has significant influence on the rate decline characteristics of MFHWs; the parameters related to the MFHWs, such as fracture conductivity and length also can affect the rate characteristics of MFHWs. One novelty of this model is to consider the elliptical flow around artificial hydraulic fracture tips. Therefore, our model can be used to predict rate performance more accurately for MFHWs in heterogeneous reservoir. The other novelty is the ability to model the different production behavior at different fracture stages. Compared to numerical and analytic methods, this model can not only reduce extensive computing processing but also show high accuracy.
Seismic Modeling Of Reservoir Heterogeneity Scales: An Application To Gas Hydrate Reservoirs
NASA Astrophysics Data System (ADS)
Huang, J.; Bellefleur, G.; Milkereit, B.
2008-12-01
Natural gas hydrates, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The occurrence of gas hydrates in permafrost regions has been confirmed by core samples recovered from the Mallik gas hydrate research wells located within Mackenzie Delta in Northwest Territories of Canada. Strong vertical variations of compressional and shear sonic velocities and weak surface seismic expressions of gas hydrates indicate that lithological heterogeneities control the distribution of hydrates. Seismic scattering studies predict that typical scales and strong physical contrasts due to gas hydrate concentration will generate strong forward scattering, leaving only weak energy captured by surface receivers. In order to understand the distribution of hydrates and the seismic scattering effects, an algorithm was developed to construct heterogeneous petrophysical reservoir models. The algorithm was based on well logs showing power law features and Gaussian or Non-Gaussian probability density distribution, and was designed to honor the whole statistical features of well logs such as the characteristic scales and the correlation among rock parameters. Multi-dimensional and multi-variable heterogeneous models representing the same statistical properties were constructed and applied to the heterogeneity analysis of gas hydrate reservoirs. The petrophysical models provide the platform to estimate rock physics properties as well as to study the impact of seismic scattering, wave mode conversion, and their integration on wave behavior in heterogeneous reservoirs. Using the Biot-Gassmann theory, the statistical parameters obtained from Mallik 5L-38, and the correlation length estimated from acoustic impedance inversion, gas hydrate volume fraction in Mallik area was estimated to be 1.8%, approximately 2x108 m3 natural gas stored in a hydrate bearing interval within 0.25 km2 lateral extension and between 889 m and 1115 m depth. With parallel 3-D viscoelastic Finite Difference (FD) software, we conducted a 3D numerical experiment of near offset Vertical Seismic Profile. The synthetic results implied that the strong attenuation observed in the field data might be caused by the scattering.
On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo
NASA Astrophysics Data System (ADS)
Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl
2016-09-01
A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.
Krajewski, C; Fain, M G; Buckley, L; King, D G
1999-11-01
ki ctes over whether molecular sequence data should be partitioned for phylogenetic analysis often confound two types of heterogeneity among partitions. We distinguish historical heterogeneity (i.e., different partitions have different evolutionary relationships) from dynamic heterogeneity (i.e., different partitions show different patterns of sequence evolution) and explore the impact of the latter on phylogenetic accuracy and precision with a two-gene, mitochondrial data set for cranes. The well-established phylogeny of cranes allows us to contrast tree-based estimates of relevant parameter values with estimates based on pairwise comparisons and to ascertain the effects of incorporating different amounts of process information into phylogenetic estimates. We show that codon positions in the cytochrome b and NADH dehydrogenase subunit 6 genes are dynamically heterogenous under both Poisson and invariable-sites + gamma-rates versions of the F84 model and that heterogeneity includes variation in base composition and transition bias as well as substitution rate. Estimates of transition-bias and relative-rate parameters from pairwise sequence comparisons were comparable to those obtained as tree-based maximum likelihood estimates. Neither rate-category nor mixed-model partitioning strategies resulted in a loss of phylogenetic precision relative to unpartitioned analyses. We suggest that weighted-average distances provide a computationally feasible alternative to direct maximum likelihood estimates of phylogeny for mixed-model analyses of large, dynamically heterogenous data sets. Copyright 1999 Academic Press.
Can we model solute transfer in heterogeneous soils with MIM model?
NASA Astrophysics Data System (ADS)
Ben Slimene, Erij; Lassabatere, Laurent; Winiarski, Thierry; Gourdon, Remy
2017-04-01
The fate of pollutants in the vadose zone must be understood, in particular, underneath infiltration basins for an optimum management of these plants. Stormwaters carry pollutants (heavy metals, organics, emerging pollutant like nanoparticles, etc.) and thus constitute a risk for groundwater and soil quality. Most infiltration basins are settled over highly permeable soils that exhibit a strong lithological heterogeneity. The impact of such lithological heterogeneity on flow and solute transfer has already been questioned. Previous studies have already proved that lithological heterogeneity was prone to the establishment of preferential flows. In more details, the concomitance of several materials with contrasting hydraulic properties induces funneled flow at the interfaces between less permeable and more permeable lithofacies. Solutes are then carried by water fluxes quickly along preferential flow pathways and have restricted access to zones far from these pathways. It can clearly be imagined that such pattern could be modeled by a MIM model postulating water fraction into two fractions, one mobile and the other immobile, with solute transport by convection and dispersion in mobile water fraction and solute diffusion at the interface between mobile and immobile water fractions. The application of MIM approach to the case of solute transport in strongly heterogeneous soils may be quite advantageous: simplification of the problem, fewer parameters, ease of modeling, numerical computation, gain in computation time, etc. However, such consistency has never been investigated in details. In this paper, we focus on the possibility to model solute transport in a strongly heterogeneous deposit using MIM model. The deposit has been the subject of intensive campaigns of characterization of its lithology and the hydraulic and hydrodispersive properties of its lithofacies. Numerical computations were performed for a section of deposit 13.5 m wide and 2.5 m deep. Numerical results clearly showed the establishment of preferential flows with funneling mostly under unsaturated conditions. Solute elution at 2.5 m depth was characterized and discussed as a function of solute reactivity. Solutes breakthrough curves show clear evidence of MIM like pattern. In this paper, we clearly demonstrate that MIM model accurately reproduces solute elution at 2.5m depths but also at different depths. MIM approach accuracy is ensured provided that related parameters are optimized as a function of depth, hydric and hydraulic conditions and the contrast in hydraulic parameters of the lithofacies that constitute the deposit.
NASA Data Evaluation (2015): Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies
NASA Astrophysics Data System (ADS)
Burkholder, J. B.; Sander, S. P.; Abbatt, J.; Barker, J. R.; Huie, R. E.; Kolb, C. E., Jr.; Kurylo, M. J., III; Orkin, V. L.; Wilmouth, D. M.; Wine, P. H.
2015-12-01
Atmospheric chemistry models must include a large number of processes to accurately describe the temporal and spatial behavior of atmospheric composition. They require a wide range of chemical and physical data (parameters) that describe elementary gas-phase and heterogeneous processes. The review and evaluation of chemical and physical data has, therefore, played an important role in the development of chemical models and in their use in environmental assessment activities. The NASA data panel evaluation has a broad atmospheric focus that includes Ox, O(1D), singlet O2, HOx, NOx, Organic, FOx, ClOx, BrOx, IOx, SOx, and Na reactions, three-body reactions, equilibrium constants, photochemistry, Henry's Law coefficients, aqueous chemistry, heterogeneous chemistry and processes, and thermodynamic parameters. The 2015 evaluation includes critical coverage of ~700 bimolecular reactions, 86 three-body reactions, 33 equilibrium constants, ~220 photochemical species, ~360 aqueous and heterogeneous processes, and thermodynamic parameters for ~800 species with over 5000 literature citations reviewed. Each evaluation includes (1) recommended values (e.g. rate coefficients, absorption cross sections, solubilities, and uptake coefficients) with estimated uncertainty factors and (2) a note describing the available experimental and theoretical data and an explanation for the recommendation. This presentation highlights some of the recent additions to the evaluation that include: (1) expansion of thermochemical parameters, including Hg species, (2) CH2OO (Criegee) chemistry, (3) Isoprene and its major degradation product chemistry, (4) halocarbon chemistry, (5) Henry's law solubility data, and (6) uptake coefficients. In addition, a listing of complete references with the evaluation notes has been implemented. Users of the data evaluation are encouraged to suggest potential improvements and ways that the evaluation can better serve the atmospheric chemistry community.
NASA Technical Reports Server (NTRS)
Molina, Mario J.
2001-01-01
The objective of this study is to conduct measurements of chemical kinetics parameters for reactions of importance in the stratosphere and upper troposphere, and to study the interaction of trace gases such as HCl with ice surfaces in order to elucidate the mechanism of heterogeneous chlorine activation processes, using both a theoretical and an experimental approach. The measurements will be carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere. The techniques to be employed include turbulent flow - chemical ionization mass spectrometry, and optical ellipsometry. The next section summarizes our research activities during the second year of the project, and the section that follows consists of the statement of work for the third year.
Precomputing upscaled hydraulic conductivity for complex geological structures
NASA Astrophysics Data System (ADS)
Mariethoz, G.; Jha, S. K.; George, M.; Maheswarajah, S.; John, V.; De Re, D.; Smith, M.
2013-12-01
3D geological models are built to capture the geological heterogeneity at a fine scale. However groundwater modellers are often interested in the hydraulic conductivity (K) values at a much coarser scale to reduce the numerical burden. Upscaling is used to assign conductivity to large volumes, which necessarily causes a loss of information. Recent literature has shown that the connectivity in the channelized structures is an important feature that needs to be taken into account for accurate upscaling. In this work we study the effect of channel parameters, e.g. width, sinuosity, connectivity etc. on the upscaled values of the hydraulic conductivity and the associated uncertainty. We devise a methodology that derives correspondences between a lithological description and the equivalent hydraulic conductivity at a larger scale. The method uses multiple-point geostatistics simulations (MPS) and parameterizes the 3D structures by introducing continuous rotation and affinity parameters. Additional statistical characterization is obtained by transition probabilities and connectivity measures. Equivalent hydraulic conductivity is then estimated by solving a flow problem for the entire heterogeneous domain by applying steady state flow in horizontal and vertical directions. This is systematically performed for many random realisations of the small scale structures to enable a probability distribution for the equivalent upscaled hydraulic conductivity. This process allows deriving systematic relationships between a given depositional environment and precomputed equivalent parameters. A modeller can then exploit the prior knowledge of the depositional environment and expected geological heterogeneity to bypass the step of generating small-scale models, and directly work with upscaled values.
In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models.
Liu, Junting; Wang, Yabin; Qu, Xiaochao; Li, Xiangsi; Ma, Xiaopeng; Han, Runqiang; Hu, Zhenhua; Chen, Xueli; Sun, Dongdong; Zhang, Rongqing; Chen, Duofang; Chen, Dan; Chen, Xiaoyuan; Liang, Jimin; Cao, Feng; Tian, Jie
2010-06-07
Bioluminescence tomography (BLT) is a new optical molecular imaging modality, which can monitor both physiological and pathological processes by using bioluminescent light-emitting probes in small living animal. Especially, this technology possesses great potential in drug development, early detection, and therapy monitoring in preclinical settings. In the present study, we developed a dual modality BLT prototype system with Micro-computed tomography (MicroCT) registration approach, and improved the quantitative reconstruction algorithm based on adaptive hp finite element method (hp-FEM). Detailed comparisons of source reconstruction between the heterogeneous and homogeneous mouse models were performed. The models include mice with implanted luminescence source and tumor-bearing mice with firefly luciferase report gene. Our data suggest that the reconstruction based on heterogeneous mouse model is more accurate in localization and quantification than the homogeneous mouse model with appropriate optical parameters and that BLT allows super-early tumor detection in vivo based on tomographic reconstruction of heterogeneous mouse model signal.
NASA Astrophysics Data System (ADS)
Cusimano, N.; Gerardo-Giorda, L.
2018-06-01
Classical models of electrophysiology do not typically account for the effects of high structural heterogeneity in the spatio-temporal description of excitation waves propagation. We consider a modification of the Monodomain model obtained by replacing the diffusive term of the classical formulation with a fractional power of the operator, defined in the spectral sense. The resulting nonlocal model describes different levels of tissue heterogeneity as the fractional exponent is varied. The numerical method for the solution of the fractional Monodomain relies on an integral representation of the nonlocal operator combined with a finite element discretisation in space, allowing to handle in a natural way bounded domains in more than one spatial dimension. Numerical tests in two spatial dimensions illustrate the features of the model. Activation times, action potential duration and its dispersion throughout the domain are studied as a function of the fractional parameter: the expected peculiar behaviour driven by tissue heterogeneities is recovered.
NASA Astrophysics Data System (ADS)
Kurtz, W.; Hendricks Franssen, H.-J.; Brunner, P.; Vereecken, H.
2013-10-01
River-aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river-aquifer exchange fluxes tend to be strongly spatially variable, and it is an open research question to which degree river bed heterogeneity has to be represented in a model in order to achieve reliable estimates of river-aquifer exchange fluxes. This research question is addressed in this paper with the help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland), where river-aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated-saturated subsurface hydrological flow problem including river-aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L) are perfectly known. Hydraulic head data (100 in the default scenario) are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with the help of the ensemble Kalman filter (EnKF). For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high-resolution L fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher-resolution L fields (i.e. fully heterogeneous or 5 zones) gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream-aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high-resolution characterization of L fields with EnKF is still feasible. For less heterogeneous river bed hydraulic conductivities, a high-resolution characterization of L is less important. When uncertainties in the hydraulic parameters of the aquifer are also regarded in the assimilation, the errors in state and flux predictions increase, but the ensemble with a high spatial resolution for L still outperforms the ensembles with effective L values. We conclude that for strongly heterogeneous river beds the commonly applied simplified representation of the streambed, with spatially homogeneous parameters or constant parameters for a few zones, might yield significant biases in the characterization of the water balance. For strongly heterogeneous river beds, we suggest adopting a stochastic field approach to model the spatially heterogeneous river beds geostatistically. The paper illustrates that EnKF is able to calibrate such heterogeneous streambeds on the basis of hydraulic head measurements, outperforming zonation approaches.
Olah, Emoke; Poto, Laszlo; Hegyi, Peter; Szabo, Imre; Hartmann, Petra; Solymar, Margit; Petervari, Erika; Balasko, Marta; Habon, Tamas; Rumbus, Zoltan; Tenk, Judit; Rostas, Ildiko; Weinberg, Jordan; Romanovsky, Andrej A; Garami, Andras
2018-04-21
Therapeutic hypothermia was investigated repeatedly as a tool to improve the outcome of severe traumatic brain injury (TBI), but previous clinical trials and meta-analyses found contradictory results. We aimed to determine the effectiveness of therapeutic whole-body hypothermia on the mortality of adult patients with severe TBI by using a novel approach of meta-analysis. We searched the PubMed, EMBASE, and Cochrane Library databases from inception to February 2017. The identified human studies were evaluated regarding statistical, clinical, and methodological designs to ensure inter-study homogeneity. We extracted data on TBI severity, body temperature, mortality, and cooling parameters; then we calculated the cooling index, an integrated measure of therapeutic hypothermia. Forest plot of all identified studies showed no difference in the outcome of TBI between cooled and not cooled patients, but inter-study heterogeneity was high. On the contrary, by meta-analysis of RCTs which were homogenous with regards to statistical, clinical designs and precisely reported the cooling protocol, we showed decreased odds ratio for mortality in therapeutic hypothermia compared to no cooling. As independent factors, milder and longer cooling, and rewarming at < 0.25°C/h were associated with better outcome. Therapeutic hypothermia was beneficial only if the cooling index (measure of combination of cooling parameters) was sufficiently high. We conclude that high methodological and statistical inter-study heterogeneity could underlie the contradictory results obtained in previous studies. By analyzing methodologically homogenous studies, we show that cooling improves the outcome of severe TBI and this beneficial effect depends on certain cooling parameters and on their integrated measure, the cooling index.
Zhu, Jiahua; Penfold, Scott N
2016-06-01
Correct modelling of the interaction parameters of patient tissues is of vital importance in proton therapy treatment planning because of the large dose gradients associated with the Bragg peak. Different 3D imaging techniques yield different information regarding these interaction parameters. Given the rapidly expanding interest in proton therapy, this review is written to make readers aware of the current challenges in accounting for tissue heterogeneities and the imaging systems that are proposed to tackle these challenges. A summary of the interaction parameters of interest in proton therapy and the current and developmental 3D imaging techniques used in proton therapy treatment planning is given. The different methods to translate the imaging data to the interaction parameters of interest are reviewed and a summary of the implementations in several commercial treatment planning systems is presented.
NASA Astrophysics Data System (ADS)
Pakzad, R.; Wang, S. Y.; Sloan, S. W.
2018-04-01
In this study, an elastic-brittle-damage constitutive model was incorporated into the coupled fluid/solid analysis of ABAQUS to iteratively calculate the equilibrium effective stress of Biot's theory of consolidation. The Young's modulus, strength and permeability parameter of the material were randomly assigned to the representative volume elements of finite element models following the Weibull distribution function. The hydraulic conductivity of elements was associated with their hydrostatic effective stress and damage level. The steady-state permeability test results for sandstone specimens under different triaxial loading conditions were reproduced by employing the same set of material parameters in coupled transient flow/stress analyses of plane-strain models, thereby indicating the reliability of the numerical model. The influence of heterogeneity on the failure response and the absolute permeability was investigated, and the post-peak permeability was found to decrease with the heterogeneity level in the coupled analysis with transient flow. The proposed model was applied to the plane-strain simulation of the fluid pressurization of a cavity within a large-scale block under different conditions. Regardless of the heterogeneity level, the hydraulically driven fractures propagated perpendicular to the minimum principal far-field stress direction for high-permeability models under anisotropic far-field stress conditions. Scattered damage elements appeared in the models with higher degrees of heterogeneity. The partially saturated areas around propagating fractures were simulated by relating the saturation degree to the negative pore pressure in low-permeability blocks under high pressure. By replicating previously reported trends in the fracture initiation and breakdown pressure for different pressurization rates and hydraulic conductivities, the results showed that the proposed model for hydraulic fracture problems is reliable for a wide range of pressurization rates and permeability conditions.
NASA Astrophysics Data System (ADS)
Wetzel, Peter J.; Boone, Aaron
1995-07-01
This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and underlying heterogeneous land surfaces. In its development, particular attention has been given to three of the model's subprocesses: the prediction of boundary layer cloud amount, the treatment of surface and soil subgrid heterogeneity, and the liquid water budget. The model includes a three-parameter nonprecipitating cumulus model that feeds back to the surface and boundary layer through radiative effects. Surface heterogeneity in the PLACE model is treated both statistically and by resolving explicit subgrid patches. The model maintains a vertical column of liquid water that is divided into seven reservoirs, from the surface interception store down to bedrock.Five single-day demonstration cases are presented, in which the PLACE model was initialized, run, and compared to field observations from four diverse sites. The model is shown to predict cloud amount well in these while predicting the surface fluxes with similar accuracy. A slight tendency to underpredict boundary layer depth is noted in all cases.Sensitivity tests were also run using anemometer-level forcing provided by the Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS). The purpose is to demonstrate the relative impact of heterogeneity of surface parameters on the predicted annual mean surface fluxes. Significant sensitivity to subgrid variability of certain parameters is demonstrated, particularly to parameters related to soil moisture. A major result is that the PLACE-computed impact of total (homogeneous) deforestation of a rain forest is comparable in magnitude to the effect of imposing heterogeneity of certain surface variables, and is similarly comparable to the overall variance among the other PILPS participant models. Were this result to be bourne out by further analysis, it would suggest that today's average land surface parameterization has little credibility when applied to discriminating the local impacts of any plausible future climate change.
NASA Astrophysics Data System (ADS)
Emoto, K.; Saito, T.; Shiomi, K.
2017-12-01
Short-period (<1 s) seismograms are strongly affected by small-scale (<10 km) heterogeneities in the lithosphere. In general, short-period seismograms are analysed based on the statistical method by considering the interaction between seismic waves and randomly distributed small-scale heterogeneities. Statistical properties of the random heterogeneities have been estimated by analysing short-period seismograms. However, generally, the small-scale random heterogeneity is not taken into account for the modelling of long-period (>2 s) seismograms. We found that the energy of the coda of long-period seismograms shows a spatially flat distribution. This phenomenon is well known in short-period seismograms and results from the scattering by small-scale heterogeneities. We estimate the statistical parameters that characterize the small-scale random heterogeneity by modelling the spatiotemporal energy distribution of long-period seismograms. We analyse three moderate-size earthquakes that occurred in southwest Japan. We calculate the spatial distribution of the energy density recorded by a dense seismograph network in Japan at the period bands of 8-16 s, 4-8 s and 2-4 s and model them by using 3-D finite difference (FD) simulations. Compared to conventional methods based on statistical theories, we can calculate more realistic synthetics by using the FD simulation. It is not necessary to assume a uniform background velocity, body or surface waves and scattering properties considered in general scattering theories. By taking the ratio of the energy of the coda area to that of the entire area, we can separately estimate the scattering and the intrinsic absorption effects. Our result reveals the spectrum of the random inhomogeneity in a wide wavenumber range including the intensity around the corner wavenumber as P(m) = 8πε2a3/(1 + a2m2)2, where ε = 0.05 and a = 3.1 km, even though past studies analysing higher-frequency records could not detect the corner. Finally, we estimate the intrinsic attenuation by modelling the decay rate of the energy. The method proposed in this study is suitable for quantifying the statistical properties of long-wavelength subsurface random inhomogeneity, which leads the way to characterizing a wider wavenumber range of spectra, including the corner wavenumber.
Ashikaga, Hiroshi; Leclercq, Christophe; Wang, Jiangxia; Kass, David A.; McVeigh, Elliot R.
2010-01-01
Background Earlier studies have yielded conflicting evidence on whether or not cardiac resynchronization therapy (CRT) improves left ventricular (LV) rotation mechanics. Methods and Results In dogs with left bundle branch block and pacing-induced heart failure (n=7), we studied the effects of CRT on LV rotation mechanics in vivo by 3-dimensional tagged magnetic resonance imaging with a temporal resolution of 14 ms. CRT significantly improved hemodynamic parameters but did not significantly change the LV rotation or rotation rate. LV torsion, defined as LV rotation of each slice with respect to that of the most basal slice, was not significantly changed by CRT. CRT did not significantly change the LV torsion rate. There was no significant circumferential regional heterogeneity (anterior, lateral, inferior, and septal) in LV rotation mechanics in either left bundle branch block with pacing-induced heart failure or CRT, but there was significant apex-to-base regional heterogeneity. Conclusions CRT acutely improves hemodynamic parameters without improving LV rotation mechanics. There is no significant circumferential regional heterogeneity of LV rotation mechanics in the mechanically dyssynchronous heart. These results suggest that LV rotation mechanics is an index of global LV function, which requires coordination of all regions of the left ventricle, and improvement in LV rotation mechanics appears to be a specific but insensitive index of acute hemodynamic response to CRT. PMID:20478988
Zare Sakhvidi, Mohammad Javad; Hajaghazadeh, Mohammad; Mostaghaci, Mehrdad; Mehrparvar, Amir Houshang; Zare Sakhvidi, Fariba; Naghshineh, Elham
2016-01-01
Unintended occupational exposure to antineoplastic drugs (ANDs) may occur in medical personnel. Some ANDs are known human carcinogens and exposure can be monitored by genotoxic biomarkers. To evaluate the obstacles to obtaining conclusive results from a comet assay test to determine DNA damage among AND exposed healthcare workers. We systematically reviewed studies that used alkaline comet assay to determine the magnitude and significance of DNA damage among health care workers with potential AND exposure. Fifteen studies were eligible for review and 14 studies were used in the meta-analysis. Under random effect assumption, the estimated standardized mean difference (SMD) in the DNA damage of health care workers was 1.93 (95% CI: 1.15-2.71, p < 0.0001). The resulting SMD was reduced to 1.756 (95% CI: 0.992-2.52, p < 0.0001) when the analysis only included nurses. In subgroup analyses based on gender and smoking, heterogeneity was observed. Only for studies reporting comet moment, I2 test results, as a measure of heterogeneity, dropped to zero. Heterogeneity analysis showed that date of study publication was a possible source of heterogeneity (B = -0.14; p < 0.0001). A mixture of personal parameters, comet assay methodological variables, and exposure characteristics may be responsible for heterogenic data from comet assay studies and interfere with obtaining conclusive results. Lack of quantitative environmental exposure measures and variation in comet assay protocols across studies are important obstacles in generalization of results.
Paño, Blanca; Macías, Napoleon; Salvador, Rafael; Torres, Ferran; Buñesch, Laura; Sebastià, Carmen; Nicolau, Carlos
2016-04-01
The objective of our study was to identify the most useful parameters to differentiate between renal cell carcinoma (RCC) and oncocytoma using four-phase CT. Ninety-seven patients with solid renal lesions who underwent surgery with four-phase preoperative CT evaluation and with pathologic diagnosis of RCC or oncocytoma were included in the study. Features of tumors and the enhancement pattern in the four CT phases were evaluated and analyzed. Logistic regression models were used to assess independent predictors for malignancy. Histopathologically, 13 tumors were oncocytomas and 84 were RCCs. RCCs were larger (6.20 cm vs 3.21 cm, p = 0.0004) and more often enhanced heterogeneously (66 vs 6, p = 0.02). Lesions that were larger than 4 cm showed a significantly higher risk of malignancy (p = 0.0046). Significant differences were found in intensity of nodule enhancement between the nephrographic and the excretory phases with respect to the unenhanced phase (p = 0.003 and p = 0.0026). At multivariate analysis, parameters that were independent predictors of malignancy were enhancement pattern, with RCCs more often having heterogeneous enhancement than oncocytomas (odds ratio [OR], 0.18; 95% CI, 0.04-0.90), and nodule enhancement in the excretory phase in relation to the unenhanced phase, with RCCs showing lower enhancement (OR, 0.93; 95% CI, 0.88-0.97), and a size larger than 4 cm (OR, 4.01; 95% CI, 0.70-23.14). The combination of different CT parameters including lesion size larger than 4 cm, lesion enhancement in the excretory phase in relation to the unenhanced phase, and heterogeneous enhancement pattern helps distinguish RCC from oncocytoma.
Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D
2010-10-01
Two different technical approaches based on advanced oxidation processes (AOPs), solar Fenton homogeneous photocatalysis (hv/Fe(2+)/H(2)O(2)) and heterogeneous photocatalysis with titanium dioxide (TiO(2)) suspensions were studied for the chemical degradation of the fluoroquinolone ofloxacin in secondary treated effluents. A bench-scale solar simulator in combination with an appropriate photochemical batch reactor was used to evaluate and select the optimal oxidation conditions of ofloxacin spiked in secondary treated domestic effluents. The concentration profile of the examined substrate during degradation was determined by UV/Vis spectrophotometry. Mineralization was monitored by measuring the dissolved organic carbon (DOC). The concentrations of Fe(2+) and H(2)O(2) were the key factors for the solar Fenton process, while the most important parameter of the heterogeneous photocatalysis was proved to be the catalyst loading. Kinetic analyses indicated that the photodegradation of ofloxacin can be described by a pseudo-first-order reaction. The rate constant (k) for the solar Fenton process was determined at different Fe(2+) and H(2)O(2) concentrations whereas the Langmuir-Hinshelwood (LH) kinetic expression was used to assess the kinetics of the heterogeneous photocatalytic process. The conversion of ofloxacin depends on several parameters based on the various experimental conditions, which were investigated. A Daphnia magna bioassay was used to evaluate the potential toxicity of the parent compound and its photo-oxidation by-products in different stages of oxidation. In the present study solar Fenton has been demonstrated to be more effective than the solar TiO(2) process, yielding complete degradation of the examined substrate and DOC reduction of about 50% in 30 min of the photocatalytic treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Xue, Ling; Scoglio, Caterina
2013-05-01
A wide range of infectious diseases are both vertically and horizontally transmitted. Such diseases are spatially transmitted via multiple species in heterogeneous environments, typically described by complex meta-population models. The reproduction number, R0, is a critical metric predicting whether the disease can invade the meta-population system. This paper presents the reproduction number for a generic disease vertically and horizontally transmitted among multiple species in heterogeneous networks, where nodes are locations, and links reflect outgoing or incoming movement flows. The metapopulation model for vertically and horizontally transmitted diseases is gradually formulated from two species, two-node network models. We derived an explicit expression of R0, which is the spectral radius of a matrix reduced in size with respect to the original next generation matrix. The reproduction number is shown to be a function of vertical and horizontal transmission parameters, and the lower bound is the reproduction number for horizontal transmission. As an application, the reproduction number and its bounds for the Rift Valley fever zoonosis, where livestock, mosquitoes, and humans are the involved species are derived. By computing the reproduction number for different scenarios through numerical simulations, we found the reproduction number is affected by livestock movement rates only when parameters are heterogeneous across nodes. To summarize, our study contributes the reproduction number for vertically and horizontally transmitted diseases in heterogeneous networks. This explicit expression is easily adaptable to specific infectious diseases, affording insights into disease evolution. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
Purpose: To explore 18F-FDG uptake heterogeneity of primary tumor and lymphoma tumor by texture features of PET image and quantify the heterogeneity difference between primary tumor and lymphoma tumor. Methods: 18 patients with primary tumor and lymphoma tumor in lung cancer were enrolled. All patients underwent whole-body 18F-FDG PET/CT scans before treatment. Texture features, based on Gray-level Co-occurrence Matrix, second and high order matrices are extracted from code using MATLAB software to quantify 18F-FDG uptake heterogeneity. The relationships of volume between energy, entropy, correlation, homogeneity and contrast were analyzed. Results: For different cases, tumor heterogeneity was not the same. Texturemore » parameters (contrast, entropy, and correlation) of lymphoma were lower than primary tumor. On the contrast, the texture parameters (energy, homogeneity and inverse different moment) of lymphoma were higher than primary tumor. Significantly, correlations were observed between volume and energy (primary, r=−0.194, p=0.441; lymphoma, r=−0.339, p=0.582), homogeneity (primary, r=−0.146, p=0.382; lymphoma, r=−0.193, p=0.44), inverse difference moment (primary, r=−0.14, p=0.374; lymphoma, r=−0.172, p=0.414) and a positive correlation between volume and entropy (primary, r=0.233, p=0.483; lymphoma, r=0.462, p=0.680), contrast (primary, r=0.159, p=0.399; lymphoma, r=0.341, p=0.584), correlation (primary, r=0.027, p=0.165; lymphoma, r=0.046, p=0.215). For the same patient, energy for primary and lymphoma tumor is equal. The volume of lymphoma is smaller than primary tumor, but the homogeneity were higher than primary tumor. Conclusion: This study showed that there were effective heterogeneity differences between primary and lymphoma tumor by FDG-PET image texture analysis.« less
Predicting Lg Coda Using Synthetic Seismograms and Media With Stochastic Heterogeneity
NASA Astrophysics Data System (ADS)
Tibuleac, I. M.; Stroujkova, A.; Bonner, J. L.; Mayeda, K.
2005-12-01
Recent examinations of the characteristics of coda-derived Sn and Lg spectra for yield estimation have shown that the spectral peak of Nevada Test Site (NTS) explosion spectra is depth-of-burial dependent, and that this peak is shifted to higher frequencies for Lop Nor explosions at the same depths. To confidently use coda-based yield formulas, we need to understand and predict coda spectral shape variations with depth, source media, velocity structure, topography, and geological heterogeneity. We present results of a coda modeling study to predict Lg coda. During the initial stages of this research, we have acquired and parameterized a deterministic 6 deg. x 6 deg. velocity and attenuation model centered on the Nevada Test Site. Near-source data are used to constrain density and attenuation profiles for the upper five km. The upper crust velocity profiles are quilted into a background velocity profile at depths greater than five km. The model is parameterized for use in a modified version of the Generalized Fourier Method in two dimensions (GFM2D). We modify this model to include stochastic heterogeneities of varying correlation lengths within the crust. Correlation length, Hurst number and fractional velocity perturbation of the heterogeneities are used to construct different realizations of the random media. We use nuclear explosion and earthquake cluster waveform analysis, as well as well log and geological information to constrain the stochastic parameters for a path between the NTS and the seismic stations near Mina, Nevada. Using multiple runs, we quantify the effects of variations in the stochastic parameters, of heterogeneity location in the crust and attenuation on coda amplitude and spectral characteristics. We calibrate these parameters by matching synthetic earthquake Lg coda envelopes to coda envelopes of local earthquakes with well-defined moments and mechanisms. We generate explosion synthetics for these calibrated deterministic and stochastic models. Secondary effects, including a compensated linear vector dipole source, are superposed on the synthetics in order to adequately characterize the Lg generation. We use this technique to characterize the effects of depth of burial on the coda spectral shapes.
NASA Astrophysics Data System (ADS)
Ha, S. W.; Lee, S. H.; Jeon, W. T.; Joo, Y. J.; Lee, K. K.
2014-12-01
Carbon dioxide (CO2) leakage into the shallow aquifer is one of the main concerns at a CO2 sequestration site. Various hydrogeochemical parameters have been suggested to determine the leakage (i.e., pH, EC, Alkalinity, Ca and δ13C). For the practical point of view, direct and continuous measurement of the dissolved CO2 concentration at the proper location can be the most useful strategy for the CO2 leakage detection in a shallow aquifer. In order to enhance possibility of identifying leaked CO2, monitoring location should be determined with regard to the shallow aquifer heterogeneity. In this study, a series of experiments were conducted to investigate the effects of heterogeneity on the dissolved CO2 concentrations. A 2-D sand tank of homogeneous medium sands including a single heterogeneity layer was designed. Two NDIR CO2 sensors, modified for continuous measuring in aquatic system, were installed above and below the single heterogeneous layer (clay, fine and medium sand lenses). Also, temperature and water contents were measured continuously at a same position. Bromocresol purple which is one of the acid-base indicator was used to visualize CO2 migration. During the gas phase CO2 injection at the bottom of the sand tank, dissolved CO2 in the water is continuously measured. In the results, significant differences of concentrations were observed due to the presence of heterogeneity layer, even the locations were close. These results suggested that monitoring location should be determined considering vertical heterogeneity of shallow aquifer at a CO2 leakage site.
Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.
2010-01-01
Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.
NASA Astrophysics Data System (ADS)
Zapata Norberto, B.; Morales-Casique, E.; Herrera, G. S.
2017-12-01
Severe land subsidence due to groundwater extraction may occur in multiaquifer systems where highly compressible aquitards are present. The highly compressible nature of the aquitards leads to nonlinear consolidation where the groundwater flow parameters are stress-dependent. The case is further complicated by the heterogeneity of the hydrogeologic and geotechnical properties of the aquitards. We explore the effect of realistic vertical heterogeneity of hydrogeologic and geotechnical parameters on the consolidation of highly compressible aquitards by means of 1-D Monte Carlo numerical simulations. 2000 realizations are generated for each of the following parameters: hydraulic conductivity (K), compression index (Cc) and void ratio (e). The correlation structure, the mean and the variance for each parameter were obtained from a literature review about field studies in the lacustrine sediments of Mexico City. The results indicate that among the parameters considered, random K has the largest effect on the ensemble average behavior of the system. Random K leads to the largest variance (and therefore largest uncertainty) of total settlement, groundwater flux and time to reach steady state conditions. We further propose a data assimilation scheme by means of ensemble Kalman filter to estimate the ensemble mean distribution of K, pore-pressure and total settlement. We consider the case where pore-pressure measurements are available at given time intervals. We test our approach by generating a 1-D realization of K with exponential spatial correlation, and solving the nonlinear flow and consolidation problem. These results are taken as our "true" solution. We take pore-pressure "measurements" at different times from this "true" solution. The ensemble Kalman filter method is then employed to estimate ensemble mean distribution of K, pore-pressure and total settlement based on the sequential assimilation of these pore-pressure measurements. The ensemble-mean estimates from this procedure closely approximate those from the "true" solution. This procedure can be easily extended to other random variables such as compression index and void ratio.
NASA Astrophysics Data System (ADS)
Wei, T. B.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.
2016-12-01
In the groundwater study, it estimated the heterogeneous spatial distribution of hydraulic Properties, there were many scholars use to hydraulic tomography (HT) from field site pumping tests to estimate inverse of heterogeneous spatial distribution of hydraulic Properties, to prove the most of most field site aquifer was heterogeneous hydrogeological parameters spatial distribution field. Many scholars had proposed a method of hydraulic tomography to estimate heterogeneous spatial distribution of hydraulic Properties of aquifer, the Huang et al. [2011] was used the non-redundant verification analysis of pumping wells changed, observation wells fixed on the inverse and the forward, to reflect the feasibility of the heterogeneous spatial distribution of hydraulic Properties of field site aquifer of the non-redundant verification analysis on steady-state model.From post literature, finding only in steady state, non-redundant verification analysis of pumping well changed location and observation wells fixed location for inverse and forward. But the studies had not yet pumping wells fixed or changed location, and observation wells fixed location for redundant verification or observation wells change location for non-redundant verification of the various combinations may to explore of influences of hydraulic tomography method. In this study, it carried out redundant verification method and non-redundant verification method for forward to influences of hydraulic tomography method in transient. And it discuss above mentioned in NYUST campus sites the actual case, to prove the effectiveness of hydraulic tomography methods, and confirmed the feasibility on inverse and forward analysis from analysis results.Keywords: Hydraulic Tomography, Redundant Verification, Heterogeneous, Inverse, Forward
Front propagation in one-dimensional spatially periodic bistable media
NASA Astrophysics Data System (ADS)
Löber, Jakob; Bär, Markus; Engel, Harald
2012-12-01
Front propagation in heterogeneous bistable media is studied using the Schlögl model as a representative example. Spatially periodic modulations in the parameters of the bistable kinetics are taken into account perturbatively. Depending on the ratio L/l (L is the spatial period of the heterogeneity, l is the front width), appropriate singular perturbation techniques are applied to derive an ordinary differential equation for the position of the front in the presence of the heterogeneities. From this equation, the dependence of the average propagation speed on L/l as well as on the modulation amplitude is calculated. The analytical results obtained predict velocity overshoot, different cases of propagation failure, and the propagation speed for very large spatial periods in quantitative agreement with the results of direct numerical simulations of the underlying reaction-diffusion equation.
Heterogeneous reactions in aircraft gas turbine engines
NASA Astrophysics Data System (ADS)
Brown, R. C.; Miake-Lye, R. C.; Lukachko, S. P.; Waitz, I. A.
2002-05-01
One-dimensional flow models and unity probability heterogeneous rate parameters are used to estimate the maximum effect of heterogeneous reactions on trace species evolution in aircraft gas turbines. The analysis includes reactions on soot particulates and turbine/nozzle material surfaces. Results for a representative advanced subsonic engine indicate the net change in reactant mixing ratios due to heterogeneous reactions is <10-6 for O2, CO2, and H2O, and <10-10 for minor combustion products such as SO2 and NO2. The change in the mixing ratios relative to the initial values is <0.01%. Since these estimates are based on heterogeneous reaction probabilities of unity, the actual changes will be even lower. Thus, heterogeneous chemistry within the engine cannot explain the high conversion of SO2 to SO3 which some wake models require to explain the observed levels of volatile aerosols. Furthermore, turbine heterogeneous processes will not effect exhaust NOx or NOy levels.
Capturing Context-Related Change in Emotional Dynamics via Fixed Moderated Time Series Analysis.
Adolf, Janne K; Voelkle, Manuel C; Brose, Annette; Schmiedek, Florian
2017-01-01
Much of recent affect research relies on intensive longitudinal studies to assess daily emotional experiences. The resulting data are analyzed with dynamic models to capture regulatory processes involved in emotional functioning. Daily contexts, however, are commonly ignored. This may not only result in biased parameter estimates and wrong conclusions, but also ignores the opportunity to investigate contextual effects on emotional dynamics. With fixed moderated time series analysis, we present an approach that resolves this problem by estimating context-dependent change in dynamic parameters in single-subject time series models. The approach examines parameter changes of known shape and thus addresses the problem of observed intra-individual heterogeneity (e.g., changes in emotional dynamics due to observed changes in daily stress). In comparison to existing approaches to unobserved heterogeneity, model estimation is facilitated and different forms of change can readily be accommodated. We demonstrate the approach's viability given relatively short time series by means of a simulation study. In addition, we present an empirical application, targeting the joint dynamics of affect and stress and how these co-vary with daily events. We discuss potentials and limitations of the approach and close with an outlook on the broader implications for understanding emotional adaption and development.
Spatial Heterogeneity as a Genetic Mixing Mechanism in Highly Philopatric Colonial Seabirds
Cristofari, Robin; Trucchi, Emiliano; Whittington, Jason D.; Vigetta, Stéphanie; Gachot-Neveu, Hélène; Stenseth, Nils Christian; Le Maho, Yvon; Le Bohec, Céline
2015-01-01
How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the importance of understanding intra-colonial dispersal and genetic mixing mechanisms in order to better estimate species-wide gene flows and population dynamics. PMID:25680103
Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds.
Cristofari, Robin; Trucchi, Emiliano; Whittington, Jason D; Vigetta, Stéphanie; Gachot-Neveu, Hélène; Stenseth, Nils Christian; Le Maho, Yvon; Le Bohec, Céline
2015-01-01
How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the importance of understanding intra-colonial dispersal and genetic mixing mechanisms in order to better estimate species-wide gene flows and population dynamics.
A simplified model of precipitation enhancement over a heterogeneous surface
NASA Astrophysics Data System (ADS)
Cioni, Guido; Hohenegger, Cathy
2018-06-01
Soil moisture heterogeneities influence the onset of convection and subsequent evolution of precipitating systems through the triggering of mesoscale circulations. However, local evaporation also plays a role in determining precipitation amounts. Here we aim at disentangling the effect of advection and evaporation on precipitation over the course of a diurnal cycle by formulating a simple conceptual model. The derivation of the model is inspired by the results of simulations performed with a high-resolution (250 m) large eddy simulation model over a surface with varying degrees of heterogeneity. A key element of the conceptual model is the representation of precipitation as a weighted sum of advection and evaporation, each weighed by its own efficiency. The model is then used to isolate the main parameters that control precipitation variations over a spatially drier patch. It is found that these changes surprisingly do not depend on soil moisture itself but instead purely on parameters that describe the atmospheric initial state. The likelihood for enhanced precipitation over drier soils is discussed based on these parameters. Additional experiments are used to test the validity of the model.
Milchenko, Mikhail; Snyder, Abraham Z; LaMontagne, Pamela; Shimony, Joshua S; Benzinger, Tammie L; Fouke, Sarah Jost; Marcus, Daniel S
2016-07-01
Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.
NASA Astrophysics Data System (ADS)
Plampin, Michael R.; Lassen, Rune N.; Sakaki, Toshihiro; Porter, Mark L.; Pawar, Rajesh J.; Jensen, Karsten H.; Illangasekare, Tissa H.
2014-12-01
A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering.
Chan, Tommy C.Y.; Biswas, Sayantan; Yu, Marco; Jhanji, Vishal
2015-01-01
Abstract Swept-source optical coherence tomography (OCT) is the latest advancement in anterior segment imaging. There are limited data regarding its performance after laser in situ keratomileusis (LASIK). We compared the reliability of swept-source OCT and Scheimpflug imaging for evaluation of corneal parameters in refractive surgery candidates with myopia or myopic astigmatism. Three consecutive measurements were obtained preoperatively and 1 year postoperatively using swept-source OCT and Scheimpflug imaging. The study parameters included central corneal thickness (CCT), thinnest corneal thickness (TCT), keratometry at steep (Ks) and flat (Kf) axes, mean keratometry (Km), and, anterior and posterior best fit spheres (Ant and Post BFS). The main outcome measures included reliability of measurements before and after LASIK was evaluated using intraclass correlation coefficient (ICC) and reproducibility coefficients (RC). Association between the mean value of corneal parameters with age, spherical equivalent (SEQ), and residual bed thickness (RBT) and association of variance heterogeneity of corneal parameters and these covariates were analyzed. Twenty-six right eyes of 26 participants (mean age, 32.7 ± 6.9 yrs; mean SEQ, −6.27 ± 1.67 D) were included. Preoperatively, swept-source OCT demonstrated significantly higher ICC for Ks, CCT, TCT, and Post BFS (P ≤ 0.016), compared with Scheimpflug imaging. Swept-source OCT demonstrated significantly smaller RC values for CCT, TCT, and Post BFS (P ≤ 0.001). After LASIK, both devices had significant differences in measurements for all corneal parameters (P ≤ 0.015). Swept-source OCT demonstrated a significantly higher ICC and smaller RC for all measurements, compared with Scheimpflug imaging (P ≤ 0.001). Association of variance heterogeneity was only found in pre-LASIK Ant BFS and post-LASIK Post BFS for swept-source OCT, whereas significant association of variance heterogeneity was noted for all measurements except Ks and Km for Scheimpflug imaging. This study reported higher reliability of swept-source OCT for post-LASIK corneal measurements, as compared with Scheimpflug imaging. The reliability of corneal parameters measured with Scheimpflug imaging after LASIK was not consistent across different age, SEQ, and RBT measurements. These factors need to be considered during follow-up and evaluation of post-LASIK patients for further surgical procedures. PMID:26222852
Statistical Estimation of Heterogeneities: A New Frontier in Well Testing
NASA Astrophysics Data System (ADS)
Neuman, S. P.; Guadagnini, A.; Illman, W. A.; Riva, M.; Vesselinov, V. V.
2001-12-01
Well-testing methods have traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. Geostatistical inverse interpretation of cross-hole tests yields a smoothed but detailed "tomographic" image of how parameters actually vary in three-dimensional space, together with corresponding measures of estimation uncertainty. Moment solutions may soon allow one to interpret well tests in terms of statistical parameters such as the mean and variance of log permeability, its spatial autocorrelation and statistical anisotropy. The idea of geostatistical cross-hole tomography is illustrated through pneumatic injection tests conducted in unsaturated fractured tuff at the Apache Leap Research Site near Superior, Arizona. The idea of using moment equations to interpret well-tests statistically is illustrated through a recently developed three-dimensional solution for steady state flow to a well in a bounded, randomly heterogeneous, statistically anisotropic aquifer.
NASA Astrophysics Data System (ADS)
Thangjam, Guneshwar; Nathues, Andreas; Mengel, Kurt; Schäfer, Michael; Hoffmann, Martin; Cloutis, Edward A.; Mann, Paul; Müller, Christian; Platz, Thomas; Schäfer, Tanja
2016-03-01
We introduce an innovative three-dimensional spectral approach (three band parameter space with polyhedrons) that can be used for both qualitative and quantitative analyzes improving the characterization of surface compositional heterogeneity of (4) Vesta. It is an advanced and more robust methodology compared to the standard two-dimensional spectral approach (two band parameter space). The Dawn Framing Camera (FC) color data obtained during High Altitude Mapping Orbit (resolution ∼ 60 m/pixel) is used. The main focus is on the howardite-eucrite-diogenite (HED) lithologies containing carbonaceous chondritic material, olivine, and impact-melt. The archived spectra of HEDs and their mixtures, from RELAB, HOSERLab and USGS databases as well as our laboratory-measured spectra are used for this study. Three-dimensional convex polyhedrons are defined using computed band parameter values of laboratory spectra. Polyhedrons based on the parameters of Band Tilt (R0.92μm/R0.96μm), Mid Ratio ((R0.75μm/R0.83μm)/(R0.83μm/R0.92μm)) and reflectance at 0.55 μm (R0.55μm) are chosen for the present analysis. An algorithm in IDL programming language is employed to assign FC data points to the respective polyhedrons. The Arruntia region in the northern hemisphere of Vesta is selected for a case study because of its geological and mineralogical importance. We observe that this region is eucrite-dominated howarditic in composition. The extent of olivine-rich exposures within an area of 2.5 crater radii is ∼12% larger than the previous finding (Thangjam, G. et al. [2014]. Meteorit. Planet. Sci. 49, 1831-1850). Lithologies of nearly pure CM2-chondrite, olivine, glass, and diogenite are not found in this region. Although there are no unambiguous spectral features of impact melt, the investigation of morphological features using FC clear filter data from Low Altitude Mapping Orbit (resolution ∼ 18 m/pixel) suggests potential impact-melt features inside and outside of the crater. Our spectral approach can be extended to the entire Vestan surface to study the heterogeneous surface composition and its geology.
He, Xingdong; Gao, Yubao; Zhao, Wenzhi; Cong, Zili
2004-09-01
Investigation results in the present study showed that plant communities took typical concentric circles distribution patterns along habitat gradient from top, slope to interdune on a few large fixed dunes in middle part of Korqin Sandy Land. In order to explain this phenomenon, analysis of water content and its spatial heterogeneity in sand layers on different locations of dunes was conducted. In these dunes, water contents in sand layers of the tops were lower than those of the slopes; both of them were lower than those of the interdunes. According to the results of geostatistics analysis, whether shifting dune or fixed dune, spatial heterogeneity of water contents in sand layers took on regular changes, such as ratios between nugget and sill and ranges reduced gradually, fractal dimension increased gradually, the regular changes of these parameters indicated that random spatial heterogeneity reduced gradually, and autocorrelation spatial heterogeneity increased gradually from the top, the slope to the interdune. The regular changes of water contents in sand layers and their spatial heterogeneity of different locations of the dunes, thus, might be an important cause resulted in the formation of the concentric circles patterns of the plant communities on these fixed dunes.
Molenaar, Dylan; de Boeck, Paul
2018-06-01
In item response theory modeling of responses and response times, it is commonly assumed that the item responses have the same characteristics across the response times. However, heterogeneity might arise in the data if subjects resort to different response processes when solving the test items. These differences may be within-subject effects, that is, a subject might use a certain process on some of the items and a different process with different item characteristics on the other items. If the probability of using one process over the other process depends on the subject's response time, within-subject heterogeneity of the item characteristics across the response times arises. In this paper, the method of response mixture modeling is presented to account for such heterogeneity. Contrary to traditional mixture modeling where the full response vectors are classified, response mixture modeling involves classification of the individual elements in the response vector. In a simulation study, the response mixture model is shown to be viable in terms of parameter recovery. In addition, the response mixture model is applied to a real dataset to illustrate its use in investigating within-subject heterogeneity in the item characteristics across response times.
Influence of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid.
Cihanoğlu, Aydın; Gündüz, Gönül; Dükkancı, Meral
2017-11-01
The main objective of this study is to investigate the effect of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid, which is one of the most resistant carboxylic acids to oxidation. For this purpose, firstly, the degradation of acetic acid was examined by using ultrasound alone and the effects of different parameters such as: type of sonication system, ultrasonic power, and addition of H 2 O 2 were investigated on the degradation of acetic acid. There was no chemical oxygen demand (COD) reduction in the presence of sonication alone. In the presence of the heterogeneous Fenton-like oxidation process alone, at 303 K, COD reduction reached only 7.1% after 2 h of reaction. However, the combination of the heterogeneous Fenton-like oxidation process with ultrasound increased the COD reduction from 7.1% to 25.5% after 2 h of reaction in an ultrasonic bath operated at 40 kHz, while the COD reduction only increased from 7.1% to 8.9% in the ultrasonic reactor operated at 850 kHz. This result indicates that the hybrid process of ultrasound and heterogeneous Fenton-like oxidation is a promising process to degrade acetic acid.
Solving the dynamic rupture problem with different numerical approaches and constitutive laws
Bizzarri, A.; Cocco, M.; Andrews, D.J.; Boschi, Enzo
2001-01-01
We study the dynamic initiation, propagation and arrest of a 2-D in-plane shear rupture by solving the elastodynamic equation by using both a boundary integral equation method and a finite difference approach. For both methods we adopt different constitutive laws: a slip-weakening (SW) law, with constant weakening rate, and rate- and state-dependent friction laws (Dieterich-Ruina). Our numerical procedures allow the use of heterogeneous distributions of constitutive parameters along the fault for both formulations. We first compare the two solution methods with an SW law, emphasizing the required stability conditions to achieve a good resolution of the cohesive zone and to avoid artificial complexity in the solutions. Our modelling results show that the two methods provide very similar time histories of dynamic source parameters. We point out that, if a careful control of resolution and stability is performed, the two methods yield identical solutions. We have also compared the rupture evolution resulting from an SW and a rate- and state-dependent friction law. This comparison shows that despite the different constitutive formulations, a similar behaviour is simulated during the rupture propagation and arrest. We also observe a crack tip bifurcation and a jump in rupture velocity (approaching the P-wave speed) with the Dieterich-Ruina (DR) law. The rupture arrest at a barrier (high strength zone) and the barrier-healing mechanism are also reproduced by this law. However, this constitutive formulation allows the simulation of a more general and complex variety of rupture behaviours. By assuming different heterogeneous distributions of the initial constitutive parameters, we are able to model a barrier-healing as well as a self-healing process. This result suggests that if the heterogeneity of the constitutive parameters is taken into account, the different healing mechanisms can be simulated. We also study the nucleation phase duration Tn, defined as the time necessary for the crack to reach the half-length Ic. We compare the Tn values resulting from distinct simulations calculated using different constitutive laws and different sets of constitutive parameters. Our results confirm that the DR law provides a different description of the nucleation process than the SW law adopted in this study. We emphasize that the DR law yields a complete description of the rupture process, which includes the most prominent features of SW.
Sheet metals characterization using the virtual fields method
NASA Astrophysics Data System (ADS)
Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice
2018-05-01
In this work, a characterisation method involving a deep-notched specimen subjected to a tensile loading is introduced. This specimen leads to heterogeneous states of stress and strain, the latter being measured using a stereo DIC system (MatchID). This heterogeneity enables the identification of multiple material parameters in a single test. In order to identify material parameters from the DIC data, an inverse method called the Virtual Fields Method is employed. The method combined with recently developed sensitivity-based virtual fields allows to optimally locate areas in the test where information about each material parameter is encoded, improving accuracy of the identification over the traditional user-defined virtual fields. It is shown that a single test performed at 45° to the rolling direction is sufficient to obtain all anisotropic plastic parameters, thus reducing experimental effort involved in characterisation. The paper presents the methodology and some numerical validation.
Linear functional minimization for inverse modeling
Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; ...
2015-06-01
In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulicmore » head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.« less
Comparing Latent Structures of the Grade of Membership, Rasch, and Latent Class Models
ERIC Educational Resources Information Center
Erosheva, Elena A.
2005-01-01
This paper focuses on model interpretation issues and employs a geometric approach to compare the potential value of using the Grade of Membership (GoM) model in representing population heterogeneity. We consider population heterogeneity manifolds generated by letting subject specific parameters vary over their natural range, while keeping other…
Principles of E-network modelling of heterogeneous systems
NASA Astrophysics Data System (ADS)
Tarakanov, D.; Tsapko, I.; Tsapko, S.; Buldygin, R.
2016-04-01
The present article is concerned with the analytical and simulation modelling of heterogeneous technical systems using E-network mathematical apparatus (the expansion of Petri nets). The distinguishing feature of the given system is the presence of the module6 which identifies the parameters of the controlled object as well as the external environment.
Ion beam analyses of radionuclide migration in heterogeneous rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, Ursula; Missana, Tiziana; Garcia-Gutierrez, Miguel
2013-07-18
The migration of radionuclides (RN) in the environment is a topic of general interest, for its implications on public health, and it is an issue for the long-term safety studies of deep geological repositories (DGR) for high-level radioactive waste. The role played by colloids on RN migration is also of great concern. Diffusion and sorption are fundamental mechanisms controlling RN migration in rocks and many experimental approaches are applied to determine transport parameters for low sorbing RN in homogeneous rocks. However, it is difficult to obtain relevant data for high sorbing RN or colloids, for which diffusion lengths are extremelymore » short, or within heterogeneous rocks, where transport might be different in different minerals. The ion beam techniques Rutherford Backscattering Spectrometry (RBS) and micro-Particle Induced X-Ray Emission ({mu}PIXE), rarely applied in the field, were selected for their micro-analytical potential to study RN diffusion and surface retention within heterogeneous rocks. Main achievements obtained during last 12 years are highlighted.« less
Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.
Jaya, N; Selvan, B Karpanai; Vennison, S John
2015-11-01
Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of heterogeneous convergence rate on consensus in opinion dynamics
NASA Astrophysics Data System (ADS)
Huang, Changwei; Dai, Qionglin; Han, Wenchen; Feng, Yuee; Cheng, Hongyan; Li, Haihong
2018-06-01
The Deffuant model has attracted much attention in the study of opinion dynamics. Here, we propose a modified version by introducing into the model a heterogeneous convergence rate which is dependent on the opinion difference between interacting agents and a tunable parameter κ. We study the effects of heterogeneous convergence rate on consensus by investigating the probability of complete consensus, the size of the largest opinion cluster, the number of opinion clusters, and the relaxation time. We find that the decrease of the convergence rate is favorable to decreasing the confidence threshold for the population to always reach complete consensus, and there exists optimal κ resulting in the minimal bounded confidence threshold. Moreover, we find that there exists a window before the threshold of confidence in which complete consensus may be reached with a nonzero probability when κ is not too large. We also find that, within a certain confidence range, decreasing the convergence rate will reduce the relaxation time, which is somewhat counterintuitive.
NASA Astrophysics Data System (ADS)
Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D.; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2016-10-01
A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer.
NASA Astrophysics Data System (ADS)
Conny, Joseph M.; Ortiz-Montalvo, Diana L.
2017-09-01
We show the effect of composition heterogeneity and shape on the optical properties of urban dust particles based on the three-dimensional spatial and optical modeling of individual particles. Using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) and focused ion beam (FIB) tomography, spatial models of particles collected in Los Angeles and Seattle accounted for surface features, inclusions, and voids, as well as overall composition and shape. Using voxel data from the spatial models and the discrete dipole approximation method, we report extinction efficiency, asymmetry parameter, and single-scattering albedo (SSA). Test models of the particles involved (1) the particle's actual morphology as a single homogeneous phase and (2) simple geometric shapes (spheres, cubes, and tetrahedra) depicting composition homogeneity or heterogeneity (with multiple spheres). Test models were compared with a reference model, which included the particle's actual morphology and heterogeneity based on SEM/EDX and FIB tomography. Results show particle shape to be a more important factor for determining extinction efficiency than accounting for individual phases in a particle, regardless of whether absorption or scattering dominated. In addition to homogeneous models with the particles' actual morphology, tetrahedral geometric models provided better extinction accuracy than spherical or cubic models. For iron-containing heterogeneous particles, the asymmetry parameter and SSA varied with the composition of the iron-containing phase, even if the phase was <10% of the particle volume. For particles containing loosely held phases with widely varying refractive indexes (i.e., exhibiting "severe" heterogeneity), only models that account for heterogeneity may sufficiently determine SSA.
The kinetics of mercury chlorination (with HC1) were studied using a flow reactor system with an on-line Hg analyzer and spciation sampling using a set of impingers. Kinetic parameters, such as reaction order (a), activation energy (Eu) and the overall rate constant (k') were es...
High effective heterogeneous plasma vortex reactor for production of heat energy and hydrogen
NASA Astrophysics Data System (ADS)
Belov, N. K.; Zavershinskii, I. P.; Klimov, A. I.; Molevich, N. E.; Porfiriev, D. P.; Tolkunov, B. N.
2018-03-01
This work is a continuation of our previous studies [1-10] of physical parameters and properties of a long-lived heterogeneous plasmoid (plasma formation with erosive nanoclusters) created by combined discharge in a high-speed swirl flow. Here interaction of metal nanoclusters with hydrogen atoms is studied in a plasma vortex reactor (PVR) with argon-water steam mixture. Metal nanoclusters were created by nickel cathode’s erosion at combined discharge on. Dissociated hydrogen atoms and ions were obtained in water steam by electric discharge. These hydrogen atoms and ions interacted with metal nanoclusters, which resulted in the creation of a stable plasmoid in a swirl gas flow. This plasmoid has been found to create intensive soft X-ray radiation. Plasma parameters of this plasmoid were measured by optical spectroscopy method. It has been obtained that there is a high non-equilibrium plasmoid: Te > TV >> TR. The measured coefficient of energy performance of this plasmoid is about COP = 2÷10. This extra power release in plasmoid is supposed to be connected with internal excited electrons. The obtained experimental results have proved our suggestion.
Kim, Minjung; Lamont, Andrea E; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M Lee
2016-06-01
Regression mixture models are a novel approach to modeling the heterogeneous effects of predictors on an outcome. In the model-building process, often residual variances are disregarded and simplifying assumptions are made without thorough examination of the consequences. In this simulation study, we investigated the impact of an equality constraint on the residual variances across latent classes. We examined the consequences of constraining the residual variances on class enumeration (finding the true number of latent classes) and on the parameter estimates, under a number of different simulation conditions meant to reflect the types of heterogeneity likely to exist in applied analyses. The results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted on the estimated class sizes and showed the potential to greatly affect the parameter estimates in each class. These results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions are made.
Velocity and Density Heterogeneities of the Tien-Shan Lithosphere
NASA Astrophysics Data System (ADS)
Sabitova, T. M.; Lesik, O. M.; Adamova, A. A.
The Tien-Shan orogene is a region in which the earth's crust undergoes considerable thickening and tangential compression. Under these conditions the lithosphere heterogeneities (composi tion, rheological) create the prerequisites for the development of various phenomena of tectonic layering (lateral shearing, different deformation of layers). To study the distribution of velocity, density and other elastic parameters, the results from a seismic tomography study on P-wave as well as S-wave velocities were used. Using empirical as well as theoretical formulas on the relationship between velocity, density and silica content in rocks, their distribution in the Tien-Shan's lithosphere has been calculated. In addition, other elastic parameters, such as Young's modulus, shear modulus, Poisson's ratio and coefficient of general compressions have been determined. Zoning of different types of crust was carried out for the region investigated. The characteristics of the "crust-mantle" transition have been investi gated. Large blocks with different types of the earth's crust were distinguished. Layers with inverse values of velocity, density and shear and Young modulus are revealed in the Tien-Shan lithosphere. All of the above described features open new ways to solve geodynamics problems.
NASA Astrophysics Data System (ADS)
Ismail, Nurul Syuhada; Arifin, Norihan Md.; Bachok, Norfifah; Mahiddin, Norhasimah
2017-01-01
A numerical study is performed to evaluate the problem of stagnation - point flow towards a shrinking sheet with homogeneous - heterogeneous reaction effects. By using non-similar transformation, the governing equations be able to reduced to an ordinary differential equation. Then, results of the equations can be obtained numerically by shooting method with maple implementation. Based on the numerical results obtained, the velocity ratio parameter λ< 0, the dual solutions do exist. Then, the stability analysis is carried out to determine which solution is more stable between both of the solutions by bvp4c solver in Matlab.
Well-Production Data and Gas-Reservoir Heterogeneity -- Reserve Growth Applications
Dyman, Thaddeus S.; Schmoker, James W.
2003-01-01
Oil and gas well production parameters, including peakmonthly production (PMP), peak-consecutive-twelve month production (PYP), and cumulative production (CP), are tested as tools to quantify and understand the heterogeneity of reservoirs in fields where current monthly production is 10 percent or less of PMP. Variation coefficients, defined as VC= (F5-F95)/F50, where F5, F95, and F50 are the 5th, 95th, and 50th (median) fractiles of a probability distribution, are calculated for peak and cumulative production and examined with respect to internal consistency, type of production parameter, conventional versus unconventional accumulations, and reservoir depth. Well-production data for this study were compiled for 69 oil and gas fields in the Lower Pennsylvanian Morrow Formation of the Anadarko Basin, Oklahoma. Of these, 47 fields represent production from marine clastic facies. The Morrow data were supplemented by data from the Upper Cambrian and Lower Ordovician Arbuckle Group, Middle Ordovician Simpson Group, Middle Pennsylvanian Atoka Formation, and Silurian and Lower Devonian Hunton Group of the Anadarko Basin, one large gas field in Upper Cretaceous reservoirs of north-central Montana (Bowdoin field), and three areas of the Upper Devonian and Lower Mississippian Bakken Formation continuous-type (unconventional) oil accumulation in the Williston Basin, North Dakota and Montana. Production parameters (PMP, PYP, and CP) measure the net result of complex geologic, engineering, and economic processes. Our fundamental hypothesis is that well-production data provide information about subsurface heterogeneity in older fields that would be impossible to obtain using geologic techniques with smaller measurement scales such as petrographic, core, and well-log analysis. Results such as these indicate that quantitative measures of production rates and production volumes of wells, expressed as dimensionless variation coefficients, are potentially valuable tools for documenting reservoir heterogeneity in older fields for field redevelopment and risk analysis.
Li, Shi; Mukherjee, Bhramar; Taylor, Jeremy M G; Rice, Kenneth M; Wen, Xiaoquan; Rice, John D; Stringham, Heather M; Boehnke, Michael
2014-07-01
With challenges in data harmonization and environmental heterogeneity across various data sources, meta-analysis of gene-environment interaction studies can often involve subtle statistical issues. In this paper, we study the effect of environmental covariate heterogeneity (within and between cohorts) on two approaches for fixed-effect meta-analysis: the standard inverse-variance weighted meta-analysis and a meta-regression approach. Akin to the results in Simmonds and Higgins (), we obtain analytic efficiency results for both methods under certain assumptions. The relative efficiency of the two methods depends on the ratio of within versus between cohort variability of the environmental covariate. We propose to use an adaptively weighted estimator (AWE), between meta-analysis and meta-regression, for the interaction parameter. The AWE retains full efficiency of the joint analysis using individual level data under certain natural assumptions. Lin and Zeng (2010a, b) showed that a multivariate inverse-variance weighted estimator retains full efficiency as joint analysis using individual level data, if the estimates with full covariance matrices for all the common parameters are pooled across all studies. We show consistency of our work with Lin and Zeng (2010a, b). Without sacrificing much efficiency, the AWE uses only univariate summary statistics from each study, and bypasses issues with sharing individual level data or full covariance matrices across studies. We compare the performance of the methods both analytically and numerically. The methods are illustrated through meta-analysis of interaction between Single Nucleotide Polymorphisms in FTO gene and body mass index on high-density lipoprotein cholesterol data from a set of eight studies of type 2 diabetes. © 2014 WILEY PERIODICALS, INC.
Shen, Guohua; Ma, Huan; Liu, Bin; Ren, Pengwei; Kuang, Anren
2017-12-01
Diffusion-weighted imaging and fluorine-18-fluorodeoxyglucose PET are increasingly being recognized as feasible oncological techniques. The apparent diffusion coefficient (ADC) measured by diffusion-weighted imaging and the standardized uptake value (SUV) from fluorine-18-fluorodeoxyglucose PET have similar clinical applications. The aim of this study was to assess the correlation between these two parameters in various cancers. Several major databases were searched for eligible studies. The correlation coefficient (ρ) values were pooled in a random-effects model. Begg's test was used to analyze the existence of publication bias and the sources of heterogeneity were explored in subgroup analyses on the basis of study design, diagnostic method, scanning modality, and tumor type. Thirty-five articles were accepted. The pooled ρ value of all of the accepted studies was -0.30 (95% confidence interval: -0.33 to -0.27), and notable heterogeneity was present (I=69.4%, P<0.001), which indicated a relatively weak negative correlation. The pooled ρ values were -0.26, -0.33, -0.32, and -0.33 for the SUVmax/ADCmean, SUVmax/ADCmin, SUVmean/ADCmean, and SUVmean/ADCmin relationships, respectively. The study design and diagnostic method were potential sources of heterogeneity. Lung cancer showed a stronger correlation (ρ=-0.42) than head and neck cancer (ρ=-0.27), cervical cancer (ρ=-0.21), and breast cancer (ρ=-0.23). A Begg's test indicated no significant publication bias among the accepted studies (P>0.05). The two functional parameters of ADC and SUV showed a very weak inverse correlation, which may contribute toward a sophisticated characterization of tumor biology. However, the findings require further validation with trials with large samples and different tumor types.
Hughes, Joseph D.; White, Jeremy T.; Langevin, Christian D.
2010-01-01
A synthetic two‐dimensional model of a horizontally and vertically heterogeneous confined coastal aquifer system, based on the Upper Floridan aquifer in south Florida, USA, subjected to constant recharge and a complex tidal signal was used to generate 15‐minute water‐level data at select locations over a 7‐day simulation period. “Observed” water‐level data were generated by adding noise, representative of typical barometric pressure variations and measurement errors, to 15‐minute data from the synthetic model. Permeability was calibrated using a non‐linear gradient‐based parameter inversion approach with preferred‐value Tikhonov regularization and 1) “observed” water‐level data, 2) harmonic constituent data, or 3) a combination of “observed” water‐level and harmonic constituent data. In all cases, high‐frequency data used in the parameter inversion process were able to characterize broad‐scale heterogeneities; the ability to discern fine‐scale heterogeneity was greater when harmonic constituent data were used. These results suggest that the combined use of highly parameterized‐inversion techniques and high frequency time and/or processed‐harmonic constituent water‐level data could be a useful approach to better characterize aquifer heterogeneities in coastal aquifers influenced by ocean tides.
A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - II. Verifications
Choi, Sooyoung; Kong, Chidong; Lee, Deokjung; ...
2015-03-09
A new methodology has been developed recently to treat resonance self-shielding in systems for which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. The theoretical development adopts equivalence theory in both micro- and macro-level heterogeneities to provide approximate analytical expressions for the shielded cross sections, which may be interpolated from a table of resonance integrals or Bondarenko factors using a modified background cross section as the interpolation parameter. This paper describes the first implementation of the theoretical equations in a reactor analysis code. In order to reduce discrepancies caused bymore » use of the rational approximation for collision probabilities in the original derivation, a new formulation for a doubly heterogeneous Bell factor is developed in this paper to improve the accuracy of doubly heterogeneous expressions. This methodology is applied to a wide range of pin cell and assembly test problems with varying geometry parameters, material compositions, and temperatures, and the results are compared with continuous-energy Monte Carlo simulations to establish the accuracy and range of applicability of the new approach. It is shown that the new doubly heterogeneous self-shielding method including the Bell factor correction gives good agreement with reference Monte Carlo results.« less
Injectivity Evaluation for Offshore CO 2 Sequestration in Marine Sediments
Dai, Zhenxue; Zhang, Ye; Stauffer, Philip; ...
2017-08-18
Global and regional climate change caused by greenhouse gases emissions has stimulated interest in developing various technologies (such as carbon dioxide (CO 2) geologic sequestration in brine reservoirs) to reduce the concentrations of CO 2 in the atmosphere. Our study develops a statistical framework to identify gravitational CO 2 trapping processes and to quantitatively evaluate both CO 2 injectivity (or storage capacity) and leakage potential from marine sediments which exhibit heterogeneous permeability and variable thicknesses. Here, we focus on sets of geostatistically-based heterogeneous models populated with fluid flow parameters from several reservoir sites in the U.S. Gulf of Mexico (GOM).more » A computationally efficient uncertainty quantification study was conducted with results suggesting that permeability heterogeneity and anisotropy, seawater depth, and sediment thickness can all significantly impact CO 2 flow and trapping. Large permeability/porosity heterogeneity can enhance gravitational, capillary, and dissolution trapping, which acts to deter CO 2 upward migration and subsequent leakage onto the seafloor. When log permeability variance is 5, self-sealing with heterogeneity-enhanced gravitation trapping can be achieved even when water depth is 1.2 km. This extends the previously identified self-sealing condition that water depth be greater than 2.7 km. Our results have yielded valuable insight into the conditions under which safe storage of CO 2 can be achieved in offshore environments. The developed statistical framework is general and can be adapted to study other offshore sites worldwide.« less
Injectivity Evaluation for Offshore CO 2 Sequestration in Marine Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Zhenxue; Zhang, Ye; Stauffer, Philip
Global and regional climate change caused by greenhouse gases emissions has stimulated interest in developing various technologies (such as carbon dioxide (CO 2) geologic sequestration in brine reservoirs) to reduce the concentrations of CO 2 in the atmosphere. Our study develops a statistical framework to identify gravitational CO 2 trapping processes and to quantitatively evaluate both CO 2 injectivity (or storage capacity) and leakage potential from marine sediments which exhibit heterogeneous permeability and variable thicknesses. Here, we focus on sets of geostatistically-based heterogeneous models populated with fluid flow parameters from several reservoir sites in the U.S. Gulf of Mexico (GOM).more » A computationally efficient uncertainty quantification study was conducted with results suggesting that permeability heterogeneity and anisotropy, seawater depth, and sediment thickness can all significantly impact CO 2 flow and trapping. Large permeability/porosity heterogeneity can enhance gravitational, capillary, and dissolution trapping, which acts to deter CO 2 upward migration and subsequent leakage onto the seafloor. When log permeability variance is 5, self-sealing with heterogeneity-enhanced gravitation trapping can be achieved even when water depth is 1.2 km. This extends the previously identified self-sealing condition that water depth be greater than 2.7 km. Our results have yielded valuable insight into the conditions under which safe storage of CO 2 can be achieved in offshore environments. The developed statistical framework is general and can be adapted to study other offshore sites worldwide.« less
Zare Sakhvidi, Mohammad Javad; Hajaghazadeh, Mohammad; Mostaghaci, Mehrdad; Mehrparvar, Amir houshang; Zare Sakhvidi, Fariba; Naghshineh, Elham
2016-01-01
Background Unintended occupational exposure to antineoplastic drugs (ANDs) may occur in medical personnel. Some ANDs are known human carcinogens and exposure can be monitored by genotoxic biomarkers. Objective To evaluate the obstacles to obtaining conclusive results from a comet assay test to determine DNA damage among AND exposed healthcare workers. Methods We systematically reviewed studies that used alkaline comet assay to determine the magnitude and significance of DNA damage among health care workers with potential AND exposure. Fifteen studies were eligible for review and 14 studies were used in the meta-analysis. Results Under random effect assumption, the estimated standardized mean difference (SMD) in the DNA damage of health care workers was 1.93 (95% CI: 1.15–2.71, p < 0.0001). The resulting SMD was reduced to 1.756 (95% CI: 0.992–2.52, p < 0.0001) when the analysis only included nurses. In subgroup analyses based on gender and smoking, heterogeneity was observed. Only for studies reporting comet moment, I2 test results, as a measure of heterogeneity, dropped to zero. Heterogeneity analysis showed that date of study publication was a possible source of heterogeneity (B = −0.14; p < 0.0001). Conclusions A mixture of personal parameters, comet assay methodological variables, and exposure characteristics may be responsible for heterogenic data from comet assay studies and interfere with obtaining conclusive results. Lack of quantitative environmental exposure measures and variation in comet assay protocols across studies are important obstacles in generalization of results. PMID:27110842
Vries, D; Bertelkamp, C; Schoonenberg Kegel, F; Hofs, B; Dusseldorp, J; Bruins, J H; de Vet, W; van den Akker, B
2017-02-01
A model has been developed that takes into account the main characteristics of (submerged) rapid filtration: the water quality parameters of the influent water, notably pH, iron(II) and manganese(II) concentrations, homogeneous oxidation in the supernatant layer, surface sorption and heterogeneous oxidation kinetics in the filter, and filter media adsorption characteristics. Simplifying assumptions are made to enable validation in practice, while maintaining the main mechanisms involved in iron(II) and manganese(II) removal. Adsorption isotherm data collected from different Dutch treatment sites show that Fe(II)/Mn(II) adsorption may vary substantially between them, but generally increases with higher pH. The model is sensitive to (experimentally) determined adsorption parameters and the heterogeneous oxidation rate. Model results coincide with experimental values when the heterogeneous rate constants are calibrated. Copyright © 2016 Elsevier Ltd. All rights reserved.
El Masri, Ahmad; Laversin, Hélène; Chakir, Abdelkhaleq; Roth, Estelle
2016-12-01
Heterogeneous oxidation of chlorpyrifos ethyl (CLP) coated sand particles by gaseous ozone was studied. Mono-size sand was coated with CLP at different coating levels between 10 and 100 μg g -1 and exposed to ozone. Results were analyzed thanks to Gas Surface Reaction and Surface Layer Reaction Models. Kinetic parameters derived from these models were analyzed and led to several conclusions. The equilibrium constant of O 3 between the gas phase and the CLP-coated sand was independent on the sand contamination level. Ozone seems to have similar affinity for coated or uncoated sand surface. Meanwhile, the kinetic parameters decreased with an increasing coating level. Chlorpyrifos Oxon, (CLPO) has been identified and quantified as an ozonolysis product. The product yield of CLPO remains constant (53 ± 10%) for the different coating level. The key parameter influencing the CLP reactivity towards ozone was the CLP-coating level. This dependence had a great influence on the lifetime of the CLP coated on sand particles, with respect to ozone, which could reach several years at high contamination level. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nachbar, Mario; Duft, Denis; Mangan, Thomas Peter; Martin, Juan Carlos Gomez; Plane, John M. C.; Leisner, Thomas
2016-05-01
Clouds of CO2 ice particles have been observed in the Martian mesosphere. These clouds are believed to be formed through heterogeneous nucleation of CO2 on nanometer-sized meteoric smoke particles (MSPs) or upward propagated Martian dust particles (MDPs). Large uncertainties still exist in parameterizing the microphysical formation process of these clouds as key physicochemical parameters are not well known. We present measurements on the nucleation and growth of CO2 ice on sub-4 nm radius iron oxide and silica particles representing MSPs at conditions close to the mesosphere of Mars. For both particle materials we determine the desorption energy of CO2 to be ΔFdes = (18.5 ± 0.2) kJ mol-1 corresponding to ΔFdes = (0.192 ± 0.002) eV and obtain m = 0.78 ± 0.02 for the contact parameter that governs heterogeneous nucleation by analyzing the measurements using classical heterogeneous nucleation theory. We did not find any temperature dependence for the contact parameter in the temperature range examined (64 K to 73 K). By applying these values for MSPs in the Martian mesosphere, we derive characteristic temperatures for the onset of CO2 ice nucleation, which are 8-18 K below the CO2 frost point temperature, depending on particle size. This is in line with the occurrence of highly supersaturated conditions extending to 20 K below frost point temperature without the observation of clouds. Moreover, the sticking coefficient of CO2 on solid CO2 was determined to be near unity. We further argue that the same parameters can be applied to CO2 nucleation on upward propagated MDPs.
Yen, A M-F; Liou, H-H; Lin, H-L; Chen, T H-H
2006-01-01
The study aimed to develop a predictive model to deal with data fraught with heterogeneity that cannot be explained by sampling variation or measured covariates. The random-effect Poisson regression model was first proposed to deal with over-dispersion for data fraught with heterogeneity after making allowance for measured covariates. Bayesian acyclic graphic model in conjunction with Markov Chain Monte Carlo (MCMC) technique was then applied to estimate the parameters of both relevant covariates and random effect. Predictive distribution was then generated to compare the predicted with the observed for the Bayesian model with and without random effect. Data from repeated measurement of episodes among 44 patients with intractable epilepsy were used as an illustration. The application of Poisson regression without taking heterogeneity into account to epilepsy data yielded a large value of heterogeneity (heterogeneity factor = 17.90, deviance = 1485, degree of freedom (df) = 83). After taking the random effect into account, the value of heterogeneity factor was greatly reduced (heterogeneity factor = 0.52, deviance = 42.5, df = 81). The Pearson chi2 for the comparison between the expected seizure frequencies and the observed ones at two and three months of the model with and without random effect were 34.27 (p = 1.00) and 1799.90 (p < 0.0001), respectively. The Bayesian acyclic model using the MCMC method was demonstrated to have great potential for disease prediction while data show over-dispersion attributed either to correlated property or to subject-to-subject variability.
Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.
An, Gyubaek; Jeong, Se-Min; Park, Jeongung
2018-03-01
Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.
Radhakrishnan, Aditya; Vitalis, Andreas; Mao, Albert H.; Steffen, Adam T.; Pappu, Rohit V.
2012-01-01
Poly-L-proline (PLP) polymers are useful mimics of biologically relevant proline-rich sequences. Biophysical and computational studies of PLP polymers in aqueous solutions are challenging because of the diversity of length scales and the slow time scales for conformational conversions. We describe an atomistic simulation approach that combines an improved ABSINTH implicit solvation model, with conformational sampling based on standard and novel Metropolis Monte Carlo moves. Refinements to forcefield parameters were guided by published experimental data for proline-rich systems. We assessed the validity of our simulation results through quantitative comparisons to experimental data that were not used in refining the forcefield parameters. Our analysis shows that PLP polymers form heterogeneous ensembles of conformations characterized by semi-rigid, rod-like segments interrupted by kinks, which result from a combination of internal cis peptide bonds, flexible backbone ψ-angles, and the coupling between ring puckering and backbone degrees of freedom. PMID:22329658
Geological entropy and solute transport in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Bianchi, Marco; Pedretti, Daniele
2017-06-01
We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.
Alford, Sara K; van Beek, Edwin J R; McLennan, Geoffrey; Hoffman, Eric A
2010-04-20
Recent evidence suggests that endothelial dysfunction and pathology of pulmonary vascular responses may serve as a precursor to smoking-associated emphysema. Although it is known that emphysematous destruction leads to vasculature changes, less is known about early regional vascular dysfunction which may contribute to and precede emphysematous changes. We sought to test the hypothesis, via multidetector row CT (MDCT) perfusion imaging, that smokers showing early signs of emphysema susceptibility have a greater heterogeneity in regional perfusion parameters than emphysema-free smokers and persons who had never smoked (NS). Assuming that all smokers have a consistent inflammatory response, increased perfusion heterogeneity in emphysema-susceptible smokers would be consistent with the notion that these subjects may have the inability to block hypoxic vasoconstriction in patchy, small regions of inflammation. Dynamic ECG-gated MDCT perfusion scans with a central bolus injection of contrast were acquired in 17 NS, 12 smokers with normal CT imaging studies (SNI), and 12 smokers with subtle CT findings of centrilobular emphysema (SCE). All subjects had normal spirometry. Quantitative image analysis determined regional perfusion parameters, pulmonary blood flow (PBF), and mean transit time (MTT). Mean and coefficient of variation were calculated, and statistical differences were assessed with one-way ANOVA. MDCT-based MTT and PBF measurements demonstrate globally increased heterogeneity in SCE subjects compared with NS and SNI subjects but demonstrate similarity between NS and SNI subjects. These findings demonstrate a functional lung-imaging measure that provides a more mechanistically oriented phenotype that differentiates smokers with and without evidence of emphysema susceptibility.
NASA Astrophysics Data System (ADS)
Kurtz, W.; Hendricks Franssen, H.-J.; Brunner, P.; Vereecken, H.
2013-05-01
River-aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river-aquifer exchange fluxes tend to be strongly spatially variable and it is an open research question to which degree river bed heterogeneity has to be represented in a~model in order to achieve reliable estimates of river-aquifer exchange fluxes. This research question is addressed in this paper with help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland), where river-aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated-saturated subsurface hydrological flow problem including river-aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L) are perfectly known. Hydraulic head data (100 in the default scenario) are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with help of the Ensemble Kalman Filter (EnKF). For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high resolution L-fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher resolution L-fields (i.e., fully heterogeneous or 5 zones) gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream-aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high resolution L-fields outperform the others. In case of less heterogeneous river bed hydraulic conductivities, a high-resolution characterization of L is less important. We conclude that for strongly heterogeneous river beds the commonly applied simplified representation of the streambed, with spatially homogeneous parameters or constant parameters for a few zones, might yield significant biases in the characterization of the water balance. For strongly heterogeneous river beds, we suggest to adopt a stochastic field approach to model the spatially heterogeneous river beds geostatistically. The paper illustrates that EnKF is able to calibrate such heterogeneous streambeds on the basis of hydraulic head measurements, outperforming classical approaches.
Determining parameters and mechanisms of colloid retention and release in porous media
USDA-ARS?s Scientific Manuscript database
A framework is presented to determine fundamental parameters and mechanisms controlling colloid (including microbes and nanoparticles) retention and release on hypothetical porous medium surfaces that exhibit distributions of nanoscale chemical heterogeneity, nano- to microscale roughness, and spati...
Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts
Ye, Rong; Zhukhovitskiy, Aleksandr V.; Deraedt, Christophe V.; ...
2017-07-13
Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles—some without homogeneous analogues—for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimizemore » and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl 2) or reduced (e.g., with H 2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. Here in this Account, we will briefly introduce metal clusters and describe the synthesis and characterizations of supported DEMCs. We will present the catalysis studies of supported DEMCs in both the batch and flow modes. Lastly, we will summarize the current state of heterogenizing homogeneous catalysis and provide future directions for this area of research.« less
Boccia, E.; Luther, S.
2017-01-01
In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive investigation. To study the impact of anisotropy on the unpinning process, we present numerical simulations based on the bidomain formulation of the phase I of the Luo and Rudy action potential model modified due to the occurrence of acute myocardial ischaemia. Simulating a rotating spiral wave pinned to an ischaemic heterogeneity, we compare the success of sequences of far field pulses in the isotropic and the anisotropic case for spirals still in transient or in steady rotation states. Our results clearly indicate that the range of pacing parameters resulting in successful termination of pinned spiral waves is larger in anisotropic tissue than in an isotropic medium. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507234
NASA Astrophysics Data System (ADS)
Liu, Chi; Ye, Rui; Lian, Liping; Song, Weiguo; Zhang, Jun; Lo, Siuming
2018-05-01
In the context of global aging, how to design traffic facilities for a population with a different age composition is of high importance. For this purpose, we propose a model based on the least effort principle to simulate heterogeneous pedestrian flow. In the model, the pedestrian is represented by a three-disc shaped agent. We add a new parameter to realize pedestrians' preference to avoid changing their direction of movement too quickly. The model is validated with numerous experimental data on unidirectional pedestrian flow. In addition, we investigate the influence of corridor width and velocity distribution of crowds on unidirectional heterogeneous pedestrian flow. The simulation results reflect that widening corridors could increase the specific flow for the crowd composed of two kinds of pedestrians with significantly different free velocities. Moreover, compared with a unified crowd, the crowd composed of pedestrians with great mobility differences requires a wider corridor to attain the same traffic efficiency. This study could be beneficial in providing a better understanding of heterogeneous pedestrian flow, and quantified outcomes could be applied in traffic facility design.
The Flow Dimension and Aquifer Heterogeneity: Field evidence and Numerical Analyses
NASA Astrophysics Data System (ADS)
Walker, D. D.; Cello, P. A.; Valocchi, A. J.; Roberts, R. M.; Loftis, B.
2008-12-01
The Generalized Radial Flow approach to hydraulic test interpretation infers the flow dimension to describe the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling. The comparison shows that discrete linear features with lengths distributed as a power-law appear to be the most consistent with observations of the flow dimension in fractured dolomite aquifers.
Dynamics of epidemics outbreaks in heterogeneous populations
NASA Astrophysics Data System (ADS)
Brockmann, Dirk; Morales-Gallardo, Alejandro; Geisel, Theo
2007-03-01
The dynamics of epidemic outbreaks have been investigated in recent years within two alternative theoretical paradigms. The key parameter of mean field type of models such as the SIR model is the basic reproduction number R0, the average number of secondary infections caused by one infected individual. Recently, scale free network models have received much attention as they account for the high variability in the number of social contacts involved. These models predict an infinite basic reproduction number in some cases. We investigate the impact of heterogeneities of contact rates in a generic model for epidemic outbreaks. We present a system in which both the time periods of being infectious and the time periods between transmissions are Poissonian processes. The heterogeneities are introduced by means of strongly variable contact rates. In contrast to scale free network models we observe a finite basic reproduction number and, counterintuitively a smaller overall epidemic outbreak as compared to the homogeneous system. Our study thus reveals that heterogeneities in contact rates do not necessarily facilitate the spread to infectious disease but may well attenuate it.
NASA Astrophysics Data System (ADS)
Boccia, E.; Luther, S.; Parlitz, U.
2017-05-01
In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive investigation. To study the impact of anisotropy on the unpinning process, we present numerical simulations based on the bidomain formulation of the phase I of the Luo and Rudy action potential model modified due to the occurrence of acute myocardial ischaemia. Simulating a rotating spiral wave pinned to an ischaemic heterogeneity, we compare the success of sequences of far field pulses in the isotropic and the anisotropic case for spirals still in transient or in steady rotation states. Our results clearly indicate that the range of pacing parameters resulting in successful termination of pinned spiral waves is larger in anisotropic tissue than in an isotropic medium. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.
Pereira, Bernard; Chin, Suet-Feung; Rueda, Oscar M.; Vollan, Hans-Kristian Moen; Provenzano, Elena; Bardwell, Helen A.; Pugh, Michelle; Jones, Linda; Russell, Roslin; Sammut, Stephen-John; Tsui, Dana W. Y.; Liu, Bin; Dawson, Sarah-Jane; Abraham, Jean; Northen, Helen; Peden, John F.; Mukherjee, Abhik; Turashvili, Gulisa; Green, Andrew R.; McKinney, Steve; Oloumi, Arusha; Shah, Sohrab; Rosenfeld, Nitzan; Murphy, Leigh; Bentley, David R.; Ellis, Ian O.; Purushotham, Arnie; Pinder, Sarah E.; Børresen-Dale, Anne-Lise; Earl, Helena M.; Pharoah, Paul D.; Ross, Mark T.; Aparicio, Samuel; Caldas, Carlos
2016-01-01
The genomic landscape of breast cancer is complex, and inter- and intra-tumour heterogeneity are important challenges in treating the disease. In this study, we sequence 173 genes in 2,433 primary breast tumours that have copy number aberration (CNA), gene expression and long-term clinical follow-up data. We identify 40 mutation-driver (Mut-driver) genes, and determine associations between mutations, driver CNA profiles, clinical-pathological parameters and survival. We assess the clonal states of Mut-driver mutations, and estimate levels of intra-tumour heterogeneity using mutant-allele fractions. Associations between PIK3CA mutations and reduced survival are identified in three subgroups of ER-positive cancer (defined by amplification of 17q23, 11q13–14 or 8q24). High levels of intra-tumour heterogeneity are in general associated with a worse outcome, but highly aggressive tumours with 11q13–14 amplification have low levels of intra-tumour heterogeneity. These results emphasize the importance of genome-based stratification of breast cancer, and have important implications for designing therapeutic strategies. PMID:27161491
Intratumor Heterogeneity in Evolutionary Models of Tumor Progression
Durrett, Rick; Foo, Jasmine; Leder, Kevin; Mayberry, John; Michor, Franziska
2011-01-01
With rare exceptions, human tumors arise from single cells that have accumulated the necessary number and types of heritable alterations. Each such cell leads to dysregulated growth and eventually the formation of a tumor. Despite their monoclonal origin, at the time of diagnosis most tumors show a striking amount of intratumor heterogeneity in all measurable phenotypes; such heterogeneity has implications for diagnosis, treatment efficacy, and the identification of drug targets. An understanding of the extent and evolution of intratumor heterogeneity is therefore of direct clinical importance. In this article, we investigate the evolutionary dynamics of heterogeneity arising during exponential expansion of a tumor cell population, in which heritable alterations confer random fitness changes to cells. We obtain analytical estimates for the extent of heterogeneity and quantify the effects of system parameters on this tumor trait. Our work contributes to a mathematical understanding of intratumor heterogeneity and is also applicable to organisms like bacteria, agricultural pests, and other microbes. PMID:21406679
NASA Astrophysics Data System (ADS)
Myre, Joseph M.
Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.
ERIC Educational Resources Information Center
Egeland, Jens; Kovalik-Gran, Iwona
2010-01-01
Objective: Continuous performance tests are known to typically measure sustained attention but usually also yield parameters that potentially measure other subprocesses of attention. The aim of the present study was to test the factor structure of the Conners's Continuous Performance Test (CCPT) in a heterogeneous clinical sample consisting of…
Coherent Power Analysis in Multi-Level Studies Using Design Parameters from Surveys
ERIC Educational Resources Information Center
Rhoads, Christopher
2016-01-01
Current practice for conducting power analyses in hierarchical trials using survey based ICC and effect size estimates may be misestimating power because ICCs are not being adjusted to account for treatment effect heterogeneity. Results presented in Table 1 show that the necessary adjustments can be quite large or quite small. Furthermore, power…
Liu, X; Cleary, J; German, G K
2016-10-01
The outermost layer of skin, or stratum corneum, regulates water loss and protects underlying living tissue from environmental pathogens and insults. With cracking, chapping or the formation of exudative lesions, this functionality is lost. While stratum corneum exhibits well defined global mechanical properties, macroscopic mechanical testing techniques used to measure them ignore the structural heterogeneity of the tissue and cannot provide any mechanistic insight into tissue fracture. As such, a mechanistic understanding of failure in this soft tissue is lacking. This insight is critical to predicting fracture risk associated with age or disease. In this study, we first quantify previously unreported global mechanical properties of isolated stratum corneum including the Poisson's ratio and mechanical toughness. African American breast stratum corneum is used for all assessments. We show these parameters are highly dependent on the ambient humidity to which samples are equilibrated. A multi-scale investigation assessing the influence of structural heterogeneities on the microscale nucleation and propagation of cracks is then performed. At the mesoscale, spatially resolved equivalent strain fields within uniaxially stretched stratum corneum samples exhibit a striking heterogeneity, with localized peaks correlating closely with crack nucleation sites. Subsequent crack propagation pathways follow inherent topographical features in the tissue and lengthen with increased tissue hydration. At the microscale, intact corneocytes and polygonal shaped voids at crack interfaces highlight that cracks propagate in superficial cell layers primarily along intercellular junctions. Cellular fracture does occur however, but is uncommon. Human stratum corneum protects the body against harmful environmental pathogens and insults. Upon mechanical failure, this barrier function is lost. Previous studies characterizing the mechanics of stratum corneum have used macroscopic testing equipment designed for homogenous materials. Such measurements ignore the tissue's rich topography and heterogeneous structure, and cannot describe the underlying mechanistic process of tissue failure. For the first time, we establish a mechanistic insight into the failure mechanics of soft heterogeneous tissues by investigating how cracks nucleate and propagate in stratum corneum. We further quantify previously unreported values of the tissue's Poisson's ratio and toughness, and their dramatic variation with ambient humidity. To date, skin models examining drug delivery, wound healing, and ageing continue to estimate these parameters. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hansen, S. K.; Haslauer, C. P.; Cirpka, O. A.; Vesselinov, V. V.
2016-12-01
It is desirable to predict the shape of breakthrough curves downgradient of a solute source from subsurface structural parameters (as in the small-perturbation macrodispersion theory) both for realistically heterogeneous fields, and at early time, before any sort of Fickian model is applicable. Using a combination of a priori knowledge, large-scale Monte Carlo simulation, and regression techniques, we have developed closed-form predictive expressions for pre- and post-Fickian flux-weighted solute breakthrough curves as a function of distance from the source (in integral scales) and variance of the log hydraulic conductivity field. Using the ensemble of Monte Carlo realizations, we have simultaneously computed error envelopes for the estimated flux-weighted breakthrough, and for the divergence of point breakthrough curves from the flux-weighted average, as functions of the predictive parameters. We have also obtained implied late-time macrodispersion coefficients for highly heterogeneous environments from the breakthrough statistics. This analysis is relevant for the modelling of reactive as well as conservative transport, since for many kinetic sorption and decay reactions, Laplace-domain modification of the breakthrough curve for conservative solute produces the correct curve for the reactive system.
On the evolution of specialization with a mechanistic underpinning in structured metapopulations.
Nurmi, Tuomas; Parvinen, Kalle
2008-03-01
We analyze the evolution of specialization in resource utilization in a discrete-time metapopulation model using the adaptive dynamics approach. The local dynamics in the metapopulation are based on the Beverton-Holt model with mechanistic underpinnings. The consumer faces a trade-off in the abilities to consume two resources that are spatially heterogeneously distributed to patches that are prone to local catastrophes. We explore the factors favoring the spread of generalist or specialist strategies. Increasing fecundity or decreasing catastrophe probability favors the spread of the generalist strategy and increasing environmental heterogeneity enlarges the parameter domain where the evolutionary branching is possible. When there are no catastrophes, increasing emigration diminishes the parameter domain where the evolutionary branching may occur. Otherwise, the effect of emigration on evolutionary dynamics is non-monotonous: both small and large values of emigration probability favor the spread of the specialist strategies whereas the parameter domain where evolutionary branching may occur is largest when the emigration probability has intermediate values. We compare how different forms of spatial heterogeneity and different models of local growth affect the evolutionary dynamics. We show that even small changes in the resource dynamics may have outstanding evolutionary effects to the consumers.
Individual vision and peak distribution in collective actions
NASA Astrophysics Data System (ADS)
Lu, Peng
2017-06-01
People make decisions on whether they should participate as participants or not as free riders in collective actions with heterogeneous visions. Besides of the utility heterogeneity and cost heterogeneity, this work includes and investigates the effect of vision heterogeneity by constructing a decision model, i.e. the revised peak model of participants. In this model, potential participants make decisions under the joint influence of utility, cost, and vision heterogeneities. The outcomes of simulations indicate that vision heterogeneity reduces the values of peaks, and the relative variance of peaks is stable. Under normal distributions of vision heterogeneity and other factors, the peaks of participants are normally distributed as well. Therefore, it is necessary to predict distribution traits of peaks based on distribution traits of related factors such as vision heterogeneity and so on. We predict the distribution of peaks with parameters of both mean and standard deviation, which provides the confident intervals and robust predictions of peaks. Besides, we validate the peak model of via the Yuyuan Incident, a real case in China (2014), and the model works well in explaining the dynamics and predicting the peak of real case.
NASA Astrophysics Data System (ADS)
Khachay, OA; Khachay, OYu
2018-03-01
It is shown that the dynamic process of mining can be controlled using the catastrophe theory. The control parameters can be values of blasting energy and locations of explosions relative to an area under study or operation. The kinematic and dynamic parameters of the deformation waves, as well as the structural features of rock mass through which these waves pass act as internal parameters. The use of the analysis methods for short-term and medium-term forecast of rock mass condition with the control parameters only is insufficient in the presence of sharp heterogeneity. However, the joint use of qualitative recommendations of the catastrophe theory and spatial–temporal data of changes in the internal parameters of rock mass will allow accident prevention in the course of mining.
Roustaei, Narges; Ayatollahi, Seyyed Mohammad Taghi; Zare, Najaf
2018-01-01
In recent years, the joint models have been widely used for modeling the longitudinal and time-to-event data simultaneously. In this study, we proposed an approach (PA) to study the longitudinal and survival outcomes simultaneously in heterogeneous populations. PA relaxes the assumption of conditional independence (CI). We also compared PA with joint latent class model (JLCM) and separate approach (SA) for various sample sizes (150, 300, and 600) and different association parameters (0, 0.2, and 0.5). The average bias of parameters estimation (AB-PE), average SE of parameters estimation (ASE-PE), and coverage probability of the 95% confidence interval (CP) among the three approaches were compared. In most cases, when the sample sizes increased, AB-PE and ASE-PE decreased for the three approaches, and CP got closer to the nominal level of 0.95. When there was a considerable association, PA in comparison with SA and JLCM performed better in the sense that PA had the smallest AB-PE and ASE-PE for the longitudinal submodel among the three approaches for the small and moderate sample sizes. Moreover, JLCM was desirable for the none-association and the large sample size. Finally, the evaluated approaches were applied on a real HIV/AIDS dataset for validation, and the results were compared.
Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jacobsson, Hans; Hagen, Karin; Bergquist, Annika; Jonas, Eduard
2014-04-01
To evaluate dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) for the assessment of global and segmental liver volume and function in patients with primary sclerosing cholangitis (PSC), and to explore the heterogeneous distribution of liver function in this patient group. Twelve patients with primary sclerosing cholangitis (PSC) and 20 healthy volunteers were examined using DHCE-MRI with Gd-EOB-DTPA. Segmental and total liver volume were calculated, and functional parameters (hepatic extraction fraction [HEF], input relative blood-flow [irBF], and mean transit time [MTT]) were calculated in each liver voxel using deconvolutional analysis. In each study subject, and incongruence score (IS) was constructed to describe the mismatch between segmental function and volume. Among patients, the liver function parameters were correlated to bile duct obstruction and to established scoring models for liver disease. Liver function was significantly more heterogeneously distributed in the patient group (IS 1.0 versus 0.4). There were significant correlations between biliary obstruction and segmental functional parameters (HEF rho -0.24; irBF rho -0.45), and the Mayo risk score correlated significantly with the total liver extraction capacity of Gd-EOB-DTPA (rho -0.85). The study demonstrates a new method to quantify total and segmental liver function using DHCE-MRI in patients with PSC. Copyright © 2013 Wiley Periodicals, Inc.
Rink, Lena; Pagel, Tobias; Franklin, Jeremy; Baethge, Christopher
2016-02-01
Comparisons of illness characteristics between patients with schizoaffective disorder (SAD) patients and unipolar depression (UD) are rare, even though UD is one of the most important differential diagnoses of SAD. Also, the variability of illness characteristics (heterogeneity) has not been compared. We compared illness characteristics and their heterogeneity among SAD, UD, and - as another important differential diagnosis - schizophrenia (S). In order to reduce sampling bias we systematically searched for studies simultaneously comparing samples of patients with SAD, UD, and S. Using random effects and Mantel-Haenszel models we estimated and compared demographic, illness course and psychopathology parameters, using pooled standard deviations as a measurement of heterogeneity. Out of 155 articles found by an earlier meta-analysis, 765 screened in Medline, 2738 screened in EMBASE, and 855 screened in PsycINFO we selected 24 studies, covering 3714 patients diagnosed according to RDC, DSM-III, DSM-IIIR, DSM-IV, or ICD-10. In almost all key characteristics, samples with schizoaffective disorders fell between unipolar depression and schizophrenia, with a tendency towards schizophrenia. On average, UD patients were significantly older at illness onset (33.0 years, SAD: 25.2, S: 23.4), more often women (59% vs. 57% vs. 39%) and more often married (53% vs. 39% vs. 27%). Their psychopathology was also less severe, as measured by BPRS, GAS, and HAMD. In demographic and clinical variables heterogeneity was roughly 5% larger in UD than in SAD, and samples of patients with schizophrenia had the lowest pooled heterogeneity. A similar picture emerged in a sensitivity analysis with coefficient of variation as the measurement of heterogeneity. Relative to bipolar disorder there are fewer studies including unipolar patients. No studies based on DSM-5 could be included. Regarding unipolar affective disorder this study confirms what we have shown for bipolar disorders in earlier studies: schizoaffective disorder falls between schizophrenia and affective disorders, and there are relevant quantitative differences in key illness characteristics, which supports the validity of the schizoaffective disorder concept. Contrary to our expectations heterogeneity is not larger in SAD than in UD and not substantially higher than in S. Lower reliability of the diagnosis of SAD therefore cannot be ascribed to higher variability of illness characteristics in SAD. Copyright © 2015 Elsevier B.V. All rights reserved.
Adsorption mechanisms and surface heterogeneity in the oxidation reaction of CO
NASA Astrophysics Data System (ADS)
Cortés, Joaquín; Valencia, Eliana; Araya, Paulo
1998-10-01
A Monte Carlo simulation study is made of the sensitivity of the CO oxidation reaction to changes in the characteristics of the catalyst's surface on which the type of oxygen adsorption mechanism is dependent. Infinite rate models of the Ziff, Gulari, and Barshad (ZGB) type, and mechanisms having kinetics parameters of actual experiments from the literature are studied. It is shown that, if linear adsorption is assumed, the structural insensitivity becomes apparent in the phase diagram but not in the production of CO2. In the case of structural sensitivity it is seen that surface heterogeneity leads to a change in the character of the phase transition curve, and also allows information about the surface to be obtained from the shape of the transition curve.
Control of epidemics on complex networks: Effectiveness of delayed isolation
NASA Astrophysics Data System (ADS)
Pereira, Tiago; Young, Lai-Sang
2015-08-01
We study isolation as a means to control epidemic outbreaks in complex networks, focusing on the consequences of delays in isolating infected nodes. Our analysis uncovers a tipping point: if infected nodes are isolated before a critical day dc, the disease is effectively controlled, whereas for longer delays the number of infected nodes climbs steeply. We show that dc can be estimated explicitly in terms of network properties and disease parameters, connecting lowered values of dc explicitly to heterogeneity in degree distribution. Our results reveal also that initial delays in the implementation of isolation protocols can have catastrophic consequences in heterogeneous networks. As our study is carried out in a general framework, it has the potential to offer insight and suggest proactive strategies for containing outbreaks of a range of serious infectious diseases.
A nonlocal spatial model for Lyme disease
NASA Astrophysics Data System (ADS)
Yu, Xiao; Zhao, Xiao-Qiang
2016-07-01
This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.
Class Size and Sorting in Market Equilibrium: Theory and Evidence. NBER Working Paper No. 13303
ERIC Educational Resources Information Center
Urquiola, Miguel; Verhoogen, Eric
2007-01-01
This paper examines how schools choose class size and how households sort in response to those choices. Focusing on the highly liberalized Chilean education market, we develop a model in which schools are heterogeneous in an underlying productivity parameter, class size is a component of school quality, households are heterogeneous in income and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Rong; Zhukhovitskiy, Aleksandr V.; Deraedt, Christophe V.
Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles—some without homogeneous analogues—for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimizemore » and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl 2) or reduced (e.g., with H 2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. Here in this Account, we will briefly introduce metal clusters and describe the synthesis and characterizations of supported DEMCs. We will present the catalysis studies of supported DEMCs in both the batch and flow modes. Lastly, we will summarize the current state of heterogenizing homogeneous catalysis and provide future directions for this area of research.« less
Ozonation of isoproturon adsorbed on silica particles under atmospheric conditions
NASA Astrophysics Data System (ADS)
Pflieger, Maryline; Grgić, Irena; Kitanovski, Zoran
2012-12-01
The results on heterogeneous ozonation of a phenylurea pesticide, isoproturon, under atmospheric conditions are presented for the first time in the present study. The study was carried out using an experimental device previously adopted and validated for the heterogeneous reactivity of organics toward ozone (Pflieger et al., 2011). Isoproturon was adsorbed on silica particles via a liquid-to-solid equilibrium with a load far below a monolayer (0.02% by weight/surface coverage of 0.5%). The rate constants were estimated by measuring the consumption of the organic (dark, T = 26 °C, RH < 1%). The experimental data were fitted by both the modified Langmuir-Hinshelwood and the Eley-Rideal patterns, resulting in atmospheric lifetimes of heterogeneous ozonation of 4 and 6 days, respectively (for 40 ppb of O3). Parameters, such as the number and the quantity of pesticides adsorbed on the solid support, which can significantly influence the heterogeneous kinetics, were investigated as well. The results obtained suggest that the organic compound is adsorbed in multilayer aggregates on the aerosol even though submonolayer coverage is assumed. The presence of a second herbicide, trifluralin, together with isoproturon on the aerosol surface does not affect the kinetics of ozonation, indicating that both compounds are adsorbed on different surface sites of silica particles.
Accounting hierarchical heterogeneity of rock during its working off by explosive methods
NASA Astrophysics Data System (ADS)
Hachay, Olga; Khachay, Oleg
2017-04-01
First the phenomenon of zonal disintegration of rocks around excavations have been described and published as a discovery. Questions of structures formation are related to the fundamental problems of the natural sciences and the study of the structural appearance is one of the most important purposes of scientific knowledge. In real systems, considered in physics, it had been found spatial and temporal structures. The temporal structures are inseparable from the dynamics of the system, here it are particularly important principles of pointedness and causality. Formation of structures by irreversible processes is associated with a qualitative leap when it reaches the critical parameters. Self organization is a supercritical phenomenon when the system parameters exceed their critical values. When the system deviates greatly from its equilibrium, it's state variables satisfy the nonlinear equations. Non linearity is an important and common feature of the processes taking place far from equilibrium. By that the supercritical output of entropy is only possible if there is an unusual, special internal structure of the system. This means that self-organization is not a universal property of matter; it exists in certain internal and external conditions and is not associated with a particular class of substances. So, there are two classes of irreversible processes: 1.Destroying of the structure near the equilibrium position that is a universal property of systems under arbitrary conditions. 2. Occuring structures far from the equilibrium position under the conditions that the system is open and has a non-linear internal dynamics and its external parameters have supercritical parameters. Prigogine called them dissipative structures. The study of the morphology and dynamics of the migration of these zones is of particular importance when developing deep deposits, complicated by, dynamically events as rock bursts. Important tools for this study are the geophysical surveys. Because the information about the structure and state of the environment can be obtained from the geophysical data by interpreting them in frames of the model, which is an approximation to the real environment, therefore you must select it from the class of physically and geologically reasonable. For a description of the geological environment in the form of a rock massif with its natural and technogenic heterogeneity we should use more adequate description as is a discrete model of the environment in the form of a piece wise non-homogeneous block media with embedded heterogeneities of lower rank than the block size . This nesting can be traced back several times, ie, changing the scale of the study, we see that the heterogeneity of lower rank now appear as blocks for the irregularities of the next rank. The simple average of the measured geophysical parameters can lead to a distorted view of the structure of the environment and its evolution. The Institute of Geophysics, UB RAS has developed a hardware-methodological and interpretative system for studying the structure and state of complex geological environment, which has the potential instability and the ability to rebuild the hierarchy structure with significant external influence. The basis of this complex is the developed 3-D technique planshet electromagnetic induction studies in frequency geometrical variant, resting on one side on the interpretation software system for 3-D alternating electromagnetic fields, and on the other hand on developed by Ph.D. A.I.Chelovechkov device for carrying out the inductive research. On the basis of this technology the active monitoring of the structure and state of the rock massif inside the mines of different material composition can be provided, it can be carried out to detect short-term precursors of strong dynamic phenomena according to the electromagnetic induction monitoring. There are developed algorithms for modeling of electromagnetic fields in hierarchic heterogeneous media.
Characterisation of the physico-mechanical parameters of MSW.
Stoltz, Guillaume; Gourc, Jean-Pierre; Oxarango, Laurent
2010-01-01
Following the basics of soil mechanics, the physico-mechanical behaviour of municipal solid waste (MSW) can be defined through constitutive relationships which are expressed with respect to three physical parameters: the dry density, the porosity and the gravimetric liquid content. In order to take into account the complexity of MSW (grain size distribution and heterogeneity larger than for conventional soils), a special oedometer was designed to carry out laboratory experiments. This apparatus allowed a coupled measurement of physical parameters for MSW settlement under stress. The studied material was a typical sample of fresh MSW from a French landfill. The relevant physical parameters were measured using a gas pycnometer. Moreover, the compressibility of MSW was studied with respect to the initial gravimetric liquid content. Proposed methods to assess the set of three physical parameters allow a relevant understanding of the physico-mechanical behaviour of MSW under compression, specifically, the evolution of the limit liquid content. The present method can be extended to any type of MSW. 2010 Elsevier Ltd. All rights reserved.
Maas, Anne H; Rozendaal, Yvonne J W; van Pul, Carola; Hilbers, Peter A J; Cottaar, Ward J; Haak, Harm R; van Riel, Natal A W
2015-03-01
Current diabetes education methods are costly, time-consuming, and do not actively engage the patient. Here, we describe the development and verification of the physiological model for healthy subjects that forms the basis of the Eindhoven Diabetes Education Simulator (E-DES). E-DES shall provide diabetes patients with an individualized virtual practice environment incorporating the main factors that influence glycemic control: food, exercise, and medication. The physiological model consists of 4 compartments for which the inflow and outflow of glucose and insulin are calculated using 6 nonlinear coupled differential equations and 14 parameters. These parameters are estimated on 12 sets of oral glucose tolerance test (OGTT) data (226 healthy subjects) obtained from literature. The resulting parameter set is verified on 8 separate literature OGTT data sets (229 subjects). The model is considered verified if 95% of the glucose data points lie within an acceptance range of ±20% of the corresponding model value. All glucose data points of the verification data sets lie within the predefined acceptance range. Physiological processes represented in the model include insulin resistance and β-cell function. Adjusting the corresponding parameters allows to describe heterogeneity in the data and shows the capabilities of this model for individualization. We have verified the physiological model of the E-DES for healthy subjects. Heterogeneity of the data has successfully been modeled by adjusting the 4 parameters describing insulin resistance and β-cell function. Our model will form the basis of a simulator providing individualized education on glucose control. © 2014 Diabetes Technology Society.
Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate
NASA Astrophysics Data System (ADS)
Li, Jun; Altschuler, Martin D.; Hahn, Stephen M.; Zhu, Timothy C.
2008-08-01
The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the results from heterogeneous optical data with those obtained from average homogeneous optical properties. The optimized treatment plans are also compared with the reference clinical plan, defined as the plan with sources of equal strength, distributed regularly in space, which delivers a mean value of prescribed fluence at detector locations within the treatment region. The study suggests that comprehensive optimization of source parameters (i.e. strengths, lengths and locations) is feasible, thus allowing acceptable dose coverage in a heterogeneous prostate PDT within the time constraints of the PDT procedure.
Neuroanatomical Heterogeneity of Essential Tremor According to Propranolol Response
Chung, Seok Jong; Kwon, Hunki; Lee, Dong-Kyun; Hong, Jin Yong; Sunwoo, Mun-Kyung; Sohn, Young H.; Lee, Jong-Min; Lee, Phil Hyu
2013-01-01
Background Recent studies have suggested that essential tremor (ET) is a more complex and heterogeneous clinical entity than initially thought. In the present study, we assessed the pattern of cortical thickness and diffusion tensor white matter (WM) changes in patients with ET according to the response to propranolol to explore the pathogenesis underlying the clinical heterogeneity of ET. Methods A total of 32 patients with drug naive ET were recruited prospectively from the Movement Disorders outpatient clinic. The patients were divided into a propranolol-responder group (n = 18) and a non-responder group (n = 14). We analyzed the pattern of cortical thickness and diffusion tensor WM changes between these two groups and performed correlation analysis between imaging and clinical parameters. Results There were no significant differences in demographic characteristics, general cognition, or results of detailed neuropsychological tests between the groups. The non-responder group showed more severe cortical atrophy in the left orbitofrontal cortex and right temporal cortex relative to responders. However, the responders exhibited significantly lower fractional anisotropy values in the bilateral frontal, corpus callosal, and right parietotemporal WM compared with the non-responder group. There were no significant clusters where the cortical thickness or WM alterations were significantly correlated with initial tremor severity or disease duration. Conclusions The present data suggest that patients with ET have heterogeneous cortical thinning and WM alteration with respect to responsiveness to propranolol, suggesting that propranolol responsiveness may be a predictive factor to determine ET subtypes in terms of neuroanatomical heterogeneity. PMID:24358327
Ultrasonographic Assessment of Testicular Viability Using Heterogeneity Levels in Torsed Testicles.
Samson, Patrick; Hartman, Christopher; Palmerola, Ricardo; Rahman, Zara; Siev, Michael; Palmer, Lane S; Ghorayeb, Sleiman R
2017-03-01
Gross testicular heterogeneity on ultrasound has been associated with testis loss following testicular torsion in children. We aimed to quantify the extent of temporal heterogeneity associated with testis loss in testicular torsion cases using a noninvasive technique to determine a HI (heterogeneity index) on ultrasound images. We retrospectively studied the records of patients who presented with acute scrotal pain to the Pediatric Emergency Department over a 6-year period. Ultrasound images of the affected testis and the unaffected contralateral testis were examined using a proprietary program to determine the extent of heterogeneity of each image. The difference between the HI of the torsed testis and that of the contralateral normal testis was termed ΔHI. Receiver operating characteristics curve analysis was performed to determine the ΔHI threshold for nonviability. Among 529 patients who presented with acute scrotal pain 147 had testicular torsion based on surgical findings. Of these 147 patients 110 (74.8%) were found to have a viable testis while 37 (25.2%) had a nonviable testis. Using the ΔHI cutoff of 0.394 or greater for nonviability, sensitivity and specificity were 100% and 94.5%, respectively. Positive and negative predictive values were 86% and 100%, respectively. Our results demonstrate that a quantifiable temporal gradation of heterogeneity exists and the heterogeneity index can be used as an objective parameter to determine the viability of a torsed testicle. By developing the technology to measure the heterogeneity index in real time, we could potentially identify which patients with testicular torsion have a nonviable testicle and, thus, would not require immediate surgical exploration. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Wang, Meng; Ford, Roseanne M
2010-01-15
A two-dimensional mathematical model was developed to simulate transport phenomena of chemotactic bacteria in a sand-packed column designed with structured physical heterogeneity in the presence of a localized chemical source. In contrast to mathematical models in previous research work, in which bacteria were typically treated as immobile colloids, this model incorporated a convective-like chemotaxis term to represent chemotactic migration. Consistency between experimental observation and model prediction supported the assertions that (1) dispersion-induced microbial transfer between adjacent conductive zones occurred at the interface and had little influence on bacterial transport in the bulk flow of the permeable layers and (2) the enhanced transverse bacterial migration in chemotactic experiments relative to nonchemotactic controls was mainly due to directed migration toward the chemical source zone. On the basis of parameter sensitivity analysis, chemotactic parameters determined in bulk aqueous fluid were adequate to predict the microbial transport in our intermediate-scale porous media system. Additionally, the analysis of adsorption coefficient values supported the observation of a previous study that microbial deposition to the surface of porous media might be decreased under the effect of chemoattractant gradients. By quantitatively describing bacterial transport and distribution in a heterogeneous system, this mathematical model serves to advance our understanding of chemotaxis and motility effects in granular media systems and provides insights for modeling microbial transport in in situ microbial processes.
NASA Astrophysics Data System (ADS)
Wu, Zhisheng; Tao, Ou; Cheng, Wei; Yu, Lu; Shi, Xinyuan; Qiao, Yanjiang
2012-02-01
This study demonstrated that near-infrared chemical imaging (NIR-CI) was a promising technology for visualizing the spatial distribution and homogeneity of Compound Liquorice Tablets. The starch distribution (indirectly, plant extraction) could be spatially determined using basic analysis of correlation between analytes (BACRA) method. The correlation coefficients between starch spectrum and spectrum of each sample were greater than 0.95. Depending on the accurate determination of starch distribution, a method to determine homogeneous distribution was proposed by histogram graph. The result demonstrated that starch distribution in sample 3 was relatively heterogeneous according to four statistical parameters. Furthermore, the agglomerates domain in each tablet was detected using score image layers of principal component analysis (PCA) method. Finally, a novel method named Standard Deviation of Macropixel Texture (SDMT) was introduced to detect agglomerates and heterogeneity based on binary image. Every binary image was divided into different sizes length of macropixel and the number of zero values in each macropixel was counted to calculate standard deviation. Additionally, a curve fitting graph was plotted on the relationship between standard deviation and the size length of macropixel. The result demonstrated the inter-tablet heterogeneity of both starch and total compounds distribution, simultaneously, the similarity of starch distribution and the inconsistency of total compounds distribution among intra-tablet were signified according to the value of slope and intercept parameters in the curve.
Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model
NASA Astrophysics Data System (ADS)
Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel
2017-11-01
The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter ( P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter ( π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 < P < 0.30, whilst π needs to be limited by a very narrow range ( 0.60 < π < 0.66) in order to reproduce aftershocks pattern characteristics which resemble those of observed sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.
Pyka, Thomas; Gempt, Jens; Hiob, Daniela; Ringel, Florian; Schlegel, Jürgen; Bette, Stefanie; Wester, Hans-Jürgen; Meyer, Bernhard; Förster, Stefan
2016-01-01
Amino acid positron emission tomography (PET) with [18F]-fluoroethyl-L-tyrosine (FET) is well established in the diagnostic work-up of malignant brain tumors. Analysis of FET-PET data using tumor-to-background ratios (TBR) has been shown to be highly valuable for the detection of viable hypermetabolic brain tumor tissue; however, it has not proven equally useful for tumor grading. Recently, textural features in 18-fluorodeoxyglucose-PET have been proposed as a method to quantify the heterogeneity of glucose metabolism in a variety of tumor entities. Herein we evaluate whether textural FET-PET features are of utility for grading and prognostication in patients with high-grade gliomas. One hundred thirteen patients (70 men, 43 women) with histologically proven high-grade gliomas were included in this retrospective study. All patients received static FET-PET scans prior to first-line therapy. TBR (max and mean), volumetric parameters and textural parameters based on gray-level neighborhood difference matrices were derived from static FET-PET images. Receiver operating characteristic (ROC) and discriminant function analyses were used to assess the value for tumor grading. Kaplan-Meier curves and univariate and multivariate Cox regression were employed for analysis of progression-free and overall survival. All FET-PET textural parameters showed the ability to differentiate between World Health Organization (WHO) grade III and IV tumors (p < 0.001; AUC 0.775). Further improvement in discriminatory power was possible through a combination of texture and metabolic tumor volume, classifying 85 % of tumors correctly (AUC 0.830). TBR and volumetric parameters alone were correlated with tumor grade, but showed lower AUC values (0.644 and 0.710, respectively). Furthermore, a correlation of FET-PET texture but not TBR was shown with patient PFS and OS, proving significant in multivariate analysis as well. Volumetric parameters were predictive for OS, but this correlation did not hold in multivariate analysis. Determination of uptake heterogeneity in pre-therapeutic FET-PET using textural features proved valuable for the (sub-)grading of high-grade glioma as well as prediction of tumor progression and patient survival, and showed improved performance compared to standard parameters such as TBR and tumor volume. Our results underscore the importance of intratumoral heterogeneity in the biology of high-grade glial cell tumors and may contribute to individual therapy planning in the future, although they must be confirmed in prospective studies before incorporation into clinical routine.
Hu, B.X.; He, C.
2008-01-01
An iterative inverse method, the sequential self-calibration method, is developed for mapping spatial distribution of a hydraulic conductivity field by conditioning on nonreactive tracer breakthrough curves. A streamline-based, semi-analytical simulator is adopted to simulate solute transport in a heterogeneous aquifer. The simulation is used as the forward modeling step. In this study, the hydraulic conductivity is assumed to be a deterministic or random variable. Within the framework of the streamline-based simulator, the efficient semi-analytical method is used to calculate sensitivity coefficients of the solute concentration with respect to the hydraulic conductivity variation. The calculated sensitivities account for spatial correlations between the solute concentration and parameters. The performance of the inverse method is assessed by two synthetic tracer tests conducted in an aquifer with a distinct spatial pattern of heterogeneity. The study results indicate that the developed iterative inverse method is able to identify and reproduce the large-scale heterogeneity pattern of the aquifer given appropriate observation wells in these synthetic cases. ?? International Association for Mathematical Geology 2008.
ERIC Educational Resources Information Center
Tudela, Ignacio; Bonete, Pedro; Fullana, Andres; Conesa, Juan Antonio
2011-01-01
The unreacted-core shrinking (UCS) model is employed to characterize fluid-particle reactions that are important in industry and research. An approach to understand the UCS model by numerical methods is presented, which helps the visualization of the influence of the variables that control the overall heterogeneous process. Use of this approach in…
ON MEASUREMENT OF CARBON CONTENT IN RETAINED AUSTENITE IN A NANOSTRUCTURED BAINITIC STEEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Mateo, C.; Caballero, Francesca G.; Miller, Michael K
2012-01-01
In this study, the carbon content of retained austenite in a nanostructured bainitic steel was measured by atom probe tomography and compared with data derived from the austenite lattice parameter determined by X-ray diffraction. The results provide new evidence about the heterogeneous distribution of carbon in austenite, a fundamental issue controlling ductility in this type of microstructure.
Andres Susaeta; Pankaj Lal; Janaki Alavalapati; Evan Mercer
2011-01-01
This paper contrasts alternate methodological approaches of investigating public preferences, the random parameter logit (RPL) where tastes and preferences of respondents are assumed to be heterogeneous and the conditional logit (CL) approach where tastes and preferences remain fixed for individuals. We conducted a choice experiment to assess preferences for woody...
NASA Astrophysics Data System (ADS)
Valhondo, Cristina; Martinez-Landa, Lurdes; Carrera, Jesús; Hidalgo, Juan J.; Ayora, Carlos
2017-04-01
Artificial recharge of aquifers (AR) is a standard technique to replenish and enhance groundwater resources, that have widely been used due to the increasing demand of quality water. AR through infiltration basins consists on infiltrate surface water, that might be affected in more or less degree by treatment plant effluents, runoff and others undesirables water sources, into an aquifer. The water quality enhances during the passage through the soil and organic matter, nutrients, organic contaminants, and bacteria are reduced mainly due to biodegradation and adsorption. Therefore, one of the goals of AR is to ensure a good quality status of the aquifer even if lesser quality water is used for recharge. Understand the behavior and transport of the potential contaminants is essential for an appropriate management of the artificial recharge system. The knowledge of the flux distribution around the recharge system and the relationship between the recharge system and the aquifer (area affected by the recharge, mixing ratios of recharged and native groundwater, travel times) is essential to achieve this goal. Evaluate the flux distribution is not always simple because the complexity and heterogeneity of natural systems. Indeed, it is not so much regulate by hydraulic conductivity of the different geological units as by their continuity and inter-connectivity particularly in the vertical direction. In summary for an appropriate management of an artificial recharge system it is needed to acknowledge the heterogeneity of the media. Aiming at characterizing the residence time distribution (RTDs) of a pilot artificial recharge system and the extent to which heterogeneity affects RTDs, we performed and evaluated a pulse injection tracer test. The artificial recharge system was simulated as a multilayer model which was used to evaluate the measured breakthrough curves at six monitoring points. Flow and transport parameters were calibrated under two hypotheses. The first hypothesis considered a homogeneous medium where flow and transport parameters were constant for all layers. The second hypothesis considered heterogeneous media and thus parameters were different for each layer. Heterogeneous model yielded to a better fit, measured as root mean square weighted error, of the measured tracer breakthrough curves. Both homogeneous and heterogeneous models reproduce the long tails observed in some observation points implying that the broad RTDs are caused not only by heterogeneity but also by the mean flow structure. We contend that it is this broad RTD, together with the sequence of redox states produced by our reactive layer, what explains the excellent behavior of the system in removing recalcitrant organic micropollutants.
A comparison of regional flood frequency analysis approaches in a simulation framework
NASA Astrophysics Data System (ADS)
Ganora, D.; Laio, F.
2016-07-01
Regional frequency analysis (RFA) is a well-established methodology to provide an estimate of the flood frequency curve at ungauged (or scarcely gauged) sites. Different RFA approaches exist, depending on the way the information is transferred to the site of interest, but it is not clear in the literature if a specific method systematically outperforms the others. The aim of this study is to provide a framework wherein carrying out the intercomparison by building up a virtual environment based on synthetically generated data. The considered regional approaches include: (i) a unique regional curve for the whole region; (ii) a multiple-region model where homogeneous subregions are determined through cluster analysis; (iii) a Region-of-Influence model which defines a homogeneous subregion for each site; (iv) a spatially smooth estimation procedure where the parameters of the regional model vary continuously along the space. Virtual environments are generated considering different patterns of heterogeneity, including step change and smooth variations. If the region is heterogeneous, with the parent distribution changing continuously within the region, the spatially smooth regional approach outperforms the others, with overall errors 10-50% lower than the other methods. In the case of a step-change, the spatially smooth and clustering procedures perform similarly if the heterogeneity is moderate, while clustering procedures work better when the step-change is severe. To extend our findings, an extensive sensitivity analysis has been performed to investigate the effect of sample length, number of virtual stations, return period of the predicted quantile, variability of the scale parameter of the parent distribution, number of predictor variables and different parent distribution. Overall, the spatially smooth approach appears as the most robust approach as its performances are more stable across different patterns of heterogeneity, especially when short records are considered.
Tumor Heterogeneity of FIGO Stage III Carcinoma of the Uterine Cervix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yong Bae; Lee, Ik Jae; Kim, Song Yih
2009-12-01
Purpose: The purpose of this study was to analyze tumor heterogeneity based on tumor extent and suggest reappraisal of the system of the International Federation of Gynecology and Obstetrics (FIGO) for Stage III carcinoma of the uterine cervix from a radiotherapeutic viewpoint. Methods and Materials: Between 1986 and 2004, 407 patients with FIGO Stage III (FIGO Stage IIIa in 19 and IIIb in 388) were treated with external beam radiotherapy (RT) and high-dose rate brachytherapy. All patients were reviewed with respect to tumor extent. Patterns of failure and survival parameters were analyzed by use of the chi{sup 2} test andmore » Kaplan-Meier method. Results: The complete response rate was 79.6%, and the 5-year overall survival rates for Stage IIIa and Stage IIIb carcinoma of the cervix were 82.1% and 54.8%, respectively. To determine which parameters of tumor extent had an influence on prognosis for Stage IIIb patients, pelvic wall (PW) extension and hydronephrosis (HD) retained significance on multivariate analysis. Stage IIIb patients were divided into three subgroups according to PW extension and HD: low risk (unilateral PW extension without HD), intermediate risk (HD without PW extension or bilateral PW extension without HD), and high risk (unilateral or bilateral PW extension with HD). The high-risk group had a remarkably low complete response rate, high locoregional failure rate, and low 5-year survival rate compared with the intermediate- and low-risk groups. Conclusions: FIGO Stage III carcinoma of the cervix covers considerably heterogeneous subgroups according to tumor extent. Before initiation of treatment, we suggest that physicians determine a tailored treatment policy based on tumor heterogeneity for each Stage III patient.« less
Pajares, Silvia; Noguez, Ana M.; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Cram, Silke S.; Eguiarte, Luis Enrique; Souza, Valeria
2016-01-01
Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m2 plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca2, K+) and anions (HCO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{3}^{-}$\\end{document}3−, Cl−, SO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{4}^{2-}$\\end{document}42−) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities. PMID:27652001
Geodynamics of the East African Rift System ∼30 Ma ago: A stress field model
NASA Astrophysics Data System (ADS)
Min, Ge; Hou, Guiting
2018-06-01
The East African Rift System (EARS) is thought to be an intra-continental ridge that meets the Red Sea and the Gulf of Aden at the Ethiopian Afar as the failed arm of the Afar triple junction. The geodynamics of EARS is still unclear even though several models have been proposed. One model proposes that the EARS developed in a local tensile stress field derived from far-field loads because of the pushing of oceanic ridges. Alternatively, some scientists suggest that the formation of the EARS can be explained by upwelling mantle plumes beneath the lithospheric weak zone (e.g., the Pan-African suture zone). In our study, a shell model is established to consider the Earth's spherical curvature, the lithospheric heterogeneity of the African continent, and the coupling between the mantle plumes and the mid-ocean ridge. The results are calculated via the finite element method using ANSYS software and fit the geological evidence well. To discuss the effects of the different rock mechanical parameters and the boundary conditions, four comparative models are established with different parameters or boundary conditions. Model I ignores the heterogeneity of the African continent, Model II ignores mid-ocean spreading, Model III ignores the upwelling mantle plumes, and Model IV ignores both the heterogeneity of the African continent and the upwelling mantle plumes. Compared to these models is the original model that shows the best-fit results; this model indicates that the coupling of the upwelling mantle plumes and the mid-ocean ridge spreading causes the initial lithospheric breakup in Afar and East Africa. The extension direction and the separation of the EARS around the Tanzanian craton are attributed to the heterogeneity of the East African basement.
Validation of Born Traveltime Kernels
NASA Astrophysics Data System (ADS)
Baig, A. M.; Dahlen, F. A.; Hung, S.
2001-12-01
Most inversions for Earth structure using seismic traveltimes rely on linear ray theory to translate observed traveltime anomalies into seismic velocity anomalies distributed throughout the mantle. However, ray theory is not an appropriate tool to use when velocity anomalies have scale lengths less than the width of the Fresnel zone. In the presence of these structures, we need to turn to a scattering theory in order to adequately describe all of the features observed in the waveform. By coupling the Born approximation to ray theory, the first order dependence of heterogeneity on the cross-correlated traveltimes (described by the Fréchet derivative or, more colourfully, the banana-doughnut kernel) may be determined. To determine for what range of parameters these banana-doughnut kernels outperform linear ray theory, we generate several random media specified by their statistical properties, namely the RMS slowness perturbation and the scale length of the heterogeneity. Acoustic waves are numerically generated from a point source using a 3-D pseudo-spectral wave propagation code. These waves are then recorded at a variety of propagation distances from the source introducing a third parameter to the problem: the number of wavelengths traversed by the wave. When all of the heterogeneity has scale lengths larger than the width of the Fresnel zone, ray theory does as good a job at predicting the cross-correlated traveltime as the banana-doughnut kernels do. Below this limit, wavefront healing becomes a significant effect and ray theory ceases to be effective even though the kernels remain relatively accurate provided the heterogeneity is weak. The study of wave propagation in random media is of a more general interest and we will also show our measurements of the velocity shift and the variance of traveltime compare to various theoretical predictions in a given regime.
Ganina, K P; Petunin, Iu I; Timoshenko, Ia G
1989-01-01
A method for quantitative analysis of epithelial cell nuclear polymorphism was suggested, viz. identification of general statistical population using Petunin's criterion. This criterion was employed to assess heterogeneity of visible surface of interphase epithelial cell nuclei and to assay nuclear DNA level in fibroadenomatous hyperplasia and cancer of the breast. Heterogeneity index (h), alongside with other parameters, appeared useful for quantitative assessment of the disease: heterogeneity index values ranging 0.1-0.4 point to pronounced heterogeneity of epithelial cell nucleus surface and DNA level, and are suggestive of malignant transformation of tissue, whereas benign proliferation of the epithelium is usually characterized by 0.4 less than h less than or equal to 0.9.
Characterizing pulmonary blood flow distribution measured using arterial spin labeling.
Henderson, A Cortney; Prisk, G Kim; Levin, David L; Hopkins, Susan R; Buxton, Richard B
2009-12-01
The arterial spin labeling (ASL) method provides images in which, ideally, the signal intensity of each image voxel is proportional to the local perfusion. For studies of pulmonary perfusion, the relative dispersion (RD, standard deviation/mean) of the ASL signal across a lung section is used as a reliable measure of flow heterogeneity. However, the RD of the ASL signals within the lung may systematically differ from the true RD of perfusion because the ASL image also includes signals from larger vessels, which can reflect the blood volume rather than blood flow if the vessels are filled with tagged blood during the imaging time. Theoretical studies suggest that the pulmonary vasculature exhibits a lognormal distribution for blood flow and thus an appropriate measure of heterogeneity is the geometric standard deviation (GSD). To test whether the ASL signal exhibits a lognormal distribution for pulmonary blood flow, determine whether larger vessels play an important role in the distribution, and extract physiologically relevant measures of heterogeneity from the ASL signal, we quantified the ASL signal before and after an intervention (head-down tilt) in six subjects. The distribution of ASL signal was better characterized by a lognormal distribution than a normal distribution, reducing the mean squared error by 72% (p < 0.005). Head-down tilt significantly reduced the lognormal scale parameter (p = 0.01) but not the shape parameter or GSD. The RD increased post-tilt and remained significantly elevated (by 17%, p < 0.05). Test case results and mathematical simulations suggest that RD is more sensitive than the GSD to ASL signal from tagged blood in larger vessels, a probable explanation of the change in RD without a statistically significant change in GSD. This suggests that the GSD is a useful measure of pulmonary blood flow heterogeneity with the advantage of being less affected by the ASL signal from tagged blood in larger vessels.
Various Slip Behaviors in the Frictionally Heterogeneous Fault Model
NASA Astrophysics Data System (ADS)
Yabe, S.; Ide, S.
2017-12-01
Diverse slip behaviors have been observed on the fault, including regular earthquakes followed by afterslip, and slow earthquakes. In Southwest Japan and Cascadia, hypocenters of slow earthquakes seem to be separated from the locked region of megathrust earthquakes (e.g., Liu et al., 2010). In contrary, M7 earthquakes and their afterslips and repeating occurrences of slow slip events were reported in the coseismic slip area of 2011 M9 earthquake in Tohoku region (Ohta et al., 2012; Ito et al., 2013). Understanding the physical mechanism of diverse slip behavior is important to understand the strain accumulation and release cycle in a whole subduction zone. Among various candidates to explain the slip diversity, including dynamic weakening (e.g., Noda and Lapusta, 2013), fluid-slip interactions (e.g., Segall, 2010), and along-dip variation of frictional property (e.g., Tse and Rice, 1986), we consider in this study frictional heterogeneity on the fault (e.g., Ando et al., 2010, 2012; Nakata et al., 2011; Skarbek et al., 2012; Dublanchet et al., 2013; Yabe and Ide, 2017). We have considered the finite linear fault governed by rate and state friction law on which velocity-weakening zone and velocity-strengthening zone are alternately distributed. The fault outside the model space slips stably, which loads stress to the model space. Such frictionally heterogeneous fault shows diverse slip behavior which cannot be observed in the frictionally homogeneous fault. In some parameter space, the entire faults including velocity-strengthening zones slips seismically (Skarbek et al., 2012; Dublanchet et al., 2013; Yabe and Ide, 2017). We have sometimes observed foreshocks and aftershocks within the mainshock slip area. We have also sometimes observed repeating slow slip events during the inter-seismic period around the rupture initiation point of the mainshock. We will report parameter studies to clarify the relation between diverse slip behavior and frictional heterogeneity.
Masterlark, Timothy; Donovan, Theodore; Feigl, Kurt L.; Haney, Matt; Thurber, Clifford H.; Tung, Sui
2016-01-01
The eruption cycle of a volcano is controlled in part by the upward migration of magma. The characteristics of the magma flux produce a deformation signature at the Earth's surface. Inverse analyses use geodetic data to estimate strategic controlling parameters that describe the position and pressurization of a magma chamber at depth. The specific distribution of material properties controls how observed surface deformation translates to source parameter estimates. Seismic tomography models describe the spatial distributions of material properties that are necessary for accurate models of volcano deformation. This study investigates how uncertainties in seismic tomography models propagate into variations in the estimates of volcano deformation source parameters inverted from geodetic data. We conduct finite element model-based nonlinear inverse analyses of interferometric synthetic aperture radar (InSAR) data for Okmok volcano, Alaska, as an example. We then analyze the estimated parameters and their uncertainties to characterize the magma chamber. Analyses are performed separately for models simulating a pressurized chamber embedded in a homogeneous domain as well as for a domain having a heterogeneous distribution of material properties according to seismic tomography. The estimated depth of the source is sensitive to the distribution of material properties. The estimated depths for the homogeneous and heterogeneous domains are 2666 ± 42 and 3527 ± 56 m below mean sea level, respectively (99% confidence). A Monte Carlo analysis indicates that uncertainties of the seismic tomography cannot account for this discrepancy at the 99% confidence level. Accounting for the spatial distribution of elastic properties according to seismic tomography significantly improves the fit of the deformation model predictions and significantly influences estimates for parameters that describe the location of a pressurized magma chamber.
Shen, Qijun; Shan, Yanna; Hu, Zhengyu; Chen, Wenhui; Yang, Bing; Han, Jing; Huang, Yanfang; Xu, Wen; Feng, Zhan
2018-04-30
To objectively quantify intracranial hematoma (ICH) enlargement by analysing the image texture of head CT scans and to provide objective and quantitative imaging parameters for predicting early hematoma enlargement. We retrospectively studied 108 ICH patients with baseline non-contrast computed tomography (NCCT) and 24-h follow-up CT available. Image data were assessed by a chief radiologist and a resident radiologist. Consistency analysis between observers was tested. The patients were divided into training set (75%) and validation set (25%) by stratified sampling. Patients in the training set were dichotomized according to 24-h hematoma expansion ≥ 33%. Using the Laplacian of Gaussian bandpass filter, we chose different anatomical spatial domains ranging from fine texture to coarse texture to obtain a series of derived parameters (mean grayscale intensity, variance, uniformity) in order to quantify and evaluate all data. The parameters were externally validated on validation set. Significant differences were found between the two groups of patients within variance at V 1.0 and in uniformity at U 1.0 , U 1.8 and U 2.5 . The intraclass correlation coefficients for the texture parameters were between 0.67 and 0.99. The area under the ROC curve between the two groups of ICH cases was between 0.77 and 0.92. The accuracy of validation set by CTTA was 0.59-0.85. NCCT texture analysis can objectively quantify the heterogeneity of ICH and independently predict early hematoma enlargement. • Heterogeneity is helpful in predicting ICH enlargement. • CTTA could play an important role in predicting early ICH enlargement. • After filtering, fine texture had the best diagnostic performance. • The histogram-based uniformity parameters can independently predict ICH enlargement. • CTTA is more objective, more comprehensive, more independently operable, than previous methods.
NASA Astrophysics Data System (ADS)
Zubarev, A. E.; Nadezhdina, I. E.; Brusnikin, E. S.; Karachevtseva, I. P.; Oberst, J.
2016-09-01
The new technique for generation of coordinate control point networks based on photogrammetric processing of heterogeneous planetary images (obtained at different time, scale, with different illumination or oblique view) is developed. The technique is verified with the example for processing the heterogeneous information obtained by remote sensing of Ganymede by the spacecraft Voyager-1, -2 and Galileo. Using this technique the first 3D control point network for Ganymede is formed: the error of the altitude coordinates obtained as a result of adjustment is less than 5 km. The new control point network makes it possible to obtain basic geodesic parameters of the body (axes size) and to estimate forced librations. On the basis of the control point network, digital terrain models (DTMs) with different resolutions are generated and used for mapping the surface of Ganymede with different levels of detail (Zubarev et al., 2015b).
High-throughput imaging of heterogeneous cell organelles with an X-ray laser (CXIDB ID 25)
Hantke, Max, F.
2014-11-17
Preprocessed detector images that were used for the paper "High-throughput imaging of heterogeneous cell organelles with an X-ray laser". The CXI file contains the entire recorded data - including both hits and blanks. It also includes down-sampled images and LCLS machine parameters. Additionally, the Cheetah configuration file is attached that was used to create the pre-processed data.
NASA Astrophysics Data System (ADS)
Zhao, Zhanfeng; Illman, Walter A.
2018-04-01
Previous studies have shown that geostatistics-based transient hydraulic tomography (THT) is robust for subsurface heterogeneity characterization through the joint inverse modeling of multiple pumping tests. However, the hydraulic conductivity (K) and specific storage (Ss) estimates can be smooth or even erroneous for areas where pumping/observation densities are low. This renders the imaging of interlayer and intralayer heterogeneity of highly contrasting materials including their unit boundaries difficult. In this study, we further test the performance of THT by utilizing existing and newly collected pumping test data of longer durations that showed drawdown responses in both aquifer and aquitard units at a field site underlain by a highly heterogeneous glaciofluvial deposit. The robust performance of the THT is highlighted through the comparison of different degrees of model parameterization including: (1) the effective parameter approach; (2) the geological zonation approach relying on borehole logs; and (3) the geostatistical inversion approach considering different prior information (with/without geological data). Results reveal that the simultaneous analysis of eight pumping tests with the geostatistical inverse model yields the best results in terms of model calibration and validation. We also find that the joint interpretation of long-term drawdown data from aquifer and aquitard units is necessary in mapping their full heterogeneous patterns including intralayer variabilities. Moreover, as geological data are included as prior information in the geostatistics-based THT analysis, the estimated K values increasingly reflect the vertical distribution patterns of permeameter-estimated K in both aquifer and aquitard units. Finally, the comparison of various THT approaches reveals that differences in the estimated K and Ss tomograms result in significantly different transient drawdown predictions at observation ports.
Imaging Intratumor Heterogeneity: Role in Therapy Response, Resistance, and Clinical Outcome
O’Connor, James P.B.; Rose, Chris J.; Waterton, John C.; Carano, Richard A.D.; Parker, Geoff J.M.; Jackson, Alan
2014-01-01
Tumors exhibit genomic and phenotypic heterogeneity which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks. These methods can establish whether one tumor is more or less heterogeneous than another and can identify sub-regions with differing biology. In this article we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, rather than be developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. PMID:25421725
The correspondence of surface climate parameters with satellite and terrain data
NASA Technical Reports Server (NTRS)
Dozier, Jeff; Davis, Frank
1987-01-01
One of the goals of the research was to develop a ground sampling stragegy for calibrating remotely sensed measurements of surface climate parameters. The initial sampling strategy involved the stratification of the terrain based on important ancillary surface variables such as slope, exposure, insolation, geology, drainage, fire history, etc. For a spatially heterogeneous population, sampling error is reduced and efficiency increased by stratification of the landscape into more homogeneous sub-areas and by employing periodic random spacing of samples. These concepts were applied in the initial stratification of the study site for the purpose of locating and allocating instrumentation.
Potential for Remotely Sensed Soil Moisture Data in Hydrologic Modeling
NASA Technical Reports Server (NTRS)
Engman, Edwin T.
1997-01-01
Many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture and portray the spatial heterogeneity of hydrologic processes and properties that one encounters in drainage basins. The hydrologic processes that may be detected include ground water recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential ET, and information about the hydrologic properties of soils and heterogeneity of hydrologic parameters. Microwave remote sensing has the potential to detect these signatures within a basin in the form of volumetric soil moisture measurements in the top few cm. These signatures should provide information on how and where to apply soil physical parameters in distributed and lumped parameter models and how to subdivide drainage basins into hydrologically similar sub-basins.
Inference of R 0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains
Blumberg, Seth; Lloyd-Smith, James O.
2013-01-01
For many infectious disease processes such as emerging zoonoses and vaccine-preventable diseases, and infections occur as self-limited stuttering transmission chains. A mechanistic understanding of transmission is essential for characterizing the risk of emerging diseases and monitoring spatio-temporal dynamics. Thus methods for inferring and the degree of heterogeneity in transmission from stuttering chain data have important applications in disease surveillance and management. Previous researchers have used chain size distributions to infer , but estimation of the degree of individual-level variation in infectiousness (as quantified by the dispersion parameter, ) has typically required contact tracing data. Utilizing branching process theory along with a negative binomial offspring distribution, we demonstrate how maximum likelihood estimation can be applied to chain size data to infer both and the dispersion parameter that characterizes heterogeneity. While the maximum likelihood value for is a simple function of the average chain size, the associated confidence intervals are dependent on the inferred degree of transmission heterogeneity. As demonstrated for monkeypox data from the Democratic Republic of Congo, this impacts when a statistically significant change in is detectable. In addition, by allowing for superspreading events, inference of shifts the threshold above which a transmission chain should be considered anomalously large for a given value of (thus reducing the probability of false alarms about pathogen adaptation). Our analysis of monkeypox also clarifies the various ways that imperfect observation can impact inference of transmission parameters, and highlights the need to quantitatively evaluate whether observation is likely to significantly bias results. PMID:23658504
Sivaramakrishnan, Gowri; Sridharan, Kannan
2018-05-01
Alternatives to adrenaline with lignocaine local anesthesia, such as clonidine, have been trialed in various randomized, controlled trials. Therefore, the aim of the present systematic review was to compile the available evidence on using clonidine with lignocaine for dental anesthesia. Electronic databases were searched for eligible studies. A data-extraction form was created, extracted data were analyzed using non-Cochrane mode in RevMan 5.3 software. Heterogeneity between the studies were assessed using the forest plot, I 2 statistics (where >50% was considered to have moderate-to-severe heterogeneity), and χ 2 -test. Random-effects models were used because of moderate heterogeneity. Five studies were included for the final review. While clonidine was found to significantly shorten the onset of local anesthesia when measured subjectively, no significant difference was observed objectively. No significant difference was observed in the duration and postoperative analgesia. Stable hemodynamic parameters within the safe range were observed postoperatively when clonidine was used. Clonidine could be considered as an alternative to adrenaline in cases of contraindications to adrenaline, such as like cardiac abnormalities, hypertension, and diabetes. © 2017 John Wiley & Sons Australia, Ltd.
Spatial distribution of enzyme driven reactions at micro-scales
NASA Astrophysics Data System (ADS)
Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian
2017-04-01
Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).
USDA-ARS?s Scientific Manuscript database
Field scale water infiltration and soil-water and solute transport models require spatially-averaged “effective” soil hydraulic parameters to represent the average flux and storage. The values of these effective parameters vary for different conditions, processes, and component soils in a field. For...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Scott; Haslauer, Claus P.; Cirpka, Olaf A.
2017-01-05
The key points of this presentation were to approach the problem of linking breakthrough curve shape (RP-CTRW transition distribution) to structural parameters from a Monte Carlo approach and to use the Monte Carlo analysis to determine any empirical error
Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation.
Xiao, Jiadong; Xie, Yongbing; Cao, Hongbin
2015-02-01
Heterogeneous photocatalysis and ozonation are robust advanced oxidation processes for eliminating organic contaminants in wastewater. The combination of these two methods is carried out in order to enhance the overall mineralization of refractory organics. An apparent synergism between heterogeneous photocatalysis and ozonation has been demonstrated in many literatures, which gives rise to an improvement of total organic carbon removal. The present overview dissects the heterogeneous catalysts and the influences of different operational parameters, followed by the discussion on the kinetics, mechanism, economic feasibility and future trends of this integrated technology. The enhanced oxidation rate mainly results from a large amount of hydroxyl radicals generated from a synergistically induced decomposition of dissolved ozone, besides superoxide ion radicals and the photo-induced holes. Six reaction pathways possibly exist for the generation of hydroxyl radicals in the reaction mechanism of heterogeneous photocatalytic ozonation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tixier, Florent; Groves, Ashley M; Goh, Vicky; Hatt, Mathieu; Ingrand, Pierre; Le Rest, Catherine Cheze; Visvikis, Dimitris
2014-01-01
Thirty patients with proven colorectal cancer prospectively underwent integrated 18F-FDG PET/DCE-CT to assess the metabolic-flow phenotype. Both CT blood flow parametric maps and PET images were analyzed. Correlations between PET heterogeneity and perfusion CT were assessed by Spearman's rank correlation analysis. Blood flow visualization provided by DCE-CT images was significantly correlated with 18F-FDG PET metabolically active tumor volume as well as with uptake heterogeneity for patients with stage III/IV tumors (|ρ|:0.66 to 0.78; p-value<0.02). The positive correlation found with tumor blood flow indicates that intra-tumor heterogeneity of 18F-FDG PET accumulation reflects to some extent tracer distribution and consequently indicates that 18F-FDG PET intra-tumor heterogeneity may be associated with physiological processes such as tumor vascularization.
Nyflot, Matthew J.; Yang, Fei; Byrd, Darrin; Bowen, Stephen R.; Sandison, George A.; Kinahan, Paul E.
2015-01-01
Abstract. Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes. PMID:26251842
Nyflot, Matthew J; Yang, Fei; Byrd, Darrin; Bowen, Stephen R; Sandison, George A; Kinahan, Paul E
2015-10-01
Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes.
M(2)C Carbide Precipitation in Martensitic Cobalt - Steels.
NASA Astrophysics Data System (ADS)
Montgomery, Jonathan Scott
1990-01-01
M_2C carbide precipitation was investigated in martensitic Co-Ni steels, including the commercial AF1410 steel and a series of higher-strength model alloys. Results of TEM (from both thin foils and extraction replicas) and X-ray diffraction were combined with results of collaborative SANS and APFIM studies to determine phase fractions, compositions, and lattice parameters throughout precipitation, including estimation of carbide initial critical nucleus properties. The composition dependence of the M_2C lattice parameters was modelled to predict the composition-dependent transformation eigen-strains for coherent precipitation; this was input into collaborative numerical calculations of both the coherent carbide elastic self energy and the dislocation interaction energy during heterogeneous precipitation. The observed overall precipitation behavior is consistent with theoretically-predicted behavior at high supersaturations where nucleation and coarsening compete such that the average particle size remains close to the critical size as supersaturation drops. However, the coarsening in this system follows a t^{1over 5} rate law consistent with heterogeneous precipitation on dislocations. Initial precipitation appears to be coherent, the carbides tending toward a rod shape with major axis oriented along the minimum principal strain direction. At initial nucleation, particles are Fe-rich and C-deficient, diminishing the transformation eigenstrains to a near invariant-line strain condition. The observed relation between carbide volume fraction and the shape -dependent capillarity parameter partialS/ partialV implies a coherency loss transition in AF1410 reached at 8hr tempering at 510 ^circC. The precipitation in AF1410 at 510^ circC exhibits a "renucleation" phenomenon in which a second stage of nucleation occurs beyond the precipitation half-completion time (1-2hrs). It appears that the carbide composition during precipitation follows a trajectory of increasing interfacial energy and nearly constant volume driving force. This may contribute to the renucleation phenomenon, but the computed barrier for heterogeneous nucleation on the dislocations is at this point an order of magnitude too high. An alternative possibility is that renucleation may represent autocatalytic heterogeneous nucleation in the stress field of coherent carbides, once they have grown to sufficient size to act as potent nucleation sites.
Rathfelder, K M; Abriola, L M; Taylor, T P; Pennell, K D
2001-04-01
A numerical model of surfactant enhanced solubilization was developed and applied to the simulation of nonaqueous phase liquid recovery in two-dimensional heterogeneous laboratory sand tank systems. Model parameters were derived from independent, small-scale, batch and column experiments. These parameters included viscosity, density, solubilization capacity, surfactant sorption, interfacial tension, permeability, capillary retention functions, and interphase mass transfer correlations. Model predictive capability was assessed for the evaluation of the micellar solubilization of tetrachloroethylene (PCE) in the two-dimensional systems. Predicted effluent concentrations and mass recovery agreed reasonably well with measured values. Accurate prediction of enhanced solubilization behavior in the sand tanks was found to require the incorporation of pore-scale, system-dependent, interphase mass transfer limitations, including an explicit representation of specific interfacial contact area. Predicted effluent concentrations and mass recovery were also found to depend strongly upon the initial NAPL entrapment configuration. Numerical results collectively indicate that enhanced solubilization processes in heterogeneous, laboratory sand tank systems can be successfully simulated using independently measured soil parameters and column-measured mass transfer coefficients, provided that permeability and NAPL distributions are accurately known. This implies that the accuracy of model predictions at the field scale will be constrained by our ability to quantify soil heterogeneity and NAPL distribution.
SPORT: An Algorithm for Divisible Load Scheduling with Result Collection on Heterogeneous Systems
NASA Astrophysics Data System (ADS)
Ghatpande, Abhay; Nakazato, Hidenori; Beaumont, Olivier; Watanabe, Hiroshi
Divisible Load Theory (DLT) is an established mathematical framework to study Divisible Load Scheduling (DLS). However, traditional DLT does not address the scheduling of results back to source (i. e., result collection), nor does it comprehensively deal with system heterogeneity. In this paper, the DLSRCHETS (DLS with Result Collection on HET-erogeneous Systems) problem is addressed. The few papers to date that have dealt with DLSRCHETS, proposed simplistic LIFO (Last In, First Out) and FIFO (First In, First Out) type of schedules as solutions to DLSRCHETS. In this paper, a new polynomial time heuristic algorithm, SPORT (System Parameters based Optimized Result Transfer), is proposed as a solution to the DLSRCHETS problem. With the help of simulations, it is proved that the performance of SPORT is significantly better than existing algorithms. The other major contributions of this paper include, for the first time ever, (a) the derivation of the condition to identify the presence of idle time in a FIFO schedule for two processors, (b) the identification of the limiting condition for the optimality of FIFO and LIFO schedules for two processors, and (c) the introduction of the concept of equivalent processor in DLS for heterogeneous systems with result collection.
Integration of crosswell seismic data for simulating porosity in a heterogeneous carbonate aquifer
NASA Astrophysics Data System (ADS)
Emery, Xavier; Parra, Jorge
2013-11-01
A challenge for the geostatistical simulation of subsurface properties in mining, petroleum and groundwater applications is the integration of well logs and seismic measurements, which can provide information on geological heterogeneities at a wide range of scales. This paper presents a case study conducted at the Port Mayaca aquifer, located in western Martin County, Florida, in which it is of interest to simulate porosity, based on porosity logs at two wells and high-resolution crosswell seismic measurements of P-wave impedance. To this end, porosity and impedance are transformed into cross-correlated Gaussian random fields, using local transformations. The model parameters (transformation functions, mean values and correlation structure of the transformed fields) are inferred and checked against the data. Multiple realizations of porosity can then be constructed conditionally to the impedance information in the interwell region, which allow identifying one low-porosity structure and two to three flow units that connect the two wells, mapping heterogeneities within these units and visually assessing fluid paths in the aquifer. In particular, the results suggest that the paths in the lower flow units, formed by a network of heterogeneous conduits, are not as smooth as in the upper flow unit.
Scaling of flow and transport behavior in heterogeneous groundwater systems
NASA Astrophysics Data System (ADS)
Scheibe, Timothy; Yabusaki, Steven
1998-11-01
Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on mean values. It provides motivation for continued research into upscaling methods for transport that directly address advection in heterogeneous porous media. An electronic version of this article is available online at the journal's homepage at http://www.elsevier.nl/locate/advwatres or http://www.elsevier.com/locate/advwatres (see "Special section on vizualization". The online version contains additional supporting information, graphics, and a 3D animation of simulated particle movement. Limited. All rights reserved
[Afterschool physical activity programs: Literature review].
Reloba-Martínez, Sergio; Martín-Tamayo, Ignacio; Martínez-López, Emilio José; Guerrero-Almeida, Laura
2015-01-01
The purpose of this review was to analyze the scientific production about extra-curricular physical activity (PA) in western children of 6-12 years. Medline / Pub-Med, Scopus and Google Scholar were used. This search collects articles published between January 1990 and May 2013. A total of 104 publications were analyzed. The body composition parameters are best used to assess the results of the studies, followed by those which estimate the maximum aerobic capacity. Articles of intervention are presented with very heterogeneous methodological features but there are clear trends in the use of certain aspects. As for the reviews, most are systematic and include meta-analysis. In this studies, body mass index (BMI) is the most used parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ye
The critical component of a risk assessment study in evaluating GCS is an analysis of uncertainty in CO2 modeling. In such analyses, direct numerical simulation of CO2 flow and leakage requires many time-consuming model runs. Alternatively, analytical methods have been developed which allow fast and efficient estimation of CO2 storage and leakage, although restrictive assumptions on formation rock and fluid properties are employed. In this study, an intermediate approach is proposed based on the Design of Experiment and Response Surface methodology, which consists of using a limited number of numerical simulations to estimate a prediction outcome as a combination ofmore » the most influential uncertain site properties. The methodology can be implemented within a Monte Carlo framework to efficiently assess parameter and prediction uncertainty while honoring the accuracy of numerical simulations. The choice of the uncertain properties is flexible and can include geologic parameters that influence reservoir heterogeneity, engineering parameters that influence gas trapping and migration, and reactive parameters that influence the extent of fluid/rock reactions. The method was tested and verified on modeling long-term CO2 flow, non-isothermal heat transport, and CO2 dissolution storage by coupling two-phase flow with explicit miscibility calculation using an accurate equation of state that gives rise to convective mixing of formation brine variably saturated with CO2. All simulations were performed using three-dimensional high-resolution models including a target deep saline aquifer, overlying caprock, and a shallow aquifer. To evaluate the uncertainty in representing reservoir permeability, sediment hierarchy of a heterogeneous digital stratigraphy was mapped to create multiple irregularly shape stratigraphic models of decreasing geologic resolutions: heterogeneous (reference), lithofacies, depositional environment, and a (homogeneous) geologic formation. To ensure model equivalency, all the stratigraphic models were successfully upscaled from the reference heterogeneous model for bulk flow and transport predictions (Zhang & Zhang, 2015). GCS simulation was then simulated with all models, yielding insights into the level of parameterization complexity that is needed for the accurate simulation of reservoir pore pressure, CO2 storage, leakage, footprint, and dissolution over both short (i.e., injection) and longer (monitoring) time scales. Important uncertainty parameters that impact these key performance metrics were identified for the stratigraphic models as well as for the heterogeneous model, leading to the development of reduced/simplified models at lower characterization cost that can be used for the reservoir uncertainty analysis. All the CO2 modeling was conducted using PFLOTRAN – a massively parallel, multiphase, multi-component, and reactive transport simulator developed by a multi-laboratory DOE/SciDAC (Scientific Discovery through Advanced Computing) project (Zhang et al., 2017, in review). Within the uncertainty analysis framework, increasing reservoir depth were investigated to explore its effect on the uncertainty outcomes and the potential for developing gravity-stable injection with increased storage security (Dai et al., 20126; Dai et al., 2017, in review). Finally, to accurately model CO2 fluid-rock reactions and resulting long-term storage as secondary carbonate minerals, a modified kinetic rate law for general mineral dissolution and precipitation was proposed and verified that is invariant to a scale transformation of the mineral formula weight. This new formulation will lead to more accurate assessment of mineral storage over geologic time scales (Lichtner, 2016).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Somjeet, E-mail: somjeetbiswas@gmail.com; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012; Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures
Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 °C, 150 °C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C{sub 2}) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted ~ 55° due to negative shear attributed to friction. - Highlights: • ECAP of magnesium was carried out at 200 °C, 150 °C and room temperature. • Microstructure andmore » micro-texture evolution was examined using EBSD in FEG–SEM. • Bulk-texture was studied using neutron diffraction and compared with micro-texture. • Through thickness texture heterogeneity was observed by synchrotron radiation. • Changes in these parameters with respect to deformation temperature are discussed.« less
NASA Technical Reports Server (NTRS)
Engelberg, N.; Shaw, C., III
1984-01-01
The design of a uniform command language to be used in a local area network of heterogeneous, autonomous nodes is considered. After examining the major characteristics of such a network, and after considering the profile of a scientist using the computers on the net as an investigative aid, a set of reasonable requirements for the command language are derived. Taking into account the possible inefficiencies in implementing a guest-layered network operating system and command language on a heterogeneous net, the authors examine command language naming, process/procedure invocation, parameter acquisition, help and response facilities, and other features found in single-node command languages, and conclude that some features may extend simply to the network case, others extend after some restrictions are imposed, and still others require modifications. In addition, it is noted that some requirements considered reasonable (user accounting reports, for example) demand further study before they can be efficiently implemented on a network of the sort described.
Link, William; Hesed, Kyle Miller
2015-01-01
Knowledge of organisms’ growth rates and ages at sexual maturity is important for conservation efforts and a wide variety of studies in ecology and evolutionary biology. However, these life history parameters may be difficult to obtain from natural populations: individuals encountered may be of unknown age, information on age at sexual maturity may be uncertain and interval-censored, and growth data may include both individual heterogeneity and measurement errors. We analyzed mark–recapture data for Red-backed Salamanders (Plethodon cinereus) to compare sex-specific growth rates and ages at sexual maturity. Aging of individuals was made possible by the use of a von Bertalanffy model of growth, complemented with models for interval-censored and imperfect observations at sexual maturation. Individual heterogeneity in growth was modeled through the use of Gamma processes. Our analysis indicates that female P. cinereus mature earlier and grow more quickly than males, growing to nearly identical asymptotic size distributions as males.
Effect of external fields in Axelrod's model of social dynamics
NASA Astrophysics Data System (ADS)
Peres, Lucas R.; Fontanari, José F.
2012-09-01
The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of counterintuitive results. Here, we reexamine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one- and two-dimensional versions of Axelrod's model indicate that the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforce homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state.
NASA Astrophysics Data System (ADS)
Mathieu, Jean-Philippe; Inal, Karim; Berveiller, Sophie; Diard, Olivier
2010-11-01
Local approach to brittle fracture for low-alloyed steels is discussed in this paper. A bibliographical introduction intends to highlight general trends and consensual points of the topic and evokes debatable aspects. French RPV steel 16MND5 (equ. ASTM A508 Cl.3), is then used as a model material to study the influence of temperature on brittle fracture. A micromechanical modelling of brittle fracture at the elementary volume scale already used in previous work is then recalled. It involves a multiscale modelling of microstructural plasticity which has been tuned on experimental inter-phase and inter-granular stresses heterogeneities measurements. Fracture probability of the elementary volume can then be computed using a randomly attributed defect size distribution based on realistic carbides repartition. This defect distribution is then deterministically correlated to stress heterogeneities simulated within the microstructure using a weakest-link hypothesis on the elementary volume, which results in a deterministic stress to fracture. Repeating the process allows to compute Weibull parameters on the elementary volume. This tool is then used to investigate the physical mechanisms that could explain the already experimentally observed temperature dependence of Beremin's parameter for 16MND5 steel. It is showed that, assuming that the hypothesis made in this work about cleavage micro-mechanisms are correct, effective equivalent surface energy (i.e. surface energy plus plastically dissipated energy when blunting the crack tip) for propagating a crack has to be temperature dependent to explain Beremin's parameters temperature evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, Masao, E-mail: naka2008@med.kobe-u.ac.jp; Yoshida, Kenji; Nishimura, Hideki
2014-04-01
The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose,more » and dose that covers 95% of the PTV between the first and second plans were 1.10 Gy (1.8%), 1.35 Gy (2.2%), 1.10 Gy (1.9%), and 0.56 Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30 Gy (lung V{sub 5}, V{sub 10}, V{sub 20}, and V{sub 30}) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V{sub 5} and V{sub 10}) than on the dosimetric parameters related to the PTV and other OARs.« less
Aghdasinia, Hassan; Bagheri, Rasoul; Vahid, Behrouz; Khataee, Alireza
2016-11-01
Optimization of Acid Yellow 36 (AY36) degradation by heterogeneous Fenton process in a recirculated fluidized-bed reactor was studied using central composite design (CCD). Natural pyrite was applied as the catalyst characterized by X-ray diffraction and scanning electron microscopy. The CCD model was developed for the estimation of degradation efficiency as a function of independent operational parameters including hydrogen peroxide concentration (0.5-2.5 mmol/L), initial AY36 concentration (5-25 mg/L), pH (3-9) and catalyst dosage (0.4-1.2 mg/L). The obtained data from the model are in good agreement with the experimental data (R(2 )= 0.964). Moreover, this model is applicable not only to determine the optimized experimental conditions for maximum AY36 degradation, but also to find individual and interactive effects of the mentioned parameters. Finally, gas chromatography-mass spectroscopy (GC-MS) was utilized for the identification of some degradation intermediates and a plausible degradation pathway was proposed.
Filipović, Vilim; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre
2014-11-15
Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic properties were optimized on one calibration year (2007/08) using pressure head, water content and lysimeter outflow data, and then tested on the whole 2004/2010 period. Lysimeter outflow and water content dynamics in the soil profile were correctly described for the whole period (model efficiency coefficient: 0.99) after some correction of LAI estimates for wheat (2005/06) and barley (2006/07). Using laboratory-measured degradation rates and assuming degradation only in the liquid phase caused large overestimation of simulated isoproturon losses in lysimeter outflow. A proper order of magnitude of isoproturon losses was obtained after considering that degradation occurred in solid (sorbed) phase at a rate 75% of that in liquid phase. Isoproturon concentrations were found to be highly sensitive to degradation rates. Neither the laboratory-measured isoproturon fate parameters nor the independently-derived soil hydraulic parameters could describe the actual multiannual field dynamics of water and isoproturon without calibration. However, once calibrated on a limited period of time (9 months), HYDRUS-2D was able to simulate the whole 6-year time series with good accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Chunhao; Subashi, Ergys; Yin, Fang-Fang; Chang, Zheng
2016-01-01
Purpose: To develop a dynamic fractal signature dissimilarity (FSD) method as a novel image texture analysis technique for the quantification of tumor heterogeneity information for better therapeutic response assessment with dynamic contrast-enhanced (DCE)-MRI. Methods: A small animal antiangiogenesis drug treatment experiment was used to demonstrate the proposed method. Sixteen LS-174T implanted mice were randomly assigned into treatment and control groups (n = 8/group). All mice received bevacizumab (treatment) or saline (control) three times in two weeks, and one pretreatment and two post-treatment DCE-MRI scans were performed. In the proposed dynamic FSD method, a dynamic FSD curve was generated to characterize the heterogeneity evolution during the contrast agent uptake, and the area under FSD curve (AUCFSD) and the maximum enhancement (MEFSD) were selected as representative parameters. As for comparison, the pharmacokinetic parameter Ktrans map and area under MR intensity enhancement curve AUCMR map were calculated. Besides the tumor’s mean value and coefficient of variation, the kurtosis, skewness, and classic Rényi dimensions d1 and d2 of Ktrans and AUCMR maps were evaluated for heterogeneity assessment for comparison. For post-treatment scans, the Mann–Whitney U-test was used to assess the differences of the investigated parameters between treatment/control groups. The support vector machine (SVM) was applied to classify treatment/control groups using the investigated parameters at each post-treatment scan day. Results: The tumor mean Ktrans and its heterogeneity measurements d1 and d2 values showed significant differences between treatment/control groups in the second post-treatment scan. In contrast, the relative values (in reference to the pretreatment value) of AUCFSD and MEFSD in both post-treatment scans showed significant differences between treatment/control groups. When using AUCFSD and MEFSD as SVM input for treatment/control classification, the achieved accuracies were 93.8% and 93.8% at first and second post-treatment scan days, respectively. In comparison, the classification accuracies using d1 and d2 of Ktrans map were 87.5% and 100% at first and second post-treatment scan days, respectively. Conclusions: As quantitative metrics of tumor contrast agent uptake heterogeneity, the selected parameters from the dynamic FSD method accurately captured the therapeutic response in the experiment. The potential application of the proposed method is promising, and its addition to the existing DCE-MRI techniques could improve DCE-MRI performance in early assessment of treatment response. PMID:26936718
Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Meakin, Paul
2013-10-01
An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less
Heat and mass transport during a groundwater replenishment trial in a highly heterogeneous aquifer
NASA Astrophysics Data System (ADS)
Seibert, Simone; Prommer, Henning; Siade, Adam; Harris, Brett; Trefry, Mike; Martin, Michael
2014-12-01
Changes in subsurface temperature distribution resulting from the injection of fluids into aquifers may impact physiochemical and microbial processes as well as basin resource management strategies. We have completed a 2 year field trial in a hydrogeologically and geochemically heterogeneous aquifer below Perth, Western Australia in which highly treated wastewater was injected for large-scale groundwater replenishment. During the trial, chloride and temperature data were collected from conventional monitoring wells and by time-lapse temperature logging. We used a joint inversion of these solute tracer and temperature data to parameterize a numerical flow and multispecies transport model and to analyze the solute and heat propagation characteristics that prevailed during the trial. The simulation results illustrate that while solute transport is largely confined to the most permeable lithological units, heat transport was also affected by heat exchange with lithological units that have a much lower hydraulic conductivity. Heat transfer by heat conduction was found to significantly influence the complex temporal and spatial temperature distribution, especially with growing radial distance and in aquifer sequences with a heterogeneous hydraulic conductivity distribution. We attempted to estimate spatially varying thermal transport parameters during the data inversion to illustrate the anticipated correlations of these parameters with lithological heterogeneities, but estimates could not be uniquely determined on the basis of the collected data.
Zhao, Jianlin; Kang, Qinjun; Yao, Jun; ...
2018-02-27
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianlin; Kang, Qinjun; Yao, Jun
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less
Moritz, Bernd; Locatelli, Valentina; Niess, Michele; Bathke, Andrea; Kiessig, Steffen; Entler, Barbara; Finkler, Christof; Wegele, Harald; Stracke, Jan
2017-12-01
CZE is a well-established technique for charge heterogeneity testing of biopharmaceuticals. It is based on the differences between the ratios of net charge and hydrodynamic radius. In an extensive intercompany study, it was recently shown that CZE is very robust and can be easily implemented in labs that did not perform it before. However, individual characteristics of some examined proteins resulted in suboptimal resolution. Therefore, enhanced method development principles were applied here to investigate possibilities for further method optimization. For this purpose, a high number of different method parameters was evaluated with the aim to improve CZE separation. For the relevant parameters, design of experiments (DoE) models were generated and optimized in several ways for different sets of responses like resolution, peak width and number of peaks. In spite of product specific DoE optimization it was found that the resulting combination of optimized parameters did result in significant improvement of separation for 13 out of 16 different antibodies and other molecule formats. These results clearly demonstrate generic applicability of the optimized CZE method. Adaptation to individual molecular properties may sometimes still be required in order to achieve optimal separation but the set screws discussed in this study [mainly pH, identity of the polymer additive (HPC versus HPMC) and the concentrations of additives like acetonitrile, butanolamine and TETA] are expected to significantly reduce the effort for specific optimization. 2017 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The effect of soil heterogeneity on ATES performance
NASA Astrophysics Data System (ADS)
Sommer, W.; Rijnaarts, H.; Grotenhuis, T.; van Gaans, P.
2012-04-01
Due to an increasing demand for sustainable energy, application of Aquifer Thermal Energy Storage (ATES) is growing rapidly. Large-scale application of ATES is limited by the space that is available in the subsurface. Especially in urban areas, suboptimal performance is expected due to thermal interference between individual wells of a single system, or interference with other ATES systems or groundwater abstractions. To avoid thermal interference there are guidelines on well spacing. However, these guidelines, and also design calculations, are based on the assumption of a homogeneous subsurface, while studies report a standard deviation in logpermeability of 1 to 2 for unconsolidated aquifers (Gelhar, 1993). Such heterogeneity may create preferential pathways, reducing ATES performance due to increased advective heat loss or interference between ATES wells. The role of hydraulic heterogeneity of the subsurface related to ATES performance has received little attention in literature. Previous research shows that even small amounts of heterogeneity can result in considerable uncertainty in the distribution of thermal energy in the subsurface and an increased radius of influence (Ferguson, 2007). This is supported by subsurface temperature measurements around ATES wells, which suggest heterogeneity gives rise to preferential pathways and short-circuiting between ATES wells (Bridger and Allen, 2010). Using 3-dimensional stochastic heat transport modeling, we quantified the influence of heterogeneity on the performance of a doublet well energy storage system. The following key parameters are varied to study their influence on thermal recovery and thermal balance: 1) regional flow velocity, 2) distance between wells and 3) characteristics of the heterogeneity. Results show that heterogeneity at the scale of a doublet ATES system introduces an uncertainty up to 18% in expected thermal recovery. The uncertainty increases with decreasing distance between ATES wells. The uncertainty in the thermal balance ratio related to heterogeneity is limited (smaller than 3%). If thermal interference should be avoided, wells in heterogeneous aquifers should be placed further apart than in homogeneous aquifers, leading to larger volume claim in the subsurface. By relating the number of ATES systems in an area to their expected performance, these results can be used to optimize regional application of ATES. Bridger, D. W. and D. M. Allen (2010). "Heat transport simulations in a heterogeneous aquifer used for aquifer thermal energy storage (ATES)." Canadian Geotechnical Journal 47(1): 96-115. Ferguson, G. (2007). "Heterogeneity and thermal modeling of ground water." Ground Water 45(4): 485-490. Gelhar, L. W. (1993). Stochastic Subsurface Hydrology, Prentice Hall.
Quasi-steady state conditions in heterogeneous aquifers during pumping tests
NASA Astrophysics Data System (ADS)
Zha, Yuanyuan; Yeh, Tian-Chyi J.; Shi, Liangsheng; Huang, Shao-Yang; Wang, Wenke; Wen, Jet-Chau
2017-08-01
Classical Thiem's well hydraulic theory, other aquifer test analyses, and flow modeling efforts often assume the existence of ;quasi-steady; state conditions. That is, while drawdowns due to pumping continue to grow, the hydraulic gradient in the vicinity of the pumping well does not change significantly. These conditions have built upon two-dimensional and equivalent homogeneous conceptual models, but few field data have been available to affirm the existence of these conditions. Moreover, effects of heterogeneity and three-dimensional flow on this quasi-steady state concept have not been thoroughly investigated and discussed before. In this study, we first present a quantitative definition of quasi-steady state (or steady-shape conditions) and steady state conditions based on the analytical solution of two- or three-dimensional flow induced by pumping in unbounded, homogeneous aquifers. Afterward, we use a stochastic analysis to investigate the influence of heterogeneity on the quasi-steady state concept in heterogeneous aquifers. The results of the analysis indicate that the time to reach an approximate quasi-steady state in a heterogeneous aquifer could be quite different from that estimated based on a homogeneous model. We find that heterogeneity of aquifer properties, especially hydraulic conductivity, impedes the development of the quasi-steady state condition before the flow reaching steady state. Finally, 280 drawdown-time data from the hydraulic tomographic survey conducted at a field site corroborate our finding that the quasi-steady state condition likely would not take place in heterogeneous aquifers unless pumping tests last a long period. Research significance (1) Approximate quasi-steady and steady state conditions are defined for two- or three-dimensional flow induced by pumping in unbounded, equivalent homogeneous aquifers. (2) Analysis demonstrates effects of boundary condition, well screen interval, and heterogeneity of parameters on the existence of the quasi-steady, and validity of approximate quasi-steady concept. (3) Temporal evaluation of information content about heterogeneity in head observations are analyzed in heterogeneous aquifer. (4) 280 observed drawdown-time data corroborate the stochastic analysis that quasi-steady is difficult to reach in highly heterogeneous aquifers.
Robustness of methods for blinded sample size re-estimation with overdispersed count data.
Schneider, Simon; Schmidli, Heinz; Friede, Tim
2013-09-20
Counts of events are increasingly common as primary endpoints in randomized clinical trials. With between-patient heterogeneity leading to variances in excess of the mean (referred to as overdispersion), statistical models reflecting this heterogeneity by mixtures of Poisson distributions are frequently employed. Sample size calculation in the planning of such trials requires knowledge on the nuisance parameters, that is, the control (or overall) event rate and the overdispersion parameter. Usually, there is only little prior knowledge regarding these parameters in the design phase resulting in considerable uncertainty regarding the sample size. In this situation internal pilot studies have been found very useful and very recently several blinded procedures for sample size re-estimation have been proposed for overdispersed count data, one of which is based on an EM-algorithm. In this paper we investigate the EM-algorithm based procedure with respect to aspects of their implementation by studying the algorithm's dependence on the choice of convergence criterion and find that the procedure is sensitive to the choice of the stopping criterion in scenarios relevant to clinical practice. We also compare the EM-based procedure to other competing procedures regarding their operating characteristics such as sample size distribution and power. Furthermore, the robustness of these procedures to deviations from the model assumptions is explored. We find that some of the procedures are robust to at least moderate deviations. The results are illustrated using data from the US National Heart, Lung and Blood Institute sponsored Asymptomatic Cardiac Ischemia Pilot study. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Varseev, E.
2017-11-01
The present work is dedicated to verification of numerical model in standard solver of open-source CFD code OpenFOAM for two-phase flow simulation and to determination of so-called “baseline” model parameters. Investigation of heterogeneous coolant flow parameters, which leads to abnormal friction increase of channel in two-phase adiabatic “water-gas” flows with low void fractions, presented.
Study on wind wave variability by inhomogeneous currents in the closed seas
NASA Astrophysics Data System (ADS)
Bakhanov, Victor V.; Bogatov, Nikolai A.; Ermoshkin, Aleksei V.; Ivanov, Andrei Yu.; Kemarskaya, Olga N.; Titov, Victor I.
2012-09-01
Complex experiments were performed in the north-eastern part of the Black Sea and in the south-eastern part of the White Sea to study variability of the current fields and other characteristics of the sea, wind waves, and parameters of the near-surface atmospheric layer. Measurements were carried out from the onboard of the scientific research vessels by optical, radar and acoustic sensors. The heterogeneity of bottom topography in Black Sea had quasi-one-dimensional character. The case of the two-dimensionally heterogeneous relief of the bottom was investigated in the White Sea. The peculiarity of these experiments was simultaneous measurements from onboard of vessel synchronously with acquisitions of synthetic aperture radar (SAR) images of the Envisat and TerraSAR-X satellites. We have detected for the case of the quasi-one-dimensionally heterogeneous current a difference between the sea surface roughness above the shelf zone and the roughness at the deep bottom. We found that the inhomogeneities of the bottom topography can manifest as a change not only in the amplitude of different characteristics of surface wave and atmospheric near-water layer, but also in their frequency spectrum. In White Sea the special features of the flow of the powerful tidal current (up to 1 m/s) around the secluded underwater elevation and the spatial structure of surface anomalies in the field of these two-dimensional-heterogeneous currents are analyzed. The numerical simulation of the wind wave transformation in the field of two-dimensional- heterogeneous flows is carried out. The qualitative agreement of the calculation results with the experimental data is shown.
Tan, Sze-Yin; Unwin, Patrick R; Macpherson, Julie V; Zhang, Jie; Bond, Alan M
2017-03-07
Quantitative studies of electron transfer processes at electrode/electrolyte interfaces, originally developed for homogeneous liquid mercury or metallic electrodes, are difficult to adapt to the spatially heterogeneous nanostructured electrode materials that are now commonly used in modern electrochemistry. In this study, the impact of surface heterogeneity on Fourier-transformed alternating current voltammetry (FTACV) has been investigated theoretically under the simplest possible conditions where no overlap of diffusion layers occurs and where numerical simulations based on a 1D diffusion model are sufficient to describe the mass transport problem. Experimental data that meet these requirements can be obtained with the aqueous [Ru(NH 3 ) 6 ] 3+/2+ redox process at a dual-electrode system comprised of electrically coupled but well-separated glassy carbon (GC) and boron-doped diamond (BDD) electrodes. Simulated and experimental FTACV data obtained with this electrode configuration, and where distinctly different heterogeneous charge transfer rate constants (k 0 values) apply at the individual GC and BDD electrode surfaces, are in excellent agreement. Principally, because of the far greater dependence of the AC current magnitude on k 0 , it is straightforward with the FTACV method to resolve electrochemical heterogeneities that are ∼1-2 orders of magnitude apart, as applies in the [Ru(NH 3 ) 6 ] 3+/2+ dual-electrode configuration experiments, without prior knowledge of the individual kinetic parameters (k 0 1 and k 0 2 ) or the electrode size ratio (θ 1 :θ 2 ). In direct current voltammetry, a difference in k 0 of >3 orders of magnitude is required to make this distinction.
Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi
2016-01-01
Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.
A new colloid transport model is introduced that is conceptually simple but captures the essential features of complicated attachment and detachment behavior of colloids when conditions of secondary minimum attachment exist. This model eliminates the empirical concept of collision efficiency; the attachment rate is computed directly from colloid filtration theory. Also, a new paradigm for colloid detachment based on colloid population heterogeneity is introduced. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of colloids that attach irreversibly and (2) the rate at which reversibly attached colloids leave themore » surface. These two parameters were correlated to physical parameters that control colloid transport such as the depth of the secondary minimum and pore water velocity. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport. This model can be extended to heterogeneous systems characterized by both primary and secondary minimum deposition by simply increasing the fraction of colloids that attach irreversibly.« less
Individual heterogeneity and identifiability in capture-recapture models
Link, W.A.
2004-01-01
Individual heterogeneity in detection probabilities is a far more serious problem for capture-recapture modeling than has previously been recognized. In this note, I illustrate that population size is not an identifiable parameter under the general closed population mark-recapture model Mh. The problem of identifiability is obvious if the population includes individuals with pi = 0, but persists even when it is assumed that individual detection probabilities are bounded away from zero. Identifiability may be attained within parametric families of distributions for pi, but not among parametric families of distributions. Consequently, in the presence of individual heterogeneity in detection probability, capture-recapture analysis is strongly model dependent.
NASA Technical Reports Server (NTRS)
Fauchez, Thomas; Platnick, Steven; Meyer, Kerry; Cornet, Celine; Szczap, Frederic; Varnai, Tamas
2017-01-01
This paper presents a study on the impact of cirrus cloud heterogeneities on MODIS simulated thermal infrared (TIR) brightness temperatures (BTs) at the top of the atmosphere (TOA) as a function of spatial resolution from 50 meters to 10 kilometers. A realistic 3-D (three-dimensional) cirrus field is generated by the 3DCLOUD model (average optical thickness of 1.4, cloudtop and base altitudes at 10 and 12 kilometers, respectively, consisting of aggregate column crystals of D (sub eff) equals 20 microns), and 3-D thermal infrared radiative transfer (RT) is simulated with the 3DMCPOL (3-D Monte Carlo Polarized) code. According to previous studies, differences between 3-D BT computed from a heterogenous pixel and 1-D (one-dimensional) RT computed from a homogeneous pixel are considered dependent at nadir on two effects: (i) the optical thickness horizontal heterogeneity leading to the plane-parallel homogeneous bias (PPHB); and the (ii) horizontal radiative transport (HRT) leading to the independent pixel approximation error (IPAE). A single but realistic cirrus case is simulated and, as expected, the PPHB mainly impacts the low-spatial resolution results (above approximately 250 meters), with averaged values of up to 5-7 K (thousand), while the IPAE mainly impacts the high-spatial resolution results (below approximately 250 meters) with average values of up to 1-2 K (thousand). A sensitivity study has been performed in order to extend these results to various cirrus optical thicknesses and heterogeneities by sampling the cirrus in several ranges of parameters. For four optical thickness classes and four optical heterogeneity classes, we have found that, for nadir observations, the spatial resolution at which the combination of PPHB and HRT effects is the smallest, falls between 100 and 250 meters. These spatial resolutions thus appear to be the best choice to retrieve cirrus optical properties with the smallest cloud heterogeneity-related total bias in the thermal infrared. For off-nadir observations, the average total effect is increased and the minimum is shifted to coarser spatial resolutions.
Theoretical foundation for measuring the groundwater age distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, William Payton; Arnold, Bill Walter
2014-01-01
In this study, we use PFLOTRAN, a highly scalable, parallel, flow and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, 81Kr, 4He and themean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2-D and 3-D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwatermore » age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer the tracer age limit. Age distributions in 3-D domains differ significantly from 2-D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3-D systems. Groundwater environmental tracers can provide important constraints for the calibration of groundwater flow models. Direct simulation of environmental tracer concentrations in models has the additional advantage of avoiding assumptions associated with using calculated groundwater age values. This study quantifies model uncertainty reduction resulting from the addition of environmental tracer concentration data. The analysis uses a synthetic heterogeneous aquifer and the calibration of a flow and transport model using the pilot point method. Results indicate a significant reduction in the uncertainty in permeability with the addition of environmental tracer data, relative to the use of hydraulic measurements alone. Anthropogenic tracers and their decay products, such as CFC11, 3H, and 3He, provide significant constraint oninput permeability values in the model. Tracer data for 39Ar provide even more complete information on the heterogeneity of permeability and variability in the flow system than the anthropogenic tracers, leading to greater parameter uncertainty reduction.« less
Dynamic contact angle cycling homogenizes heterogeneous surfaces.
Belibel, R; Barbaud, C; Mora, L
2016-12-01
In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. Copyright © 2016 Elsevier B.V. All rights reserved.
Jackson, Dan; Bowden, Jack
2016-09-07
Confidence intervals for the between study variance are useful in random-effects meta-analyses because they quantify the uncertainty in the corresponding point estimates. Methods for calculating these confidence intervals have been developed that are based on inverting hypothesis tests using generalised heterogeneity statistics. Whilst, under the random effects model, these new methods furnish confidence intervals with the correct coverage, the resulting intervals are usually very wide, making them uninformative. We discuss a simple strategy for obtaining 95 % confidence intervals for the between-study variance with a markedly reduced width, whilst retaining the nominal coverage probability. Specifically, we consider the possibility of using methods based on generalised heterogeneity statistics with unequal tail probabilities, where the tail probability used to compute the upper bound is greater than 2.5 %. This idea is assessed using four real examples and a variety of simulation studies. Supporting analytical results are also obtained. Our results provide evidence that using unequal tail probabilities can result in shorter 95 % confidence intervals for the between-study variance. We also show some further results for a real example that illustrates how shorter confidence intervals for the between-study variance can be useful when performing sensitivity analyses for the average effect, which is usually the parameter of primary interest. We conclude that using unequal tail probabilities when computing 95 % confidence intervals for the between-study variance, when using methods based on generalised heterogeneity statistics, can result in shorter confidence intervals. We suggest that those who find the case for using unequal tail probabilities convincing should use the '1-4 % split', where greater tail probability is allocated to the upper confidence bound. The 'width-optimal' interval that we present deserves further investigation.
Barbee, David L; Flynn, Ryan T; Holden, James E; Nickles, Robert J; Jeraj, Robert
2010-01-01
Tumor heterogeneities observed in positron emission tomography (PET) imaging are frequently compromised of partial volume effects which may affect treatment prognosis, assessment, or future implementations such as biologically optimized treatment planning (dose painting). This paper presents a method for partial volume correction of PET-imaged heterogeneous tumors. A point source was scanned on a GE Discover LS at positions of increasing radii from the scanner’s center to obtain the spatially varying point spread function (PSF). PSF images were fit in three dimensions to Gaussian distributions using least squares optimization. Continuous expressions were devised for each Gaussian width as a function of radial distance, allowing for generation of the system PSF at any position in space. A spatially varying partial volume correction (SV-PVC) technique was developed using expectation maximization (EM) and a stopping criterion based on the method’s correction matrix generated for each iteration. The SV-PVC was validated using a standard tumor phantom and a tumor heterogeneity phantom, and was applied to a heterogeneous patient tumor. SV-PVC results were compared to results obtained from spatially invariant partial volume correction (SINV-PVC), which used directionally uniform three dimensional kernels. SV-PVC of the standard tumor phantom increased the maximum observed sphere activity by 55 and 40% for 10 and 13 mm diameter spheres, respectively. Tumor heterogeneity phantom results demonstrated that as net changes in the EM correction matrix decreased below 35%, further iterations improved overall quantitative accuracy by less than 1%. SV-PVC of clinically observed tumors frequently exhibited changes of ±30% in regions of heterogeneity. The SV-PVC method implemented spatially varying kernel widths and automatically determined the number of iterations for optimal restoration, parameters which are arbitrarily chosen in SINV-PVC. Comparing SV-PVC to SINV-PVC demonstrated that similar results could be reached using both methods, but large differences result for the arbitrary selection of SINV-PVC parameters. The presented SV-PVC method was performed without user intervention, requiring only a tumor mask as input. Research involving PET-imaged tumor heterogeneity should include correcting for partial volume effects to improve the quantitative accuracy of results. PMID:20009194
Dirscherl, Thomas; Rickhey, Mark; Bogner, Ludwig
2012-02-01
A biologically adaptive radiation treatment method to maximize the TCP is shown. Functional imaging is used to acquire a heterogeneous dose prescription in terms of Dose Painting by Numbers and to create a patient-specific IMRT plan. Adapted from a method for selective dose escalation under the guidance of spatial biology distribution, a model, which translates heterogeneously distributed radiobiological parameters into voxelwise dose prescriptions, was developed. At the example of a prostate case with (18)F-choline PET imaging, different sets of reported values for the parameters were examined concerning their resulting range of dose values. Furthermore, the influence of each parameter of the linear-quadratic model was investigated. A correlation between PET signal and proliferation as well as cell density was assumed. Using our in-house treatment planning software Direct Monte Carlo Optimization (DMCO), a treatment plan based on the obtained dose prescription was generated. Gafchromic EBT films were irradiated for evaluation. When a TCP of 95% was aimed at, the maximal dose in a voxel of the prescription exceeded 100Gy for most considered parameter sets. One of the parameter sets resulted in a dose range of 87.1Gy to 99.3Gy, yielding a TCP of 94.7%, and was investigated more closely. The TCP of the plan decreased to 73.5% after optimization based on that prescription. The dose difference histogram of optimized and prescribed dose revealed a mean of -1.64Gy and a standard deviation of 4.02Gy. Film verification showed a reasonable agreement of planned and delivered dose. If the distribution of radiobiological parameters within a tumor is known, this model can be used to create a dose-painting by numbers plan which maximizes the TCP. It could be shown, that such a heterogeneous dose distribution is technically feasible. Copyright © 2012. Published by Elsevier GmbH.
Discrimination between discrete and continuum scattering from the sub-seafloor.
Holland, Charles W; Steininger, Gavin; Dosso, Stan E
2015-08-01
There is growing evidence that seabed scattering is often dominated by heterogeneities within the sediment volume as opposed to seafloor roughness. From a theoretical viewpoint, sediment volume heterogeneities can be described either by a fluctuation continuum or by discrete particles. In at-sea experiments, heterogeneity characteristics generally are not known a priori. Thus, an uninformed model selection is generally made, i.e., the researcher must arbitrarily select either a discrete or continuum model. It is shown here that it is possible to (acoustically) discriminate between continuum and discrete heterogeneities in some instances. For example, when the spectral exponent γ3>4, the volume scattering cannot be described by discrete particles. Conversely, when γ3≤2, the heterogeneities likely arise from discrete particles. Furthermore, in the range 2<γ3≤4 it is sometimes possible to discriminate via physical bounds on the parameter values. The ability to so discriminate is important, because there are few tools for measuring small scale, O(10(-2) to 10(1)) m, sediment heterogeneities over large areas. Therefore, discriminating discrete vs continuum heterogeneities via acoustic remote sensing may lead to improved observations and concomitant increased understanding of the marine benthic environment.
Fountas, Grigorios; Sarwar, Md Tawfiq; Anastasopoulos, Panagiotis Ch; Blatt, Alan; Majka, Kevin
2018-04-01
Traditional accident analysis typically explores non-time-varying (stationary) factors that affect accident occurrence on roadway segments. However, the impact of time-varying (dynamic) factors is not thoroughly investigated. This paper seeks to simultaneously identify pre-crash stationary and dynamic factors of accident occurrence, while accounting for unobserved heterogeneity. Using highly disaggregate information for the potential dynamic factors, and aggregate data for the traditional stationary elements, a dynamic binary random parameters (mixed) logit framework is employed. With this approach, the dynamic nature of weather-related, and driving- and pavement-condition information is jointly investigated with traditional roadway geometric and traffic characteristics. To additionally account for the combined effect of the dynamic and stationary factors on the accident occurrence, the developed random parameters logit framework allows for possible correlations among the random parameters. The analysis is based on crash and non-crash observations between 2011 and 2013, drawn from urban and rural highway segments in the state of Washington. The findings show that the proposed methodological framework can account for both stationary and dynamic factors affecting accident occurrence probabilities, for panel effects, for unobserved heterogeneity through the use of random parameters, and for possible correlation among the latter. The comparative evaluation among the correlated grouped random parameters, the uncorrelated random parameters logit models, and their fixed parameters logit counterpart, demonstrate the potential of the random parameters modeling, in general, and the benefits of the correlated grouped random parameters approach, specifically, in terms of statistical fit and explanatory power. Published by Elsevier Ltd.
Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome.
O'Connor, James P B; Rose, Chris J; Waterton, John C; Carano, Richard A D; Parker, Geoff J M; Jackson, Alan
2015-01-15
Tumors exhibit genomic and phenotypic heterogeneity, which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as CT density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death, and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks using PET, MRI, and other emerging molecular imaging techniques. These methods can establish whether one tumor is more or less heterogeneous than another and can identify subregions with differing biology. In this article, we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, instead of being developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. ©2014 American Association for Cancer Research.
Heterogeneity and scaling land-atmospheric water and energy fluxes in climate systems
NASA Technical Reports Server (NTRS)
Wood, Eric F.
1993-01-01
The effects of small-scale heterogeneity in land surface characteristics on the large-scale fluxes of water and energy in land-atmosphere system has become a central focus of many of the climatology research experiments. The acquisition of high resolution land surface data through remote sensing and intensive land-climatology field experiments (like HAPEX and FIFE) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. One essential research question is how to account for the small scale heterogeneities and whether 'effective' parameters can be used in the macroscale models. To address this question of scaling, three modeling experiments were performed and are reviewed in the paper. The first is concerned with the aggregation of parameters and inputs for a terrestrial water and energy balance model. The second experiment analyzed the scaling behavior of hydrologic responses during rain events and between rain events. The third experiment compared the hydrologic responses from distributed models with a lumped model that uses spatially constant inputs and parameters. The results show that the patterns of small scale variations can be represented statistically if the scale is larger than a representative elementary area scale, which appears to be about 2 - 3 times the correlation length of the process. For natural catchments this appears to be about 1 - 2 sq km. The results concerning distributed versus lumped representations are more complicated. For conditions when the processes are nonlinear, then lumping results in biases; otherwise a one-dimensional model based on 'equivalent' parameters provides quite good results. Further research is needed to fully understand these conditions.
The Prabhakar or three parameter Mittag-Leffler function: Theory and application
NASA Astrophysics Data System (ADS)
Garra, Roberto; Garrappa, Roberto
2018-03-01
The Prabhakar function (namely, a three parameter Mittag-Leffler function) is investigated. This function plays a fundamental role in the description of the anomalous dielectric properties in disordered materials and heterogeneous systems manifesting simultaneous nonlocality and nonlinearity and, more generally, in models of Havriliak-Negami type. After reviewing some of the main properties of the function, the asymptotic expansion for large arguments is investigated in the whole complex plane and, with major emphasis, along the negative semi-axis. Fractional integral and derivative operators of Prabhakar type are hence considered and some nonlinear heat conduction equations with memory involving Prabhakar derivatives are studied.
Effects of topoclimatic complexity on the composition of woody plant communities.
Oldfather, Meagan F; Britton, Matthew N; Papper, Prahlad D; Koontz, Michael J; Halbur, Michelle M; Dodge, Celeste; Flint, Alan L; Flint, Lorriane E; Ackerly, David D
2016-01-01
Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales. Published by Oxford University Press on behalf of the Annals of Botany Company.
Effects of topoclimatic complexity on the composition of woody plant communities
Oldfather, Meagan F.; Britton, Matthew N.; Papper, Prahlad D.; Koontz, Michael J.; Halbur, Michelle M.; Dodge, Celeste; Flint, Alan L.; Flint, Lorriane E.; Ackerly, David D.
2016-01-01
Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales. PMID:27339048
Spatial structure of soil properties at different scales of Mt. Kilimanjaro, Tanzania
NASA Astrophysics Data System (ADS)
Kühnel, Anna; Huwe, Bernd
2013-04-01
Soils of tropical mountain ecosystems provide important ecosystem services like water and carbon storage, water filtration and erosion control. As these ecosystems are threatened by global warming and the conversion of natural to human-modified landscapes, it is important to understand the implications of these changes. Within the DFG Research Unit "Kilimanjaro ecosystems under global change: Linking biodiversity, biotic interactions and biogeochemical ecosystem processes", we study the spatial heterogeneity of soils and the available water capacity for different land use systems. In the savannah zone of Mt. Kilimanjaro, maize fields are compared to natural savannah ecosystems. In the lower montane forest zone, coffee plantations, traditional home gardens, grasslands and natural forests are studied. We characterize the soils with respect to soil hydrology, emphasizing on the spatial variability of soil texture and bulk density at different scales. Furthermore soil organic carbon and nitrogen, cation exchange capacity and the pH-value are measured. Vis/Nir-Spectroscopy is used to detect small scale physical and chemical heterogeneity within soil profiles, as well as to get information of soil properties on a larger scale. We aim to build a spectral database for these soil properties for the Kilimanjaro region in order to get rapid information for geostatistical analysis. Partial least square regression with leave one out cross validation is used for model calibration. Results for silt and clay content, as well as carbon and nitrogen content are promising, with adjusted R² ranging from 0.70 for silt to 0.86 for nitrogen. Furthermore models for other nutrients, cation exchange capacity and available water capacity will be calibrated. We compare heterogeneity within and across the different ecosystems and state that spatial structure characteristics and complexity patterns in soil parameters can be quantitatively related to biodiversity and functional diversity parameters.
Brooks, John M; Chapman, Cole G; Schroeder, Mary C
2018-06-01
Patient-centred care requires evidence of treatment effects across many outcomes. Outcomes can be beneficial (e.g. increased survival or cure rates) or detrimental (e.g. adverse events, pain associated with treatment, treatment costs, time required for treatment). Treatment effects may also be heterogeneous across outcomes and across patients. Randomized controlled trials are usually insufficient to supply evidence across outcomes. Observational data analysis is an alternative, with the caveat that the treatments observed are choices. Real-world treatment choice often involves complex assessment of expected effects across the array of outcomes. Failure to account for this complexity when interpreting treatment effect estimates could lead to clinical and policy mistakes. Our objective was to assess the properties of treatment effect estimates based on choice when treatments have heterogeneous effects on both beneficial and detrimental outcomes across patients. Simulation methods were used to highlight the sensitivity of treatment effect estimates to the distributions of treatment effects across patients across outcomes. Scenarios with alternative correlations between benefit and detriment treatment effects across patients were used. Regression and instrumental variable estimators were applied to the simulated data for both outcomes. True treatment effect parameters are sensitive to the relationships of treatment effectiveness across outcomes in each study population. In each simulation scenario, treatment effect estimate interpretations for each outcome are aligned with results shown previously in single outcome models, but these estimates vary across simulated populations with the correlations of treatment effects across patients across outcomes. If estimator assumptions are valid, estimates across outcomes can be used to assess the optimality of treatment rates in a study population. However, because true treatment effect parameters are sensitive to correlations of treatment effects across outcomes, decision makers should be cautious about generalizing estimates to other populations.
Highly dynamic animal contact network and implications on disease transmission
Chen, Shi; White, Brad J.; Sanderson, Michael W.; Amrine, David E.; Ilany, Amiyaal; Lanzas, Cristina
2014-01-01
Contact patterns among hosts are considered as one of the most critical factors contributing to unequal pathogen transmission. Consequently, networks have been widely applied in infectious disease modeling. However most studies assume static network structure due to lack of accurate observation and appropriate analytic tools. In this study we used high temporal and spatial resolution animal position data to construct a high-resolution contact network relevant to infectious disease transmission. The animal contact network aggregated at hourly level was highly variable and dynamic within and between days, for both network structure (network degree distribution) and individual rank of degree distribution in the network (degree order). We integrated network degree distribution and degree order heterogeneities with a commonly used contact-based, directly transmitted disease model to quantify the effect of these two sources of heterogeneity on the infectious disease dynamics. Four conditions were simulated based on the combination of these two heterogeneities. Simulation results indicated that disease dynamics and individual contribution to new infections varied substantially among these four conditions under both parameter settings. Changes in the contact network had a greater effect on disease dynamics for pathogens with smaller basic reproduction number (i.e. R0 < 2). PMID:24667241
Qiu, Shan; Xu, Shanwen; Li, Guangming; Yang, Jixian
2016-01-01
The synergistic effect of ultrasound, the heterogeneous Fenton reaction and photocatalysis was studied using a nickel foam (NF)-supporting TiO2 system and rhodamine B (RhB) as a target. The NF-supporting TiO2 system was prepared by depositing TiO2 on the skeleton of NF repeatedly and then calcining it. To optimize the conditions and parameters, the catalytic activity was tested in four systems (ultrasound alone (US), nickel foam (NF), US/NF and NF/US/H2O2). The optimal conditions were fixed at 0.1 g/mL NF, initial 5.00 mg/L RhB, 300 W ultrasonic power, pH = 3 and 5.00 mg/L H2O2. The effects of the dissolution of nickel from NF and quenching of the Fenton reaction were studied on degradation efficiency. When the heterogeneous Fenton reaction is combined with TiO2-photocatalysis, the pollutant removal efficiency is enhanced significantly. Through this synergistic effect, 22% and 80% acetochlor was degraded within 10 min and 80 min, respectively. PMID:28773580
Effects of developmental variability on the dynamics and self-organization of cell populations
NASA Astrophysics Data System (ADS)
Prabhakara, Kaumudi H.; Gholami, Azam; Zykov, Vladimir S.; Bodenschatz, Eberhard
2017-11-01
We report experimental and theoretical results for spatiotemporal pattern formation in cell populations, where the parameters vary in space and time due to mechanisms intrinsic to the system, namely Dictyostelium discoideum (D.d.) in the starvation phase. We find that different patterns are formed when the populations are initialized at different developmental stages, or when populations at different initial developmental stages are mixed. The experimentally observed patterns can be understood with a modified Kessler-Levine model that takes into account the initial spatial heterogeneity of the cell populations and a developmental path introduced by us, i.e. the time dependence of the various biochemical parameters. The dynamics of the parameters agree with known biochemical studies. Most importantly, the modified model reproduces not only our results, but also the observations of an independent experiment published earlier. This shows that pattern formation can be used to understand and quantify the temporal evolution of the system parameters.
Characterization of Thermal Refugia and Biogeochemical Hotspots at Sleepers River Watershed, VT
NASA Astrophysics Data System (ADS)
Hwang, K.; Chandler, D. G.; Kelleher, C.; Shanley, J. B.; Shaw, S. B.
2017-12-01
During low flow, changes in the extent of the channel network in headwater catchments depend on groundwater-surface water interactions, and dictate thermal and biogeochemical heterogeneities. Channel reaches with low temperature may act as refugia for valued species such as brook trout, and warmer reaches with high dissolved organic matter may act as biogeochemical hotspots. Prior studies have found uniform scaling of hydrologic and biogeochemical processes above certain spatial thresholds but sizable heterogeneities in these processes below the threshold. We utilize high resolution measurements of water quality parameters including stream temperature, conductivity and fluorescent dissolved organic matter (fDOM) at tributaries in two catchments of Sleepers River Watershed, Vermont to investigate seasonal and spatial variation of water quality and scaling of stream chemistry within the intensive study area and the larger Sleepers River Watershed. This study leverages findings from various small scale regional studies to identify differences in headwater channel reach behavior in a similar climate across some dissimilar geomorphic units, to inform the identification of thermal refugia and biogeochemical hotspots.
Fathima, Nishtar Nishad; Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni
2008-01-01
Catalytic wet hydrogen peroxide oxidation of an anionic dye has been explored in this study. Copper(II) complex of NN'-ethylene bis(salicylidene-aminato) (salenH2) has been encapsulated in super cages of zeolite-Y by flexible ligand method. The catalyst has been characterized by Fourier transforms infra red spectroscopy, X-ray powder diffractograms, Thermo-gravimetric and differential thermal analysis and nitrogen adsorption studies. The effects of various parameters such as pH, catalyst and hydrogen peroxide concentration on the oxidation of dye were studied. The results indicate that complete removal of color has been obtained after a period of less than 1h at 60 degrees C, 0.175M H2O2 and 0.3g l(-1) catalyst. More than 95% dye removal has been achieved using this catalyst for commercial effluent. These studies indicate that copper salen complex encapsulated in zeolite framework is a potential heterogeneous catalyst for removal of color from wastewaters.
Estimating finite-population reproductive numbers in heterogeneous populations.
Keegan, Lindsay T; Dushoff, Jonathan
2016-05-21
The basic reproductive number, R0, is one of the most important epidemiological quantities. R0 provides a threshold for elimination and determines when a disease can spread or when a disease will die out. Classically, R0 is calculated assuming an infinite population of identical hosts. Previous work has shown that heterogeneity in the host mixing rate increases R0 in an infinite population. However, it has been suggested that in a finite population, heterogeneity in the mixing rate may actually decrease the finite-population reproductive numbers. Here, we outline a framework for discussing different types of heterogeneity in disease parameters, and how these affect disease spread and control. We calculate "finite-population reproductive numbers" with different types of heterogeneity, and show that in a finite population, heterogeneity has complicated effects on the reproductive number. We find that simple heterogeneity decreases the finite-population reproductive number, whereas heterogeneity in the intrinsic mixing rate (which affects both infectiousness and susceptibility) increases the finite-population reproductive number when R0 is small relative to the size of the population and decreases the finite-population reproductive number when R0 is large relative to the size of the population. Although heterogeneity has complicated effects on the finite-population reproductive numbers, its implications for control are straightforward: when R0 is large relative to the size of the population, heterogeneity decreases the finite-population reproductive numbers, making disease control or elimination easier than predicted by R0. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Rizavi, Saba; Way, Walter D.; Lu, Ying; Pitoniak, Mary; Steffen, Manfred
2004-01-01
The purpose of this study was to use realistically simulated data to evaluate various CAT designs for use with the verbal reasoning measure of the Medical College Admissions Test (MCAT). Factors such as item pool depth, content constraints, and item formats often cause repeated adaptive administrations of an item at ability levels that are not…
From scale-free to Erdos-Rényi networks.
Gómez-Gardeñes, Jesús; Moreno, Yamir
2006-05-01
We analyze a model that interpolates between scale-free and Erdos-Rényi networks. The model introduced generates a one-parameter family of networks and allows one to analyze the role of structural heterogeneity. Analytical calculations are compared with extensive numerical simulations in order to describe the transition between these two important classes of networks. Finally, an application of the proposed model to the study of the percolation transition is presented.
Predicting Explosion-Generated SN and LG Coda Using Syntheic Seismograms
2008-09-01
velocities in the upper crust are based on borehole data, geologic and gravity data, refraction studies and seismic experiments (McLaughlin et al. 1983...realizations of random media. We have estimated the heterogeneity parameters for the NTS using available seismic and geologic data. Lateral correlation...variance and coherence measures between seismic traces are estimated from clusters of nuclear explosions and well- log data. The horizontal von Karman
Huang, Xusheng; Zhang, Chao; Hu, Ruifa; Li, Yifan; Yin, Yanhong; Chen, Zhaohui; Cai, Jinyang; Cui, Fang
2016-04-27
This study analyzed the associations of farmers' exposure to organophosphates (OPs), organosulfurs (OSs), organonitrogens (ONs) and pyrethroids (PYRs) with parameters of the blood complete counts (CBC), a blood chemistry panel (BCP) and the conventional nerve conduction studies among 224 farmers in China in 2012. Two health examinations and a series of follow-up field surveys were conducted. Multiple linear regression analyses were used to evaluate the associations. The results show considerable associations between multiple groups of pesticides and several CBC parameters, but it was not enough to provide evidence of hematological disorders. The short- and medium-term OPs exposures were mainly associated with liver damage and peripheral nerve impairment, respectively, while OSs exposure might induce liver damage and renal dysfunction. The neurotoxicity of ONs was second only to OPs in addition to its potential liver damage and the induced alterations in glucose. In comparison, the estimated results show that PYRs would be the least toxic in terms of the low-dose application. In conclusion, occupational exposures to pesticides with heterogeneous chemical structures are associated with farmer health in different patterns, and the association between a specific group of pesticides and farmer health also differs between the short- and medium-term exposures.
Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts
Young, Kyle A.; Fox, Jordan; Jokela, Jukka
2017-01-01
Infectious disease dynamics depend on the speed, number and fitness of parasites transmitting from infected hosts (‘donors’) to parasite-naive ‘recipients’. Donor heterogeneity likely affects these three parameters, and may arise from variation between donors in traits including: (i) infection load, (ii) resistance, (iii) stage of infection, and (iv) previous experience of transmission. We used the Trinidadian guppy, Poecilia reticulata, and a directly transmitted monogenean ectoparasite, Gyrodactylus turnbulli, to experimentally explore how these sources of donor heterogeneity affect the three transmission parameters. We exposed parasite-naive recipients to donors (infected with a single parasite strain) differing in their infection traits, and found that donor infection traits had diverse and sometimes interactive effects on transmission. First, although transmission speed increased with donor infection load, the relationship was nonlinear. Second, while the number of parasites transmitted generally increased with donor infection load, more resistant donors transmitted more parasites, as did those with previous transmission experience. Finally, parasites transmitting from experienced donors exhibited lower population growth rates on recipients than those from inexperienced donors. Stage of infection had little effect on transmission parameters. These results suggest that a more holistic consideration of within-host processes will improve our understanding of between-host transmission and hence disease dynamics. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289260
Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity
NASA Astrophysics Data System (ADS)
Amaral, Marco A.; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K. L.
2016-04-01
Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from this assumption by considering mixed games, where the game played at each interaction is drawn uniformly at random from a set of two different games. While in well-mixed populations the random mixture of the two games is always equivalent to the average single game, in structured populations this is not always the case. We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which often involves the promotion of cooperation. The presented results support preceding research that highlights the favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population structure in amplifying facilitators of cooperation.
Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity.
Amaral, Marco A; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K L
2016-04-01
Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from this assumption by considering mixed games, where the game played at each interaction is drawn uniformly at random from a set of two different games. While in well-mixed populations the random mixture of the two games is always equivalent to the average single game, in structured populations this is not always the case. We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which often involves the promotion of cooperation. The presented results support preceding research that highlights the favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population structure in amplifying facilitators of cooperation.
The interplay between cooperativity and diversity in model threshold ensembles
Cervera, Javier; Manzanares, José A.; Mafe, Salvador
2014-01-01
The interplay between cooperativity and diversity is crucial for biological ensembles because single molecule experiments show a significant degree of heterogeneity and also for artificial nanostructures because of the high individual variability characteristic of nanoscale units. We study the cross-effects between cooperativity and diversity in model threshold ensembles composed of individually different units that show a cooperative behaviour. The units are modelled as statistical distributions of parameters (the individual threshold potentials here) characterized by central and width distribution values. The simulations show that the interplay between cooperativity and diversity results in ensemble-averaged responses of interest for the understanding of electrical transduction in cell membranes, the experimental characterization of heterogeneous groups of biomolecules and the development of biologically inspired engineering designs with individually different building blocks. PMID:25142516
Validation of cortical bone mineral density distribution using micro-computed tomography.
Mashiatulla, Maleeha; Ross, Ryan D; Sumner, D Rick
2017-06-01
Changes in the bone mineral density distribution (BMDD), due to disease or drugs, can alter whole bone mechanical properties such as strength, stiffness and toughness. The methods currently available for assessing BMDD are destructive and two-dimensional. Micro-computed tomography (μCT) has been used extensively to quantify the three-dimensional geometry of bone and to measure the mean degree of mineralization, commonly called the tissue mineral density (TMD). The TMD measurement has been validated to ash density; however parameters describing the frequency distribution of TMD have not yet been validated. In the current study we tested the ability of μCT to estimate six BMDD parameters: mean, heterogeneity (assessed by the full-width-at-half-maximum (FWHM) and the coefficient of variation (CoV)), the upper and lower 5% cutoffs of the frequency distribution, and peak mineralization) in rat sized femoral cortical bone samples. We used backscatter scanning electron microscopy (bSEM) as the standard. Aluminum and hydroxyapatite phantoms were used to identify optimal scanner settings (70kVp, and 57μA, with a 1500ms integration time). When using hydroxyapatite samples that spanned a broad range of mineralization levels, high correlations were found between μCT and bSEM for all BMDD parameters (R 2 ≥0.92, p<0.010). When using cortical bone samples from rats and various species machined to mimic rat cortical bone geometry, significant correlations between μCT and bSEM were found for mean mineralization (R 2 =0.65, p<0.001), peak mineralization (R 2 =0.61, p<0.001) the lower 5% cutoff (R 2 =0.62, p<0.001) and the upper 5% cutoff (R 2 =0.33, p=0.021), but not for heterogeneity, measured by FWHM (R 2 =0.05, p=0.412) and CoV (R 2 =0.04, p=0.469). Thus, while mean mineralization and most parameters used to characterize the BMDD can be assessed with μCT in rat sized cortical bone samples, caution should be used when reporting the heterogeneity. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nasta, Paolo; Romano, Nunzio
2016-01-01
This study explores the feasibility of identifying the effective soil hydraulic parameterization of a layered soil profile by using a conventional unsteady drainage experiment leading to field capacity. The flux-based field capacity criterion is attained by subjecting the soil profile to a synthetic drainage process implemented numerically in the Soil-Water-Atmosphere-Plant (SWAP) model. The effective hydraulic parameterization is associated to either aggregated or equivalent parameters, the former being determined by the geometrical scaling theory while the latter is obtained through the inverse modeling approach. Outcomes from both these methods depend on information that is sometimes difficult to retrieve at local scale and rather challenging or virtually impossible at larger scales. The only knowledge of topsoil hydraulic properties, for example, as retrieved by a near-surface field campaign or a data assimilation technique, is often exploited as a proxy to determine effective soil hydraulic parameterization at the largest spatial scales. Comparisons of the effective soil hydraulic characterization provided by these three methods are conducted by discussing the implications for their use and accounting for the trade-offs between required input information and model output reliability. To better highlight the epistemic errors associated to the different effective soil hydraulic properties and to provide some more practical guidance, the layered soil profiles are then grouped by using the FAO textural classes. For the moderately heterogeneous soil profiles available, all three approaches guarantee a general good predictability of the actual field capacity values and provide adequate identification of the effective hydraulic parameters. Conversely, worse performances are encountered for the highly variable vertical heterogeneity, especially when resorting to the "topsoil-only" information. In general, the best performances are guaranteed by the equivalent parameters, which might be considered a reference for comparisons with other techniques. As might be expected, the information content of the soil hydraulic properties pertaining only to the uppermost soil horizon is rather inefficient and also not capable to map out the hydrologic behavior of the real vertical soil heterogeneity since the drainage process is significantly affected by profile layering in almost all cases.
Hydraulic Tomography and the Curse of Storativity
NASA Astrophysics Data System (ADS)
Cirpka, O. A.; Li, W.; Englert, A.
2006-12-01
Pumping tests are among the most common techniques for hydrogeological site investigation. Their traditional analysis is based on fitting analytical expressions to measured time series of drawdown. These expressions were derived for homogeneous conditions, whereas all natural aquifers are heterogeneous. The mentioned conceptual inconsistency complicates the hydrogeological interpretation of the obtained coefficients. In particularly, it has been shown that the heterogeneity of transmissivity is aliased to variability in the estimated storativity. In hydraulic tomography, multiple pumping tests are jointly analyzed. The hydraulic parameters to be estimated are allowed to fluctuate in space. For regularization, a geostatistical smoothness criterion may be introduced. Thus, the inversion results in the most likely spatial distribution of parameters that is consistent with the drawdown measurements and follows a predefined geostatistical model. Applying the restricted maximum likelihood approach, the parameters of the prior covariance function (i.e., the prior variance and correlation length) can be inferred from the data as well. We have applied the quasi-linear geostatistical approach of inverse modeling to drawdown measurements of multiple, overlapping pumping tests performed at the test site Krauthausen near Jülich, Germany. To reduce the computational costs, we have characterized the drawdown curves by their temporal moments. In the estimation of the geostatistical parameters, the measurement error of heads turned out to be of vital importance. The less we trust the data, the larger is the estimated correlation length, resulting in a more uniform distribution of transmissivity. Similar to conventional pumping test analysis, the data analysis point to a high variability of storativity although the properties making up storativity are known to be only mildly heterogeneous. We conjecture that the unresolved small-scale spatial variability of conductivity is mapped to variability of storativity. This is rather unfortunate since reliable field data on the variability of storativity are missing. The study underscores that structural information is difficult to extract from hydraulic data alone. Information on length scales and major deterministic features may be gained by geophysical surveying, even if rock-laws directly relating geophysical to hydraulic properties are considered unreliable.
NASA Astrophysics Data System (ADS)
Tabari, Mehdi Sherveen Ghofrani
Although true-triaxial test (TTT) of rocks is now more extensive worldwide, stress-induced heterogeneity is not accounted for and usually simplified anisotropic models are used. Data from a TTT on a cubic sample of Fontainebleau sandstone is used in this study to evaluate our velocity imaging methodology. An anisotropic P wave velocity tomography method was developed using a geometrical approach based on an ellipsoidal P wavefront surface. During the two non-damaging phases of the experiment, saturation of the rock sample with water resulted in inaccurate tomographic images; however, during the final elasto-plastic phase of the experiment comprising major AE activities, tomographic images demonstrated reasonable anomalies. Thus, the P-S1-S2 velocity survey was utilized to obtain an accurate and reliable velocity image of the sample during the two non-damaging phases. This was accomplished using a numerical investigation by FLAC3D on the non-uniform distribution of stress over the sample to estimate the compaction pseudo-boundary surfaces within the rock. Thus, the problem of breakdown in the expected symmetry of shear wave velocities was resolved. It was discovered that a homogeneous anisotropic core in the center of the sample is formed under the standard polyaxial setup where elastic parameters could be computed. Off-diagonal elastic tensor parameters were obtained by a combination of various velocity survey data and justified the ellipsoidal model as being the most appropriate and facilitated the calculation of Thomsen parameters. The ellipsoidal heterogeneous velocity model was also verified by AE event location of transducer shots through the cubic rock specimen especially at the final phase of the experiment consisting lower-velocity zones bearing partially saturated fractures. AE of the rock during the whole experiment recorded by the surrounding transducers were investigated by location methods developed for anisotropic heterogeneous medium. AE events occurred in the vicinity of the dilation pseudo-boundaries where, a relatively large velocity gradient was formed and along parallel fractures in the sigma1/sigma2 plane. This research facilitated the computation of anisotropic parameters for rock during polyaxial tests contributing to enhanced AE interpretation of fracture growth processes in the rock under laboratory true-triaxial stress conditions.
Bennani-Baiti, Barbara; Bennani-Baiti, Nabila; Baltzer, Pascal A
2016-01-01
To evaluate the performance of MRI for diagnosis of breast cancer in non-calcified equivocal breast findings. We performed a systematic review and meta-analysis of peer-reviewed studies in PubMed from 01/01/1986 until 06/15/2015. Eligible were studies applying dynamic contrast-enhanced breast MRI as an adjunct to conventional imaging (mammography, ultrasound) to clarify equivocal findings without microcalcifications. Reference standard for MRI findings had to be established by histopathological sampling or imaging follow-up of at least 12 months. Number of true or false positives and negatives and other characteristics were extracted, and possible bias was determined using the QUADAS-2 applet. Statistical analyses included data pooling and heterogeneity testing. Fourteen out of 514 studies comprising 2,316 lesions met our inclusion criteria. Pooled diagnostic parameters were: sensitivity (99%, 95%-CI: 93-100%), specificity (89%, 95%-CI: 85-92%), PPV (56%, 95%-CI: 42-70%) and NPV (100%, 95%-CI: 99-100%). These estimates displayed significant heterogeneity (P<0.001). Breast MRI demonstrates an excellent diagnostic performance in case of non-calcified equivocal breast findings detected in conventional imaging. However, considering the substantial heterogeneity with regard to prevalence of malignancy, problem solving criteria need to be better defined.
NASA Astrophysics Data System (ADS)
Dangelmayr, Martin A.; Reimus, Paul W.; Johnson, Raymond H.; Clay, James T.; Stone, James J.
2018-06-01
This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO3 and 360 mg/l CaCO3) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO3 over columns fed with 160 mg/l CaCO3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments.
Dangelmayr, Martin A; Reimus, Paul W; Johnson, Raymond H; Clay, James T; Stone, James J
2018-06-01
This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO 3 and 360 mg/l CaCO 3 ) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO 3 over columns fed with 160 mg/l CaCO 3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments. Copyright © 2018 Elsevier B.V. All rights reserved.
Rusli, Rusdi; Haque, Md Mazharul; King, Mark; Voon, Wong Shaw
2017-05-01
Mountainous highways generally associate with complex driving environment because of constrained road geometries, limited cross-section elements, inappropriate roadside features, and adverse weather conditions. As a result, single-vehicle (SV) crashes are overrepresented along mountainous roads, particularly in developing countries, but little attention is known about the roadway geometric, traffic and weather factors contributing to these SV crashes. As such, the main objective of the present study is to investigate SV crashes using detailed data obtained from a rigorous site survey and existing databases. The final dataset included a total of 56 variables representing road geometries including horizontal and vertical alignment, traffic characteristics, real-time weather condition, cross-sectional elements, roadside features, and spatial characteristics. To account for structured heterogeneities resulting from multiple observations within a site and other unobserved heterogeneities, the study applied a random parameters negative binomial model. Results suggest that rainfall during the crash is positively associated with SV crashes, but real-time visibility is negatively associated. The presence of a road shoulder, particularly a bitumen shoulder or wider shoulders, along mountainous highways is associated with less SV crashes. While speeding along downgrade slopes increases the likelihood of SV crashes, proper delineation decreases the likelihood. Findings of this study have significant implications for designing safer highways in mountainous areas, particularly in the context of a developing country. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chao, Ming; Wei, Jie; Narayanasamy, Ganesh; Yuan, Yading; Lo, Yeh-Chi; Peñagarícano, José A
2018-05-01
To investigate three-dimensional cluster structure and its correlation to clinical endpoint in heterogeneous dose distributions from intensity modulated radiation therapy. Twenty-five clinical plans from twenty-one head and neck (HN) patients were used for a phenomenological study of the cluster structure formed from the dose distributions of organs at risks (OARs) close to the planning target volumes (PTVs). Initially, OAR clusters were searched to examine the pattern consistence among ten HN patients and five clinically similar plans from another HN patient. Second, clusters of the esophagus from another ten HN patients were scrutinized to correlate their sizes to radiobiological parameters. Finally, an extensive Monte Carlo (MC) procedure was implemented to gain deeper insights into the behavioral properties of the cluster formation. Clinical studies showed that OAR clusters had drastic differences despite similar PTV coverage among different patients, and the radiobiological parameters failed to positively correlate with the cluster sizes. MC study demonstrated the inverse relationship between the cluster size and the cluster connectivity, and the nonlinear changes in cluster size with dose thresholds. In addition, the clusters were insensitive to the shape of OARs. The results demonstrated that the cluster size could serve as an insightful index of normal tissue damage. The clinical outcome of the same dose-volume might be potentially different. Copyright © 2018 Elsevier B.V. All rights reserved.
de Barros, F P J; Fiori, A; Boso, F; Bellin, A
2015-01-01
Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data. Copyright © 2015 Elsevier B.V. All rights reserved.
Latent Space Tracking from Heterogeneous Data with an Application for Anomaly Detection
2015-11-01
specific, if the anomaly behaves as a sudden outlier after which the data stream goes back to normal state, then the anomalous data point should be...introduced three types of anomalies , all of them are sudden outliers . 438 J. Huang and X. Ning Table 2. Synthetic dataset: AUC and parameters method...Latent Space Tracking from Heterogeneous Data with an Application for Anomaly Detection Jiaji Huang1(B) and Xia Ning2 1 Department of Electrical
NASA Astrophysics Data System (ADS)
Tang, Huanfeng; Huang, Zaiyin; Xiao, Ming; Liang, Min; Chen, Liying; Tan, XueCai
2017-09-01
The activities, selectivities, and stabilities of nanoparticles in heterogeneous reactions are size-dependent. In order to investigate the influencing laws of particle size and temperature on kinetic parameters in heterogeneous reactions, cubic nano-Cu2O particles of four different sizes in the range of 40-120 nm have been controllably synthesized. In situ microcalorimetry has been used to attain thermodynamic data on the reaction of Cu2O with aqueous HNO3 and, combined with thermodynamic principles and kinetic transition-state theory, the relevant reaction kinetic parameters have been evaluated. The size dependences of the kinetic parameters are discussed in terms of the established kinetic model and the experimental results. It was found that the reaction rate constants increased with decreasing particle size. Accordingly, the apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy, and activation Gibbs energy decreased with decreasing particle size. The reaction rate constants and activation Gibbs energies increased with increasing temperature. Moreover, the logarithms of the apparent activation energies, pre-exponential factors, and rate constants were found to be linearly related to the reciprocal of particle size, consistent with the kinetic models. The influence of particle size on these reaction kinetic parameters may be explained as follows: the apparent activation energy is affected by the partial molar enthalpy, the pre-exponential factor is affected by the partial molar entropy, and the reaction rate constant is affected by the partial molar Gibbs energy. [Figure not available: see fulltext.
Nakayama, Masao; Yoshida, Kenji; Nishimura, Hideki; Miyawaki, Daisuke; Uehara, Kazuyuki; Okamoto, Yoshiaki; Okayama, Takanobu; Sasaki, Ryohei
2014-01-01
The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose, and dose that covers 95% of the PTV between the first and second plans were 1.10Gy (1.8%), 1.35Gy (2.2%), 1.10Gy (1.9%), and 0.56Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30Gy (lung V5, V10, V20, and V30) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V5 and V10) than on the dosimetric parameters related to the PTV and other OARs. © 2013 Published by American Association of Medical Dosimetrists on behalf of American Association of Medical Dosimetrists.
Solving the Puzzle of Metastasis: The Evolution of Cell Migration in Neoplasms
Chen, Jun; Sprouffske, Kathleen; Huang, Qihong; Maley, Carlo C.
2011-01-01
Background Metastasis represents one of the most clinically important transitions in neoplastic progression. The evolution of metastasis is a puzzle because a metastatic clone is at a disadvantage in competition for space and resources with non-metastatic clones in the primary tumor. Metastatic clones waste some of their reproductive potential on emigrating cells with little chance of establishing metastases. We suggest that resource heterogeneity within primary tumors selects for cell migration, and that cell emigration is a by-product of that selection. Methods and Findings We developed an agent-based model to simulate the evolution of neoplastic cell migration. We simulated the essential dynamics of neoangiogenesis and blood vessel occlusion that lead to resource heterogeneity in neoplasms. We observed the probability and speed of cell migration that evolves with changes in parameters that control the degree of spatial and temporal resource heterogeneity. Across a broad range of realistic parameter values, increasing degrees of spatial and temporal heterogeneity select for the evolution of increased cell migration and emigration. Conclusions We showed that variability in resources within a neoplasm (e.g. oxygen and nutrients provided by angiogenesis) is sufficient to select for cells with high motility. These cells are also more likely to emigrate from the tumor, which is the first step in metastasis and the key to the puzzle of metastasis. Thus, we have identified a novel potential solution to the puzzle of metastasis. PMID:21556134
NASA Astrophysics Data System (ADS)
Sawada, A.; Takebe, A.; Sakamoto, K.
2006-12-01
Quantitative evaluation of the groundwater velocity in the fractures is a key part of contaminants transport assessment especially in the radioactive waste disposal programs. In a hydrogeological model such as the discrete fracture network model, the transport aperture of water conducting fracture is one of the important parameters for evaluating groundwater velocity. Tracer tests that measure velocity (or transport aperture) are few compared with flow tests that measure transmissivity (or hydraulic aperture). Thus it is useful to estimate transport properties from flow properties. It is commonly assumed that flow and transport aperture are the same, and that aperture is related to the cube root of transmissivity by the parallel-plate analog. Actual field experiments, however, show transport and hydraulic apertures are not always the same, and that transport aperture relates to an empirical constant times the square root of transmissivity. Compared with these field results, the cubic law underestimates transport aperture and overestimates velocity. A possible source of this discrepancy is in-plane heterogeneity of aperture and transmissivity. To study this behavior, numerical simulations using MAFIC were conducted for a single fracture model with a heterogeneous aperture distribution. The simulations varied three parameters - the mean geometrical aperture, JRC (Joint Roughness Coefficient), and the contact area ratio (fracture contact area divided by total fracture area). For each model we determined the equivalent transmissivity and cubic-law aperture under steady flow conditions. Then we simulated mass transport using particle tracking through the same fracture. The transport aperture was estimated from the particle peak arrival time at the downstream boundary. The results show that the mean geometrical aperture is the most sensitive parameter among the three variable parameters in this study. It is also found that the contact area ratio affects transmissivity more than the JRC, and while the JRC strongly affects the velocity and transport aperture. Based on these results, a correlation between the transmissivity, the hydraulic conductivity and the transport aperture will be discussed.
Selmeryd, Jonas; Henriksen, Egil; Leppert, Jerzy; Hedberg, Pär
2016-01-01
Aims The aim of this article is to examine how the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE) recommendations on the classification of diastolic dysfunction (DDF) are interpreted in the scientific community and to explore how variations in the DDF definition affect the reported prevalence. Methods and results A systematic review of studies citing the EACVI/ASE consensus document ‘Recommendations for the evaluation of left ventricular diastolic function by echocardiography’ was performed. The definition of DDF used in each study was recorded. Subsequently, several possible interpretations of the EACVI/ASE classification scheme were used to obtain DDF prevalence in a community-based sample (n = 714). In the systematic review, 60 studies were included. In 13 studies, no specification of DDF definition was presented, a one-level classification tree was used in 13, a two-level classification tree in 18, and in the remaining 16 studies, a DDF definition was presented but no grading of DDF was performed. In 17 studies, the DDF definition relied solely on early diastolic tissue velocity and/or left atrial size. In eight of these studies, a single parameter was used, in two studies the logical operator AND was used to combine two or more parameters, and the remaining seven studies used the logical operator OR. The resulting prevalence of DDF in the community-based sample varied from 12 to 84%, depending on the DDF definition used. Conclusion A substantial heterogeneity of definitions of DDF was evident among the studies reviewed, and the different definitions had a substantial impact on the reported prevalence of DDF. PMID:26374880
Application of heterogeneous pulse coupled neural network in image quantization
NASA Astrophysics Data System (ADS)
Huang, Yi; Ma, Yide; Li, Shouliang; Zhan, Kun
2016-11-01
On the basis of the different strengths of synaptic connections between actual neurons, this paper proposes a heterogeneous pulse coupled neural network (HPCNN) algorithm to perform quantization on images. HPCNNs are developed from traditional pulse coupled neural network (PCNN) models, which have different parameters corresponding to different image regions. This allows pixels of different gray levels to be classified broadly into two categories: background regional and object regional. Moreover, an HPCNN also satisfies human visual characteristics. The parameters of the HPCNN model are calculated automatically according to these categories, and quantized results will be optimal and more suitable for humans to observe. At the same time, the experimental results of natural images from the standard image library show the validity and efficiency of our proposed quantization method.
Imtiaz, Maria; Hayat, Tasawar; Alsaedi, Ahmed
2016-01-01
This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number. PMID:27583457
Gaing, Byron; Sigmund, Eric E; Huang, William C; Babb, James S; Parikh, Nainesh S; Stoffel, David; Chandarana, Hersh
2015-03-01
The aim of this study was to determine if voxel-based histogram analysis of intravoxel incoherent motion imaging (IVIM) parameters can differentiate various subtypes of renal tumors, including benign and malignant lesions. A total of 44 patients with renal tumors who underwent surgery and had histopathology available were included in this Health Insurance Portability and Accountability Act-compliant, institutional review board-approved, single-institution prospective study. In addition to routine renal magnetic resonance imaging examination performed on a 1.5-T system, all patients were imaged with axial diffusion-weighted imaging using 8 b values (range, 0-800 s/mm). A biexponential model was fitted to the diffusion signal data using a segmented algorithm to extract the IVIM parameters perfusion fraction (fp), tissue diffusivity (Dt), and pseudodiffusivity (Dp) for each voxel. Mean and histogram measures of heterogeneity (standard deviation, skewness, and kurtosis) of IVIM parameters were correlated with pathology results of tumor subtype using unequal variance t tests to compare subtypes in terms of each measure. Correction for multiple comparisons was accomplished using the Tukey honestly significant difference procedure. A total of 44 renal tumors including 23 clear cell (ccRCC), 4 papillary (pRCC), 5 chromophobe, and 5 cystic renal cell carcinomas, as well as benign lesions, 4 oncocytomas (Onc) and 3 angiomyolipomas (AMLs), were included in our analysis. Mean IVIM parameters fp and Dt differentiated 8 of 15 pairs of renal tumors. Histogram analysis of IVIM parameters differentiated 9 of 15 subtype pairs. One subtype pair (ccRCC vs pRCC) was differentiated by mean analysis but not by histogram analysis. However, 2 other subtype pairs (AML vs Onc and ccRCC vs Onc) were differentiated by histogram distribution parameters exclusively. The standard deviation of Dt [σ(Dt)] differentiated ccRCC (0.362 ± 0.136 × 10 mm/s) from AML (0.199 ± 0.043 × 10 mm/s) (P = 0.002). Kurtosis of fp separated Onc (2.767 ± 1.299) from AML (-0.325 ± 0.279; P = 0.001), ccRCC (0.612 ± 1.139; P = 0.042), and pRCC (0.308 ± 0.730; P = 0.025). Intravoxel incoherent motion imaging parameters with inclusion of histogram measures of heterogeneity can help differentiate malignant from benign lesions as well as various subtypes of renal cancers.
Effects of intrinsic aging and photodamage on skin dyspigmentation: an explorative study
NASA Astrophysics Data System (ADS)
Dobos, Gabor; Trojahn, Carina; D'Alessandro, Brian; Patwardhan, Sachin; Canfield, Douglas; Blume-Peytavi, Ulrike; Kottner, Jan
2016-06-01
Photoaging is associated with increasing pigmentary heterogeneity and darkening of skin color. However, little is known about age-related changes in skin pigmentation on sun-protected areas. The aim of this explorative study was to measure skin color and dyspigmentation using image processing and to evaluate the reliability of these parameters. Twenty-four volunteers of three age-groups were included in this explorative study. Measurements were conducted at sun-exposed and sun-protected areas. Overall skin-color estimates were similar among age groups. The hyper- and hypopigmentation indices differed significantly by age groups and their correlations with age ranged between 0.61 and 0.74. Dorsal forearm skin differed from the other investigational areas (p<0.001). We observed an increase in dyspigmentation at all skin areas, including sun-protected skin areas, already in young adulthood. Associations between age and dyspigmentation estimates were higher compared to color parameters. All color and dyspigmentation estimates showed high reliability. Dyspigmentation parameters seem to be better biomarkers for UV damage than the overall color measurements.
Sequential Pumping and Tracing Experiments Using Packer Systems in a Chalk Aquifer
NASA Astrophysics Data System (ADS)
Goderniaux, P.; Poulain, A.
2016-12-01
The hydraulic characterization of subsurface geological unit is crucial for many hydrogeological applications. The quantification and the spatial distribution of the related parameters is however not always straightforward. As a consequence, parameters values are often considered as homogeneous over the thickness of an aquifer unit. To try to catch the possible heterogeneity, sequential tracer and pumping tests have been performed between two piezometers, using inflatable packer systems to isolate and study specific sections of the boreholes. The experimental site is composed of two 50m-deep piezometers located in a chalk aquifer, in South-West Belgium. The boreholes are not equipped with any casing or screen, to allow the use of the packers. The chalk is characterized by a high porosity, which enables the storage of large quantities of groundwater, and by fractures where fast preferential flow occurs. Recordings made with a borehole camera system has evidenced the presence of many fractures along the borehole, with a mean density of 2 fractures by meter. The frequency of fracture occurrences is however variable along the borehole. Pumping and tracer tests have been performed (1) using the whole borehole depth, and (2) over specific 1-meter sections, isolated with packers. Results confirm that flow and transport parameters are heterogeneous within the chalk aquifer unit. Groundwater head variations, induced by water pumping or injection, and tracer transfer times are variable according to the studied borehole section. Tests are still going on, and the objective is to have measurements over the whole borehole, to be used for numerical interpretation.
NASA Astrophysics Data System (ADS)
Wałęga, Andrzej; Młyński, Dariusz; Wachulec, Katarzyna
2017-12-01
The aim of the study was to assess the applicability of asymptotic functions for determining the value of CN parameter as a function of precipitation depth in mountain and upland catchments. The analyses were carried out in two catchments: the Rudawa, left tributary of the Vistula, and the Kamienica, right tributary of the Dunajec. The input material included data on precipitation and flows for a multi-year period 1980-2012, obtained from IMGW PIB in Warsaw. Two models were used to determine empirical values of CNobs parameter as a function of precipitation depth: standard Hawkins model and 2-CN model allowing for a heterogeneous nature of a catchment area. The study analyses confirmed that asymptotic functions properly described P-CNobs relationship for the entire range of precipitation variability. In the case of high rainfalls, CNobs remained above or below the commonly accepted average antecedent moisture conditions AMCII. The study calculations indicated that the runoff amount calculated according to the original SCS-CN method might be underestimated, and this could adversely affect the values of design flows required for the design of hydraulic engineering projects. In catchments with heterogeneous land cover, the results of CNobs were more accurate when 2-CN model was used instead of the standard Hawkins model. 2-CN model is more precise in accounting for differences in runoff formation depending on retention capacity of the substrate. It was also demonstrated that the commonly accepted initial abstraction coefficient λ = 0.20 yielded too big initial loss of precipitation in the analyzed catchments and, therefore, the computed direct runoff was underestimated. The best results were obtained for λ = 0.05.
Milidonis, Xenios; Marshall, Ian; Macleod, Malcolm R; Sena, Emily S
2015-03-01
Because the new era of preclinical stroke research demands improvements in validity and generalizability of findings, moving from single site to multicenter studies could be pivotal. However, the conduct of magnetic resonance imaging (MRI) in stroke remains ill-defined. We sought to assess the variability in the use of MRI for evaluating lesions post stroke and to examine the possibility as an alternative to gold standard histology for measuring the infarct size. We identified animal studies of ischemic stroke reporting lesion sizes using MRI. We assessed the degree of heterogeneity and reporting of scanning protocols, postprocessing methods, study design characteristics, and study quality. Studies performing histological evaluation of infarct size were further selected to compare with corresponding MRI using meta-regression. Fifty-four articles undertaking a total of 78 different MRI scanning protocols met the inclusion criteria. T2-weighted imaging was most frequently used (83% of the studies), followed by diffusion-weighted imaging (43%). Reporting of the imaging parameters was adequate, but heterogeneity between studies was high. Twelve studies assessed the infarct size using both MRI and histology at corresponding time points, with T2-weighted imaging-based treatment effect having a significant positive correlation with histology (; P<0.001). Guidelines for standardized use and reporting of MRI in preclinical stroke are urgently needed. T2-weighted imaging could be used as an effective in vivo alternative to histology for estimating treatment effects based on the extent of infarction; however, additional studies are needed to explore the effect of individual parameters. © 2015 American Heart Association, Inc.
van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M
2017-11-27
Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory analysis our results show similar diagnostic accuracy comparing anatomical (AUC 0.86(0.83-0.89)) and functional reference standards (AUC 0.88(0.84-0.90)). Only the per territory analysis sensitivity did not show significant heterogeneity. None of the groups showed signs of publication bias. The clinical value of semi-quantitative and quantitative CMR perfusion analysis remains uncertain due to extensive inter-study heterogeneity and large differences in CMR perfusion acquisition protocols, reference standards, and methods of assessment of myocardial perfusion parameters. For wide spread implementation, standardization of CMR perfusion techniques is essential. CRD42016040176 .
Discretization-dependent model for weakly connected excitable media
NASA Astrophysics Data System (ADS)
Arroyo, Pedro André; Alonso, Sergio; Weber dos Santos, Rodrigo
2018-03-01
Pattern formation has been widely observed in extended chemical and biological processes. Although the biochemical systems are highly heterogeneous, homogenized continuum approaches formed by partial differential equations have been employed frequently. Such approaches are usually justified by the difference of scales between the heterogeneities and the characteristic spatial size of the patterns. Under different conditions, for example, under weak coupling, discrete models are more adequate. However, discrete models may be less manageable, for instance, in terms of numerical implementation and mesh generation, than the associated continuum models. Here we study a model to approach discreteness which permits the computer implementation on general unstructured meshes. The model is cast as a partial differential equation but with a parameter that depends not only on heterogeneities sizes, as in the case of quasicontinuum models, but also on the discretization mesh. Therefore, we refer to it as a discretization-dependent model. We validate the approach in a generic excitable media that simulates three different phenomena: the propagation of action membrane potential in cardiac tissue, in myelinated axons of neurons, and concentration waves in chemical microemulsions.
NASA Astrophysics Data System (ADS)
Buda, A.; Demco, D. E.; Jagadeesh, B.; Blümich, B.
2005-01-01
The molecular dynamic heterogeneity of monolayer to submonolayer thin lecithin films confined to submicron cylindrical pores were investigated by 1H magnetization exchange nuclear magnetic resonance. In this experiment a z-magnetization gradient was generated by a double-quantum dipolar filter. The magnetization-exchange decay and buildup curves were interpreted with the help of a theoretical model based on the approximation of a one-dimensional spin-diffusion process in a three-domain morphology. The dynamic heterogeneity of the fatty acid chains and the effects of the surface area per molecule, the diameter of the pores, and the temperature were characterized with the help of local spin-diffusion coefficients. The effect of various parameters on the molecular dynamics of the mobile region of the fatty acid chains was quantified by introducing an ad hoc Gaussian distribution function of the 1H residual dipolar couplings. For the lipid films investigated in this study, the surface induced order and the geometrical confinement affect the chain dynamics of the entire molecule. Therefore, each part of the chain independently reflects the effect of surface coverage, pore size, and temperature.
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.
2012-03-01
The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN parameter values corresponding to various soil, land cover, and land management conditions can be selected from tables, but it is preferable to estimate the CN value from measured rainfall-runoff data if available. However, previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. Hence, they suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of soils and land cover spatial variability on its hydrologic response is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behaviour of the CN-rainfall function produced by the simplified two-CN system is approached theoretically, it is analysed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous methods based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desseroit, M; Cheze Le Rest, C; Tixier, F
2014-06-15
Purpose: Previous studies have shown that CT or 18F-FDG PET intratumor heterogeneity features computed using texture analysis may have prognostic value in Non-Small Cell Lung Cancer (NSCLC), but have been mostly investigated separately. The purpose of this study was to evaluate the potential added value with respect to prognosis regarding the combination of non-enhanced CT and 18F-FDG PET heterogeneity textural features on primary NSCLC tumors. Methods: One hundred patients with non-metastatic NSCLC (stage I–III), treated with surgery and/or (chemo)radiotherapy, that underwent staging 18F-FDG PET/CT images, were retrospectively included. Morphological tumor volumes were semi-automatically delineated on non-enhanced CT using 3D SlicerTM.more » Metabolically active tumor volumes (MATV) were automatically delineated on PET using the Fuzzy Locally Adaptive Bayesian (FLAB) method. Intratumoral tissue density and FDG uptake heterogeneities were quantified using texture parameters calculated from co-occurrence, difference, and run-length matrices. In addition to these textural features, first order histogram-derived metrics were computed on the whole morphological CT tumor volume, as well as on sub-volumes corresponding to fine, medium or coarse textures determined through various levels of LoG-filtering. Association with survival regarding all extracted features was assessed using Cox regression for both univariate and multivariate analysis. Results: Several PET and CT heterogeneity features were prognostic factors of overall survival in the univariate analysis. CT histogram-derived kurtosis and uniformity, as well as Low Grey-level High Run Emphasis (LGHRE), and PET local entropy were independent prognostic factors. Combined with stage and MATV, they led to a powerful prognostic model (p<0.0001), with median survival of 49 vs. 12.6 months and a hazard ratio of 3.5. Conclusion: Intratumoral heterogeneity quantified through textural features extracted from both CT and FDG PET images have complementary and independent prognostic value in NSCLC.« less
Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts
NASA Astrophysics Data System (ADS)
Ye, Rong
Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g. pi-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g. oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl2) or reduced (e.g., with H2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. While localized surface plasmon resonance (LSPR) provides a powerful platform for nanoparticle catalysis, our studies suggest that in some cases interband transitions should be considered as an alternative mechanism of light-driven nanoparticle catalysis. The benefits already demonstrated by plasmonic nanostructures as catalysts provided the impetus for examining complementary activation modes based on the metal nanoparticle itself. Leveraging these transitions has the potential to provide a means to highly active catalysis modes that would otherwise be challenging to access. For example, for the preparation of highly active metal catalysts on a subnanosized scale is challenging, thus limiting their exploitation and study in catalysis. Our work suggests a novel and facile strategy for the formation of highly active gold nanocluster catalysts by light illumination of the interband transitions in the presence of the appropriate substrate.
NASA Astrophysics Data System (ADS)
Dichter, M.; Roy, M.
2015-12-01
Interpreting surface deformation patterns in terms of deeper processes in regions of active magmatism is challenging and inherently non-unique. This study focuses on interpreting the unusual sombrero-shaped pattern of surface deformation in the Altiplano Puna region of South America, which has previously been modeled as the effect of an upwelling diapir of material in the lower crust. Our goal is to investigate other possible interpretations of the surface deformation feature using a suite of viscoelastic models with varying material heterogeneity. We use the finite-element code PyLith to study surface deformation due to a buried time-varying (periodic) overpressure source, a magma body, at depth within a viscoelastic half-space. In our models, the magma-body is a penny-shaped crack, with a cylindrical region above the crack that is weak relative to the surrounding material. We initially consider a magma body within a homogeneous viscoelastic half-space to determine the effect of the free surface upon deformation above and beneath the source region. We observe a complex depth-dependent phase relationship between stress and strain for elements that fall between the ground surface and the roof of the magma body. Next, we consider a volume of weak material (faster relaxation time relative to background) that is distributed with varying geometry around the magma body. We investigate how surface deformation is governed by the spatial distribution of the weak material and its rheologic parameters. We are able to reproduce a "sombrero" pattern of surface velocities for a range of models with material heterogeneity. The wavelength of the sombrero pattern is primarily controlled by the extent of the heterogeneous region, modulated by flexural effects. Our results also suggest an "optimum overpressure forcing frequency" where the lifetime of the sombrero pattern (a transient phenomenon due to the periodic nature of the overpressure forcing) reaches a maximum. Through further research we hope to better understand how the parameter space of our forward model controls the distribution of surface deformation and eventually develop a better understanding of the observed pattern of surface deformation in the Altiplano Puna.
Understanding and exploiting nanoscale surface heterogeneity for particle and cell manipulation
NASA Astrophysics Data System (ADS)
Kalasin, Surachate
This thesis explores the impact of surface heterogeneities on colloidal interactions and translates concepts to biointerfacial systems, for instance, microfluidic and biomedical devices. The thesis advances a model system, originally put forth by Kozlova: Tunable electrostatic surface heterogeneity is produced by adsorbing small amounts of cationic polyelectrolyte on a silica flat. The resulting positive electrostatic patches possess a density that is tuned from a saturated carpet down to average spacings on the order of a few hundred nanometers. At these length-scales, multiple adhesive elements (from tens to thousands) are present in the area of contact between a particle and a surface, a distinguishing feature of the thesis. Much of the literature addressing surface "heterogeneity" engineers surfaces with micron-scale features, almost always larger than the contact area between a particle and a second surface. With a nanoscale heterogeneity model, this thesis reports and quantitatively explains particle interaction behavior not typical of homogeneous interfaces. This includes (1) an adhesion threshold, a minimum average surface density of cationic patches needed for particle capture, (previously observed by Kozlova); (2) a crossover, from salt-destabilized to salt-stabilized interactions between heterogeneous surfaces with net-negative charge; (3) a shift of the adhesion threshold with shear, reducing adhesion; (4) a crossover from shear-enhanced to shear-hindered particle adhesion; (5) a range of surface compositions and processing parameters that sustain particle rolling; and (6) conditions where particles arrest immediately on contact. Through variations in ionic strength and particle size, the particle-surface contact area is systematically varied relative to the heterogeneity lengthscale. This provides a semi-quantitative explanation for the shifting of the adhesion threshold, in terms of the statistical probability of a particle being able to find a surface region sufficiently attractive for capture. Though neglecting hydrodynamics, the resulting (kappa-1a)1/2 power law scaling for the density of patches at the adhesion threshold roughly captures the general shape of the data. The study also reveals that at high ionic strength, particle-surface interactions are most influenced by the patchy surface heterogeneity; however, at low ionic strengths, the system becomes most sensitive to the average system properties. Thus for heterogeneous interfaces, the extent to which heterogeneity is influential depends on other factors (particle size, ionic strength). While this comprises a crossover from heterogeneity-dominated to mean field behavior, it is worth noting that even in the mean field regime, the spacing between patches always exceeds the Debye length, making the regions of different surface charge always distinct. Comparison with the simulations of Duffadar and Davis reveals that the criterion for particle capture is a nearly constant number of cationic patches per unit area of contact between a particle and a heterogeneous collector. The heterogeneous surface model displays a shear crossover seen with bacteria and other complex systems: At low shear, particle capture is enhanced, while at higher shears it is reduced. This behavior, sometimes rationalized in terms of the complex energy landscapes of biological bonds, is clearly explained in the heterogeneity model. For weakly adhesive systems engaging only a few adhesive elements or receptors, shear compromises the ability of a few bonds to capture particles. For more strongly adhesive systems, shear increases particle transport. The convolution of this competition leads to the non-monotonic effect of shear seen in biology. The complex variety of particle behaviors combined with the large number of independently variable parameters, each with different scaling of interfacial forces, necessitates a state-space approach to mapping regimes interactions and motion signatures. Following the approach taken by biophysicists for describing the interactions of leukocytes with the endothelial vasculature near an injury, the state spaces in this thesis map regimes of free particle motion, immediate firm arrest, and persistent rolling against macroscopic average patch density, Debye length, particle size, and shear rate. Surprisingly, the electrostatic heterogeneity state space resembles that for selectin-mediated leukocyte motion, and reasons are put forth. This finding is important because it demonstrates how synthetic nanoscale constructs can be exploited to achieve the selective cell capture mechanism previously attributed only to specialized cell adhesion molecules. This thesis initiates studies that extend these fundamental principles, developed for a tunable and well-characterized synthetic model to biological systems. For instance, it is demonstrated that general behaviors seen with the electrostatic model are observed when fibrinogen proteins are substituted for the electrostatic patches. This shows that the nature of the attractions is immaterial to adhesion, and that the effect of added salt primarily alters the range of the electrostatic repulsion and, correspondingly, the contact area. Also, studies with Staphylococcus aureus run parallel to those employing 1 mum silica spheres, further translating the concepts. Inaugural studies with mammalian cells, in the future work section, indicate that application of the surface heterogeneity approach to cell manipulation holds much future promise.
Mach wave properties in the presence of source and medium heterogeneity
NASA Astrophysics Data System (ADS)
Vyas, J. C.; Mai, P. M.; Galis, M.; Dunham, Eric M.; Imperatori, W.
2018-06-01
We investigate Mach wave coherence for kinematic supershear ruptures with spatially heterogeneous source parameters, embedded in 3D scattering media. We assess Mach wave coherence considering: 1) source heterogeneities in terms of variations in slip, rise time and rupture speed; 2) small-scale heterogeneities in Earth structure, parameterized from combinations of three correlation lengths and two standard deviations (assuming von Karman power spectral density with fixed Hurst exponent); and 3) joint effects of source and medium heterogeneities. Ground-motion simulations are conducted using a generalized finite-difference method, choosing a parameterization such that the highest resolved frequency is ˜5 Hz. We discover that Mach wave coherence is slightly diminished at near fault distances (< 10 km) due to spatially variable slip and rise time; beyond this distance the Mach wave coherence is more strongly reduced by wavefield scattering due to small-scale heterogeneities in Earth structure. Based on our numerical simulations and theoretical considerations we demonstrate that the standard deviation of medium heterogeneities controls the wavefield scattering, rather than the correlation length. In addition, we find that peak ground accelerations in the case of combined source and medium heterogeneities are consistent with empirical ground motion prediction equations for all distances, suggesting that in nature ground shaking amplitudes for supershear ruptures may not be elevated due to complexities in the rupture process and seismic wave-scattering.
Zúñiga-Benítez, Henry; Peñuela, Gustavo A
2017-03-01
Methylparaben (MePB) is an organic compound employed mainly in the manufacture of different personal care products. However, it has been recently listed as a potential endocrine disrupter chemical. Therefore, the main objective of this work was to evaluate the degradation of MePB in aqueous solutions using heterogeneous photocatalysis with TiO 2 and hydrogen peroxide. In this way, effects of pH and the initial concentrations of catalyst, H 2 O 2 , and pollutant on treatment were analyzed. A face centered, central composite design was used for determination of the influence of each parameter in the process and the conditions under which the pollutant suffers the highest rates of degradation were selected. In general, results indicate that combination TiO 2 /H 2 O 2 /light irradiation leads to ∼90 % of substrate removal after 30 min of reaction and that hydroxyl free radicals are the main specie responsible for organic matter elimination. Finally, in terms of mineralization and biodegradability, experimental results indicated that part of the organic matter was transformed into CO 2 and water and the photo-treatment promoted an increase in samples biodegradability.
Scattering and radiative properties of complex soot and soot-containing particles
NASA Astrophysics Data System (ADS)
Liu, L.; Mishchenko, M. I.; Mackowski, D. W.; Dlugach, J.
2012-12-01
Tropospheric soot and soot containing aerosols often exhibit nonspherical overall shapes and complex morphologies. They can externally, semi-externally, and internally mix with other aerosol species. This poses a tremendous challenge in particle characterization, remote sensing, and global climate modeling studies. To address these challenges, we used the new numerically exact public-domain Fortran-90 code based on the superposition T-matrix method (STMM) and other theoretical models to analyze the potential effects of aggregation and heterogeneity on light scattering and absorption by morphologically complex soot containing particles. The parameters we computed include the whole scattering matrix elements, linear depolarization ratios, optical cross-sections, asymmetry parameters, and single scattering albedos. It is shown that the optical characteristics of soot and soot containing aerosols very much depend on particle sizes, compositions, and aerosol overall shapes. The soot particle configurations and heterogeneities can have a substantial effect that can result in a significant enhancement of extinction and absorption relative to those computed from the Lorenz-Mie theory. Meanwhile the model calculated information combined with in-situ and remote sensed data can be used to constrain soot particle shapes and sizes which are much needed in climate models.
Combining Deterministic structures and stochastic heterogeneity for transport modeling
NASA Astrophysics Data System (ADS)
Zech, Alraune; Attinger, Sabine; Dietrich, Peter; Teutsch, Georg
2017-04-01
Contaminant transport in highly heterogeneous aquifers is extremely challenging and subject of current scientific debate. Tracer plumes often show non-symmetric but highly skewed plume shapes. Predicting such transport behavior using the classical advection-dispersion-equation (ADE) in combination with a stochastic description of aquifer properties requires a dense measurement network. This is in contrast to the available information for most aquifers. A new conceptual aquifer structure model is presented which combines large-scale deterministic information and the stochastic approach for incorporating sub-scale heterogeneity. The conceptual model is designed to allow for a goal-oriented, site specific transport analysis making use of as few data as possible. Thereby the basic idea is to reproduce highly skewed tracer plumes in heterogeneous media by incorporating deterministic contrasts and effects of connectivity instead of using unimodal heterogeneous models with high variances. The conceptual model consists of deterministic blocks of mean hydraulic conductivity which might be measured by pumping tests indicating values differing in orders of magnitudes. A sub-scale heterogeneity is introduced within every block. This heterogeneity can be modeled as bimodal or log-normal distributed. The impact of input parameters, structure and conductivity contrasts is investigated in a systematic manor. Furthermore, some first successful implementation of the model was achieved for the well known MADE site.
Moxon, Rachel; Bright, Lucy; Pritchard, Beth; Bowen, I Mark; de Souza, Mírley Barbosa; da Silva, Lúcia Daniel Machado; England, Gary C W
2015-09-01
A semi-automated ultrasonographic method was developed to measure echogenicity and heterogeneity of the testes and prostate gland and relationships of these measures with semen quality were assessed in 43 fertile dogs. The relationship between animal age and body weight upon the volume of the testes, epididymal tail volume and prostate volume were also established. Mean testicular echogenicity was negatively correlated with the percentage of morphologically normal live spermatozoa (more echogenic testes were associated with fewer normal sperm) but not with any other semen quality measure. Mean testicular heterogeneity was positively correlated with the total spermatozoal output (more heterogenous testes, being those with anechoic parenchyma and prominent echogenic stippling, were associated with greater sperm output) but not with any other semen quality measure. There was no relationship between either mean prostatic echogenicity or mean prostatic heterogeneity and any semen quality measure. There was no relationship between age and any testicular or prostatic parameter; however bodyweight was significantly correlated with total testicular volume, total epididymal tail volume and total prostatic volume. Testicular and prostatic ultrasonographic echogenicity and heterogeneity can be objectively assessed using digital image analysis and testicular echogenicity and heterogeneity may be useful adjunct measurements in a breeding soundness examination. Copyright © 2015 Elsevier B.V. All rights reserved.
Inefficient epidemic spreading in scale-free networks
NASA Astrophysics Data System (ADS)
Piccardi, Carlo; Casagrandi, Renato
2008-02-01
Highly heterogeneous degree distributions yield efficient spreading of simple epidemics through networks, but can be inefficient with more complex epidemiological processes. We study diseases with nonlinear force of infection whose prevalences can abruptly collapse to zero while decreasing the transmission parameters. We find that scale-free networks can be unable to support diseases that, on the contrary, are able to persist at high endemic levels in homogeneous networks with the same average degree.
Mechanical Adaptivity as a Process: Implications to New Materials and Material System Design
2012-08-01
Deliver. Rev. 2004 Microactuators and valves Uses: • Drug delivery • Microfluidic actuators, valves , and pumps • Chemical and biological Sensors... paper where they did a study with f the stoichiometric parameter involved in the reduction step, and they looked at 2 X* - both far away from the...through strain? How do varying material properties affect behavior? Smith, Vaia et al. submitted 2012 23 Fibrous Paper Next Step: Heterogeneous
NASA Astrophysics Data System (ADS)
Platis, Andreas; Martinez, Daniel; Bange, Jens
2014-05-01
Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the German Meteorological Service during May and June. The synoptic situation of the analyzed days are fair weather conditions with temperature at about 30, sometimes with previous rain events. The spatial series of CT2 and CQ2 showed considerable variability along the flight path that was caused by surface heterogeneity. Measurement flights were performed in the morning and during noon, allowing for a temporal evaluation of the structure parameters during the day. CT2 indicates a high variability between forest, agricultural landscape and lakes at a flight level of 100 m above ground. CQ2 showed lower variations between the different types of soils. The decrease of CT2 with height as predicted by free-convection scaling was confirmed for the analyzed flights.
Random sphere packing model of heterogeneous propellants
NASA Astrophysics Data System (ADS)
Kochevets, Sergei Victorovich
It is well recognized that combustion of heterogeneous propellants is strongly dependent on the propellant morphology. Recent developments in computing systems make it possible to start three-dimensional modeling of heterogeneous propellant combustion. A key component of such large scale computations is a realistic model of industrial propellants which retains the true morphology---a goal never achieved before. The research presented develops the Random Sphere Packing Model of heterogeneous propellants and generates numerical samples of actual industrial propellants. This is done by developing a sphere packing algorithm which randomly packs a large number of spheres with a polydisperse size distribution within a rectangular domain. First, the packing code is developed, optimized for performance, and parallelized using the OpenMP shared memory architecture. Second, the morphology and packing fraction of two simple cases of unimodal and bimodal packs are investigated computationally and analytically. It is shown that both the Loose Random Packing and Dense Random Packing limits are not well defined and the growth rate of the spheres is identified as the key parameter controlling the efficiency of the packing. For a properly chosen growth rate, computational results are found to be in excellent agreement with experimental data. Third, two strategies are developed to define numerical samples of polydisperse heterogeneous propellants: the Deterministic Strategy and the Random Selection Strategy. Using these strategies, numerical samples of industrial propellants are generated. The packing fraction is investigated and it is shown that the experimental values of the packing fraction can be achieved computationally. It is strongly believed that this Random Sphere Packing Model of propellants is a major step forward in the realistic computational modeling of heterogeneous propellant of combustion. In addition, a method of analysis of the morphology of heterogeneous propellants is developed which uses the concept of multi-point correlation functions. A set of intrinsic length scales of local density fluctuations in random heterogeneous propellants is identified by performing a Monte-Carlo study of the correlation functions. This method of analysis shows great promise for understanding the origins of the combustion instability of heterogeneous propellants, and is believed to become a valuable tool for the development of safe and reliable rocket engines.
WE-E-17A-06: Assessing the Scale of Tumor Heterogeneity by Complete Hierarchical Segmentation On MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gensheimer, M; Trister, A; Ermoian, R
2014-06-15
Purpose: In many cancers, intratumoral heterogeneity exists in vascular and genetic structure. We developed an algorithm which uses clinical imaging to interrogate different scales of heterogeneity. We hypothesize that heterogeneity of perfusion at large distance scales may correlate with propensity for disease recurrence. We applied the algorithm to initial diagnosis MRI of rhabdomyosarcoma patients to predict recurrence. Methods: The Spatial Heterogeneity Analysis by Recursive Partitioning (SHARP) algorithm recursively segments the tumor image. The tumor is repeatedly subdivided, with each dividing line chosen to maximize signal intensity difference between the two subregions. This process continues to the voxel level, producing segmentsmore » at multiple scales. Heterogeneity is measured by comparing signal intensity histograms between each segmented region and the adjacent region. We measured the scales of contrast enhancement heterogeneity of the primary tumor in 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival (RFS). To compare with existing methods, fractal and Haralick texture features were also calculated. Results: The complete segmentation produced by SHARP allows extraction of diverse features, including the amount of heterogeneity at various distance scales, the area of the tumor with the most heterogeneity at each scale, and for a given point in the tumor, the heterogeneity at different scales. 10/18 rhabdomyosarcoma patients suffered disease recurrence. On contrast-enhanced MRI, larger scale of maximum signal intensity heterogeneity, relative to tumor diameter, predicted for shorter RFS (p=0.05). Fractal dimension, fractal fit, and three Haralick features did not predict RFS (p=0.09-0.90). Conclusion: SHARP produces an automatic segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. In rhabdomyosarcoma, RFS was shorter when the primary tumor exhibited larger scale of heterogeneity on contrast-enhanced MRI. If validated on a larger dataset, this imaging biomarker could be useful to help personalize treatment.« less
Liu, Lanbo; Chao, Benjamin F; Sun, Wenke; Kuang, Weijia
2016-11-01
In this paper we report the assessment of the effect of the three-dimensional (3D) density heterogeneity in the mantle on Earth Orientation Parameters (EOP) (i.e., the polar motion, or PM, and the length of day, or LOD) in the tidal frequencies. The 3D mantle density model is estimated based upon a global S-wave velocity tomography model (S16U6L8) and the mineralogical knowledge derived from laboratory experiment. The lateral density variation is referenced against the Preliminary Reference Earth Model (PREM). Using this approach the effects of the heterogeneous mantle density variation in all three tidal frequencies (zonal long periods, tesseral diurnal, and sectorial semidiurnal) are estimated in both PM and LOD. When compared with mass or density perturbations originated on the earth's surface such as the oceanic and barometric changes, the heterogeneous mantle only contributes less than 10% of the total variation in PM and LOD in tidal frequencies. Nevertheless, including the 3D variation of the density in the mantle into account explained a substantial portion of the discrepancy between the observed signals in PM and LOD extracted from the lump-sum values based on continuous space geodetic measurement campaigns (e.g., CONT94) and the computed contribution from ocean tides as predicted by tide models derived from satellite altimetry observations (e.g., TOPEX/Poseidon). In other word, the difference of the two, at all tidal frequencies (long-periods, diurnals, and semi-diurnals) contains contributions of the lateral density heterogeneity of the mantle. Study of the effect of mantle density heterogeneity effect on torque-free earth rotation may provide useful constraints to construct the Reference Earth Model (REM), which is the next major objective in global geophysics research beyond PREM.
Effects of incomplete mixing on reactive transport in flows through heterogeneous porous media
NASA Astrophysics Data System (ADS)
Wright, Elise E.; Richter, David H.; Bolster, Diogo
2017-11-01
The phenomenon of incomplete mixing reduces bulk effective reaction rates in reactive transport. Many existing models do not account for these effects, resulting in the overestimation of reaction rates in laboratory and field settings. To date, most studies on incomplete mixing have focused on diffusive systems; here, we extend these to explore the role that flow heterogeneity has on incomplete mixing. To do this, we examine reactive transport using a Lagrangian reactive particle tracking algorithm in two-dimensional idealized heterogeneous porous media. Contingent on the nondimensional Peclet and Damköhler numbers in the system, it was found that near well-mixed behavior could be observed at late times in the heterogeneous flow field simulations. We look at three common flow deformation metrics that describe the enhancement of mixing in the flow due to velocity gradients: the Okubo-Weiss parameter (θ ), the largest eigenvalue of the Cauchy-Green strain tensor (λC), and the finite-time Lyapunov exponent (Λ ). Strong mixing regions in the heterogeneous flow field identified by these metrics were found to correspond to regions with higher numbers of reactions, but the infrequency of these regions compared to the large numbers of reactions occurring elsewhere in the domain imply that these strong mixing regions are insufficient in explaining the observed near well-mixed behavior. Since it was found that reactive transport in these heterogeneous flows could overcome the effects of incomplete mixing, we also search for a closure for the mean concentration. The conservative quantity u2¯, where u =CA-CB , was found to predict the late time scaling of the mean concentration, i.e., Ci¯˜u2¯ .
System model the processing of heterogeneous sensory information in robotized complex
NASA Astrophysics Data System (ADS)
Nikolaev, V.; Titov, V.; Syryamkin, V.
2018-05-01
Analyzed the scope and the types of robotic systems consisting of subsystems of the form "a heterogeneous sensors data processing subsystem". On the basis of the Queuing theory model is developed taking into account the unevenness of the intensity of information flow from the sensors to the subsystem of information processing. Analytical solution to assess the relationship of subsystem performance and uneven flows. The research of the obtained solution in the range of parameter values of practical interest.
Modelling the evaporation of nanoparticle suspensions from heterogeneous surfaces
NASA Astrophysics Data System (ADS)
Chalmers, C.; Smith, R.; Archer, A. J.
2017-07-01
We present a Monte Carlo (MC) grid-based model for the drying of drops of a nanoparticle suspension upon a heterogeneous surface. The model consists of a generalised lattice-gas in which the interaction parameters in the Hamiltonian can be varied to model different properties of the materials involved. We show how to correctly choose the interactions, to minimise the effects of the underlying grid so that hemispherical droplets form. We also include the effects of surface roughness to examine the effects of contact-line pinning on the dynamics. When there is a ‘lid’ above the system, which prevents evaporation, equilibrium drops form on the surface, which we use to determine the contact angle and how it varies as the parameters of the model are changed. This enables us to relate the interaction parameters to the materials used in applications. The model has also been applied to drying on heterogeneous surfaces, in particular to the case where the suspension is deposited on a surface consisting of a pair of hydrophilic conducting metal surfaces that are either side of a band of hydrophobic insulating polymer. This situation occurs when using inkjet printing to manufacture electrical connections between the metallic parts of the surface. The process is not always without problems, since the liquid can dewet from the hydrophobic part of the surface, breaking the bridge before the drying process is complete. The MC model reproduces the observed dewetting, allowing the parameters to be varied so that the conditions for the best connection can be established. We show that if the hydrophobic portion of the surface is located at a step below the height of the neighbouring metal, the chance of dewetting of the liquid during the drying process is significantly reduced.
Characterizing Heterogeneity in Infiltration Rates During Managed Aquifer Recharge.
Mawer, Chloe; Parsekian, Andrew; Pidlisecky, Adam; Knight, Rosemary
2016-11-01
Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO-DTS) observations and the phase shift of the diurnal temperature signal between two vertically co-located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO-DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO-DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high-spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R 2 = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates. © 2016, National Ground Water Association.
Land use and hydromechanical heterogeneities in marshland soils.
NASA Astrophysics Data System (ADS)
Tojo Radimy, Raymond; Dupont, Jean-Paul; Dudoignon, Patrick
2017-04-01
In the interpretation of soil moisture profiles, mechanical properties were most often considered homogeneous. The structural heterogeneities of the soil are knows to be at the origin of the distribution and the availability of water in the vadose zone. The soils study is located in the French Atlantic coastal marshlands, characterized by the succession polderization/desiccation/consolidation and maturation. The work is carried out within the framework of the farming of old salt marshes with two concerns in the farmers: the salinity of the soil and the distribution of the available water capacity of the soils according to the crop growth. The present work shows the knowledge of the soil storage transfers during seasonal cycles on drained corn field and undrained grassland. We analyze the vertical water profiles observed to reveal the hydromechanical heterogeneities in the soils depending the porosity and gravity water parameter. This approach is based on mechanical tests between the compaction pathways carried out in the laboratory using materials taken in situ. Comparing to grasslands profiles, we highlight the influence of agricultural practices and the establishment of drainage in the marshland. However, the vertical homogenization of hydromechanical structures, desalination has been taken into account for the estimation of water in crop. The concept of a homogeneous structure is not adapted to real vertical profile. Finally, the authors conclude by discussing the notion of the mechanical availability of water in terms of porosity and gravity water. These parameters are good tools to the sustainable management of marshland soils. Keywords: hydromechanics, vadose zone, soil structure, land use, available water capacity
Analysis of the landscape complexity and heterogeneity of the Pantanal wetland.
Miranda, C S; Gamarra, R M; Mioto, C L; Silva, N M; Conceição Filho, A P; Pott, A
2018-05-01
This is the first report on analysis of habitat complexity and heterogeneity of the Pantanal wetland. The Pantanal encompasses a peculiar mosaic of environments, being important to evaluate and monitor this area concerning conservation of biodiversity. Our objective was to indirectly measure the habitat complexity and heterogeneity of the mosaic forming the sub-regions of the Pantanal, by means of remote sensing. We obtained free images of Normalized Difference Vegetation Index (NDVI) from the sensor MODIS and calculated the mean value (complexity) and standard deviation (heterogeneity) for each sub-region in the years 2000, 2008 and 2015. The sub-regions of Poconé, Canoeira, Paraguai and Aquidauana presented the highest values of complexity (mean NDVI), between 0.69 and 0.64 in the evaluated years. The highest horizontal heterogeneity (NDVI standard deviation) was observed in the sub-region of Tuiuiú, with values of 0.19 in the years 2000 and 2015, and 0.21 in the year 2008. We concluded that the use of NDVI to estimate landscape parameters is an efficient tool for assessment and monitoring of the complexity and heterogeneity of the Pantanal habitats, applicable in other regions.
Effects of Contaminated Site Age on Dissolution Dynamics
NASA Astrophysics Data System (ADS)
Jawitz, J. W.
2004-12-01
This work presents a streamtube-based analytical approach to evaluate reduction in groundwater contaminant flux resulting from partial mass reduction in a nonaqueous phase liquid (NAPL) source zone. The reduction in contaminant flux, Rj, discharged from the source zone is a remediation performance metric that has a direct effect on the fundamental drivers of remediation: protection of human health risks and the environment. Spatial variability is described within a Lagrangian framework where aquifer hydrodynamic heterogeneities are characterized using nonreactive travel time distributions, while NAPL spatial distribution heterogeneity can be similarly described using reactive travel time distributions. The combined statistics of these distributions are used to evaluate the relationship between reduction in contaminant mass, Rm, and Rj. A portion of the contaminant mass in the source zone is assumed to be removed via in-situ flushing remediation, with the initial and final conditions defined as steady-state natural-gradient groundwater flow through the contaminant source zone. The combined effect of aquifer and NAPL heterogeneities are shown to be captured in a single parameter, reactive travel time variability, that was determined to be the most important factor controlling the relationship between Rm and Rj. Increased values of the following parameters are shown to result in more favorable contaminant elution dynamics (i.e., greater flux reduction for a given reduction in mass): aquifer hydrodynamic heterogeneity, NAPL source zone heterogeneity, positive correlation between travel time and NAPL content, and time since the contamination event. Less favorable elution behavior is shown to result from negative correlations between travel time and NAPL content and rate-limited dissolution. The specific emphasis of this presentation is on the effects of the length of time that has elapsed since the contamination event (site age) on the dissolution dynamics.
2012-01-01
of exploiting a wide range of habitats, reported population parameters such as density and survival vary widely indicating variation in habitat quality...more strongly influenced by the “riskiness” of the habitat than by resource availability [8]. Swift fox population parameters in different landscapes...we explored the effects of landscape heterogeneity on population parameters likely to reflect habitat quality, such as population density, home range
A three-compartment model of osmotic water exchange in the lung microvasculature.
Seale, K T; Harris, T R
2000-08-01
A bolus injection of hypertonic NaCl into the pulmonary arterial circulation of an isolated perfused dog lung causes the osmotic movement of water first into, and then out of the capillary. The associated changes in blood constituent concentrations and density are referred to as the osmotic transient (OT). Measurement of the sound conduction velocity of effluent blood during an OT is a highly sensitive way to monitor water movement between the vascular and extravascular spaces. It was our objective to develop a mathematical model that adequately describes this transient change in the sound conduction velocity and evaluate its application under conditions of homogeneous and heterogeneous capillary flow distributions. The model accounts for osmotic water exchange between the capillary and two parallel extravascular compartments, and includes as parameters the osmotic conductances (sigmaK1 ,sigmaK2) of the two compartments. The osmotic conductance parameters incorporate the filtration coefficient for water and reflection coefficient for salt for the two pathways of water exchange. The partition of total extravascular lung water (EVLW) between the two extravascular compartments is a third parameter of the model. The homogeneous model parameter estimates (per gram wet lung weight +/-95% confidence limits) from the best-fit analysis of a typical curve were sigmaK1=2.15 +/-0.07, sigmaK2 = 0.03 + 0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)] and V1 = 23.83+/-0.12 ml, with a coefficient of variation (CV) of 0.08. The heterogeneous parameter estimates for a capillary transit time distribution with mean transit time (MTTc) = 1.72 s, and relative dispersion (RDc) = 0.35 were KI = 2.38+/-0.05, or K2 = 0.03+/-0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)], V1 = 23.91+/-0.08 ml, and CV=0.05. EVLW was 42.1 ml for both models. We conclude that the three-compartment mathematical model adequately describes a typical OT under both homogeneous and heterogeneous blood flow assumptions.
The interplay between cooperativity and diversity in model threshold ensembles.
Cervera, Javier; Manzanares, José A; Mafe, Salvador
2014-10-06
The interplay between cooperativity and diversity is crucial for biological ensembles because single molecule experiments show a significant degree of heterogeneity and also for artificial nanostructures because of the high individual variability characteristic of nanoscale units. We study the cross-effects between cooperativity and diversity in model threshold ensembles composed of individually different units that show a cooperative behaviour. The units are modelled as statistical distributions of parameters (the individual threshold potentials here) characterized by central and width distribution values. The simulations show that the interplay between cooperativity and diversity results in ensemble-averaged responses of interest for the understanding of electrical transduction in cell membranes, the experimental characterization of heterogeneous groups of biomolecules and the development of biologically inspired engineering designs with individually different building blocks. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Control of collective network chaos.
Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A F; So, Paul
2014-06-01
Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.
APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER
Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requ...
NASA Astrophysics Data System (ADS)
Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi
2013-02-01
The combination of fluorescent contrast agents with microscopy is a powerful technique to obtain real time images of tissue histology without the need for fixing, sectioning, and staining. The potential of this technology lies in the identification of robust methods for image segmentation and quantitation, particularly in heterogeneous tissues. Our solution is to apply sparse decomposition (SD) to monochrome images of fluorescently-stained microanatomy to segment and quantify distinct tissue types. The clinical utility of our approach is demonstrated by imaging excised margins in a cohort of mice after surgical resection of a sarcoma. Representative images of excised margins were used to optimize the formulation of SD and tune parameters associated with the algorithm. Our results demonstrate that SD is a robust solution that can advance vital fluorescence microscopy as a clinically significant technology.
NASA Astrophysics Data System (ADS)
Bosca, Ryan J.; Jackson, Edward F.
2016-01-01
Assessing and mitigating the various sources of bias and variance associated with image quantification algorithms is essential to the use of such algorithms in clinical research and practice. Assessment is usually accomplished with grid-based digital reference objects (DRO) or, more recently, digital anthropomorphic phantoms based on normal human anatomy. Publicly available digital anthropomorphic phantoms can provide a basis for generating realistic model-based DROs that incorporate the heterogeneity commonly found in pathology. Using a publicly available vascular input function (VIF) and digital anthropomorphic phantom of a normal human brain, a methodology was developed to generate a DRO based on the general kinetic model (GKM) that represented realistic and heterogeneously enhancing pathology. GKM parameters were estimated from a deidentified clinical dynamic contrast-enhanced (DCE) MRI exam. This clinical imaging volume was co-registered with a discrete tissue model, and model parameters estimated from clinical images were used to synthesize a DCE-MRI exam that consisted of normal brain tissues and a heterogeneously enhancing brain tumor. An example application of spatial smoothing was used to illustrate potential applications in assessing quantitative imaging algorithms. A voxel-wise Bland-Altman analysis demonstrated negligible differences between the parameters estimated with and without spatial smoothing (using a small radius Gaussian kernel). In this work, we reported an extensible methodology for generating model-based anthropomorphic DROs containing normal and pathological tissue that can be used to assess quantitative imaging algorithms.
NASA Astrophysics Data System (ADS)
Osipenko, A.; Krylov, K.
In ophiolite complexes from the Eastern Asian accretion belts the spatial heterogeneity of geochemical parameters for different components of an ophiolite sequence is estab- lished: restite mantle-derived peridotites, cumulative layered complex and volcanics. This heterogeneity is displayed as at a regional level (tens - hundred km), and at a level of local structures (hundred i - first tens km). As a rule, distinction is observed on a complex of geochemical parameters (concentration and form of REE spectra, EPG distribution, isotope characteristics, Cr-spinel and pyroxene composition etc.). Revealed at once in several suprasubduction-type ophiolite belts (Kamuikotan, Philip- pines New Guinea etc.), the spatial variations of geochemical parameters have not gradual, and discrete character. For an explanation of the reasons of ophiolite com- positional heterogeneity several mechanisms are offered: (1) tectonical overlapping of various fragments of lithosphere; (2) different specify of deep processes, resulting to compositional heterogeneity of rocks from the same lithosphere level; 3) hetero- geneity of the upper mantle and/or mantle metasomatism; 4) evolution of ophiolites (Shervais, 2001) and/or center of magma generation (mixture of continuous series of melt portions, separated during different stages of progressive mantle source melting (Bazylev et al., 2001)); 5) preservations of relict blocks of low lithosphere and upper mantle from the previous stage in suprasubduction conditions. The authors consider regional geochemical heterogeneity and segmentation of suprasubduction ophiolites (SSZ-type) on an example of peridotites from the Eastern Kamchatka ophiolite belt (EKOB), where sublongitude zones, crossed the basic geological structures of a penin- sula (including EROB) were allocated earlier. For each of zones the complex of geo- chemical attributes, steady is established within the limits of a zone, but distinct from of the characteristics of other zones. Among the factors causing an unequal degree of partial melting of peridotites, a main role play a geothermal regime and composition of fluid phase (first of all, the role of water fluid is great). These parameters, in turn, are supervised by a geodynamic regime of magma generation (such characteristics as speed of subduction and geometry of a subducted plate) and finally determine speed of uplift from the diapir in mantle, depth of the termination of partial melting, amount of 1 extracted melt, form and capacity of the magma chamber etc. The local heterogeneity in SSZ-ophiolites is considered on an example of a complex of the Kamchatka Cape Peninsula - the largest ophiolite complex in EKOB. Isotope, geochemical and miner- alogical study have shown, that a part, prevailing on volume, of this complex consist suprasubduction-type magmatic rocks (restite high-depleted harzburgites and related layered cumulative complex), whereas peridotites of harzburgite-lherzolite series and high-grade metabasites (retrograde eclogites and garnet amphibolites) composition- ally correspond to series of N-MORB and Ò-MORB-type. The presence in ophiolite of the Kamchatka Cape Peninsula alongside with high-depleted harzburgites as well moderately- and low-depleted peridotites of harzburgite-lherzolite series allows to as- sume, that Late Mesozoic suprasubduction ophiolites were formed on peridotitic basis of abyssal type. Thus the transformation of "oceanic" substrate was not complete, that has allowed to be kept relict peridotites of lherzolitic type and high-pressure metamor- phics. Probably it reflects pulsing character of geodynamics of suprasubduction-type ophiolite formation, it is possible is connected with "jumping" of spreading axes in suprasubduction conditions. During followed multistage napping in a northeast direc- tion in the Upper Cretaceous time disintegrated fragments of both mantle complexes were tectonically concurrent. In the report the alternative versions of tectonic models of development are also discussed for the Eastern Kamchatka ophiolites. 2
Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems
DeAngelis, Donald L.; Ming Ni, Wei; Zhang, Bo
2016-01-01
Theoretical models of populations on a system of two connected patches previously have shown that when the two patches differ in maximum growth rate and carrying capacity, and in the limit of high diffusion, conditions exist for which the total population size at equilibrium exceeds that of the ideal free distribution, which predicts that the total population would equal the total carrying capacity of the two patches. However, this result has only been shown for the Pearl-Verhulst growth function on two patches and for a single-parameter growth function in continuous space. Here, we provide a general criterion for total population size to exceed total carrying capacity for three commonly used population growth rates for both heterogeneous continuous and multi-patch heterogeneous landscapes with high population diffusion. We show that a sufficient condition for this situation is that there is a convex positive relationship between the maximum growth rate and the parameter that, by itself or together with the maximum growth rate, determines the carrying capacity, as both vary across a spatial region. This relationship occurs in some biological populations, though not in others, so the result has ecological implications.
Mass media and heterogeneous bounds of confidence in continuous opinion dynamics
NASA Astrophysics Data System (ADS)
Pineda, M.; Buendía, G. M.
2015-02-01
This work focuses on the effects of an external mass media on continuous opinion dynamics with heterogeneous bounds of confidence. We modified the original Deffuant et al. and Hegselmann and Krause models to incorporate both, an external mass media and a heterogeneous distribution of confidence levels. We analysed two cases, one where only two bounds of confidence are taken into account, and other where each individual of the system has her/his own characteristic level of confidence. We found that, in the absence of mass media, diversity of bounds of confidence can improve the capacity of the systems to reach consensus. We show that the persuasion capacity of the external message is optimal for intermediate levels of heterogeneity. Our simulations also show the existence, for certain parameter values, of a counter-intuitive effect in which the persuasion capacity of the mass media decreases if the mass media intensity is too large. We discuss similarities and differences between the two heterogeneous versions of these continuous opinion dynamic models under the influence of mass media.
Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao
2018-03-01
We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.
Post-seismic relaxation theory on laterally heterogeneous viscoelastic model
Pollitz, F.F.
2003-01-01
Investigation was carried out into the problem of relaxation of a laterally heterogeneous viscoelastic Earth following an impulsive moment release event. The formal solution utilizes a semi-analytic solution for post-seismic deformation on a laterally homogeneous Earth constructed from viscoelastic normal modes, followed by application of mode coupling theory to derive the response on the aspherical Earth. The solution is constructed in the Laplace transform domain using the correspondence principle and is valid for any linear constitutive relationship between stress and strain. The specific implementation described in this paper is a semi-analytic discretization method which assumes isotropic elastic structure and a Maxwell constitutive relation. It accounts for viscoelastic-gravitational coupling under lateral variations in elastic parameters and viscosity. For a given viscoelastic structure and minimum wavelength scale, the computational effort involved with the numerical algorithm is proportional to the volume of the laterally heterogeneous region. Examples are presented of the calculation of post-seismic relaxation with a shallow, laterally heterogeneous volume following synthetic impulsive seismic events, and they illustrate the potentially large effect of regional 3-D heterogeneities on regional deformation patterns.
On the effects of subsurface parameters on evaporite dissolution (Switzerland)
NASA Astrophysics Data System (ADS)
Zidane, Ali; Zechner, Eric; Huggenberger, Peter; Younes, Anis
2014-05-01
Uncontrolled subsurface evaporite dissolution could lead to hazards such as land subsidence. Observed subsidences in a study area of Northwestern Switzerland were mainly due to subsurface dissolution (subrosion) of evaporites such as halite and gypsum. A set of 2D density driven flow simulations were evaluated along 1000 m long and 150 m deep 2D cross sections within the study area that is characterized by tectonic horst and graben structures. The simulations were conducted to study the effect of the different subsurface parameters that could affect the dissolution process. The heterogeneity of normal faults and its impact on the dissolution of evaporites is studied by considering several permeable faults that include non-permeable areas. The mixed finite element method (MFE) is used to solve the flow equation, coupled with the multipoint flux approximation (MPFA) and the discontinuous Galerkin method (DG) to solve the diffusion and the advection parts of the transport equation.
NASA Technical Reports Server (NTRS)
Seth, Anji; Giorgi, Filippo; Dickinson, Robert E.
1994-01-01
A vectorized version of the biosphere-atmosphere transfer scheme (VBATS) is used to study moisture, energy, and momentum fluxes from heterogeneous land surfaces st the scale of an atmospheric model (AM) grid cells. To incorporate subgrid scale inhomogeneity, VBATS includes two important features: (1) characterization of the land surface (vegetation and soil parameters) at N subgrid points within an AM grid cell and (2) explicit distribution of climate forcing (precipitation, clouds, etc.) over the subgrid. In this study, VBATS is used in stand-alone mode to simulate a single AM grid cell and to evaluate the effects of subgrid scale vegetation and climate specification on the surface fluxes and hydrology. It is found that the partitioning of energy can be affected by up to 30%, runoff by 50%, and surface stress in excess of 60%. Distributing climate forcing over the AM grid cell increases the Bowen ratio, as a result of enhanced sensible heat flux and reduced latent heat flux. The combined effect of heterogeneous vegetation and distribution of climate is found to be dependent on the dominat vegetation class in the AM grid cell. Development of this method is part of a larger program to explore the importance of subgrid scale processes in regional and global climate simulations.
STOCK MARKET CRASH AND EXPECTATIONS OF AMERICAN HOUSEHOLDS*
HUDOMIET, PÉTER; KÉZDI, GÁBOR; WILLIS, ROBERT J.
2011-01-01
SUMMARY This paper utilizes data on subjective probabilities to study the impact of the stock market crash of 2008 on households’ expectations about the returns on the stock market index. We use data from the Health and Retirement Study that was fielded in February 2008 through February 2009. The effect of the crash is identified from the date of the interview, which is shown to be exogenous to previous stock market expectations. We estimate the effect of the crash on the population average of expected returns, the population average of the uncertainty about returns (subjective standard deviation), and the cross-sectional heterogeneity in expected returns (disagreement). We show estimates from simple reduced-form regressions on probability answers as well as from a more structural model that focuses on the parameters of interest and separates survey noise from relevant heterogeneity. We find a temporary increase in the population average of expectations and uncertainty right after the crash. The effect on cross-sectional heterogeneity is more significant and longer lasting, which implies substantial long-term increase in disagreement. The increase in disagreement is larger among the stockholders, the more informed, and those with higher cognitive capacity, and disagreement co-moves with trading volume and volatility in the market. PMID:21547244
Phenanthrene sorption with heterogeneous organic matter in a landfill aquifer material
Karapanagioti, H.K.; Sabatini, D.A.; Kleineidam, S.; Grathwohl, P.; Ligouis, B.
1999-01-01
Phenanthrene was used as a model chemical to study the sorption properties of Canadian River Alluvium aquifer material. Both equilibrium and kinetic sorption processes were evaluated through batch studies. The bulk sample was divided into subsamples with varying properties such as particle size, organic content, equilibration time, etc. in order to determine the effect of these properties on resulting sorption parameters. The data have been interpreted and the effect of experimental variables was quantified using the Freundlich isotherm model and a numerical solution of Fick's 2nd law in porous media. Microscopic organic matter characterization proved to be a valuable tool for explaining the results. Different organic matter properties and sorption mechanisms were observed for each soil subsample. Samples containing coal particles presented high Koc values. Samples with organic matter dominated by organic coatings on quartz grains presented low Koc values and contained a high percentage of fast sorption sites. The numerical solution of Fick's 2ndlaw requires the addition of two terms (fast and slow) in order to fit the kinetics of these heterogeneous samples properly. These results thus demonstrate the need for soil organic matter characterization in order to predict and explain the sorption properties of a soil sample containing heterogeneous organic matter and also the difficulty and complexity of modeling sorption in such samples.
Calibration of an Unsteady Groundwater Flow Model for a Complex, Strongly Heterogeneous Aquifer
NASA Astrophysics Data System (ADS)
Curtis, Z. K.; Liao, H.; Li, S. G.; Phanikumar, M. S.; Lusch, D.
2016-12-01
Modeling of groundwater systems characterized by complex three-dimensional structure and heterogeneity remains a significant challenge. Most of today's groundwater models are developed based on relatively simple conceptual representations in favor of model calibratibility. As more complexities are modeled, e.g., by adding more layers and/or zones, or introducing transient processes, more parameters have to be estimated and issues related to ill-posed groundwater problems and non-unique calibration arise. Here, we explore the use of an alternative conceptual representation for groundwater modeling that is fully three-dimensional and can capture complex 3D heterogeneity (both systematic and "random") without over-parameterizing the aquifer system. In particular, we apply Transition Probability (TP) geostatistics on high resolution borehole data from a water well database to characterize the complex 3D geology. Different aquifer material classes, e.g., `AQ' (aquifer material), `MAQ' (marginal aquifer material'), `PCM' (partially confining material), and `CM' (confining material), are simulated, with the hydraulic properties of each material type as tuning parameters during calibration. The TP-based approach is applied to simulate unsteady groundwater flow in a large, complex, and strongly heterogeneous glacial aquifer system in Michigan across multiple spatial and temporal scales. The resulting model is calibrated to observed static water level data over a time span of 50 years. The results show that the TP-based conceptualization enables much more accurate and robust calibration/simulation than that based on conventional deterministic layer/zone based conceptual representations.
Zoom-in Simulations of Protoplanetary Disks Starting from GMC Scales
NASA Astrophysics Data System (ADS)
Kuffmeier, Michael; Haugbølle, Troels; Nordlund, Åke
2017-09-01
We investigate the formation of protoplanetary disks around nine solar-mass stars formed in the context of a (40 pc)3 Giant Molecular Cloud model, using ramses adaptive mesh refinement simulations extending over a scale range of about 4 million, from an outer scale of 40 pc down to cell sizes of 2 au. Our most important result is that the accretion process is heterogeneous in multiple ways: in time, in space, and among protostars of otherwise similar mass. Accretion is heterogeneous in time, in the sense that accretion rates vary during the evolution, with generally decreasing profiles, whose slopes vary over a wide range, and where accretion can increase again if a protostar enters a region with increased density and low speed. Accretion is heterogeneous in space, because of the mass distribution, with mass approaching the accreting star-disk system in filaments and sheets. Finally, accretion is heterogeneous among stars, since the detailed conditions and dynamics in the neighborhood of each star can vary widely. We also investigate the sensitivity of disk formation to physical conditions and test their robustness by varying numerical parameters. We find that disk formation is robust even when choosing the least favorable sink particle parameters, and that turbulence cascading from larger scales is a decisive factor in disk formation. We also investigate the transport of angular momentum, finding that the net inward mechanical transport is compensated for mainly by an outward-directed magnetic transport, with a contribution from gravitational torques usually subordinate to the magnetic transport.
A radiosity model for heterogeneous canopies in remote sensing
NASA Astrophysics Data System (ADS)
GarcíA-Haro, F. J.; Gilabert, M. A.; Meliá, J.
1999-05-01
A radiosity model has been developed to compute bidirectional reflectance from a heterogeneous canopy approximated by an arbitrary configuration of plants or clumps of vegetation, placed on the ground surface in a prescribed manner. Plants are treated as porous cylinders formed by aggregations of layers of leaves. This model explicitly computes solar radiation leaving each individual surface, taking into account multiple scattering processes between leaves and soil, and occlusion of neighboring plants. Canopy structural parameters adopted in this study have served to simplify the computation of the geometric factors of the radiosity equation, and thus this model has enabled us to simulate multispectral images of vegetation scenes. Simulated images have shown to be valuable approximations of satellite data, and then a sensitivity analysis to the dominant parameters of discontinuous canopies (plant density, leaf area index (LAI), leaf angle distribution (LAD), plant dimensions, soil optical properties, etc.) and scene (sun/ view angles and atmospheric conditions) has been undertaken. The radiosity model has let us gain a deep insight into the radiative regime inside the canopy, showing it to be governed by occlusion of incoming irradiance, multiple scattering of radiation between canopy elements and interception of upward radiance by leaves. Results have indicated that unlike leaf distribution, other structural parameters such as LAI, LAD, and plant dimensions have a strong influence on canopy reflectance. In addition, concepts have been developed that are useful to understand the reflectance behavior of the canopy, such as an effective LAI related to leaf inclination.
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai
2018-02-01
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.
Oddone, Francesco; Lucenteforte, Ersilia; Michelessi, Manuele; Rizzo, Stanislao; Donati, Simone; Parravano, Mariacristina; Virgili, Gianni
2016-05-01
Macular parameters have been proposed as an alternative to retinal nerve fiber layer (RNFL) parameters to diagnose glaucoma. Comparing the diagnostic accuracy of macular parameters, specifically the ganglion cell complex (GCC) and ganglion cell inner plexiform layer (GCIPL), with the accuracy of RNFL parameters for detecting manifest glaucoma is important to guide clinical practice and future research. Studies using spectral domain optical coherence tomography (SD OCT) and reporting macular parameters were included if they allowed the extraction of accuracy data for diagnosing manifest glaucoma, as confirmed with automated perimetry or a clinician's optic nerve head (ONH) assessment. Cross-sectional cohort studies and case-control studies were included. The QUADAS 2 tool was used to assess methodological quality. Only direct comparisons of macular versus RNFL parameters (i.e., in the same study) were conducted. Summary sensitivity and specificity of each macular or RNFL parameter were reported, and the relative diagnostic odds ratio (DOR) was calculated in hierarchical summary receiver operating characteristic (HSROC) models to compare them. Thirty-four studies investigated macular parameters using RTVue OCT (Optovue Inc., Fremont, CA) (19 studies, 3094 subjects), Cirrus OCT (Carl Zeiss Meditec Inc., Dublin, CA) (14 studies, 2164 subjects), or 3D Topcon OCT (Topcon, Inc., Tokyo, Japan) (4 studies, 522 subjects). Thirty-two of these studies allowed comparisons between macular and RNFL parameters. Studies generally reported sensitivities at fixed specificities, more commonly 0.90 or 0.95, with sensitivities of most best-performing parameters between 0.65 and 0.75. For all OCT devices, compared with RNFL parameters, macular parameters were similarly or slightly less accurate for detecting glaucoma at the highest reported specificity, which was confirmed in analyses at the lowest specificity. Included studies suffered from limitations, especially the case-control study design, which is known to overestimate accuracy. However, this flaw is less relevant as a source of bias in direct comparisons conducted within studies. With the use of OCT, RNFL parameters are still preferable to macular parameters for diagnosing manifest glaucoma, but the differences are small. Because of high heterogeneity, direct comparative or randomized studies of OCT devices or OCT parameters and diagnostic strategies are essential. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
García-Isla, Guadalupe; Olivares, Andy Luis; Silva, Etelvino; Nuñez-Garcia, Marta; Butakoff, Constantine; Sanchez-Quintana, Damian; G Morales, Hernán; Freixa, Xavier; Noailly, Jérôme; De Potter, Tom; Camara, Oscar
2018-05-08
The left atrial appendage (LAA) is a complex and heterogeneous protruding structure of the left atrium (LA). In atrial fibrillation patients, it is the location where 90% of the thrombi are formed. However, the role of the LAA in thrombus formation is not fully known yet. The main goal of this work is to perform a sensitivity analysis to identify the most relevant LA and LAA morphological parameters in atrial blood flow dynamics. Simulations were run on synthetic ellipsoidal left atria models where different parameters were individually studied: pulmonary veins and mitral valve dimensions; LAA shape; and LA volume. Our computational analysis confirmed the relation between large LAA ostia, low blood flow velocities and thrombus formation. Additionally, we found that pulmonary vein configuration exerted a critical influence on LAA blood flow patterns. These findings contribute to a better understanding of the LAA and to support clinical decisions for atrial fibrillation patients. Copyright © 2018 John Wiley & Sons, Ltd.
Thermal Model of the Promoted Combustion Test
NASA Technical Reports Server (NTRS)
Jones, Peter D.
1996-01-01
Flammability of metals in high pressure, pure oxygen environments, such as rocket engine turbopumps, is commonly evaluated using the Promoted Combustion Test (PCT). The PCT emphasizes the ability of an ignited material to sustain combustion, as opposed to evaluating the sample's propensity to ignite in the first place. A common arrangement is a rod of the sample material hanging in a chamber in which a high pressure, pure oxygen environment is maintained. An igniter of some energetically combusting material is fixed to the bottom of the rod and fired. This initiates combustion, and the sample burns and melts at its bottom tip. A ball of molten material forms, and this ball detaches when it grows too large to be supported by surface tension with the rod. In materials which do not sustain combustion, the combustion then extinguishes. In materials which do sustain combustion, combustion re-initiates from molten residue left on the bottom of the rod, and the melt ball burns and grows until it detaches again. The purpose of this work is development of a PCT thermal simulation model, detailing phase change, melt detachment, and the several heat transfer modes. Combustion is modeled by a summary rate equation, whose parameters are identified by comparison to PCT results. The sensitivity of PCT results to various physical and geometrical parameters is evaluated. The identified combustion parameters may be used in design of new PCT arrangements, as might be used for flammability assessment in flow-dominated environments. The Haynes 214 nickel-based superalloy, whose PCT results are applied here, burns heterogeneously (fuel and oxidizer are of different phases; combustion takes place on the fuel surface). Heterogeneous combustion is not well understood. (In homogeneous combustion, the metal vaporizes, and combustion takes place in an analytically treatable cloud above the surface). Thermal modeling in heterogeneous combustion settings provides a means for linking test results more directly to detailed combustion mechanics, leading to improved data analysis, and improved understanding of heterogeneous combustion phenomena.
NASA Astrophysics Data System (ADS)
Zoccarato, C.; Baù, D.; Bottazzi, F.; Ferronato, M.; Gambolati, G.; Mantica, S.; Teatini, P.
2016-10-01
The geomechanical analysis of a highly compartmentalized reservoir is performed to simulate the seafloor subsidence due to gas production. The available observations over the hydrocarbon reservoir consist of bathymetric surveys carried out before and at the end of a 10-yr production life. The main goal is the calibration of the reservoir compressibility cM, that is, the main geomechanical parameter controlling the surface response. Two conceptual models are considered: in one (i) cM varies only with the depth and the vertical effective stress (heterogeneity due to lithostratigraphic variability); in another (ii) cM varies also in the horizontal plane, that is, it is spatially distributed within the reservoir stratigraphic units. The latter hypothesis accounts for a possible partitioning of the reservoir due to the presence of sealing faults and thrusts that suggests the idea of a block heterogeneous system with the number of reservoir blocks equal to the number of uncertain parameters. The method applied here relies on an ensemble-based data assimilation (DA) algorithm (i.e. the ensemble smoother, ES), which incorporates the information from the bathymetric measurements into the geomechanical model response to infer and reduce the uncertainty of the parameter cM. The outcome from conceptual model (i) indicates that DA is effective in reducing the cM uncertainty. However, the maximum settlement still remains underestimated, while the areal extent of the subsidence bowl is overestimated. We demonstrate that the selection of the heterogeneous conceptual model (ii) allows to reproduce much better the observations thus removing a clear bias of the model structure. DA allows significantly reducing the cM uncertainty in the five blocks (out of the seven) characterized by large volume and large pressure decline. Conversely, the assimilation of land displacements only partially constrains the prior cM uncertainty in the reservoir blocks marginally contributing to the cumulative seafloor subsidence, that is, blocks with low pressure.
Self-Consistent Scheme for Spike-Train Power Spectra in Heterogeneous Sparse Networks.
Pena, Rodrigo F O; Vellmer, Sebastian; Bernardi, Davide; Roque, Antonio C; Lindner, Benjamin
2018-01-01
Recurrent networks of spiking neurons can be in an asynchronous state characterized by low or absent cross-correlations and spike statistics which resemble those of cortical neurons. Although spatial correlations are negligible in this state, neurons can show pronounced temporal correlations in their spike trains that can be quantified by the autocorrelation function or the spike-train power spectrum. Depending on cellular and network parameters, correlations display diverse patterns (ranging from simple refractory-period effects and stochastic oscillations to slow fluctuations) and it is generally not well-understood how these dependencies come about. Previous work has explored how the single-cell correlations in a homogeneous network (excitatory and inhibitory integrate-and-fire neurons with nearly balanced mean recurrent input) can be determined numerically from an iterative single-neuron simulation. Such a scheme is based on the fact that every neuron is driven by the network noise (i.e., the input currents from all its presynaptic partners) but also contributes to the network noise, leading to a self-consistency condition for the input and output spectra. Here we first extend this scheme to homogeneous networks with strong recurrent inhibition and a synaptic filter, in which instabilities of the previous scheme are avoided by an averaging procedure. We then extend the scheme to heterogeneous networks in which (i) different neural subpopulations (e.g., excitatory and inhibitory neurons) have different cellular or connectivity parameters; (ii) the number and strength of the input connections are random (Erdős-Rényi topology) and thus different among neurons. In all heterogeneous cases, neurons are lumped in different classes each of which is represented by a single neuron in the iterative scheme; in addition, we make a Gaussian approximation of the input current to the neuron. These approximations seem to be justified over a broad range of parameters as indicated by comparison with simulation results of large recurrent networks. Our method can help to elucidate how network heterogeneity shapes the asynchronous state in recurrent neural networks.
Two-lane rural highways safety performance functions.
DOT National Transportation Integrated Search
2016-05-01
This report documents findings from a comprehensive set of safety performance functions developed for the entire : state two-lane rural highway system in Washington. The findings indicate that random parameter models and : heterogeneous negative bino...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang
Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentarymore » rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, C.-F.; Doughty, C.
2009-08-06
The single-well injection withdrawal (SWIW) test, a tracer test utilizing only one well, is proposed as a useful contribution to site characterization of fractured rock, as well as providing parameters relevant to tracer diffusion and sorption. The usual conceptual model of flow and solute transport through fractured rock with low matrix permeability involves solute advection and dispersion through a fracture network coupled with diffusion and sorption into the surrounding rock matrix. Unlike two-well tracer tests, results of SWIW tests are ideally independent of advective heterogeneity, channeling and flow dimension, and, instead, focus on diffusive and sorptive characteristics of tracer (solute)more » transport. Thus, they can be used specifically to study such characteristics and evaluate the diffusive parameters associated with tracer transport through fractured media. We conduct simulations of SWIW tests on simple and complex fracture models, the latter being defined as having two subfractures with altered rock blocks in between and gouge material in their apertures. Using parameters from the Aspo site in Sweden, we calculate and study SWIW tracer breakthrough curves (BTCs) from a test involving four days of injection and then withdrawal. By examining the peak concentration C{sub pk} of the SWIW BTCs for a variety of parameters, we confirm that C{sub pk} is largely insensitive to the fracture advective flow properties, in particular to permeability heterogeneity over the fracture plane or to subdividing the flow into two subfractures in the third dimension orthogonal to the fracture plane. The peak arrival time t{sub pk} is not a function of fracture or rock properties, but is controlled by the time schedule of the SWIW test. The study shows that the SWIW test is useful for the study of tracer diffusion-sorption processes, including the effect of the so-called flow-wetted surface (FWS) of the fracture. Calculations with schematic models with different FWS values are conducted and the possibility of direct in situ measurement of FWS with SWIW tests is demonstrated.« less
Applicability of the Effective-Medium Approximation to Heterogeneous Aerosol Particles.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li
2016-01-01
The effective-medium approximation (EMA) is based on the assumption that a heterogeneous particle can have a homogeneous counterpart possessing similar scattering and absorption properties. We analyze the numerical accuracy of the EMA by comparing superposition T-matrix computations for spherical aerosol particles filled with numerous randomly distributed small inclusions and Lorenz-Mie computations based on the Maxwell-Garnett mixing rule. We verify numerically that the EMA can indeed be realized for inclusion size parameters smaller than a threshold value. The threshold size parameter depends on the refractive-index contrast between the host and inclusion materials and quite often does not exceed several tenths, especially in calculations of the scattering matrix and the absorption cross section. As the inclusion size parameter approaches the threshold value, the scattering-matrix errors of the EMA start to grow with increasing the host size parameter and or the number of inclusions. We confirm, in particular, the existence of the effective-medium regime in the important case of dust aerosols with hematite or air-bubble inclusions, but then the large refractive-index contrast necessitates inclusion size parameters of the order of a few tenths. Irrespective of the highly restricted conditions of applicability of the EMA, our results provide further evidence that the effective-medium regime must be a direct corollary of the macroscopic Maxwell equations under specific assumptions.
Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.
Sanchez-León, E; Leven, C; Haslauer, C P; Cirpka, O A
2016-07-01
Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced-gradient tracer test. We estimated the three dimensional (3D) hydraulic-conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot-point method. We compared the estimated parameter field to available profiles of hydraulic-conductivity variations from direct-push injection logging (DPIL), and validated the hydraulic-conductivity field with hydraulic-head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual-domain transport were estimated by fitting tracer data collected during a forced-gradient tracer test. The dual-domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic-conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout. © 2015, National Ground Water Association.
Automated deconvolution of structured mixtures from heterogeneous tumor genomic data
Roman, Theodore; Xie, Lu
2017-01-01
With increasing appreciation for the extent and importance of intratumor heterogeneity, much attention in cancer research has focused on profiling heterogeneity on a single patient level. Although true single-cell genomic technologies are rapidly improving, they remain too noisy and costly at present for population-level studies. Bulk sequencing remains the standard for population-scale tumor genomics, creating a need for computational tools to separate contributions of multiple tumor clones and assorted stromal and infiltrating cell populations to pooled genomic data. All such methods are limited to coarse approximations of only a few cell subpopulations, however. In prior work, we demonstrated the feasibility of improving cell type deconvolution by taking advantage of substructure in genomic mixtures via a strategy called simplicial complex unmixing. We improve on past work by introducing enhancements to automate learning of substructured genomic mixtures, with specific emphasis on genome-wide copy number variation (CNV) data, as well as the ability to process quantitative RNA expression data, and heterogeneous combinations of RNA and CNV data. We introduce methods for dimensionality estimation to better decompose mixture model substructure; fuzzy clustering to better identify substructure in sparse, noisy data; and automated model inference methods for other key model parameters. We further demonstrate their effectiveness in identifying mixture substructure in true breast cancer CNV data from the Cancer Genome Atlas (TCGA). Source code is available at https://github.com/tedroman/WSCUnmix PMID:29059177
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre; Vaes, Peter
2014-01-01
To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality.
NASA Astrophysics Data System (ADS)
Yang, X.; von der Kammer, F.; Wiesner, M.; Yang, Y.; Hofmann, T.
2016-12-01
Humic acid (HA) is widespread in environment and may interfere with nanoparticle transport in porous media. Quantification of the HA's influence is challenging due to the heterogeneous natural of the organic compounds. Through a series of laboratory and modeling studies, we explored (1) the differential mechanisms operated by the sediment - and solution-phase HA in controlling particle transport; (2) the interplay of the HA with several important environmental factors including solution pH, ionic strength (IS), flow rate, organic & particle concentration, and particle size; (3) modeling tools to quantify the above identified influential mechanisms. Study results suggest that site blocking is the main effect imposed by sediment-phase HA on nanoparticle transport while competitive deposition (with nanoparticles) and continuous site blocking occur simultaneously for the solution-phase HA. Solution pH and IS jointly control the HA's blocking efficiency by varying the adsorbed organic conformation. Conversely, the effect of the adsorbed organic concentration appeared to be insignificant. In addition to the chemical parameters, physical parameters like particle size and flow rate also impact on the organic blockage: the blocking efficiency was stronger on larger particles than on smaller ones; increasing flow rate magnifies the HA's blocking efficiency on larger particles but had insignificant impact on smaller ones. Those mechanistic investigations were supported by a quantification approach and a mathematical model developed in those studies. These results can improve the understanding on particle mobility in heterogeneous natural porous media.
Effects of behavioral patterns and network topology structures on Parrondo’s paradox
Ye, Ye; Cheong, Kang Hao; Cen, Yu-wan; Xie, Neng-gang
2016-01-01
A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed. PMID:27845430
O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin
2017-12-06
Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.
Effects of behavioral patterns and network topology structures on Parrondo’s paradox
NASA Astrophysics Data System (ADS)
Ye, Ye; Cheong, Kang Hao; Cen, Yu-Wan; Xie, Neng-Gang
2016-11-01
A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed.
NASA Astrophysics Data System (ADS)
Joodaki, S.; Yang, Z.; Niemi, A. P.
2016-12-01
CO2 trapping in saline aquifers can be enhanced by applying specific injection strategies. Water-alternating-gas (WAG) injection, in which intermittent slugs of CO2 and water are injected, is one of the suggested methods to increase the trapping of CO2 as a result of both capillary forces (residual trapping) and dissolution into the ambient water (dissolution trapping). In this study, 3D numerical modeling was used to investigate the importance of parameters needed to design an effective WAG injection sequence including (i) CO2 and water injection rates, (ii) WAG ratio, (iii) number of cycles and their duration. We employ iTOUGH2-EOS17 model to simulate the CO2 injection and subsequent trapping in heterogeneous formations. Spatially correlated random permeability fields are generated using GSLIB based on available data at the Heletz, a pilot injection site in Israel, aimed for scientifically motivated CO2 injection experiments. Hysteresis effects on relative permeability and capillary pressure function are taken into account based on the Land model (1968). The results showed that both residual and dissolution trapping can be enhanced by increasing in CO2 injection rate due to the fact that higher CO2 injection rate reduces the gravity segregation and increases the reservoir volume swept by CO2. Faster water injection will favor the residual and dissolution trapping due to improved mixing. Increasing total amount of water injection will increase the dissolution trapping but also the cost of the injection. It causes higher pressure increases as well. Using numerical modeling, it is possible to predict the best parameter combination to optimize the trapping and find the balance between safety and cost of the injection process.
Sallah, Kankoé; Giorgi, Roch; Bengtsson, Linus; Lu, Xin; Wetter, Erik; Adrien, Paul; Rebaudet, Stanislas; Piarroux, Renaud; Gaudart, Jean
2017-11-22
Mathematical models of human mobility have demonstrated a great potential for infectious disease epidemiology in contexts of data scarcity. While the commonly used gravity model involves parameter tuning and is thus difficult to implement without reference data, the more recent radiation model based on population densities is parameter-free, but biased. In this study we introduce the new impedance model, by analogy with electricity. Previous research has compared models on the basis of a few specific available spatial patterns. In this study, we use a systematic simulation-based approach to assess the performances. Five hundred spatial patterns were generated using various area sizes and location coordinates. Model performances were evaluated based on these patterns. For simulated data, comparison measures were average root mean square error (aRMSE) and bias criteria. Modeling of the 2010 Haiti cholera epidemic with a basic susceptible-infected-recovered (SIR) framework allowed an empirical evaluation through assessing the goodness-of-fit of the observed epidemic curve. The new, parameter-free impedance model outperformed previous models on simulated data according to average aRMSE and bias criteria. The impedance model achieved better performances with heterogeneous population densities and small destination populations. As a proof of concept, the basic compartmental SIR framework was used to confirm the results obtained with the impedance model in predicting the spread of cholera in Haiti in 2010. The proposed new impedance model provides accurate estimations of human mobility, especially when the population distribution is highly heterogeneous. This model can therefore help to achieve more accurate predictions of disease spread in the context of an epidemic.
NASA Astrophysics Data System (ADS)
Ye, Xuchun; Xu, Chong-Yu; Li, Xianghu; Zhang, Qi
2018-05-01
The occurrence of flood and drought frequency is highly correlated with the temporal fluctuations of streamflow series; understanding of these fluctuations is essential for the improved modeling and statistical prediction of extreme changes in river basins. In this study, the complexity of daily streamflow fluctuations was investigated by using multifractal detrended fluctuation analysis (MF-DFA) in a large heterogeneous lake basin, the Poyang Lake basin in China, and the potential impacts of human activities were also explored. Major results indicate that the multifractality of streamflow fluctuations shows significant regional characteristics. In the study catchment, all the daily streamflow series present a strong long-range correlation with Hurst exponents bigger than 0.8. The q-order Hurst exponent h( q) of all the hydrostations can be characterized well by only two parameters: a (0.354 ≤ a ≤ 0.384) and b (0.627 ≤ b ≤ 0.677), with no pronounced differences. Singularity spectrum analysis pointed out that small fluctuations play a dominant role in all daily streamflow series. Our research also revealed that both the correlation properties and the broad probability density function (PDF) of hydrological series can be responsible for the multifractality of streamflow series that depends on watershed areas. In addition, we emphasized the relationship between watershed area and the estimated multifractal parameters, such as the Hurst exponent and fitted parameters a and b from the q-order Hurst exponent h( q). However, the relationship between the width of the singularity spectrum (Δ α) and watershed area is not clear. Further investigation revealed that increasing forest coverage and reservoir storage can effectively enhance the persistence of daily streamflow, decrease the hydrological complexity of large fluctuations, and increase the small fluctuations.
Nichols, James D.; Pollock, Kenneth H.; Hines, James E.
1984-01-01
The robust design of Pollock (1982) was used to estimate parameters of a Maryland M. pennsylvanicus population. Closed model tests provided strong evidence of heterogeneity of capture probability, and model M eta (Otis et al., 1978) was selected as the most appropriate model for estimating population size. The Jolly-Seber model goodness-of-fit test indicated rejection of the model for this data set, and the M eta estimates of population size were all higher than the Jolly-Seber estimates. Both of these results are consistent with the evidence of heterogeneous capture probabilities. The authors thus used M eta estimates of population size, Jolly-Seber estimates of survival rate, and estimates of birth-immigration based on a combination of the population size and survival rate estimates. Advantages of the robust design estimates for certain inference procedures are discussed, and the design is recommended for future small mammal capture-recapture studies directed at estimation.
Stepping towards new parameterizations for non-canonical atmospheric surface-layer conditions
NASA Astrophysics Data System (ADS)
Calaf, M.; Margairaz, F.; Pardyjak, E.
2017-12-01
Representing land-atmosphere exchange processes as a lower boundary condition remains a challenge. This is partially a result of the fact that land-surface heterogeneity exists at all spatial scales and its variability does not "average" out with decreasing scales. Such variability need not rapidly blend away from the boundary thereby impacting the near-surface region of the atmosphere. Traditionally, momentum and energy fluxes linking the land surface to the flow in NWP models have been parameterized using atmospheric surface layer (ASL) similarity theory. There is ample evidence that such representation is acceptable for stationary and planar-homogeneous flows in the absence of subsidence. However, heterogeneity remains a ubiquitous feature eliciting appreciable deviations when using ASL similarity theory, especially in scalars such moisture and air temperature whose blending is less efficient when compared to momentum. The focus of this project is to quantify the effect of surface thermal heterogeneity with scales Ο(1/10) the height of the atmospheric boundary layer and characterized by uniform roughness. Such near-canonical cases describe inhomogeneous scalar transport in an otherwise planar homogeneous flow when thermal stratification is weak or absent. In this work we present a large-eddy simulation study that characterizes the effect of surface thermal heterogeneities on the atmospheric flow using the concept of dispersive fluxes. Results illustrate a regime in which the flow is mostly driven by the surface thermal heterogeneities, in which the contribution of the dispersive fluxes can account for up to 40% of the total sensible heat flux. Results also illustrate an alternative regime in which the effect of the surface thermal heterogeneities is quickly blended, and the dispersive fluxes provide instead a quantification of the flow spatial heterogeneities produced by coherent turbulent structures result of the surface shear stress. A threshold flow-dynamics parameter is introduced to differentiate dispersive fluxes driven by surface thermal heterogeneities from those induced by surface shear. We believe that results from this research are a first step in developing new parameterizations appropriate for non-canonical ASL conditions.
Wright, Gavin; Harrold, Natalie; Bownes, Peter
2018-01-01
Aims To compare the accuracies of the convolution and TMR10 Gamma Knife treatment planning algorithms, and assess the impact upon clinical practice of implementing convolution-based treatment planning. Methods Doses calculated by both algorithms were compared against ionisation chamber measurements in homogeneous and heterogeneous phantoms. Relative dose distributions calculated by both algorithms were compared against film-derived 2D isodose plots in a heterogeneous phantom, with distance-to-agreement (DTA) measured at the 80%, 50% and 20% isodose levels. A retrospective planning study compared 19 clinically acceptable metastasis convolution plans against TMR10 plans with matched shot times, allowing novel comparison of true dosimetric parameters rather than total beam-on-time. Gamma analysis and dose-difference analysis were performed on each pair of dose distributions. Results Both algorithms matched point dose measurement within ±1.1% in homogeneous conditions. Convolution provided superior point-dose accuracy in the heterogeneous phantom (-1.1% v 4.0%), with no discernible differences in relative dose distribution accuracy. In our study convolution-calculated plans yielded D99% 6.4% (95% CI:5.5%-7.3%,p<0.001) less than shot matched TMR10 plans. For gamma passing criteria 1%/1mm, 16% of targets had passing rates >95%. The range of dose differences in the targets was 0.2-4.6Gy. Conclusions Convolution provides superior accuracy versus TMR10 in heterogeneous conditions. Implementing convolution would result in increased target doses therefore its implementation may require a revaluation of prescription doses. PMID:29657896
NASA Astrophysics Data System (ADS)
Paciello, Rossana; Coviello, Irina; Filizzola, Carolina; Genzano, Nicola; Lisi, Mariano; Mazzeo, Giuseppe; Pergola, Nicola; Sileo, Giancanio; Tramutoli, Valerio
2014-05-01
In environmental studies the integration of heterogeneous and time-varying data, is a very common requirement for investigating and possibly visualize correlations among physical parameters underlying the dynamics of complex phenomena. Datasets used in such kind of applications has often different spatial and temporal resolutions. In some case superimposition of asynchronous layers is required. Traditionally the platforms used to perform spatio-temporal visual data analyses allow to overlay spatial data, managing the time using 'snapshot' data model, each stack of layers being labeled with different time. But this kind of architecture does not incorporate the temporal indexing neither the third spatial dimension which is usually given as an independent additional layer. Conversely, the full representation of a generic environmental parameter P(x,y,z,t) in the 4D space-time domain could allow to handle asynchronous datasets as well as less traditional data-products (e.g. vertical sections, punctual time-series, etc.) . In this paper we present the 4 Dimensions Environmental Observation Platform (4-DEOS), a system based on a web services architecture Client-Broker-Server. This platform is a new open source solution for both a timely access and an easy integration and visualization of heterogeneous (maps, vertical profiles or sections, punctual time series, etc.) asynchronous, geospatial products. The innovative aspect of the 4-DEOS system is that users can analyze data/products individually moving through time, having also the possibility to stop the display of some data/products and focus on other parameters for better studying their temporal evolution. This platform gives the opportunity to choose between two distinct display modes for time interval or for single instant. Users can choose to visualize data/products in two ways: i) showing each parameter in a dedicated window or ii) visualize all parameters overlapped in a single window. A sliding time bar, allows to follow the temporal evolution of the selected data/product. With this software, users have the possibility to identify events partially correlated each other not only in the spatial dimension but also in the time domain even at different time lags.
Chaikh, Abdulhamid; Balosso, Jacques
2017-06-01
To apply the equivalent uniform dose (EUD) radiobiological model to estimate the tumor control probability (TCP) scores for treatment plans using different radiobiological parameter settings, and to evaluate the correlation between TCP and physical quality indices of the treatment plans. Ten radiotherapy treatment plans for lung cancer were generated. The dose distributions were calculated using anisotropic analytical algorithm (AAA). Dose parameters and quality indices derived from dose volume histograms (DVH) for target volumes were evaluated. The predicted TCP was computed using EUD model with tissue-specific parameter (a=-10). The assumed radiobiological parameter setting for adjuvant therapy [tumor dose to control 50% of the tumor (TCD 50 ) =36.5 Gy and γ 50 =0.72] and curative intent (TCD 50 =51.24 Gy and γ 50 =0.83) were used. The bootstrap method was used to estimate the 95% confidence interval (95% CI). The coefficients (ρ) from Spearman's rank test were calculated to assess the correlation between quality indices with TCP. Wilcoxon paired test was used to calculate P value. The 95% CI of TCP were 70.6-81.5 and 46.6-64.7, respectively, for adjuvant radiotherapy and curative intent. The TCP outcome showed a positive and good correlation with calculated dose to 95% of the target volume (D95%) and minimum dose (Dmin). Consistently, TCP correlate negatively with heterogeneity indices. This study confirms that more relevant and robust radiobiological parameters setting should be integrated according to cancer type. The positive correlation with quality indices gives chance to improve the clinical out-come by optimizing the treatment plans to maximize the Dmin and D95%. This attempt to increase the TCP should be carried out with the respect of dose constraints for organs at risks. However, the negative correlation with heterogeneity indices shows that the optimization of beam arrangements could be also useful. Attention should be paid to obtain an appropriate optimization of initial plans, when comparing and ranking radiotherapy plans using TCP models, to avoid over or underestimated for TCP outcome.
Failure time analysis with unobserved heterogeneity: Earthquake duration time of Turkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ata, Nihal, E-mail: nihalata@hacettepe.edu.tr; Kadilar, Gamze Özel, E-mail: gamzeozl@hacettepe.edu.tr
Failure time models assume that all units are subject to same risks embodied in the hazard functions. In this paper, unobserved sources of heterogeneity that are not captured by covariates are included into the failure time models. Destructive earthquakes in Turkey since 1900 are used to illustrate the models and inter-event time between two consecutive earthquakes are defined as the failure time. The paper demonstrates how seismicity and tectonics/physics parameters that can potentially influence the spatio-temporal variability of earthquakes and presents several advantages compared to more traditional approaches.
The promise and limits of PET texture analysis.
Cheng, Nai-Ming; Fang, Yu-Hua Dean; Yen, Tzu-Chen
2013-11-01
Metabolic heterogeneity is a recognized characteristic of malignant tumors. Positron emission tomography (PET) texture analysis evaluated intratumoral heterogeneity in the uptake of (18)F-fluorodeoxyglucose. There were recent evidences that PET textural features were of prognostic significance in patients with different solid tumors. Unfortunately, there are still crucial standardization challenges to transform PET texture parameters from their current use as research tools into the arena of validated technologies for use in oncology practice. Testing its generalizability, robustness, consistency, and limitations is necessary before implementing it in daily patient care.
Modeling individual effects in the Cormack-Jolly-Seber Model: A state-space formulation
Royle, J. Andrew
2008-01-01
In population and evolutionary biology, there exists considerable interest in individual heterogeneity in parameters of demographic models for open populations. However, flexible and practical solutions to the development of such models have proven to be elusive. In this article, I provide a state-space formulation of open population capture-recapture models with individual effects. The state-space formulation provides a generic and flexible framework for modeling and inference in models with individual effects, and it yields a practical means of estimation in these complex problems via contemporary methods of Markov chain Monte Carlo. A straightforward implementation can be achieved in the software package WinBUGS. I provide an analysis of a simple model with constant parameter detection and survival probability parameters. A second example is based on data from a 7-year study of European dippers, in which a model with year and individual effects is fitted.
Low gravity synthesis of polymers with controlled molecular configuration
NASA Technical Reports Server (NTRS)
Heimbuch, A. H.; Parker, J. A.; Schindler, A.; Olf, H. G.
1975-01-01
Heterogeneous chemical systems have been studied for the synthesis of isotactic polypropylene in order to establish baseline parameters for the reaction process and to develop sensitive and accurate methods of analysis. These parameters and analytical methods may be used to make a comparison between the polypropylene obtained at one g with that of zero g (gravity). Baseline reaction parameters have been established for the slurry (liquid monomer in heptane/solid catalyst) polymerization of propylene to yield high purity, 98% isotactic polypropylene. Kinetic data for the slurry reaction showed that a sufficient quantity of polymer for complete characterization can be produced in a reaction time of 5 min; this time is compatible with that available on a sounding rocket for a zero-g simulation experiment. The preformed (activated) catalyst was found to be more reproducible in its activity than the in situ formed catalyst.
NASA Astrophysics Data System (ADS)
Hebert, V.; Garing, C.; Pezard, P. A.; Gouze, P.; Maria-Sube, Y.; Camoin, G.; Lapointe, P.
2009-04-01
Petrophysical properties of rocks can be largely influenced by heterogeneities. This is particularly true in reefal carbonates, with heterogeneities due to the primary structure of the reef, the degradation of that structure into a fossil form, and fluid circulations with associated dissolutions and recrystallization. We report here a study conducted on Miocene reefal carbonates drilled in the context of salt water intrusion in coastal reservoirs. Salt water intrusion along coastlines is highly influenced by geological and petrophysical structures. In particular, heterogeneities and anisotropy in porous media (karsts, vugs…) control fluid flow and dispersion. A new experimental site has been developed in the South East of Mallorca Island (Spain) in the context of the ALIANCE EC project (2002-2005). This project aimed at developing a strategy for the quantitative analysis and description of fluid flow and salt transport in coastal carbonate aquifers. The site drilled the Miocene carbonate reef platform at Ses Sitjoles, 6 km inland, near the city of Campos. Sea water is found there at 60 to 80 m depth. The geological structure present multi-scale heterogeneities, often bound to either lateral variations of geological facies, or dissolution patterns. The Campos site provides a unique laboratory to study the heterogeneities of carbonate rocks with a saltwater intrusion and develop new borehole investigation methods in this context. The present study focuses on borehole geophysical measurements and images, and core scans. New image analysis methods have been developed to better characterize the presence of heterogeneities in terms of grain-size distribution, formation factor changes and porosity. Cores scans from RX tomography can lead to the extraction of petrophysical parameters from 3D images. For this, the AVIZO software was used here to represent the micro-porosity and vuggy porosity structure. Beyond core analyses, the optical and acoustic borehole wall images provide a direct look at meso-scale porosity beyond cm-scale heterogeneities, such as karstic channels and megapores. The reefal complex is dominated by moldic secondary porosity, which in the upper part of the boreholes. These heterogeneities are characterized by large and elongated molds mainly detected by the acoustic images. In slope, corresponding to the lower part of the structure, moldic porosity is characterized by small and round shaped molds. Vuggy porosity varies mainly from 5 to 40% along 100 m deep boreholes. But, in the slope part, the porosity is about 0% although it can reach 90% in karstic area. In all, the distribution of pore types is strongly controlled by that of lithofacies and water paleo-levels, leading to extensive cementation processes with the resulting occlusion of pore spaces. The combined analysis of porosity with complementary methods in terms of spacial resolution leads to the quantitative determination and description of microstructural heterogeneities in carbonate porous media. It is a key to model the reservoir mesoscale structure and fluid flows within it.
Agrawal, Vijay K; Gupta, Madhu; Singh, Jyoti; Khadikar, Padmakar V
2005-03-15
Attempt is made to propose yet another method of estimating lipophilicity of a heterogeneous set of 223 compounds. The method is based on the use of equalized electronegativity along with topological indices. It was observed that excellent results are obtained in multiparametric regression upon introduction of indicator parameters. The results are discussed critically on the basis various statistical parameters.
Fernández-San-Martín, Maria Isabel; Martín-López, Luis Miguel; Masa-Font, Roser; Olona-Tabueña, Noemí; Roman, Yuani; Martin-Royo, Jaume; Oller-Canet, Silvia; González-Tejón, Susana; San-Emeterio, Luisa; Barroso-Garcia, Albert; Viñas-Cabrera, Lidia; Flores-Mateo, Gemma
2014-01-01
Patients with severe mental illness have higher prevalences of cardiovascular risk factors (CRF). The objective is to determine whether interventions to modify lifestyles in these patients reduce anthropometric and analytical parameters related to CRF in comparison to routine clinical practice. Systematic review of controlled clinical trials with lifestyle intervention in Medline, Cochrane Library, Embase, PsycINFO and CINALH. Change in body mass index, waist circumference, cholesterol, triglycerides and blood sugar. Meta-analyses were performed using random effects models to estimate the weighted mean difference. Heterogeneity was determined using i(2) statistical and subgroups analyses. 26 studies were selected. Lifestyle interventions decrease anthropometric and analytical parameters at 3 months follow up. At 6 and 12 months, the differences between the intervention and control groups were maintained, although with less precision. More studies with larger samples and long-term follow-up are needed.
Parrondo's games based on complex networks and the paradoxical effect.
Ye, Ye; Wang, Lu; Xie, Nenggang
2013-01-01
Parrondo's games were first constructed using a simple tossing scenario, which demonstrates the following paradoxical situation: in sequences of games, a winning expectation may be obtained by playing the games in a random order, although each game (game A or game B) in the sequence may result in losing when played individually. The available Parrondo's games based on the spatial niche (the neighboring environment) are applied in the regular networks. The neighbors of each node are the same in the regular graphs, whereas they are different in the complex networks. Here, Parrondo's model based on complex networks is proposed, and a structure of game B applied in arbitrary topologies is constructed. The results confirm that Parrondo's paradox occurs. Moreover, the size of the region of the parameter space that elicits Parrondo's paradox depends on the heterogeneity of the degree distributions of the networks. The higher heterogeneity yields a larger region of the parameter space where the strong paradox occurs. In addition, we use scale-free networks to show that the network size has no significant influence on the region of the parameter space where the strong or weak Parrondo's paradox occurs. The region of the parameter space where the strong Parrondo's paradox occurs reduces slightly when the average degree of the network increases.
NASA Astrophysics Data System (ADS)
Tattoli, F.; Pierron, F.; Rotinat, R.; Casavola, C.; Pappalettere, C.
2011-01-01
One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto—plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.
Barlebo, H.C.; Rosbjerg, D.; Hill, M.C.
1996-01-01
An extensive amount of data including hydraulic heads, hydraulic conductivities and concentrations of several solutes from controlled injections have been collected during the MADE 1 and MADE 2 experiments at a heterogeneous site near Columbus, Mississippi. In this paper the use of three-dimensional inverse groundwater models including simultaneous estimation of flow and transport parameters is proposed to help identify the dominant characteristics at the site. Simulations show that using a hydraulic conductivity distribution obtained from 2187 borehole flowmeter tests directly in the model produces poor matches to the measured hydraulic heads and tritium concentrations. Alternatively, time averaged hydraulic head maps are used to define zones of constant hydraulic conductivity to be estimated. Preliminary simulations suggest that in the case of conservative transport many, but not all, of the major plume characteristics can be explained by large-scale heterogeneity in recharge and hydraulic conductivity.
Guan, Yue; Li, Weifeng; Jiang, Zhuoran; Chen, Ying; Liu, Song; He, Jian; Zhou, Zhengyang; Ge, Yun
2016-12-01
This study aimed to develop whole-lesion apparent diffusion coefficient (ADC)-based entropy-related parameters of cervical cancer to preliminarily assess intratumoral heterogeneity of this lesion in comparison to adjacent normal cervical tissues. A total of 51 women (mean age, 49 years) with cervical cancers confirmed by biopsy underwent 3-T pelvic diffusion-weighted magnetic resonance imaging with b values of 0 and 800 s/mm 2 prospectively. ADC-based entropy-related parameters including first-order entropy and second-order entropies were derived from the whole tumor volume as well as adjacent normal cervical tissues. Intraclass correlation coefficient, Wilcoxon test with Bonferroni correction, Kruskal-Wallis test, and receiver operating characteristic curve were used for statistical analysis. All the parameters showed excellent interobserver agreement (all intraclass correlation coefficients > 0.900). Entropy, entropy(H) 0 , entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean were significantly higher, whereas entropy(H) range and entropy(H) std were significantly lower in cervical cancers compared to adjacent normal cervical tissues (all P <.0001). Kruskal-Wallis test showed that there were no significant differences among the values of various second-order entropies including entropy(H) 0, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean. All second-order entropies had larger area under the receiver operating characteristic curve than first-order entropy in differentiating cervical cancers from adjacent normal cervical tissues. Further, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean had the same largest area under the receiver operating characteristic curve of 0.867. Whole-lesion ADC-based entropy-related parameters of cervical cancers were developed successfully, which showed initial potential in characterizing intratumoral heterogeneity in comparison to adjacent normal cervical tissues. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Hydraulic fracture propagation modeling and data-based fracture identification
NASA Astrophysics Data System (ADS)
Zhou, Jing
Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the parameters used in the reservoir flow simulator have large uncertainty. Those biased and uncertain parameters will result in misleading oil and gas recovery predictions. The Ensemble Kalman Filter is used to estimate and update both the state variables (pressure and saturations) and uncertain reservoir parameters (permeability). In order to directly incorporate spatial information such as fracture location and formation heterogeneity into the algorithm, a new covariance matrix method is proposed. This new method has been applied to a simplified single-phase reservoir and a complex black oil reservoir with complex structures to prove its capability in calibrating the reservoir parameters.
NASA Astrophysics Data System (ADS)
Jablonski, Piotr; Poe, Gina; Zochowski, Michal
2007-03-01
The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters.
NASA Astrophysics Data System (ADS)
Jablonski, Piotr; Poe, Gina R.; Zochowski, Michal
2007-01-01
The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters.
Mi, Shichao; Han, Hui; Chen, Cailian; Yan, Jian; Guan, Xinping
2016-02-19
Heterogeneous wireless sensor networks (HWSNs) can achieve more tasks and prolong the network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes. This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two types of sensor nodes. Sensor nodes (SNs) have more computation power, while relay nodes (RNs) with low power can only transmit information for sensor nodes. To address the security issues of distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two types of sensors and then propose a parameter adjusted-based consensus scheme (PACS) to mitigate the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and the simulation results validate the effectiveness and efficiency of PACS.
NASA Astrophysics Data System (ADS)
Crevillén-García, D.; Power, H.
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Biodiesel production from used cooking oil by two-step heterogeneous catalyzed process.
Srilatha, K; Prabhavathi Devi, B L A; Lingaiah, N; Prasad, R B N; Sai Prasad, P S
2012-09-01
The present study demonstrates the production of biodiesel from used cooking oil containing high free fatty acid by a two-step heterogeneously catalyzed process. The free fatty acids were first esterified with methanol using a 25 wt.% TPA/Nb(2)O(5) catalyst followed by transesterification of the oil with methanol over ZnO/Na-Y zeolite catalyst. The catalysts were characterized by XRD, FT-IR, BET surface area and CO(2)-TPD. In the case of transesterification the effect of reaction parameters, such as catalyst concentration, methanol to oil molar ratio and reaction temperature, on the yield of ester were investigated. The catalyst with 20 wt.% ZnO loading on Na-Y exhibited the highest activity among the others. Both the solid acid and base catalysts were found to be reusable for several times indicating their efficacy in the two-step process. Copyright © 2012 Elsevier Ltd. All rights reserved.
Parihar, Sanjay; Pathan, Soyeb; Jadeja, R N; Patel, Anjali; Gupta, Vivek K
2012-01-16
1-Phenyl-3-methyl-4-touloyl-5-pyrazolone (ligand) was synthesized and used to prepare an oxovanadium(IV) complex. The complex was characterized by single-crystal X-ray analysis and various spectroscopic techniques. The single-crystal X-ray analysis of the complex shows that the ligands are coordinated in a syn configuration to each other and create a distorted octahedral environment around the metal ion. A heterogeneous catalyst comprising an oxovanadium(IV) complex and hydrous zirconia was synthesized, characterized by various physicochemical techniques, and successfully used for the solvent-free oxidation of styrene. The influence of the reaction parameters (percent loading, molar ratio of the substrate to H(2)O(2), amount of catalyst, and reaction time) was studied. The catalyst was reused three times without any significant loss in the catalytic activity.
Crevillén-García, D; Power, H
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.