Sample records for parameter study based

  1. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.

  2. Field-Scale Evaluation of Infiltration Parameters From Soil Texture for Hydrologic Analysis

    NASA Astrophysics Data System (ADS)

    Springer, Everett P.; Cundy, Terrance W.

    1987-02-01

    Recent interest in predicting soil hydraulic properties from simple physical properties such as texture has major implications in the parameterization of physically based models of surface runoff. This study was undertaken to (1) compare, on a field scale, soil hydraulic parameters predicted from texture to those derived from field measurements and (2) compare simulated overland flow response using these two parameter sets. The parameters for the Green-Ampt infiltration equation were obtained from field measurements and using texture-based predictors for two agricultural fields, which were mapped as single soil units. Results of the analyses were that (1) the mean and variance of the field-based parameters were not preserved by the texture-based estimates, (2) spatial and cross correlations between parameters were induced by the texture-based estimation procedures, (3) the overland flow simulations using texture-based parameters were significantly different than those from field-based parameters, and (4) simulations using field-measured hydraulic conductivities and texture-based storage parameters were very close to simulations using only field-based parameters.

  3. An Advanced User Interface Approach for Complex Parameter Study Process Specification in the Information Power Grid

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob; Yan, Jerry C. (Technical Monitor)

    2000-01-01

    The creation of parameter study suites has recently become a more challenging problem as the parameter studies have now become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are now seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers great resource opportunity but at the expense of great difficulty of use. We present an approach to this problem which stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.

  4. Fuzzy multinomial logistic regression analysis: A multi-objective programming approach

    NASA Astrophysics Data System (ADS)

    Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan

    2017-05-01

    Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.

  5. Reliability analysis of a sensitive and independent stabilometry parameter set

    PubMed Central

    Nagymáté, Gergely; Orlovits, Zsanett

    2018-01-01

    Recent studies have suggested reduced independent and sensitive parameter sets for stabilometry measurements based on correlation and variance analyses. However, the reliability of these recommended parameter sets has not been studied in the literature or not in every stance type used in stabilometry assessments, for example, single leg stances. The goal of this study is to evaluate the test-retest reliability of different time-based and frequency-based parameters that are calculated from the center of pressure (CoP) during bipedal and single leg stance for 30- and 60-second measurement intervals. Thirty healthy subjects performed repeated standing trials in a bipedal stance with eyes open and eyes closed conditions and in a single leg stance with eyes open for 60 seconds. A force distribution measuring plate was used to record the CoP. The reliability of the CoP parameters was characterized by using the intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimal detectable change (MDC), coefficient of variation (CV) and CV compliance rate (CVCR). Based on the ICC, SEM and MDC results, many parameters yielded fair to good reliability values, while the CoP path length yielded the highest reliability (smallest ICC > 0.67 (0.54–0.79), largest SEM% = 19.2%). Usually, frequency type parameters and extreme value parameters yielded poor reliability values. There were differences in the reliability of the maximum CoP velocity (better with 30 seconds) and mean power frequency (better with 60 seconds) parameters between the different sampling intervals. PMID:29664938

  6. Reliability analysis of a sensitive and independent stabilometry parameter set.

    PubMed

    Nagymáté, Gergely; Orlovits, Zsanett; Kiss, Rita M

    2018-01-01

    Recent studies have suggested reduced independent and sensitive parameter sets for stabilometry measurements based on correlation and variance analyses. However, the reliability of these recommended parameter sets has not been studied in the literature or not in every stance type used in stabilometry assessments, for example, single leg stances. The goal of this study is to evaluate the test-retest reliability of different time-based and frequency-based parameters that are calculated from the center of pressure (CoP) during bipedal and single leg stance for 30- and 60-second measurement intervals. Thirty healthy subjects performed repeated standing trials in a bipedal stance with eyes open and eyes closed conditions and in a single leg stance with eyes open for 60 seconds. A force distribution measuring plate was used to record the CoP. The reliability of the CoP parameters was characterized by using the intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimal detectable change (MDC), coefficient of variation (CV) and CV compliance rate (CVCR). Based on the ICC, SEM and MDC results, many parameters yielded fair to good reliability values, while the CoP path length yielded the highest reliability (smallest ICC > 0.67 (0.54-0.79), largest SEM% = 19.2%). Usually, frequency type parameters and extreme value parameters yielded poor reliability values. There were differences in the reliability of the maximum CoP velocity (better with 30 seconds) and mean power frequency (better with 60 seconds) parameters between the different sampling intervals.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofeng; Yoshida, Emi; Cassidy, Richard J.

    Purpose: To investigate the feasibility of ultrasound Nakagami imaging to quantitatively assess radiation-induced neck fibrosis, a common sequela of radiation therapy (RT) to the head and neck. Methods and Materials: In a pilot study, 40 study participants were enrolled and classified into 3 subgroups: (1) a control group of 12 healthy volunteers; (2) an asymptomatic group of 11 patients who had received intensity modulated RT for head and neck cancer and had experienced no neck fibrosis; and (3) a symptomatic group of 17 post-RT patients with neck fibrosis. Each study participant underwent 1 ultrasound study in which scans were performedmore » in the longitudinal orientation of the bilateral neck. Three Nakagami parameters were calculated to quantify radiation-induced tissue injury: Nakagami probability distribution function, shape, and scaling parameters. Physician-based assessments of the neck fibrosis were performed according to the Radiation Therapy Oncology Group late morbidity scoring scheme, and patient-based fibrosis assessments were rated based on symptoms such as pain and stiffness. Results: Major discrepancies existed between physician-based and patient-based assessments of radiation-induced fibrosis. Significant differences in all Nakagami parameters were observed between the control group and 2 post-RT groups. Moreover, significant differences in Nakagami shape and scaling parameters were observed among asymptomatic and symptomatic groups. Compared with the control group, the average Nakagami shape parameter value increased by 32.1% (P<.001), and the average Nakagami scaling parameter increased by 55.7% (P<.001) for the asymptomatic group, whereas the Nakagami shape parameter increased by 74.1% (P<.001) and the Nakagami scaling parameter increased by 83.5% (P<.001) for the symptomatic group. Conclusions: Ultrasonic Nakagami imaging is a potential quantitative tool to characterize radiation-induced asymptomatic and symptomatic neck fibrosis.« less

  8. Construction and identification of a D-Vine model applied to the probability distribution of modal parameters in structural dynamics

    NASA Astrophysics Data System (ADS)

    Dubreuil, S.; Salaün, M.; Rodriguez, E.; Petitjean, F.

    2018-01-01

    This study investigates the construction and identification of the probability distribution of random modal parameters (natural frequencies and effective parameters) in structural dynamics. As these parameters present various types of dependence structures, the retained approach is based on pair copula construction (PCC). A literature review leads us to choose a D-Vine model for the construction of modal parameters probability distributions. Identification of this model is based on likelihood maximization which makes it sensitive to the dimension of the distribution, namely the number of considered modes in our context. To this respect, a mode selection preprocessing step is proposed. It allows the selection of the relevant random modes for a given transfer function. The second point, addressed in this study, concerns the choice of the D-Vine model. Indeed, D-Vine model is not uniquely defined. Two strategies are proposed and compared. The first one is based on the context of the study whereas the second one is purely based on statistical considerations. Finally, the proposed approaches are numerically studied and compared with respect to their capabilities, first in the identification of the probability distribution of random modal parameters and second in the estimation of the 99 % quantiles of some transfer functions.

  9. Classification of hydrological parameter sensitivity and evaluation of parameter transferability across 431 US MOPEX basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi

    The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. Inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts.« less

  10. Gender may have an influence on the relationship between Functional Movement Screen scores and gait parameters in elite junior athletes - A pilot study.

    PubMed

    Magyari, N; Szakács, V; Bartha, C; Szilágyi, B; Galamb, K; Magyar, M O; Hortobágyi, T; Kiss, R M; Tihanyi, J; Négyesi, J

    2017-09-01

    Aims The aim of this study was to examine the effects of gender on the relationship between Functional Movement Screen (FMS) and treadmill-based gait parameters. Methods Twenty elite junior athletes (10 women and 10 men) performed the FMS tests and gait analysis at a fixed speed. Between-gender differences were calculated for the relationship between FMS test scores and gait parameters, such as foot rotation, step length, and length of gait line. Results Gender did not affect the relationship between FMS and treadmill-based gait parameters. The nature of correlations between FMS test scores and gait parameters was different in women and men. Furthermore, different FMS test scores predicted different gait parameters in female and male athletes. FMS asymmetry and movement asymmetries measured by treadmill-based gait parameters did not correlate in either gender. Conclusion There were no interactions between FMS, gait parameters, and gender; however, correlation analyses support the idea that strength and conditioning coaches need to pay attention not only to how to score but also how to correctly use FMS.

  11. A study of parameter identification

    NASA Technical Reports Server (NTRS)

    Herget, C. J.; Patterson, R. E., III

    1978-01-01

    A set of definitions for deterministic parameter identification ability were proposed. Deterministic parameter identificability properties are presented based on four system characteristics: direct parameter recoverability, properties of the system transfer function, properties of output distinguishability, and uniqueness properties of a quadratic cost functional. Stochastic parameter identifiability was defined in terms of the existence of an estimation sequence for the unknown parameters which is consistent in probability. Stochastic parameter identifiability properties are presented based on the following characteristics: convergence properties of the maximum likelihood estimate, properties of the joint probability density functions of the observations, and properties of the information matrix.

  12. Code IN Exhibits - Supercomputing 2000

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob F.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    The creation of parameter study suites has recently become a more challenging problem as the parameter studies have become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers immense resource opportunities but at the expense of great difficulty of use. We present ILab, an advanced graphical user interface approach to this problem. Our novel strategy stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.

  13. Gestation-Specific Changes in the Anatomy and Physiology of Healthy Pregnant Women: An Extended Repository of Model Parameters for Physiologically Based Pharmacokinetic Modeling in Pregnancy.

    PubMed

    Dallmann, André; Ince, Ibrahim; Meyer, Michaela; Willmann, Stefan; Eissing, Thomas; Hempel, Georg

    2017-11-01

    In the past years, several repositories for anatomical and physiological parameters required for physiologically based pharmacokinetic modeling in pregnant women have been published. While providing a good basis, some important aspects can be further detailed. For example, they did not account for the variability associated with parameters or were lacking key parameters necessary for developing more detailed mechanistic pregnancy physiologically based pharmacokinetic models, such as the composition of pregnancy-specific tissues. The aim of this meta-analysis was to provide an updated and extended database of anatomical and physiological parameters in healthy pregnant women that also accounts for changes in the variability of a parameter throughout gestation and for the composition of pregnancy-specific tissues. A systematic literature search was carried out to collect study data on pregnancy-related changes of anatomical and physiological parameters. For each parameter, a set of mathematical functions was fitted to the data and to the standard deviation observed among the data. The best performing functions were selected based on numerical and visual diagnostics as well as based on physiological plausibility. The literature search yielded 473 studies, 302 of which met the criteria to be further analyzed and compiled in a database. In total, the database encompassed 7729 data. Although the availability of quantitative data for some parameters remained limited, mathematical functions could be generated for many important parameters. Gaps were filled based on qualitative knowledge and based on physiologically plausible assumptions. The presented results facilitate the integration of pregnancy-dependent changes in anatomy and physiology into mechanistic population physiologically based pharmacokinetic models. Such models can ultimately provide a valuable tool to investigate the pharmacokinetics during pregnancy in silico and support informed decision making regarding optimal dosing regimens in this vulnerable special population.

  14. Implementation and comparative analysis of the optimisations produced by evolutionary algorithms for the parameter extraction of PSP MOSFET model

    NASA Astrophysics Data System (ADS)

    Hadia, Sarman K.; Thakker, R. A.; Bhatt, Kirit R.

    2016-05-01

    The study proposes an application of evolutionary algorithms, specifically an artificial bee colony (ABC), variant ABC and particle swarm optimisation (PSO), to extract the parameters of metal oxide semiconductor field effect transistor (MOSFET) model. These algorithms are applied for the MOSFET parameter extraction problem using a Pennsylvania surface potential model. MOSFET parameter extraction procedures involve reducing the error between measured and modelled data. This study shows that ABC algorithm optimises the parameter values based on intelligent activities of honey bee swarms. Some modifications have also been applied to the basic ABC algorithm. Particle swarm optimisation is a population-based stochastic optimisation method that is based on bird flocking activities. The performances of these algorithms are compared with respect to the quality of the solutions. The simulation results of this study show that the PSO algorithm performs better than the variant ABC and basic ABC algorithm for the parameter extraction of the MOSFET model; also the implementation of the ABC algorithm is shown to be simpler than that of the PSO algorithm.

  15. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Jun; Zhang, Jiangjiang; Li, Weixuan

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees ofmore » freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.« less

  16. Genetic programming-based mathematical modeling of influence of weather parameters in BOD5 removal by Lemna minor.

    PubMed

    Chandrasekaran, Sivapragasam; Sankararajan, Vanitha; Neelakandhan, Nampoothiri; Ram Kumar, Mahalakshmi

    2017-11-04

    This study, through extensive experiments and mathematical modeling, reveals that other than retention time and wastewater temperature (T w ), atmospheric parameters also play important role in the effective functioning of aquatic macrophyte-based treatment system. Duckweed species Lemna minor is considered in this study. It is observed that the combined effect of atmospheric temperature (T atm ), wind speed (U w ), and relative humidity (RH) can be reflected through one parameter, namely the "apparent temperature" (T a ). A total of eight different models are considered based on the combination of input parameters and the best mathematical model is arrived at which is validated through a new experimental set-up outside the modeling period. The validation results are highly encouraging. Genetic programming (GP)-based models are found to reveal deeper understandings of the wetland process.

  17. Improving flood forecasting capability of physically based distributed hydrological model by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2015-10-01

    Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.

  18. To Find a Better Dosimetric Parameter in the Predicting of Radiation-Induced Lung Toxicity Individually: Ventilation, Perfusion or CT based.

    PubMed

    Xiao, Lin-Lin; Yang, Guoren; Chen, Jinhu; Wang, Xiaohui; Wu, Qingwei; Huo, Zongwei; Yu, Qingxi; Yu, Jinming; Yuan, Shuanghu

    2017-03-15

    This study aimed to find a better dosimetric parameter in predicting of radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) individually: ventilation(V), perfusion (Q) or computerized tomography (CT) based. V/Q single-photon emission computerized tomography (SPECT) was performed within 1 week prior to radiotherapy (RT). All V/Q imaging data was integrated into RT planning system, generating functional parameters based on V/Q SPECT. Fifty-seven NSCLC patients were enrolled in this prospective study. Fifteen (26.3%) patients underwent grade ≥2 RILT, the remaining forty-two (73.7%) patients didn't. Q-MLD, Q-V20, V-MLD, V-V20 of functional parameters correlated more significantly with the occurrence of RILT compared to V20, MLD of anatomical parameters (r = 0.630; r = 0.644; r = 0.617; r = 0.651 vs. r = 0.424; r = 0.520 p < 0.05, respectively). In patients with chronic obstructive pulmonary diseases (COPD), V functional parameters reflected significant advantage in predicting RILT; while in patients without COPD, Q functional parameters reflected significant advantage. Analogous results were existed in fractimal analysis of global pulmonary function test (PFT). In patients with central-type NSCLC, V parameters were better than Q parameters; while in patients with peripheral-type NSCLC, the results were inverse. Therefore, this study demonstrated that choosing a suitable dosimetric parameter individually can help us predict RILT accurately.

  19. A Four-parameter Budyko Equation for Mean Annual Water Balance

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Wang, D.

    2016-12-01

    In this study, a four-parameter Budyko equation for long-term water balance at watershed scale is derived based on the proportionality relationships of the two-stage partitioning of precipitation. The four-parameter Budyko equation provides a practical solution to balance model simplicity and representation of dominated hydrologic processes. Under the four-parameter Budyko framework, the key hydrologic processes related to the lower bound of Budyko curve are determined, that is, the lower bound is corresponding to the situation when surface runoff and initial evaporation not competing with base flow generation are zero. The derived model is applied to 166 MOPEX watersheds in United States, and the dominant controlling factors on each parameter are determined. Then, four statistical models are proposed to predict the four model parameters based on the dominant controlling factors, e.g., saturated hydraulic conductivity, fraction of sand, time period between two storms, watershed slope, and Normalized Difference Vegetation Index. This study shows a potential application of the four-parameter Budyko equation to constrain land-surface parameterizations in ungauged watersheds or general circulation models.

  20. Analysis of Sleep Parameters in Patients with Obstructive Sleep Apnea Studied in a Hospital vs. a Hotel-Based Sleep Center

    PubMed Central

    Hutchison, Kimberly N.; Song, Yanna; Wang, Lily; Malow, Beth A.

    2008-01-01

    Background: Polysomnography is associated with changes in sleep architecture called the first-night effect. This effect is believed to result from sleeping in an unusual environment and the technical equipment used to study sleep. Sleep experts hope to decrease this variable by providing a more familiar, comfortable atmosphere for sleep testing through hotel-based sleep centers. In this study, we compared the sleep parameters of patients studied in our hotel-based and hospital-based sleep laboratories. Methods: We retrospectively reviewed polysomnograms completed in our hotel-based and hospital-based sleep laboratories from August 2003 to July 2005. All patients were undergoing evaluation for obstructive sleep apnea. Hospital-based patients were matched for age and apnea-hypopnea index with hotel-based patients. We compared the sleep architecture changes associated with the first-night effect in the two groups. The associated conditions and symptoms listed on the polysomnography referral forms are also compared. Results: No significant differences were detected between the two groups in sleep onset latency, sleep efficiency, REM sleep latency, total amount of slow wave sleep (NREM stages 3 and 4), arousal index, and total stage 1 sleep. Conclusions: This pilot study failed to show a difference in sleep parameters associated with the first-night effect in patients undergoing sleep studies in our hotel and hospital-based sleep laboratories. Future studies need to compare the first-night effect in different sleep disorders, preferably in multi-night recordings. Citation: Hutchison KN; Song Y; Wang L; Malow BA. Analysis of sleep parameters in patients with obstructive sleep apnea studied in a hospital vs. A hotel-based sleep center. J Clin Sleep Med 2008;4(2):119–122. PMID:18468309

  1. Temporal variation and scaling of parameters for a monthly hydrologic model

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Liu, Pan; Wang, Dingbao; Wang, Weiguang

    2018-03-01

    The temporal variation of model parameters is affected by the catchment conditions and has a significant impact on hydrological simulation. This study aims to evaluate the seasonality and downscaling of model parameter across time scales based on monthly and mean annual water balance models with a common model framework. Two parameters of the monthly model, i.e., k and m, are assumed to be time-variant at different months. Based on the hydrological data set from 121 MOPEX catchments in the United States, we firstly analyzed the correlation between parameters (k and m) and catchment properties (NDVI and frequency of rainfall events, α). The results show that parameter k is positively correlated with NDVI or α, while the correlation is opposite for parameter m, indicating that precipitation and vegetation affect monthly water balance by controlling temporal variation of parameters k and m. The multiple linear regression is then used to fit the relationship between ε and the means and coefficient of variations of parameters k and m. Based on the empirical equation and the correlations between the time-variant parameters and NDVI, the mean annual parameter ε is downscaled to monthly k and m. The results show that it has lower NSEs than these from model with time-variant k and m being calibrated through SCE-UA, while for several study catchments, it has higher NSEs than that of the model with constant parameters. The proposed method is feasible and provides a useful tool for temporal scaling of model parameter.

  2. Automated network analysis to measure brain effective connectivity estimated from EEG data of patients with alcoholism.

    PubMed

    Bae, Youngoh; Yoo, Byeong Wook; Lee, Jung Chan; Kim, Hee Chan

    2017-05-01

    Detection and diagnosis based on extracting features and classification using electroencephalography (EEG) signals are being studied vigorously. A network analysis of time series EEG signal data is one of many techniques that could help study brain functions. In this study, we analyze EEG to diagnose alcoholism. We propose a novel methodology to estimate the differences in the status of the brain based on EEG data of normal subjects and data from alcoholics by computing many parameters stemming from effective network using Granger causality. Among many parameters, only ten parameters were chosen as final candidates. By the combination of ten graph-based parameters, our results demonstrate predictable differences between alcoholics and normal subjects. A support vector machine classifier with best performance had 90% accuracy with sensitivity of 95.3%, and specificity of 82.4% for differentiating between the two groups.

  3. Difference-based ridge-type estimator of parameters in restricted partial linear model with correlated errors.

    PubMed

    Wu, Jibo

    2016-01-01

    In this article, a generalized difference-based ridge estimator is proposed for the vector parameter in a partial linear model when the errors are dependent. It is supposed that some additional linear constraints may hold to the whole parameter space. Its mean-squared error matrix is compared with the generalized restricted difference-based estimator. Finally, the performance of the new estimator is explained by a simulation study and a numerical example.

  4. Estimation of Transport and Kinetic Parameters of Vanadium Redox Batteries Using Static Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong Beom; Pratt, III, Harry D.; Anderson, Travis M.

    Mathematical models of Redox Flow Batteries (RFBs) can be used to analyze cell performance, optimize battery operation, and control the energy storage system efficiently. Among many other models, physics-based electrochemical models are capable of predicting internal states of the battery, such as temperature, state-of-charge, and state-of-health. In the models, estimating parameters is an important step that can study, analyze, and validate the models using experimental data. A common practice is to determine these parameters either through conducting experiments or based on the information available in the literature. However, it is not easy to investigate all proper parameters for the modelsmore » through this way, and there are occasions when important information, such as diffusion coefficients and rate constants of ions, has not been studied. Also, the parameters needed for modeling charge-discharge are not always available. In this paper, an efficient way to estimate parameters of physics-based redox battery models will be proposed. Furthermore, this paper also demonstrates that the proposed approach can study and analyze aspects of capacity loss/fade, kinetics, and transport phenomena of the RFB system.« less

  5. Estimation of Transport and Kinetic Parameters of Vanadium Redox Batteries Using Static Cells

    DOE PAGES

    Lee, Seong Beom; Pratt, III, Harry D.; Anderson, Travis M.; ...

    2018-03-27

    Mathematical models of Redox Flow Batteries (RFBs) can be used to analyze cell performance, optimize battery operation, and control the energy storage system efficiently. Among many other models, physics-based electrochemical models are capable of predicting internal states of the battery, such as temperature, state-of-charge, and state-of-health. In the models, estimating parameters is an important step that can study, analyze, and validate the models using experimental data. A common practice is to determine these parameters either through conducting experiments or based on the information available in the literature. However, it is not easy to investigate all proper parameters for the modelsmore » through this way, and there are occasions when important information, such as diffusion coefficients and rate constants of ions, has not been studied. Also, the parameters needed for modeling charge-discharge are not always available. In this paper, an efficient way to estimate parameters of physics-based redox battery models will be proposed. Furthermore, this paper also demonstrates that the proposed approach can study and analyze aspects of capacity loss/fade, kinetics, and transport phenomena of the RFB system.« less

  6. Parameterization of Shape and Compactness in Object-based Image Classification Using Quickbird-2 Imagery

    NASA Astrophysics Data System (ADS)

    Tonbul, H.; Kavzoglu, T.

    2016-12-01

    In recent years, object based image analysis (OBIA) has spread out and become a widely accepted technique for the analysis of remotely sensed data. OBIA deals with grouping pixels into homogenous objects based on spectral, spatial and textural features of contiguous pixels in an image. The first stage of OBIA, named as image segmentation, is the most prominent part of object recognition. In this study, multiresolution segmentation, which is a region-based approach, was employed to construct image objects. In the application of multi-resolution, three parameters, namely shape, compactness and scale must be set by the analyst. Segmentation quality remarkably influences the fidelity of the thematic maps and accordingly the classification accuracy. Therefore, it is of great importance to search and set optimal values for the segmentation parameters. In the literature, main focus has been on the definition of scale parameter, assuming that the effect of shape and compactness parameters is limited in terms of achieved classification accuracy. The aim of this study is to deeply analyze the influence of shape/compactness parameters by varying their values while using the optimal scale parameter determined by the use of Estimation of Scale Parameter (ESP-2) approach. A pansharpened Qickbird-2 image covering Trabzon, Turkey was employed to investigate the objectives of the study. For this purpose, six different combinations of shape/compactness were utilized to make deductions on the behavior of shape and compactness parameters and optimal setting for all parameters as a whole. Objects were assigned to classes using nearest neighbor classifier in all segmentation observations and equal number of pixels was randomly selected to calculate accuracy metrics. The highest overall accuracy (92.3%) was achieved by setting the shape/compactness criteria to 0.3/0.3. The results of this study indicate that shape/compactness parameters can have significant effect on classification accuracy with 4% change in overall accuracy. Also, statistical significance of differences in accuracy was tested using the McNemar's test and found that the difference between poor and optimal setting of shape/compactness parameters was statistically significant, suggesting a search for optimal parameterization instead of default setting.

  7. The Prediction of Item Parameters Based on Classical Test Theory and Latent Trait Theory

    ERIC Educational Resources Information Center

    Anil, Duygu

    2008-01-01

    In this study, the prediction power of the item characteristics based on the experts' predictions on conditions try-out practices cannot be applied was examined for item characteristics computed depending on classical test theory and two-parameters logistic model of latent trait theory. The study was carried out on 9914 randomly selected students…

  8. SU-F-R-51: Radiomics in CT Perfusion Maps of Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesteruk, M; Riesterer, O; Veit-Haibach, P

    2016-06-15

    Purpose: The aim of this study was to test the predictive value of radiomics features of CT perfusion (CTP) for tumor control, based on a preselection of radiomics features in a robustness study. Methods: 11 patients with head and neck cancer (HNC) and 11 patients with lung cancer were included in the robustness study to preselect stable radiomics parameters. Data from 36 HNC patients treated with definitive radiochemotherapy (median follow-up 30 months) was used to build a predictive model based on these parameters. All patients underwent pre-treatment CTP. 315 texture parameters were computed for three perfusion maps: blood volume, bloodmore » flow and mean transit time. The variability of texture parameters was tested with respect to non-standardizable perfusion computation factors (noise level and artery contouring) using intraclass correlation coefficients (ICC). The parameter with the highest ICC in the correlated group of parameters (inter-parameter Spearman correlations) was tested for its predictive value. The final model to predict tumor control was built using multivariate Cox regression analysis with backward selection of the variables. For comparison, a predictive model based on tumor volume was created. Results: Ten parameters were found to be stable in both HNC and lung cancer regarding potentially non-standardizable factors after the correction for inter-parameter correlations. In the multivariate backward selection of the variables, blood flow entropy showed a highly significant impact on tumor control (p=0.03) with concordance index (CI) of 0.76. Blood flow entropy was significantly lower in the patient group with controlled tumors at 18 months (p<0.1). The new model showed a higher concordance index compared to the tumor volume model (CI=0.68). Conclusion: The preselection of variables in the robustness study allowed building a predictive radiomics-based model of tumor control in HNC despite a small patient cohort. This model was found to be superior to the volume-based model. The project was supported by the KFSP Tumor Oxygenation of the University of Zurich, by a grant of the Center for Clinical Research, University and University Hospital Zurich and by a research grant from Merck (Schweiz) AG.« less

  9. Effect of processing parameters on FDM process

    NASA Astrophysics Data System (ADS)

    Chari, V. Srinivasa; Venkatesh, P. R.; Krupashankar, Dinesh, Veena

    2018-04-01

    This paper focused on the process parameters on fused deposition modeling (FDM). Infill, resolution, temperature are the process variables considered for experimental studies. Compression strength, Hardness test microstructure are the outcome parameters, this experimental study done based on the taguchi's L9 orthogonal array is used. Taguchi array used to build the 9 different models and also to get the effective output results on the under taken parameters. The material used for this experimental study is Polylactic Acid (PLA).

  10. Desert plains classification based on Geomorphometrical parameters (Case study: Aghda, Yazd)

    NASA Astrophysics Data System (ADS)

    Tazeh, mahdi; Kalantari, Saeideh

    2013-04-01

    This research focuses on plains. There are several tremendous methods and classification which presented for plain classification. One of The natural resource based classification which is mostly using in Iran, classified plains into three types, Erosional Pediment, Denudation Pediment Aggradational Piedmont. The qualitative and quantitative factors to differentiate them from each other are also used appropriately. In this study effective Geomorphometrical parameters in differentiate landforms were applied for plain. Geomorphometrical parameters are calculable and can be extracted using mathematical equations and the corresponding relations on digital elevation model. Geomorphometrical parameters used in this study included Percent of Slope, Plan Curvature, Profile Curvature, Minimum Curvature, the Maximum Curvature, Cross sectional Curvature, Longitudinal Curvature and Gaussian Curvature. The results indicated that the most important affecting Geomorphometrical parameters for plain and desert classifications includes: Percent of Slope, Minimum Curvature, Profile Curvature, and Longitudinal Curvature. Key Words: Plain, Geomorphometry, Classification, Biophysical, Yazd Khezarabad.

  11. The use of a genetic algorithm-based search strategy in geostatistics: application to a set of anisotropic piezometric head data

    NASA Astrophysics Data System (ADS)

    Abedini, M. J.; Nasseri, M.; Burn, D. H.

    2012-04-01

    In any geostatistical study, an important consideration is the choice of an appropriate, repeatable, and objective search strategy that controls the nearby samples to be included in the location-specific estimation procedure. Almost all geostatistical software available in the market puts the onus on the user to supply search strategy parameters in a heuristic manner. These parameters are solely controlled by geographical coordinates that are defined for the entire area under study, and the user has no guidance as to how to choose these parameters. The main thesis of the current study is that the selection of search strategy parameters has to be driven by data—both the spatial coordinates and the sample values—and cannot be chosen beforehand. For this purpose, a genetic-algorithm-based ordinary kriging with moving neighborhood technique is proposed. The search capability of a genetic algorithm is exploited to search the feature space for appropriate, either local or global, search strategy parameters. Radius of circle/sphere and/or radii of standard or rotated ellipse/ellipsoid are considered as the decision variables to be optimized by GA. The superiority of GA-based ordinary kriging is demonstrated through application to the Wolfcamp Aquifer piezometric head data. Assessment of numerical results showed that definition of search strategy parameters based on both geographical coordinates and sample values improves cross-validation statistics when compared with that based on geographical coordinates alone. In the case of a variable search neighborhood for each estimation point, optimization of local search strategy parameters for an elliptical support domain—the orientation of which is dictated by anisotropic axes—via GA was able to capture the dynamics of piezometric head in west Texas/New Mexico in an efficient way.

  12. Distributed sensor architecture for intelligent control that supports quality of control and quality of service.

    PubMed

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-02-25

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  13. Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service

    PubMed Central

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-01-01

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145

  14. Measuring hepatic functional reserve using T1 mapping of Gd-EOB-DTPA enhanced 3T MR imaging: A preliminary study comparing with 99mTc GSA scintigraphy and signal intensity based parameters.

    PubMed

    Nakagawa, Masataka; Namimoto, Tomohiro; Shimizu, Kie; Morita, Kosuke; Sakamoto, Fumi; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Shiraishi, Shinya; Yamashita, Yasuyuki

    2017-07-01

    To determine the utility of liver T1-mapping on gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) enhanced magnetic resonance (MR) imaging for the measurement of liver functional reserve compared with the signal intensity (SI) based parameters, technetium-99m-galactosyl serum albumin ( 99m Tc-GSA) scintigraphy and indocyanine green (ICG) clearance. This retrospective study included 111 patients (Child-Pugh-A 90; -B 21) performed with both Gd-EOB-DTPA enhanced liver MR imaging and 99m Tc-GSA (76 patients with ICG). Receiver operating characteristic (ROC) curve analysis was performed to compare diagnostic performances of T1-relaxation-time parameters [pre-(T1pre) and post-contrast (T1hb) Gd-EOB-DTPA], SI based parameters [relative enhancement (RE), liver-to-muscle-ratio (LMR), liver-to-spleen-ratio (LSR)] and 99m Tc-GSA scintigraphy blood clearance index (HH15)] for Child-Pugh classification. Pearson's correlation was used for comparisons among T1-relaxation-time parameters, SI-based parameters, HH15 and ICG. A significant difference was obtained for Child-Pugh classification with T1hb, ΔT1, all SI based parameters and HH15. T1hb had the highest AUC followed by RE, LMR, LSR, ΔT1, HH15 and T1pre. The correlation coefficients with HH15 were T1pre 0.22, T1hb 0.53, ΔT1 -0.38 of T1 relaxation parameters; RE -0.44, LMR -0.45, LSR -0.43 of SI-based parameters. T1hb was highest for correlation with HH15. The correlation coefficients with ICG were T1pre 0.29, T1hb 0.64, ΔT1 -0.42 of T1 relaxation parameters; RE -0.50, LMR -0.61, LSR -0.58 of SI-based parameters; 0.64 of HH15. Both T1hb and HH15 were highest for correlation with ICG. T1 relaxation time at post-contrast of Gd-EOB-DTPA (T1hb) was strongly correlated with ICG clearance and moderately correlated HH15 with 99m Tc-GSA. T1hb has the potential to provide robust parameter of liver functional reserve. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. SU-D-12A-06: A Comprehensive Parameter Analysis for Low Dose Cone-Beam CT Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W; Southern Medical University, Guangzhou; Yan, H

    Purpose: There is always a parameter in compressive sensing based iterative reconstruction (IR) methods low dose cone-beam CT (CBCT), which controls the weight of regularization relative to data fidelity. A clear understanding of the relationship between image quality and parameter values is important. The purpose of this study is to investigate this subject based on experimental data and a representative advanced IR algorithm using Tight-frame (TF) regularization. Methods: Three data sets of a Catphan phantom acquired at low, regular and high dose levels are used. For each tests, 90 projections covering a 200-degree scan range are used for reconstruction. Threemore » different regions-of-interest (ROIs) of different contrasts are used to calculate contrast-to-noise ratios (CNR) for contrast evaluation. A single point structure is used to measure modulation transfer function (MTF) for spatial-resolution evaluation. Finally, we analyze CNRs and MTFs to study the relationship between image quality and parameter selections. Results: It was found that: 1) there is no universal optimal parameter. The optimal parameter value depends on specific task and dose level. 2) There is a clear trade-off between CNR and resolution. The parameter for the best CNR is always smaller than that for the best resolution. 3) Optimal parameters are also dose-specific. Data acquired under a high dose protocol require less regularization, yielding smaller optimal parameter values. 4) Comparing with conventional FDK images, TF-based CBCT images are better under a certain optimally selected parameters. The advantages are more obvious for low dose data. Conclusion: We have investigated the relationship between image quality and parameter values in the TF-based IR algorithm. Preliminary results indicate optimal parameters are specific to both the task types and dose levels, providing guidance for selecting parameters in advanced IR algorithms. This work is supported in part by NIH (1R01CA154747-01)« less

  16. Ketoprofen spray-dried microspheres based on Eudragit RS and RL: study of the manufacturing parameters.

    PubMed

    Rassu, Giovanna; Gavini, Elisabetta; Spada, Gianpiera; Giunchedi, Paolo; Marceddu, Salvatore

    2008-11-01

    The preparation of ketoprofen spray-dried microspheres can be affected by the long drug recrystallization time. Polymer type and drug-polymer ratio as well as manufacturing parameters affect the preparation. The purpose of this work was to evaluate the possibility to obtain ketoprofen spray-dried microspheres using the Eudragit RS and RL; the influence of the spray-drying parameters on morphology, dimension, and physical stability of microspheres was studied. Ketoprofen microspheres based on Eudragit blend can be prepared by spray-drying and the nebulization parameters do not influence significantly particle properties; nevertheless, they can be affected by drying and storage methods. No effect of the container material is found.

  17. Model-based Bayesian inference for ROC data analysis

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Bae, K. Ty

    2013-03-01

    This paper presents a study of model-based Bayesian inference to Receiver Operating Characteristics (ROC) data. The model is a simple version of general non-linear regression model. Different from Dorfman model, it uses a probit link function with a covariate variable having zero-one two values to express binormal distributions in a single formula. Model also includes a scale parameter. Bayesian inference is implemented by Markov Chain Monte Carlo (MCMC) method carried out by Bayesian analysis Using Gibbs Sampling (BUGS). Contrast to the classical statistical theory, Bayesian approach considers model parameters as random variables characterized by prior distributions. With substantial amount of simulated samples generated by sampling algorithm, posterior distributions of parameters as well as parameters themselves can be accurately estimated. MCMC-based BUGS adopts Adaptive Rejection Sampling (ARS) protocol which requires the probability density function (pdf) which samples are drawing from be log concave with respect to the targeted parameters. Our study corrects a common misconception and proves that pdf of this regression model is log concave with respect to its scale parameter. Therefore, ARS's requirement is satisfied and a Gaussian prior which is conjugate and possesses many analytic and computational advantages is assigned to the scale parameter. A cohort of 20 simulated data sets and 20 simulations from each data set are used in our study. Output analysis and convergence diagnostics for MCMC method are assessed by CODA package. Models and methods by using continuous Gaussian prior and discrete categorical prior are compared. Intensive simulations and performance measures are given to illustrate our practice in the framework of model-based Bayesian inference using MCMC method.

  18. TU-F-12A-05: Sensitivity of Textural Features to 3D Vs. 4D FDG-PET/CT Imaging in NSCLC Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Nyflot, M; Bowen, S

    2014-06-15

    Purpose: Neighborhood Gray-level difference matrices (NGLDM) based texture parameters extracted from conventional (3D) 18F-FDG PET scans in patients with NSCLC have been previously shown to associate with response to chemoradiation and poorer patient outcome. However, the change in these parameters when utilizing respiratory-correlated (4D) FDG-PET scans has not yet been characterized for NSCLC. The Objectives: of this study was to assess the extent to which NGLDM-based texture parameters on 4D PET images vary with reference to values derived from 3D scans in NSCLC. Methods: Eight patients with newly diagnosed NSCLC treated with concomitant chemoradiotherapy were included in this study. 4Dmore » PET scans were reconstructed with OSEM-IR in 5 respiratory phase-binned images and corresponding CT data of each phase were employed for attenuation correction. NGLDM-based texture features, consisting of coarseness, contrast, busyness, complexity and strength, were evaluated for gross tumor volumes defined on 3D/4D PET scans by radiation oncologists. Variation of the obtained texture parameters over the respiratory cycle were examined with respect to values extracted from 3D scans. Results: Differences between texture parameters derived from 4D scans at different respiratory phases and those extracted from 3D scans ranged from −30% to 13% for coarseness, −12% to 40% for contrast, −5% to 50% for busyness, −7% to 38% for complexity, and −43% to 20% for strength. Furthermore, no evident correlations were observed between respiratory phase and 4D scan texture parameters. Conclusion: Results of the current study showed that NGLDM-based texture parameters varied considerably based on choice of 3D PET and 4D PET reconstruction of NSCLC patient images, indicating that standardized image acquisition and analysis protocols need to be established for clinical studies, especially multicenter clinical trials, intending to validate prognostic values of texture features for NSCLC.« less

  19. Model-based estimation for dynamic cardiac studies using ECT.

    PubMed

    Chiao, P C; Rogers, W L; Clinthorne, N H; Fessler, J A; Hero, A O

    1994-01-01

    The authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (emission computed tomography). They construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. They also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performance to the Cramer-Rao lower bound. Finally, the authors discuss model assumptions and potential uses of the joint estimation strategy.

  20. a Comparison Between Two Ols-Based Approaches to Estimating Urban Multifractal Parameters

    NASA Astrophysics Data System (ADS)

    Huang, Lin-Shan; Chen, Yan-Guang

    Multifractal theory provides a new spatial analytical tool for urban studies, but many basic problems remain to be solved. Among various pending issues, the most significant one is how to obtain proper multifractal dimension spectrums. If an algorithm is improperly used, the parameter spectrums will be abnormal. This paper is devoted to investigating two ordinary least squares (OLS)-based approaches for estimating urban multifractal parameters. Using empirical study and comparative analysis, we demonstrate how to utilize the adequate linear regression to calculate multifractal parameters. The OLS regression analysis has two different approaches. One is that the intercept is fixed to zero, and the other is that the intercept is not limited. The results of comparative study show that the zero-intercept regression yields proper multifractal parameter spectrums within certain scale range of moment order, while the common regression method often leads to abnormal multifractal parameter values. A conclusion can be reached that fixing the intercept to zero is a more advisable regression method for multifractal parameters estimation, and the shapes of spectral curves and value ranges of fractal parameters can be employed to diagnose urban problems. This research is helpful for scientists to understand multifractal models and apply a more reasonable technique to multifractal parameter calculations.

  1. Auditorium acoustics evaluation based on simulated impulse response

    NASA Astrophysics Data System (ADS)

    Wu, Shuoxian; Wang, Hongwei; Zhao, Yuezhe

    2004-05-01

    The impulse responses and other acoustical parameters of Huangpu Teenager Palace in Guangzhou were measured. Meanwhile, the acoustical simulation and auralization based on software ODEON were also made. The comparison between the parameters based on computer simulation and measuring is given. This case study shows that auralization technique based on computer simulation can be used for predicting the acoustical quality of a hall at its design stage.

  2. Investigation of IRT-Based Equating Methods in the Presence of Outlier Common Items

    ERIC Educational Resources Information Center

    Hu, Huiqin; Rogers, W. Todd; Vukmirovic, Zarko

    2008-01-01

    Common items with inconsistent b-parameter estimates may have a serious impact on item response theory (IRT)--based equating results. To find a better way to deal with the outlier common items with inconsistent b-parameters, the current study investigated the comparability of 10 variations of four IRT-based equating methods (i.e., concurrent…

  3. An empirical study on the utility of BRDF model parameters and topographic parameters for mapping vegetation in a semi-arid region with MISR imagery

    USDA-ARS?s Scientific Manuscript database

    Multi-angle remote sensing has been proved useful for mapping vegetation community types in desert regions. Based on Multi-angle Imaging Spectro-Radiometer (MISR) multi-angular images, this study compares roles played by Bidirectional Reflectance Distribution Function (BRDF) model parameters with th...

  4. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.

    PubMed

    Cotten, Cameron; Reed, Jennifer L

    2013-01-30

    Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets.

  5. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models

    PubMed Central

    2013-01-01

    Background Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. Results In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. Conclusions This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets. PMID:23360254

  6. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2016-01-01

    Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.

  7. Simultaneous versus sequential optimal experiment design for the identification of multi-parameter microbial growth kinetics as a function of temperature.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2010-05-21

    Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Effect of the depth base along the vertical on the electrical parameters of a vertical parallel silicon solar cell in open and short circuit

    NASA Astrophysics Data System (ADS)

    Sahin, Gokhan; Kerimli, Genber

    2018-03-01

    This article presented a modeling study of effect of the depth base initiating on vertical parallel silicon solar cell's photovoltaic conversion efficiency. After the resolution of the continuity equation of excess minority carriers, we calculated the electrical parameters such as the photocurrent density, the photovoltage, series resistance and shunt resistances, diffusion capacitance, electric power, fill factor and the photovoltaic conversion efficiency. We determined the maximum electric power, the operating point of the solar cell and photovoltaic conversion efficiency according to the depth z in the base. We showed that the photocurrent density decreases with the depth z. The photovoltage decreased when the depth base increases. Series and shunt resistances were deduced from electrical model and were influenced and the applied the depth base. The capacity decreased with the depth z of the base. We had studied the influence of the variation of the depth z on the electrical parameters in the base.

  9. Reaction time as an indicator of insufficient effort: Development and validation of an embedded performance validity parameter.

    PubMed

    Stevens, Andreas; Bahlo, Simone; Licha, Christina; Liske, Benjamin; Vossler-Thies, Elisabeth

    2016-11-30

    Subnormal performance in attention tasks may result from various sources including lack of effort. In this report, the derivation and validation of a performance validity parameter for reaction time is described, using a set of malingering-indices ("Slick-criteria"), and 3 independent samples of participants (total n =893). The Slick-criteria yield an estimate of the probability of malingering based on the presence of an external incentive, evidence from neuropsychological testing, from self-report and clinical data. In study (1) a validity parameter is derived using reaction time data of a sample, composed of inpatients with recent severe brain lesions not involved in litigation and of litigants with and without brain lesion. In study (2) the validity parameter is tested in an independent sample of litigants. In study (3) the parameter is applied to an independent sample comprising cooperative and non-cooperative testees. Logistic regression analysis led to a derived validity parameter based on median reaction time and standard deviation. It performed satisfactorily in studies (2) and (3) (study 2 sensitivity=0.94, specificity=1.00; study 3 sensitivity=0.79, specificity=0.87). The findings suggest that median reaction time and standard deviation may be used as indicators of negative response bias. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE PAGES

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  11. Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties

    PubMed Central

    Atalay, Ozgur; Kennon, William Richard; Husain, Muhammad Dawood

    2013-01-01

    The design and development of textile-based strain sensors has been a focus of research and many investigators have studied this subject. This paper presents a new textile-based strain sensor design and shows the effect of base fabric parameters on its sensing properties. Sensing fabric could be used to measure articulations of the human body in the real environment. The strain sensing fabric was produced by using electronic flat-bed knitting technology; the base fabric was produced with elastomeric yarns in an interlock arrangement and a conductive yarn was embedded in this substrate to create a series of single loop structures. Experimental results show that there is a strong relationship between base fabric parameters and sensor properties. PMID:23966199

  12. Aescin-based topical formulation to prevent foot wounds and ulcerations in diabetic microangiopathy.

    PubMed

    Hu, S; Belcaro, G; Dugall, M; Hosoi, M; Togni, S; Maramaldi, G; Giacomelli, L

    2016-10-01

    Impairment of the peripheral microcirculation in diabetic patients often leads to severe complications in the lower extremities, such as foot infections and ulcerations. In this study, a novel aescin-based formulation has been evaluated as a potential approach to prevent skin breaks and ulcerations by improving the peripheral microcirculation and skin hydration. In this registry study, 63 patients with moderate diabetic microangiopathy were recruited. Informed participants freely decided to follow either a standard management (SM) to prevent diabetic foot diseases (n = 31) or SM associated with topical application of the aescin-based cream (n = 32). Peripheral microcirculatory parameters such as resting skin flux, venoarteriolar response and transcutaneous gas tension were evaluated at inclusion and after 8 weeks. In addition, several skin parameters of the foot area, such as integrity (as number of skin breaks/patients), hydration and content of dead cells were assessed at the defined observational study periods. Improvements in cutaneous peripheral microcirculation parameters were observed at 8 weeks in both groups; however, a remarkable and significant beneficial effect resulted to be exerted by the aescin-based cream treatment. In fact, the microcirculatory parameters evaluated significantly improved in the standard management + aescin-based cream group, compared with baseline and with the standard management group. Similar findings were reported for skin parameters of the foot area. The topical formulation containing aescin could represent a valid approach to manage skin wounds and prevent skin ulcerations in patients affected by moderate diabetic microangiopathy.

  13. Model-based estimation for dynamic cardiac studies using ECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiao, P.C.; Rogers, W.L.; Clinthorne, N.H.

    1994-06-01

    In this paper, the authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (Emission Computed Tomography). The authors construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. The authors also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performancemore » to the Cramer-Rao lower bound. Finally, model assumptions and potential uses of the joint estimation strategy are discussed.« less

  14. Analysis of sleep parameters in patients with obstructive sleep apnea studied in a hospital vs. a hotel-based sleep center.

    PubMed

    Hutchison, Kimberly N; Song, Yanna; Wang, Lily; Malow, Beth A

    2008-04-15

    Polysomnography is associated with changes in sleep architecture called the first-night effect. This effect is believed to result from sleeping in an unusual environment and the technical equipment used to study sleep. Sleep experts hope to decrease this variable by providing a more familiar, comfortable atmosphere for sleep testing through hotel-based sleep centers. In this study, we compared the sleep parameters of patients studied in our hotel-based and hospital-based sleep laboratories. We retrospectively reviewed polysomnograms completed in our hotel-based and hospital-based sleep laboratories from August 2003 to July 2005. All patients were undergoing evaluation for obstructive sleep apnea. Hospital-based patients were matched for age and apnea-hypopnea index with hotel-based patients. We compared the sleep architecture changes associated with the first-night effect in the two groups. The associated conditions and symptoms listed on the polysomnography referral forms are also compared. No significant differences were detected between the two groups in sleep onset latency, sleep efficiency, REM sleep latency, total amount of slow wave sleep (NREM stages 3 and 4), arousal index, and total stage 1 sleep. This pilot study failed to show a difference in sleep parameters associated with the first-night effect in patients undergoing sleep studies in our hotel and hospital-based sleep laboratories. Future studies need to compare the first-night effect in different sleep disorders, preferably in multi-night recordings.

  15. An optimization based sampling approach for multiple metrics uncertainty analysis using generalized likelihood uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Rurui; Li, Yu; Lu, Di; Liu, Haixing; Zhou, Huicheng

    2016-09-01

    This paper investigates the use of an epsilon-dominance non-dominated sorted genetic algorithm II (ɛ-NSGAII) as a sampling approach with an aim to improving sampling efficiency for multiple metrics uncertainty analysis using Generalized Likelihood Uncertainty Estimation (GLUE). The effectiveness of ɛ-NSGAII based sampling is demonstrated compared with Latin hypercube sampling (LHS) through analyzing sampling efficiency, multiple metrics performance, parameter uncertainty and flood forecasting uncertainty with a case study of flood forecasting uncertainty evaluation based on Xinanjiang model (XAJ) for Qing River reservoir, China. Results obtained demonstrate the following advantages of the ɛ-NSGAII based sampling approach in comparison to LHS: (1) The former performs more effective and efficient than LHS, for example the simulation time required to generate 1000 behavioral parameter sets is shorter by 9 times; (2) The Pareto tradeoffs between metrics are demonstrated clearly with the solutions from ɛ-NSGAII based sampling, also their Pareto optimal values are better than those of LHS, which means better forecasting accuracy of ɛ-NSGAII parameter sets; (3) The parameter posterior distributions from ɛ-NSGAII based sampling are concentrated in the appropriate ranges rather than uniform, which accords with their physical significance, also parameter uncertainties are reduced significantly; (4) The forecasted floods are close to the observations as evaluated by three measures: the normalized total flow outside the uncertainty intervals (FOUI), average relative band-width (RB) and average deviation amplitude (D). The flood forecasting uncertainty is also reduced a lot with ɛ-NSGAII based sampling. This study provides a new sampling approach to improve multiple metrics uncertainty analysis under the framework of GLUE, and could be used to reveal the underlying mechanisms of parameter sets under multiple conflicting metrics in the uncertainty analysis process.

  16. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    NASA Astrophysics Data System (ADS)

    Endres, Christopher J.; Hammoud, Dima A.; Pomper, Martin G.

    2011-04-01

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [11C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (kr2) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BPND). Compared with standard SRTM, either coupling of kr2 across regions or constraining kr2 to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BPND between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining kr2 to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the variance of parameter estimates and may better discriminate between-group differences in specific binding.

  17. Impacts of Different Types of Measurements on Estimating Unsaturatedflow Parameters

    NASA Astrophysics Data System (ADS)

    Shi, L.

    2015-12-01

    This study evaluates the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.

  18. Parameter-based estimation of CT dose index and image quality using an in-house android™-based software

    NASA Astrophysics Data System (ADS)

    Mubarok, S.; Lubis, L. E.; Pawiro, S. A.

    2016-03-01

    Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.

  19. Impact of MR Acquisition Parameters on DTI Scalar Indexes: A Tractography Based Approach.

    PubMed

    Barrio-Arranz, Gonzalo; de Luis-García, Rodrigo; Tristán-Vega, Antonio; Martín-Fernández, Marcos; Aja-Fernández, Santiago

    2015-01-01

    Acquisition parameters play a crucial role in Diffusion Tensor Imaging (DTI), as they have a major impact on the values of scalar measures such as Fractional Anisotropy (FA) or Mean Diffusivity (MD) that are usually the focus of clinical studies based on white matter analysis. This paper presents an analysis on the impact of the variation of several acquisition parameters on these scalar measures with a novel double focus. First, a tractography-based approach is employed, motivated by the significant number of clinical studies that are carried out using this technique. Second, the consequences of simultaneous changes in multiple parameters are analyzed: number of gradient directions, b-value and voxel resolution. Results indicate that the FA is most affected by changes in the number of gradients and voxel resolution, while MD is specially influenced by variations in the b-value. Even if the choice of a tractography algorithm has an effect on the numerical values of the final scalar measures, the evolution of these measures when acquisition parameters are modified is parallel.

  20. Impact of MR Acquisition Parameters on DTI Scalar Indexes: A Tractography Based Approach

    PubMed Central

    Barrio-Arranz, Gonzalo; de Luis-García, Rodrigo; Tristán-Vega, Antonio; Martín-Fernández, Marcos; Aja-Fernández, Santiago

    2015-01-01

    Acquisition parameters play a crucial role in Diffusion Tensor Imaging (DTI), as they have a major impact on the values of scalar measures such as Fractional Anisotropy (FA) or Mean Diffusivity (MD) that are usually the focus of clinical studies based on white matter analysis. This paper presents an analysis on the impact of the variation of several acquisition parameters on these scalar measures with a novel double focus. First, a tractography-based approach is employed, motivated by the significant number of clinical studies that are carried out using this technique. Second, the consequences of simultaneous changes in multiple parameters are analyzed: number of gradient directions, b-value and voxel resolution. Results indicate that the FA is most affected by changes in the number of gradients and voxel resolution, while MD is specially influenced by variations in the b-value. Even if the choice of a tractography algorithm has an effect on the numerical values of the final scalar measures, the evolution of these measures when acquisition parameters are modified is parallel. PMID:26457415

  1. Parameter motivated mutual correlation analysis: Application to the study of currency exchange rates based on intermittency parameter and Hurst exponent

    NASA Astrophysics Data System (ADS)

    Cristescu, Constantin P.; Stan, Cristina; Scarlat, Eugen I.; Minea, Teofil; Cristescu, Cristina M.

    2012-04-01

    We present a novel method for the parameter oriented analysis of mutual correlation between independent time series or between equivalent structures such as ordered data sets. The proposed method is based on the sliding window technique, defines a new type of correlation measure and can be applied to time series from all domains of science and technology, experimental or simulated. A specific parameter that can characterize the time series is computed for each window and a cross correlation analysis is carried out on the set of values obtained for the time series under investigation. We apply this method to the study of some currency daily exchange rates from the point of view of the Hurst exponent and the intermittency parameter. Interesting correlation relationships are revealed and a tentative crisis prediction is presented.

  2. Novel parameter-based flexure bearing design method

    NASA Astrophysics Data System (ADS)

    Amoedo, Simon; Thebaud, Edouard; Gschwendtner, Michael; White, David

    2016-06-01

    A parameter study was carried out on the design variables of a flexure bearing to be used in a Stirling engine with a fixed axial displacement and a fixed outer diameter. A design method was developed in order to assist identification of the optimum bearing configuration. This was achieved through a parameter study of the bearing carried out with ANSYS®. The parameters varied were the number and the width of the arms, the thickness of the bearing, the eccentricity, the size of the starting and ending holes, and the turn angle of the spiral. Comparison was made between the different designs in terms of axial and radial stiffness, the natural frequency, and the maximum induced stresses. Moreover, the Finite Element Analysis (FEA) was compared to theoretical results for a given design. The results led to a graphical design method which assists the selection of flexure bearing geometrical parameters based on pre-determined geometric and material constraints.

  3. Wall Shear Stress Distribution in a Patient-Specific Cerebral Aneurysm Model using Reduced Order Modeling

    NASA Astrophysics Data System (ADS)

    Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya

    2016-11-01

    We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.

  4. Intelligent methods for the process parameter determination of plastic injection molding

    NASA Astrophysics Data System (ADS)

    Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn

    2018-03-01

    Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.

  5. Effects of two-temperature parameter and thermal nonlocal parameter on transient responses of a half-space subjected to ramp-type heating

    NASA Astrophysics Data System (ADS)

    Xue, Zhang-Na; Yu, Ya-Jun; Tian, Xiao-Geng

    2017-07-01

    Based upon the coupled thermoelasticity and Green and Lindsay theory, the new governing equations of two-temperature thermoelastic theory with thermal nonlocal parameter is formulated. To more realistically model thermal loading of a half-space surface, a linear temperature ramping function is adopted. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Specific attention is paid to study the effect of thermal nonlocal parameter, ramping time, and two-temperature parameter on the distributions of temperature, displacement and stress distribution.

  6. Development of base pressure similarity parameters for application to space shuttle launch vehicle power-on aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Sulyma, P. R.; Penny, M. M.

    1978-01-01

    A base pressure data correlation study was conducted to define exhaust plume similarity parameters for use in Space Shuttle power-on launch vehicle aerodynamic test programs. Data correlations were performed for single bodies having, respectively, single and triple nozzle configurations and for a triple body configuration with single nozzles on each of the outside bodies. Base pressure similarity parameters were found to differ for the single nozzle and triple nozzle configurations. However, the correlation parameter for each was found to be a strong function of the nozzle exit momentum. Results of the data base evaluation are presented indicating an assessment of all data points. Analytical/experimental data comparisons were made for nozzle calibrations and correction factors derived, where indicated for use in nozzle exit plane data calculations.

  7. On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites: SURROGATE-BASED MCMC FOR CLM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan

    2016-07-04

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically-average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less

  8. Using an ensemble smoother to evaluate parameter uncertainty of an integrated hydrological model of Yanqi basin

    NASA Astrophysics Data System (ADS)

    Li, Ning; McLaughlin, Dennis; Kinzelbach, Wolfgang; Li, WenPeng; Dong, XinGuang

    2015-10-01

    Model uncertainty needs to be quantified to provide objective assessments of the reliability of model predictions and of the risk associated with management decisions that rely on these predictions. This is particularly true in water resource studies that depend on model-based assessments of alternative management strategies. In recent decades, Bayesian data assimilation methods have been widely used in hydrology to assess uncertain model parameters and predictions. In this case study, a particular data assimilation algorithm, the Ensemble Smoother with Multiple Data Assimilation (ESMDA) (Emerick and Reynolds, 2012), is used to derive posterior samples of uncertain model parameters and forecasts for a distributed hydrological model of Yanqi basin, China. This model is constructed using MIKESHE/MIKE11software, which provides for coupling between surface and subsurface processes (DHI, 2011a-d). The random samples in the posterior parameter ensemble are obtained by using measurements to update 50 prior parameter samples generated with a Latin Hypercube Sampling (LHS) procedure. The posterior forecast samples are obtained from model runs that use the corresponding posterior parameter samples. Two iterative sample update methods are considered: one based on an a perturbed observation Kalman filter update and one based on a square root Kalman filter update. These alternatives give nearly the same results and converge in only two iterations. The uncertain parameters considered include hydraulic conductivities, drainage and river leakage factors, van Genuchten soil property parameters, and dispersion coefficients. The results show that the uncertainty in many of the parameters is reduced during the smoother updating process, reflecting information obtained from the observations. Some of the parameters are insensitive and do not benefit from measurement information. The correlation coefficients among certain parameters increase in each iteration, although they generally stay below 0.50.

  9. An Evaluation of One- and Three-Parameter Logistic Tailored Testing Procedures for Use with Small Item Pools.

    ERIC Educational Resources Information Center

    McKinley, Robert L.; Reckase, Mark D.

    A two-stage study was conducted to compare the ability estimates yielded by tailored testing procedures based on the one-parameter logistic (1PL) and three-parameter logistic (3PL) models. The first stage of the study employed real data, while the second stage employed simulated data. In the first stage, response data for 3,000 examinees were…

  10. Model-based analysis of coupled equilibrium-kinetic processes: indirect kinetic studies of thermodynamic parameters using the dynamic data.

    PubMed

    Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid

    2015-05-07

    Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.

  11. Study of the method of water-injected meat identifying based on low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Xu, Jianmei; Lin, Qing; Yang, Fang; Zheng, Zheng; Ai, Zhujun

    2018-01-01

    The aim of this study to apply low-field nuclear magnetic resonance technique was to study regular variation of the transverse relaxation spectral parameters of water-injected meat with the proportion of water injection. Based on this, the method of one-way ANOVA and discriminant analysis was used to analyse the differences between these parameters in the capacity of distinguishing water-injected proportion, and established a model for identifying water-injected meat. The results show that, except for T 21b, T 22e and T 23b, the other parameters of the T 2 relaxation spectrum changed regularly with the change of water-injected proportion. The ability of different parameters to distinguish water-injected proportion was different. Based on S, P 22 and T 23m as the prediction variable, the Fisher model and the Bayes model were established by discriminant analysis method, qualitative and quantitative classification of water-injected meat can be realized. The rate of correct discrimination of distinguished validation and cross validation were 88%, the model was stable.

  12. Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study.

    PubMed

    Fan, Ming; Kuwahara, Hiroyuki; Wang, Xiaolei; Wang, Suojin; Gao, Xin

    2015-11-01

    Parameter estimation is a challenging computational problem in the reverse engineering of biological systems. Because advances in biotechnology have facilitated wide availability of time-series gene expression data, systematic parameter estimation of gene circuit models from such time-series mRNA data has become an important method for quantitatively dissecting the regulation of gene expression. By focusing on the modeling of gene circuits, we examine here the performance of three types of state-of-the-art parameter estimation methods: population-based methods, online methods and model-decomposition-based methods. Our results show that certain population-based methods are able to generate high-quality parameter solutions. The performance of these methods, however, is heavily dependent on the size of the parameter search space, and their computational requirements substantially increase as the size of the search space increases. In comparison, online methods and model decomposition-based methods are computationally faster alternatives and are less dependent on the size of the search space. Among other things, our results show that a hybrid approach that augments computationally fast methods with local search as a subsequent refinement procedure can substantially increase the quality of their parameter estimates to the level on par with the best solution obtained from the population-based methods while maintaining high computational speed. These suggest that such hybrid methods can be a promising alternative to the more commonly used population-based methods for parameter estimation of gene circuit models when limited prior knowledge about the underlying regulatory mechanisms makes the size of the parameter search space vastly large. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT.

    PubMed

    Bizios, Dimitrios; Heijl, Anders; Hougaard, Jesper Leth; Bengtsson, Boel

    2010-02-01

    To compare the performance of two machine learning classifiers (MLCs), artificial neural networks (ANNs) and support vector machines (SVMs), with input based on retinal nerve fibre layer thickness (RNFLT) measurements by optical coherence tomography (OCT), on the diagnosis of glaucoma, and to assess the effects of different input parameters. We analysed Stratus OCT data from 90 healthy persons and 62 glaucoma patients. Performance of MLCs was compared using conventional OCT RNFLT parameters plus novel parameters such as minimum RNFLT values, 10th and 90th percentiles of measured RNFLT, and transformations of A-scan measurements. For each input parameter and MLC, the area under the receiver operating characteristic curve (AROC) was calculated. There were no statistically significant differences between ANNs and SVMs. The best AROCs for both ANN (0.982, 95%CI: 0.966-0.999) and SVM (0.989, 95% CI: 0.979-1.0) were based on input of transformed A-scan measurements. Our SVM trained on this input performed better than ANNs or SVMs trained on any of the single RNFLT parameters (p < or = 0.038). The performance of ANNs and SVMs trained on minimum thickness values and the 10th and 90th percentiles were at least as good as ANNs and SVMs with input based on the conventional RNFLT parameters. No differences between ANN and SVM were observed in this study. Both MLCs performed very well, with similar diagnostic performance. Input parameters have a larger impact on diagnostic performance than the type of machine classifier. Our results suggest that parameters based on transformed A-scan thickness measurements of the RNFL processed by machine classifiers can improve OCT-based glaucoma diagnosis.

  14. Identification and calibration of the structural model of historical masonry building damaged during the 2016 Italian earthquakes: The case study of Palazzo del Podestà in Montelupone

    NASA Astrophysics Data System (ADS)

    Catinari, Federico; Pierdicca, Alessio; Clementi, Francesco; Lenci, Stefano

    2017-11-01

    The results of an ambient-vibration based investigation conducted on the "Palazzo del Podesta" in Montelupone (Italy) is presented. The case study was damaged during the 20I6 Italian earthquakes that stroke the central part of the Italy. The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. A very good match between theoretical and experimental modal parameters was reached and the model updating has been performed identifying some structural parameters.

  15. Optimisation of lateral car dynamics taking into account parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Busch, Jochen; Bestle, Dieter

    2014-02-01

    Simulation studies on an active all-wheel-steering car show that disturbance of vehicle parameters have high influence on lateral car dynamics. This motivates the need of robust design against such parameter uncertainties. A specific parametrisation is established combining deterministic, velocity-dependent steering control parameters with partly uncertain, velocity-independent vehicle parameters for simultaneous use in a numerical optimisation process. Model-based objectives are formulated and summarised in a multi-objective optimisation problem where especially the lateral steady-state behaviour is improved by an adaption strategy based on measurable uncertainties. The normally distributed uncertainties are generated by optimal Latin hypercube sampling and a response surface based strategy helps to cut down time consuming model evaluations which offers the possibility to use a genetic optimisation algorithm. Optimisation results are discussed in different criterion spaces and the achieved improvements confirm the validity of the proposed procedure.

  16. Effect of Processing Parameters on 3D Printing of Cement - based Materials

    NASA Astrophysics Data System (ADS)

    Lin, Jia Chao; Wang, Jun; Wu, Xiong; Yang, Wen; Zhao, Ri Xu; Bao, Ming

    2018-06-01

    3D printing is a new study direction of building method in recent years. The applicability of 3D printing equipment and cement based materials is analyzed, and the influence of 3D printing operation parameters on the printing effect is explored in this paper. Results showed that the appropriate range of 3D printing operation parameters: print height/nozzle diameter is between 0.4 to 0.6, the printing speed 4-8 cm/s with pumpage 9 * 10-2 m 3/ h.

  17. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; ...

    2015-01-01

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  18. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  19. Estimation of sum-to-one constrained parameters with non-Gaussian extensions of ensemble-based Kalman filters: application to a 1D ocean biogeochemical model

    NASA Astrophysics Data System (ADS)

    Simon, E.; Bertino, L.; Samuelsen, A.

    2011-12-01

    Combined state-parameter estimation in ocean biogeochemical models with ensemble-based Kalman filters is a challenging task due to the non-linearity of the models, the constraints of positiveness that apply to the variables and parameters, and the non-Gaussian distribution of the variables in which they result. Furthermore, these models are sensitive to numerous parameters that are poorly known. Previous works [1] demonstrated that the Gaussian anamorphosis extensions of ensemble-based Kalman filters were relevant tools to perform combined state-parameter estimation in such non-Gaussian framework. In this study, we focus on the estimation of the grazing preferences parameters of zooplankton species. These parameters are introduced to model the diet of zooplankton species among phytoplankton species and detritus. They are positive values and their sum is equal to one. Because the sum-to-one constraint cannot be handled by ensemble-based Kalman filters, a reformulation of the parameterization is proposed. We investigate two types of changes of variables for the estimation of sum-to-one constrained parameters. The first one is based on Gelman [2] and leads to the estimation of normal distributed parameters. The second one is based on the representation of the unit sphere in spherical coordinates and leads to the estimation of parameters with bounded distributions (triangular or uniform). These formulations are illustrated and discussed in the framework of twin experiments realized in the 1D coupled model GOTM-NORWECOM with Gaussian anamorphosis extensions of the deterministic ensemble Kalman filter (DEnKF). [1] Simon E., Bertino L. : Gaussian anamorphosis extension of the DEnKF for combined state and parameter estimation : application to a 1D ocean ecosystem model. Journal of Marine Systems, 2011. doi :10.1016/j.jmarsys.2011.07.007 [2] Gelman A. : Method of Moments Using Monte Carlo Simulation. Journal of Computational and Graphical Statistics, 4, 1, 36-54, 1995.

  20. Ensemble-Based Parameter Estimation in a Coupled General Circulation Model

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-09-10

    Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less

  1. Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks.

    PubMed

    Rumschinski, Philipp; Borchers, Steffen; Bosio, Sandro; Weismantel, Robert; Findeisen, Rolf

    2010-05-25

    Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates.

  2. Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks

    PubMed Central

    2010-01-01

    Background Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. Results In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. Conclusions The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates. PMID:20500862

  3. Morphology parameters for intracranial aneurysm rupture risk assessment.

    PubMed

    Dhar, Sujan; Tremmel, Markus; Mocco, J; Kim, Minsuok; Yamamoto, Junichi; Siddiqui, Adnan H; Hopkins, L Nelson; Meng, Hui

    2008-08-01

    The aim of this study is to identify image-based morphological parameters that correlate with human intracranial aneurysm (IA) rupture. For 45 patients with terminal or sidewall saccular IAs (25 unruptured, 20 ruptured), three-dimensional geometries were evaluated for a range of morphological parameters. In addition to five previously studied parameters (aspect ratio, aneurysm size, ellipticity index, nonsphericity index, and undulation index), we defined three novel parameters incorporating the parent vessel geometry (vessel angle, aneurysm [inclination] angle, and [aneurysm-to-vessel] size ratio) and explored their correlation with aneurysm rupture. Parameters were analyzed with a two-tailed independent Student's t test for significance; significant parameters (P < 0.05) were further examined by multivariate logistic regression analysis. Additionally, receiver operating characteristic analyses were performed on each parameter. Statistically significant differences were found between mean values in ruptured and unruptured groups for size ratio, undulation index, nonsphericity index, ellipticity index, aneurysm angle, and aspect ratio. Logistic regression analysis further revealed that size ratio (odds ratio, 1.41; 95% confidence interval, 1.03-1.92) and undulation index (odds ratio, 1.51; 95% confidence interval, 1.08-2.11) had the strongest independent correlation with ruptured IA. From the receiver operating characteristic analysis, size ratio and aneurysm angle had the highest area under the curve values of 0.83 and 0.85, respectively. Size ratio and aneurysm angle are promising new morphological metrics for IA rupture risk assessment. Because these parameters account for vessel geometry, they may bridge the gap between morphological studies and more qualitative location-based studies.

  4. Parameter dimensionality reduction of a conceptual model for streamflow prediction in Canadian, snowmelt dominated ungauged basins

    NASA Astrophysics Data System (ADS)

    Arsenault, Richard; Poissant, Dominique; Brissette, François

    2015-11-01

    This paper evaluated the effects of parametric reduction of a hydrological model on five regionalization methods and 267 catchments in the province of Quebec, Canada. The Sobol' variance-based sensitivity analysis was used to rank the model parameters by their influence on the model results and sequential parameter fixing was performed. The reduction in parameter correlations improved parameter identifiability, however this improvement was found to be minimal and was not transposed in the regionalization mode. It was shown that 11 of the HSAMI models' 23 parameters could be fixed with little or no loss in regionalization skill. The main conclusions were that (1) the conceptual lumped models used in this study did not represent physical processes sufficiently well to warrant parameter reduction for physics-based regionalization methods for the Canadian basins examined and (2) catchment descriptors did not adequately represent the relevant hydrological processes, namely snow accumulation and melt.

  5. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less

  6. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    DOE PAGES

    Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare; ...

    2016-04-01

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less

  7. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, Jorge R.; Urban, Nathan M.; Hunke, Elizabeth C.; Turner, Adrian K.; Jeffery, Nicole

    2016-04-01

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. It is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.

  8. Damage detection in rotating machinery by means of entropy-based parameters

    NASA Astrophysics Data System (ADS)

    Tocarciuc, Alexandru; Bereteu, Liviu; ǎgǎnescu, Gheorghe Eugen, Dr

    2014-11-01

    The paper is proposing two new entropy-based parameters, namely Renyi Entropy Index (REI) and Sharma-Mittal Entropy Index (SMEI), for detecting the presence of failures (or damages) in rotating machinery, namely: belt structural damage, belt wheels misalignment, failure of the fixing bolt of the machine to its baseplate and eccentricities (i.e.: due to detaching a small piece of material or bad mounting of the rotating components of the machine). The algorithms to obtain the proposed entropy-based parameters are described and test data is used in order to assess their sensitivity. A vibration test bench is used for measuring the levels of vibration while artificially inducing damage. The deviation of the two entropy-based parameters is compared in two states of the vibration test bench: not damaged and damaged. At the end of the study, their sensitivity is compared to Shannon Entropic Index.

  9. Aggregation Pheromone System: A Real-parameter Optimization Algorithm using Aggregation Pheromones as the Base Metaphor

    NASA Astrophysics Data System (ADS)

    Tsutsui, Shigeyosi

    This paper proposes an aggregation pheromone system (APS) for solving real-parameter optimization problems using the collective behavior of individuals which communicate using aggregation pheromones. APS was tested on several test functions used in evolutionary computation. The results showed APS could solve real-parameter optimization problems fairly well. The sensitivity analysis of control parameters of APS is also studied.

  10. Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Lähivaara, Timo; Kärkkäinen, Leo; Huttunen, Janne M. J.; Hesthaven, Jan S.

    2018-02-01

    We study the feasibility of data based machine learning applied to ultrasound tomography to estimate water-saturated porous material parameters. In this work, the data to train the neural networks is simulated by solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, we consider a high-order discontinuous Galerkin method while deep convolutional neural networks are used to solve the parameter estimation problem. In the numerical experiment, we estimate the material porosity and tortuosity while the remaining parameters which are of less interest are successfully marginalized in the neural networks-based inversion. Computational examples confirms the feasibility and accuracy of this approach.

  11. Assessment of Differential Item Functioning in Testlet-Based Items Using the Rasch Testlet Model

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Wilson, Mark

    2005-01-01

    This study presents a procedure for detecting differential item functioning (DIF) for dichotomous and polytomous items in testlet-based tests, whereby DIF is taken into account by adding DIF parameters into the Rasch testlet model. Simulations were conducted to assess recovery of the DIF and other parameters. Two independent variables, test type…

  12. Comparison of Pixel-Based and Object-Based Classification Using Parameters and Non-Parameters Approach for the Pattern Consistency of Multi Scale Landcover

    NASA Astrophysics Data System (ADS)

    Juniati, E.; Arrofiqoh, E. N.

    2017-09-01

    Information extraction from remote sensing data especially land cover can be obtained by digital classification. In practical some people are more comfortable using visual interpretation to retrieve land cover information. However, it is highly influenced by subjectivity and knowledge of interpreter, also takes time in the process. Digital classification can be done in several ways, depend on the defined mapping approach and assumptions on data distribution. The study compared several classifiers method for some data type at the same location. The data used Landsat 8 satellite imagery, SPOT 6 and Orthophotos. In practical, the data used to produce land cover map in 1:50,000 map scale for Landsat, 1:25,000 map scale for SPOT and 1:5,000 map scale for Orthophotos, but using visual interpretation to retrieve information. Maximum likelihood Classifiers (MLC) which use pixel-based and parameters approach applied to such data, and also Artificial Neural Network classifiers which use pixel-based and non-parameters approach applied too. Moreover, this study applied object-based classifiers to the data. The classification system implemented is land cover classification on Indonesia topographic map. The classification applied to data source, which is expected to recognize the pattern and to assess consistency of the land cover map produced by each data. Furthermore, the study analyse benefits and limitations the use of methods.

  13. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to urbanization, and the results show urbanization has big impact on the watershed flood responses. The peak flow increased a few times after urbanization which is much higher than previous reports.

  14. Measurements of Cuspal Slope Inclination Angles in Palaeoanthropological Applications

    NASA Astrophysics Data System (ADS)

    Gaboutchian, A. V.; Knyaz, V. A.; Leybova, N. A.

    2017-05-01

    Tooth crown morphological features, studied in palaeoanthropology, provide valuable information about human evolution and development of civilization. Tooth crown morphology represents biological and historical data of high taxonomical value as it characterizes genetically conditioned tooth relief features averse to substantial changes under environmental factors during lifetime. Palaeoanthropological studies are still based mainly on descriptive techniques and manual measurements of limited number of morphological parameters. Feature evaluation and measurement result analysis are expert-based. Development of new methods and techniques in 3D imaging creates a background provides for better value of palaeoanthropological data processing, analysis and distribution. The goals of the presented research are to propose new features for automated odontometry and to explore their applicability to paleoanthropological studies. A technique for automated measuring of given morphological tooth parameters needed for anthropological study is developed. It is based on using original photogrammetric system as a teeth 3D models acquisition device and on a set of algorithms for given tooth parameters estimation.

  15. A Review on Investigation and Assessment of Path Loss Models in Urban and Rural Environment

    NASA Astrophysics Data System (ADS)

    Maurya, G. R.; Kokate, P. A.; Lokhande, S. K.; Shrawankar, J. A.

    2017-08-01

    This paper aims at providing a clear knowledge of Path Loss (PL) to the researcher. The important data have been extracted from the papers and mentioned in clear and precise manner. The limited studies were based on identification of PL due to FM frequency. Majority of studies based on identification of PL considering telephonic frequency as a source. In this paper the PL in urban and rural areas of different places due to various factors like buildings, trees, antenna height, forest etc. have been studied. The common parameters like frequency, model and location based studies were done. The studies were segregated based on various parameters in tabular format and they were compared based on frequency, location and best fit model in that table. Scatter chart was drawn in order to make the things clearer and more understandable. However, location specific PL models are required to investigate the RF propagation in identified terrain.

  16. Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area

    NASA Astrophysics Data System (ADS)

    Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei

    2018-03-01

    Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.

  17. Fractal Analysis and Hurst Parameter for Intrapartum Fetal Heart Rate Variability Analysis: A Versatile Alternative to Frequency Bands and LF/HF Ratio

    PubMed Central

    Doret, Muriel; Spilka, Jiří; Chudáček, Václav; Gonçalves, Paulo; Abry, Patrice

    2015-01-01

    Background The fetal heart rate (FHR) is commonly monitored during labor to detect early fetal acidosis. FHR variability is traditionally investigated using Fourier transform, often with adult predefined frequency band powers and the corresponding LF/HF ratio. However, fetal conditions differ from adults and modify spectrum repartition along frequencies. Aims This study questions the arbitrariness definition and relevance of the frequency band splitting procedure, and thus of the calculation of the underlying LF/HF ratio, as efficient tools for characterizing intrapartum FHR variability. Study Design The last 30 minutes before delivery of the intrapartum FHR were analyzed. Subjects Case-control study. A total of 45 singletons divided into two groups based on umbilical cord arterial pH: the Index group with pH ≤ 7.05 (n = 15) and Control group with pH > 7.05 (n = 30). Outcome Measures Frequency band-based LF/HF ratio and Hurst parameter. Results This study shows that the intrapartum FHR is characterized by fractal temporal dynamics and promotes the Hurst parameter as a potential marker of fetal acidosis. This parameter preserves the intuition of a power frequency balance, while avoiding the frequency band splitting procedure and thus the arbitrary choice of a frequency separating bands. The study also shows that extending the frequency range covered by the adult-based bands to higher and lower frequencies permits the Hurst parameter to achieve better performance for identifying fetal acidosis. Conclusions The Hurst parameter provides a robust and versatile tool for quantifying FHR variability, yields better acidosis detection performance compared to the LF/HF ratio, and avoids arbitrariness in spectral band splitting and definitions. PMID:26322889

  18. A comparison between conventional and LANDSAT based hydrologic modeling: The Four Mile Run case study

    NASA Technical Reports Server (NTRS)

    Ragan, R. M.; Jackson, T. J.; Fitch, W. N.; Shubinski, R. P.

    1976-01-01

    Models designed to support the hydrologic studies associated with urban water resources planning require input parameters that are defined in terms of land cover. Estimating the land cover is a difficult and expensive task when drainage areas larger than a few sq. km are involved. Conventional and LANDSAT based methods for estimating the land cover based input parameters required by hydrologic planning models were compared in a case study of the 50.5 sq. km (19.5 sq. mi) Four Mile Run Watershed in Virginia. Results of the study indicate that the LANDSAT based approach is highly cost effective for planning model studies. The conventional approach to define inputs was based on 1:3600 aerial photos, required 110 man-days and a total cost of $14,000. The LANDSAT based approach required 6.9 man-days and cost $2,350. The conventional and LANDSAT based models gave similar results relative to discharges and estimated annual damages expected from no flood control, channelization, and detention storage alternatives.

  19. Improving hot region prediction by parameter optimization of density clustering in PPI.

    PubMed

    Hu, Jing; Zhang, Xiaolong

    2016-11-01

    This paper proposed an optimized algorithm which combines density clustering of parameter selection with feature-based classification for hot region prediction. First, all the residues are classified by SVM to remove non-hot spot residues, then density clustering of parameter selection is used to find hot regions. In the density clustering, this paper studies how to select input parameters. There are two parameters radius and density in density-based incremental clustering. We firstly fix density and enumerate radius to find a pair of parameters which leads to maximum number of clusters, and then we fix radius and enumerate density to find another pair of parameters which leads to maximum number of clusters. Experiment results show that the proposed method using both two pairs of parameters provides better prediction performance than the other method, and compare these two predictive results, the result by fixing radius and enumerating density have slightly higher prediction accuracy than that by fixing density and enumerating radius. Copyright © 2016. Published by Elsevier Inc.

  20. Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model

    NASA Astrophysics Data System (ADS)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2014-02-01

    Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can be successfully applied to process-based models of high complexity. The methodology is particularly suitable for heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models.

  1. Performance of conversion efficiency of a crystalline silicon solar cell with base doping density

    NASA Astrophysics Data System (ADS)

    Sahin, Gokhan; Kerimli, Genber; Barro, Fabe Idrissa; Sane, Moustapha; Alma, Mehmet Hakkı

    In this study, we investigate theoretically the electrical parameters of a crystalline silicon solar cell in steady state. Based on a one-dimensional modeling of the cell, the short circuit current density, the open circuit voltage, the shunt and series resistances and the conversion efficiency are calculated, taking into account the base doping density. Either the I-V characteristic, series resistance, shunt resistance and conversion efficiency are determined and studied versus base doping density. The effects applied of base doping density on these parameters have been studied. The aim of this work is to show how short circuit current density, open circuit voltage and parasitic resistances are related to the base doping density and to exhibit the role played by those parasitic resistances on the conversion efficiency of the crystalline silicon solar.

  2. ASCAL: A Microcomputer Program for Estimating Logistic IRT Item Parameters.

    ERIC Educational Resources Information Center

    Vale, C. David; Gialluca, Kathleen A.

    ASCAL is a microcomputer-based program for calibrating items according to the three-parameter logistic model of item response theory. It uses a modified multivariate Newton-Raphson procedure for estimating item parameters. This study evaluated this procedure using Monte Carlo Simulation Techniques. The current version of ASCAL was then compared to…

  3. Real-time parameter optimization based on neural network for smart injection molding

    NASA Astrophysics Data System (ADS)

    Lee, H.; Liau, Y.; Ryu, K.

    2018-03-01

    The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.

  4. Effects of Various Architectural Parameters on Six Room Acoustical Measures in Auditoria.

    NASA Astrophysics Data System (ADS)

    Chiang, Wei-Hwa

    The effects of architectural parameters on six room acoustical measures were investigated by means of correlation analyses, factor analyses and multiple regression analyses based on data taken in twenty halls. Architectural parameters were used to estimate acoustical measures taken at individual locations within each room as well as the averages and standard deviations of all measured values in the rooms. The six acoustical measures were Early Decay Time (EDT10), Clarity Index (C80), Overall Level (G), Bass Ratio based on Early Decay Time (BR(EDT)), Treble Ratio based on Early Decay Time (TR(EDT)), and Early Inter-aural Cross Correlation (IACC80). A comprehensive method of quantifying various architectural characteristics of rooms was developed to define a large number of architectural parameters that were hypothesized to effect the acoustical measurements made in the rooms. This study quantitatively confirmed many of the principles used in the design of concert halls and auditoria. Three groups of room architectural parameters such as the parameters associated with the depth of diffusing surfaces were significantly correlated with the hall standard deviations of most of the acoustical measures. Significant differences of statistical relations among architectural parameters and receiver specific acoustical measures were found between a group of music halls and a group of lecture halls. For example, architectural parameters such as the relative distance from the receiver to the overhead ceiling increased the percentage of the variance of acoustical measures that was explained by Barron's revised theory from approximately 70% to 80% only when data were taken in the group of music halls. This study revealed the major architectural parameters which have strong relations with individual acoustical measures forming the basis for a more quantitative method for advancing the theoretical design of concert halls and other auditoria. The results of this study provide designers the information to predict acoustical measures in buildings at very early stages of the design process without using computer models or scale models.

  5. Relative Leukocyte Telomere Length, Hematological Parameters and Anemia - Data from the Berlin Aging Study II (BASE-II).

    PubMed

    Meyer, Antje; Salewsky, Bastian; Buchmann, Nikolaus; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja

    2016-01-01

    The length of the chromosome ends, telomeres, is widely accepted as a biomarker of aging. However, the dynamic of the relationship between telomere length and hematopoietic parameters in the normal aging process, which is of particular interest with respect to age-related anemia, is not well understood. We have analyzed the relationship between relative leukocyte telomere length (rLTL) and several hematological parameters in the older group of the Berlin Aging Study II (BASE-II) participants. This paper also compares rLTL between both BASE-II age groups (22-37 and 60-83 years). Genomic DNA was extracted from peripheral blood leukocytes of BASE-II participants and used to determine rLTL by a quantitative PCR protocol. Standard methods were used to determine blood parameters, and the WHO criteria were used to identify anemic participants. Telomere length data were available for 444 younger participants (28.4 ± 3.1 years old; 52% women) and 1,460 older participants (68.2 ± 3.7 years old; 49.4% women). rLTL was significantly shorter in BASE-II participants of the older group (p = 3.7 × 10-12) and in women (p = 4.2 × 10-31). rLTL of older men exhibited a statistically significant, positive partial correlation with mean corpuscular hemoglobin (MCH; p = 0.012) and MCH concentration (p = 0.002). While these correlations were only observed in men, the rLTL of older women was negatively correlated with the number of thrombocytes (p = 0.015) in the same type of analysis. Among all older participants, 6% met the criteria to be categorized as 'anemic'; however, there was no association between anemia and rLTL. In the present study, we have detected isolated correlations between rLTL and hematological parameters; however, in all cases, rLTL explained only a small part of the variation of the analyzed parameters. In disagreement with some other studies showing similar data, we interpret the association between rLTL and some of the hematological parameters studied here to be at most marginal. This applies also to the role of rLTL in anemia, at least in the age group investigated here. Since BASE-II is yet another large cohort in which women have on average shorter telomeres than men, this finding will be addressed in the discussion with respect to the ongoing debate on gender differences in telomere length. © 2016 S. Karger AG, Basel.

  6. LTPP Computed Parameter: Moisture Content

    DOT National Transportation Integrated Search

    2008-01-01

    A study was conducted to compute in situ soil parameters based on time domain reflectometry (TDR) traces obtained from Long Term Pavement Performance (LTPP) test sections instrumented for the seasonal monitoring program (SMP). Ten TDR sensors were in...

  7. Groundwater Evapotranspiration from Diurnal Water Table Fluctuation: a Modified White Based Method Using Drainable and Fillable Porosity

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Mylavarapu, R.; Jawitz, J. W.

    2012-12-01

    In shallow unconfined aquifers, the water table usually shows a distinct diurnal fluctuation pattern corresponding to the twenty-four hour solar radiation cycle. This diurnal water table fluctuation (DWTF) signal can be used to estimate the groundwater evapotranspiration (ETg) by vegetation, a method known as the White [1932] method. Water table fluctuations in shallow phreatic aquifers is controlled by two distinct storage parameters, drainable porosity (or specific yield) and the fillable porosity. Yet, it is implicitly assumed in most studies that these two parameters are equal, unless hysteresis effect is considered. The White based method available in the literature is also based on a single drainable porosity parameter to estimate the ETg. In this study, we present a modification of the White based method to estimate ETg from DWTF using separate drainable (λd) and fillable porosity (λf) parameters. Separate analytical expressions based on successive steady state moisture profiles are used to estimate λd and λf, instead of the commonly employed hydrostatic moisture profile approach. The modified method is then applied to estimate ETg using the DWTF data observed in a field in northeast Florida and the results are compared with ET estimations from the standard Penman-Monteith equation. It is found that the modified method resulted in significantly better estimates of ETg than the previously available method that used only a single, hydrostatic-moisture-profile based λd. Furthermore, the modified method is also used to estimate ETg even during rainfall events which produced significantly better estimates of ETg as compared to the single λd parameter method.

  8. Computerized Classification Testing under the One-Parameter Logistic Response Model with Ability-Based Guessing

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Huang, Sheng-Yun

    2011-01-01

    The one-parameter logistic model with ability-based guessing (1PL-AG) has been recently developed to account for effect of ability on guessing behavior in multiple-choice items. In this study, the authors developed algorithms for computerized classification testing under the 1PL-AG and conducted a series of simulations to evaluate their…

  9. Improved model reduction and tuning of fractional-order PI(λ)D(μ) controllers for analytical rule extraction with genetic programming.

    PubMed

    Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava

    2012-03-01

    Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

    PubMed Central

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-01

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. PMID:26805819

  11. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    PubMed

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  12. Automatic classification of protein structures using physicochemical parameters.

    PubMed

    Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam

    2014-09-01

    Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.

  13. Superinsulating Polyisocyanate Based Aerogels: A Targeted Search for the Optimum Solvent System.

    PubMed

    Zhu, Zhiyuan; Snellings, Geert M B F; Koebel, Matthias M; Malfait, Wim J

    2017-05-31

    Polyisocyanate based aerogels combine ultralow thermal conductivities with better mechanical properties than silica aerogel, but these properties critically depend on the nature of the gelation solvent, perhaps more so than on any other parameter. Here, we present a systematic study of the relationship between the polyurethane-polyisocyanurate (PUR-PIR) aerogel microstructure, surface area, thermal conductivity, and density and the gelation solvent's Hansen solubility parameters for an industrially relevant PUR-PIR rigid foam formulation. We first investigated aerogels prepared in acetone-dimethyl sulfoxide (DMSO) blends and observed a minimum in thermal conductivity (λ) and maximum in specific surface area for an acetone:DMSO ratio of 85:15 v/v. We then prepared PUR-PIR aerogels in 32 different solvent blends, divided into three series with δ Dispersion , δ Polarity , and δ H-bonding fixed at 15.94, 11.30, and 7.48 MPa 1/2 , respectively, corresponding to the optimum parameters for the acetone:DMSO series. The aerogel properties display distinct dependencies on the various solubility parameters: aerogels with low thermal conductivity can be synthesized in solvents with a high δ H-bonding parameter (above 7.2) and δ Dispersion around 16.3 MPa 1/2 . In contrast, the δ Polarity parameter is of lesser importance. Our study highlights the importance of the gelation solvent, clarifies the influence of the different solvent properties, and provides a methodology for a targeted search across the solvent chemical space based on the Hansen solubility parameters.

  14. Temporal gravity field modeling based on least square collocation with short-arc approach

    NASA Astrophysics Data System (ADS)

    ran, jiangjun; Zhong, Min; Xu, Houze; Liu, Chengshu; Tangdamrongsub, Natthachet

    2014-05-01

    After the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002, several research centers have attempted to produce the finest gravity model based on different approaches. In this study, we present an alternative approach to derive the Earth's gravity field, and two main objectives are discussed. Firstly, we seek the optimal method to estimate the accelerometer parameters, and secondly, we intend to recover the monthly gravity model based on least square collocation method. The method has been paid less attention compared to the least square adjustment method because of the massive computational resource's requirement. The positions of twin satellites are treated as pseudo-observations and unknown parameters at the same time. The variance covariance matrices of the pseudo-observations and the unknown parameters are valuable information to improve the accuracy of the estimated gravity solutions. Our analyses showed that introducing a drift parameter as an additional accelerometer parameter, compared to using only a bias parameter, leads to a significant improvement of our estimated monthly gravity field. The gravity errors outside the continents are significantly reduced based on the selected set of the accelerometer parameters. We introduced the improved gravity model namely the second version of Institute of Geodesy and Geophysics, Chinese Academy of Sciences (IGG-CAS 02). The accuracy of IGG-CAS 02 model is comparable to the gravity solutions computed from the Geoforschungszentrum (GFZ), the Center for Space Research (CSR) and the NASA Jet Propulsion Laboratory (JPL). In term of the equivalent water height, the correlation coefficients over the study regions (the Yangtze River valley, the Sahara desert, and the Amazon) among four gravity models are greater than 0.80.

  15. Improving the Terrain-Based Parameter for the Assessment of Snow Redistribution in the Col du Lac Blanc Area and Comparisons with TLS Snow Depth Data

    NASA Astrophysics Data System (ADS)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Nishimura, Kouichi; Vionnet, Vincent; Guyomarc'h, Gilbert

    2014-05-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns, but has failed to quantitatively describe the snow redistribution, and correlations with measured snow heights were poor. The objective of our research was to a) identify the sources of poor correlations between predicted and measured snow re-distribution and b) improve the parameters ability to qualitatively and quantitatively describe snow redistribution in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its constant wind direction and the availability of data from a meteorological station. Our work focused on areas with terrain edges of approximately 10 m height, and we worked with 1-2 m resolution digital terrain and snow surface data. We first compared the results of the terrain-based parameter calculations to measured snow-depths, obtained by high-accuracy terrestrial laser scan measurements. The results were similar to previous studies: The parameter was able to reproduce observed patterns in snow distribution, but regression analyses showed poor correlations between terrain-based parameter and measured snow-depths. We demonstrate how the correlations between measured and calculated snow heights improve if the parameter is calculated based on a snow surface model instead of a digital terrain model. We show how changing the parameter's search distance and how raster re-sampling and raster smoothing improve the results. To improve the parameter's quantitative abilities, we modified the parameter, based on the comparisons with TLS data and the terrain and wind conditions specific to the research site. The modification is in a linear form f(x) = a * Sx, where a is a newly introduced parameter; f(x) yields the estimates for the snow height. We found that the parameter depends on the time period between the compared snow surfaces and the intensity of drifting snow events, which are linked to wind velocities. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter a. We could improve the parameters' correlations with measured snow heights and its ability to quantitatively describe snow distribution in the Col du Lac Blanc area. We believe that our work is also a prerequisite to further improve the parameter's ability to describe snow redistribution.

  16. Combined state and parameter identification of nonlinear structural dynamical systems based on Rao-Blackwellization and Markov chain Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Abhinav, S.; Manohar, C. S.

    2018-03-01

    The problem of combined state and parameter estimation in nonlinear state space models, based on Bayesian filtering methods, is considered. A novel approach, which combines Rao-Blackwellized particle filters for state estimation with Markov chain Monte Carlo (MCMC) simulations for parameter identification, is proposed. In order to ensure successful performance of the MCMC samplers, in situations involving large amount of dynamic measurement data and (or) low measurement noise, the study employs a modified measurement model combined with an importance sampling based correction. The parameters of the process noise covariance matrix are also included as quantities to be identified. The study employs the Rao-Blackwellization step at two stages: one, associated with the state estimation problem in the particle filtering step, and, secondly, in the evaluation of the ratio of likelihoods in the MCMC run. The satisfactory performance of the proposed method is illustrated on three dynamical systems: (a) a computational model of a nonlinear beam-moving oscillator system, (b) a laboratory scale beam traversed by a loaded trolley, and (c) an earthquake shake table study on a bending-torsion coupled nonlinear frame subjected to uniaxial support motion.

  17. Suspension parameter estimation in the frequency domain using a matrix inversion approach

    NASA Astrophysics Data System (ADS)

    Thite, A. N.; Banvidi, S.; Ibicek, T.; Bennett, L.

    2011-12-01

    The dynamic lumped parameter models used to optimise the ride and handling of a vehicle require base values of the suspension parameters. These parameters are generally experimentally identified. The accuracy of identified parameters can depend on the measurement noise and the validity of the model used. The existing publications on suspension parameter identification are generally based on the time domain and use a limited degree of freedom. Further, the data used are either from a simulated 'experiment' or from a laboratory test on an idealised quarter or a half-car model. In this paper, a method is developed in the frequency domain which effectively accounts for the measurement noise. Additional dynamic constraining equations are incorporated and the proposed formulation results in a matrix inversion approach. The nonlinearities in damping are estimated, however, using a time-domain approach. Full-scale 4-post rig test data of a vehicle are used. The variations in the results are discussed using the modal resonant behaviour. Further, a method is implemented to show how the results can be improved when the matrix inverted is ill-conditioned. The case study shows a good agreement between the estimates based on the proposed frequency-domain approach and measurable physical parameters.

  18. Impacts of different types of measurements on estimating unsaturated flow parameters

    NASA Astrophysics Data System (ADS)

    Shi, Liangsheng; Song, Xuehang; Tong, Juxiu; Zhu, Yan; Zhang, Qiuru

    2015-05-01

    This paper assesses the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.

  19. a Region-Based Multi-Scale Approach for Object-Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Kavzoglu, T.; Yildiz Erdemir, M.; Tonbul, H.

    2016-06-01

    Within the last two decades, object-based image analysis (OBIA) considering objects (i.e. groups of pixels) instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights) to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC) graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse) determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient). Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.

  20. Performance comparison of first-order conditional estimation with interaction and Bayesian estimation methods for estimating the population parameters and its distribution from data sets with a low number of subjects.

    PubMed

    Pradhan, Sudeep; Song, Byungjeong; Lee, Jaeyeon; Chae, Jung-Woo; Kim, Kyung Im; Back, Hyun-Moon; Han, Nayoung; Kwon, Kwang-Il; Yun, Hwi-Yeol

    2017-12-01

    Exploratory preclinical, as well as clinical trials, may involve a small number of patients, making it difficult to calculate and analyze the pharmacokinetic (PK) parameters, especially if the PK parameters show very high inter-individual variability (IIV). In this study, the performance of a classical first-order conditional estimation with interaction (FOCE-I) and expectation maximization (EM)-based Markov chain Monte Carlo Bayesian (BAYES) estimation methods were compared for estimating the population parameters and its distribution from data sets having a low number of subjects. In this study, 100 data sets were simulated with eight sampling points for each subject and with six different levels of IIV (5%, 10%, 20%, 30%, 50%, and 80%) in their PK parameter distribution. A stochastic simulation and estimation (SSE) study was performed to simultaneously simulate data sets and estimate the parameters using four different methods: FOCE-I only, BAYES(C) (FOCE-I and BAYES composite method), BAYES(F) (BAYES with all true initial parameters and fixed ω 2 ), and BAYES only. Relative root mean squared error (rRMSE) and relative estimation error (REE) were used to analyze the differences between true and estimated values. A case study was performed with a clinical data of theophylline available in NONMEM distribution media. NONMEM software assisted by Pirana, PsN, and Xpose was used to estimate population PK parameters, and R program was used to analyze and plot the results. The rRMSE and REE values of all parameter (fixed effect and random effect) estimates showed that all four methods performed equally at the lower IIV levels, while the FOCE-I method performed better than other EM-based methods at higher IIV levels (greater than 30%). In general, estimates of random-effect parameters showed significant bias and imprecision, irrespective of the estimation method used and the level of IIV. Similar performance of the estimation methods was observed with theophylline dataset. The classical FOCE-I method appeared to estimate the PK parameters more reliably than the BAYES method when using a simple model and data containing only a few subjects. EM-based estimation methods can be considered for adapting to the specific needs of a modeling project at later steps of modeling.

  1. Uncertainty Quantification and Sensitivity Analysis in the CICE v5.1 Sea Ice Model

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, J. R.; Urban, N. M.

    2015-12-01

    Changes in the high latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with mid latitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. In this work we characterize parametric uncertainty in Los Alamos Sea Ice model (CICE) and quantify the sensitivity of sea ice area, extent and volume with respect to uncertainty in about 40 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one-at-a-time, this study uses a global variance-based approach in which Sobol sequences are used to efficiently sample the full 40-dimensional parameter space. This approach requires a very large number of model evaluations, which are expensive to run. A more computationally efficient approach is implemented by training and cross-validating a surrogate (emulator) of the sea ice model with model output from 400 model runs. The emulator is used to make predictions of sea ice extent, area, and volume at several model configurations, which are then used to compute the Sobol sensitivity indices of the 40 parameters. A ranking based on the sensitivity indices indicates that model output is most sensitive to snow parameters such as conductivity and grain size, and the drainage of melt ponds. The main effects and interactions among the most influential parameters are also estimated by a non-parametric regression technique based on generalized additive models. It is recommended research to be prioritized towards more accurately determining these most influential parameters values by observational studies or by improving existing parameterizations in the sea ice model.

  2. Determining fundamental properties of matter created in ultrarelativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Novak, J.; Novak, K.; Pratt, S.; Vredevoogd, J.; Coleman-Smith, C. E.; Wolpert, R. L.

    2014-03-01

    Posterior distributions for physical parameters describing relativistic heavy-ion collisions, such as the viscosity of the quark-gluon plasma, are extracted through a comparison of hydrodynamic-based transport models to experimental results from 100AGeV+100AGeV Au +Au collisions at the Relativistic Heavy Ion Collider. By simultaneously varying six parameters and by evaluating several classes of observables, we are able to explore the complex intertwined dependencies of observables on model parameters. The methods provide a full multidimensional posterior distribution for the model output, including a range of acceptable values for each parameter, and reveal correlations between them. The breadth of observables and the number of parameters considered here go beyond previous studies in this field. The statistical tools, which are based upon Gaussian process emulators, are tested in detail and should be extendable to larger data sets and a higher number of parameters.

  3. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  4. Quantification of tumor perfusion using dynamic contrast-enhanced ultrasound: impact of mathematical modeling

    NASA Astrophysics Data System (ADS)

    Doury, Maxime; Dizeux, Alexandre; de Cesare, Alain; Lucidarme, Olivier; Pellot-Barakat, Claire; Bridal, S. Lori; Frouin, Frédérique

    2017-02-01

    Dynamic contrast-enhanced ultrasound has been proposed to monitor tumor therapy, as a complement to volume measurements. To assess the variability of perfusion parameters in ideal conditions, four consecutive test-retest studies were acquired in a mouse tumor model, using controlled injections. The impact of mathematical modeling on parameter variability was then investigated. Coefficients of variation (CV) of tissue blood volume (BV) and tissue blood flow (BF) based-parameters were estimated inside 32 sub-regions of the tumors, comparing the log-normal (LN) model with a one-compartment model fed by an arterial input function (AIF) and improved by the introduction of a time delay parameter. Relative perfusion parameters were also estimated by normalization of the LN parameters and normalization of the one-compartment parameters estimated with the AIF, using a reference tissue (RT) region. A direct estimation (rRTd) of relative parameters, based on the one-compartment model without using the AIF, was also obtained by using the kinetics inside the RT region. Results of test-retest studies show that absolute regional parameters have high CV, whatever the approach, with median values of about 30% for BV, and 40% for BF. The positive impact of normalization was established, showing a coherent estimation of relative parameters, with reduced CV (about 20% for BV and 30% for BF using the rRTd approach). These values were significantly lower (p  <  0.05) than the CV of absolute parameters. The rRTd approach provided the smallest CV and should be preferred for estimating relative perfusion parameters.

  5. Effect of Fault Parameter Uncertainties on PSHA explored by Monte Carlo Simulations: A case study for southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Akinci, A.; Pace, B.

    2017-12-01

    In this study, we discuss the seismic hazard variability of peak ground acceleration (PGA) at 475 years return period in the Southern Apennines of Italy. The uncertainty and parametric sensitivity are presented to quantify the impact of the several fault parameters on ground motion predictions for 10% exceedance in 50-year hazard. A time-independent PSHA model is constructed based on the long-term recurrence behavior of seismogenic faults adopting the characteristic earthquake model for those sources capable of rupturing the entire fault segment with a single maximum magnitude. The fault-based source model uses the dimensions and slip rates of mapped fault to develop magnitude-frequency estimates for characteristic earthquakes. Variability of the selected fault parameter is given with a truncated normal random variable distribution presented by standard deviation about a mean value. A Monte Carlo approach, based on the random balanced sampling by logic tree, is used in order to capture the uncertainty in seismic hazard calculations. For generating both uncertainty and sensitivity maps, we perform 200 simulations for each of the fault parameters. The results are synthesized both in frequency-magnitude distribution of modeled faults as well as the different maps: the overall uncertainty maps provide a confidence interval for the PGA values and the parameter uncertainty maps determine the sensitivity of hazard assessment to variability of every logic tree branch. These branches of logic tree, analyzed through the Monte Carlo approach, are maximum magnitudes, fault length, fault width, fault dip and slip rates. The overall variability of these parameters is determined by varying them simultaneously in the hazard calculations while the sensitivity of each parameter to overall variability is determined varying each of the fault parameters while fixing others. However, in this study we do not investigate the sensitivity of mean hazard results to the consideration of different GMPEs. Distribution of possible seismic hazard results is illustrated by 95% confidence factor map, which indicates the dispersion about mean value, and coefficient of variation map, which shows percent variability. The results of our study clearly illustrate the influence of active fault parameters to probabilistic seismic hazard maps.

  6. Item Parameter Estimation for the MIRT Model: Bias and Precision of Confirmatory Factor Analysis-Based Models

    ERIC Educational Resources Information Center

    Finch, Holmes

    2010-01-01

    The accuracy of item parameter estimates in the multidimensional item response theory (MIRT) model context is one that has not been researched in great detail. This study examines the ability of two confirmatory factor analysis models specifically for dichotomous data to properly estimate item parameters using common formulae for converting factor…

  7. Determination of parameters of a new method for predicting alloy properties

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1992-01-01

    Recently, a semiempirical method for alloys based on equivalent crystal theory was introduced. The method successfully predicts the concentration dependence of the heat of formation and lattice parameter of binary alloys. A study of the parameters of the method is presented, along with new results for (gamma)Fe-Pd and (gamma)Fe-Ni alloys.

  8. Suggestions for CAP-TSD mesh and time-step input parameters

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R.

    1991-01-01

    Suggestions for some of the input parameters used in the CAP-TSD (Computational Aeroelasticity Program-Transonic Small Disturbance) computer code are presented. These parameters include those associated with the mesh design and time step. The guidelines are based principally on experience with a one-dimensional model problem used to study wave propagation in the vertical direction.

  9. Parameter optimization, sensitivity, and uncertainty analysis of an ecosystem model at a forest flux tower site in the United States

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Huang, Zhihong; Yan, Wende

    2014-01-01

    Ecosystem models are useful tools for understanding ecological processes and for sustainable management of resources. In biogeochemical field, numerical models have been widely used for investigating carbon dynamics under global changes from site to regional and global scales. However, it is still challenging to optimize parameters and estimate parameterization uncertainty for complex process-based models such as the Erosion Deposition Carbon Model (EDCM), a modified version of CENTURY, that consider carbon, water, and nutrient cycles of ecosystems. This study was designed to conduct the parameter identifiability, optimization, sensitivity, and uncertainty analysis of EDCM using our developed EDCM-Auto, which incorporated a comprehensive R package—Flexible Modeling Framework (FME) and the Shuffled Complex Evolution (SCE) algorithm. Using a forest flux tower site as a case study, we implemented a comprehensive modeling analysis involving nine parameters and four target variables (carbon and water fluxes) with their corresponding measurements based on the eddy covariance technique. The local sensitivity analysis shows that the plant production-related parameters (e.g., PPDF1 and PRDX) are most sensitive to the model cost function. Both SCE and FME are comparable and performed well in deriving the optimal parameter set with satisfactory simulations of target variables. Global sensitivity and uncertainty analysis indicate that the parameter uncertainty and the resulting output uncertainty can be quantified, and that the magnitude of parameter-uncertainty effects depends on variables and seasons. This study also demonstrates that using the cutting-edge R functions such as FME can be feasible and attractive for conducting comprehensive parameter analysis for ecosystem modeling.

  10. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution.

    PubMed

    Ding, Yanming; Wang, Changjian; Chaos, Marcos; Chen, Ruiyu; Lu, Shouxiang

    2016-01-01

    The pyrolysis kinetics of a typical biomass energy feedstock, beech, was investigated based on thermogravimetric analysis over a wide heating rate range from 5K/min to 80K/min. A three-component (corresponding to hemicellulose, cellulose and lignin) parallel decomposition reaction scheme was applied to describe the experimental data. The resulting kinetic reaction model was coupled to an evolutionary optimization algorithm (Shuffled Complex Evolution, SCE) to obtain model parameters. To the authors' knowledge, this is the first study in which SCE has been used in the context of thermogravimetry. The kinetic parameters were simultaneously optimized against data for 10, 20 and 60K/min heating rates, providing excellent fits to experimental data. Furthermore, it was shown that the optimized parameters were applicable to heating rates (5 and 80K/min) beyond those used to generate them. Finally, the predicted results based on optimized parameters were contrasted with those based on the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels

    PubMed Central

    2014-01-01

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined. Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production. PMID:25060583

  12. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels.

    PubMed

    Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin

    2014-07-25

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.

  13. Games with fuzzy parameters

    NASA Astrophysics Data System (ADS)

    Messaoud, Deghdak

    2010-11-01

    In this paper, we study the existence of equilibrium in non-cooperative game with fuzzy parameters. We generalize te results of Larbani and Kacher(2008, 2009) in infinite dimentional spaces. The proof is based on the Browder-Fan fixed point theorem.

  14. Determining the accuracy of maximum likelihood parameter estimates with colored residuals

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1994-01-01

    An important part of building high fidelity mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of the accuracy of parameter estimates, the estimates themselves have limited value. In this work, an expression based on theoretical analysis was developed to properly compute parameter accuracy measures for maximum likelihood estimates with colored residuals. This result is important because experience from the analysis of measured data reveals that the residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Simulated data runs were used to show that the parameter accuracy measures computed with this technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for analysis of the output residuals in the frequency domain or heuristically determined multiplication factors. The result is general, although the application studied here is maximum likelihood estimation of aerodynamic model parameters from flight test data.

  15. On the Influence of Material Parameters in a Complex Material Model for Powder Compaction

    NASA Astrophysics Data System (ADS)

    Staf, Hjalmar; Lindskog, Per; Andersson, Daniel C.; Larsson, Per-Lennart

    2016-10-01

    Parameters in a complex material model for powder compaction, based on a continuum mechanics approach, are evaluated using real insert geometries. The parameter sensitivity with respect to density and stress after compaction, pertinent to a wide range of geometries, is studied in order to investigate completeness and limitations of the material model. Finite element simulations with varied material parameters are used to build surrogate models for the sensitivity study. The conclusion from this analysis is that a simplification of the material model is relevant, especially for simple insert geometries. Parameters linked to anisotropy and the plastic strain evolution angle have a small impact on the final result.

  16. Developing a probability-based model of aquifer vulnerability in an agricultural region

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Peng, Yi-Huei

    2013-04-01

    SummaryHydrogeological settings of aquifers strongly influence the regional groundwater movement and pollution processes. Establishing a map of aquifer vulnerability is considerably critical for planning a scheme of groundwater quality protection. This study developed a novel probability-based DRASTIC model of aquifer vulnerability in the Choushui River alluvial fan, Taiwan, using indicator kriging and to determine various risk categories of contamination potentials based on estimated vulnerability indexes. Categories and ratings of six parameters in the probability-based DRASTIC model were probabilistically characterized according to the parameter classification methods of selecting a maximum estimation probability and calculating an expected value. Moreover, the probability-based estimation and assessment gave us an excellent insight into propagating the uncertainty of parameters due to limited observation data. To examine the prediction capacity of pollutants for the developed probability-based DRASTIC model, medium, high, and very high risk categories of contamination potentials were compared with observed nitrate-N exceeding 0.5 mg/L indicating the anthropogenic groundwater pollution. The analyzed results reveal that the developed probability-based DRASTIC model is capable of predicting high nitrate-N groundwater pollution and characterizing the parameter uncertainty via the probability estimation processes.

  17. Systematic methods for the design of a class of fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.

  18. Influence of additive laser manufacturing parameters on surface using density of partially melted particles

    NASA Astrophysics Data System (ADS)

    Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves

    2016-12-01

    Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.

  19. Zn- and Co-based layered double hydroxides: prediction of the a parameter from the fraction of trivalent cations and vice versa

    PubMed Central

    Richardson, Ian G.

    2013-01-01

    A recently proposed method to calculate the a parameter of the unit cell of layered double hydroxides from the fraction of trivalent cations is extended to Zn- and Co-based phases. It is shown to be useful as a sanity test for extant and future structure determinations and computer-simulation studies. PMID:23873067

  20. Dealing with Non-stationarity in Intensity-Frequency-Duration Curve

    NASA Astrophysics Data System (ADS)

    Rengaraju, S.; Rajendran, V.; C T, D.

    2017-12-01

    Extremes like flood and drought are becoming frequent and more vulnerable in recent times, generally attributed to the recent revelation of climate change. One of the main concerns is that whether the present infrastructures like dams, storm water drainage networks, etc., which were designed following the so called `stationary' assumption, are capable of withstanding the expected severe extremes. Stationary assumption considers that extremes are not changing with respect to time. However, recent studies proved that climate change has altered the climate extremes both temporally and spatially. Traditionally, the observed non-stationary in the extreme precipitation is incorporated in the extreme value distributions in terms of changing parameters. Nevertheless, this raises a question which parameter needs to be changed, i.e. location or scale or shape, since either one or more of these parameters vary at a given location. Hence, this study aims to detect the changing parameters to reduce the complexity involved in the development of non-stationary IDF curve and to provide the uncertainty bound of estimated return level using Bayesian Differential Evolutionary Monte Carlo (DE-MC) algorithm. Firstly, the extreme precipitation series is extracted using Peak Over Threshold. Then, the time varying parameter(s) is(are) detected for the extracted series using Generalized Additive Models for Location Scale and Shape (GAMLSS). Then, the IDF curve is constructed using Generalized Pareto Distribution incorporating non-stationarity only if the parameter(s) is(are) changing with respect to time, otherwise IDF curve will follow stationary assumption. Finally, the posterior probability intervals of estimated return revel are computed through Bayesian DE-MC approach and the non-stationary based IDF curve is compared with the stationary based IDF curve. The results of this study emphasize that the time varying parameters also change spatially and the IDF curves should incorporate non-stationarity only if there is change in the parameters, though there may be significant change in the extreme rainfall series. Our results evoke the importance of updating the infrastructure design strategies for the changing climate, by adopting the non-stationary based IDF curves.

  1. Applying machine learning to identify autistic adults using imitation: An exploratory study.

    PubMed

    Li, Baihua; Sharma, Arjun; Meng, James; Purushwalkam, Senthil; Gowen, Emma

    2017-01-01

    Autism spectrum condition (ASC) is primarily diagnosed by behavioural symptoms including social, sensory and motor aspects. Although stereotyped, repetitive motor movements are considered during diagnosis, quantitative measures that identify kinematic characteristics in the movement patterns of autistic individuals are poorly studied, preventing advances in understanding the aetiology of motor impairment, or whether a wider range of motor characteristics could be used for diagnosis. The aim of this study was to investigate whether data-driven machine learning based methods could be used to address some fundamental problems with regard to identifying discriminative test conditions and kinematic parameters to classify between ASC and neurotypical controls. Data was based on a previous task where 16 ASC participants and 14 age, IQ matched controls observed then imitated a series of hand movements. 40 kinematic parameters extracted from eight imitation conditions were analysed using machine learning based methods. Two optimal imitation conditions and nine most significant kinematic parameters were identified and compared with some standard attribute evaluators. To our knowledge, this is the first attempt to apply machine learning to kinematic movement parameters measured during imitation of hand movements to investigate the identification of ASC. Although based on a small sample, the work demonstrates the feasibility of applying machine learning methods to analyse high-dimensional data and suggest the potential of machine learning for identifying kinematic biomarkers that could contribute to the diagnostic classification of autism.

  2. An Embedded Sensory System for Worker Safety: Prototype Development and Evaluation

    PubMed Central

    Cho, Chunhee; Park, JeeWoong

    2018-01-01

    At a construction site, workers mainly rely on two senses, which are sight and sound, in order to perceive their physical surroundings. However, they are often hindered by the nature of most construction sites, which are usually dynamic, loud, and complicated. To overcome these challenges, this research explored a method using an embedded sensory system that might offer construction workers an artificial sensing ability to better perceive their surroundings. This study identified three parameters (i.e., intensity, signal length, and delay between consecutive pulses) needed for tactile-based signals for the construction workers to communicate quickly. We developed a prototype system based on these parameters, conducted experimental studies to quantify and validate the sensitivity of the parameters for quick communication, and analyzed test data to reveal what was added by this method in order to perceive information from the tactile signals. The findings disclosed that the parameters of tactile-based signals and their distinguishable ranges could be perceived in a short amount of time (i.e., a fraction of a second). Further experimentation demonstrated the capability of the identified unit signals combined with a signal mapping technique to effectively deliver simple information to individuals and offer an additional sense of awareness to the surroundings. The findings of this study could serve as a basis for future research in exploring advanced tactile-based messages to overcome challenges in environments for which communication is a struggle. PMID:29662008

  3. An Embedded Sensory System for Worker Safety: Prototype Development and Evaluation.

    PubMed

    Cho, Chunhee; Park, JeeWoong

    2018-04-14

    At a construction site, workers mainly rely on two senses, which are sight and sound, in order to perceive their physical surroundings. However, they are often hindered by the nature of most construction sites, which are usually dynamic, loud, and complicated. To overcome these challenges, this research explored a method using an embedded sensory system that might offer construction workers an artificial sensing ability to better perceive their surroundings. This study identified three parameters (i.e., intensity, signal length, and delay between consecutive pulses) needed for tactile-based signals for the construction workers to communicate quickly. We developed a prototype system based on these parameters, conducted experimental studies to quantify and validate the sensitivity of the parameters for quick communication, and analyzed test data to reveal what was added by this method in order to perceive information from the tactile signals. The findings disclosed that the parameters of tactile-based signals and their distinguishable ranges could be perceived in a short amount of time (i.e., a fraction of a second). Further experimentation demonstrated the capability of the identified unit signals combined with a signal mapping technique to effectively deliver simple information to individuals and offer an additional sense of awareness to the surroundings. The findings of this study could serve as a basis for future research in exploring advanced tactile-based messages to overcome challenges in environments for which communication is a struggle.

  4. PV cells electrical parameters measurement

    NASA Astrophysics Data System (ADS)

    Cibira, Gabriel

    2017-12-01

    When measuring optical parameters of a photovoltaic silicon cell, precise results bring good electrical parameters estimation, applying well-known physical-mathematical models. Nevertheless, considerable re-combination phenomena might occur in both surface and intrinsic thin layers within novel materials. Moreover, rear contact surface parameters may influence close-area re-combination phenomena, too. Therefore, the only precise electrical measurement approach is to prove assumed cell electrical parameters. Based on theoretical approach with respect to experiments, this paper analyses problems within measurement procedures and equipment used for electrical parameters acquisition within a photovoltaic silicon cell, as a case study. Statistical appraisal quality is contributed.

  5. Relationship between electronic properties and drug activity of seven quinoxaline compounds: A DFT study

    NASA Astrophysics Data System (ADS)

    Behzadi, Hadi; Roonasi, Payman; Assle taghipour, Khatoon; van der Spoel, David; Manzetti, Sergio

    2015-07-01

    The quantum chemical calculations at the DFT/B3LYP level of theory were carried out on seven quinoxaline compounds, which have been synthesized as anti-Mycobacterium tuberculosis agents. Three conformers were optimized for each compound and the lowest energy structure was found and used in further calculations. The electronic properties including EHOMO, ELUMO and related parameters as well as electron density around oxygen and nitrogen atoms were calculated for each compound. The relationship between the calculated electronic parameters and biological activity of the studied compounds were investigated. Six similar quinoxaline derivatives with possible more drug activity were suggested based on the calculated electronic descriptors. A mechanism was proposed and discussed based on the calculated electronic parameters and bond dissociation energies.

  6. Long term pavement performance computed parameter : moisture content

    DOT National Transportation Integrated Search

    2008-01-01

    A study was conducted to compute in situ soil parameters based on time domain reflectometry (TDR) traces obtained from Long Term Pavement Performance (LTPP) test sections instrumented for the seasonal monitoring program (SMP). Ten TDR sensors were in...

  7. Modelling the Cast Component Weight in Hot Chamber Die Casting using Combined Taguchi and Buckingham's π Approach

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder

    2018-02-01

    Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.

  8. Effect of 6-month community-based exercise interventions on gait and functional fitness of an older population: a quasi-experimental study.

    PubMed

    Ramalho, Fátima; Santos-Rocha, Rita; Branco, Marco; Moniz-Pereira, Vera; André, Helô-Isa; Veloso, António P; Carnide, Filomena

    2018-01-01

    Gait ability in older adults has been associated with independent living, increased survival rates, fall prevention, and quality of life. There are inconsistent findings regarding the effects of exercise interventions in the maintenance of gait parameters. The aim of the study was to analyze the effects of a community-based periodized exercise intervention on the improvement of gait parameters and functional fitness in an older adult group compared with a non-periodized program. A quasi-experimental study with follow-up was performed in a periodized exercise group (N=15) and in a non-periodized exercise group (N=13). The primary outcomes were plantar pressure gait parameters, and the secondary outcomes were physical activity, aerobic endurance, lower limb strength, agility, and balance. These variables were recorded at baseline and after 6 months of intervention. Both programs were tailored to older adults' functional fitness level and proved to be effective in reducing the age-related decline regarding functional fitness and gait parameters. Gait parameters were sensitive to both the exercise interventions. These exercise protocols can be used by exercise professionals in prescribing community exercise programs, as well as by health professionals in promoting active aging.

  9. Mammalian cell culture process for monoclonal antibody production: nonlinear modelling and parameter estimation.

    PubMed

    Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad; Roman, Monica

    2015-01-01

    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies.

  10. Mammalian Cell Culture Process for Monoclonal Antibody Production: Nonlinear Modelling and Parameter Estimation

    PubMed Central

    Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad

    2015-01-01

    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies. PMID:25685797

  11. UAS CNPC Satellite Link Performance - Sharing Spectrum with Terrestrial Systems

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2016-01-01

    In order to provide for the safe integration of unmanned aircraft systems into the National Airspace System, the control and non-payload communications (CNPC) link connecting the ground-based pilot with the unmanned aircraft must be highly reliable. A specific requirement is that it must operate using aviation safety radiofrequency spectrum. The 2012 World Radiocommunication Conference (WRC-12) provided a potentially suitable allocation for radio line-of-sight (LOS), terrestrial based CNPC link at 5030-5091 MHz. For a beyond radio line-of-sight (BLOS), satellite-based CNPC link, aviation safety spectrum allocations are currently inadequate. Therefore, the 2015 WRC will consider the use of Fixed Satellite Service (FSS) bands to provide BLOS CNPC under Agenda Item 1.5. This agenda item requires studies to be conducted to allow for the consideration of how unmanned aircraft can employ FSS for BLOS CNPC while maintaining existing systems. Since there are terrestrial Fixed Service systems also using the same frequency bands under consideration in Agenda Item 1.5 one of the studies required considered spectrum sharing between earth stations on-board unmanned aircraft and Fixed Service station receivers. Studies carried out by NASA have concluded that such sharing is possible under parameters previously established by the International Telecommunications Union. As the preparation for WRC-15 has progressed, additional study parameters Agenda Item 1.5 have been proposed, and some studies using these parameters have been added. This paper examines the study results for the original parameters as well as results considering some of the more recently proposed parameters to provide insight into the complicated process of resolving WRC-15 Agenda Item 1.5 and achieving a solution for BLOS CNPC for unmanned aircraft.

  12. Some issues in uncertainty quantification and parameter tuning: a case study of convective parameterization scheme in the WRF regional climate model

    NASA Astrophysics Data System (ADS)

    Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.

    2011-12-01

    The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.

  13. Uncertainty Quantification and Parameter Tuning: A Case Study of Convective Parameterization Scheme in the WRF Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Yang, B.; Lin, G.; Leung, R.; Zhang, Y.

    2012-04-01

    The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. The latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.

  14. Some issues in uncertainty quantification and parameter tuning: a case study of convective parameterization scheme in the WRF regional climate model

    NASA Astrophysics Data System (ADS)

    Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.

    2012-03-01

    The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic importance sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e. the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.

  15. Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos

    PubMed Central

    Santonja, F.; Chen-Charpentier, B.

    2012-01-01

    Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows us to obtain an auxiliary system of differential equations, which is then integrated numerically to obtain the first-and the second-order moments of the output stochastic processes. A sensitivity analysis based on the polynomial chaos approach is also performed to determine which parameters have the greatest influence on the results. As an example, we will apply the approach to an obesity epidemic model. PMID:22927889

  16. FLUKA simulation studies on in-phantom dosimetric parameters of a LINAC-based BNCT

    NASA Astrophysics Data System (ADS)

    Ghal-Eh, N.; Goudarzi, H.; Rahmani, F.

    2017-12-01

    The Monte Carlo simulation code, FLUKA version 2011.2c.5, has been used to estimate the in-phantom dosimetric parameters for use in BNCT studies. The in-phantom parameters of a typical Snyder head, which are necessary information prior to any clinical treatment, have been calculated with both FLUKA and MCNPX codes, which exhibit a promising agreement. The results confirm that FLUKA can be regarded as a good alternative for the MCNPX in BNCT dosimetry simulations.

  17. Performance parameters of TiN electrodes for AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Margaret A.; Williams, Roger M.; Homer, Margie L.

    1999-01-22

    In order to model the lifetime of the electrochemical cell in an Alkali Metal Thermal to Electric Converter (AMTEC), studies of TiN electrodes on beta'-alumina solid electrolytes (BASE) have been made to determine the performance parameters over time. Performance parameters include, G, the morphology factor, and B, the temperature independent exchange current. The results of several experiments, both AMTEC cells and Sodium Exposure Test Cells, in which TiN electrodes have been studied at 1120-1200 K are described here.

  18. Blood viscosity monitoring during cardiopulmonary bypass based on pressure-flow characteristics of a Newtonian fluid.

    PubMed

    Okahara, Shigeyuki; Zu Soh; Takahashi, Shinya; Sueda, Taijiro; Tsuji, Toshio

    2016-08-01

    We proposed a blood viscosity estimation method based on pressure-flow characteristics of oxygenators used during cardiopulmonary bypass (CPB) in a previous study that showed the estimated viscosity to correlate well with the measured viscosity. However, the determination of the parameters included in the method required the use of blood, thereby leading to high cost of calibration. Therefore, in this study we propose a new method to monitor blood viscosity, which approximates the pressure-flow characteristics of blood considered as a non-Newtonian fluid with characteristics of a Newtonian fluid by using the parameters derived from glycerin solution to enable ease of acquisition. Because parameters used in the estimation method are based on fluid types, bovine blood parameters were used to calculate estimated viscosity (ηe), and glycerin parameters were used to estimate deemed viscosity (ηdeem). Three samples of whole bovine blood with different hematocrit levels (21.8%, 31.0%, and 39.8%) were prepared and perfused into the oxygenator. As the temperature changed from 37 °C to 27 °C, the oxygenator mean inlet pressure and outlet pressure were recorded for flows of 2 L/min and 4 L/min, and the viscosity was estimated. The value of deemed viscosity calculated with the glycerin parameters was lower than estimated viscosity calculated with bovine blood parameters by 20-33% at 21.8% hematocrit, 12-27% at 31.0% hematocrit, and 10-15% at 39.8% hematocrit. Furthermore, deemed viscosity was lower than estimated viscosity by 10-30% at 2 L/min and 30-40% at 4 L/min. Nevertheless, estimated and deemed viscosities varied with a similar slope. Therefore, this shows that deemed viscosity achieved using glycerin parameters may be capable of successfully monitoring relative viscosity changes of blood in a perfusing oxygenator.

  19. Study on friction coefficient of soft soil based on particle flow code

    NASA Astrophysics Data System (ADS)

    Lei, Xiaohong; Zhang, Zhongwei

    2017-04-01

    There has no uniform method for determining the micro parameters in particle flow code, and the corresponding formulas obtained by each scholar can only be applied to similar situations. In this paper, the relationship between the micro parameters friction coefficient and macro parameters friction angle is established by using the two axis servo compression as the calibration experiment, and the corresponding formula is fitted to solve the difficulties of determining the PFC micro parameters which provide a reference for determination of the micro parameters of soft soil.

  20. Qualitative Study of Functional Groups and Antioxidant Properties of Soy-Based Beverages Compared to Cow Milk

    PubMed Central

    Durazzo, Alessandra; Gabrielli, Paolo; Manzi, Pamela

    2015-01-01

    Soy-based beverages are a source of high quality proteins and balanced nutrients; they thus represent an alternative to milk in case of allergy to cow milk proteins or intolerance to lactose. In this research, antioxidant properties of soy-based beverages and UHT cow milk were studied. In addition, color parameters, by a quick and non-destructive methodology, were studied in order to verify a possible correlation with antioxidant properties and a qualitative analysis of the major functional groups undertaken by Fourier Transformed Infrared Spectroscopy (FTIR) on Attenuated Total Reflectance (ATR) was carried out. Extractable and hydrolysable polyphenols were studied in soy-based beverages. However, only the extractable fraction was studied in UHT milk, which was characterized by a small amount of polyphenols. All color parameters showed highly significant differences among soy-based beverages and between soy-based beverages and cow milk. FTIR-ATR spectra of soy-based beverages and cow milk showed several differences in the various regions depending on both the specific contribution of molecular groups and different food items. PMID:26783841

  1. Rain-rate data base development and rain-rate climate analysis

    NASA Technical Reports Server (NTRS)

    Crane, Robert K.

    1993-01-01

    The single-year rain-rate distribution data available within the archives of Consultative Committee for International Radio (CCIR) Study Group 5 were compiled into a data base for use in rain-rate climate modeling and for the preparation of predictions of attenuation statistics. The four year set of tip-time sequences provided by J. Goldhirsh for locations near Wallops Island were processed to compile monthly and annual distributions of rain rate and of event durations for intervals above and below preset thresholds. A four-year data set of tropical rain-rate tip-time sequences were acquired from the NASA TRMM program for 30 gauges near Darwin, Australia. They were also processed for inclusion in the CCIR data base and the expanded data base for monthly observations at the University of Oklahoma. The empirical rain-rate distributions (edfs) accepted for inclusion in the CCIR data base were used to estimate parameters for several rain-rate distribution models: the lognormal model, the Crane two-component model, and the three parameter model proposed by Moupfuma. The intent of this segment of the study is to obtain a limited set of parameters that can be mapped globally for use in rain attenuation predictions. If the form of the distribution can be established, then perhaps available climatological data can be used to estimate the parameters rather than requiring years of rain-rate observations to set the parameters. The two-component model provided the best fit to the Wallops Island data but the Moupfuma model provided the best fit to the Darwin data.

  2. The effects of variations in parameters and algorithm choices on calculated radiomics feature values: initial investigations and comparisons to feature variability across CT image acquisition conditions

    NASA Astrophysics Data System (ADS)

    Emaminejad, Nastaran; Wahi-Anwar, Muhammad; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael

    2018-02-01

    Translation of radiomics into clinical practice requires confidence in its interpretations. This may be obtained via understanding and overcoming the limitations in current radiomic approaches. Currently there is a lack of standardization in radiomic feature extraction. In this study we examined a few factors that are potential sources of inconsistency in characterizing lung nodules, such as 1)different choices of parameters and algorithms in feature calculation, 2)two CT image dose levels, 3)different CT reconstruction algorithms (WFBP, denoised WFBP, and Iterative). We investigated the effect of variation of these factors on entropy textural feature of lung nodules. CT images of 19 lung nodules identified from our lung cancer screening program were identified by a CAD tool and contours provided. The radiomics features were extracted by calculating 36 GLCM based and 4 histogram based entropy features in addition to 2 intensity based features. A robustness index was calculated across different image acquisition parameters to illustrate the reproducibility of features. Most GLCM based and all histogram based entropy features were robust across two CT image dose levels. Denoising of images slightly improved robustness of some entropy features at WFBP. Iterative reconstruction resulted in improvement of robustness in a fewer times and caused more variation in entropy feature values and their robustness. Within different choices of parameters and algorithms texture features showed a wide range of variation, as much as 75% for individual nodules. Results indicate the need for harmonization of feature calculations and identification of optimum parameters and algorithms in a radiomics study.

  3. ESTIMATION OF CONSTANT AND TIME-VARYING DYNAMIC PARAMETERS OF HIV INFECTION IN A NONLINEAR DIFFERENTIAL EQUATION MODEL.

    PubMed

    Liang, Hua; Miao, Hongyu; Wu, Hulin

    2010-03-01

    Modeling viral dynamics in HIV/AIDS studies has resulted in deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper, we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies. We applied the proposed techniques to estimate the key HIV viral dynamic parameters for two individual AIDS patients treated with antiretroviral therapies. We demonstrate that HIV viral dynamics can be well characterized and quantified for individual patients. As a result, personalized treatment decision based on viral dynamic models is possible.

  4. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  5. Influence of tool geometry and processing parameters on welding defects and mechanical properties for friction stir welding of 6061 Aluminium alloy

    NASA Astrophysics Data System (ADS)

    Daneji, A.; Ali, M.; Pervaiz, S.

    2018-04-01

    Friction stir welding (FSW) is a form of solid state welding process for joining metals, alloys, and selective composites. Over the years, FSW development has provided an improved way of producing welding joints, and consequently got accepted in numerous industries such as aerospace, automotive, rail and marine etc. In FSW, the base metal properties control the material’s plastic flow under the influence of a rotating tool whereas, the process and tool parameters play a vital role in the quality of weld. In the current investigation, an array of square butt joints of 6061 Aluminum alloy was to be welded under varying FSW process and tool geometry related parameters, after which the resulting weld was evaluated for the corresponding mechanical properties and welding defects. The study incorporates FSW process and tool parameters such as welding speed, pin height and pin thread pitch as input parameters. However, the weld quality related defects and mechanical properties were treated as output parameters. The experimentation paves way to investigate the correlation between the inputs and the outputs. The correlation between inputs and outputs were used as tool to predict the optimized FSW process and tool parameters for a desired weld output of the base metals under investigation. The study also provides reflection on the effect of said parameters on a welding defect such as wormhole.

  6. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity

    NASA Astrophysics Data System (ADS)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-04-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  7. Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding

    NASA Astrophysics Data System (ADS)

    Kelleher, Christa; McGlynn, Brian; Wagener, Thorsten

    2017-07-01

    Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology-soil-vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale.

  8. Modeling noisy resonant system response

    NASA Astrophysics Data System (ADS)

    Weber, Patrick Thomas; Walrath, David Edwin

    2017-02-01

    In this paper, a theory-based model replicating empirical acoustic resonant signals is presented and studied to understand sources of noise present in acoustic signals. Statistical properties of empirical signals are quantified and a noise amplitude parameter, which models frequency and amplitude-based noise, is created, defined, and presented. This theory-driven model isolates each phenomenon and allows for parameters to be independently studied. Using seven independent degrees of freedom, this model will accurately reproduce qualitative and quantitative properties measured from laboratory data. Results are presented and demonstrate success in replicating qualitative and quantitative properties of experimental data.

  9. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.

    PubMed

    Xu, Xu; McGorry, Raymond W; Chou, Li-Shan; Lin, Jia-Hua; Chang, Chien-Chi

    2015-07-01

    The measurement of gait parameters normally requires motion tracking systems combined with force plates, which limits the measurement to laboratory settings. In some recent studies, the possibility of using the portable, low cost, and marker-less Microsoft Kinect sensor to measure gait parameters on over-ground walking has been examined. The current study further examined the accuracy level of the Kinect sensor for assessment of various gait parameters during treadmill walking under different walking speeds. Twenty healthy participants walked on the treadmill and their full body kinematics data were measured by a Kinect sensor and a motion tracking system, concurrently. Spatiotemporal gait parameters and knee and hip joint angles were extracted from the two devices and were compared. The results showed that the accuracy levels when using the Kinect sensor varied across the gait parameters. Average heel strike frame errors were 0.18 and 0.30 frames for the right and left foot, respectively, while average toe off frame errors were -2.25 and -2.61 frames, respectively, across all participants and all walking speeds. The temporal gait parameters based purely on heel strike have less error than the temporal gait parameters based on toe off. The Kinect sensor can follow the trend of the joint trajectories for the knee and hip joints, though there was substantial error in magnitudes. The walking speed was also found to significantly affect the identified timing of toe off. The results of the study suggest that the Kinect sensor may be used as an alternative device to measure some gait parameters for treadmill walking, depending on the desired accuracy level. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. A Case Study Showing Parameters Affecting the Quality of Education: Faculty Perspective

    ERIC Educational Resources Information Center

    Kumari, Neeraj

    2014-01-01

    The study aims to examine the faculty members' perspective (age Wise, Gender Wise and Work Experience wise) of parameters affecting the quality of education in an affiliated Undergraduate Engineering Institution in Haryana. It is a descriptive type of research. The data has been collected with the help of 'Questionnaire Based Survey'. The sample…

  11. Controlled Attenuation Parameter and Liver Stiffness Measurements for Steatosis Assessment in the Liver Transplant of Brain Dead Donors.

    PubMed

    Mancia, Claire; Loustaud-Ratti, Véronique; Carrier, Paul; Naudet, Florian; Bellissant, Eric; Labrousse, François; Pichon, Nicolas

    2015-08-01

    One of the main selection criteria of the quality of a liver graft is the degree of steatosis, which will determine the success of the transplantation. The aim of this study was to evaluate the ability of FibroScan and its related methods Controlled Attenuation Parameter and Liver Stiffness to assess objectively steatosis and fibrosis in livers from brain-dead donors to be potentially used for transplantation. Over a period of 10 months, 23 consecutive brain dead donors screened for liver procurement underwent a FibroScan and a liver biopsy. The different predictive models of liver retrievability using liver biopsy as the gold standard have led to the following area under receiver operating characteristic curve: 76.6% (95% confidence intervals [95% CIs], 48.2%-100%) when based solely on controlled attenuation parameter, 75.0% (95% CIs, 34.3%-100%) when based solely on liver stiffness, and 96.7% (95% CIs, 88.7%-100%) when based on combined indices. Our study suggests that a preoperative selection of brain-dead donors based on a combination of both Controlled Attenuation Parameter and Liver Stiffness obtained with FibroScan could result in a good preoperative prediction of the histological status and degree of steatosis of a potential liver graft.

  12. Parameter recovery, bias and standard errors in the linear ballistic accumulator model.

    PubMed

    Visser, Ingmar; Poessé, Rens

    2017-05-01

    The linear ballistic accumulator (LBA) model (Brown & Heathcote, , Cogn. Psychol., 57, 153) is increasingly popular in modelling response times from experimental data. An R package, glba, has been developed to fit the LBA model using maximum likelihood estimation which is validated by means of a parameter recovery study. At sufficient sample sizes parameter recovery is good, whereas at smaller sample sizes there can be large bias in parameters. In a second simulation study, two methods for computing parameter standard errors are compared. The Hessian-based method is found to be adequate and is (much) faster than the alternative bootstrap method. The use of parameter standard errors in model selection and inference is illustrated in an example using data from an implicit learning experiment (Visser et al., , Mem. Cogn., 35, 1502). It is shown that typical implicit learning effects are captured by different parameters of the LBA model. © 2017 The British Psychological Society.

  13. Contrast Media Administration in Coronary Computed Tomography Angiography - A Systematic Review.

    PubMed

    Mihl, Casper; Maas, Monique; Turek, Jakub; Seehofnerova, Anna; Leijenaar, Ralph T H; Kok, Madeleine; Lobbes, Marc B I; Wildberger, Joachim E; Das, Marco

    2017-04-01

    Background  Various different injection parameters influence enhancement of the coronary arteries. There is no consensus in the literature regarding the optimal contrast media (CM) injection protocol. The aim of this study is to provide an update on the effect of different CM injection parameters on the coronary attenuation in coronary computed tomographic angiography (CCTA). Method  Studies published between January 2001 and May 2014 identified by Pubmed, Embase and MEDLINE were evaluated. Using predefined inclusion criteria and a data extraction form, the content of each eligible study was assessed. Initially, 2551 potential studies were identified. After applying our criteria, 36 studies were found to be eligible. Studies were systematically assessed for quality based on the validated Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-II checklist. Results  Extracted data proved to be heterogeneous and often incomplete. The injection protocol and outcome of the included publications were very diverse and results are difficult to compare. Based on the extracted data, it remains unclear which of the injection parameters is the most important determinant for adequate attenuation. It is likely that one parameter which combines multiple parameters (e. g. IDR) will be the most suitable determinant of coronary attenuation in CCTA protocols. Conclusion  Research should be directed towards determining the influence of different injection parameters and defining individualized optimal IDRs tailored to patient-related factors (ideally in large randomized trials). Key points   · This systematic review provides insight into decisive factors on coronary attenuation.. · Different and contradicting outcomes are reported on coronary attenuation in CCTA.. · One parameter combining multiple parameters (IDR) is likely decisive in coronary attenuation.. · Research should aim at defining individualized optimal IDRs tailored to individual factors.. · Future directions should be tailored towards the influence of different injection parameters.. Citation Format · Mihl C, Maas M, Turek J et al. Contrast Media Administration in Coronary Computed Tomography Angiography - A Systematic Review. Fortschr Röntgenstr 2017; 189: 312 - 325. © Georg Thieme Verlag KG Stuttgart · New York.

  14. A Thermal Model for Carbon Nanotube Interconnects

    PubMed Central

    Mohsin, Kaji Muhammad; Srivastava, Ashok; Sharma, Ashwani K.; Mayberry, Clay

    2013-01-01

    In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT) interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters. PMID:28348333

  15. Effect of considering the initial parameters on accuracy of experimental studies conclusions

    NASA Astrophysics Data System (ADS)

    Zagulova, D.; Nesterenko, A.; Kapilevich, L.; Popova, J.

    2015-11-01

    The presented paper contains the evidences of the necessity to take into account the initial level of physiological parameters while conducting the biomedical research; it is exemplified by certain indicators of cardiorespiratory system. The analysis is based on the employment of data obtained via the multiple surveys of medical and pharmaceutical college students. There has been revealed a negative correlation of changes of the studied parameters of cardiorespiratory system in the repeated measurements compared to their initial level. It is assumed that the dependence of the changes of physiological parameters from the baseline can be caused by the biorhythmic changes inherent for all body systems.

  16. A new ODE tumor growth modeling based on tumor population dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  17. X-ray Computed Tomography Assessment of Air Void Distribution in Concrete

    NASA Astrophysics Data System (ADS)

    Lu, Haizhu

    Air void size and spatial distribution have long been regarded as critical parameters in the frost resistance of concrete. In cement-based materials, entrained air void systems play an important role in performance as related to durability, permeability, and heat transfer. Many efforts have been made to measure air void parameters in a more efficient and reliable manner in the past several decades. Standardized measurement techniques based on optical microscopy and stereology on flat cut and polished surfaces are widely used in research as well as in quality assurance and quality control applications. Other more automated methods using image processing have also been utilized, but still starting from flat cut and polished surfaces. The emergence of X-ray computed tomography (CT) techniques provides the capability of capturing the inner microstructure of materials at the micrometer and nanometer scale. X-ray CT's less demanding sample preparation and capability to measure 3D distributions of air voids directly provide ample prospects for its wider use in air void characterization in cement-based materials. However, due to the huge number of air voids that can exist within a limited volume, errors can easily arise in the absence of a formalized data processing procedure. In this study, air void parameters in selected types of cement-based materials (lightweight concrete, structural concrete elements, pavements, and laboratory mortars) have been measured using micro X-ray CT. The focus of this study is to propose a unified procedure for processing the data and to provide solutions to deal with common problems that arise when measuring air void parameters: primarily the reliable segmentation of objects of interest, uncertainty estimation of measured parameters, and the comparison of competing segmentation parameters.

  18. Robust and efficient pharmacokinetic parameter non-linear least squares estimation for dynamic contrast enhanced MRI of the prostate.

    PubMed

    Kargar, Soudabeh; Borisch, Eric A; Froemming, Adam T; Kawashima, Akira; Mynderse, Lance A; Stinson, Eric G; Trzasko, Joshua D; Riederer, Stephen J

    2018-05-01

    To describe an efficient numerical optimization technique using non-linear least squares to estimate perfusion parameters for the Tofts and extended Tofts models from dynamic contrast enhanced (DCE) MRI data and apply the technique to prostate cancer. Parameters were estimated by fitting the two Tofts-based perfusion models to the acquired data via non-linear least squares. We apply Variable Projection (VP) to convert the fitting problem from a multi-dimensional to a one-dimensional line search to improve computational efficiency and robustness. Using simulation and DCE-MRI studies in twenty patients with suspected prostate cancer, the VP-based solver was compared against the traditional Levenberg-Marquardt (LM) strategy for accuracy, noise amplification, robustness to converge, and computation time. The simulation demonstrated that VP and LM were both accurate in that the medians closely matched assumed values across typical signal to noise ratio (SNR) levels for both Tofts models. VP and LM showed similar noise sensitivity. Studies using the patient data showed that the VP method reliably converged and matched results from LM with approximate 3× and 2× reductions in computation time for the standard (two-parameter) and extended (three-parameter) Tofts models. While LM failed to converge in 14% of the patient data, VP converged in the ideal 100%. The VP-based method for non-linear least squares estimation of perfusion parameters for prostate MRI is equivalent in accuracy and robustness to noise, while being more reliably (100%) convergent and computationally about 3× (TM) and 2× (ETM) faster than the LM-based method. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Multi-objective calibration and uncertainty analysis of hydrologic models; A comparative study between formal and informal methods

    NASA Astrophysics Data System (ADS)

    Shafii, M.; Tolson, B.; Matott, L. S.

    2012-04-01

    Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.

  20. Development of a copula-based particle filter (CopPF) approach for hydrologic data assimilation under consideration of parameter interdependence

    NASA Astrophysics Data System (ADS)

    Fan, Y. R.; Huang, G. H.; Baetz, B. W.; Li, Y. P.; Huang, K.

    2017-06-01

    In this study, a copula-based particle filter (CopPF) approach was developed for sequential hydrological data assimilation by considering parameter correlation structures. In CopPF, multivariate copulas are proposed to reflect parameter interdependence before the resampling procedure with new particles then being sampled from the obtained copulas. Such a process can overcome both particle degeneration and sample impoverishment. The applicability of CopPF is illustrated with three case studies using a two-parameter simplified model and two conceptual hydrologic models. The results for the simplified model indicate that model parameters are highly correlated in the data assimilation process, suggesting a demand for full description of their dependence structure. Synthetic experiments on hydrologic data assimilation indicate that CopPF can rejuvenate particle evolution in large spaces and thus achieve good performances with low sample size scenarios. The applicability of CopPF is further illustrated through two real-case studies. It is shown that, compared with traditional particle filter (PF) and particle Markov chain Monte Carlo (PMCMC) approaches, the proposed method can provide more accurate results for both deterministic and probabilistic prediction with a sample size of 100. Furthermore, the sample size would not significantly influence the performance of CopPF. Also, the copula resampling approach dominates parameter evolution in CopPF, with more than 50% of particles sampled by copulas in most sample size scenarios.

  1. Application of Bayesian population physiologically based pharmacokinetic (PBPK) modeling and Markov chain Monte Carlo simulations to pesticide kinetics studies in protected marine mammals: DDT, DDE, and DDD in harbor porpoises.

    PubMed

    Weijs, Liesbeth; Yang, Raymond S H; Das, Krishna; Covaci, Adrian; Blust, Ronny

    2013-05-07

    Physiologically based pharmacokinetic (PBPK) modeling in marine mammals is a challenge because of the lack of parameter information and the ban on exposure experiments. To minimize uncertainty and variability, parameter estimation methods are required for the development of reliable PBPK models. The present study is the first to develop PBPK models for the lifetime bioaccumulation of p,p'-DDT, p,p'-DDE, and p,p'-DDD in harbor porpoises. In addition, this study is also the first to apply the Bayesian approach executed with Markov chain Monte Carlo simulations using two data sets of harbor porpoises from the Black and North Seas. Parameters from the literature were used as priors for the first "model update" using the Black Sea data set, the resulting posterior parameters were then used as priors for the second "model update" using the North Sea data set. As such, PBPK models with parameters specific for harbor porpoises could be strengthened with more robust probability distributions. As the science and biomonitoring effort progress in this area, more data sets will become available to further strengthen and update the parameters in the PBPK models for harbor porpoises as a species anywhere in the world. Further, such an approach could very well be extended to other protected marine mammals.

  2. Study on feed forward neural network convex optimization for LiFePO4 battery parameters

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    Based on the modern facility agriculture automatic walking equipment LiFePO4 Battery, the parameter identification of LiFePO4 Battery is analyzed. An improved method for the process model of li battery is proposed, and the on-line estimation algorithm is presented. The parameters of the battery are identified using feed forward network neural convex optimization algorithm.

  3. Use of Machine Learning Algorithms to Propose a New Methodology to Conduct, Critique and Validate Urban Scale Building Energy Modeling

    NASA Astrophysics Data System (ADS)

    Pathak, Maharshi

    City administrators and real-estate developers have been setting up rather aggressive energy efficiency targets. This, in turn, has led the building science research groups across the globe to focus on urban scale building performance studies and level of abstraction associated with the simulations of the same. The increasing maturity of the stakeholders towards energy efficiency and creating comfortable working environment has led researchers to develop methodologies and tools for addressing the policy driven interventions whether it's urban level energy systems, buildings' operational optimization or retrofit guidelines. Typically, these large-scale simulations are carried out by grouping buildings based on their design similarities i.e. standardization of the buildings. Such an approach does not necessarily lead to potential working inputs which can make decision-making effective. To address this, a novel approach is proposed in the present study. The principle objective of this study is to propose, to define and evaluate the methodology to utilize machine learning algorithms in defining representative building archetypes for the Stock-level Building Energy Modeling (SBEM) which are based on operational parameter database. The study uses "Phoenix- climate" based CBECS-2012 survey microdata for analysis and validation. Using the database, parameter correlations are studied to understand the relation between input parameters and the energy performance. Contrary to precedence, the study establishes that the energy performance is better explained by the non-linear models. The non-linear behavior is explained by advanced learning algorithms. Based on these algorithms, the buildings at study are grouped into meaningful clusters. The cluster "mediod" (statistically the centroid, meaning building that can be represented as the centroid of the cluster) are established statistically to identify the level of abstraction that is acceptable for the whole building energy simulations and post that the retrofit decision-making. Further, the methodology is validated by conducting Monte-Carlo simulations on 13 key input simulation parameters. The sensitivity analysis of these 13 parameters is utilized to identify the optimum retrofits. From the sample analysis, the envelope parameters are found to be more sensitive towards the EUI of the building and thus retrofit packages should also be directed to maximize the energy usage reduction.

  4. Parametric study of closed wet cooling tower thermal performance

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Hayder, M. J.

    2017-08-01

    The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.

  5. Theoretical studies of the EPR parameters and local structures for Cu2+-doped cobalt ammonium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Li, Chao-Ying; Liu, Shi-Fei; Fu, Jin-Xian

    2015-11-01

    High-order perturbation formulas for a 3d9 ion in rhombically elongated octahedral was applied to calculate the electron paramagnetic resonance (EPR) parameters (the g factors, gi, and the hyperfine structure constants Ai, i = x, y, z) of the rhombic Cu2+ center in CoNH4PO4.6H2O. In the calculations, the required crystal-field parameters are estimated from the superposition model which enables correlation of the crystal-field parameters and hence the EPR parameters with the local structure of the rhombic Cu2+ center. Based on the calculations, the ligand octahedral (i.e. [Cu(H2O)6]2+ cluster) are found to experience the local bond length variations ΔZ (≈0.213 Å) and δr (≈0.132 Å) along axial and perpendicular directions due to the Jahn-Teller effect. Theoretical EPR parameters based on the above local structure are in good agreement with the observed values; the results are discussed.

  6. Constitutive Equation with Varying Parameters for Superplastic Flow Behavior

    NASA Astrophysics Data System (ADS)

    Guan, Zhiping; Ren, Mingwen; Jia, Hongjie; Zhao, Po; Ma, Pinkui

    2014-03-01

    In this study, constitutive equations for superplastic materials with an extra large elongation were investigated through mechanical analysis. From the view of phenomenology, firstly, some traditional empirical constitutive relations were standardized by restricting some strain paths and parameter conditions, and the coefficients in these relations were strictly given new mechanical definitions. Subsequently, a new, general constitutive equation with varying parameters was theoretically deduced based on the general mechanical equation of state. The superplastic tension test data of Zn-5%Al alloy at 340 °C under strain rates, velocities, and loads were employed for building a new constitutive equation and examining its validity. Analysis results indicated that the constitutive equation with varying parameters could characterize superplastic flow behavior in practical superplastic forming with high prediction accuracy and without any restriction of strain path or deformation condition, showing good industrial or scientific interest. On the contrary, those empirical equations have low prediction capabilities due to constant parameters and poor applicability because of the limit of special strain path or parameter conditions based on strict phenomenology.

  7. Upper limb load as a function of repetitive task parameters: part 1--a model of upper limb load.

    PubMed

    Roman-Liu, Danuta

    2005-01-01

    The aim of the study was to develop a theoretical indicator of upper limb musculoskeletal load based on repetitive task parameters. As such the dimensionless parameter, Integrated Cycle Load (ICL) was accepted. It expresses upper limb load which occurs during 1 cycle. The indicator is based on a model of a repetitive task, which consists of a model of the upper limb, a model of basic types of upper limb forces and a model of parameters of a repetitive task such as length of the cycle, length of periods of the cycle and external force exerted during each of the periods of the cycle. Calculations of the ICL parameter were performed for 12 different variants of external load characterised by different values of repetitive task parameters. A comparison of ICL, which expresses external load with a physiological indicator of upper limb load, is presented in Part 2 of the paper.

  8. Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods

    NASA Astrophysics Data System (ADS)

    Perumal, Muthiah; Tayfur, Gokmen; Rao, C. Madhusudana; Gurarslan, Gurhan

    2017-03-01

    Two variants of the Muskingum flood routing method formulated for accounting nonlinearity of the channel routing process are investigated in this study. These variant methods are: (1) The three-parameter conceptual Nonlinear Muskingum (NLM) method advocated by Gillin 1978, and (2) The Variable Parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price in 2013. The VPMM method does not require rigorous calibration and validation procedures as required in the case of NLM method due to established relationships of its parameters with flow and channel characteristics based on hydrodynamic principles. The parameters of the conceptual nonlinear storage equation used in the NLM method were calibrated using the Artificial Intelligence Application (AIA) techniques, such as the Genetic Algorithm (GA), the Differential Evolution (DE), the Particle Swarm Optimization (PSO) and the Harmony Search (HS). The calibration was carried out on a given set of hypothetical flood events obtained by routing a given inflow hydrograph in a set of 40 km length prismatic channel reaches using the Saint-Venant (SV) equations. The validation of the calibrated NLM method was investigated using a different set of hypothetical flood hydrographs obtained in the same set of channel reaches used for calibration studies. Both the sets of solutions obtained in the calibration and validation cases using the NLM method were compared with the corresponding solutions of the VPMM method based on some pertinent evaluation measures. The results of the study reveal that the physically based VPMM method is capable of accounting for nonlinear characteristics of flood wave movement better than the conceptually based NLM method which requires the use of tedious calibration and validation procedures.

  9. On synchronisation of a class of complex chaotic systems with complex unknown parameters via integral sliding mode control

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed; Karami-Mollaee, Ali

    2018-06-01

    Chaotic systems demonstrate complex behaviour in their state variables and their parameters, which generate some challenges and consequences. This paper presents a new synchronisation scheme based on integral sliding mode control (ISMC) method on a class of complex chaotic systems with complex unknown parameters. Synchronisation between corresponding states of a class of complex chaotic systems and also convergence of the errors of the system parameters to zero point are studied. The designed feedback control vector and complex unknown parameter vector are analytically achieved based on the Lyapunov stability theory. Moreover, the effectiveness of the proposed methodology is verified by synchronisation of the Chen complex system and the Lorenz complex systems as the leader and the follower chaotic systems, respectively. In conclusion, some numerical simulations related to the synchronisation methodology is given to illustrate the effectiveness of the theoretical discussions.

  10. Evaluation of trade influence on economic growth rate by computational intelligence approach

    NASA Astrophysics Data System (ADS)

    Sokolov-Mladenović, Svetlana; Milovančević, Milos; Mladenović, Igor

    2017-01-01

    In this study was analyzed the influence of trade parameters on the economic growth forecasting accuracy. Computational intelligence method was used for the analyzing since the method can handle highly nonlinear data. It is known that the economic growth could be modeled based on the different trade parameters. In this study five input parameters were considered. These input parameters were: trade in services, exports of goods and services, imports of goods and services, trade and merchandise trade. All these parameters were calculated as added percentages in gross domestic product (GDP). The main goal was to select which parameters are the most impactful on the economic growth percentage. GDP was used as economic growth indicator. Results show that the imports of goods and services has the highest influence on the economic growth forecasting accuracy.

  11. Regional-specific Stochastic Simulation of Spatially-distributed Ground-motion Time Histories using Wavelet Packet Analysis

    NASA Astrophysics Data System (ADS)

    Huang, D.; Wang, G.

    2014-12-01

    Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.

  12. Statistical Analyses of Femur Parameters for Designing Anatomical Plates.

    PubMed

    Wang, Lin; He, Kunjin; Chen, Zhengming

    2016-01-01

    Femur parameters are key prerequisites for scientifically designing anatomical plates. Meanwhile, individual differences in femurs present a challenge to design well-fitting anatomical plates. Therefore, to design anatomical plates more scientifically, analyses of femur parameters with statistical methods were performed in this study. The specific steps were as follows. First, taking eight anatomical femur parameters as variables, 100 femur samples were classified into three classes with factor analysis and Q-type cluster analysis. Second, based on the mean parameter values of the three classes of femurs, three sizes of average anatomical plates corresponding to the three classes of femurs were designed. Finally, based on Bayes discriminant analysis, a new femur could be assigned to the proper class. Thereafter, the average anatomical plate suitable for that new femur was selected from the three available sizes of plates. Experimental results showed that the classification of femurs was quite reasonable based on the anatomical aspects of the femurs. For instance, three sizes of condylar buttress plates were designed. Meanwhile, 20 new femurs are judged to which classes the femurs belong. Thereafter, suitable condylar buttress plates were determined and selected.

  13. Technical Note: Approximate Bayesian parameterization of a complex tropical forest model

    NASA Astrophysics Data System (ADS)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2013-08-01

    Inverse parameter estimation of process-based models is a long-standing problem in ecology and evolution. A key problem of inverse parameter estimation is to define a metric that quantifies how well model predictions fit to the data. Such a metric can be expressed by general cost or objective functions, but statistical inversion approaches are based on a particular metric, the probability of observing the data given the model, known as the likelihood. Deriving likelihoods for dynamic models requires making assumptions about the probability for observations to deviate from mean model predictions. For technical reasons, these assumptions are usually derived without explicit consideration of the processes in the simulation. Only in recent years have new methods become available that allow generating likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional MCMC, performs well in retrieving known parameter values from virtual field data generated by the forest model. We analyze the results of the parameter estimation, examine the sensitivity towards the choice and aggregation of model outputs and observed data (summary statistics), and show results from using this method to fit the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss differences of this approach to Approximate Bayesian Computing (ABC), another commonly used method to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can successfully be applied to process-based models of high complexity. The methodology is particularly suited to heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models in ecology and evolution.

  14. Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model

    PubMed Central

    Bogard, Matthieu; Ravel, Catherine; Paux, Etienne; Bordes, Jacques; Balfourier, François; Chapman, Scott C.; Le Gouis, Jacques; Allard, Vincent

    2014-01-01

    Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predictions in new environments, they may require substantial phenotypic data to parameterize each genotype. Also, the model parameters are rarely related to all underlying genes, and all the possible allelic combinations that could be obtained by breeding cannot be tested with models. In this study, a QTL-based model is proposed to predict heading date in bread wheat (Triticum aestivum L.). Two parameters of an ecophysiological model (V sat and P base, representing genotype vernalization requirements and photoperiod sensitivity, respectively) were optimized for 210 genotypes grown in 10 contrasting location × sowing date combinations. Multiple linear regression models predicting V sat and P base with 11 and 12 associated genetic markers accounted for 71 and 68% of the variance of these parameters, respectively. QTL-based V sat and P base estimates were able to predict heading date of an independent validation data set (88 genotypes in six location × sowing date combinations) with a root mean square error of prediction of 5 to 8.6 days, explaining 48 to 63% of the variation for heading date. The QTL-based model proposed in this study may be used for agronomic purposes and to assist breeders in suggesting locally adapted ideotypes for wheat phenology. PMID:25148833

  15. Parametric Study of Synthetic-Jet-Based Flow Control on a Vertical Tail Model

    NASA Astrophysics Data System (ADS)

    Monastero, Marianne; Lindstrom, Annika; Beyar, Michael; Amitay, Michael

    2015-11-01

    Separation control over the rudder of the vertical tail of a commercial airplane using synthetic-jet-based flow control can lead to a reduction in tail size, with an associated decrease in drag and increase in fuel savings. A parametric, experimental study was undertaken using an array of finite span synthetic jets to investigate the sensitivity of the enhanced vertical tail side force to jet parameters, such as jet spanwise spacing and jet momentum coefficient. A generic wind tunnel model was designed and fabricated to fundamentally study the effects of the jet parameters at varying rudder deflection and model sideslip angles. Wind tunnel results obtained from pressure measurements and tuft flow visualization in the Rensselaer Polytechnic Subsonic Wind Tunnel show a decrease in separation severity and increase in model performance in comparison to the baseline, non-actuated case. The sensitivity to various parameters will be presented.

  16. On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites

    DOE PAGES

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; ...

    2016-06-01

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. As a result, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less

  17. On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. As a result, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less

  18. On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites

    NASA Astrophysics Data System (ADS)

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; Ren, Huiying; Liu, Ying; Swiler, Laura

    2016-07-01

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesian model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.

  19. Assessment of parameter uncertainty in hydrological model using a Markov-Chain-Monte-Carlo-based multilevel-factorial-analysis method

    NASA Astrophysics Data System (ADS)

    Zhang, Junlong; Li, Yongping; Huang, Guohe; Chen, Xi; Bao, Anming

    2016-07-01

    Without a realistic assessment of parameter uncertainty, decision makers may encounter difficulties in accurately describing hydrologic processes and assessing relationships between model parameters and watershed characteristics. In this study, a Markov-Chain-Monte-Carlo-based multilevel-factorial-analysis (MCMC-MFA) method is developed, which can not only generate samples of parameters from a well constructed Markov chain and assess parameter uncertainties with straightforward Bayesian inference, but also investigate the individual and interactive effects of multiple parameters on model output through measuring the specific variations of hydrological responses. A case study is conducted for addressing parameter uncertainties in the Kaidu watershed of northwest China. Effects of multiple parameters and their interactions are quantitatively investigated using the MCMC-MFA with a three-level factorial experiment (totally 81 runs). A variance-based sensitivity analysis method is used to validate the results of parameters' effects. Results disclose that (i) soil conservation service runoff curve number for moisture condition II (CN2) and fraction of snow volume corresponding to 50% snow cover (SNO50COV) are the most significant factors to hydrological responses, implying that infiltration-excess overland flow and snow water equivalent represent important water input to the hydrological system of the Kaidu watershed; (ii) saturate hydraulic conductivity (SOL_K) and soil evaporation compensation factor (ESCO) have obvious effects on hydrological responses; this implies that the processes of percolation and evaporation would impact hydrological process in this watershed; (iii) the interactions of ESCO and SNO50COV as well as CN2 and SNO50COV have an obvious effect, implying that snow cover can impact the generation of runoff on land surface and the extraction of soil evaporative demand in lower soil layers. These findings can help enhance the hydrological model's capability for simulating/predicting water resources.

  20. Analysis of material parameter effects on fluidlastic isolators performance

    NASA Astrophysics Data System (ADS)

    Cheng, Q. Y.; Deng, J. H.; Feng, Z. Z.; Qian, F.

    2018-01-01

    Control of vibration in helicopters has always been a complex and challenging task. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters of fluid and rubber is very important to obtain efficient vibration-suppressed. Aiming at getting the property of fluidlastic isolator to material design parameters, a dynamic equation is set up based on the dynamic theory. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. The material parameters examined are the properties of fluid and rubber. Analysis results showed that the design parameters such as density of fluid, viscosity coefficient of fluid, stiffness of rubber (K1) and loss coefficient of rubber have obvious influence on the performance of isolator. Base on the results of the study it is concluded that the efficient vibration-suppressed can be obtained by the selection of design parameters.

  1. Bayesian analysis of time-series data under case-crossover designs: posterior equivalence and inference.

    PubMed

    Li, Shi; Mukherjee, Bhramar; Batterman, Stuart; Ghosh, Malay

    2013-12-01

    Case-crossover designs are widely used to study short-term exposure effects on the risk of acute adverse health events. While the frequentist literature on this topic is vast, there is no Bayesian work in this general area. The contribution of this paper is twofold. First, the paper establishes Bayesian equivalence results that require characterization of the set of priors under which the posterior distributions of the risk ratio parameters based on a case-crossover and time-series analysis are identical. Second, the paper studies inferential issues under case-crossover designs in a Bayesian framework. Traditionally, a conditional logistic regression is used for inference on risk-ratio parameters in case-crossover studies. We consider instead a more general full likelihood-based approach which makes less restrictive assumptions on the risk functions. Formulation of a full likelihood leads to growth in the number of parameters proportional to the sample size. We propose a semi-parametric Bayesian approach using a Dirichlet process prior to handle the random nuisance parameters that appear in a full likelihood formulation. We carry out a simulation study to compare the Bayesian methods based on full and conditional likelihood with the standard frequentist approaches for case-crossover and time-series analysis. The proposed methods are illustrated through the Detroit Asthma Morbidity, Air Quality and Traffic study, which examines the association between acute asthma risk and ambient air pollutant concentrations. © 2013, The International Biometric Society.

  2. A support vector regression-firefly algorithm-based model for limiting velocity prediction in sewer pipes.

    PubMed

    Ebtehaj, Isa; Bonakdari, Hossein

    2016-01-01

    Sediment transport without deposition is an essential consideration in the optimum design of sewer pipes. In this study, a novel method based on a combination of support vector regression (SVR) and the firefly algorithm (FFA) is proposed to predict the minimum velocity required to avoid sediment settling in pipe channels, which is expressed as the densimetric Froude number (Fr). The efficiency of support vector machine (SVM) models depends on the suitable selection of SVM parameters. In this particular study, FFA is used by determining these SVM parameters. The actual effective parameters on Fr calculation are generally identified by employing dimensional analysis. The different dimensionless variables along with the models are introduced. The best performance is attributed to the model that employs the sediment volumetric concentration (C(V)), ratio of relative median diameter of particles to hydraulic radius (d/R), dimensionless particle number (D(gr)) and overall sediment friction factor (λ(s)) parameters to estimate Fr. The performance of the SVR-FFA model is compared with genetic programming, artificial neural network and existing regression-based equations. The results indicate the superior performance of SVR-FFA (mean absolute percentage error = 2.123%; root mean square error =0.116) compared with other methods.

  3. Simulation study of MEMS piezoelectric vibration energy harvester based on c-axis tilted AlN thin film for performance improvement

    NASA Astrophysics Data System (ADS)

    Kong, Lingfeng; Zhang, Jinhui; Wang, Huiyuan; Ma, Shenglin; Li, Fang; Wang, Qing-Ming; Qin, Lifeng

    2016-12-01

    In this paper, a MEMS piezoelectric cantilevered vibration energy harvester based on c-axis tilted AlN thin film is investigated. Based on basic piezoelectric equations and static analysis of cantilever beam, the equations for generated energy (E) and open circuit voltage (Vo) were derived, and simulations were carried out to study the effects of geometry parameters and c-axis tilted angle. Results show that E and Vo of energy harvesters are greatly dependent on c-axis tilted angle and geometry parameters, while the coupling between c-axis tilted angle and geometry parameters is not strong. For a given structure size, E and Vo can be almost simultaneously improved by controlling c-axis tilted angle; compared with the case of normal c-axis angle, E with optimal c-axis tilted angle can be amplified by more than 3 times, and the Vo is amplified by about 2 times. E or Vo could be further improved by geometry parameters, while there is trade-off between them. These results can be used for the design and application of piezoelectric cantilevered vibration energy harvester.

  4. Which model based on fluorescence quenching is suitable to study the interaction between trans-resveratrol and BSA?

    NASA Astrophysics Data System (ADS)

    Wei, Xin Lin; Xiao, Jian Bo; Wang, Yuanfeng; Bai, Yalong

    2010-01-01

    There are several models by means of quenching fluorescence of BSA to determine the binding parameters. The binding parameters obtained from different models are quite different from each other. Which model is suitable to study the interaction between trans-resveratrol and BSA? Herein, twelve models based fluorescence quenching of BSA were compared. The number of binding sites increasing with increased binding constant for similar compounds binding to BSA maybe one approach to resolve this question. For example, here eleven flavonoids were tested to illustrate that the double logarithm regression curve is suitable to study binding polyphenols to BSA.

  5. Differences in RF energy absorption in the heads of adults and children.

    PubMed

    Christ, Andreas; Kuster, Niels

    2005-01-01

    There has been a long and controversial debate on possible differences in electromagnetic (EM) energy absorption between adults and children during cell phone usage. Some published studies report higher specific absorption rate (SAR) in children and explain this based on smaller head size. More recently, age dependent changes of the dielectric tissue parameters have again ignited the discussion. This study intends to give a comprehensive review of the current state of knowledge about the parameters and mechanisms affecting the exposure of the mobile phone user with special focus on the exposure of children. Discussed are the absorption mechanism, tissue parameters, the effect of the pinna, and the uncertainties associated with head models based on spheroids, scaled adult heads, and magnetic resonance imaging (MRI) data of children. The conclusions of the review do not support the assumption that the energy exposure increases due to smaller heads, but identifies open issues regarding the dielectric tissue parameters and the thickness of the pinna. Copyright 2005 Wiley-Liss, Inc

  6. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    NASA Astrophysics Data System (ADS)

    Cohen, Bat-El; Gamliel, Shany; Etgar, Lioz

    2014-08-01

    Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells.

  7. Mechanical properties of tantalum-based ceramic coatings for biomedical applications

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Walkowicz, J.; Zavaleyev, V.; Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.

    2018-03-01

    The properties were studied of Ta, Ta2O5 and Ta/Ta2O5 coatings deposited by reactive magnetron sputtering on stainless steel (AISI 316) substrates. The compositional, structural and morphological parameters of the coatings were investigated by means of X-ray photoemission spectroscopy (XPS), energy dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The roughness parameters, adhesion strength, hardness, elastic modulus, and H/E ratio were evaluated by standard techniques. The hardness parameters of the Ta2O5 and Ta/Ta2O5 coatings increased in comparison with pure Ta films, while the relatively low Young’s modulus was related to high elastic recovery and high resistance to cracking. The tantalum-based coatings possessed good biomechanical parameters for advanced implant and stent applications.

  8. A tuned mesh-generation strategy for image representation based on data-dependent triangulation.

    PubMed

    Li, Ping; Adams, Michael D

    2013-05-01

    A mesh-generation framework for image representation based on data-dependent triangulation is proposed. The proposed framework is a modified version of the frameworks of Rippa and Garland and Heckbert that facilitates the development of more effective mesh-generation methods. As the proposed framework has several free parameters, the effects of different choices of these parameters on mesh quality are studied, leading to the recommendation of a particular set of choices for these parameters. A mesh-generation method is then introduced that employs the proposed framework with these best parameter choices. This method is demonstrated to produce meshes of higher quality (both in terms of squared error and subjectively) than those generated by several competing approaches, at a relatively modest computational and memory cost.

  9. Predicting distant failure in early stage NSCLC treated with SBRT using clinical parameters.

    PubMed

    Zhou, Zhiguo; Folkert, Michael; Cannon, Nathan; Iyengar, Puneeth; Westover, Kenneth; Zhang, Yuanyuan; Choy, Hak; Timmerman, Robert; Yan, Jingsheng; Xie, Xian-J; Jiang, Steve; Wang, Jing

    2016-06-01

    The aim of this study is to predict early distant failure in early stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT) using clinical parameters by machine learning algorithms. The dataset used in this work includes 81 early stage NSCLC patients with at least 6months of follow-up who underwent SBRT between 2006 and 2012 at a single institution. The clinical parameters (n=18) for each patient include demographic parameters, tumor characteristics, treatment fraction schemes, and pretreatment medications. Three predictive models were constructed based on different machine learning algorithms: (1) artificial neural network (ANN), (2) logistic regression (LR) and (3) support vector machine (SVM). Furthermore, to select an optimal clinical parameter set for the model construction, three strategies were adopted: (1) clonal selection algorithm (CSA) based selection strategy; (2) sequential forward selection (SFS) method; and (3) statistical analysis (SA) based strategy. 5-cross-validation is used to validate the performance of each predictive model. The accuracy was assessed by area under the receiver operating characteristic (ROC) curve (AUC), sensitivity and specificity of the system was also evaluated. The AUCs for ANN, LR and SVM were 0.75, 0.73, and 0.80, respectively. The sensitivity values for ANN, LR and SVM were 71.2%, 72.9% and 83.1%, while the specificity values for ANN, LR and SVM were 59.1%, 63.6% and 63.6%, respectively. Meanwhile, the CSA based strategy outperformed SFS and SA in terms of AUC, sensitivity and specificity. Based on clinical parameters, the SVM with the CSA optimal parameter set selection strategy achieves better performance than other strategies for predicting distant failure in lung SBRT patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Optimisation of cavity parameters for lasers based on AlGaInAsP/InP solid solutions (λ = 1470 nm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D A; Ayusheva, K R; Shashkin, I S

    2015-10-31

    We have studied the effect of laser cavity parameters on the light–current characteristics of lasers based on the AlGaInAs/GaInAsP/InP solid solution system that emit in the spectral range 1400 – 1600 nm. It has been shown that optimisation of cavity parameters (chip length and front facet reflectivity) allows one to improve heat removal from the laser, without changing other laser characteristics. An increase in the maximum output optical power of the laser by 0.5 W has been demonstrated due to cavity design optimisation. (lasers)

  11. A composite material based on recycled tires

    NASA Astrophysics Data System (ADS)

    Malers, L.; Plesuma, R.; Locmele, L.

    2009-01-01

    The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties.

  12. Summary of typical parameters that affect sound transmission through general aviation aircraft structures

    NASA Technical Reports Server (NTRS)

    Grosveld, F.; Navaneethan, R.; Roskam, J.

    1981-01-01

    This paper presents results of a systematic experimental investigation of parameters which affect sound transmission through general aviation structures. Parameters studied include angle of sound incidence, panel curvature, panel stresses, and edge conditions for bare panels; pane thickness, spacing, inclination of window panes, and depressurization for dual pane windows; densities of hard foam and sound absorption materials, air gaps, and trim panel thickness for multilayered panels. Based on the study, some promising methods for reducing interior noise in general aviation airplanes are discussed.

  13. Application of a data assimilation method via an ensemble Kalman filter to reactive urea hydrolysis transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juxiu Tong; Bill X. Hu; Hai Huang

    2014-03-01

    With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations,more » we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.« less

  14. Seismic anisotropy beneath the southeastern margin of the Tibetan Plateau and adjacent regions revealed by shear-wave splitting analyses

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Kong, F.; Wu, J.; Liu, L.; Liu, K. H.

    2017-12-01

    Seismic azimuthal anisotropy is measured at 83 stations situated at the southeastern margin of the Tibetan Plateau and adjacent regions based on shear-wave splitting analyses. A total of 1701 individual pairs of splitting parameters (fast polarization orientations and splitting delay times) are obtained using the PKS, SKKS, and SKS phases. The splitting parameters from 21 stations exhibit systematic back-azimuthal variations with a 90° periodicity, which is consistent with a two-layer anisotropy model. The resulting upper-layer splitting parameters computed based on a grid-search algorithm are comparable with crustal anisotropy measurements obtained independently based on the sinusoidal moveout of P-to-S conversions from the Moho. The fast orientations of the upper layer anisotropy, which is mostly parallel with major shear zones, are associated with crustal fabrics with a vertical foliation plane. The lower layer anisotropy and the station averaged splitting parameters at stations with azimuthally invariant splitting parameters can be adequately explained by the differential movement between the lithosphere and asthenosphere. The NW-SE fast orientations obtained in the northern part of the study area probably reflect the southeastward extruded mantle flow from central Tibet. In contrast, the NE-SW to E-W fast orientations observed in the southern part of the study area are most likely related to the northeastward to eastward mantle flow induced by the subduction of the Burma microplate.

  15. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques

    NASA Astrophysics Data System (ADS)

    Jha, Madan K.; Chowdary, V. M.; Chowdhury, Alivia

    2010-11-01

    An approach is presented for the evaluation of groundwater potential using remote sensing, geographic information system, geoelectrical, and multi-criteria decision analysis techniques. The approach divides the available hydrologic and hydrogeologic data into two groups, exogenous (hydrologic) and endogenous (subsurface). A case study in Salboni Block, West Bengal (India), uses six thematic layers of exogenous parameters and four thematic layers of endogenous parameters. These thematic layers and their features were assigned suitable weights which were normalized by analytic hierarchy process and eigenvector techniques. The layers were then integrated using ArcGIS software to generate two groundwater potential maps. The hydrologic parameters-based groundwater potential zone map indicated that the `good' groundwater potential zone covers 27.14% of the area, the `moderate' zone 45.33%, and the `poor' zone 27.53%. A comparison of this map with the groundwater potential map based on subsurface parameters revealed that the hydrologic parameters-based map accurately delineates groundwater potential zones in about 59% of the area, and hence it is dependable to a certain extent. More than 80% of the study area has moderate-to-poor groundwater potential, which necessitates efficient groundwater management for long-term water security. Overall, the integrated technique is useful for the assessment of groundwater resources at a basin or sub-basin scale.

  16. Characterizing Woody Vegetation Spectral and Structural Parameters with a 3-D Scene Model

    NASA Astrophysics Data System (ADS)

    Qin, W.; Yang, L.

    2004-05-01

    Quantification of structural and biophysical parameters of woody vegetation is of great significance in understanding vegetation condition, dynamics and functionality. Such information over a landscape scale is crucial for global and regional land cover characterization, global carbon-cycle research, forest resource inventories, and fire fuel estimation. While great efforts and progress have been made in mapping general land cover types over large area, at present, the ability to quantify regional woody vegetation structural and biophysical parameters is limited. One approach to address this research issue is through an integration of physically based 3-D scene model with multiangle and multispectral remote sensing data and in-situ measurements. The first step of this work is to model woody vegetation structure and its radiation regime using a physically based 3-D scene model and field data, before a robust operational algorithm can be developed for retrieval of important woody vegetation structural/biophysical parameters. In this study, we use an advanced 3-D scene model recently developed by Qin and Gerstl (2000), based on L-systems and radiosity theories. This 3-D scene model has been successfully applied to semi-arid shrubland to study structure and radiation regime at a regional scale. We apply this 3-D scene model to a more complicated and heterogeneous forest environment dominated by deciduous and coniferous trees. The data used in this study are from a field campaign conducted by NASA in a portion of the Superior National Forest (SNF) near Ely, Minnesota during the summers of 1983 and 1984, and supplement data collected during our revisit to the same area of SNF in summer of 2003. The model is first validated with reflectance measurements at different scales (ground observations, helicopter, aircraft, and satellite). Then its ability to characterize the structural and spectral parameters of the forest scene is evaluated. Based on the results from this study and the current multi-spectral and multi-angular satellite data (MODIS, MISR), a robust retrieval system to estimate woody vegetation structural/biophysical parameters is proposed.

  17. Wayside Bearing Fault Diagnosis Based on a Data-Driven Doppler Effect Eliminator and Transient Model Analysis

    PubMed Central

    Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang

    2014-01-01

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197

  18. Multi Objective Optimization of Multi Wall Carbon Nanotube Based Nanogrinding Wheel Using Grey Relational and Regression Analysis

    NASA Astrophysics Data System (ADS)

    Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy

    2016-07-01

    Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.

  19. Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study.

    PubMed

    Ameling, Sabine; Kacprowski, Tim; Chilukoti, Ravi Kumar; Malsch, Carolin; Liebscher, Volkmar; Suhre, Karsten; Pietzner, Maik; Friedrich, Nele; Homuth, Georg; Hammer, Elke; Völker, Uwe

    2015-10-14

    Non-cellular blood circulating microRNAs (plasma miRNAs) represent a promising source for the development of prognostic and diagnostic tools owing to their minimally invasive sampling, high stability, and simple quantification by standard techniques such as RT-qPCR. So far, the majority of association studies involving plasma miRNAs were disease-specific case-control analyses. In contrast, in the present study, plasma miRNAs were analysed in a sample of 372 individuals from a population-based cohort study, the Study of Health in Pomerania (SHIP). Quantification of miRNA levels was performed by RT-qPCR using the Exiqon Serum/Plasma Focus microRNA PCR Panel V3.M covering 179 different miRNAs. Of these, 155 were included in our analyses after quality-control. Associations between plasma miRNAs and the phenotypes age, body mass index (BMI), and sex were assessed via a two-step linear regression approach per miRNA. The first step regressed out the technical parameters and the second step determined the remaining associations between the respective plasma miRNA and the phenotypes of interest. After regressing out technical parameters and adjusting for the respective other two phenotypes, 7, 15, and 35 plasma miRNAs were significantly (q < 0.05) associated with age, BMI, and sex, respectively. Additional adjustment for the blood cell parameters identified 12 and 19 miRNAs to be significantly associated with age and BMI, respectively. Most of the BMI-associated miRNAs likely originate from liver. Sex-associated differences in miRNA levels were largely determined by differences in blood cell parameters. Thus, only 7 as compared to originally 35 sex-associated miRNAs displayed sex-specific differences after adjustment for blood cell parameters. These findings emphasize that circulating miRNAs are strongly impacted by age, BMI, and sex. Hence, these parameters should be considered as covariates in association studies based on plasma miRNA levels. The established experimental and computational workflow can now be used in future screening studies to determine associations of plasma miRNAs with defined disease phenotypes.

  20. A Bayesian-based multilevel factorial analysis method for analyzing parameter uncertainty of hydrological model

    NASA Astrophysics Data System (ADS)

    Liu, Y. R.; Li, Y. P.; Huang, G. H.; Zhang, J. L.; Fan, Y. R.

    2017-10-01

    In this study, a Bayesian-based multilevel factorial analysis (BMFA) method is developed to assess parameter uncertainties and their effects on hydrological model responses. In BMFA, Differential Evolution Adaptive Metropolis (DREAM) algorithm is employed to approximate the posterior distributions of model parameters with Bayesian inference; factorial analysis (FA) technique is used for measuring the specific variations of hydrological responses in terms of posterior distributions to investigate the individual and interactive effects of parameters on model outputs. BMFA is then applied to a case study of the Jinghe River watershed in the Loess Plateau of China to display its validity and applicability. The uncertainties of four sensitive parameters, including soil conservation service runoff curve number to moisture condition II (CN2), soil hydraulic conductivity (SOL_K), plant available water capacity (SOL_AWC), and soil depth (SOL_Z), are investigated. Results reveal that (i) CN2 has positive effect on peak flow, implying that the concentrated rainfall during rainy season can cause infiltration-excess surface flow, which is an considerable contributor to peak flow in this watershed; (ii) SOL_K has positive effect on average flow, implying that the widely distributed cambisols can lead to medium percolation capacity; (iii) the interaction between SOL_AWC and SOL_Z has noticeable effect on the peak flow and their effects are dependent upon each other, which discloses that soil depth can significant influence the processes of plant uptake of soil water in this watershed. Based on the above findings, the significant parameters and the relationship among uncertain parameters can be specified, such that hydrological model's capability for simulating/predicting water resources of the Jinghe River watershed can be improved.

  1. An adaptive Gaussian process-based iterative ensemble smoother for data assimilation

    NASA Astrophysics Data System (ADS)

    Ju, Lei; Zhang, Jiangjiang; Meng, Long; Wu, Laosheng; Zeng, Lingzao

    2018-05-01

    Accurate characterization of subsurface hydraulic conductivity is vital for modeling of subsurface flow and transport. The iterative ensemble smoother (IES) has been proposed to estimate the heterogeneous parameter field. As a Monte Carlo-based method, IES requires a relatively large ensemble size to guarantee its performance. To improve the computational efficiency, we propose an adaptive Gaussian process (GP)-based iterative ensemble smoother (GPIES) in this study. At each iteration, the GP surrogate is adaptively refined by adding a few new base points chosen from the updated parameter realizations. Then the sensitivity information between model parameters and measurements is calculated from a large number of realizations generated by the GP surrogate with virtually no computational cost. Since the original model evaluations are only required for base points, whose number is much smaller than the ensemble size, the computational cost is significantly reduced. The applicability of GPIES in estimating heterogeneous conductivity is evaluated by the saturated and unsaturated flow problems, respectively. Without sacrificing estimation accuracy, GPIES achieves about an order of magnitude of speed-up compared with the standard IES. Although subsurface flow problems are considered in this study, the proposed method can be equally applied to other hydrological models.

  2. Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models.

    PubMed

    Degeling, Koen; IJzerman, Maarten J; Koopman, Miriam; Koffijberg, Hendrik

    2017-12-15

    Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.

  3. Adjustment of interaural time difference in head related transfer functions based on listeners' anthropometry and its effect on sound localization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yôiti; Watanabe, Kanji; Iwaya, Yukio; Gyoba, Jiro; Takane, Shouichi

    2005-04-01

    Because the transfer functions governing subjective sound localization (HRTFs) show strong individuality, sound localization systems based on synthesis of HRTFs require suitable HRTFs for individual listeners. However, it is impractical to obtain HRTFs for all listeners based on measurements. Improving sound localization by adjusting non-individualized HRTFs to a specific listener based on that listener's anthropometry might be a practical method. This study first developed a new method to estimate interaural time differences (ITDs) using HRTFs. Then correlations between ITDs and anthropometric parameters were analyzed using the canonical correlation method. Results indicated that parameters relating to head size, and shoulder and ear positions are significant. Consequently, it was attempted to express ITDs based on listener's anthropometric data. In this process, the change of ITDs as a function of azimuth angle was parameterized as a sum of sine functions. Then the parameters were analyzed using multiple regression analysis, in which the anthropometric parameters were used as explanatory variables. The predicted or individualized ITDs were installed in the nonindividualized HRTFs to evaluate sound localization performance. Results showed that individualization of ITDs improved horizontal sound localization.

  4. Assessment of chapatti quality of wheat varieties based on physicochemical, rheological and sensory traits.

    PubMed

    Kundu, Manju; Khatkar, Bhupendar Singh; Gulia, Neelam

    2017-07-01

    Fifty wheat varieties were assessed for chapatti quality using grain characteristics, dough rheological properties and pasting characteristics. Results revealed that 88% of wheat varieties studied were medium-hard to hard based on kernel texture. Water absorption and damaged starch were found to be important parameters for chapatti quality as both parameters had significant positive effect on the pliability and puffing height of chapatti. Protein content and gluten strength parameters like SDS sedimentation volume, dough stability and gluten index were found to have a negative impact on chapatti quality. Based on chapatti quality assessment the wheat varieties were classified into four distinct clusters viz. good, acceptable, fair and poor for chapatti making. It was elucidated that 46% of the varieties studied were good to acceptable for chapatti making, while 54% resulted in fair or poor chapatti quality thereby clearly indicating the need to establish and substantiate the development of product-specific varieties. Copyright © 2016. Published by Elsevier Ltd.

  5. Application of an OCT data-based mathematical model of the foveal pit in Parkinson disease.

    PubMed

    Ding, Yin; Spund, Brian; Glazman, Sofya; Shrier, Eric M; Miri, Shahnaz; Selesnick, Ivan; Bodis-Wollner, Ivan

    2014-11-01

    Spectral-domain Optical coherence tomography (OCT) has shown remarkable utility in the study of retinal disease and has helped to characterize the fovea in Parkinson disease (PD) patients. We developed a detailed mathematical model based on raw OCT data to allow differentiation of foveae of PD patients from healthy controls. Of the various models we tested, a difference of a Gaussian and a polynomial was found to have "the best fit". Decision was based on mathematical evaluation of the fit of the model to the data of 45 control eyes versus 50 PD eyes. We compared the model parameters in the two groups using receiver-operating characteristics (ROC). A single parameter discriminated 70 % of PD eyes from controls, while using seven of the eight parameters of the model allowed 76 % to be discriminated. The future clinical utility of mathematical modeling in study of diffuse neurodegenerative conditions that also affect the fovea is discussed.

  6. Study of Cr/Sc-based multilayer reflecting mirrors using soft x-ray reflectivity and standing wave-enhanced x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe

    2017-11-01

    We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.

  7. Influence analysis of fluctuation parameters on flow stability based on uncertainty method

    NASA Astrophysics Data System (ADS)

    Meng, Tao; Fan, Shangchun; Wang, Chi; Shi, Huichao

    2018-05-01

    The relationship between flow fluctuation and pressure in a flow facility is studied theoretically and experimentally in this paper, and a method for measuring the flow fluctuation is proposed. According to the synchronicity of pressure and flow fluctuation, the amplitude of the flow fluctuation is calculated using the pressure measured in the flow facility and measurement of the flow fluctuation in a wide range of frequency is realized. Based on the method proposed, uncertainty analysis is used to evaluate the influences of different parameters on the flow fluctuation by the help of a sample-based stochastic model established and the parameters that have great influence are found, which can be a reference for the optimization design and the stability improvement of the flow facility.

  8. Sensitivity analysis of TRX-2 lattice parameters with emphasis on epithermal /sup 238/U capture. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomlinson, E.T.; deSaussure, G.; Weisbin, C.R.

    1977-03-01

    The main purpose of the study is the determination of the sensitivity of TRX-2 thermal lattice performance parameters to nuclear cross section data, particularly the epithermal resonance capture cross section of /sup 238/U. An energy-dependent sensitivity profile was generated for each of the performance parameters, to the most important cross sections of the various isotopes in the lattice. Uncertainties in the calculated values of the performance parameters due to estimated uncertainties in the basic nuclear data, deduced in this study, were shown to be small compared to the uncertainties in the measured values of the performance parameter and compared tomore » differences among calculations based upon the same data but with different methodologies.« less

  9. Semiparametric Estimation of the Impacts of Longitudinal Interventions on Adolescent Obesity using Targeted Maximum-Likelihood: Accessible Estimation with the ltmle Package

    PubMed Central

    Decker, Anna L.; Hubbard, Alan; Crespi, Catherine M.; Seto, Edmund Y.W.; Wang, May C.

    2015-01-01

    While child and adolescent obesity is a serious public health concern, few studies have utilized parameters based on the causal inference literature to examine the potential impacts of early intervention. The purpose of this analysis was to estimate the causal effects of early interventions to improve physical activity and diet during adolescence on body mass index (BMI), a measure of adiposity, using improved techniques. The most widespread statistical method in studies of child and adolescent obesity is multi-variable regression, with the parameter of interest being the coefficient on the variable of interest. This approach does not appropriately adjust for time-dependent confounding, and the modeling assumptions may not always be met. An alternative parameter to estimate is one motivated by the causal inference literature, which can be interpreted as the mean change in the outcome under interventions to set the exposure of interest. The underlying data-generating distribution, upon which the estimator is based, can be estimated via a parametric or semi-parametric approach. Using data from the National Heart, Lung, and Blood Institute Growth and Health Study, a 10-year prospective cohort study of adolescent girls, we estimated the longitudinal impact of physical activity and diet interventions on 10-year BMI z-scores via a parameter motivated by the causal inference literature, using both parametric and semi-parametric estimation approaches. The parameters of interest were estimated with a recently released R package, ltmle, for estimating means based upon general longitudinal treatment regimes. We found that early, sustained intervention on total calories had a greater impact than a physical activity intervention or non-sustained interventions. Multivariable linear regression yielded inflated effect estimates compared to estimates based on targeted maximum-likelihood estimation and data-adaptive super learning. Our analysis demonstrates that sophisticated, optimal semiparametric estimation of longitudinal treatment-specific means via ltmle provides an incredibly powerful, yet easy-to-use tool, removing impediments for putting theory into practice. PMID:26046009

  10. The effects of iterative reconstruction in CT on low-contrast liver lesion volumetry: a phantom study

    NASA Astrophysics Data System (ADS)

    Li, Qin; Berman, Benjamin P.; Schumacher, Justin; Liang, Yongguang; Gavrielides, Marios A.; Yang, Hao; Zhao, Binsheng; Petrick, Nicholas

    2017-03-01

    Tumor volume measured from computed tomography images is considered a biomarker for disease progression or treatment response. The estimation of the tumor volume depends on the imaging system parameters selected, as well as lesion characteristics. In this study, we examined how different image reconstruction methods affect the measurement of lesions in an anthropomorphic liver phantom with a non-uniform background. Iterative statistics-based and model-based reconstructions, as well as filtered back-projection, were evaluated and compared in this study. Statistics-based and filtered back-projection yielded similar estimation performance, while model-based yielded higher precision but lower accuracy in the case of small lesions. Iterative reconstructions exhibited higher signal-to-noise ratio but slightly lower contrast of the lesion relative to the background. A better understanding of lesion volumetry performance as a function of acquisition parameters and lesion characteristics can lead to its incorporation as a routine sizing tool.

  11. Estimation of thermodynamic parameters for Au- and Mg-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Gaur, Jitendra; Mishra, R. K.

    2017-10-01

    The study of temperature dependent thermodynamic parameters; Gibb's free energy difference (ΔG), entropy difference (ΔS) and enthalpy difference (ΔH) between the undercooled liquid and the corresponding equilibrium solid phases has been proved to be extremely advantageous in the study of the thermodynamic behaviour of Metallic glass (MG) forming melts. In last two decades, Au- and Mg-based alloys were found to form glass phases. In present study, the three thermodynamic parameters viz., ΔG, ΔS and ΔH are calculated theoretically in the entire temperature range Tm (melting temperature) to Tg (glass transition temperature) for both Au- and Mg-based five samples of MGs; Au77Ge13.6Si9.4, Au53.2Pb27.5Sb19.3, Au81.4Si18.6, Mg85.5Cu14.5 and Mg81.6Ga18.4 on the basis of Taylor's series expansion. A relative study is also made between the present result and the result obtained experimentally as well as on the basis of expressions projected by the earlier researchers. An attempt is also been made to narrate the reduced glass transition temperature with glass forming ability for all five MGs.

  12. A New Fiji-Based Algorithm That Systematically Quantifies Nine Synaptic Parameters Provides Insights into Drosophila NMJ Morphometry

    PubMed Central

    Wolf, Louis; Scheffer-de Gooyert, Jolanda M.; Monedero, Ignacio; Torroja, Laura; Coromina, Lluis; van der Laak, Jeroen A. W. M.; Schenck, Annette

    2016-01-01

    The morphology of synapses is of central interest in neuroscience because of the intimate relation with synaptic efficacy. Two decades of gene manipulation studies in different animal models have revealed a repertoire of molecules that contribute to synapse development. However, since such studies often assessed only one, or at best a few, morphological features at a given synapse, it remained unaddressed how different structural aspects relate to one another. Furthermore, such focused and sometimes only qualitative approaches likely left many of the more subtle players unnoticed. Here, we present the image analysis algorithm ‘Drosophila_NMJ_Morphometrics’, available as a Fiji-compatible macro, for quantitative, accurate and objective synapse morphometry of the Drosophila larval neuromuscular junction (NMJ), a well-established glutamatergic model synapse. We developed this methodology for semi-automated multiparametric analyses of NMJ terminals immunolabeled for the commonly used markers Dlg1 and Brp and showed that it also works for Hrp, Csp and Syt. We demonstrate that gender, genetic background and identity of abdominal body segment consistently and significantly contribute to variability in our data, suggesting that controlling for these parameters is important to minimize variability in quantitative analyses. Correlation and principal component analyses (PCA) were performed to investigate which morphometric parameters are inter-dependent and which ones are regulated rather independently. Based on nine acquired parameters, we identified five morphometric groups: NMJ size, geometry, muscle size, number of NMJ islands and number of active zones. Based on our finding that the parameters of the first two principal components hardly correlated with each other, we suggest that different molecular processes underlie these two morphometric groups. Our study sets the stage for systems morphometry approaches at the well-studied Drosophila NMJ. PMID:26998933

  13. Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.; de Callafon, Raymond A.

    2017-02-01

    This paper presents a framework for structural health monitoring (SHM) and damage identification of civil structures. This framework integrates advanced mechanics-based nonlinear finite element (FE) modeling and analysis techniques with a batch Bayesian estimation approach to estimate time-invariant model parameters used in the FE model of the structure of interest. The framework uses input excitation and dynamic response of the structure and updates a nonlinear FE model of the structure to minimize the discrepancies between predicted and measured response time histories. The updated FE model can then be interrogated to detect, localize, classify, and quantify the state of damage and predict the remaining useful life of the structure. As opposed to recursive estimation methods, in the batch Bayesian estimation approach, the entire time history of the input excitation and output response of the structure are used as a batch of data to estimate the FE model parameters through a number of iterations. In the case of non-informative prior, the batch Bayesian method leads to an extended maximum likelihood (ML) estimation method to estimate jointly time-invariant model parameters and the measurement noise amplitude. The extended ML estimation problem is solved efficiently using a gradient-based interior-point optimization algorithm. Gradient-based optimization algorithms require the FE response sensitivities with respect to the model parameters to be identified. The FE response sensitivities are computed accurately and efficiently using the direct differentiation method (DDM). The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem by computing the exact Fisher Information matrix using the FE response sensitivities with respect to the model parameters. The accuracy of the proposed uncertainty quantification approach is verified using a sampling approach based on the unscented transformation. Two validation studies, based on realistic structural FE models of a bridge pier and a moment resisting steel frame, are performed to validate the performance and accuracy of the presented nonlinear FE model updating approach and demonstrate its application to SHM. These validation studies show the excellent performance of the proposed framework for SHM and damage identification even in the presence of high measurement noise and/or way-out initial estimates of the model parameters. Furthermore, the detrimental effects of the input measurement noise on the performance of the proposed framework are illustrated and quantified through one of the validation studies.

  14. Data depth based clustering analysis

    DOE PAGES

    Jeong, Myeong -Hun; Cai, Yaping; Sullivan, Clair J.; ...

    2016-01-01

    Here, this paper proposes a new algorithm for identifying patterns within data, based on data depth. Such a clustering analysis has an enormous potential to discover previously unknown insights from existing data sets. Many clustering algorithms already exist for this purpose. However, most algorithms are not affine invariant. Therefore, they must operate with different parameters after the data sets are rotated, scaled, or translated. Further, most clustering algorithms, based on Euclidean distance, can be sensitive to noises because they have no global perspective. Parameter selection also significantly affects the clustering results of each algorithm. Unlike many existing clustering algorithms, themore » proposed algorithm, called data depth based clustering analysis (DBCA), is able to detect coherent clusters after the data sets are affine transformed without changing a parameter. It is also robust to noises because using data depth can measure centrality and outlyingness of the underlying data. Further, it can generate relatively stable clusters by varying the parameter. The experimental comparison with the leading state-of-the-art alternatives demonstrates that the proposed algorithm outperforms DBSCAN and HDBSCAN in terms of affine invariance, and exceeds or matches the ro-bustness to noises of DBSCAN or HDBSCAN. The robust-ness to parameter selection is also demonstrated through the case study of clustering twitter data.« less

  15. Local Variability of Parameters for Characterization of the Corneal Subbasal Nerve Plexus.

    PubMed

    Winter, Karsten; Scheibe, Patrick; Köhler, Bernd; Allgeier, Stephan; Guthoff, Rudolf F; Stachs, Oliver

    2016-01-01

    The corneal subbasal nerve plexus (SNP) offers high potential for early diagnosis of diabetic peripheral neuropathy. Changes in subbasal nerve fibers can be assessed in vivo by confocal laser scanning microscopy (CLSM) and quantified using specific parameters. While current study results agree regarding parameter tendency, there are considerable differences in terms of absolute values. The present study set out to identify factors that might account for this high parameter variability. In three healthy subjects, we used a novel method of software-based large-scale reconstruction that provided SNP images of the central cornea, decomposed the image areas into all possible image sections corresponding to the size of a single conventional CLSM image (0.16 mm2), and calculated a set of parameters for each image section. In order to carry out a large number of virtual examinations within the reconstructed image areas, an extensive simulation procedure (10,000 runs per image) was implemented. The three analyzed images ranged in size from 3.75 mm2 to 4.27 mm2. The spatial configuration of the subbasal nerve fiber networks varied greatly across the cornea and thus caused heavily location-dependent results as well as wide value ranges for the parameters assessed. Distributions of SNP parameter values varied greatly between the three images and showed significant differences between all images for every parameter calculated (p < 0.001 in each case). The relatively small size of the conventionally evaluated SNP area is a contributory factor in high SNP parameter variability. Averaging of parameter values based on multiple CLSM frames does not necessarily result in good approximations of the respective reference values of the whole image area. This illustrates the potential for examiner bias when selecting SNP images in the central corneal area.

  16. Automatic management system for dose parameters in interventional radiology and cardiology.

    PubMed

    Ten, J I; Fernandez, J M; Vaño, E

    2011-09-01

    The purpose of this work was to develop an automatic management system to archive and analyse the major study parameters and patient doses for fluoroscopy guided procedures performed in cardiology and interventional radiology systems. The X-ray systems used for this trial have the capability to export at the end of the procedure and via e-mail the technical parameters of the study and the patient dose values. An application was developed to query and retrieve from a mail server, all study reports sent by the imaging modality and store them on a Microsoft SQL Server data base. The results from 3538 interventional study reports generated by 7 interventional systems were processed. In the case of some technical parameters and patient doses, alarms were added to receive malfunction alerts so as to immediately take appropriate corrective actions.

  17. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    PubMed

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  18. Analyzing parameters optimisation in minimising warpage on side arm using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    This paper presents a systematic methodology to analyse the warpage of the side arm part using Autodesk Moldflow Insight software. Response Surface Methodology (RSM) was proposed to optimise the processing parameters that will result in optimal solutions by efficiently minimising the warpage of the side arm part. The variable parameters considered in this study was based on most significant parameters affecting warpage stated by previous researchers, that is melt temperature, mould temperature and packing pressure while adding packing time and cooling time as these is the commonly used parameters by researchers. The results show that warpage was improved by 10.15% and the most significant parameters affecting warpage are packing pressure.

  19. Research on filter’s parameter selection based on PROMETHEE method

    NASA Astrophysics Data System (ADS)

    Zhu, Hui-min; Wang, Hang-yu; Sun, Shi-yan

    2018-03-01

    The selection of filter’s parameters in target recognition was studied in this paper. The PROMETHEE method was applied to the optimization problem of Gabor filter parameters decision, the correspondence model of the elemental relation between two methods was established. The author took the identification of military target as an example, problem about the filter’s parameter decision was simulated and calculated by PROMETHEE. The result showed that using PROMETHEE method for the selection of filter’s parameters was more scientific. The human disturbance caused by the experts method and empirical method could be avoided by this way. The method can provide reference for the parameter configuration scheme decision of the filter.

  20. Algorithm-enabled exploration of image-quality potential of cone-beam CT in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Pearson, Erik; Pelizzari, Charles; Al-Hallaq, Hania; Sidky, Emil Y.; Bian, Junguo; Pan, Xiaochuan

    2015-06-01

    Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guided radiation therapy. While the FDK algorithm is currently used for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics.

  1. Natural convection and radiation heat transfer from an array of inclined pin fins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessio, M.E.; Kaminski, D.A.

    1989-02-01

    Natural convection and radiation from an air-cooled, highly populated pin-fin array were studied experimentally. the effects of pin density, pin length, and the angle of the pin to the horizontal were measured. Previous work by Sparrow and Vemuri treated the case of a vertical base plate with horizontal fins. recently, Sparrow and Vemuri (1986) extended their study to include results for vertical fins with a horizontal down-facing base plate, as well as vertical fins with a horizontal up-facing base plate. In this study, the base plate is maintained in a vertical position and the angle of the pins is variedmore » from the horizontal. The main intent of this study was to compare the performance of inclined pin fins with straight pin fins. In all cases studied, the straight, horizontal fins were superior to the inclined fins. It was possible to obtain a single general correlation of the test data. While this correlation is recommended within the range of parameters that were tested here, one significant parameter, the size of the base plate, was not varied.« less

  2. HRV Analysis to Identify Stages of Home-based Telerehabilitation Exercise.

    PubMed

    Jeong, In Cheol; Finkelstein, Joseph

    2014-01-01

    Spectral analysis of heart rate variability (HRV) has been widely used to investigate activity of autonomous nervous system. Previous studies demonstrated potential of analysis of short-term sequences of heart rate data in a time domain for continuous monitoring of levels of physiological stress however the value of HRV parameters in frequency domain for monitoring cycling exercise has not been established. The goal of this study was to assess whether HRV parameters in frequency domain differ depending on a stage of cycling exercise. We compared major HRV parameters in high, low and very low frequency ranges during rest, height of exercise, and recovery during cycling exercise. Our results indicated responsiveness of frequency-domain indices to different phases of cycling exercise program and their potential in monitoring autonomic balance and stress levels as a part of a tailored home-based telerehabilitation program.

  3. The effect of noise-induced variance on parameter recovery from reaction times.

    PubMed

    Vadillo, Miguel A; Garaizar, Pablo

    2016-03-31

    Technical noise can compromise the precision and accuracy of the reaction times collected in psychological experiments, especially in the case of Internet-based studies. Although this noise seems to have only a small impact on traditional statistical analyses, its effects on model fit to reaction-time distributions remains unexplored. Across four simulations we study the impact of technical noise on parameter recovery from data generated from an ex-Gaussian distribution and from a Ratcliff Diffusion Model. Our results suggest that the impact of noise-induced variance tends to be limited to specific parameters and conditions. Although we encourage researchers to adopt all measures to reduce the impact of noise on reaction-time experiments, we conclude that the typical amount of noise-induced variance found in these experiments does not pose substantial problems for statistical analyses based on model fitting.

  4. Modelling maximum river flow by using Bayesian Markov Chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cheong, R. Y.; Gabda, D.

    2017-09-01

    Analysis of flood trends is vital since flooding threatens human living in terms of financial, environment and security. The data of annual maximum river flows in Sabah were fitted into generalized extreme value (GEV) distribution. Maximum likelihood estimator (MLE) raised naturally when working with GEV distribution. However, previous researches showed that MLE provide unstable results especially in small sample size. In this study, we used different Bayesian Markov Chain Monte Carlo (MCMC) based on Metropolis-Hastings algorithm to estimate GEV parameters. Bayesian MCMC method is a statistical inference which studies the parameter estimation by using posterior distribution based on Bayes’ theorem. Metropolis-Hastings algorithm is used to overcome the high dimensional state space faced in Monte Carlo method. This approach also considers more uncertainty in parameter estimation which then presents a better prediction on maximum river flow in Sabah.

  5. A simulation of air pollution model parameter estimation using data from a ground-based LIDAR remote sensor

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Suttles, J. T.

    1977-01-01

    One way to obtain estimates of the unknown parameters in a pollution dispersion model is to compare the model predictions with remotely sensed air quality data. A ground-based LIDAR sensor provides relative pollution concentration measurements as a function of space and time. The measured sensor data are compared with the dispersion model output through a numerical estimation procedure to yield parameter estimates which best fit the data. This overall process is tested in a computer simulation to study the effects of various measurement strategies. Such a simulation is useful prior to a field measurement exercise to maximize the information content in the collected data. Parametric studies of simulated data matched to a Gaussian plume dispersion model indicate the trade offs available between estimation accuracy and data acquisition strategy.

  6. A semi-empirical model relating micro structure to acoustic properties of bimodal porous material

    NASA Astrophysics Data System (ADS)

    Mosanenzadeh, Shahrzad Ghaffari; Doutres, Olivier; Naguib, Hani E.; Park, Chul B.; Atalla, Noureddine

    2015-01-01

    Complex morphology of open cell porous media makes it difficult to link microstructural parameters and acoustic behavior of these materials. While morphology determines the overall sound absorption and noise damping effectiveness of a porous structure, little is known on the influence of microstructural configuration on the macroscopic properties. In the present research, a novel bimodal porous structure was designed and developed solely for modeling purposes. For the developed porous structure, it is possible to have direct control on morphological parameters and avoid complications raised by intricate pore geometries. A semi-empirical model is developed to relate microstructural parameters to macroscopic characteristics of porous material using precise characterization results based on the designed bimodal porous structures. This model specifically links macroscopic parameters including static airflow resistivity ( σ ) , thermal characteristic length ( Λ ' ) , viscous characteristic length ( Λ ) , and dynamic tortuosity ( α ∞ ) to microstructural factors such as cell wall thickness ( 2 t ) and reticulation rate ( R w ) . The developed model makes it possible to design the morphology of porous media to achieve optimum sound absorption performance based on the application in hand. This study makes the base for understanding the role of microstructural geometry and morphological factors on the overall macroscopic parameters of porous materials specifically for acoustic capabilities. The next step is to include other microstructural parameters as well to generalize the developed model. In the present paper, pore size was kept constant for eight categories of bimodal foams to study the effect of secondary porous structure on macroscopic properties and overall acoustic behavior of porous media.

  7. Ensemble-based flash-flood modelling: Taking into account hydrodynamic parameters and initial soil moisture uncertainties

    NASA Astrophysics Data System (ADS)

    Edouard, Simon; Vincendon, Béatrice; Ducrocq, Véronique

    2018-05-01

    Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.

  8. A new concept of a unified parameter management, experiment control, and data analysis in fMRI: application to real-time fMRI at 3T and 7T.

    PubMed

    Hollmann, M; Mönch, T; Mulla-Osman, S; Tempelmann, C; Stadler, J; Bernarding, J

    2008-10-30

    In functional MRI (fMRI) complex experiments and applications require increasingly complex parameter handling as the experimental setup usually consists of separated soft- and hardware systems. Advanced real-time applications such as neurofeedback-based training or brain computer interfaces (BCIs) may even require adaptive changes of the paradigms and experimental setup during the measurement. This would be facilitated by an automated management of the overall workflow and a control of the communication between all experimental components. We realized a concept based on an XML software framework called Experiment Description Language (EDL). All parameters relevant for real-time data acquisition, real-time fMRI (rtfMRI) statistical data analysis, stimulus presentation, and activation processing are stored in one central EDL file, and processed during the experiment. A usability study comparing the central EDL parameter management with traditional approaches showed an improvement of the complete experimental handling. Based on this concept, a feasibility study realizing a dynamic rtfMRI-based brain computer interface showed that the developed system in combination with EDL was able to reliably detect and evaluate activation patterns in real-time. The implementation of a centrally controlled communication between the subsystems involved in the rtfMRI experiments reduced potential inconsistencies, and will open new applications for adaptive BCIs.

  9. A surrogate-based sensitivity quantification and Bayesian inversion of a regional groundwater flow model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.; Amerjeed, Mansoor

    2018-02-01

    Bayesian inference using Markov Chain Monte Carlo (MCMC) provides an explicit framework for stochastic calibration of hydrogeologic models accounting for uncertainties; however, the MCMC sampling entails a large number of model calls, and could easily become computationally unwieldy if the high-fidelity hydrogeologic model simulation is time consuming. This study proposes a surrogate-based Bayesian framework to address this notorious issue, and illustrates the methodology by inverse modeling a regional MODFLOW model. The high-fidelity groundwater model is approximated by a fast statistical model using Bagging Multivariate Adaptive Regression Spline (BMARS) algorithm, and hence the MCMC sampling can be efficiently performed. In this study, the MODFLOW model is developed to simulate the groundwater flow in an arid region of Oman consisting of mountain-coast aquifers, and used to run representative simulations to generate training dataset for BMARS model construction. A BMARS-based Sobol' method is also employed to efficiently calculate input parameter sensitivities, which are used to evaluate and rank their importance for the groundwater flow model system. According to sensitivity analysis, insensitive parameters are screened out of Bayesian inversion of the MODFLOW model, further saving computing efforts. The posterior probability distribution of input parameters is efficiently inferred from the prescribed prior distribution using observed head data, demonstrating that the presented BMARS-based Bayesian framework is an efficient tool to reduce parameter uncertainties of a groundwater system.

  10. Bootstrap rolling window estimation approach to analysis of the Environment Kuznets Curve hypothesis: evidence from the USA.

    PubMed

    Aslan, Alper; Destek, Mehmet Akif; Okumus, Ilyas

    2018-01-01

    This study aims to examine the validity of inverted U-shaped Environmental Kuznets Curve by investigating the relationship between economic growth and environmental pollution for the period from 1966 to 2013 in the USA. Previous studies based on the assumption of parameter stability and obtained parameters do not change over the full sample. This study uses bootstrap rolling window estimation method to detect the possible changes in causal relations and also obtain the parameters for sub-sample periods. The results show that the parameter of economic growth has increasing trend in 1982-1996 sub-sample periods, and it has decreasing trend in 1996-2013 sub-sample periods. Therefore, the existence of inverted U-shaped Environmental Kuznets Curve is confirmed in the USA.

  11. SPOTting Model Parameters Using a Ready-Made Python Package

    NASA Astrophysics Data System (ADS)

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2017-04-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  12. HIV Model Parameter Estimates from Interruption Trial Data including Drug Efficacy and Reservoir Dynamics

    PubMed Central

    Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan

    2012-01-01

    Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727

  13. SPOTting Model Parameters Using a Ready-Made Python Package.

    PubMed

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  14. SPOTting Model Parameters Using a Ready-Made Python Package

    PubMed Central

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function. PMID:26680783

  15. A numerical study on the effect of various combustion bowl parameters on the performance, combustion, and emission behavior on a single cylinder diesel engine.

    PubMed

    Balasubramanian, Dhinesh; Sokkalingam Arumugam, Sabari Rajan; Subramani, Lingesan; Joshua Stephen Chellakumar, Isaac JoshuaRamesh Lalvani; Mani, Annamalai

    2018-01-01

    A numerical study was carried out to study the effect of various combustion bowl parameters on the performance behavior, combustion characteristics, and emission magnitude on a single cylinder diesel engine. A base combustion bowl and 11 different combustion bowls were created by varying the aspect ratio, reentrancy ratio, and bore to bowl ratio. The study was carried out at engine rated speed and a full throttle performance condition, without altering the compression ratio. The results revealed that the combustion bowl parameters could have a huge impact on the performance behavior, combustion characteristics, and emission magnitude of the engine. The bowl parameters, namely throat diameter and toroidal radius, played a crucial role in determining the performance behavior of the combustion bowls. It was observed that the combustion bowl parameters, namely central pip distance, throat diameter, and bowl depth, also could have an impact on the combustion characteristics. And throat diameter and toroidal radius, central pip distance, and toroidal corner radius could have a consequent effect on the emission magnitude of the engine. Of the different combustion bowls tested, combustion bowl 4 was preferable to others owing to the superior performance of 3% of higher indicated mean effective pressure and lower fuel consumption. Interestingly, trade-off for NO x emission was higher only by 2.85% compared with the base bowl. The sensitivity analysis proved that bowl depth, bowl diameter, toroidal radius, and throat diameter played a vital role in the fuel consumption parameter and emission characteristics even at the manufacturing tolerance variations.

  16. Modelling of subject specific based segmental dynamics of knee joint

    NASA Astrophysics Data System (ADS)

    Nasir, N. H. M.; Ibrahim, B. S. K. K.; Huq, M. S.; Ahmad, M. K. I.

    2017-09-01

    This study determines segmental dynamics parameters based on subject specific method. Five hemiplegic patients participated in the study, two men and three women. Their ages ranged from 50 to 60 years, weights from 60 to 70 kg and heights from 145 to 170 cm. Sample group included patients with different side of stroke. The parameters of the segmental dynamics resembling the knee joint functions measured via measurement of Winter and its model generated via the employment Kane's equation of motion. Inertial parameters in the form of the anthropometry can be identified and measured by employing Standard Human Dimension on the subjects who are in hemiplegia condition. The inertial parameters are the location of centre of mass (COM) at the length of the limb segment, inertia moment around the COM and masses of shank and foot to generate accurate motion equations. This investigation has also managed to dig out a few advantages of employing the table of anthropometry in movement biomechanics of Winter's and Kane's equation of motion. A general procedure is presented to yield accurate measurement of estimation for the inertial parameters for the joint of the knee of certain subjects with stroke history.

  17. Studies on the use of helicopters for oil spill clearance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinelli, F.N.

    A program of work was undertaken to assess the use of a commercially available underslung cropspraying bucket for spraying oil spill dispersants. The study consisted of land-based trials to measure relevant parameters of the spray and the effect on these parameters of spray height and dispersant viscosity. A sea trial was undertaken to observe the system under realistic conditions. (Copyright (c) Crown Copyright.)

  18. A Time of Flight Fast Neutron Imaging System Design Study

    NASA Astrophysics Data System (ADS)

    Canion, Bonnie; Glenn, Andrew; Sheets, Steven; Wurtz, Ron; Nakae, Les; Hausladen, Paul; McConchie, Seth; Blackston, Matthew; Fabris, Lorenzo; Newby, Jason

    2017-09-01

    LLNL and ORNL are designing an active/passive fast neutron imaging system that is flexible to non-ideal detector positioning. It is often not possible to move an inspection object in fieldable imager applications such as safeguards, arms control treaty verification, and emergency response. Particularly, we are interested in scenarios which inspectors do not have access to all sides of an inspection object, due to interfering objects or walls. This paper will present the results of a simulation-based design parameter study, that will determine the optimum system design parameters for a fieldable system to perform time-of-flight based imaging analysis. The imaging analysis is based on the use of an associated particle imaging deuterium-tritium (API DT) neutron generator to get the time-of-flight of radiation induced within an inspection object. This design study will investigate the optimum design parameters for such a system (e.g. detector size, ideal placement, etc.), as well as the upper and lower feasible design parameters that the system can expect to provide results within a reasonable amount of time (e.g. minimum/maximum detector efficiency, detector standoff, etc.). Ideally the final prototype from this project will be capable of using full-access techniques, such as transmission imaging, when the measurement circumstances allow, but with the additional capability of producing results at reduced accessibility.

  19. Individual Differences in a Positional Learning Task across the Adult Lifespan

    ERIC Educational Resources Information Center

    Rast, Philippe; Zimprich, Daniel

    2010-01-01

    This study aimed at modeling individual and average non-linear trajectories of positional learning using a structured latent growth curve approach. The model is based on an exponential function which encompasses three parameters: Initial performance, learning rate, and asymptotic performance. These learning parameters were compared in a positional…

  20. Optimization of bone drilling parameters using Taguchi method based on finite element analysis

    NASA Astrophysics Data System (ADS)

    Rosidi, Ayip; Lenggo Ginta, Turnad; Rani, Ahmad Majdi Bin Abdul

    2017-05-01

    Thermal necrosis results fracture problems and implant failure if temperature exceeds 47 °C for one minute during bone drilling. To solve this problem, this work studied a new thermal model by using three drilling parameters: drill diameter, feed rate and spindle speed. Effects of those parameters to heat generation were studied. The drill diameters were 4 mm, 6 mm and 6 mm; the feed rates were 80 mm/min, 100 mm/min and 120 mm/min whereas the spindle speeds were 400 rpm, 500 rpm and 600 rpm then an optimization was done by Taguchi method to which combination parameter can be used to prevent thermal necrosis during bone drilling. The results showed that all the combination of parameters produce confidence results which were below 47 °C and finite element analysis combined with Taguchi method can be used for predicting temperature generation and optimizing bone drilling parameters prior to clinical bone drilling. All of the combination parameters can be used for surgeon to achieve sustainable orthopaedic surgery.

  1. Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Golmohammady, Sh; Ghafary, B.

    2016-06-01

    In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2  ×  2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.

  2. Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks

    PubMed Central

    Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek

    2015-01-01

    Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org. PMID:26063822

  3. Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks.

    PubMed

    Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek

    2015-07-06

    Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org.

  4. Hierarchical optimization for neutron scattering problems

    DOE PAGES

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu; ...

    2016-03-14

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  5. Hierarchical optimization for neutron scattering problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  6. Simulation modeling for stratified breast cancer screening - a systematic review of cost and quality of life assumptions.

    PubMed

    Arnold, Matthias

    2017-12-02

    The economic evaluation of stratified breast cancer screening gains momentum, but produces also very diverse results. Systematic reviews so far focused on modeling techniques and epidemiologic assumptions. However, cost and utility parameters received only little attention. This systematic review assesses simulation models for stratified breast cancer screening based on their cost and utility parameters in each phase of breast cancer screening and care. A literature review was conducted to compare economic evaluations with simulation models of personalized breast cancer screening. Study quality was assessed using reporting guidelines. Cost and utility inputs were extracted, standardized and structured using a care delivery framework. Studies were then clustered according to their study aim and parameters were compared within the clusters. Eighteen studies were identified within three study clusters. Reporting quality was very diverse in all three clusters. Only two studies in cluster 1, four studies in cluster 2 and one study in cluster 3 scored high in the quality appraisal. In addition to the quality appraisal, this review assessed if the simulation models were consistent in integrating all relevant phases of care, if utility parameters were consistent and methodological sound and if cost were compatible and consistent in the actual parameters used for screening, diagnostic work up and treatment. Of 18 studies, only three studies did not show signs of potential bias. This systematic review shows that a closer look into the cost and utility parameter can help to identify potential bias. Future simulation models should focus on integrating all relevant phases of care, using methodologically sound utility parameters and avoiding inconsistent cost parameters.

  7. A fast and efficient method for device level layout analysis

    NASA Astrophysics Data System (ADS)

    Dong, YaoQi; Zou, Elaine; Pang, Jenny; Huang, Lucas; Yang, Legender; Zhang, Chunlei; Du, Chunshan; Hu, Xinyi; Wan, Qijian

    2017-03-01

    There is an increasing demand for device level layout analysis, especially as technology advances. The analysis is to study standard cells by extracting and classifying critical dimension parameters. There are couples of parameters to extract, like channel width, length, gate to active distance, and active to adjacent active distance, etc. for 14nm technology, there are some other parameters that are cared about. On the one hand, these parameters are very important for studying standard cell structures and spice model development with the goal of improving standard cell manufacturing yield and optimizing circuit performance; on the other hand, a full chip device statistics analysis can provide useful information to diagnose the yield issue. Device analysis is essential for standard cell customization and enhancements and manufacturability failure diagnosis. Traditional parasitic parameters extraction tool like Calibre xRC is powerful but it is not sufficient for this device level layout analysis application as engineers would like to review, classify and filter out the data more easily. This paper presents a fast and efficient method based on Calibre equation-based DRC (eqDRC). Equation-based DRC extends the traditional DRC technology to provide a flexible programmable modeling engine which allows the end user to define grouped multi-dimensional feature measurements using flexible mathematical expressions. This paper demonstrates how such an engine and its programming language can be used to implement critical device parameter extraction. The device parameters are extracted and stored in a DFM database which can be processed by Calibre YieldServer. YieldServer is data processing software that lets engineers query, manipulate, modify, and create data in a DFM database. These parameters, known as properties in eqDRC language, can be annotated back to the layout for easily review. Calibre DesignRev can create a HTML formatted report of the results displayed in Calibre RVE which makes it easy to share results among groups. This method has been proven and used in SMIC PDE team and SPICE team.

  8. Measurement of angular parameters from the decay B0 → K*0μ+μ- in proton-proton collisions at √{ s } = 8TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Linwei, L.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elgammal, S.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Lomidze, D.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Dini, P.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Bat, A.; Boran, F.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Tok, U. G.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-06-01

    Angular distributions of the decay B0 →K*0μ+μ- are studied using a sample of proton-proton collisions at √{ s } = 8TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5fb-1. An angular analysis is performed to determine the P1 and P5‧ parameters, where the P5‧ parameter is of particular interest because of recent measurements that indicate a potential discrepancy with the standard model predictions. Based on a sample of 1397 signal events, the P1 and P5‧ parameters are determined as a function of the dimuon invariant mass squared. The measurements are in agreement with predictions based on the standard model.

  9. Watershed-based Morphometric Analysis: A Review

    NASA Astrophysics Data System (ADS)

    Sukristiyanti, S.; Maria, R.; Lestiana, H.

    2018-02-01

    Drainage basin/watershed analysis based on morphometric parameters is very important for watershed planning. Morphometric analysis of watershed is the best method to identify the relationship of various aspects in the area. Despite many technical papers were dealt with in this area of study, there is no particular standard classification and implication of each parameter. It is very confusing to evaluate a value of every morphometric parameter. This paper deals with the meaning of values of the various morphometric parameters, with adequate contextual information. A critical review is presented on each classification, the range of values, and their implications. Besides classification and its impact, the authors also concern about the quality of input data, either in data preparation or scale/the detail level of mapping. This review paper hopefully can give a comprehensive explanation to assist the upcoming research dealing with morphometric analysis.

  10. Fault Detection of Bearing Systems through EEMD and Optimization Algorithm

    PubMed Central

    Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan

    2017-01-01

    This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772

  11. Numerical Parameter Optimization of the Ignition and Growth Model for HMX Based Plastic Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Gambino, James; Tarver, Craig; Springer, H. Keo; White, Bradley; Fried, Laurence

    2017-06-01

    We present a novel method for optimizing parameters of the Ignition and Growth reactive flow (I&G) model for high explosives. The I&G model can yield accurate predictions of experimental observations. However, calibrating the model is a time-consuming task especially with multiple experiments. In this study, we couple the differential evolution global optimization algorithm to simulations of shock initiation experiments in the multi-physics code ALE3D. We develop parameter sets for HMX based explosives LX-07 and LX-10. The optimization finds the I&G model parameters that globally minimize the difference between calculated and experimental shock time of arrival at embedded pressure gauges. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC LLNL-ABS- 724898.

  12. Copper-based nanomaterials for environmental decontamination - An overview on technical and toxicological aspects.

    PubMed

    Khalaj, Mohammadreza; Kamali, Mohammadreza; Khodaparast, Zahra; Jahanshahi, Akram

    2018-02-01

    Synthesis of the various types of engineered nanomaterials has gained a huge attention in recent years for various applications. Copper based nanomaterials are a branch of this category seem to be able to provide an efficient and cost-effective way for the treatment of the persistent effluents. The present work aimed to study the various parameters may involve in the overall performance of the copper based nanomaterials for environmental clean-up purposes. To this end, the related characteristics of copper based nanomaterials and their effects on the nanomaterials reactivity and the environmental and operating parameters have been critically reviewed. Toxicological study of the copper based nanomaterials has been also considered as a factor with high importance for the selection of a typical nanomaterial with optimum performance and minimum environmental and health subsequent effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Natural oils and waxes: studies on stick bases.

    PubMed

    Budai, Lívia; Antal, István; Klebovich, Imre; Budai, Marianna

    2012-01-01

    The objective of the present article was to examine the role of origin and quantity of selected natural oils and waxes in the determination of the thermal properties and hardness of stick bases. The natural oils and waxes selected for the study were sunflower, castor, jojoba, and coconut oils. The selected waxes were yellow beeswax, candelilla wax, and carnauba wax. The hardness of the formulations is a critical parameter from the aspect of their application. Hardness was characterized by the measurement of compression strength along with the softening point, the drop point, and differential scanning calorimetry (DSC). It can be concluded that coconut oil, jojoba oil, and carnauba wax have the greatest influence on the thermal parameters of stick bases.

  14. Transformation to equivalent dimensions—a new methodology to study earthquake clustering

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw

    2014-05-01

    A seismic event is represented by a point in a parameter space, quantified by the vector of parameter values. Studies of earthquake clustering involve considering distances between such points in multidimensional spaces. However, the metrics of earthquake parameters are different, hence the metric in a multidimensional parameter space cannot be readily defined. The present paper proposes a solution of this metric problem based on a concept of probabilistic equivalence of earthquake parameters. Under this concept the lengths of parameter intervals are equivalent if the probability for earthquakes to take values from either interval is the same. Earthquake clustering is studied in an equivalent rather than the original dimensions space, where the equivalent dimension (ED) of a parameter is its cumulative distribution function. All transformed parameters are of linear scale in [0, 1] interval and the distance between earthquakes represented by vectors in any ED space is Euclidean. The unknown, in general, cumulative distributions of earthquake parameters are estimated from earthquake catalogues by means of the model-free non-parametric kernel estimation method. Potential of the transformation to EDs is illustrated by two examples of use: to find hierarchically closest neighbours in time-space and to assess temporal variations of earthquake clustering in a specific 4-D phase space.

  15. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data

    NASA Astrophysics Data System (ADS)

    Rai, Praveen Kumar; Chandel, Rajeev Singh; Mishra, Varun Narayan; Singh, Prafull

    2018-03-01

    Satellite based remote sensing technology has proven to be an effectual tool in analysis of drainage networks, study of surface morphological features and their correlation with groundwater management prospect at basin level. The present study highlights the effectiveness and advantage of remote sensing and GIS-based analysis for quantitative and qualitative assessment of flood plain region of lower Kosi river basin based on morphometric analysis. In this study, ASTER DEM is used to extract the vital hydrological parameters of lower Kosi river basin in ARC GIS software. Morphometric parameters, e.g., stream order, stream length, bifurcation ratio, drainage density, drainage frequency, drainage texture, form factor, circularity ratio, elongation ratio, etc., have been calculated for the Kosi basin and their hydrological inferences were discussed. Most of the morphometric parameters such as bifurcation ratio, drainage density, drainage frequency, drainage texture concluded that basin has good prospect for water management program for various purposes and also generated data base that can provide scientific information for site selection of water-harvesting structures and flood management activities in the basin. Land use land cover (LULC) of the basin were also prepared from Landsat data of 2005, 2010 and 2015 to assess the change in dynamic of the basin and these layers are very noteworthy for further watershed prioritization.

  16. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  17. A Study of Chemical Composition of δ Scuti-Type Stars Based on the Observations with the BTA and RTT-150

    NASA Astrophysics Data System (ADS)

    Galeev, A. I.; Berdnikova, V. M.; Ivanova, D. V.; Kudryavtsev, D. O.; Shimanskaya, N. N.; Shimansky, V. V.; Balashova, M. O.

    2017-06-01

    The results of a study of a sample of δ Scuti-type stars obtained from the observations with the BTA and RTT-150 are presented. Based on photometric data, we measured and analyzed the fundamental parameters of all the studied stars. For eight stars (for two of them for the first time), the fundamental parameters of the atmospheres (Teff, log g, [Fe/H]) and the chemical composition for 29 elements in the LTE-approximation are received using spectroscopic observations. The chemical composition analysis demonstrates both the solar abundances of chemical elements and the anomalies of chemical composition typical of Am stars in the studied sample of δ Scuti-type stars.

  18. Preliminary Result of Earthquake Source Parameters the Mw 3.4 at 23:22:47 IWST, August 21, 2004, Centre Java, Indonesia Based on MERAMEX Project

    NASA Astrophysics Data System (ADS)

    Laksono, Y. A.; Brotopuspito, K. S.; Suryanto, W.; Widodo; Wardah, R. A.; Rudianto, I.

    2018-03-01

    In order to study the structure subsurface at Merapi Lawu anomaly (MLA) using forward modelling or full waveform inversion, it needs a good earthquake source parameters. The best result source parameter comes from seismogram with high signal to noise ratio (SNR). Beside that the source must be near the MLA location and the stations that used as parameters must be outside from MLA in order to avoid anomaly. At first the seismograms are processed by software SEISAN v10 using a few stations from MERAMEX project. After we found the hypocentre that match the criterion we fine-tuned the source parameters using more stations. Based on seismogram from 21 stations, it is obtained the source parameters as follows: the event is at August, 21 2004, on 23:22:47 Indonesia western standard time (IWST), epicentre coordinate -7.80°S, 101.34°E, hypocentre 47.3 km, dominant frequency f0 = 3.0 Hz, the earthquake magnitude Mw = 3.4.

  19. Acoustic parameters inversion and sediment properties in the Yellow River reservoir

    NASA Astrophysics Data System (ADS)

    Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei

    2018-03-01

    The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.

  20. Differentiation of Wines Treated with Wood Chips Based on Their Phenolic Content, Volatile Composition, and Sensory Parameters.

    PubMed

    Kyraleou, Maria; Kallithraka, Stamatina; Chira, Kleopatra; Tzanakouli, Eleni; Ligas, Ioannis; Kotseridis, Yorgos

    2015-12-01

    The effects of both wood chips addition and contact time on phenolic content, volatile composition, color parameters, and organoleptic character of red wine made by a native Greek variety (Agiorgitiko) were evaluated. For this purpose, chips from American, French, Slavonia oak, and Acacia were added in the wine after fermentation. A mixture consisting of 50% French and 50% Americal oak chips was also evaluated. In an attempt to categorize wine samples, various chemical parameters of wines and sensory parameters were studied after 1, 2, and 3 mo of contact time with chips. The results showed that regardless of the type of wood chips added in the wines, it was possible to differentiate the samples according to the contact time based on their phenolic composition and color parameters. In addition, wood-extracted volatile compounds seem to be the critical parameter that could separate the samples according to the wood type. The wines that were in contact with Acacia and Slavonia chips could be separated from the rest mainly due to their distinct sensory characters. © 2015 Institute of Food Technologists®

  1. Uncertainty analysis in geospatial merit matrix–based hydropower resource assessment

    DOE PAGES

    Pasha, M. Fayzul K.; Yeasmin, Dilruba; Saetern, Sen; ...

    2016-03-30

    Hydraulic head and mean annual streamflow, two main input parameters in hydropower resource assessment, are not measured at every point along the stream. Translation and interpolation are used to derive these parameters, resulting in uncertainties. This study estimates the uncertainties and their effects on model output parameters: the total potential power and the number of potential locations (stream-reach). These parameters are quantified through Monte Carlo Simulation (MCS) linking with a geospatial merit matrix based hydropower resource assessment (GMM-HRA) Model. The methodology is applied to flat, mild, and steep terrains. Results show that the uncertainty associated with the hydraulic head ismore » within 20% for mild and steep terrains, and the uncertainty associated with streamflow is around 16% for all three terrains. Output uncertainty increases as input uncertainty increases. However, output uncertainty is around 10% to 20% of the input uncertainty, demonstrating the robustness of the GMM-HRA model. Hydraulic head is more sensitive to output parameters in steep terrain than in flat and mild terrains. Furthermore, mean annual streamflow is more sensitive to output parameters in flat terrain.« less

  2. Inquiry-Based Stress Reduction Meditation Technique for Teacher Burnout: A Qualitative Study

    ERIC Educational Resources Information Center

    Schnaider-Levi, Lia; Mitnik, Inbal; Zafrani, Keren; Goldman, Zehavit; Lev-Ari, Shahar

    2017-01-01

    An inquiry-based intervention has been found to have a positive effect on burnout and mental well-being parameters among teachers. The aim of the current study was to qualitatively evaluate the effect of the inquiry-based stress reduction (IBSR) meditation technique on the participants. Semi-structured interviews were conducted before and after…

  3. Study of parameters in precision optical glass molding

    NASA Astrophysics Data System (ADS)

    Ni, Ying; Wang, Qin-hua; Yu, Jing-chi

    2010-10-01

    Precision glass compression molding is an attractive approach to manufacture small precision optics in large volume over traditional manufacturing techniques because of its advantages such as lower cost, faster time to market and being environment friendly. In order to study the relationship between the surface figures of molded lenses and molding process parameters such as temperature, pressure, heating rate, cooling rate and so on, we present some glass compression molding experiments using same low Tg (transition temperature) glass material to produce two different kinds of aspheric lenses by different molding process parameters. Based on results from the experiments, we know the major factors influencing surface figure of molded lenses and the changing range of these parameters. From the knowledge we could easily catch proper molding parameters which are suitable for aspheric lenses with diameter from 10mm to 30mm.

  4. Actuator model of electrostrictive polymers (EPs) for microactuators

    NASA Astrophysics Data System (ADS)

    Kim, Hunmo; Oh, Sinjong; Hwang, Kyoil; Choi, Hyoukryeol; Jeon, Jaewook; Nam, Jaedo

    2001-07-01

    Recently, Electrostrictive polymers (EPs) are studied for micro-actuator, because of similarity of body tissue. Electrostrictive polymers (EPs) are based on the deformation of dielectric elastomer polymer in the presence of an electric field. Modeling of electrostrictive polymer has been studied, which is about voltage and displacement. And there are many parameters such as Young's modulus, voltage, thickness of EPs, pre-strain, dielectric, frequency and temperature which effect to movement of EPs. To do exact modeling, all parameters are included. In order to use as actuator, we accurately understood about the parameter that we refer above. And we have to execute modeling which parameters are considered. We used FEM in order to understand effects of parameters. Specially, because of pre-strain effects are very important, we derive the relations of stress and strain by using elastic strain energy.

  5. Creating an index to measure health state of depressed patients in automated healthcare databases: the methodology.

    PubMed

    François, Clément; Tanasescu, Adrian; Lamy, François-Xavier; Despiegel, Nicolas; Falissard, Bruno; Chalem, Ylana; Lançon, Christophe; Llorca, Pierre-Michel; Saragoussi, Delphine; Verpillat, Patrice; Wade, Alan G; Zighed, Djamel A

    2017-01-01

    Background and objective : Automated healthcare databases (AHDB) are an important data source for real life drug and healthcare use. In the filed of depression, lack of detailed clinical data requires the use of binary proxies with important limitations. The study objective was to create a Depressive Health State Index (DHSI) as a continuous health state measure for depressed patients using available data in an AHDB. Methods: The study was based on historical cohort design using the UK Clinical Practice Research Datalink (CPRD). Depressive episodes (depression diagnosis with an antidepressant prescription) were used to create the DHSI through 6 successive steps: (1) Defining study design; (2) Identifying constituent parameters; (3) Assigning relative weights to the parameters; (4) Ranking based on the presence of parameters; (5) Standardizing the rank of the DHSI; (6) Developing a regression model to derive the DHSI in any other sample. Results : The DHSI ranged from 0 (worst) to 100 (best health state) comprising 29 parameters. The proportion of depressive episodes with a remission proxy increased with DHSI quartiles. Conclusion : A continuous outcome for depressed patients treated by antidepressants was created in an AHDB using several different variables and allowed more granularity than currently used proxies.

  6. Estimating Soil Hydraulic Parameters using Gradient Based Approach

    NASA Astrophysics Data System (ADS)

    Rai, P. K.; Tripathi, S.

    2017-12-01

    The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.

  7. Neural network-based preprocessing to estimate the parameters of the X-ray emission of a single-temperature thermal plasma

    NASA Astrophysics Data System (ADS)

    Ichinohe, Y.; Yamada, S.; Miyazaki, N.; Saito, S.

    2018-04-01

    We present data preprocessing based on an artificial neural network to estimate the parameters of the X-ray emission spectra of a single-temperature thermal plasma. The method finds appropriate parameters close to the global optimum. The neural network is designed to learn the parameters of the thermal plasma (temperature, abundance, normalization and redshift) of the input spectra. After training using 9000 simulated X-ray spectra, the network has grown to predict all the unknown parameters with uncertainties of about a few per cent. The performance dependence on the network structure has been studied. We applied the neural network to an actual high-resolution spectrum obtained with Hitomi. The predicted plasma parameters agree with the known best-fitting parameters of the Perseus cluster within uncertainties of ≲10 per cent. The result shows that neural networks trained by simulated data might possibly be used to extract a feature built in the data. This would reduce human-intensive preprocessing costs before detailed spectral analysis, and would help us make the best use of the large quantities of spectral data that will be available in the coming decades.

  8. Multidimensional Optimization of Signal Space Distance Parameters in WLAN Positioning

    PubMed Central

    Brković, Milenko; Simić, Mirjana

    2014-01-01

    Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443

  9. Optimization of Parameter Ranges for Composite Tape Winding Process Based on Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Shi, Yaoyao; He, Xiaodong; Kang, Chao; Deng, Bo; Song, Shibo

    2017-08-01

    This study is focus on the parameters sensitivity of winding process for composite prepreg tape. The methods of multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis are proposed. The polynomial empirical model of interlaminar shear strength is established by response surface experimental method. Using this model, the relative sensitivity of key process parameters including temperature, tension, pressure and velocity is calculated, while the single-parameter sensitivity curves are obtained. According to the analysis of sensitivity curves, the stability and instability range of each parameter are recognized. Finally, the optimization method of winding process parameters is developed. The analysis results show that the optimized ranges of the process parameters for interlaminar shear strength are: temperature within [100 °C, 150 °C], tension within [275 N, 387 N], pressure within [800 N, 1500 N], and velocity within [0.2 m/s, 0.4 m/s], respectively.

  10. Optimal Bayesian Adaptive Design for Test-Item Calibration.

    PubMed

    van der Linden, Wim J; Ren, Hao

    2015-06-01

    An optimal adaptive design for test-item calibration based on Bayesian optimality criteria is presented. The design adapts the choice of field-test items to the examinees taking an operational adaptive test using both the information in the posterior distributions of their ability parameters and the current posterior distributions of the field-test parameters. Different criteria of optimality based on the two types of posterior distributions are possible. The design can be implemented using an MCMC scheme with alternating stages of sampling from the posterior distributions of the test takers' ability parameters and the parameters of the field-test items while reusing samples from earlier posterior distributions of the other parameters. Results from a simulation study demonstrated the feasibility of the proposed MCMC implementation for operational item calibration. A comparison of performances for different optimality criteria showed faster calibration of substantial numbers of items for the criterion of D-optimality relative to A-optimality, a special case of c-optimality, and random assignment of items to the test takers.

  11. Anisotropy of the angular distribution of fission fragments in heavy-ion fusion-fission reactions: The influence of the level-density parameter and the neck thickness

    NASA Astrophysics Data System (ADS)

    Naderi, D.; Pahlavani, M. R.; Alavi, S. A.

    2013-05-01

    Using the Langevin dynamical approach, the neutron multiplicity and the anisotropy of angular distribution of fission fragments in heavy ion fusion-fission reactions were calculated. We applied one- and two-dimensional Langevin equations to study the decay of a hot excited compound nucleus. The influence of the level-density parameter on neutron multiplicity and anisotropy of angular distribution of fission fragments was investigated. We used the level-density parameter based on the liquid drop model with two different values of the Bartel approach and Pomorska approach. Our calculations show that the anisotropy and neutron multiplicity are affected by level-density parameter and neck thickness. The calculations were performed on the 16O+208Pb and 20Ne+209Bi reactions. Obtained results in the case of the two-dimensional Langevin with a level-density parameter based on Bartel and co-workers approach are in better agreement with experimental data.

  12. Characterization and geographical discrimination of commercial Citrus spp. honeys produced in different Mediterranean countries based on minerals, volatile compounds and physicochemical parameters, using chemometrics.

    PubMed

    Karabagias, Ioannis K; Louppis, Artemis P; Karabournioti, Sofia; Kontakos, Stavros; Papastephanou, Chara; Kontominas, Michael G

    2017-02-15

    The objective of the present study was: i) to characterize Mediterranean citrus honeys based on conventional physicochemical parameter values, volatile compounds, and mineral content ii) to investigate the potential of above parameters to differentiate citrus honeys according to geographical origin using chemometrics. Thus, 37 citrus honey samples were collected during harvesting periods 2013 and 2014 from Greece, Egypt, Morocco, and Spain. Conventional physicochemical and CIELAB colour parameters were determined using official methods of analysis and the Commission Internationale de l' Eclairage recommendations, respectively. Minerals were determined using ICP-OES and volatiles using SPME-GC/MS. Results showed that honey samples analyzed, met the standard quality criteria set by the EU and were successfully classified according to geographical origin. Correct classification rates were 97.3% using 8 physicochemical parameter values, 86.5% using 15 volatile compound data and 83.8% using 13 minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code

    NASA Astrophysics Data System (ADS)

    Kurosu, Keita; Takashina, Masaaki; Koizumi, Masahiko; Das, Indra J.; Moskvin, Vadim P.

    2014-10-01

    Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.

  14. Developmental immunotoxicity of chemicals in rodents and its possible regulatory impact.

    PubMed

    Hessel, Ellen V S; Tonk, Elisa C M; Bos, Peter M J; van Loveren, Henk; Piersma, Aldert H

    2015-01-01

    Around 25% of the children in developed countries are affected with immune-based diseases. Juvenile onset diseases such as allergic, inflammatory and autoimmune diseases have shown increasing prevalences in the last decades. The role of chemical exposures in these phenomena is unclear. It is thought that the developmental immune system is more susceptible to toxicants than the mature situation. Developmental immunotoxicity (DIT) testing is nowadays not or minimally included in regulatory toxicology requirements. We reviewed whether developmental immune parameters in rodents would provide relatively sensitive endpoints of toxicity, whose inclusion in regulatory toxicity testing might improve hazard identification and risk assessment of chemicals. For each of the nine reviewed toxicants, the developing immune system was found to be at least as sensitive or more sensitive than the general (developmental) toxicity parameters. Functional immune (antigen-challenged) parameters appear more affected than structural (non-challenged) immune parameters. Especially, antibody responses to immune challenges with keyhole limpet hemocyanine or sheep red blood cells and delayed-type hypersensitivity responses appear to provide sensitive parameters of developmental immune toxicity. Comparison with current tolerable daily intakes (TDI) and their underlying overall no observed adverse effect levels showed that for some of the compounds reviewed, the TDI may need reconsideration based on developmental immune parameters. From these data, it can be concluded that the developing immune system is very sensitive to the disruption of toxicants independent of study design. Consideration of including functional DIT parameters in current hazard identification guidelines and wider application of relevant study protocols is warranted.

  15. [Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model].

    PubMed

    He, Li-hong; Wang, Hai-yan; Lei, Xiang-dong

    2016-02-01

    Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a case study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The results showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' teraction effect.

  16. A Comparative Experimental Study on the Use of Machine Learning Approaches for Automated Valve Monitoring Based on Acoustic Emission Parameters

    NASA Astrophysics Data System (ADS)

    Ali, Salah M.; Hui, K. H.; Hee, L. M.; Salman Leong, M.; Al-Obaidi, M. A.; Ali, Y. H.; Abdelrhman, Ahmed M.

    2018-03-01

    Acoustic emission (AE) analysis has become a vital tool for initiating the maintenance tasks in many industries. However, the analysis process and interpretation has been found to be highly dependent on the experts. Therefore, an automated monitoring method would be required to reduce the cost and time consumed in the interpretation of AE signal. This paper investigates the application of two of the most common machine learning approaches namely artificial neural network (ANN) and support vector machine (SVM) to automate the diagnosis of valve faults in reciprocating compressor based on AE signal parameters. Since the accuracy is an essential factor in any automated diagnostic system, this paper also provides a comparative study based on predictive performance of ANN and SVM. AE parameters data was acquired from single stage reciprocating air compressor with different operational and valve conditions. ANN and SVM diagnosis models were subsequently devised by combining AE parameters of different conditions. Results demonstrate that ANN and SVM models have the same results in term of prediction accuracy. However, SVM model is recommended to automate diagnose the valve condition in due to the ability of handling a high number of input features with low sampling data sets.

  17. The physical and biological basis of quantitative parameters derived from diffusion MRI

    PubMed Central

    2012-01-01

    Diffusion magnetic resonance imaging is a quantitative imaging technique that measures the underlying molecular diffusion of protons. Diffusion-weighted imaging (DWI) quantifies the apparent diffusion coefficient (ADC) which was first used to detect early ischemic stroke. However this does not take account of the directional dependence of diffusion seen in biological systems (anisotropy). Diffusion tensor imaging (DTI) provides a mathematical model of diffusion anisotropy and is widely used. Parameters, including fractional anisotropy (FA), mean diffusivity (MD), parallel and perpendicular diffusivity can be derived to provide sensitive, but non-specific, measures of altered tissue structure. They are typically assessed in clinical studies by voxel-based or region-of-interest based analyses. The increasing recognition of the limitations of the diffusion tensor model has led to more complex multi-compartment models such as CHARMED, AxCaliber or NODDI being developed to estimate microstructural parameters including axonal diameter, axonal density and fiber orientations. However these are not yet in routine clinical use due to lengthy acquisition times. In this review, I discuss how molecular diffusion may be measured using diffusion MRI, the biological and physical bases for the parameters derived from DWI and DTI, how these are used in clinical studies and the prospect of more complex tissue models providing helpful micro-structural information. PMID:23289085

  18. State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.

    PubMed

    Elenchezhiyan, M; Prakash, J

    2015-09-01

    In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Quantifying model-structure- and parameter-driven uncertainties in spring wheat phenology prediction with Bayesian analysis

    DOE PAGES

    Alderman, Phillip D.; Stanfill, Bryan

    2016-10-06

    Recent international efforts have brought renewed emphasis on the comparison of different agricultural systems models. Thus far, analysis of model-ensemble simulated results has not clearly differentiated between ensemble prediction uncertainties due to model structural differences per se and those due to parameter value uncertainties. Additionally, despite increasing use of Bayesian parameter estimation approaches with field-scale crop models, inadequate attention has been given to the full posterior distributions for estimated parameters. The objectives of this study were to quantify the impact of parameter value uncertainty on prediction uncertainty for modeling spring wheat phenology using Bayesian analysis and to assess the relativemore » contributions of model-structure-driven and parameter-value-driven uncertainty to overall prediction uncertainty. This study used a random walk Metropolis algorithm to estimate parameters for 30 spring wheat genotypes using nine phenology models based on multi-location trial data for days to heading and days to maturity. Across all cases, parameter-driven uncertainty accounted for between 19 and 52% of predictive uncertainty, while model-structure-driven uncertainty accounted for between 12 and 64%. Here, this study demonstrated the importance of quantifying both model-structure- and parameter-value-driven uncertainty when assessing overall prediction uncertainty in modeling spring wheat phenology. More generally, Bayesian parameter estimation provided a useful framework for quantifying and analyzing sources of prediction uncertainty.« less

  20. Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators.

    PubMed

    Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit

    2017-01-01

    In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.

  1. Agreement in cardiovascular risk rating based on anthropometric parameters

    PubMed Central

    Dantas, Endilly Maria da Silva; Pinto, Cristiane Jordânia; Freitas, Rodrigo Pegado de Abreu; de Medeiros, Anna Cecília Queiroz

    2015-01-01

    Objective To investigate the agreement in evaluation of risk of developing cardiovascular diseases based on anthropometric parameters in young adults. Methods The study included 406 students, measuring weight, height, and waist and neck circumferences. Waist-to-height ratio and the conicity index. The kappa coefficient was used to assess agreement in risk classification for cardiovascular diseases. The positive and negative specific agreement values were calculated as well. The Pearson chi-square (χ2) test was used to assess associations between categorical variables (p<0.05). Results The majority of the parameters assessed (44%) showed slight (k=0.21 to 0.40) and/or poor agreement (k<0.20), with low values of negative specific agreement. The best agreement was observed between waist circumference and waist-to-height ratio both for the general population (k=0.88) and between sexes (k=0.93 to 0.86). There was a significant association (p<0.001) between the risk of cardiovascular diseases and females when using waist circumference and conicity index, and with males when using neck circumference. This resulted in a wide variation in the prevalence of cardiovascular disease risk (5.5%-36.5%), depending on the parameter and the sex that was assessed. Conclusion The results indicate variability in agreement in assessing risk for cardiovascular diseases, based on anthropometric parameters, and which also seems to be influenced by sex. Further studies in the Brazilian population are required to better understand this issue. PMID:26466060

  2. Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for ecosystem carbon cycle studies

    Treesearch

    Y. He; Q. Zhuang; A.D. McGuire; Y. Liu; M. Chen

    2013-01-01

    Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations inmodeling regional carbon dynamics and explore the...

  3. Development and investigation of the nanosensor-based apparatus to assess the psycho-emotional state of a person

    NASA Astrophysics Data System (ADS)

    Avdeeva, D. K.; Ivanov, M. L.; Natalinova, N. M.; Nguyen, D. K.; Rybalka, S. A.; Turushev, N. V.

    2017-08-01

    Psycho-emotional state is one of the factors effecting human health. Its evaluation allows revealing hidden psychological trauma which can be reason of chronic stress, depression or psychosomatic disorders. Modern techniques of objective psycho-emotional state assessment involve a device which detects electrophysiological parameters of human body connected with emotional reaction and psychological condition. The present study covers development and testing of psycho-emotional state assessment device. The developed implement uses three methods of electrophysiological activity evaluation: electrocardiography, electroencephalography and galvanic skin response detection. The device represents hardware-software complex consisting of nanosensors, measuring unit, lead wires and laptop. Filters are excluded from the measuring circuit due to metrological parameters and noise immunity of implemented nanosensors. This solution minimizes signal distortion and allows measuring signals of 0.3 μV and higher in a wide frequency range (0-10000 Hz) with minimal data loss. In addition, results of preliminary medical studies aimed to find correspondence between different psycho-emotional states and electrophysiological parameters are described. Impact of filters on electrophysiological studies was studied. According to the results conventional filters significantly distort EEG channel information. Further research will be directed to the creation of complete base of electrophysiological parameters related to a particular emotion.

  4. Tailoring of processing parameters for sintering microsphere-based scaffolds with dense-phase carbon dioxide

    PubMed Central

    Jeon, Ju Hyeong; Bhamidipati, Manjari; Sridharan, BanuPriya; Scurto, Aaron M.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Microsphere-based polymeric tissue-engineered scaffolds offer the advantage of shape-specific constructs with excellent spatiotemporal control and interconnected porous structures. The use of these highly versatile scaffolds requires a method to sinter the discrete microspheres together into a cohesive network, typically with the use of heat or organic solvents. We previously introduced subcritical CO2 as a sintering method for microsphere-based scaffolds; here we further explored the effect of processing parameters. Gaseous or subcritical CO2 was used for making the scaffolds, and various pressures, ratios of lactic acid to glycolic acid in poly(lactic acid-co-glycolic acid), and amounts of NaCl particles were explored. By changing these parameters, scaffolds with different mechanical properties and morphologies were prepared. The preferred range of applied subcritical CO2 was 15–25 bar. Scaffolds prepared at 25 bar with lower lactic acid ratios and without NaCl particles had a higher stiffness, while the constructs made at 15 bar, lower glycolic acid content, and with salt granules had lower elastic moduli. Human umbilical cord mesenchymal stromal cells (hUCMSCs) seeded on the scaffolds demonstrated that cells penetrate the scaffolds and remain viable. Overall, the study demonstrated the dependence of the optimal CO2 sintering parameters on the polymer and conditions, and identified desirable CO2 processing parameters to employ in the sintering of microsphere-based scaffolds as a more benign alternative to heat-sintering or solvent-based sintering methods. PMID:23115065

  5. Parameter discovery in stochastic biological models using simulated annealing and statistical model checking.

    PubMed

    Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J

    2014-01-01

    Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.

  6. A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation.

    PubMed

    Layton, D M; Bundschuh, R

    2005-01-01

    Computational RNA secondary structure prediction is rather well established. However, such prediction algorithms always depend on a large number of experimentally measured parameters. Here, we study how sensitive structure prediction algorithms are to changes in these parameters. We found already that for changes corresponding to the actual experimental error to which these parameters have been determined, 30% of the structure are falsely predicted whereas the ground state structure is preserved under parameter perturbation in only 5% of all the cases. We establish that base-pairing probabilities calculated in a thermal ensemble are viable although not a perfect measure for the reliability of the prediction of individual structure elements. Here, a new measure of stability using parameter perturbation is proposed, and its limitations are discussed.

  7. Identifying mechanical property parameters of planetary soil using in-situ data obtained from exploration rovers

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Gao, Haibo; Liu, Zhen; Deng, Zongquan; Liu, Guangjun

    2015-12-01

    Identifying the mechanical property parameters of planetary soil based on terramechanics models using in-situ data obtained from autonomous planetary exploration rovers is both an important scientific goal and essential for control strategy optimization and high-fidelity simulations of rovers. However, identifying all the terrain parameters is a challenging task because of the nonlinear and coupling nature of the involved functions. Three parameter identification methods are presented in this paper to serve different purposes based on an improved terramechanics model that takes into account the effects of slip, wheel lugs, etc. Parameter sensitivity and coupling of the equations are analyzed, and the parameters are grouped according to their sensitivity to the normal force, resistance moment and drawbar pull. An iterative identification method using the original integral model is developed first. In order to realize real-time identification, the model is then simplified by linearizing the normal and shearing stresses to derive decoupled closed-form analytical equations. Each equation contains one or two groups of soil parameters, making step-by-step identification of all the unknowns feasible. Experiments were performed using six different types of single-wheels as well as a four-wheeled rover moving on planetary soil simulant. All the unknown model parameters were identified using the measured data and compared with the values obtained by conventional experiments. It is verified that the proposed iterative identification method provides improved accuracy, making it suitable for scientific studies of soil properties, whereas the step-by-step identification methods based on simplified models require less calculation time, making them more suitable for real-time applications. The models have less than 10% margin of error comparing with the measured results when predicting the interaction forces and moments using the corresponding identified parameters.

  8. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Ma, Jinzhu; Zhu, Gaofeng; Ma, Ting; Han, Tuo; Feng, Li Li

    2017-01-01

    Global and regional estimates of daily evapotranspiration are essential to our understanding of the hydrologic cycle and climate change. In this study, we selected the radiation-based Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) model and assessed it at a daily time scale by using 44 flux towers. These towers distributed in a wide range of ecological systems: croplands, deciduous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest, grasslands, mixed forests, savannas, and shrublands. A regional land surface evapotranspiration model with a relatively simple structure, the PT-JPL model largely uses ecophysiologically-based formulation and parameters to relate potential evapotranspiration to actual evapotranspiration. The results using the original model indicate that the model always overestimates evapotranspiration in arid regions. This likely results from the misrepresentation of water limitation and energy partition in the model. By analyzing physiological processes and determining the sensitive parameters, we identified a series of parameter sets that can increase model performance. The model with optimized parameters showed better performance (R2 = 0.2-0.87; Nash-Sutcliffe efficiency (NSE) = 0.1-0.87) at each site than the original model (R2 = 0.19-0.87; NSE = -12.14-0.85). The results of the optimization indicated that the parameter β (water control of soil evaporation) was much lower in arid regions than in relatively humid regions. Furthermore, the optimized value of parameter m1 (plant control of canopy transpiration) was mostly between 1 to 1.3, slightly lower than the original value. Also, the optimized parameter Topt correlated well to the actual environmental temperature at each site. We suggest that using optimized parameters with the PT-JPL model could provide an efficient way to improve the model performance.

  9. Smoking and Male Infertility: An Evidence-Based Review

    PubMed Central

    Harlev, Avi; Gunes, Sezgin Ozgur; Shetty, Amit; du Plessis, Stefan Simon

    2015-01-01

    Many studies have reported that the contents of cigarette smoke negatively affect sperm parameters, seminal plasma, and various other fertility factors. Nevertheless, the actual effect of smoking on male fertility is not clear. The effect of smoking on semen parameters is based on the well-established biological finding that smoking increases the presence of reactive oxygen species, thereby resulting in oxidative stress (OS). OS has devastating effects on sperm parameters, such as viability and morphology, and impairs sperm function, hence reducing male fertility. However, not all studies have come to the same conclusions. This review sheds light upon the arguable association between smoking and male fertility and also assesses the impact of non-smoking routes of tobacco consumption on male infertility. It also highlights the evidence that links smoking with male infertility, including newly emerging genetic and epigenetic data, and discusses the clinical implications thereof. PMID:26770934

  10. Using frequency analysis to improve the precision of human body posture algorithms based on Kalman filters.

    PubMed

    Olivares, Alberto; Górriz, J M; Ramírez, J; Olivares, G

    2016-05-01

    With the advent of miniaturized inertial sensors many systems have been developed within the last decade to study and analyze human motion and posture, specially in the medical field. Data measured by the sensors are usually processed by algorithms based on Kalman Filters in order to estimate the orientation of the body parts under study. These filters traditionally include fixed parameters, such as the process and observation noise variances, whose value has large influence in the overall performance. It has been demonstrated that the optimal value of these parameters differs considerably for different motion intensities. Therefore, in this work, we show that, by applying frequency analysis to determine motion intensity, and varying the formerly fixed parameters accordingly, the overall precision of orientation estimation algorithms can be improved, therefore providing physicians with reliable objective data they can use in their daily practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Automatic Sleep Stage Determination by Multi-Valued Decision Making Based on Conditional Probability with Optimal Parameters

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Sugi, Takenao; Wang, Xingyu; Nakamura, Masatoshi

    Data for human sleep study may be affected by internal and external influences. The recorded sleep data contains complex and stochastic factors, which increase the difficulties for the computerized sleep stage determination techniques to be applied for clinical practice. The aim of this study is to develop an automatic sleep stage determination system which is optimized for variable sleep data. The main methodology includes two modules: expert knowledge database construction and automatic sleep stage determination. Visual inspection by a qualified clinician is utilized to obtain the probability density function of parameters during the learning process of expert knowledge database construction. Parameter selection is introduced in order to make the algorithm flexible. Automatic sleep stage determination is manipulated based on conditional probability. The result showed close agreement comparing with the visual inspection by clinician. The developed system can meet the customized requirements in hospitals and institutions.

  12. Interspecies interactions are an integral determinant of microbial community dynamics

    PubMed Central

    Aziz, Fatma A. A.; Suzuki, Kenshi; Ohtaki, Akihiro; Sagegami, Keita; Hirai, Hidetaka; Seno, Jun; Mizuno, Naoko; Inuzuka, Yuma; Saito, Yasuhisa; Tashiro, Yosuke; Hiraishi, Akira; Futamata, Hiroyuki

    2015-01-01

    This study investigated the factors that determine the dynamics of bacterial communities in a complex system using multidisciplinary methods. Since natural and engineered microbial ecosystems are too complex to study, six types of synthetic microbial ecosystems (SMEs) were constructed under chemostat conditions with phenol as the sole carbon and energy source. Two to four phenol-degrading, phylogenetically and physiologically different bacterial strains were used in each SME. Phylogeny was based on the nucleotide sequence of 16S rRNA genes, while physiologic traits were based on kinetic and growth parameters on phenol. Two indices, J parameter and “interspecies interaction,” were compared to predict which strain would become dominant in an SME. The J parameter was calculated from kinetic and growth parameters. On the other hand, “interspecies interaction,” a new index proposed in this study, was evaluated by measuring the specific growth activity, which was determined on the basis of relative growth of a strain with or without the supernatant prepared from other bacterial cultures. Population densities of strains used in SMEs were enumerated by real-time quantitative PCR (qPCR) targeting the gene encoding the large subunit of phenol hydroxylase and were compared to predictions made from J parameter and interspecies interaction calculations. In 4 of 6 SEMs tested the final dominant strain shown by real-time qPCR analyses coincided with the strain predicted by both the J parameter and the interspecies interaction. However, in SMEII-2 and SMEII-3 the final dominant Variovorax strains coincided with prediction of the interspecies interaction but not the J parameter. These results demonstrate that the effects of interspecies interactions within microbial communities contribute to determining the dynamics of the microbial ecosystem. PMID:26539177

  13. Progress in Mirror-Based Fusion Neutron Source Development.

    PubMed

    Anikeev, A V; Bagryansky, P A; Beklemishev, A D; Ivanov, A A; Kolesnikov, E Yu; Korzhavina, M S; Korobeinikova, O A; Lizunov, A A; Maximov, V V; Murakhtin, S V; Pinzhenin, E I; Prikhodko, V V; Soldatkina, E I; Solomakhin, A L; Tsidulko, Yu A; Yakovlev, D V; Yurov, D V

    2015-12-04

    The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system.

  14. Automatic approach to deriving fuzzy slope positions

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi

    2018-03-01

    Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.

  15. Generalized susceptibilities and Landau parameters for anisotropic Fermi liquids

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ponte, P.; Cabra, D.; Grandi, N.

    2015-05-01

    We study Fermi liquids (FLs) with a Fermi surface that lacks continuous rotational invariance and in the presence of an arbitrary quartic interaction. We obtain the expressions of the generalized static susceptibilities that measure the linear response of a generic order parameter to a perturbation of the Hamiltonian. We apply our formulae to the spin and charge susceptibilities. Based on the resulting expressions, we make a proposal for the definition of the Landau parameters in nonisotropic FL.

  16. How Does Higher Frequency Monitoring Data Affect the Calibration of a Process-Based Water Quality Model?

    NASA Astrophysics Data System (ADS)

    Jackson-Blake, L.

    2014-12-01

    Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, but even in well-studied catchments, streams are often only sampled at a fortnightly or monthly frequency. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by one process-based catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the MCMC-DREAM algorithm. Using daily rather than fortnightly data resulted in improved simulation of the magnitude of peak TDP concentrations, in turn resulting in improved model performance statistics. Marginal posteriors were better constrained by the higher frequency data, resulting in a large reduction in parameter-related uncertainty in simulated TDP (the 95% credible interval decreased from 26 to 6 μg/l). The number of parameters that could be reliably auto-calibrated was lower for the fortnightly data, leading to the recommendation that parameters should not be varied spatially for models such as INCA-P unless there is solid evidence that this is appropriate, or there is a real need to do so for the model to fulfil its purpose. Secondary study aims were to highlight the subjective elements involved in auto-calibration and suggest practical improvements that could make models such as INCA-P more suited to auto-calibration and uncertainty analyses. Two key improvements include model simplification, so that all model parameters can be included in an analysis of this kind, and better documenting of recommended ranges for each parameter, to help in choosing sensible priors.

  17. [Soluble interleukin 2 receptor as activity parameter in serum of systemic and discoid lupus erythematosus].

    PubMed

    Blum, C; Zillikens, D; Tony, H P; Hartmann, A A; Burg, G

    1993-05-01

    The evaluation of disease activity in systemic lupus erythematosus (SLE) is important for selection of the appropriate therapeutic regimen. In addition to the clinical picture, various laboratory parameters are taken into account. However, no validated criteria for the evaluation of the disease activity in SLE have yet been established. Recently, serum levels of soluble interleukin-2 receptor (sIL-2R) have been proposed as a potential parameter for disease activity in SLE. However, the studies reported on this subject so far have focused mainly on certain subsets of the disease, and the evaluation of the disease activity was based on a very limited number of parameters. In the present study, we determined serum levels of sIL-2R in 23 patients with SLE and 30 patients with discoid LE (DLE). Evaluation of disease activity in SLE was based on a comprehensive scale which considered numerous clinical signs and laboratory parameters. In SLE, serum levels of sIL-2R showed a better correlation with disease activity than all the other parameters investigated, including proteinuria, erythrocyte sedimentation rate, serum globulin concentration, titre of antibodies against double-stranded DNA, serum albumin concentration, serum complement levels and white blood cell count. For the first time, we report on elevated serum levels of sIL-2R in DLE, which also correlated with disease activity.

  18. Sensitivity analysis and calibration of a dynamic physically based slope stability model

    NASA Astrophysics Data System (ADS)

    Zieher, Thomas; Rutzinger, Martin; Schneider-Muntau, Barbara; Perzl, Frank; Leidinger, David; Formayer, Herbert; Geitner, Clemens

    2017-06-01

    Physically based modelling of slope stability on a catchment scale is still a challenging task. When applying a physically based model on such a scale (1 : 10 000 to 1 : 50 000), parameters with a high impact on the model result should be calibrated to account for (i) the spatial variability of parameter values, (ii) shortcomings of the selected model, (iii) uncertainties of laboratory tests and field measurements or (iv) parameters that cannot be derived experimentally or measured in the field (e.g. calibration constants). While systematic parameter calibration is a common task in hydrological modelling, this is rarely done using physically based slope stability models. In the present study a dynamic, physically based, coupled hydrological-geomechanical slope stability model is calibrated based on a limited number of laboratory tests and a detailed multitemporal shallow landslide inventory covering two landslide-triggering rainfall events in the Laternser valley, Vorarlberg (Austria). Sensitive parameters are identified based on a local one-at-a-time sensitivity analysis. These parameters (hydraulic conductivity, specific storage, angle of internal friction for effective stress, cohesion for effective stress) are systematically sampled and calibrated for a landslide-triggering rainfall event in August 2005. The identified model ensemble, including 25 behavioural model runs with the highest portion of correctly predicted landslides and non-landslides, is then validated with another landslide-triggering rainfall event in May 1999. The identified model ensemble correctly predicts the location and the supposed triggering timing of 73.0 % of the observed landslides triggered in August 2005 and 91.5 % of the observed landslides triggered in May 1999. Results of the model ensemble driven with raised precipitation input reveal a slight increase in areas potentially affected by slope failure. At the same time, the peak run-off increases more markedly, suggesting that precipitation intensities during the investigated landslide-triggering rainfall events were already close to or above the soil's infiltration capacity.

  19. Student Mobility, Dosage, and Principal Stratification in Clustered RCTs of Education Interventions

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2012-01-01

    This article introduces an alternative impact parameter for group-based RCTs with student mobility--the survivor average causal effect ("SACE")--that pertains to the subpopulation of original cohort students who would remain in their baseline study schools in either the treatment or control condition. The "SACE" parameter has a clear…

  20. Quantitative estimation of the fluorescent parameters for crop leaves with the Bayesian inversion

    USDA-ARS?s Scientific Manuscript database

    In this study, the fluorescent parameters of crop leaves were retrieved from the leaf hyperspectral measurements by inverting the FluorMODleaf model, which is a leaf-level fluorescence model that is based on the widely used and validated PROSPECT (leaf optical properties) model and can simulate the ...

  1. Spatial and temporal distribution of benthic macroinvertebrates in a Southeastern Brazilian river.

    PubMed

    Silveira, M P; Buss, D F; Nessimian, J L; Baptista, D F

    2006-05-01

    Benthic macroinvertebrate assemblages are structured according to physical and chemical parameters that define microhabitats, including food supply, shelter to escape predators, and other biological parameters that influence reproductive success. The aim of this study is to investigate spatial and temporal distribution of macroinvertebrate assemblages at the Macaé river basin, in Rio de Janeiro state, Southeastern Brazil. According to the "Habitat Assessment Field Data Sheet--High Gradient Streams" (Barbour et al., 1999), the five sampling sites are considered as a reference condition. Despite the differences in hydrological parameters (mean width, depth and discharge) among sites, the physicochemical parameters and functional feeding groups' general structure were similar, except for the less impacted area, which showed more shredders. According to the Detrended Correspondence Analysis based on substrates, there is a clear distinction between pool and riffle assemblages. In fact, the riffle litter substrate had higher taxa in terms of richness and abundance, but the pool litter substrate had the greatest number of exclusive taxa. A Cluster Analysis based on sampling sites data showed that temporal variation was the main factor in structuring macroinvertebrate assemblages in the studied habitats.

  2. MATLAB-implemented estimation procedure for model-based assessment of hepatic insulin degradation from standard intravenous glucose tolerance test data.

    PubMed

    Di Nardo, Francesco; Mengoni, Michele; Morettini, Micaela

    2013-05-01

    Present study provides a novel MATLAB-based parameter estimation procedure for individual assessment of hepatic insulin degradation (HID) process from standard frequently-sampled intravenous glucose tolerance test (FSIGTT) data. Direct access to the source code, offered by MATLAB, enabled us to design an optimization procedure based on the alternating use of Gauss-Newton's and Levenberg-Marquardt's algorithms, which assures the full convergence of the process and the containment of computational time. Reliability was tested by direct comparison with the application, in eighteen non-diabetic subjects, of well-known kinetic analysis software package SAAM II, and by application on different data. Agreement between MATLAB and SAAM II was warranted by intraclass correlation coefficients ≥0.73; no significant differences between corresponding mean parameter estimates and prediction of HID rate; and consistent residual analysis. Moreover, MATLAB optimization procedure resulted in a significant 51% reduction of CV% for the worst-estimated parameter by SAAM II and in maintaining all model-parameter CV% <20%. In conclusion, our MATLAB-based procedure was suggested as a suitable tool for the individual assessment of HID process. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Morphology classification of galaxies in CL 0939+4713 using a ground-based telescope image

    NASA Technical Reports Server (NTRS)

    Fukugita, M.; Doi, M.; Dressler, A.; Gunn, J. E.

    1995-01-01

    Morphological classification is studied for galaxies in cluster CL 0939+4712 at z = 0.407 using simple photometric parameters obtained from a ground-based telescope image with seeing of 1-2 arcseconds full width at half maximim (FWHM). By ploting the galaxies in a plane of the concentration parameter versus mean surface brightness, we find a good correlation between the location on the plane and galaxy colors, which are known to correlate with morphological types from a recent Hubble Space Telescope (HST) study. Using the present method, we expect a success rate of classification into early and late types of about 70% or possibly more.

  4. Regional estimation of response routine parameters

    NASA Astrophysics Data System (ADS)

    Tøfte, Lena S.

    2015-04-01

    Reducing the number of calibration parameters is of a considerable advantage when area distributed hydrological models are to be calibrated, both due to equifinality and over-parameterization of the model in general, and for making the calibration process more efficient. A simple non-threshold response model for drainage in natural catchments based on among others Kirchner's article in WRR 2009 is implemented in the gridded hydrological model in the ENKI framework. This response model takes only the hydrogram into account; it has one state and two parameters, and is adapted to catchments that are dominated by terrain drainage. In former analyses of natural discharge series from a large number of catchments in different regions of Norway, we found that these response model parameters can be calculated from some known catchment characteristics, as catchment area and lake percentage, found in maps or data bases, meaning that the parameters can easily be found also for ungauged catchments. In the presented work from the EU project COMPLEX a large region in Mid-Norway containing 27 simulated catchments of different sizes and characteristics is calibrated. Results from two different calibration strategies are compared: 1) removing the response parameters from the calibration by calculating them in advance, based on the results from our former studies, and 2) including the response parameters in the calibration, both as maps with different values for each catchment, and as a constant number for the total region. The resulting simulation performances are compared and discussed.

  5. Plausibility and parameter sensitivity of micro-finite element-based joint load prediction at the proximal femur.

    PubMed

    Synek, Alexander; Pahr, Dieter H

    2018-06-01

    A micro-finite element-based method to estimate the bone loading history based on bone architecture was recently presented in the literature. However, a thorough investigation of the parameter sensitivity and plausibility of this method to predict joint loads is still missing. The goals of this study were (1) to analyse the parameter sensitivity of the joint load predictions at one proximal femur and (2) to assess the plausibility of the results by comparing load predictions of ten proximal femora to in vivo hip joint forces measured with instrumented prostheses (available from www.orthoload.com ). Joint loads were predicted by optimally scaling the magnitude of four unit loads (inclined [Formula: see text] to [Formula: see text] with respect to the vertical axis) applied to micro-finite element models created from high-resolution computed tomography scans ([Formula: see text]m voxel size). Parameter sensitivity analysis was performed by varying a total of nine parameters and showed that predictions of the peak load directions (range 10[Formula: see text]-[Formula: see text]) are more robust than the predicted peak load magnitudes (range 2344.8-4689.5 N). Comparing the results of all ten femora with the in vivo loading data of ten subjects showed that peak loads are plausible both in terms of the load direction (in vivo: [Formula: see text], predicted: [Formula: see text]) and magnitude (in vivo: [Formula: see text], predicted: [Formula: see text]). Overall, this study suggests that micro-finite element-based joint load predictions are both plausible and robust in terms of the predicted peak load direction, but predicted load magnitudes should be interpreted with caution.

  6. Effects of build parameters on linear wear loss in plastic part produced by fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2017-07-01

    Fused Deposition Modeling (FDM) is one of the prominent additive manufacturing technologies for producing polymer products. FDM is a complex additive manufacturing process that can be influenced by many process conditions. The industrial demands required from the FDM process are increasing with higher level product functionality and properties. The functionality and performance of FDM manufactured parts are greatly influenced by the combination of many various FDM process parameters. Designers and researchers always pay attention to study the effects of FDM process parameters on different product functionalities and properties such as mechanical strength, surface quality, dimensional accuracy, build time and material consumption. However, very limited studies have been carried out to investigate and optimize the effect of FDM build parameters on wear performance. This study focuses on the effect of different build parameters on micro-structural and wear performance of FDM specimens using definitive screening design based quadratic model. This would reduce the cost and effort of additive manufacturing engineer to have a systematic approachto make decision among the manufacturing parameters to achieve the desired product quality.

  7. Do size, shape, and alignment parameters of the femoral condyle affect the trochlear groove tracking? A morphometric study based on 3D- computed tomography models in Chinese people.

    PubMed

    Du, Zhe; Chen, Shichang; Yan, Mengning; Yue, Bing; Zeng, Yiming; Wang, You

    2017-01-06

    Our study aimed to investigate whether geometrical features (size, shape, or alignment parameters) of the femoral condyle affect the morphology of the trochlear groove. Computed tomography models of 195 femurs (97 and 98 knees from male and female subjects, respectively) were reconstructed into three-dimensional models and categorised into four types of trochlear groove morphology based on the position of the turning point in relation to the mechanical axis (types 45°, 60°, 75°, and 90°). Only subjects with healthy knees were included, whereas individuals with previous knee trauma or knee pain, soft tissue injury, osteoarthritis, or other chronic diseases of the musculoskeletal system were excluded. The size parameters were: radius of the best-fit cylinder, anteroposterior dimension of the lateral condyles (AP), and distal mediolateral dimension (ML). The shape parameters were: aspect ratio (AP/ML), arc angle, and proximal- and distal- end angles. The alignment parameters were: knee valgus physiologic angle (KVPA), mechanical medial distal femoral angle (mMDFA), and hip-knee-ankle angle (HKA). All variables were measured in the femoral condyle models, and the means for each groove type were compared using one-way analysis of variance. No significant difference among groove types was observed regarding size parameters. There were significant differences when comparing type 45° with types 60°, 75°, and 90° regarding aspect ratio and distal-end angle (p < 0.05), but not regarding proximal-end angle. There were significant differences when comparing type 90° with types 45°, 60°, and 75° regarding KVPA, mMDFA, and HKA (p < 0.05). Among size, shape, and alignment parameters, the latter two exhibited partial influence on the morphology of the trochlear groove. Shape parameters affected the trochlear groove for trochlear type 45°, for which the femoral condyle was relatively flat, whereas alignment parameters affected the trochlear groove for trochlear type 90°, showing that knees in type 90° tend to be valgus. The morphometric analysis based on trochlear groove classification may be helpful for the future design of individualized prostheses.

  8. Assessment and Reduction of Model Parametric Uncertainties: A Case Study with A Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    Gan, Y.; Liang, X. Z.; Duan, Q.; Xu, J.; Zhao, P.; Hong, Y.

    2017-12-01

    The uncertainties associated with the parameters of a hydrological model need to be quantified and reduced for it to be useful for operational hydrological forecasting and decision support. An uncertainty quantification framework is presented to facilitate practical assessment and reduction of model parametric uncertainties. A case study, using the distributed hydrological model CREST for daily streamflow simulation during the period 2008-2010 over ten watershed, was used to demonstrate the performance of this new framework. Model behaviors across watersheds were analyzed by a two-stage stepwise sensitivity analysis procedure, using LH-OAT method for screening out insensitive parameters, followed by MARS-based Sobol' sensitivity indices for quantifying each parameter's contribution to the response variance due to its first-order and higher-order effects. Pareto optimal sets of the influential parameters were then found by the adaptive surrogate-based multi-objective optimization procedure, using MARS model for approximating the parameter-response relationship and SCE-UA algorithm for searching the optimal parameter sets of the adaptively updated surrogate model. The final optimal parameter sets were validated against the daily streamflow simulation of the same watersheds during the period 2011-2012. The stepwise sensitivity analysis procedure efficiently reduced the number of parameters that need to be calibrated from twelve to seven, which helps to limit the dimensionality of calibration problem and serves to enhance the efficiency of parameter calibration. The adaptive MARS-based multi-objective calibration exercise provided satisfactory solutions to the reproduction of the observed streamflow for all watersheds. The final optimal solutions showed significant improvement when compared to the default solutions, with about 65-90% reduction in 1-NSE and 60-95% reduction in |RB|. The validation exercise indicated a large improvement in model performance with about 40-85% reduction in 1-NSE, and 35-90% reduction in |RB|. Overall, this uncertainty quantification framework is robust, effective and efficient for parametric uncertainty analysis, the results of which provide useful information that helps to understand the model behaviors and improve the model simulations.

  9. A two-step sensitivity analysis for hydrological signatures in Jinhua River Basin, East China

    NASA Astrophysics Data System (ADS)

    Pan, S.; Fu, G.; Chiang, Y. M.; Xu, Y. P.

    2016-12-01

    Owing to model complexity and large number of parameters, calibration and sensitivity analysis are difficult processes for distributed hydrological models. In this study, a two-step sensitivity analysis approach is proposed for analyzing the hydrological signatures in Jinhua River Basin, East China, using the Distributed Hydrology-Soil-Vegetation Model (DHSVM). A rough sensitivity analysis is firstly conducted to obtain preliminary influential parameters via Analysis of Variance. The number of parameters was greatly reduced from eighteen-three to sixteen. Afterwards, the sixteen parameters are further analyzed based on a variance-based global sensitivity analysis, i.e., Sobol's sensitivity analysis method, to achieve robust sensitivity rankings and parameter contributions. Parallel-Computing is applied to reduce computational burden in variance-based sensitivity analysis. The results reveal that only a few number of model parameters are significantly sensitive, including rain LAI multiplier, lateral conductivity, porosity, field capacity, wilting point of clay loam, understory monthly LAI, understory minimum resistance and root zone depths of croplands. Finally several hydrological signatures are used for investigating the performance of DHSVM. Results show that high value of efficiency criteria didn't indicate excellent performance of hydrological signatures. For most samples from Sobol's sensitivity analysis, water yield was simulated very well. However, lowest and maximum annual daily runoffs were underestimated. Most of seven-day minimum runoffs were overestimated. Nevertheless, good performances of the three signatures above still exist in a number of samples. Analysis of peak flow shows that small and medium floods are simulated perfectly while slight underestimations happen to large floods. The work in this study helps to further multi-objective calibration of DHSVM model and indicates where to improve the reliability and credibility of model simulation.

  10. Efficient Bayesian experimental design for contaminant source identification

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zeng, L.

    2013-12-01

    In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameter identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from indirect concentration measurements in identifying unknown source parameters such as the release time, strength and location. In this approach, the sampling location that gives the maximum relative entropy is selected as the optimal one. Once the sampling location is determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown source parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. Compared with the traditional optimal design, which is based on the Gaussian linear assumption, the method developed in this study can cope with arbitrary nonlinearity. It can be used to assist in groundwater monitor network design and identification of unknown contaminant sources. Contours of the expected information gain. The optimal observing location corresponds to the maximum value. Posterior marginal probability densities of unknown parameters, the thick solid black lines are for the designed location. For comparison, other 7 lines are for randomly chosen locations. The true values are denoted by vertical lines. It is obvious that the unknown parameters are estimated better with the desinged location.

  11. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method

    NASA Astrophysics Data System (ADS)

    He, Wei; Williard, Nicholas; Osterman, Michael; Pecht, Michael

    A new method for state of health (SOH) and remaining useful life (RUL) estimations for lithium-ion batteries using Dempster-Shafer theory (DST) and the Bayesian Monte Carlo (BMC) method is proposed. In this work, an empirical model based on the physical degradation behavior of lithium-ion batteries is developed. Model parameters are initialized by combining sets of training data based on DST. BMC is then used to update the model parameters and predict the RUL based on available data through battery capacity monitoring. As more data become available, the accuracy of the model in predicting RUL improves. Two case studies demonstrating this approach are presented.

  12. Enhancement of CFD validation exercise along the roof profile of a low-rise building

    NASA Astrophysics Data System (ADS)

    Deraman, S. N. C.; Majid, T. A.; Zaini, S. S.; Yahya, W. N. W.; Abdullah, J.; Ismail, M. A.

    2018-04-01

    The aim of this study is to enhance the validation of CFD exercise along the roof profile of a low-rise building. An isolated gabled-roof house having 26.6° roof pitch was simulated to obtain the pressure coefficient around the house. Validation of CFD analysis with experimental data requires many input parameters. This study performed CFD simulation based on the data from a previous study. Where the input parameters were not clearly stated, new input parameters were established from the open literatures. The numerical simulations were performed in FLUENT 14.0 by applying the Computational Fluid Dynamics (CFD) approach based on steady RANS equation together with RNG k-ɛ model. Hence, the result from CFD was analysed by using quantitative test (statistical analysis) and compared with CFD results from the previous study. The statistical analysis results from ANOVA test and error measure showed that the CFD results from the current study produced good agreement and exhibited the closest error compared to the previous study. All the input data used in this study can be extended to other types of CFD simulation involving wind flow over an isolated single storey house.

  13. Dynamic Parameter Identification of Subject-Specific Body Segment Parameters Using Robotics Formalism: Case Study Head Complex.

    PubMed

    Díaz-Rodríguez, Miguel; Valera, Angel; Page, Alvaro; Besa, Antonio; Mata, Vicente

    2016-05-01

    Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.

  14. Electrostatic and structural similarity of classical and non-classical lactam compounds

    NASA Astrophysics Data System (ADS)

    Coll, Miguel; Frau, Juan; Vilanova, Bartolomé; Donoso, Josefa; Muñoz, Francisco

    2001-09-01

    Various electrostatic and structural parameters for a series of classical and non-classical β-lactams were determined and compared in order to ascertain whether some specific β-lactams possess antibacterial or β-lactamase inhibitory properties. The electrostatic parameters obtained, based on the Distributed Multipole Analysis (DMA) of high-quality wavefunctions for the studied structures, suggest that some non-classical β-lactams effectively inhibit the action of β-lactamases. As shown in this work, such electrostatic parameters provide much more reliable information about the antibacterial and inhibitory properties of β-lactams than do structural parameters.

  15. Toward On-line Parameter Estimation of Concentric Tube Robots Using a Mechanics-based Kinematic Model

    PubMed Central

    Jang, Cheongjae; Ha, Junhyoung; Dupont, Pierre E.; Park, Frank Chongwoo

    2017-01-01

    Although existing mechanics-based models of concentric tube robots have been experimentally demonstrated to approximate the actual kinematics, determining accurate estimates of model parameters remains difficult due to the complex relationship between the parameters and available measurements. Further, because the mechanics-based models neglect some phenomena like friction, nonlinear elasticity, and cross section deformation, it is also not clear if model error is due to model simplification or to parameter estimation errors. The parameters of the superelastic materials used in these robots can be slowly time-varying, necessitating periodic re-estimation. This paper proposes a method for estimating the mechanics-based model parameters using an extended Kalman filter as a step toward on-line parameter estimation. Our methodology is validated through both simulation and experiments. PMID:28717554

  16. Aerodynamic parameter estimation via Fourier modulating function techniques

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1995-01-01

    Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.

  17. Quantitative microscopy of the lung: a problem-based approach. Part 2: stereological parameters and study designs in various diseases of the respiratory tract.

    PubMed

    Mühlfeld, Christian; Ochs, Matthias

    2013-08-01

    Design-based stereology provides efficient methods to obtain valuable quantitative information of the respiratory tract in various diseases. However, the choice of the most relevant parameters in a specific disease setting has to be deduced from the present pathobiological knowledge. Often it is difficult to express the pathological alterations by interpretable parameters in terms of volume, surface area, length, or number. In the second part of this companion review article, we analyze the present pathophysiological knowledge about acute lung injury, diffuse parenchymal lung diseases, emphysema, pulmonary hypertension, and asthma to come up with recommendations for the disease-specific application of stereological principles for obtaining relevant parameters. Worked examples with illustrative images are used to demonstrate the work flow, estimation procedure, and calculation and to facilitate the practical performance of equivalent analyses.

  18. Market-Based Coordination of Thermostatically Controlled Loads—Part II: Unknown Parameters and Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sen; Zhang, Wei; Lian, Jianming

    This two-part paper considers the coordination of a population of Thermostatically Controlled Loads (TCLs) with unknown parameters to achieve group objectives. The problem involves designing the bidding and market clearing strategy to motivate self-interested users to realize efficient energy allocation subject to a peak power constraint. The companion paper (Part I) formulates the problem and proposes a load coordination framework using the mechanism design approach. To address the unknown parameters, Part II of this paper presents a joint state and parameter estimation framework based on the expectation maximization algorithm. The overall framework is then validated using real-world weather data andmore » price data, and is compared with other approaches in terms of aggregated power response. Simulation results indicate that our coordination framework can effectively improve the efficiency of the power grid operations and reduce power congestion at key times.« less

  19. Measurement of angular parameters from the decay $$\\mathrm{B}^0 \\to \\mathrm{K}^{*0} \\mu^+ \\mu^-$$ in proton-proton collisions at $$\\sqrt{s} = $$ 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    Angular distributions of the decaymore » $$\\mathrm{B}^0 \\to \\mathrm{K}^{*0} \\mu^ +\\mu^-$$ are studied using a sample of proton-proton collisions at $$\\sqrt{s} = $$ 8 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5 fb$$^{-1}$$. An angular analysis is performed to determine the $$P_1$$ and $$P_5'$$ parameters, where the $$P_5'$$ parameter is of particular interest because of recent measurements that indicate a potential discrepancy with the standard model predictions. Based on a sample of 1397 signal events, the $$P_1$$ and $$P_5'$$ parameters are determined as a function of the dimuon invariant mass squared. The measurements are in agreement with predictions based on the standard model.« less

  20. Shallow land burial of low-level radioactive wastes. A selected, annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fore, C.S.; Vaughan, N.D.; Tappen, J.

    1978-06-01

    The data file was built to provide information support to DOE researchers in the field of low-level radioactive waste disposal and management. The scope of the data base emphasizes studies which deal with the ''old'' Manhattan sites, commercial disposal sites, and the specific parameters which affect the soil and geologic migration of radionuclides. Specialized data fields have been incorporated into the data base to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the ''Measured Radionuclides'' field, and specific parameters which affect the migration of these radionuclides are presented inmore » the ''Measured Parameters'' field. The 504 references are rated indicating applicability to shallow land burial technology and whether interpretation is required. Indexes are provided for author, geographic location, title, measured parameters, measured radionuclides, keywords, subject categories, and publication description. (DLC)« less

  1. Surrogate models for efficient stability analysis of brake systems

    NASA Astrophysics Data System (ADS)

    Nechak, Lyes; Gillot, Frédéric; Besset, Sébastien; Sinou, Jean-Jacques

    2015-07-01

    This study assesses capacities of the global sensitivity analysis combined together with the kriging formalism to be useful in the robust stability analysis of brake systems, which is too costly when performed with the classical complex eigenvalues analysis (CEA) based on finite element models (FEMs). By considering a simplified brake system, the global sensitivity analysis is first shown very helpful for understanding the effects of design parameters on the brake system's stability. This is allowed by the so-called Sobol indices which discriminate design parameters with respect to their influence on the stability. Consequently, only uncertainty of influent parameters is taken into account in the following step, namely, the surrogate modelling based on kriging. The latter is then demonstrated to be an interesting alternative to FEMs since it allowed, with a lower cost, an accurate estimation of the system's proportions of instability corresponding to the influent parameters.

  2. Seasonal variations as predictive factors of the comet assay parameters: a retrospective study.

    PubMed

    Geric, Marko; Gajski, Goran; Orešcanin, Višnja; Garaj-Vrhovac, Vera

    2018-02-24

    Since there are several predicting factors associated with the comet assay parameters, we have decided to assess the impact of seasonal variations on the comet assay results. A total of 162 volunteers were retrospectively studied, based on the date when blood donations were made. The groups (winter, spring, summer and autumn) were matched in terms of age, gender, smoking status, body mass index and medical diagnostic exposure in order to minimise the impact of other possible predictors. Means and medians of the comet assay parameters were higher when blood was sampled in the warmer period of the year, the values of parameters being the highest during summer. Correlation of meteorological data (air temperature, sun radiation and sun insolation) was observed when data were presented as the median per person. Using multivariate analysis, sampling season and exposure to medical radiation were proved to be the most influential predictors for the comet assay parameters. Taken together, seasonal variation is another variable that needs to be accounted for when conducting a cohort study. Further studies are needed in order to improve the statistical power of the results related to the impact of sun radiation, air temperature and sun insolation on the comet assay parameters.

  3. Spherical Harmonic-based Random Fields Based on Real Particle 3D Data: Improved Numerical Algorithm and Quantitative Comparison to Real Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X Liu; E Garboczi; m Grigoriu

    Many parameters affect the cyclone efficiency, and these parameters can have different effects in different flow regimes. Therefore the maximum-efficiency cyclone length is a function of the specific geometry and operating conditions in use. In this study, we obtained a relationship describing the minimum particle diameter or maximum cyclone efficiency by using a theoretical approach based on cyclone geometry and fluid properties. We have compared the empirical predictions with corresponding literature data and observed good agreement. The results address the importance of fluid properties. Inlet and vortex finder cross-sections, cone-apex diameter, inlet Reynolds number and surface roughness are found tomore » be the other important parameters affecting cyclone height. The surface friction coefficient, on the other hand, is difficult to employ in the calculations.We developed a theoretical approach to find the maximum-efficiency heights for cyclones with tangential inlet and we suggested a relation for this height as a function of cyclone geometry and operating parameters. In order to generalize use of the relation, two dimensionless parameters, namely for geometric and operational variables, we defined and results were presented in graphical form such that one can calculate and enter the values of these dimensionless parameters and then can find the maximum efficiency height of his own specific cyclone.« less

  4. Agreement between the spatio-temporal gait parameters from treadmill-based photoelectric cell and the instrumented treadmill system in healthy young adults and stroke patients.

    PubMed

    Lee, Myungmo; Song, Changho; Lee, Kyoungjin; Shin, Doochul; Shin, Seungho

    2014-07-14

    Treadmill gait analysis was more advantageous than over-ground walking because it allowed continuous measurements of the gait parameters. The purpose of this study was to investigate the concurrent validity and the test-retest reliability of the OPTOGait photoelectric cell system against the treadmill-based gait analysis system by assessing spatio-temporal gait parameters. Twenty-six stroke patients and 18 healthy adults were asked to walk on the treadmill at their preferred speed. The concurrent validity was assessed by comparing data obtained from the 2 systems, and the test-retest reliability was determined by comparing data obtained from the 1st and the 2nd session of the OPTOGait system. The concurrent validity, identified by the intra-class correlation coefficients (ICC [2, 1]), coefficients of variation (CVME), and 95% limits of agreement (LOA) for the spatial-temporal gait parameters, were excellent but the temporal parameters expressed as a percentage of the gait cycle were poor. The test-retest reliability of the OPTOGait System, identified by ICC (3, 1), CVME, 95% LOA, standard error of measurement (SEM), and minimum detectable change (MDC95%) for the spatio-temporal gait parameters, was high. These findings indicated that the treadmill-based OPTOGait System had strong concurrent validity and test-retest reliability. This portable system could be useful for clinical assessments.

  5. Lattice parameters guide superconductivity in iron-arsenides

    DOE PAGES

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-01-12

    The discovery of superconducting materials has led to their use in modern technological marvels, such as magnetic field sensors in MRI machines, powerful research magnets, and high-speed trains. Despite such applications, the uses of superconductors are not widespread due to high cooling costs. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), numerous studies have tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition uponmore » small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor of superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-based materials (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-based superconductors presented here, should guide synthesis of new materials and give clues for superconductivity.« less

  6. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  7. Efficient Bayesian parameter estimation with implicit sampling and surrogate modeling for a vadose zone hydrological problem

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Pau, G. S. H.; Finsterle, S.

    2015-12-01

    Parameter inversion involves inferring the model parameter values based on sparse observations of some observables. To infer the posterior probability distributions of the parameters, Markov chain Monte Carlo (MCMC) methods are typically used. However, the large number of forward simulations needed and limited computational resources limit the complexity of the hydrological model we can use in these methods. In view of this, we studied the implicit sampling (IS) method, an efficient importance sampling technique that generates samples in the high-probability region of the posterior distribution and thus reduces the number of forward simulations that we need to run. For a pilot-point inversion of a heterogeneous permeability field based on a synthetic ponded infiltration experiment simu­lated with TOUGH2 (a subsurface modeling code), we showed that IS with linear map provides an accurate Bayesian description of the parameterized permeability field at the pilot points with just approximately 500 forward simulations. We further studied the use of surrogate models to improve the computational efficiency of parameter inversion. We implemented two reduced-order models (ROMs) for the TOUGH2 forward model. One is based on polynomial chaos expansion (PCE), of which the coefficients are obtained using the sparse Bayesian learning technique to mitigate the "curse of dimensionality" of the PCE terms. The other model is Gaussian process regression (GPR) for which different covariance, likelihood and inference models are considered. Preliminary results indicate that ROMs constructed based on the prior parameter space perform poorly. It is thus impractical to replace this hydrological model by a ROM directly in a MCMC method. However, the IS method can work with a ROM constructed for parameters in the close vicinity of the maximum a posteriori probability (MAP) estimate. We will discuss the accuracy and computational efficiency of using ROMs in the implicit sampling procedure for the hydrological problem considered. This work was supported, in part, by the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231

  8. Sensitivity of geological, geochemical and hydrologic parameters in complex reactive transport systems for in-situ uranium bioremediation

    NASA Astrophysics Data System (ADS)

    Yang, G.; Maher, K.; Caers, J.

    2015-12-01

    Groundwater contamination associated with remediated uranium mill tailings is a challenging environmental problem, particularly within the Colorado River Basin. To examine the effectiveness of in-situ bioremediation of U(VI), acetate injection has been proposed and tested at the Rifle pilot site. There have been several geologic modeling and simulated contaminant transport investigations, to evaluate the potential outcomes of the process and identify crucial factors for successful uranium reduction. Ultimately, findings from these studies would contribute to accurate predictions of the efficacy of uranium reduction. However, all these previous studies have considered limited model complexities, either because of the concern that data is too sparse to resolve such complex systems or because some parameters are assumed to be less important. Such simplified initial modeling, however, limits the predictive power of the model. Moreover, previous studies have not yet focused on spatial heterogeneity of various modeling components and its impact on the spatial distribution of the immobilized uranium (U(IV)). In this study, we study the impact of uncertainty on 21 parameters on model responses by means of recently developed distance-based global sensitivity analysis (DGSA), to study the main effects and interactions of parameters of various types. The 21 parameters include, for example, spatial variability of initial uranium concentration, mean hydraulic conductivity, and variogram structures of hydraulic conductivity. DGSA allows for studying multi-variate model responses based on spatial and non-spatial model parameters. When calculating the distances between model responses, in addition to the overall uranium reduction efficacy, we also considered the spatial profiles of the immobilized uranium concentration as target response. Results show that the mean hydraulic conductivity and the mineral reaction rate are the two most sensitive parameters with regard to the overall uranium reduction. But in terms of spatial distribution of immobilized uranium, initial conditions of uranium concentration and spatial uncertainty in hydraulic conductivity also become important. These analyses serve as the first step of further prediction practices of the complex uranium transport and reaction systems.

  9. A study on a wheel-based stair-climbing robot with a hopping mechanism

    NASA Astrophysics Data System (ADS)

    Kikuchi, Koki; Sakaguchi, Keisuke; Sudo, Takayuki; Bushida, Naoki; Chiba, Yasuhiro; Asai, Yuji

    2008-08-01

    In this study, we propose a simple hopping mechanism using the vibration of a two-degree-of-freedom system for a wheel-based stair-climbing robot. The robot, consisting of two bodies connected by springs and a wire, hops by releasing energy stored in the springs and quickly travels using wheels mounted in its lower body. The trajectories of the bodies during hopping change in accordance with the design parameters, such as the reduced mass of the two bodies, the mass ratio between the upper and lower bodies, the spring constant, the control parameters such as the initial contraction of the spring and the wire tension. This property allows the robot to quickly and economically climb up and down stairs, leap over obstacles, and landing softly without complex control. In this paper, the characteristics of hopping motion for the design and control parameters are clarified by both numerical simulations and experiments. Furthermore, using the robot design based on the results the abilities to hop up and down a step, leap over a cable, and land softly are demonstrated.

  10. Impact of porous SiC-doped PVA based LDS layer on electrical parameters of Si solar cells

    NASA Astrophysics Data System (ADS)

    Kaci, S.; Rahmoune, R.; Kezzoula, F.; Boudiaf, Y.; Keffous, A.; Manseri, A.; Menari, H.; Cheraga, H.; Guerbous, L.; Belkacem, Y.; Chalal, R.; Bozetine, I.; Boukezzata, A.; Talbi, L.; Benfadel, K.; Ouadfel, M.-A.; Ouadah, Y.

    2018-06-01

    Nowadays, the advanced photon management is regarded as an area of intensive research investment. Ever since the most widely used commercial photovoltaic cells are fabricated with single gap semiconductors like silicon, photon management has offered opportunities to make better use of the photons, both inside and outside the single junction window. In this study, the impact of new down shifting layer on the photoelectrical parameters of silicon based solar cell was studied. An effort to enhance the photovoltaic performance of textured silicon solar cells through the application of porous SiC particles-doped polyvinyl alcohol (PVA) layers using the spin-coating technique, is reported. Current-voltage curves under artificial illumination were used to confirm the contribution of LDS (SiC-PVA) thin layers. Experiment results revealed that LDS based on SiC particles which were etched in HF/K2S2O8 solution at T = 80 °C under UV light of 254 nm exhibited the best solar cell photoelectrical parameters due to its strong photoluminescence.

  11. On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.

    2012-11-01

    Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM) and the time-space variable (TSV) correction, resulted in different winter precipitation rates for the period 1990-2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model), revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests). We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.

  12. Variation of TEC and related parameters over the Indian EIA region from ground and space based GPS observations during the low solar activity period of May 2007-April 2008

    NASA Astrophysics Data System (ADS)

    Chakravarty, S. C.; Nagaraja, Kamsali; Jakowski, N.

    2017-03-01

    The annual variations of ionospheric Total Electron Content (TEC), F-region peak ionisation (NmF2) and the ionospheric slab thickness (τ) over the Indian region during the low solar activity period of May 2007-April 2008 have been studied. For this purpose the ground based TEC data obtained from GAGAN measurements and the space based data from GPS radio occultation technique using CHAMP have been utilised. The results of these independent measurements are combined to derive additional parameters such as the equivalent slab thickness of the total and the bottom-side ionospheric regions (τT and τB). The one year hourly average values of all these parameters over the ionospheric anomaly latitude region (10-26°N) are presented here along with the statistical error estimates. It is expected that these results are potentially suited to be used as base level values during geomagnetically quiet and undisturbed solar conditions.

  13. Development of a data-processing method based on Bayesian k-means clustering to discriminate aneugens and clastogens in a high-content micronucleus assay.

    PubMed

    Huang, Z H; Li, N; Rao, K F; Liu, C T; Huang, Y; Ma, M; Wang, Z J

    2018-03-01

    Genotoxicants can be identified as aneugens and clastogens through a micronucleus (MN) assay. The current high-content screening-based MN assays usually discriminate an aneugen from a clastogen based on only one parameter, such as the MN size, intensity, or morphology, which yields low accuracies (70-84%) because each of these parameters may contribute to the results. Therefore, the development of an algorithm that can synthesize high-dimensionality data to attain comparative results is important. To improve the automation and accuracy of detection using the current parameter-based mode of action (MoA), the MN MoA signatures of 20 chemicals were systematically recruited in this study to develop an algorithm. The results of the algorithm showed very good agreement (93.58%) between the prediction and reality, indicating that the proposed algorithm is a validated analytical platform for the rapid and objective acquisition of genotoxic MoA messages.

  14. When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity.

    PubMed

    Aydogan, Dogu Baran; Jacobs, Russell; Dulawa, Stephanie; Thompson, Summer L; Francois, Maite Christi; Toga, Arthur W; Dong, Hongwei; Knowles, James A; Shi, Yonggang

    2018-04-16

    Tractography is a powerful technique capable of non-invasively reconstructing the structural connections in the brain using diffusion MRI images, but the validation of tractograms is challenging due to lack of ground truth. Owing to recent developments in mapping the mouse brain connectome, high-resolution tracer injection-based axonal projection maps have been created and quickly adopted for the validation of tractography. Previous studies using tracer injections mainly focused on investigating the match in projections and optimal tractography protocols. Being a complicated technique, however, tractography relies on multiple stages of operations and parameters. These factors introduce large variabilities in tractograms, hindering the optimization of protocols and making the interpretation of results difficult. Based on this observation, in contrast to previous studies, in this work we focused on quantifying and ranking the amount of performance variation introduced by these factors. For this purpose, we performed over a million tractography experiments and studied the variability across different subjects, injections, anatomical constraints and tractography parameters. By using N-way ANOVA analysis, we show that all tractography parameters are significant and importantly performance variations with respect to the differences in subjects are comparable to the variations due to tractography parameters, which strongly underlines the importance of fully documenting the tractography protocols in scientific experiments. We also quantitatively show that inclusion of anatomical constraints is the most significant factor for improving tractography performance. Although this critical factor helps reduce false positives, our analysis indicates that anatomy-informed tractography still fails to capture a large portion of axonal projections.

  15. Models for selecting GMA Welding Parameters for Improving Mechanical Properties of Weld Joints

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, P.; Ramachandran, Pragash; Jebaraj, S.

    2016-02-01

    During the process of Gas Metal Arc (GMAW) welding, the weld joints mechanical properties are influenced by the welding parameters such as welding current and arc voltage. These parameters directly will influence the quality of the weld in terms of mechanical properties. Even small variation in any of the cited parameters may have an important effect on depth of penetration and on joint strength. In this study, S45C Constructional Steel is taken as the base metal to be tested using the parameters wire feed rate, voltage and type of shielding gas. Physical properties considered in the present study are tensile strength and hardness. The testing of weld specimen is carried out as per ASTM Standards. Mathematical models to predict the tensile strength and depth of penetration of weld joint have been developed by regression analysis using the experimental results.

  16. The need for control of magnetic parameters for energy efficient performance of magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Farhat, I. A. H.; Gale, E.; Alpha, C.; Isakovic, A. F.

    2017-07-01

    Optimizing energy performance of Magnetic Tunnel Junctions (MTJs) is the key for embedding Spin Transfer Torque-Random Access Memory (STT-RAM) in low power circuits. Due to the complex interdependencies of the parameters and variables of the device operating energy, it is important to analyse parameters with most effective control of MTJ power. The impact of threshold current density, Jco , on the energy and the impact of HK on Jco are studied analytically, following the expressions that stem from Landau-Lifshitz-Gilbert-Slonczewski (LLGS-STT) model. In addition, the impact of other magnetic material parameters, such as Ms , and geometric parameters such as tfree and λ is discussed. Device modelling study was conducted to analyse the impact at the circuit level. Nano-magnetism simulation based on NMAGTM package was conducted to analyse the impact of controlling HK on the switching dynamics of the film.

  17. Optimisation on processing parameters for minimising warpage on side arm using response surface methodology (RSM) and particle swarm optimisation (PSO)

    NASA Astrophysics Data System (ADS)

    Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Sazli, M.; Yahya, Z. R.

    2017-09-01

    This study presents the application of optimisation method to reduce the warpage of side arm part. Autodesk Moldflow Insight software was integrated into this study to analyse the warpage. The design of Experiment (DOE) for Response Surface Methodology (RSM) was constructed and by using the equation from RSM, Particle Swarm Optimisation (PSO) was applied. The optimisation method will result in optimised processing parameters with minimum warpage. Mould temperature, melt temperature, packing pressure, packing time and cooling time was selected as the variable parameters. Parameters selection was based on most significant factor affecting warpage stated by previous researchers. The results show that warpage was improved by 28.16% for RSM and 28.17% for PSO. The warpage improvement in PSO from RSM is only by 0.01 %. Thus, the optimisation using RSM is already efficient to give the best combination parameters and optimum warpage value for side arm part. The most significant parameters affecting warpage are packing pressure.

  18. Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress

    PubMed Central

    Gu, Junfei; Yin, Xinyou; Zhang, Chengwei; Wang, Huaqi; Struik, Paul C.

    2014-01-01

    Background and Aims Genetic markers can be used in combination with ecophysiological crop models to predict the performance of genotypes. Crop models can estimate the contribution of individual markers to crop performance in given environments. The objectives of this study were to explore the use of crop models to design markers and virtual ideotypes for improving yields of rice (Oryza sativa) under drought stress. Methods Using the model GECROS, crop yield was dissected into seven easily measured parameters. Loci for these parameters were identified for a rice population of 94 introgression lines (ILs) derived from two parents differing in drought tolerance. Marker-based values of ILs for each of these parameters were estimated from additive allele effects of the loci, and were fed to the model in order to simulate yields of the ILs grown under well-watered and drought conditions and in order to design virtual ideotypes for those conditions. Key Results To account for genotypic yield differences, it was necessary to parameterize the model for differences in an additional trait ‘total crop nitrogen uptake’ (Nmax) among the ILs. Genetic variation in Nmax had the most significant effect on yield; five other parameters also significantly influenced yield, but seed weight and leaf photosynthesis did not. Using the marker-based parameter values, GECROS also simulated yield variation among 251 recombinant inbred lines of the same parents. The model-based dissection approach detected more markers than the analysis using only yield per se. Model-based sensitivity analysis ranked all markers for their importance in determining yield differences among the ILs. Virtual ideotypes based on markers identified by modelling had 10–36 % more yield than those based on markers for yield per se. Conclusions This study outlines a genotype-to-phenotype approach that exploits the potential value of marker-based crop modelling in developing new plant types with high yields. The approach can provide more markers for selection programmes for specific environments whilst also allowing for prioritization. Crop modelling is thus a powerful tool for marker design for improved rice yields and for ideotyping under contrasting conditions. PMID:24984712

  19. Identifying Typhoon Tracks based on Event Synchronization derived Spatially Embedded Climate Networks

    NASA Astrophysics Data System (ADS)

    Ozturk, Ugur; Marwan, Norbert; Kurths, Jürgen

    2017-04-01

    Complex networks are commonly used for investigating spatiotemporal dynamics of complex systems, e.g. extreme rainfall. Especially directed networks are very effective tools in identifying climatic patterns on spatially embedded networks. They can capture the network flux, so as the principal dynamics of spreading significant phenomena. Network measures, such as network divergence, bare the source-receptor relation of the directed networks. However, it is still a challenge how to catch fast evolving atmospheric events, i.e. typhoons. In this study, we propose a new technique, namely Radial Ranks, to detect the general pattern of typhoons forward direction based on the strength parameter of the event synchronization over Japan. We suggest to subset a circular zone of high correlation around the selected grid based on the strength parameter. Radial sums of the strength parameter along vectors within this zone, radial ranks are measured for potential directions, which allows us to trace the network flux over long distances. We employed also the delay parameter of event synchronization to identify and separate the frontal storms' and typhoons' individual behaviors.

  20. Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation.

    PubMed

    Sun, Zhijian; Zhang, Guoqing; Lu, Yu; Zhang, Weidong

    2018-01-01

    This paper studies the leader-follower formation control of underactuated surface vehicles with model uncertainties and environmental disturbances. A parameter estimation and upper bound estimation based sliding mode control scheme is proposed to solve the problem of the unknown plant parameters and environmental disturbances. For each of these leader-follower formation systems, the dynamic equations of position and attitude are analyzed using coordinate transformation with the aid of the backstepping technique. All the variables are guaranteed to be uniformly ultimately bounded stable in the closed-loop system, which is proven by the distribution design Lyapunov function synthesis. The main advantages of this approach are that: first, parameter estimation based sliding mode control can enhance the robustness of the closed-loop system in presence of model uncertainties and environmental disturbances; second, a continuous function is developed to replace the signum function in the design of sliding mode scheme, which devotes to reduce the chattering of the control system. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Bayesian population analysis of a washin-washout physiologically based pharmacokinetic model for acetone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moerk, Anna-Karin, E-mail: anna-karin.mork@ki.s; Jonsson, Fredrik; Pharsight, a Certara company, St. Louis, MO

    2009-11-01

    The aim of this study was to derive improved estimates of population variability and uncertainty of physiologically based pharmacokinetic (PBPK) model parameters, especially of those related to the washin-washout behavior of polar volatile substances. This was done by optimizing a previously published washin-washout PBPK model for acetone in a Bayesian framework using Markov chain Monte Carlo simulation. The sensitivity of the model parameters was investigated by creating four different prior sets, where the uncertainty surrounding the population variability of the physiological model parameters was given values corresponding to coefficients of variation of 1%, 25%, 50%, and 100%, respectively. The PBPKmore » model was calibrated to toxicokinetic data from 2 previous studies where 18 volunteers were exposed to 250-550 ppm of acetone at various levels of workload. The updated PBPK model provided a good description of the concentrations in arterial, venous, and exhaled air. The precision of most of the model parameter estimates was improved. New information was particularly gained on the population distribution of the parameters governing the washin-washout effect. The results presented herein provide a good starting point to estimate the target dose of acetone in the working and general populations for risk assessment purposes.« less

  2. Evaluation and linking of effective parameters in particle-based models and continuum models for mixing-limited bimolecular reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Papelis, Charalambos; Sun, Pengtao; Yu, Zhongbo

    2013-08-01

    Particle-based models and continuum models have been developed to quantify mixing-limited bimolecular reactions for decades. Effective model parameters control reaction kinetics, but the relationship between the particle-based model parameter (such as the interaction radius R) and the continuum model parameter (i.e., the effective rate coefficient Kf) remains obscure. This study attempts to evaluate and link R and Kf for the second-order bimolecular reaction in both the bulk and the sharp-concentration-gradient (SCG) systems. First, in the bulk system, the agent-based method reveals that R remains constant for irreversible reactions and decreases nonlinearly in time for a reversible reaction, while mathematical analysis shows that Kf transitions from an exponential to a power-law function. Qualitative link between R and Kf can then be built for the irreversible reaction with equal initial reactant concentrations. Second, in the SCG system with a reaction interface, numerical experiments show that when R and Kf decline as t-1/2 (for example, to account for the reactant front expansion), the two models capture the transient power-law growth of product mass, and their effective parameters have the same functional form. Finally, revisiting of laboratory experiments further shows that the best fit factor in R and Kf is on the same order, and both models can efficiently describe chemical kinetics observed in the SCG system. Effective model parameters used to describe reaction kinetics therefore may be linked directly, where the exact linkage may depend on the chemical and physical properties of the system.

  3. Research on tool wearing on milling of TC21 titanium alloy

    NASA Astrophysics Data System (ADS)

    Guilin, Liu

    2017-06-01

    Titanium alloys are used in aircraft widely, but the efficiency is a problem for machining titanium alloy. In this paper, the cutting experiment of TC21 titanium alloy was studied. Cutting parameters and test methods for TC21 titanium alloy were designed. The wear behavior of TC21 titanium alloy was studied based on analysis of orthogonal test results. It provides a group of cutting parameters for TC21 titanium alloy processing.

  4. Correlation between Ti source/drain contact and performance of InGaZnO-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Choi, Kwang-Hyuk; Kim, Han-Ki

    2013-02-01

    Ti contact properties and their electrical contribution to an amorphous InGaZnO (a-IGZO) semiconductor-based thin film transistor (TFT) were investigated in terms of chemical, structural, and electrical considerations. TFT device parameters were quantitatively studied by a transmission line method. By comparing various a-IGZO TFT parameters with those of different Ag and Ti source/drain electrodes, Ti S/D contact with an a-IGZO channel was found to lead to a negative shift in VT (-Δ 0.52 V). This resulted in higher saturation mobility (8.48 cm2/Vs) of a-IGZO TFTs due to effective interfacial reaction between Ti and an a-IGZO semiconducting layer. Based on transmission electron microcopy, x-ray photoelectron depth profile analyses, and numerical calculation of TFT parameters, we suggest a possible Ti contact mechanism on semiconducting a-IGZO channel layers for TFTs.

  5. Event-based recursive filtering for a class of nonlinear stochastic parameter systems over fading channels

    NASA Astrophysics Data System (ADS)

    Shen, Yuxuan; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.

    2018-07-01

    In this paper, the recursive filtering problem is studied for a class of time-varying nonlinear systems with stochastic parameter matrices. The measurement transmission between the sensor and the filter is conducted through a fading channel characterized by the Rice fading model. An event-based transmission mechanism is adopted to decide whether the sensor measurement should be transmitted to the filter. A recursive filter is designed such that, in the simultaneous presence of the stochastic parameter matrices and fading channels, the filtering error covariance is guaranteed to have an upper bound and such an upper bound is then minimized by appropriately choosing filter gain matrix. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed filtering scheme.

  6. Comparative Assessment of Cutting Inserts and Optimization during Hard Turning: Taguchi-Based Grey Relational Analysis

    NASA Astrophysics Data System (ADS)

    Venkata Subbaiah, K.; Raju, Ch.; Suresh, Ch.

    2017-08-01

    The present study aims to compare the conventional cutting inserts with wiper cutting inserts during the hard turning of AISI 4340 steel at different workpiece hardness. Type of insert, hardness, cutting speed, feed, and depth of cut are taken as process parameters. Taguchi’s L18 orthogonal array was used to conduct the experimental tests. Parametric analysis carried in order to know the influence of each process parameter on the three important Surface Roughness Characteristics (Ra, Rz, and Rt) and Material Removal Rate. Taguchi based Grey Relational Analysis (GRA) used to optimize the process parameters for individual response and multi-response outputs. Additionally, the analysis of variance (ANOVA) is also applied to identify the most significant factor.

  7. Distribution of water quality parameters in Dhemaji district, Assam (India).

    PubMed

    Buragohain, Mridul; Bhuyan, Bhabajit; Sarma, H P

    2010-07-01

    The primary objective of this study is to present a statistically significant water quality database of Dhemaji district, Assam (India) with special reference to pH, fluoride, nitrate, arsenic, iron, sodium and potassium. 25 water samples collected from different locations of five development blocks in Dhemaji district have been studied separately. The implications presented are based on statistical analyses of the raw data. Normal distribution statistics and reliability analysis (correlation and covariance matrix) have been employed to find out the distribution pattern, localisation of data, and other related information. Statistical observations show that all the parameters under investigation exhibit non uniform distribution with a long asymmetric tail either on the right or left side of the median. The width of the third quartile was consistently found to be more than the second quartile for each parameter. Differences among mean, mode and median, significant skewness and kurtosis value indicate that the distribution of various water quality parameters in the study area is widely off normal. Thus, the intrinsic water quality is not encouraging due to unsymmetrical distribution of various water quality parameters in the study area.

  8. Study of plasma parameters in a pulsed plasma accelerator using triple Langmuir probe

    NASA Astrophysics Data System (ADS)

    Borthakur, S.; Talukdar, N.; Neog, N. K.; Borthakur, T. K.

    2018-01-01

    A Triple Langmuir Probe (TLP) has been used to study plasma parameters of a transient plasma produced in a newly developed Pulsed Plasma Accelerator system. In this experiment, a TLP with a capacitor based current mode biasing circuit was used that instantaneously gives voltage traces in an oscilloscope which are directly proportional to the plasma electron temperature and density. The electron temperature (Te) and plasma density (ne) of the plasma are measured with the help of this probe and found to be 24.13 eV and 3.34 × 1021/m3 at the maximum energy (-15 kV) of the system, respectively. An attempt was also made to analyse the time-dependent fluctuations in plasma parameters detected by the highly sensitive triple probe. In addition to this, the variation of these parameters under different discharge voltages was studied. The information obtained from these parameters is the initial diagnostics of a new device which is to be dedicated to study the impact of high heat flux plasma stream upon material surfaces inside an ITER like tokamak.

  9. Systematic parameter estimation and sensitivity analysis using a multidimensional PEMFC model coupled with DAKOTA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao Yang; Luo, Gang; Jiang, Fangming

    2010-05-01

    Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated inmore » order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.« less

  10. Are quantitative sensitivity analysis methods always reliable?

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2016-12-01

    Physical parameterizations developed to represent subgrid-scale physical processes include various uncertain parameters, leading to large uncertainties in today's Earth System Models (ESMs). Sensitivity Analysis (SA) is an efficient approach to quantitatively determine how the uncertainty of the evaluation metric can be apportioned to each parameter. Also, SA can identify the most influential parameters, as a result to reduce the high dimensional parametric space. In previous studies, some SA-based approaches, such as Sobol' and Fourier amplitude sensitivity testing (FAST), divide the parameters into sensitive and insensitive groups respectively. The first one is reserved but the other is eliminated for certain scientific study. However, these approaches ignore the disappearance of the interactive effects between the reserved parameters and the eliminated ones, which are also part of the total sensitive indices. Therefore, the wrong sensitive parameters might be identified by these traditional SA approaches and tools. In this study, we propose a dynamic global sensitivity analysis method (DGSAM), which iteratively removes the least important parameter until there are only two parameters left. We use the CLM-CASA, a global terrestrial model, as an example to verify our findings with different sample sizes ranging from 7000 to 280000. The result shows DGSAM has abilities to identify more influential parameters, which is confirmed by parameter calibration experiments using four popular optimization methods. For example, optimization using Top3 parameters filtered by DGSAM could achieve substantial improvement against Sobol' by 10%. Furthermore, the current computational cost for calibration has been reduced to 1/6 of the original one. In future, it is necessary to explore alternative SA methods emphasizing parameter interactions.

  11. Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network

    PubMed Central

    Büttner, Kathrin; Krieter, Joachim; Traulsen, Arne; Traulsen, Imke

    2013-01-01

    Centrality parameters in animal trade networks typically have right-skewed distributions, implying that these networks are highly resistant against the random removal of holdings, but vulnerable to the targeted removal of the most central holdings. In the present study, we analysed the structural changes of an animal trade network topology based on the targeted removal of holdings using specific centrality parameters in comparison to the random removal of holdings. Three different time periods were analysed: the three-year network, the yearly and the monthly networks. The aim of this study was to identify appropriate measures for the targeted removal, which lead to a rapid fragmentation of the network. Furthermore, the optimal combination of the removal of three holdings regardless of their centrality was identified. The results showed that centrality parameters based on ingoing trade contacts, e.g. in-degree, ingoing infection chain and ingoing closeness, were not suitable for a rapid fragmentation in all three time periods. More efficient was the removal based on parameters considering the outgoing trade contacts. In all networks, a maximum percentage of 7.0% (on average 5.2%) of the holdings had to be removed to reduce the size of the largest component by more than 75%. The smallest difference from the optimal combination for all three time periods was obtained by the removal based on out-degree with on average 1.4% removed holdings, followed by outgoing infection chain and outgoing closeness. The targeted removal using the betweenness centrality differed the most from the optimal combination in comparison to the other parameters which consider the outgoing trade contacts. Due to the pyramidal structure and the directed nature of the pork supply chain the most efficient interruption of the infection chain for all three time periods was obtained by using the targeted removal based on out-degree. PMID:24069293

  12. Optimization of Protein Backbone Dihedral Angles by Means of Hamiltonian Reweighting

    PubMed Central

    2016-01-01

    Molecular dynamics simulations depend critically on the accuracy of the underlying force fields in properly representing biomolecules. Hence, it is crucial to validate the force-field parameter sets in this respect. In the context of the GROMOS force field, this is usually achieved by comparing simulation data to experimental observables for small molecules. In this study, we develop new amino acid backbone dihedral angle potential energy parameters based on the widely used 54A7 parameter set by matching to experimental J values and secondary structure propensity scales. In order to find the most appropriate backbone parameters, close to 100 000 different combinations of parameters have been screened. However, since the sheer number of combinations considered prohibits actual molecular dynamics simulations for each of them, we instead predicted the values for every combination using Hamiltonian reweighting. While the original 54A7 parameter set fails to reproduce the experimental data, we are able to provide parameters that match significantly better. However, to ensure applicability in the context of larger peptides and full proteins, further studies have to be undertaken. PMID:27559757

  13. Study on Material Parameters Identification of Brain Tissue Considering Uncertainty of Friction Coefficient

    NASA Astrophysics Data System (ADS)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng

    2017-10-01

    Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.

  14. Three-dimensional Cervical Movement Characteristics in Healthy Subjects and Subgroups of Chronic Neck Pain Patients Based on Their Pain Location.

    PubMed

    Waeyaert, Patirck; Jansen, Daniel; Bastiaansen, Marco; Scafoglieri, Aldo; Buyl, Ronald; Schmitt, Maarten; Cattrysse, Erik

    2016-08-01

    A cross-sectional observational study of three-dimensional (3D) cervical kinematics in 41 chronic neck pain (CNPs) patients and 156 asymptomatic controls. The objective was to investigate 3D cervical kinematics by analyzing and comparing quantitative and qualitative parameters in healthy subjects and CNPs. Furthermore, subgroups were formed to explore the influence of pain-location on cervical kinematics. The possible correlation of kinematic parameters with the degree of functional disability was examined as well. In patients with chronic neck pain, a clear pathological cause is frequently not identifiable. Therefore, the need to assess neck pain with a broader view than structure or anatomical-based divergences is desirable. Movements of the cervical spine were registered using an electromagnetic tracking system. Quantitative and qualitative kinematics were analyzed for active axial rotation, lateral bending, and flexion-extension motion components. During lateral bending, the range of the main motion demonstrated significant higher values (P = 0.001) in the controls (mean: 68.67° ± 15.17°) than patients (mean: 59.28° ± 15.41°). Significant differences were demonstrated between subgroups for several kinematic parameters (P < 0.05). Although differences were predominantly recorded between the "symmetrical" and "asymmetrical" pain group, some parameters also distinguished subgroups from controls. On average, the symmetrical group showed significant less harmonic movement patterns, expressed by qualitative parameters, in comparison with the "asymmetrical" group and controls. Furthermore, the "asymmetrical" group showed significant lower scores on quantitative parameters than the "symmetrical" group and controls. The degree of functional disability correlated moderately with changes in qualitative parameters. In this study, chronic neck pain patients with a symmetrical pain pattern showed significant poorer quality of movement, while those with asymmetrical pain showed a significant reduction in quantitative measures. Subgrouping of neck patients based on pain location may be of help for further research and clinics. 4.

  15. Optimization of the dressing parameters in cylindrical grinding based on a generalized utility function

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Irina

    2016-01-01

    The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type ??32 and ??80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility function has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing parameters.

  16. The Impact of Variability of Selected Geological and Mining Parameters on the Value and Risks of Projects in the Hard Coal Mining Industry

    NASA Astrophysics Data System (ADS)

    Kopacz, Michał

    2017-09-01

    The paper attempts to assess the impact of variability of selected geological (deposit) parameters on the value and risks of projects in the hard coal mining industry. The study was based on simulated discounted cash flow analysis, while the results were verified for three existing bituminous coal seams. The Monte Carlo simulation was based on nonparametric bootstrap method, while correlations between individual deposit parameters were replicated with use of an empirical copula. The calculations take into account the uncertainty towards the parameters of empirical distributions of the deposit variables. The Net Present Value (NPV) and the Internal Rate of Return (IRR) were selected as the main measures of value and risk, respectively. The impact of volatility and correlation of deposit parameters were analyzed in two aspects, by identifying the overall effect of the correlated variability of the parameters and the indywidual impact of the correlation on the NPV and IRR. For this purpose, a differential approach, allowing determining the value of the possible errors in calculation of these measures in numerical terms, has been used. Based on the study it can be concluded that the mean value of the overall effect of the variability does not exceed 11.8% of NPV and 2.4 percentage points of IRR. Neglecting the correlations results in overestimating the NPV and the IRR by up to 4.4%, and 0.4 percentage point respectively. It should be noted, however, that the differences in NPV and IRR values can vary significantly, while their interpretation depends on the likelihood of implementation. Generalizing the obtained results, based on the average values, the maximum value of the risk premium in the given calculation conditions of the "X" deposit, and the correspondingly large datasets (greater than 2500), should not be higher than 2.4 percentage points. The impact of the analyzed geological parameters on the NPV and IRR depends primarily on their co-existence, which can be measured by the strength of correlation. In the analyzed case, the correlations result in limiting the range of variation of the geological parameters and economics results (the empirical copula reduces the NPV and IRR in probabilistic approach). However, this is due to the adjustment of the calculation under conditions similar to those prevailing in the deposit.

  17. Assessment of source-based nitrogen removal alternatives in leather tanning industry wastewater.

    PubMed

    Zengin, G; Olmez, T; Doğruel, S; Kabdaşli, I; Tünay, O

    2002-01-01

    Nitrogen is an important parameter of leather tanning wastewaters. Magnesium ammonium phosphate (MAP) precipitation is a chemical treatment alternative for ammonia removal. In this study, a detailed source-based wastewater characterisation of a bovine leather tannery was made and nitrogen speciation as well as other basic pollutant parameter values was evaluated. This evaluation has led to definition of alternatives for source-based MAP treatment. MAP precipitation experiments conducted on these alternatives have yielded over 90% ammonia removal at pH 9.5 and using stoichiometric doses. Among the alternatives tested liming-deliming and bating-washing was found to be the most advantageous providing 71% ammonia removal.

  18. Study on Fault Diagnostics of a Turboprop Engine Using Inverse Performance Model and Artificial Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lim, Semyeong

    2011-12-01

    Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.

  19. Slope stability susceptibility evaluation parameter (SSEP) rating scheme - An approach for landslide hazard zonation

    NASA Astrophysics Data System (ADS)

    Raghuvanshi, Tarun Kumar; Ibrahim, Jemal; Ayalew, Dereje

    2014-11-01

    In this paper a new slope susceptibility evaluation parameter (SSEP) rating scheme is presented which is developed as an expert evaluation approach for landslide hazard zonation. The SSEP rating scheme is developed by considering intrinsic and external triggering parameters that are responsible for slope instability. The intrinsic parameters which are considered are; slope geometry, slope material (rock or soil type), structural discontinuities, landuse and landcover and groundwater. Besides, external triggering parameters such as, seismicity, rainfall and manmade activities are also considered. For SSEP empirical technique numerical ratings are assigned to each of the intrinsic and triggering parameters on the basis of logical judgments acquired from experience of studies of intrinsic and external triggering factors and their relative impact in inducing instability to the slope. Further, the distribution of maximum SSEP ratings is based on their relative order of importance in contributing instability to the slope. Finally, summation of all ratings for intrinsic and triggering parameter based on actual observation will provide the expected degree of landslide in a given land unit. This information may be utilized to develop a landslide hazard zonation map. The SSEP technique was applied in the area around Wurgessa Kebelle of North Wollo Zonal Administration, Amhara National Regional State in northern Ethiopia, some 490 km from Addis Ababa. The results obtained indicates that 8.33% of the area fall under Moderately hazard and 83.33% fall within High hazard whereas 8.34% of the area fall under Very high hazard. Further, in order to validate the LHZ map prepared during the study, active landslide activities and potential instability areas, delineated through inventory mapping was overlain on it. All active landslide activities and potential instability areas fall within very high and high hazard zone. Thus, the satisfactory agreement confirms the rationality of considered governing parameters, the adopted SSEP technique, tools and procedures in developing the landslide hazard map of the study area.

  20. Impact of implementation choices on quantitative predictions of cell-based computational models

    NASA Astrophysics Data System (ADS)

    Kursawe, Jochen; Baker, Ruth E.; Fletcher, Alexander G.

    2017-09-01

    'Cell-based' models provide a powerful computational tool for studying the mechanisms underlying the growth and dynamics of biological tissues in health and disease. An increasing amount of quantitative data with cellular resolution has paved the way for the quantitative parameterisation and validation of such models. However, the numerical implementation of cell-based models remains challenging, and little work has been done to understand to what extent implementation choices may influence model predictions. Here, we consider the numerical implementation of a popular class of cell-based models called vertex models, which are often used to study epithelial tissues. In two-dimensional vertex models, a tissue is approximated as a tessellation of polygons and the vertices of these polygons move due to mechanical forces originating from the cells. Such models have been used extensively to study the mechanical regulation of tissue topology in the literature. Here, we analyse how the model predictions may be affected by numerical parameters, such as the size of the time step, and non-physical model parameters, such as length thresholds for cell rearrangement. We find that vertex positions and summary statistics are sensitive to several of these implementation parameters. For example, the predicted tissue size decreases with decreasing cell cycle durations, and cell rearrangement may be suppressed by large time steps. These findings are counter-intuitive and illustrate that model predictions need to be thoroughly analysed and implementation details carefully considered when applying cell-based computational models in a quantitative setting.

  1. Hemodynamic Changes Caused by Flow Diverters in Rabbit Aneurysm Models: Comparison of Virtual and Realistic FD Deployments Based on Micro-CT Reconstruction

    PubMed Central

    Fang, Yibin; Yu, Ying; Cheng, Jiyong; Wang, Shengzhang; Wang, Kuizhong; Liu, Jian-Min; Huang, Qinghai

    2013-01-01

    Adjusting hemodynamics via flow diverter (FD) implantation is emerging as a novel method of treating cerebral aneurysms. However, most previous FD-related hemodynamic studies were based on virtual FD deployment, which may produce different hemodynamic outcomes than realistic (in vivo) FD deployment. We compared hemodynamics between virtual FD and realistic FD deployments in rabbit aneurysm models using computational fluid dynamics (CFD) simulations. FDs were implanted for aneurysms in 14 rabbits. Vascular models based on rabbit-specific angiograms were reconstructed for CFD studies. Real FD configurations were reconstructed based on micro-CT scans after sacrifice, while virtual FD configurations were constructed with SolidWorks software. Hemodynamic parameters before and after FD deployment were analyzed. According to the metal coverage (MC) of implanted FDs calculated based on micro-CT reconstruction, 14 rabbits were divided into two groups (A, MC >35%; B, MC <35%). Normalized mean wall shear stress (WSS), relative residence time (RRT), inflow velocity, and inflow volume in Group A were significantly different (P<0.05) from virtual FD deployment, but pressure was not (P>0.05). The normalized mean WSS in Group A after realistic FD implantation was significantly lower than that of Group B. All parameters in Group B exhibited no significant difference between realistic and virtual FDs. This study confirmed MC-correlated differences in hemodynamic parameters between realistic and virtual FD deployment. PMID:23823503

  2. Complete synchronization of uncertain chaotic systems via a single proportional adaptive controller: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Israr, E-mail: iak-2000plus@yahoo.com; Saaban, Azizan Bin, E-mail: azizan.s@uum.edu.my; Ibrahim, Adyda Binti, E-mail: adyda@uum.edu.my

    This paper addresses a comparative computational study on the synchronization quality, cost and converging speed for two pairs of identical chaotic and hyperchaotic systems with unknown time-varying parameters. It is assumed that the unknown time-varying parameters are bounded. Based on the Lyapunov stability theory and using the adaptive control method, a single proportional controller is proposed to achieve the goal of complete synchronizations. Accordingly, appropriate adaptive laws are designed to identify the unknown time-varying parameters. The designed control strategy is easy to implement in practice. Numerical simulations results are provided to verify the effectiveness of the proposed synchronization scheme.

  3. a Theoretical Analysis of Physical Properties of Aqueous Trehalose with Borax

    NASA Astrophysics Data System (ADS)

    Sahara; Aniya, Masaru

    2013-07-01

    The temperature and composition dependence of the viscosity of aqueous trehalose and aqueous trehalose-borax mixtures has been investigated by means of the Bond Strength-Coordination Number Fluctuation (BSCNF) model. The result indicates that the variation in the fragility of the system is very small in the composition range analyzed. The values of the materials parameters determined are consistent with those of the trehalose-water-lithium iodide system which were analyzed in a previous study. Based on the analysis of the obtained parameters of the BSCNF model, the physical interpretation of the WLF parameters reported in a previous study is reconfirmed.

  4. Mapping of fluoride endemic areas and correlation studies of fluoride with other quality parameters of drinking water of Veppanapalli block of Dharmapuri district in Tamil Nadu.

    PubMed

    Karthikeyan, G; Sundarraj, A Shunmuga; Elango, K P

    2003-10-01

    193 drinking water samples from water sources of 27 panchayats of Veppanapalli block of Dharmapuri district of Tamil Nadu were analysed for chemical quality parameters. Based on the fluoride content of the water sources, fluoride maps differentiating regions with high / low fluoride levels were prepared using Isopleth mapping technique. The interdependence among the important chemical quality parameters were assessed using correlation studies. The experimental results of the application of linear and multiple regression equations on the influence of hardness, alkalinity, total dissolved solids and pH on fluoride are discussed.

  5. Optimization of the microcable and detector parameters towards low noise in the STS readout system

    NASA Astrophysics Data System (ADS)

    Kasinski, Krzysztof; Kleczek, Rafal; Schmidt, Christian J.

    2015-09-01

    Successful operation of the Silicon Tracking System requires charge measurement of each hit with equivalent noise charge lower than 1000 e- rms. Detector channels will not be identical, they will be constructed accordingly to the estimated occupancy, therefore for the readout electronics, detector system will exhibit various parameters. This paper presents the simulation-based study on the required microcable (trace width, dielectric material), detector (aluminum strip resistance) and external passives' (decoupling capacitors) parameters in the Silicon Tracking System. Studies will be performed using a front-end electronics (charge sensitive amplifier with shaper) designed for the power budget of 10 mA/channel.

  6. Using AVIRIS data and multiple-masking techniques to map urban forest trees species

    Treesearch

    Q. Xiao; S.L. Ustin; E.G. McPherson

    2004-01-01

    Tree type and species information are critical parameters for urban forest management, benefit cost analysis and urban planning. However, traditionally, these parameters have been derived based on limited field samples in urban forest management practice. In this study we used high-resolution Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data and multiple-...

  7. An Examination of Two Procedures for Identifying Consequential Item Parameter Drift

    ERIC Educational Resources Information Center

    Wells, Craig S.; Hambleton, Ronald K.; Kirkpatrick, Robert; Meng, Yu

    2014-01-01

    The purpose of the present study was to develop and evaluate two procedures flagging consequential item parameter drift (IPD) in an operational testing program. The first procedure was based on flagging items that exhibit a meaningful magnitude of IPD using a critical value that was defined to represent barely tolerable IPD. The second procedure…

  8. Dependency properties of the amorphous alloy Co58Ni10Fe5Si11B16 on technological parameters of spinning

    NASA Astrophysics Data System (ADS)

    Frolov, A. M.; Tkachev, V. V.; Fedorets, A. N.; Pustovalov, E. V.; Kraynova, G. S.; Dolzhikov, S. V.; Ilin, N. V.; Tsesarskaya, A. K.

    2017-09-01

    The tapes are quickly quenched onto a rotating drum. The structure of mechanical and physical properties is studied depending on the spinning parameters. An approach is proposed for the classification of obtained bands based on the statistics of the microrelief of their surfaces.

  9. Uncertainty estimation of the self-thinning process by Maximum-Entropy Principle

    Treesearch

    Shoufan Fang; George Z. Gertner

    2000-01-01

    When available information is scarce, the Maximum-Entropy Principle can estimate the distributions of parameters. In our case study, we estimated the distributions of the parameters of the forest self-thinning process based on literature information, and we derived the conditional distribution functions and estimated the 95 percent confidence interval (CI) of the self-...

  10. Demand Intensity, Market Parameters and Policy Responses towards Demand and Supply of Private Supplementary Tutoring in China

    ERIC Educational Resources Information Center

    Kwok, Percy Lai Yin

    2010-01-01

    Based on some longitudinal studies of private tutoring in twelve cities, towns, municipalities and provinces of China, the paper endeavours to depict demand intensity, articulate market parameters and reflect on policy responses towards the demand-supply mechanism of the vast shadowy educational phenomena at primary and secondary levels. Such…

  11. Growth parameters of rainbow trout at differenct life stages reared on either a fish meal or plant protein based diet.

    USDA-ARS?s Scientific Manuscript database

    Analysis of growth parameters have been researched in a number of aquaculture species with rainbow trout having received a significant amount of attention. Typically most growth studies have evaluated changes in plasma hormone levels or expression in growth genes in fish at a certain life stage. It ...

  12. Remote estimation of a managed pine forest evapotranspiration with geospatial technology

    Treesearch

    S. Panda; D.M. Amatya; G Sun; A. Bowman

    2016-01-01

    Remote sensing has increasingly been used to estimate evapotranspiration (ET) and its supporting parameters in a rapid, accurate, and cost-effective manner. The goal of this study was to develop remote sensing-based models for estimating ET and the biophysical parameters canopy conductance (gc), upper-canopy temperature, and soil moisture for a mature loblolly pine...

  13. Systolic blood pressure but not electrocardiogram QRS duration is associated with heart rate variability (HRV): a cross-sectional study in rural Australian non-diabetics.

    PubMed

    Lee, Yvonne Yin Leng; Jelinek, Herbert F; McLachlan, Craig S

    2017-01-01

    A positive correlation between ECG derived QRS duration and heart rate variability (HRV) parameters had previously been reported in young healthy adults. We note this study used a narrow QRS duration range, and did not adjust for systolic blood pressure. Our aims are to investigate associations between systolic blood pressure (SBP), QRS duration and HRV in a rural aging population. A retrospective cross sectional population was obtained from the CSU Diabetes Screening Research Initiative data base where 200 participants had no diabetes or pre-diabetes. SBP data were matched with ECG derived QRS duration and HRV parameters. HRV parameters were calculated from R-R intervals. Resting 12-lead electrocardiograms were obtained from each subject using a Welch Allyn PC-Based ECG system. Pearson correlation analysis revealed no statistically significant associations between HRV parameters and QRS duration. No significant mean differences in HRV parameter subgroups across defined QRS cut-offs were found. SBP > 146 mmHg was associated with increasing QRS durations, however this association disappeared once models were adjusted for age and gender. SBP was also significantly associated with a number of HRV parameters using Pearson correlation analysis, including high frequency (HF) ( p  < 0.05), HFln ( p  < 0.02), RMSDD ( p  < 0.02) and non-linear parameters; ApEN ( p  < 0.001) were negatively correlated with increasing SBP while the low frequency to high frequency ratio (LF/HF) increased with increasing SBP ( p  < 0.03). Our results do not support associations between ECG derived R-R derived HRV parameters and QRS duration in aging populations. We suggest that ventricular conduction as determined by QRS duration is independent of variations in SA-node heart rate variability.

  14. Neural net classification of liver ultrasonogram for quantitative evaluation of diffuse liver disease

    NASA Astrophysics Data System (ADS)

    Lee, Dong Hyuk; Kim, JongHyo; Kim, Hee C.; Lee, Yong W.; Min, Byong Goo

    1997-04-01

    There have been a number of studies on the quantitative evaluation of diffuse liver disease by using texture analysis technique. However, the previous studies have been focused on the classification between only normal and abnormal pattern based on textural properties, resulting in lack of clinically useful information about the progressive status of liver disease. Considering our collaborative research experience with clinical experts, we judged that not only texture information but also several shape properties are necessary in order to successfully classify between various states of disease with liver ultrasonogram. Nine image parameters were selected experimentally. One of these was texture parameter and others were shape parameters measured as length, area and curvature. We have developed a neural-net algorithm that classifies liver ultrasonogram into 9 categories of liver disease: 3 main category and 3 sub-steps for each. Nine parameters were collected semi- automatically from the user by using graphical user interface tool, and then processed to give a grade for each parameter. Classifying algorithm consists of two steps. At the first step, each parameter was graded into pre-defined levels using neural network. in the next step, neural network classifier determined disease status using graded nine parameters. We implemented a PC based computer-assist diagnosis workstation and installed it in radiology department of Seoul National University Hospital. Using this workstation we collected 662 cases during 6 months. Some of these were used for training and others were used for evaluating accuracy of the developed algorithm. As a conclusion, a liver ultrasonogram classifying algorithm was developed using both texture and shape parameters and neural network classifier. Preliminary results indicate that the proposed algorithm is useful for evaluation of diffuse liver disease.

  15. Theoretical prediction on corrugated sandwich panels under bending loads

    NASA Astrophysics Data System (ADS)

    Shu, Chengfu; Hou, Shujuan

    2018-05-01

    In this paper, an aluminum corrugated sandwich panel with triangular core under bending loads was investigated. Firstly, the equivalent material parameters of the triangular corrugated core layer, which could be considered as an orthotropic panel, were obtained by using Castigliano's theorem and equivalent homogeneous model. Secondly, contributions of the corrugated core layer and two face panels were both considered to compute the equivalent material parameters of the whole structure through the classical lamination theory, and these equivalent material parameters were compared with finite element analysis solutions. Then, based on the Mindlin orthotropic plate theory, this study obtain the closed-form solutions of the displacement for a corrugated sandwich panel under bending loads in specified boundary conditions, and parameters study and comparison by the finite element method were executed simultaneously.

  16. Cognitive diagnosis modelling incorporating item response times.

    PubMed

    Zhan, Peida; Jiao, Hong; Liao, Dandan

    2018-05-01

    To provide more refined diagnostic feedback with collateral information in item response times (RTs), this study proposed joint modelling of attributes and response speed using item responses and RTs simultaneously for cognitive diagnosis. For illustration, an extended deterministic input, noisy 'and' gate (DINA) model was proposed for joint modelling of responses and RTs. Model parameter estimation was explored using the Bayesian Markov chain Monte Carlo (MCMC) method. The PISA 2012 computer-based mathematics data were analysed first. These real data estimates were treated as true values in a subsequent simulation study. A follow-up simulation study with ideal testing conditions was conducted as well to further evaluate model parameter recovery. The results indicated that model parameters could be well recovered using the MCMC approach. Further, incorporating RTs into the DINA model would improve attribute and profile correct classification rates and result in more accurate and precise estimation of the model parameters. © 2017 The British Psychological Society.

  17. Three-parameter optical studies in Scottish coastal waters

    NASA Astrophysics Data System (ADS)

    McKee, David; Cunningham, Alex; Jones, Ken

    1997-02-01

    A new submersible optical instrument has been constructed which allows chlorophyll fluorescence, attenuation and wide- angle scattering measurements to be made simultaneously at he same point in a body of water. The instrument sues a single xenon flashlamp as the light source, and incorporates its own power supply and microprocessor based data logging system. It has ben cross-calibrated against commercial single-parameter instruments using a range of non-algal particles and phytoplankton cultures. The equipment has been deployed at sea in the Firth of Clyde and Loch Linnhe, where is has been used to study seasonal variability in optical water column structure. Results will be presented to illustrate how ambiguity in the interpretation of measurements of a single optical parameter can be alleviated by measuring several parameters simultaneously. Comparative studies of differences in winter and spring relationships between optical variable shave also ben carried out.

  18. Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Ming; Zhang, Fuqing; Nielsen-Gammon, John W.

    2010-04-01

    This study explores the treatment of model error and uncertainties through simultaneous state and parameter estimation (SSPE) with an ensemble Kalman filter (EnKF) in the simulation of a 2006 air pollution event over the greater Houston area during the Second Texas Air Quality Study (TexAQS-II). Two parameters in the atmospheric boundary layer parameterization associated with large model sensitivities are combined with standard prognostic variables in an augmented state vector to be continuously updated through assimilation of wind profiler observations. It is found that forecasts of the atmosphere with EnKF/SSPE are markedly improved over experiments with no state and/or parameter estimation. More specifically, the EnKF/SSPE is shown to help alleviate a near-surface cold bias and to alter the momentum mixing in the boundary layer to produce more realistic wind profiles.

  19. Parameter Tuning and Calibration of RegCM3 with MIT-Emanuel Cumulus Parameterization Scheme over CORDEX East Asian Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Liwei; Qian, Yun; Zhou, Tianjun

    2014-10-01

    In this study, we calibrated the performance of regional climate model RegCM3 with Massachusetts Institute of Technology (MIT)-Emanuel cumulus parameterization scheme over CORDEX East Asia domain by tuning the selected seven parameters through multiple very fast simulated annealing (MVFSA) sampling method. The seven parameters were selected based on previous studies, which customized the RegCM3 with MIT-Emanuel scheme through three different ways by using the sensitivity experiments. The responses of model results to the seven parameters were investigated. Since the monthly total rainfall is constrained, the simulated spatial pattern of rainfall and the probability density function (PDF) distribution of daily rainfallmore » rates are significantly improved in the optimal simulation. Sensitivity analysis suggest that the parameter “relative humidity criteria” (RH), which has not been considered in the default simulation, has the largest effect on the model results. The responses of total rainfall over different regions to RH were examined. Positive responses of total rainfall to RH are found over northern equatorial western Pacific, which are contributed by the positive responses of explicit rainfall. Followed by an increase of RH, the increases of the low-level convergence and the associated increases in cloud water favor the increase of the explicit rainfall. The identified optimal parameters constrained by the total rainfall have positive effects on the low-level circulation and the surface air temperature. Furthermore, the optimized parameters based on the extreme case are suitable for a normal case and the model’s new version with mixed convection scheme.« less

  20. Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talukder, Srijeeta; Sen, Shrabani; Chaudhury, Pinaki, E-mail: pinakc@rediffmail.com

    We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction ε{sub hb}(AT) for an AT base pair and the ring factor ξ turn out to be the most sensitive parameters. In addition, the stackingmore » interaction ε{sub st}(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization.« less

  1. Measuring skin aging using optical coherence tomography in vivo: a validation study

    NASA Astrophysics Data System (ADS)

    Trojahn, Carina; Dobos, Gabor; Richter, Claudia; Blume-Peytavi, Ulrike; Kottner, Jan

    2015-04-01

    Dermal and epidermal structures in human skin change during intrinsic and extrinsic aging. Epidermal thickness is one of the most often reported parameters for the assessment of skin aging in cross-sectional images captured by optical coherence tomography (OCT). We aimed to identify further parameters for the noninvasive measurement of skin aging of sun-exposed and sun-protected areas utilizing OCT. Based on a literature review, seven parameters were inductively developed. Three independent raters assessed these parameters using four-point scales on images of female subjects of two age groups. All items could be detected and quantified in our sample. Interrater agreement ranged between 25.0% and 83.3%. The item scores "stratum corneum reflectivity," "upper dermal reflectivity," and "dermoepidermal contrast" showed significant differences between age groups on the volar and dorsal forearm indicating that they were best able to measure changes during skin aging. "Surface unevenness" was associated with the skin roughness parameters, Rz and Rmax, on the inner upper arm and volar forearm supporting the criterion validity of this parameter on sun-protected skin areas. Based on the interrater agreement and the ability to differentiate between age groups, these four parameters are being considered as the best candidates for measuring skin aging in OCT images.

  2. Measuring skin aging using optical coherence tomography in vivo: a validation study.

    PubMed

    Trojahn, Carina; Dobos, Gabor; Richter, Claudia; Blume-Peytavi, Ulrike; Kottner, Jan

    2015-04-01

    Dermal and epidermal structures in human skin change during intrinsic and extrinsic aging. Epidermal thickness is one of the most often reported parameters for the assessment of skin aging in cross-sectional images captured by optical coherence tomography (OCT). We aimed to identify further parameters for the noninvasive measurement of skin aging of sun-exposed and sun-protected areas utilizing OCT. Based on a literature review, seven parameters were inductively developed. Three independent raters assessed these parameters using four-point scales on images of female subjects of two age groups. All items could be detected and quantified in our sample. Interrater agreement ranged between 25.0% and 83.3%. The item scores “stratum corneum reflectivity,” “upper dermal reflectivity,” and “dermoepidermal contrast” showed significant differences between age groups on the volar and dorsal forearm indicating that they were best able to measure changes during skin aging. “Surface unevenness” was associated with the skin roughness parameters, Rz and Rmax, on the inner upper arm and volar forearm supporting the criterion validity of this parameter on sun-protected skin areas. Based on the interrater agreement and the ability to differentiate between age groups, these four parameters are being considered as the best candidates for measuring skin aging in OCT images.

  3. Effects of machining parameters on tool life and its optimization in turning mild steel with brazed carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Mukherjee, S.

    2016-09-01

    One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.

  4. Study on Parameter Identification of Assembly Robot based on Screw Theory

    NASA Astrophysics Data System (ADS)

    Yun, Shi; Xiaodong, Zhang

    2017-11-01

    The kinematic model of assembly robot is one of the most important factors affecting repetitive precision. In order to improve the accuracy of model positioning, this paper first establishes the exponential product model of ER16-1600 assembly robot on the basis of screw theory, and then based on iterative least squares method, using ER16-1600 model robot parameter identification. By comparing the experiment before and after the calibration, it is proved that the method has obvious improvement on the positioning accuracy of the assembly robot.

  5. Evaluation of ultrasound based sterilization approaches in terms of shelf life and quality parameters of fruit and vegetable juices.

    PubMed

    Khandpur, Paramjeet; Gogate, Parag R

    2016-03-01

    The present work evaluates the performance of ultrasound based sterilization approaches for processing of different fruit and vegetable juices in terms of microbial growth and changes in the quality parameters during the storage. Comparison with the conventional thermal processing has also been presented. A novel approach based on combination of ultrasound with ultraviolet irradiation and crude extract of essential oil from orange peels has been used for the first time. Identification of the microbial growth (total bacteria and yeast content) in the juices during the subsequent storage and assessing the safety for human consumption along with the changes in the quality parameters (Brix, titratable acidity, pH, ORP, salt, conductivity, TSS and TDS) has been investigated in details. The optimized ultrasound parameters for juice sterilization were established as ultrasound power of 100 W and treatment time of 15 min for the constant frequency operation (20 kHz). It has been established that more than 5 log reduction was achieved using the novel combined approaches based on ultrasound. The treated juices using different approaches based on ultrasound also showed lower microbial growth and improved quality characteristics as compared to the thermally processed juice. Scale up studies were also performed using spinach juice as the test sample with processing at 5 L volume for the first time. The ultrasound treated juice satisfied the microbiological and physiochemical safety limits in refrigerated storage conditions for 20 days for the large scale processing. Overall the present work conclusively established the usefulness of combined treatment approaches based on ultrasound for maintaining the microbiological safety of beverages with enhanced shelf life and excellent quality parameters as compared to the untreated and thermally processed juices. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Estimation of body temperature rhythm based on heart activity parameters in daily life.

    PubMed

    Sooyoung Sim; Heenam Yoon; Hosuk Ryou; Kwangsuk Park

    2014-01-01

    Body temperature contains valuable health related information such as circadian rhythm and menstruation cycle. Also, it was discovered from previous studies that body temperature rhythm in daily life is related with sleep disorders and cognitive performances. However, monitoring body temperature with existing devices during daily life is not easy because they are invasive, intrusive, or expensive. Therefore, the technology which can accurately and nonintrusively monitor body temperature is required. In this study, we developed body temperature estimation model based on heart rate and heart rate variability parameters. Although this work was inspired by previous research, we originally identified that the model can be applied to body temperature monitoring in daily life. Also, we could find out that normalized Mean heart rate (nMHR) and frequency domain parameters of heart rate variability showed better performance than other parameters. Although we should validate the model with more number of subjects and consider additional algorithms to decrease the accumulated estimation error, we could verify the usefulness of this approach. Through this study, we expect that we would be able to monitor core body temperature and circadian rhythm from simple heart rate monitor. Then, we can obtain various health related information derived from daily body temperature rhythm.

  7. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation.

    PubMed

    Suzuki, Ryo; Ito, Kohta; Lee, Taeyong; Ogihara, Naomichi

    2017-01-01

    Accurate identification of the material properties of the plantar soft tissue is important for computer-aided analysis of foot pathologies and design of therapeutic footwear interventions based on subject-specific models of the foot. However, parameter identification of the hyperelastic material properties of plantar soft tissues usually requires an inverse finite element analysis due to the lack of a practical contact model of the indentation test. In the present study, we derive an analytical contact model of a spherical indentation test in order to directly estimate the material properties of the plantar soft tissue. Force-displacement curves of the heel pads are obtained through an indentation experiment. The experimental data are fit to the analytical stress-strain solution of the spherical indentation in order to obtain the parameters. A spherical indentation approach successfully predicted the non-linear material properties of the heel pad without iterative finite element calculation. The force-displacement curve obtained in the present study was found to be situated lower than those identified in previous studies. The proposed framework for identifying the hyperelastic material parameters may facilitate the development of subject-specific FE modeling of the foot for possible clinical and ergonomic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Creating an index to measure health state of depressed patients in automated healthcare databases: the methodology

    PubMed Central

    François, Clément; Tanasescu, Adrian; Lamy, François-Xavier; Despiegel, Nicolas; Falissard, Bruno; Chalem, Ylana; Lançon, Christophe; Llorca, Pierre-Michel; Saragoussi, Delphine; Verpillat, Patrice; Wade, Alan G.; Zighed, Djamel A.

    2017-01-01

    ABSTRACT Background and objective: Automated healthcare databases (AHDB) are an important data source for real life drug and healthcare use. In the filed of depression, lack of detailed clinical data requires the use of binary proxies with important limitations. The study objective was to create a Depressive Health State Index (DHSI) as a continuous health state measure for depressed patients using available data in an AHDB. Methods: The study was based on historical cohort design using the UK Clinical Practice Research Datalink (CPRD). Depressive episodes (depression diagnosis with an antidepressant prescription) were used to create the DHSI through 6 successive steps: (1) Defining study design; (2) Identifying constituent parameters; (3) Assigning relative weights to the parameters; (4) Ranking based on the presence of parameters; (5) Standardizing the rank of the DHSI; (6) Developing a regression model to derive the DHSI in any other sample. Results: The DHSI ranged from 0 (worst) to 100 (best health state) comprising 29 parameters. The proportion of depressive episodes with a remission proxy increased with DHSI quartiles. Conclusion: A continuous outcome for depressed patients treated by antidepressants was created in an AHDB using several different variables and allowed more granularity than currently used proxies. PMID:29081921

  9. Regarding to the Variance Analysis of Regression Equation of the Surface Roughness obtained by End Milling process of 7136 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    POP, A. B.; ȚÎȚU, M. A.

    2016-11-01

    In the metal cutting process, surface quality is intrinsically related to the cutting parameters and to the cutting tool geometry. At the same time, metal cutting processes are closely related to the machining costs. The purpose of this paper is to reduce manufacturing costs and processing time. A study was made, based on the mathematical modelling of the average of the absolute value deviation (Ra) resulting from the end milling process on 7136 aluminium alloy, depending on cutting process parameters. The novel element brought by this paper is the 7136 aluminium alloy type, chosen to conduct the experiments, which is a material developed and patented by Universal Alloy Corporation. This aluminium alloy is used in the aircraft industry to make parts from extruded profiles, and it has not been studied for the proposed research direction. Based on this research, a mathematical model of surface roughness Ra was established according to the cutting parameters studied in a set experimental field. A regression analysis was performed, which identified the quantitative relationships between cutting parameters and the surface roughness. Using the variance analysis ANOVA, the degree of confidence for the achieved results by the regression equation was determined, and the suitability of this equation at every point of the experimental field.

  10. Energy- and wave-based beam-tracing prediction of room-acoustical parameters using different boundary conditions.

    PubMed

    Yousefzadeh, Behrooz; Hodgson, Murray

    2012-09-01

    A beam-tracing model was used to study the acoustical responses of three empty, rectangular rooms with different boundary conditions. The model is wave-based (accounting for sound phase) and can be applied to rooms with extended-reaction surfaces that are made of multiple layers of solid, fluid, or poroelastic materials-the acoustical properties of these surfaces are calculated using Biot theory. Three room-acoustical parameters were studied in various room configurations: sound strength, reverberation time, and RApid Speech Transmission Index. The main objective was to investigate the effects of modeling surfaces as either local or extended reaction on predicted values of these three parameters. Moreover, the significance of modeling interference effects was investigated, including the study of sound phase-change on surface reflection. Modeling surfaces as of local or extended reaction was found to be significant for surfaces consisting of multiple layers, specifically when one of the layers is air. For multilayers of solid materials with an air-cavity, this was most significant around their mass-air-mass resonance frequencies. Accounting for interference effects made significant changes in the predicted values of all parameters. Modeling phase change on reflection, on the other hand, was found to be relatively much less significant.

  11. Sex hormones and quantitative ultrasound parameters at the heel in men and women from the general population.

    PubMed

    Pätzug, Konrad; Friedrich, Nele; Kische, Hanna; Hannemann, Anke; Völzke, Henry; Nauck, Matthias; Keevil, Brian G; Haring, Robin

    2017-12-01

    The present study investigates potential associations between liquid chromatography-mass spectrometry (LC-MS) measured sex hormones, dehydroepiandrosterone sulphate, sex hormone-binding globulin (SHBG) and bone ultrasound parameters at the heel in men and women from the general population. Data from 502 women and 425 men from the population-based Study of Health in Pomerania (SHIP-TREND) were used. Cross-sectional associations of sex hormones including testosterone (TT), calculated free testosterone (FT), dehydroepiandrosterone sulphate (DHEAS), androstenedione (ASD), estrone (E1) and SHBG with quantitative ultrasound (QUS) parameters at the heel, including broadband ultrasound attenuation (BUA), speed of sound (SOS) and stiffness index (SI) were examined by analysis of variance (ANOVA) and multivariable quantile regression models. Multivariable regression analysis showed a sex-specific inverse association of DHEAS with SI in men (Beta per SI unit = - 3.08, standard error (SE) = 0.88), but not in women (Beta = - 0.01, SE = 2.09). Furthermore, FT was positively associated with BUA in men (Beta per BUA unit = 29.0, SE = 10.1). None of the other sex hormones (ASD, E1) or SHBG was associated with QUS parameters after multivariable adjustment. This cross-sectional population-based study revealed independent associations of DHEAS and FT with QUS parameters in men, suggesting a potential influence on male bone metabolism. The predictive role of DHEAS and FT as a marker for osteoporosis in men warrants further investigation in clinical trials and large-scale observational studies.

  12. Tachyon constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Saaidi, Kh.; Golanbari, T.

    2018-04-01

    The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.

  13. Study on Nonlinear Lateral Parameter Bifurcation Characteristic of Soft Footbridge

    NASA Astrophysics Data System (ADS)

    Chen, Zhou; Deng, De-Yuan; Yan, Quan-Sheng; Lu, Jin-Zhong; Lu, Jian-Xin

    2018-03-01

    With the trend of large span in the development of footbridge, its nonlinear characteristic is more and more obvious. Bifurcation has a great influence on the nonstationary trivial solution and its boundary stability of nonlinear vibration. Based on the Millennium Bridge in London, this paper deduces its nonlinear transverse vibration equation. Also, the method of Galerkin and multi-scale method is used to obtain the judgment condition of nonstationary trivial stability. Based on the bifurcation theory, the influence of nonlinear behavior on nontrivial solution as well as its stability is studied in the paper under two situations, a 1 ‑ σ bifurcation and a 1 ‑ ζ2 bifurcation of parameter plane respectively.

  14. Buckling and postbuckling of size-dependent cracked microbeams based on a modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Akbarzadeh Khorshidi, M.; Shariati, M.

    2017-07-01

    The elastic buckling analysis and the static postbuckling response of the Euler-Bernoulli microbeams containing an open edge crack are studied based on a modified couple stress theory. The cracked section is modeled by a massless elastic rotational spring. This model contains a material length scale parameter and can capture the size effect. The von Kármán nonlinearity is applied to display the postbuckling behavior. Analytical solutions of a critical buckling load and the postbuckling response are presented for simply supported cracked microbeams. This parametric study indicates the effects of the crack location, crack severity, and length scale parameter on the buckling and postbuckling behaviors of cracked microbeams.

  15. Assessing the welfare of laboratory mice in their home environment using animal-based measures--a benchmarking tool.

    PubMed

    Spangenberg, Elin M F; Keeling, Linda J

    2016-02-01

    Welfare problems in laboratory mice can be a consequence of an ongoing experiment, or a characteristic of a particular genetic line, but in some cases, such as breeding animals, they are most likely to be a result of the design and management of the home cage. Assessment of the home cage environment is commonly performed using resource-based measures, like access to nesting material. However, animal-based measures (related to the health status and behaviour of the animals) can be used to assess the current welfare of animals regardless of the inputs applied (i.e. the resources or management). The aim of this study was to design a protocol for assessing the welfare of laboratory mice using only animal-based measures. The protocol, to be used as a benchmarking tool, assesses mouse welfare in the home cage and does not contain parameters related to experimental situations. It is based on parameters corresponding to the 12 welfare criteria established by the Welfare Quality® project. Selection of animal-based measures was performed by scanning existing published, web-based and informal protocols, and by choosing parameters that matched these criteria, were feasible in practice and, if possible, were already validated indicators of mouse welfare. The parameters should identify possible animal welfare problems and enable assessment directly in an animal room during cage cleaning procedures, without the need for extra equipment. Thermal comfort behaviours and positive emotional states are areas where more research is needed to find valid, reliable and feasible animal-based measures. © The Author(s) 2015.

  16. Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images.

    PubMed

    Nillesen, Maartje M; Lopata, Richard G P; Gerrits, Inge H; Kapusta, Livia; Thijssen, Johan M; de Korte, Chris L

    2008-04-01

    The objective of this study was to investigate the use of speckle statistics as a preprocessing step for segmentation of the myocardium in echocardiographic images. Three-dimensional (3D) and biplane image sequences of the left ventricle of two healthy children and one dog (beagle) were acquired. Pixel-based speckle statistics of manually segmented blood and myocardial regions were investigated by fitting various probability density functions (pdf). The statistics of heart muscle and blood could both be optimally modeled by a K-pdf or Gamma-pdf (Kolmogorov-Smirnov goodness-of-fit test). Scale and shape parameters of both distributions could differentiate between blood and myocardium. Local estimation of these parameters was used to obtain parametric images, where window size was related to speckle size (5 x 2 speckles). Moment-based and maximum-likelihood estimators were used. Scale parameters were still able to differentiate blood from myocardium; however, smoothing of edges of anatomical structures occurred. Estimation of the shape parameter required a larger window size, leading to unacceptable blurring. Using these parameters as an input for segmentation resulted in unreliable segmentation. Adaptive mean squares filtering was then introduced using the moment-based scale parameter (sigma(2)/mu) of the Gamma-pdf to automatically steer the two-dimensional (2D) local filtering process. This method adequately preserved sharpness of the edges. In conclusion, a trade-off between preservation of sharpness of edges and goodness-of-fit when estimating local shape and scale parameters is evident for parametric images. For this reason, adaptive filtering outperforms parametric imaging for the segmentation of echocardiographic images.

  17. Detecting changes in ultrasound backscattered statistics by using Nakagami parameters: Comparisons of moment-based and maximum likelihood estimators.

    PubMed

    Lin, Jen-Jen; Cheng, Jung-Yu; Huang, Li-Fei; Lin, Ying-Hsiu; Wan, Yung-Liang; Tsui, Po-Hsiang

    2017-05-01

    The Nakagami distribution is an approximation useful to the statistics of ultrasound backscattered signals for tissue characterization. Various estimators may affect the Nakagami parameter in the detection of changes in backscattered statistics. In particular, the moment-based estimator (MBE) and maximum likelihood estimator (MLE) are two primary methods used to estimate the Nakagami parameters of ultrasound signals. This study explored the effects of the MBE and different MLE approximations on Nakagami parameter estimations. Ultrasound backscattered signals of different scatterer number densities were generated using a simulation model, and phantom experiments and measurements of human liver tissues were also conducted to acquire real backscattered echoes. Envelope signals were employed to estimate the Nakagami parameters by using the MBE, first- and second-order approximations of MLE (MLE 1 and MLE 2 , respectively), and Greenwood approximation (MLE gw ) for comparisons. The simulation results demonstrated that, compared with the MBE and MLE 1 , the MLE 2 and MLE gw enabled more stable parameter estimations with small sample sizes. Notably, the required data length of the envelope signal was 3.6 times the pulse length. The phantom and tissue measurement results also showed that the Nakagami parameters estimated using the MLE 2 and MLE gw could simultaneously differentiate various scatterer concentrations with lower standard deviations and reliably reflect physical meanings associated with the backscattered statistics. Therefore, the MLE 2 and MLE gw are suggested as estimators for the development of Nakagami-based methodologies for ultrasound tissue characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    DOE PAGES

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; ...

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertaintymore » in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.« less

  19. Simulation of sovereign CDS market based on interaction between market participant

    NASA Astrophysics Data System (ADS)

    Ko, Bonggyun; Kim, Kyungwon

    2017-08-01

    A research for distributional property of financial asset is the subject of intense interest not only for financial theory but also for practitioner. Such respect is no exception to CDS market. The CDS market, which began to receive attention since the global financial debacle, is not well researched despite of the importance of research necessity. This research introduces creation of CDS market and use Ising system utilizing occurrence characteristics (to shift risk) as an important factor. Therefore the results of this paper would be of great assistance to both financial theory and practice. From this study, not only distributional property of the CDS market but also various statistics like multifractal characteristics could promote understanding about the market. A salient point in this study is that countries are mainly clustering into 2 groups and it might be because of market situation and geographical characteristics of each country. This paper suggested 2 simulation parameters representing this market based on understanding such CDS market situation. The estimated parameters are suitable for high and low risk event of CDS market respectively and these two parameters are complementary and can cover not only basic statistics but also multifractal properties of most countries. Therefore these estimated parameters can be used in researches preparing for a certain event (high or low risk). Finally this research will serve as a momentum double-checking indirectly the performance of Ising system based on these results.

  20. [Study on differences between pharmacokinetics and chromatopharmacodynamics for Chinese materia medica formulae].

    PubMed

    He, Fuyuan; Deng, Kaiwen; Zou, Huan; Qiu, Yun; Chen, Feng; Zhou, Honghao

    2011-01-01

    To study on the differences between chromatopharmacokinetics (pharmacokinetics with fingerprint chromatography) and chromatopharmacodynamics (pharmacodynamics with fingerprint chromatography) of Chinese materia medica formulae to answer the question whether the pharmacokinetic parameters of multiple composites can be utilized to guide the medication of multiple composites. On the base of established four chromatopharmacology (pharmacology with chromatographic fingerprint), the pharmacokinetics, and pharmacodynamics were analyzed comparably on their mathematical model and parameter definition. On the basis of quantitative pharmacology, the function expressions and total statistical parameters, such as total zero moment, total first moment, total second moment of the pharmacokinetics, and pharmacodynamics were analyzed to the common expressions and elucidated results for single and multiple components in Chinese materia medica formulae. Total quantitative pharmacokinetic, i.e., chromatopharmacokinetic parameter were decided by each component pharmacokinetic parameters, whereas the total quantitative pharmacodynamic, i.e., chromatopharmacodynamic parameter were decided by both of pharmacokinetic and pharmacodynamic parameters of each components. The pharmacokinetic parameters were corresponded to pharmacodynamic parameters with an existing stable effective coefficient when the constitutive ratio of each composite was a constant. The effects of Chinese materia medica were all controlled by pharmacokinetic and pharmacodynamic coefficient. It is a special case that the pharmacokinetic parameter could independently guide the clinical medication for single component whereas the chromatopharmacokinetic parameters are not applied to the multiple drug combination system, and not be used to solve problems of chromatopharmacokinetic of Chinese materia medica formulae.

  1. Calibration of a Distributed Hydrological Model using Remote Sensing Evapotranspiration data in the Semi-Arid Punjab Region of Pakista

    NASA Astrophysics Data System (ADS)

    Becker, R.; Usman, M.

    2017-12-01

    A SWAT (Soil Water Assessment Tool) model is applied in the semi-arid Punjab region in Pakistan. The physically based hydrological model is set up to simulate hydrological processes and water resources demands under future land use, climate change and irrigation management scenarios. In order to successfully run the model, detailed focus is laid on the calibration procedure of the model. The study deals with the following calibration issues:i. lack of reliable calibration/validation data, ii. difficulty to accurately model a highly managed system with a physically based hydrological model and iii. use of alternative and spatially distributed data sets for model calibration. In our study area field observations are rare and the entirely human controlled irrigation system renders central calibration parameters (e.g. runoff/curve number) unsuitable, as it can't be assumed that they represent the natural behavior of the hydrological system. From evapotranspiration (ET) however principal hydrological processes can still be inferred. Usman et al. (2015) derived satellite based monthly ET data for our study area based on SEBAL (Surface Energy Balance Algorithm) and created a reliable ET data set which we use in this study to calibrate our SWAT model. The initial SWAT model performance is evaluated with respect to the SEBAL results using correlation coefficients, RMSE, Nash-Sutcliffe efficiencies and mean differences. Particular focus is laid on the spatial patters, investigating the potential of a spatially differentiated parameterization instead of just using spatially uniform calibration data. A sensitivity analysis reveals the most sensitive parameters with respect to changes in ET, which are then selected for the calibration process.Using the SEBAL-ET product we calibrate the SWAT model for the time period 2005-2006 using a dynamically dimensioned global search algorithm to minimize RMSE. The model improvement after the calibration procedure is finally evaluated based on the previously chosen evaluation criteria for the time period 2007-2008. The study reveals the sensitivity of SWAT model parameters to changes in ET in a semi-arid and human controlled system and the potential of calibrating those parameters using satellite derived ET data.

  2. Study of the joining of polycarbonate panels in butt joint configuration through friction stir welding

    NASA Astrophysics Data System (ADS)

    Astarita, Antonello; Boccarusso, Luca; Carrino, Luigi; Durante, Massimo; Minutolo, Fabrizio Memola Capece; Squillace, Antonino

    2018-05-01

    Polycarbonate sheets, 3 mm thick, were successfully friction stir welded in butt joint configuration. Aiming to study the feasibility of the process and the influence of the process parameters joints under different processing conditions, obtained by varying the tool rotational speed and the tool travel speed, were realized. Tensile tests were carried out to characterize the joints. Moreover the forces arising during the process were recorded and carefully studied. The experimental outcomes proved the feasibility of the process when the process parameters are properly set, joints retaining more than 70% of the UTS of the base material were produced. The trend of the forces was described and explained, the influence of the process parameters was also introduced.

  3. Study on Nonlinear Vibration Analysis of Gear System with Random Parameters

    NASA Astrophysics Data System (ADS)

    Tong, Cao; Liu, Xiaoyuan; Fan, Li

    2018-03-01

    In order to study the dynamic characteristics of gear nonlinear vibration system and the influence of random parameters, firstly, a nonlinear stochastic vibration analysis model of gear 3-DOF is established based on Newton’s Law. And the random response of gear vibration is simulated by stepwise integration method. Secondly, the influence of stochastic parameters such as meshing damping, tooth side gap and excitation frequency on the dynamic response of gear nonlinear system is analyzed by using the stability analysis method such as bifurcation diagram and Lyapunov exponent method. The analysis shows that the stochastic process can not be neglected, which can cause the random bifurcation and chaos of the system response. This study will provide important reference value for vibration engineering designers.

  4. Basic gait analysis based on continuous wave radar.

    PubMed

    Zhang, Jun

    2012-09-01

    A gait analysis method based on continuous wave (CW) radar is proposed in this paper. Time-frequency analysis is used to analyze the radar micro-Doppler echo from walking humans, and the relationships between the time-frequency spectrogram and human biological gait are discussed. The methods for extracting the gait parameters from the spectrogram are studied in depth and experiments on more than twenty subjects have been performed to acquire the radar gait data. The gait parameters are calculated and compared. The gait difference between men and women are presented based on the experimental data and extracted features. Gait analysis based on CW radar will provide a new method for clinical diagnosis and therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Grouping of Bulgarian wines according to grape variety by using statistical methods

    NASA Astrophysics Data System (ADS)

    Milev, M.; Nikolova, Kr.; Ivanova, Ir.; Minkova, St.; Evtimov, T.; Krustev, St.

    2017-12-01

    68 different types of Bulgarian wines were studied in accordance with 9 optical parameters as follows: color parameters in XYZ and SIE Lab color systems, lightness, Hue angle, chroma, fluorescence intensity and emission wavelength. The main objective of this research is using hierarchical cluster analysis to evaluate the similarity and the distance between examined different types of Bulgarian wines and their grouping based on physical parameters. We have found that wines are grouped in clusters on the base of the degree of identity between them. There are two main clusters each one with two subclusters. The first one contains white wines and Sira, the second contains red wines and rose. The results from cluster analysis are presented graphically by a dendrogram. The other statistical technique used is factor analysis performed by the Method of Principal Components (PCA). The aim is to reduce the large number of variables to a few factors by grouping the correlated variables into one factor and subdividing the noncorrelated variables into different factors. Moreover the factor analysis provided the possibility to determine the parameters with the greatest influence over the distribution of samples in different clusters. In our study after the rotation of the factors with Varimax method the parameters were combined into two factors, which explain about 80 % of the total variation. The first one explains the 61.49% and correlates with color characteristics, the second one explains 18.34% from the variation and correlates with the parameters connected with fluorescence spectroscopy.

  6. The effects of the calcium-magnesium-bicarbonate content in thermal mineral water on chronic low back pain: a randomized, controlled follow-up study

    NASA Astrophysics Data System (ADS)

    Tamás, Gáti; Katalin, Tefner Ildikó; Lajos, Kovács; Katalin, Hodosi; Tamás, Bender

    2018-01-01

    The aim of this study was to investigate the effects of balneotherapy on chronic low back pain. This is a minimized, follow-up study evaluated according to the analysis of intention to treat. The subjects included in the study were 105 patients suffering from chronic low back pain. The control group (n = 53) received the traditional musculoskeletal pain killer treatment, while the target group (n = 52) attended thermal mineral water treatment for 3 weeks for 15 occasions on top of the usual musculoskeletal pain killer treatment. The following parameters were measured before, right after, and 9 weeks after the 3-week therapy: the level of low back pain in rest and the level during activity are tested using the Visual Analog Scale (VAS); specific questionnaire on the back pain (Oswestry); and a questionnaire on quality of life (EuroQual-5D). All of the investigated parameters improved significantly (p < 0.001) in the target group by the end of the treatment compared to the base period, and this improvement was persistent during the follow-up period. There were no significant changes in the measured parameters in the control group. Based on our results, balneotherapy might have favorable impact on the clinical parameters and quality of life of patients suffering from chronic low back pain.

  7. Bayesian approach to estimate AUC, partition coefficient and drug targeting index for studies with serial sacrifice design.

    PubMed

    Wang, Tianli; Baron, Kyle; Zhong, Wei; Brundage, Richard; Elmquist, William

    2014-03-01

    The current study presents a Bayesian approach to non-compartmental analysis (NCA), which provides the accurate and precise estimate of AUC 0 (∞) and any AUC 0 (∞) -based NCA parameter or derivation. In order to assess the performance of the proposed method, 1,000 simulated datasets were generated in different scenarios. A Bayesian method was used to estimate the tissue and plasma AUC 0 (∞) s and the tissue-to-plasma AUC 0 (∞) ratio. The posterior medians and the coverage of 95% credible intervals for the true parameter values were examined. The method was applied to laboratory data from a mice brain distribution study with serial sacrifice design for illustration. Bayesian NCA approach is accurate and precise in point estimation of the AUC 0 (∞) and the partition coefficient under a serial sacrifice design. It also provides a consistently good variance estimate, even considering the variability of the data and the physiological structure of the pharmacokinetic model. The application in the case study obtained a physiologically reasonable posterior distribution of AUC, with a posterior median close to the value estimated by classic Bailer-type methods. This Bayesian NCA approach for sparse data analysis provides statistical inference on the variability of AUC 0 (∞) -based parameters such as partition coefficient and drug targeting index, so that the comparison of these parameters following destructive sampling becomes statistically feasible.

  8. The effects of the calcium-magnesium-bicarbonate content in thermal mineral water on chronic low back pain: a randomized, controlled follow-up study

    NASA Astrophysics Data System (ADS)

    Gáti, Tamás; Tefner, Ildikó Katalin; Kovács, Lajos; Hodosi, Katalin; Bender, Tamás

    2018-05-01

    The aim of this study was to investigate the effects of balneotherapy on chronic low back pain. This is a minimized, follow-up study evaluated according to the analysis of intention to treat. The subjects included in the study were 105 patients suffering from chronic low back pain. The control group ( n = 53) received the traditional musculoskeletal pain killer treatment, while the target group ( n = 52) attended thermal mineral water treatment for 3 weeks for 15 occasions on top of the usual musculoskeletal pain killer treatment. The following parameters were measured before, right after, and 9 weeks after the 3-week therapy: the level of low back pain in rest and the level during activity are tested using the Visual Analog Scale (VAS); specific questionnaire on the back pain (Oswestry); and a questionnaire on quality of life (EuroQual-5D). All of the investigated parameters improved significantly ( p < 0.001) in the target group by the end of the treatment compared to the base period, and this improvement was persistent during the follow-up period. There were no significant changes in the measured parameters in the control group. Based on our results, balneotherapy might have favorable impact on the clinical parameters and quality of life of patients suffering from chronic low back pain.

  9. [Sensitivity analysis of AnnAGNPS model's hydrology and water quality parameters based on the perturbation analysis method].

    PubMed

    Xi, Qing; Li, Zhao-Fu; Luo, Chuan

    2014-05-01

    Sensitivity analysis of hydrology and water quality parameters has a great significance for integrated model's construction and application. Based on AnnAGNPS model's mechanism, terrain, hydrology and meteorology, field management, soil and other four major categories of 31 parameters were selected for the sensitivity analysis in Zhongtian river watershed which is a typical small watershed of hilly region in the Taihu Lake, and then used the perturbation method to evaluate the sensitivity of the parameters to the model's simulation results. The results showed that: in the 11 terrain parameters, LS was sensitive to all the model results, RMN, RS and RVC were generally sensitive and less sensitive to the output of sediment but insensitive to the remaining results. For hydrometeorological parameters, CN was more sensitive to runoff and sediment and relatively sensitive for the rest results. In field management, fertilizer and vegetation parameters, CCC, CRM and RR were less sensitive to sediment and particulate pollutants, the six fertilizer parameters (FR, FD, FID, FOD, FIP, FOP) were particularly sensitive for nitrogen and phosphorus nutrients. For soil parameters, K is quite sensitive to all the results except the runoff, the four parameters of the soil's nitrogen and phosphorus ratio (SONR, SINR, SOPR, SIPR) were less sensitive to the corresponding results. The simulation and verification results of runoff in Zhongtian watershed show a good accuracy with the deviation less than 10% during 2005- 2010. Research results have a direct reference value on AnnAGNPS model's parameter selection and calibration adjustment. The runoff simulation results of the study area also proved that the sensitivity analysis was practicable to the parameter's adjustment and showed the adaptability to the hydrology simulation in the Taihu Lake basin's hilly region and provide reference for the model's promotion in China.

  10. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    NASA Astrophysics Data System (ADS)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  11. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection

    PubMed Central

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa. PMID:26327290

  12. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection.

    PubMed

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.

  13. Modal Parameter Identification and Numerical Simulation for Self-anchored Suspension Bridges Based on Ambient Vibration

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Sun, Li Guo

    2018-06-01

    This paper chooses the Nanjing-Hangzhou high speed overbridge, a self-anchored suspension bridge, as the research target, trying to identify the dynamic characteristic parameters of the bridge by using the peak-picking method to analyze the velocity response data under ambient excitation collected by 7 vibration pickup sensors set on the bridge deck. The ABAQUS is used to set up a three-dimensional finite element model for the full bridge and amends the finite element model of the suspension bridge based on the identified modal parameter, and suspender force picked by the PDV100 laser vibrometer. The study shows that the modal parameter can well be identified by analyzing the bridge vibration velocity collected by 7 survey points. The identified modal parameter and measured suspender force can be used as the basis of the amendment of the finite element model of the suspension bridge. The amended model can truthfully reflect the structural physical features and it can also be the benchmark model for the long-term health monitoring and condition assessment of the bridge.

  14. Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Madrucci, Vanessa; Taioli, Fabio; de Araújo, Carlos César

    2008-08-01

    SummaryThis paper presents the groundwater favorability mapping on a fractured terrain in the eastern portion of São Paulo State, Brazil. Remote sensing, airborne geophysical data, photogeologic interpretation, geologic and geomorphologic maps and geographic information system (GIS) techniques have been used. The results of cross-tabulation between these maps and well yield data allowed groundwater prospective parameters in a fractured-bedrock aquifer. These prospective parameters are the base for the favorability analysis whose principle is based on the knowledge-driven method. The multicriteria analysis (weighted linear combination) was carried out to give a groundwater favorability map, because the prospective parameters have different weights of importance and different classes of each parameter. The groundwater favorability map was tested by cross-tabulation with new well yield data and spring occurrence. The wells with the highest values of productivity, as well as all the springs occurrence are situated in the excellent and good favorability mapped areas. It shows good coherence between the prospective parameters and the well yield and the importance of GIS techniques for definition of target areas for detail study and wells location.

  15. Development of class model based on blood biochemical parameters as a diagnostic tool of PSE meat.

    PubMed

    Qu, Daofeng; Zhou, Xu; Yang, Feng; Tian, Shiyi; Zhang, Xiaojun; Ma, Lin; Han, Jianzhong

    2017-06-01

    A fast, sensitive and effective method based on the blood biochemical parameters for the detection of PSE meat was developed in this study. A total of 200 pigs were slaughtered in the same slaughterhouse. Meat quality was evaluated by measuring pH, electrical conductivity and color at 45min, 2h and 24h after slaughtering in M. longissimus thoracis et lumborum (LD). Blood biochemical parameters were determined in blood samples collected during carcass bleeding. Principal component analysis (PCA) biplot showed that high levels of exsanguination Creatine Kinase, Lactate Dehydrogenase, Aspertate aminotransferase, blood glucose and lactate were associated with the PSE meat, and the five biochemical parameters were found to be good indicators of PSE meat Discriminant function analysis (DFA) was able to clearly identify PSE meat using the five biochemical parameters as input data, and the class model is an effective diagnostic tool in pigs which can be used to detect the PSE meat and reduce economic loss for the company. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models

    PubMed Central

    2011-01-01

    In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF), rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison. PMID:21989173

  17. Experimental verification of a GPC-LPV method with RLS and P1-TS fuzzy-based estimation for limiting the transient and residual vibration of a crane system

    NASA Astrophysics Data System (ADS)

    Smoczek, Jaroslaw

    2015-10-01

    The paper deals with the problem of reducing the residual vibration and limiting the transient oscillations of a flexible and underactuated system with respect to the variation of operating conditions. The comparative study of generalized predictive control (GPC) and fuzzy scheduling scheme developed based on the P1-TS fuzzy theory, local pole placement method and interval analysis of closed-loop system polynomial coefficients is addressed to the problem of flexible crane control. The two alternatives of a GPC-based method are proposed that enable to realize this technique either with or without a sensor of payload deflection. The first control technique is based on the recursive least squares (RLS) method applied to on-line estimate the parameters of a linear parameter varying (LPV) model of a crane dynamic system. The second GPC-based approach is based on a payload deflection feedback estimated using a pendulum model with the parameters interpolated using the P1-TS fuzzy system. Feasibility and applicability of the developed methods were confirmed through experimental verification performed on a laboratory scaled overhead crane.

  18. Stability margin of linear systems with parameters described by fuzzy numbers.

    PubMed

    Husek, Petr

    2011-10-01

    This paper deals with the linear systems with uncertain parameters described by fuzzy numbers. The problem of determining the stability margin of those systems with linear affine dependence of the coefficients of a characteristic polynomial on system parameters is studied. Fuzzy numbers describing the system parameters are allowed to be characterized by arbitrary nonsymmetric membership functions. An elegant solution, graphical in nature, based on generalization of the Tsypkin-Polyak plot is presented. The advantage of the presented approach over the classical robust concept is demonstrated on a control of the Fiat Dedra engine model and a control of the quarter car suspension model.

  19. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.

    PubMed

    Naghibi Beidokhti, Hamid; Janssen, Dennis; van de Groes, Sebastiaan; Hazrati, Javad; Van den Boogaard, Ton; Verdonschot, Nico

    2017-12-08

    In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. DBH Prediction Using Allometry Described by Bivariate Copula Distribution

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Hou, Z.; Li, B.; Greenberg, J. A.

    2017-12-01

    Forest biomass mapping based on single tree detection from the airborne laser scanning (ALS) usually depends on an allometric equation that relates diameter at breast height (DBH) with per-tree aboveground biomass. The incapability of the ALS technology in directly measuring DBH leads to the need to predict DBH with other ALS-measured tree-level structural parameters. A copula-based method is proposed in the study to predict DBH with the ALS-measured tree height and crown diameter using a dataset measured in the Lassen National Forest in California. Instead of exploring an explicit mathematical equation that explains the underlying relationship between DBH and other structural parameters, the copula-based prediction method utilizes the dependency between cumulative distributions of these variables, and solves the DBH based on an assumption that for a single tree, the cumulative probability of each structural parameter is identical. Results show that compared with the bench-marking least-square linear regression and the k-MSN imputation, the copula-based method obtains better accuracy in the DBH for the Lassen National Forest. To assess the generalization of the proposed method, prediction uncertainty is quantified using bootstrapping techniques that examine the variability of the RMSE of the predicted DBH. We find that the copula distribution is reliable in describing the allometric relationship between tree-level structural parameters, and it contributes to the reduction of prediction uncertainty.

  1. Parameter Optimization of PAL-XFEL Injector

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Ko, In Soo; Han, Jang-Hui; Hong, Juho; Yang, Haeryong; Min, Chang Ki; Kang, Heung-Sik

    2018-05-01

    A photoinjector is used as the electron source to generate a high peak current and low emittance beam for an X-ray free electron laser (FEL). The beam emittance is one of the critical parameters to determine the FEL performance together with the slice energy spread and the peak current. The Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) was constructed in 2015, and the beam commissioning was carried out in spring 2016. The injector is running routinely for PAL-XFEL user operation. The operational parameters of the injector have been optimized experimentally, and these are somewhat different from the originally designed ones. Therefore, we study numerically the injector parameters based on the empirically optimized parameters and review the present operating condition.

  2. Preserving Differential Privacy in Degree-Correlation based Graph Generation

    PubMed Central

    Wang, Yue; Wu, Xintao

    2014-01-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987

  3. Seismic Imaging of VTI, HTI and TTI based on Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Rusmanugroho, H.; Tromp, J.

    2014-12-01

    Recent studies show that isotropic seismic imaging based on adjoint method reduces low-frequency artifact caused by diving waves, which commonly occur in two-wave wave-equation migration, such as Reverse Time Migration (RTM). Here, we derive new expressions of sensitivity kernels for Vertical Transverse Isotropy (VTI) using the Thomsen parameters (ɛ, δ, γ) plus the P-, and S-wave speeds (α, β) as well as via the Chen & Tromp (GJI 2005) parameters (A, C, N, L, F). For Horizontal Transverse Isotropy (HTI), these parameters depend on an azimuthal angle φ, where the tilt angle θ is equivalent to 90°, and for Tilted Transverse Isotropy (TTI), these parameters depend on both the azimuth and tilt angles. We calculate sensitivity kernels for each of these two approaches. Individual kernels ("images") are numerically constructed based on the interaction between the regular and adjoint wavefields in smoothed models which are in practice estimated through Full-Waveform Inversion (FWI). The final image is obtained as a result of summing all shots, which are well distributed to sample the target model properly. The impedance kernel, which is a sum of sensitivity kernels of density and the Thomsen or Chen & Tromp parameters, looks crisp and promising for seismic imaging. The other kernels suffer from low-frequency artifacts, similar to traditional seismic imaging conditions. However, all sensitivity kernels are important for estimating the gradient of the misfit function, which, in combination with a standard gradient-based inversion algorithm, is used to minimize the objective function in FWI.

  4. Identifying key sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2013-09-01

    This study investigates sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment, through the use of local and global sensitivity analysis tools, and contributes to an in-depth understanding of wastewater treatment modelling by revealing critical parameters and parameter interactions. One-factor-at-a-time sensitivity analysis is used to screen model parameters and identify those with significant individual effects on three performance indicators: total greenhouse gas emissions, effluent quality and operational cost. Sobol's method enables identification of parameters with significant higher order effects and of particular parameter pairs to which model outputs are sensitive. Use of a variance-based global sensitivity analysis tool to investigate parameter interactions enables identification of important parameters not revealed in one-factor-at-a-time sensitivity analysis. These interaction effects have not been considered in previous studies and thus provide a better understanding wastewater treatment plant model characterisation. It was found that uncertainty in modelled nitrous oxide emissions is the primary contributor to uncertainty in total greenhouse gas emissions, due largely to the interaction effects of three nitrogen conversion modelling parameters. The higher order effects of these parameters are also shown to be a key source of uncertainty in effluent quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Dynamic Contrast-enhanced MR Imaging in Renal Cell Carcinoma: Reproducibility of Histogram Analysis on Pharmacokinetic Parameters

    PubMed Central

    Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi

    2016-01-01

    Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733

  6. Sensitivity study of Space Station Freedom operations cost and selected user resources

    NASA Technical Reports Server (NTRS)

    Accola, Anne; Fincannon, H. J.; Williams, Gregory J.; Meier, R. Timothy

    1990-01-01

    The results of sensitivity studies performed to estimate probable ranges for four key Space Station parameters using the Space Station Freedom's Model for Estimating Space Station Operations Cost (MESSOC) are discussed. The variables examined are grouped into five main categories: logistics, crew, design, space transportation system, and training. The modification of these variables implies programmatic decisions in areas such as orbital replacement unit (ORU) design, investment in repair capabilities, and crew operations policies. The model utilizes a wide range of algorithms and an extensive trial logistics data base to represent Space Station operations. The trial logistics data base consists largely of a collection of the ORUs that comprise the mature station, and their characteristics based on current engineering understanding of the Space Station. A nondimensional approach is used to examine the relative importance of variables on parameters.

  7. Study on stress-strain response of multi-phase TRIP steel under cyclic loading

    NASA Astrophysics Data System (ADS)

    Dan, W. J.; Hu, Z. G.; Zhang, W. G.; Li, S. H.; Lin, Z. Q.

    2013-12-01

    The stress-strain response of multi-phase TRIP590 sheet steel is studied in cyclic loading condition at room temperature based on a cyclic phase transformation model and a multi-phase mixed kinematic hardening model. The cyclic martensite transformation model is proposed based on the shear-band intersection, where the repeat number, strain amplitude and cyclic frequency are used to control the phase transformation process. The multi-phase mixed kinematic hardening model is developed based on the non-linear kinematic hardening rule of per-phase. The parameters of transformation model are identified with the relationship between the austenite volume fraction and the repeat number. The parameters in Kinematic hardening model are confirmed by the experimental hysteresis loops in different strain amplitude conditions. The responses of hysteresis loop and stress amplitude are evaluated by tension-compression data.

  8. Effect of Watermarking on Diagnostic Preservation of Atherosclerotic Ultrasound Video in Stroke Telemedicine.

    PubMed

    Dey, Nilanjan; Bose, Soumyo; Das, Achintya; Chaudhuri, Sheli Sinha; Saba, Luca; Shafique, Shoaib; Nicolaides, Andrew; Suri, Jasjit S

    2016-04-01

    Embedding of diagnostic and health care information requires secure encryption and watermarking. This research paper presents a comprehensive study for the behavior of some well established watermarking algorithms in frequency domain for the preservation of stroke-based diagnostic parameters. Two different sets of watermarking algorithms namely: two correlation-based (binary logo hiding) and two singular value decomposition (SVD)-based (gray logo hiding) watermarking algorithms are used for embedding ownership logo. The diagnostic parameters in atherosclerotic plaque ultrasound video are namely: (a) bulb identification and recognition which consists of identifying the bulb edge points in far and near carotid walls; (b) carotid bulb diameter; and (c) carotid lumen thickness all along the carotid artery. The tested data set consists of carotid atherosclerotic movies taken under IRB protocol from University of Indiana Hospital, USA-AtheroPoint™ (Roseville, CA, USA) joint pilot study. ROC (receiver operating characteristic) analysis was performed on the bulb detection process that showed an accuracy and sensitivity of 100 % each, respectively. The diagnostic preservation (DPsystem) for SVD-based approach was above 99 % with PSNR (Peak signal-to-noise ratio) above 41, ensuring the retention of diagnostic parameter devalorization as an effect of watermarking. Thus, the fully automated proposed system proved to be an efficient method for watermarking the atherosclerotic ultrasound video for stroke application.

  9. Experimental design and efficient parameter estimation in preclinical pharmacokinetic studies.

    PubMed

    Ette, E I; Howie, C A; Kelman, A W; Whiting, B

    1995-05-01

    Monte Carlo simulation technique used to evaluate the effect of the arrangement of concentrations on the efficiency of estimation of population pharmacokinetic parameters in the preclinical setting is described. Although the simulations were restricted to the one compartment model with intravenous bolus input, they provide the basis of discussing some structural aspects involved in designing a destructive ("quantic") preclinical population pharmacokinetic study with a fixed sample size as is usually the case in such studies. The efficiency of parameter estimation obtained with sampling strategies based on the three and four time point designs were evaluated in terms of the percent prediction error, design number, individual and joint confidence intervals coverage for parameter estimates approaches, and correlation analysis. The data sets contained random terms for both inter- and residual intra-animal variability. The results showed that the typical population parameter estimates for clearance and volume were efficiently (accurately and precisely) estimated for both designs, while interanimal variability (the only random effect parameter that could be estimated) was inefficiently (inaccurately and imprecisely) estimated with most sampling schedules of the two designs. The exact location of the third and fourth time point for the three and four time point designs, respectively, was not critical to the efficiency of overall estimation of all population parameters of the model. However, some individual population pharmacokinetic parameters were sensitive to the location of these times.

  10. Design values of resilient modulus of stabilized and non-stabilized base.

    DOT National Transportation Integrated Search

    2010-10-01

    The primary objective of this research study is to determine design value ranges for typical base materials, as allowed by LADOTD specifications, through laboratory tests with respect to resilient modulus and other parameters used by pavement design ...

  11. Characterization and Design of Spiral Frequency Steerable Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Repale, Rohan

    Structural Health Monitoring (SHM) is an emerging research area devoted to improving the safety and maintainability of civil structures. Guided wave structural testing method is an effective approach used for SHM of plate-like structures using piezoelectric transducers. These transducers are attached to the surface of the structure and are capable of sensing its health by using surface waves. Transducers with beam steering i.e. electronic scanning capabilities can perform surface interrogation with higher precision and ease. A frequency steerable acoustic transducer (FSAT) is capable of beam steering and directional surface wave sensing to detect and localize damage in structures. The objective of this research is to further explore the possibilities of FSAT technology by designing and testing new FSAT designs. The beam steering capability of FSAT can be controlled by manipulating its design parameters. These design parameters therefore play a significant role in FSAT's performance. Studying the design parameters and documenting the performance improvements based on parameter variation is the primary goal of this research. Design and characterization of spiral FSAT was performed and results were simulated. Array FSAT documented results were validated. Modified designs were modeled based on design parameter variations. Characterization of these designs was done and their performance was recorded. Plate simulation results confirm direct relationship between design parameters and beam steering. A set of guidelines for future designs was also proposed. Two designs developed based on the set guidelines were sent to our collaborator Genziko Inc. for fabrication.

  12. Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model

    NASA Astrophysics Data System (ADS)

    Demaria, Eleonora M.; Nijssen, Bart; Wagener, Thorsten

    2007-06-01

    Current land surface models use increasingly complex descriptions of the processes that they represent. Increase in complexity is accompanied by an increase in the number of model parameters, many of which cannot be measured directly at large spatial scales. A Monte Carlo framework was used to evaluate the sensitivity and identifiability of ten parameters controlling surface and subsurface runoff generation in the Variable Infiltration Capacity model (VIC). Using the Monte Carlo Analysis Toolbox (MCAT), parameter sensitivities were studied for four U.S. watersheds along a hydroclimatic gradient, based on a 20-year data set developed for the Model Parameter Estimation Experiment (MOPEX). Results showed that simulated streamflows are sensitive to three parameters when evaluated with different objective functions. Sensitivity of the infiltration parameter (b) and the drainage parameter (exp) were strongly related to the hydroclimatic gradient. The placement of vegetation roots played an important role in the sensitivity of model simulations to the thickness of the second soil layer (thick2). Overparameterization was found in the base flow formulation indicating that a simplified version could be implemented. Parameter sensitivity was more strongly dictated by climatic gradients than by changes in soil properties. Results showed how a complex model can be reduced to a more parsimonious form, leading to a more identifiable model with an increased chance of successful regionalization to ungauged basins. Although parameter sensitivities are strictly valid for VIC, this model is representative of a wider class of macroscale hydrological models. Consequently, the results and methodology will have applicability to other hydrological models.

  13. A Knowledge-Based Approach for Item Exposure Control in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Doong, Shing H.

    2009-01-01

    The purpose of this study is to investigate a functional relation between item exposure parameters (IEPs) and item parameters (IPs) over parallel pools. This functional relation is approximated by a well-known tool in machine learning. Let P and Q be parallel item pools and suppose IEPs for P have been obtained via a Sympson and Hetter-type…

  14. [Fluid therapy in acute pancreatitis].

    PubMed

    de-Madaria, Enrique

    2013-12-01

    Severe acute pancreatitis (AP) is associated with an increased need for fluids due to fluid sequestration and, in the most severe cases, with decreased peripheral vascular tone. For several decades, clinical practice guidelines have recommended aggressive fluid therapy to improve the prognosis of AP. This recommendation is based on theoretical models, animal studies, and retrospective studies in humans. Recent studies suggest that aggressive fluid administration in all patients with AP could have a neutral or harmful effect. Fluid therapy based on Ringer's lactate could improve the course of the disease, although further studies are needed to confirm this possibility. Most patients with AP do not require invasive monitoring of hemodynamic parameters to guide fluid therapy administration. Moreover, the ability of these parameters to improve prognosis has not been demonstrated. Copyright © 2013 Elsevier España, S.L. and AEEH y AEG. All rights reserved.

  15. Estimation of Power Consumption in the Circular Sawing of Stone Based on Tangential Force Distribution

    NASA Astrophysics Data System (ADS)

    Huang, Guoqin; Zhang, Meiqin; Huang, Hui; Guo, Hua; Xu, Xipeng

    2018-04-01

    Circular sawing is an important method for the processing of natural stone. The ability to predict sawing power is important in the optimisation, monitoring and control of the sawing process. In this paper, a predictive model (PFD) of sawing power, which is based on the tangential force distribution at the sawing contact zone, was proposed, experimentally validated and modified. With regard to the influence of sawing speed on tangential force distribution, the modified PFD (MPFD) performed with high predictive accuracy across a wide range of sawing parameters, including sawing speed. The mean maximum absolute error rate was within 6.78%, and the maximum absolute error rate was within 11.7%. The practicability of predicting sawing power by the MPFD with few initial experimental samples was proved in case studies. On the premise of high sample measurement accuracy, only two samples are required for a fixed sawing speed. The feasibility of applying the MPFD to optimise sawing parameters while lowering the energy consumption of the sawing system was validated. The case study shows that energy use was reduced 28% by optimising the sawing parameters. The MPFD model can be used to predict sawing power, optimise sawing parameters and control energy.

  16. Toolpath Strategy and Optimum Combination of Machining Parameter during Pocket Mill Process of Plastic Mold Steels Material

    NASA Astrophysics Data System (ADS)

    Wibowo, Y. T.; Baskoro, S. Y.; Manurung, V. A. T.

    2018-02-01

    Plastic based products spread all over the world in many aspects of life. The ability to substitute other materials is getting stronger and wider. The use of plastic materials increases and become unavoidable. Plastic based mass production requires injection process as well Mold. The milling process of plastic mold steel material was done using HSS End Mill cutting tool that is widely used in a small and medium enterprise for the reason of its ability to be re sharpened and relatively inexpensive. Study on the effect of the geometry tool states that it has an important effect on the quality improvement. Cutting speed, feed rate, depth of cut and radii are input parameters beside to the tool path strategy. This paper aims to investigate input parameter and cutting tools behaviors within some different tool path strategy. For the reason of experiments efficiency Taguchi method and ANOVA were used. Response studied is surface roughness and cutting behaviors. By achieving the expected quality, no more additional process is required. Finally, the optimal combination of machining parameters will deliver the expected roughness and of course totally reduced cutting time. However actually, SMEs do not optimally use this data for cost reduction.

  17. 20 Meter Solar Sail Analysis and Correlation

    NASA Technical Reports Server (NTRS)

    Taleghani, B.; Lively, P.; Banik, J.; Murphy, D.; Trautt, T.

    2005-01-01

    This presentation discusses studies conducted to determine the element type and size that best represents a 20-meter solar sail under ground-test load conditions, the performance of test/Analysis correlation by using Static Shape Optimization Method for Q4 sail, and system dynamic. TRIA3 elements better represent wrinkle patterns than do QUAD3 elements Baseline, ten-inch elements are small enough to accurately represent sail shape, and baseline TRIA3 mesh requires a reasonable computation time of 8 min. 21 sec. In the test/analysis correlation by using Static shape optimization method for Q4 sail, ten parameters were chosen and varied during optimization. 300 sail models were created with random parameters. A response surfaces for each targets which were created based on the varied parameters. Parameters were optimized based on response surface. Deflection shape comparison for 0 and 22.5 degrees yielded a 4.3% and 2.1% error respectively. For the system dynamic study testing was done on the booms without the sails attached. The nominal boom properties produced a good correlation to test data the frequencies were within 10%. Boom dominated analysis frequencies and modes compared well with the test results.

  18. Studies on the dynamic stability of an axially moving nanobeam based on the nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shen, Huoming; Zhang, Bo; Liu, Juan

    2018-06-01

    In this paper, we studied the parametric resonance issue of an axially moving viscoelastic nanobeam with varying velocity. Based on the nonlocal strain gradient theory, we established the transversal vibration equation of the axially moving nanobeam and the corresponding boundary condition. By applying the average method, we obtained a set of self-governing ordinary differential equations when the excitation frequency of the moving parameters is twice the intrinsic frequency or near the sum of certain second-order intrinsic frequencies. On the plane of parametric excitation frequency and excitation amplitude, we can obtain the instability region generated by the resonance, and through numerical simulation, we analyze the influence of the scale effect and system parameters on the instability region. The results indicate that the viscoelastic damping decreases the resonance instability region, and the average velocity and stiffness make the instability region move to the left- and right-hand sides. Meanwhile, the scale effect of the system is obvious. The nonlocal parameter exhibits not only the stiffness softening effect but also the damping weakening effect, while the material characteristic length parameter exhibits the stiffness hardening effect and damping reinforcement effect.

  19. Surgical stent planning: simulation parameter study for models based on DICOM standards.

    PubMed

    Scherer, S; Treichel, T; Ritter, N; Triebel, G; Drossel, W G; Burgert, O

    2011-05-01

    Endovascular Aneurysm Repair (EVAR) can be facilitated by a realistic simulation model of stent-vessel-interaction. Therefore, numerical feasibility and integrability in the clinical environment was evaluated. The finite element method was used to determine necessary simulation parameters for stent-vessel-interaction in EVAR. Input variables and result data of the simulation model were examined for their standardization using DICOM supplements. The study identified four essential parameters for the stent-vessel simulation: blood pressure, intima constitution, plaque occurrence and the material properties of vessel and plaque. Output quantities such as radial force of the stent and contact pressure between stent/vessel can help the surgeon to evaluate implant fixation and sealing. The model geometry can be saved with DICOM "Surface Segmentation" objects and the upcoming "Implant Templates" supplement. Simulation results can be stored using the "Structured Report". A standards-based general simulation model for optimizing stent-graft selection may be feasible. At present, there are limitations due to specification of individual vessel material parameters and for simulating the proximal fixation of stent-grafts with hooks. Simulation data with clinical relevance for documentation and presentation can be stored using existing or new DICOM extensions.

  20. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    NASA Astrophysics Data System (ADS)

    Saeed, Bakhtiar I.; Mehrdadi, B.

    2012-05-01

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  1. Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling.

    PubMed

    Senden, R; Savelberg, H H C M; Grimm, B; Heyligers, I C; Meijer, K

    2012-06-01

    This study investigated whether the Tinetti scale, as a subjective measure for fall risk, is associated with objectively measured gait characteristics. It is studied whether gait parameters are different for groups that are stratified for fall risk using the Tinetti scale. Moreover, the discriminative power of gait parameters to classify elderly according to the Tinetti scale is investigated. Gait of 50 elderly with a Tinneti>24 and 50 elderly with a Tinetti≤24 was analyzed using acceleration-based gait analysis. Validated algorithms were used to derive spatio-temporal gait parameters, harmonic ratio, inter-stride amplitude variability and root mean square (RMS) from the accelerometer data. Clear differences in gait were found between the groups. All gait parameters correlated with the Tinetti scale (r-range: 0.20-0.73). Only walking speed, step length and RMS showed moderate to strong correlations and high discriminative power to classify elderly according to the Tinetti scale. It is concluded that subtle gait changes that have previously been related to fall risk are not captured by the subjective assessment. It is therefore worthwhile to include objective gait assessment in fall risk screening. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Comparative evaluation of topographical data of dental implant surfaces applying optical interferometry and scanning electron microscopy.

    PubMed

    Kournetas, N; Spintzyk, S; Schweizer, E; Sawada, T; Said, F; Schmid, P; Geis-Gerstorfer, J; Eliades, G; Rupp, F

    2017-08-01

    Comparability of topographical data of implant surfaces in literature is low and their clinical relevance often equivocal. The aim of this study was to investigate the ability of scanning electron microscopy and optical interferometry to assess statistically similar 3-dimensional roughness parameter results and to evaluate these data based on predefined criteria regarded relevant for a favorable biological response. Four different commercial dental screw-type implants (NanoTite Certain Prevail, TiUnite Brånemark Mk III, XiVE S Plus and SLA Standard Plus) were analyzed by stereo scanning electron microscopy and white light interferometry. Surface height, spatial and hybrid roughness parameters (Sa, Sz, Ssk, Sku, Sal, Str, Sdr) were assessed from raw and filtered data (Gaussian 50μm and 5μm cut-off-filters), respectively. Data were statistically compared by one-way ANOVA and Tukey-Kramer post-hoc test. For a clinically relevant interpretation, a categorizing evaluation approach was used based on predefined threshold criteria for each roughness parameter. The two methods exhibited predominantly statistical differences. Dependent on roughness parameters and filter settings, both methods showed variations in rankings of the implant surfaces and differed in their ability to discriminate the different topographies. Overall, the analyses revealed scale-dependent roughness data. Compared to the pure statistical approach, the categorizing evaluation resulted in much more similarities between the two methods. This study suggests to reconsider current approaches for the topographical evaluation of implant surfaces and to further seek after proper experimental settings. Furthermore, the specific role of different roughness parameters for the bioresponse has to be studied in detail in order to better define clinically relevant, scale-dependent and parameter-specific thresholds and ranges. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. An IT-enabled supply chain model: a simulation study

    NASA Astrophysics Data System (ADS)

    Cannella, Salvatore; Framinan, Jose M.; Barbosa-Póvoa, Ana

    2014-11-01

    During the last decades, supply chain collaboration practices and the underlying enabling technologies have evolved from the classical electronic data interchange (EDI) approach to a web-based and radio frequency identification (RFID)-enabled collaboration. In this field, most of the literature has focused on the study of optimal parameters for reducing the total cost of suppliers, by adopting operational research (OR) techniques. Herein we are interested in showing that the considered information technology (IT)-enabled structure is resilient, that is, it works well across a reasonably broad range of parameter settings. By adopting a methodological approach based on system dynamics, we study a multi-tier collaborative supply chain. Results show that the IT-enabled supply chain improves operational performance and customer service level. Nonetheless, benefits for geographically dispersed networks are of minor entity.

  4. Around the macrolide - Impact of 3D structure of macrocycles on lipophilicity and cellular accumulation.

    PubMed

    Koštrun, Sanja; Munic Kos, Vesna; Matanović Škugor, Maja; Palej Jakopović, Ivana; Malnar, Ivica; Dragojević, Snježana; Ralić, Jovica; Alihodžić, Sulejman

    2017-06-16

    The aim of this study was to investigate lipophilicity and cellular accumulation of rationally designed azithromycin and clarithromycin derivatives at the molecular level. The effect of substitution site and substituent properties on a global physico-chemical profile and cellular accumulation of investigated compounds was studied using calculated structural parameters as well as experimentally determined lipophilicity. In silico models based on the 3D structure of molecules were generated to investigate conformational effect on studied properties and to enable prediction of lipophilicity and cellular accumulation for this class of molecules based on non-empirical parameters. The applicability of developed models was explored on a validation and test sets and compared with previously developed empirical models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Noncontact measurement of heart rate using facial video illuminated under natural light and signal weighted analysis.

    PubMed

    Yan, Yonggang; Ma, Xiang; Yao, Lifeng; Ouyang, Jianfei

    2015-01-01

    Non-contact and remote measurements of vital physical signals are important for reliable and comfortable physiological self-assessment. We presented a novel optical imaging-based method to measure the vital physical signals. Using a digital camera and ambient light, the cardiovascular pulse waves were extracted better from human color facial videos correctly. And the vital physiological parameters like heart rate were measured using a proposed signal-weighted analysis method. The measured HRs consistent with those measured simultaneously with reference technologies (r=0.94, p<0.001 for HR). The results show that the imaging-based method is suitable for measuring the physiological parameters, and provide a reliable and comfortable measurement mode. The study lays a physical foundation for measuring multi-physiological parameters of human noninvasively.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Liu, Z.; Zhang, S.

    Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less

  7. Application of the Markov Chain Monte Carlo method for snow water equivalent retrieval based on passive microwave measurements

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Vanderjagt, B. J.

    2015-12-01

    Markov Chain Monte Carlo (MCMC) method is a retrieval algorithm based on Bayes' rule, which starts from an initial state of snow/soil parameters, and updates it to a series of new states by comparing the posterior probability of simulated snow microwave signals before and after each time of random walk. It is a realization of the Bayes' rule, which gives an approximation to the probability of the snow/soil parameters in condition of the measured microwave TB signals at different bands. Although this method could solve all snow parameters including depth, density, snow grain size and temperature at the same time, it still needs prior information of these parameters for posterior probability calculation. How the priors will influence the SWE retrieval is a big concern. Therefore, in this paper at first, a sensitivity test will be carried out to study how accurate the snow emission models and how explicit the snow priors need to be to maintain the SWE error within certain amount. The synthetic TB simulated from the measured snow properties plus a 2-K observation error will be used for this purpose. It aims to provide a guidance on the MCMC application under different circumstances. Later, the method will be used for the snowpits at different sites, including Sodankyla, Finland, Churchill, Canada and Colorado, USA, using the measured TB from ground-based radiometers at different bands. Based on the previous work, the error in these practical cases will be studied, and the error sources will be separated and quantified.

  8. A physiologically based toxicokinetic model for methylmercury in female American kestrels

    USGS Publications Warehouse

    Nichols, J.W.; Bennett, R.S.; Rossmann, R.; French, J.B.; Sappington, K.G.

    2010-01-01

    A physiologically based toxicokinetic (PBTK) model was developed to describe the uptake, distribution, and elimination of methylmercury (CH 3Hg) in female American kestrels. The model consists of six tissue compartments corresponding to the brain, liver, kidney, gut, red blood cells, and remaining carcass. Additional compartments describe the elimination of CH3Hg to eggs and growing feathers. Dietary uptake of CH 3Hg was modeled as a diffusion-limited process, and the distribution of CH3Hg among compartments was assumed to be mediated by the flow of blood plasma. To the extent possible, model parameters were developed using information from American kestrels. Additional parameters were based on measured values for closely related species and allometric relationships for birds. The model was calibrated using data from dietary dosing studies with American kestrels. Good agreement between model simulations and measured CH3Hg concentrations in blood and tissues during the loading phase of these studies was obtained by fitting model parameters that control dietary uptake of CH 3Hg and possible hepatic demethylation. Modeled results tended to underestimate the observed effect of egg production on circulating levels of CH3Hg. In general, however, simulations were consistent with observed patterns of CH3Hg uptake and elimination in birds, including the dominant role of feather molt. This model could be used to extrapolate CH 3Hg kinetics from American kestrels to other bird species by appropriate reassignment of parameter values. Alternatively, when combined with a bioenergetics-based description, the model could be used to simulate CH 3Hg kinetics in a long-term environmental exposure. ?? 2010 SETAC.

  9. Joint coverage probability in a simulation study on Continuous-Time Markov Chain parameter estimation.

    PubMed

    Benoit, Julia S; Chan, Wenyaw; Doody, Rachelle S

    2015-01-01

    Parameter dependency within data sets in simulation studies is common, especially in models such as Continuous-Time Markov Chains (CTMC). Additionally, the literature lacks a comprehensive examination of estimation performance for the likelihood-based general multi-state CTMC. Among studies attempting to assess the estimation, none have accounted for dependency among parameter estimates. The purpose of this research is twofold: 1) to develop a multivariate approach for assessing accuracy and precision for simulation studies 2) to add to the literature a comprehensive examination of the estimation of a general 3-state CTMC model. Simulation studies are conducted to analyze longitudinal data with a trinomial outcome using a CTMC with and without covariates. Measures of performance including bias, component-wise coverage probabilities, and joint coverage probabilities are calculated. An application is presented using Alzheimer's disease caregiver stress levels. Comparisons of joint and component-wise parameter estimates yield conflicting inferential results in simulations from models with and without covariates. In conclusion, caution should be taken when conducting simulation studies aiming to assess performance and choice of inference should properly reflect the purpose of the simulation.

  10. Physiologically based pharmacokinetic modeling of a homologous series of barbiturates in the rat: a sensitivity analysis.

    PubMed

    Nestorov, I A; Aarons, L J; Rowland, M

    1997-08-01

    Sensitivity analysis studies the effects of the inherent variability and uncertainty in model parameters on the model outputs and may be a useful tool at all stages of the pharmacokinetic modeling process. The present study examined the sensitivity of a whole-body physiologically based pharmacokinetic (PBPK) model for the distribution kinetics of nine 5-n-alkyl-5-ethyl barbituric acids in arterial blood and 14 tissues (lung, liver, kidney, stomach, pancreas, spleen, gut, muscle, adipose, skin, bone, heart, brain, testes) after i.v. bolus administration to rats. The aims were to obtain new insights into the model used, to rank the model parameters involved according to their impact on the model outputs and to study the changes in the sensitivity induced by the increase in the lipophilicity of the homologues on ascending the series. Two approaches for sensitivity analysis have been implemented. The first, based on the Matrix Perturbation Theory, uses a sensitivity index defined as the normalized sensitivity of the 2-norm of the model compartmental matrix to perturbations in its entries. The second approach uses the traditional definition of the normalized sensitivity function as the relative change in a model state (a tissue concentration) corresponding to a relative change in a model parameter. Autosensitivity has been defined as sensitivity of a state to any of its parameters; cross-sensitivity as the sensitivity of a state to any other states' parameters. Using the two approaches, the sensitivity of representative tissue concentrations (lung, liver, kidney, stomach, gut, adipose, heart, and brain) to the following model parameters: tissue-to-unbound plasma partition coefficients, tissue blood flows, unbound renal and intrinsic hepatic clearance, permeability surface area product of the brain, have been analyzed. Both the tissues and the parameters were ranked according to their sensitivity and impact. The following general conclusions were drawn: (i) the overall sensitivity of the system to all parameters involved is small due to the weak connectivity of the system structure; (ii) the time course of both the auto- and cross-sensitivity functions for all tissues depends on the dynamics of the tissues themselves, e.g., the higher the perfusion of a tissue, the higher are both its cross-sensitivity to other tissues' parameters and the cross-sensitivities of other tissues to its parameters; and (iii) with a few exceptions, there is not a marked influence of the lipophilicity of the homologues on either the pattern or the values of the sensitivity functions. The estimates of the sensitivity and the subsequent tissue and parameter rankings may be extended to other drugs, sharing the same common structure of the whole body PBPK model, and having similar model parameters. Results show also that the computationally simple Matrix Perturbation Analysis should be used only when an initial idea about the sensitivity of a system is required. If comprehensive information regarding the sensitivity is needed, the numerically expensive Direct Sensitivity Analysis should be used.

  11. Theory of Visual Attention (TVA) applied to mice in the 5-choice serial reaction time task.

    PubMed

    Fitzpatrick, C M; Caballero-Puntiverio, M; Gether, U; Habekost, T; Bundesen, C; Vangkilde, S; Woldbye, D P D; Andreasen, J T; Petersen, A

    2017-03-01

    The 5-choice serial reaction time task (5-CSRTT) is widely used to measure rodent attentional functions. In humans, many attention studies in healthy and clinical populations have used testing based on Bundesen's Theory of Visual Attention (TVA) to estimate visual processing speeds and other parameters of attentional capacity. We aimed to bridge these research fields by modifying the 5-CSRTT's design and by mathematically modelling data to derive attentional parameters analogous to human TVA-based measures. C57BL/6 mice were tested in two 1-h sessions on consecutive days with a version of the 5-CSRTT where stimulus duration (SD) probe length was varied based on information from previous TVA studies. Thereafter, a scopolamine hydrobromide (HBr; 0.125 or 0.25 mg/kg) pharmacological challenge was undertaken, using a Latin square design. Mean score values were modelled using a new three-parameter version of TVA to obtain estimates of visual processing speeds, visual thresholds and motor response baselines in each mouse. The parameter estimates for each animal were reliable across sessions, showing that the data were stable enough to support analysis on an individual level. Scopolamine HBr dose-dependently reduced 5-CSRTT attentional performance while also increasing reward collection latency at the highest dose. Upon TVA modelling, scopolamine HBr significantly reduced visual processing speed at both doses, while having less pronounced effects on visual thresholds and motor response baselines. This study shows for the first time how 5-CSRTT performance in mice can be mathematically modelled to yield estimates of attentional capacity that are directly comparable to estimates from human studies.

  12. Data pieces-based parameter identification for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zou, Yuan; Sun, Fengchun; Hu, Xiaosong; Yu, Yang; Feng, Sen

    2016-10-01

    Battery characteristics vary with temperature and aging, it is necessary to identify battery parameters periodically for electric vehicles to ensure reliable State-of-Charge (SoC) estimation, battery equalization and safe operation. Aiming for on-board applications, this paper proposes a data pieces-based parameter identification (DPPI) method to identify comprehensive battery parameters including capacity, OCV (open circuit voltage)-Ah relationship and impedance-Ah relationship simultaneously only based on battery operation data. First a vehicle field test was conducted and battery operation data was recorded, then the DPPI method is elaborated based on vehicle test data, parameters of all 97 cells of the battery package are identified and compared. To evaluate the adaptability of the proposed DPPI method, it is used to identify battery parameters of different aging levels and different temperatures based on battery aging experiment data. Then a concept of ;OCV-Ah aging database; is proposed, based on which battery capacity can be identified even though the battery was never fully charged or discharged. Finally, to further examine the effectiveness of the identified battery parameters, they are used to perform SoC estimation for the test vehicle with adaptive extended Kalman filter (AEKF). The result shows good accuracy and reliability.

  13. Uncertainty analysis of scintillometers methods in measuring sensible heat fluxes of forest ecosystem

    NASA Astrophysics Data System (ADS)

    Zheng, N.

    2017-12-01

    Sensible heat flux (H) is one of the driving factors of surface turbulent motion and energy exchange. Therefore, it is particularly important to measure sensible heat flux accurately at the regional scale. However, due to the heterogeneity of the underlying surface, hydrothermal regime, and different weather conditions, it is difficult to estimate the represented flux at the kilometer scale. The scintillometer have been developed into an effective and universal equipment for deriving heat flux at the regional-scale which based on the turbulence effect of light in the atmosphere since the 1980s. The parameter directly obtained by the scintillometer is the structure parameter of the refractive index of air based on the changes of light intensity fluctuation. Combine with parameters such as temperature structure parameter, zero-plane displacement, surface roughness, wind velocity, air temperature and the other meteorological data heat fluxes can be derived. These additional parameters increase the uncertainties of flux because the difference between the actual feature of turbulent motion and the applicable conditions of turbulence theory. Most previous studies often focused on the constant flux layers that are above the rough sub-layers and homogeneous flat surfaces underlying surfaces with suitable weather conditions. Therefore, the criteria and modified forms of key parameters are invariable. In this study, we conduct investment over the hilly area of northern China with different plants, such as cork oak, cedar-black and locust. On the basis of key research on the threshold and modified forms of saturation with different turbulence intensity, modified forms of Bowen ratio with different drying-and-wetting conditions, universal function for the temperature structure parameter under different atmospheric stability, the dominant sources of uncertainty will be determined. The above study is significant to reveal influence mechanism of uncertainty and explore influence degree of uncertainty with quantitative analysis. The study can provide theoretical basis and technical support for accurately measuring sensible heat fluxes of forest ecosystem with scintillometer method, and can also provide work foundation for further study on role of forest ecosystem in energy balance and climate change.

  14. Particle agglomerated 3-d nanostructures for photon absorption

    NASA Astrophysics Data System (ADS)

    Sivayoganathan, Mugunthan

    The main objective of this thesis is to investigate the photon absorption properties of particle agglomerated 3-D structures that are synthesized through femtosecond laser ablation of solids. The size and morphology of these particle agglomerated 3-D structures, which can be tailored through adjusting laser parameters, determine the photon absorption property. A systematic theoretical and experimental study was performed to identify the effect of lasers on the size of the formed particles. The literature survey showed that the amount of supersaturation influences the growth rate as well as the nucleation rate of vapour condensed nanoparticles. Based on this theory, a mechanism was formed to explain the control of laser parameters over the size of formed particles. Further, a theoretical explanation was proposed from the experimental results for the transition of particle size distribution modals. These proposed mechanisms and explanations show the variation in particle size in the particle agglomerated 3-D nanostructures with laser parameters. The effect of laser parameters on the formed ring size was studied. Based on the previous studies, a mechanism was proposed for the formation of ring nanoclusters. The laser pulse intensity dependent ponderomotive force was the key force to define the formation of ring nanoclusters. Then the effect of laser parameters on ring size was studied. Structures fabricated on several materials such as graphite, aluminosilicate ceramic, zinc ingot, gold, and titanium were analyzed to show the influence of material properties, laser parameters, and the environmental conditions on the size of ring formed. The studies performed on the structures showed a minimum absorption of 0.75 A.U. in the bandwidth from UV to IR. The absorption spectrum is much wider compared to existing nanomaterials, such as silicon nanostructures and titanium dioxide nanostructures. To the best of the author's knowledge, it is a very competitive absorption rate when compared with the previous nanostructures used in photovoltaic conversion. Several features of nanostructures contribute to the enhancement of this light absorption. The special feature of the structure is that ease to fabricate and modify the properties by varying the laser parameters could make it competitive among other nanostructures available for solar cells.

  15. Differential evolution algorithm-based kernel parameter selection for Fukunaga-Koontz Transform subspaces construction

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin

    2015-10-01

    The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.

  16. An economic evaluation of maxillary implant overdentures based on six vs. four implants.

    PubMed

    Listl, Stefan; Fischer, Leonhard; Giannakopoulos, Nikolaos Nikitas

    2014-08-18

    The purpose of the present study was to assess the value for money achieved by bar-retained implant overdentures based on six implants compared with four implants as treatment alternatives for the edentulous maxilla. A Markov decision tree model was constructed and populated with parameter estimates for implant and denture failure as well as patient-centred health outcomes as available from recent literature. The decision scenario was modelled within a ten year time horizon and relied on cost reimbursement regulations of the German health care system. The cost-effectiveness threshold was identified above which the six-implant solution is preferable over the four-implant solution. Uncertainties regarding input parameters were incorporated via one-way and probabilistic sensitivity analysis based on Monte-Carlo simulation. Within a base case scenario of average treatment complexity, the cost-effectiveness threshold was identified to be 17,564 € per year of denture satisfaction gained above of which the alternative with six implants is preferable over treatment including four implants. Sensitivity analysis yielded that, depending on the specification of model input parameters such as patients' denture satisfaction, the respective cost-effectiveness threshold varies substantially. The results of the present study suggest that bar-retained maxillary overdentures based on six implants provide better patient satisfaction than bar-retained overdentures based on four implants but are considerably more expensive. Final judgements about value for money require more comprehensive clinical evidence including patient-centred health outcomes.

  17. An economic evaluation of maxillary implant overdentures based on six vs. four implants

    PubMed Central

    2014-01-01

    Background The purpose of the present study was to assess the value for money achieved by bar-retained implant overdentures based on six implants compared with four implants as treatment alternatives for the edentulous maxilla. Methods A Markov decision tree model was constructed and populated with parameter estimates for implant and denture failure as well as patient-centred health outcomes as available from recent literature. The decision scenario was modelled within a ten year time horizon and relied on cost reimbursement regulations of the German health care system. The cost-effectiveness threshold was identified above which the six-implant solution is preferable over the four-implant solution. Uncertainties regarding input parameters were incorporated via one-way and probabilistic sensitivity analysis based on Monte-Carlo simulation. Results Within a base case scenario of average treatment complexity, the cost-effectiveness threshold was identified to be 17,564 € per year of denture satisfaction gained above of which the alternative with six implants is preferable over treatment including four implants. Sensitivity analysis yielded that, depending on the specification of model input parameters such as patients’ denture satisfaction, the respective cost-effectiveness threshold varies substantially. Conclusions The results of the present study suggest that bar-retained maxillary overdentures based on six implants provide better patient satisfaction than bar-retained overdentures based on four implants but are considerably more expensive. Final judgements about value for money require more comprehensive clinical evidence including patient-centred health outcomes. PMID:25135370

  18. 4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters

    PubMed Central

    Werner, René

    2017-01-01

    Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated VMAT treatment plans when taking into account patient-specific motion characteristics. Current approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simulation. Whereas phantom-based 4D QA is usually restricted to a small number of measurements, the computational approaches allow simulating many motion scenarios. However, 4D VMAT dose simulation depends on various input parameters, influencing estimated doses along with mitigating simulation reliability. Thus, aiming at routine use of simulation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of the 4D VMAT dose simulation has to be studied in detail–which is the topic of the present work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing parameters and assess their impact on 4D dose simulation accuracy by comparison of simulated motion-affected dose distributions to corresponding dosimetric motion phantom measurements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans were generated for a motion phantom and different motion scenarios (sinusoidal motion of different period/direction; regular/irregular motion). 4D VMAT dose simulation results and dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured dose distributions serving as ground truth. Overall γ-passing rates of simulations and dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98% ± 1%); corresponding values for comparison of different day repeat measurements were between 98% and 100%. Parameters of major influence on 4D VMAT dose simulation accuracy were the degree of temporal discretization of the dose delivery process (the higher, the better) and correct alignment of the assumed breathing phases at the beginning of the dose measurements and simulations. Given the high γ-passing rates between simulated motion-affected doses and dynamic measurements, we consider the simulations to provide a reliable basis for assessment of VMAT motion effects that–in the sense of 4D QA of VMAT treatment plans–allows to verify target coverage in hypofractioned VMAT-based radiotherapy of moving targets. Remaining differences between measurements and simulations motivate, however, further detailed studies. PMID:28231337

  19. 4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters.

    PubMed

    Sothmann, Thilo; Gauer, Tobias; Werner, René

    2017-01-01

    Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated VMAT treatment plans when taking into account patient-specific motion characteristics. Current approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simulation. Whereas phantom-based 4D QA is usually restricted to a small number of measurements, the computational approaches allow simulating many motion scenarios. However, 4D VMAT dose simulation depends on various input parameters, influencing estimated doses along with mitigating simulation reliability. Thus, aiming at routine use of simulation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of the 4D VMAT dose simulation has to be studied in detail-which is the topic of the present work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing parameters and assess their impact on 4D dose simulation accuracy by comparison of simulated motion-affected dose distributions to corresponding dosimetric motion phantom measurements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans were generated for a motion phantom and different motion scenarios (sinusoidal motion of different period/direction; regular/irregular motion). 4D VMAT dose simulation results and dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured dose distributions serving as ground truth. Overall γ-passing rates of simulations and dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98% ± 1%); corresponding values for comparison of different day repeat measurements were between 98% and 100%. Parameters of major influence on 4D VMAT dose simulation accuracy were the degree of temporal discretization of the dose delivery process (the higher, the better) and correct alignment of the assumed breathing phases at the beginning of the dose measurements and simulations. Given the high γ-passing rates between simulated motion-affected doses and dynamic measurements, we consider the simulations to provide a reliable basis for assessment of VMAT motion effects that-in the sense of 4D QA of VMAT treatment plans-allows to verify target coverage in hypofractioned VMAT-based radiotherapy of moving targets. Remaining differences between measurements and simulations motivate, however, further detailed studies.

  20. Image quality assessment for CT used on small animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters usingmore » an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.« less

  1. Image quality assessment for CT used on small animals

    NASA Astrophysics Data System (ADS)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  2. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less

  3. Application of system identification to analytic rotor modeling from simulated and wind tunnel dynamic test data, part 2

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Banerjee, D.

    1977-01-01

    An introduction to aircraft state and parameter identification methods is presented. A simplified form of the maximum likelihood method is selected to extract analytical aeroelastic rotor models from simulated and dynamic wind tunnel test results for accelerated cyclic pitch stirring excitation. The dynamic inflow characteristics for forward flight conditions from the blade flapping responses without direct inflow measurements were examined. The rotor blades are essentially rigid for inplane bending and for torsion within the frequency range of study, but flexible in out-of-plane bending. Reverse flow effects are considered for high rotor advance ratios. Two inflow models are studied; the first is based on an equivalent blade Lock number, the second is based on a time delayed momentum inflow. In addition to the inflow parameters, basic rotor parameters like the blade natural frequency and the actual blade Lock number are identified together with measurement bias values. The effect of the theoretical dynamic inflow on the rotor eigenvalues is evaluated.

  4. An inventory-theory-based interval-parameter two-stage stochastic programming model for water resources management

    NASA Astrophysics Data System (ADS)

    Suo, M. Q.; Li, Y. P.; Huang, G. H.

    2011-09-01

    In this study, an inventory-theory-based interval-parameter two-stage stochastic programming (IB-ITSP) model is proposed through integrating inventory theory into an interval-parameter two-stage stochastic optimization framework. This method can not only address system uncertainties with complex presentation but also reflect transferring batch (the transferring quantity at once) and period (the corresponding cycle time) in decision making problems. A case of water allocation problems in water resources management planning is studied to demonstrate the applicability of this method. Under different flow levels, different transferring measures are generated by this method when the promised water cannot be met. Moreover, interval solutions associated with different transferring costs also have been provided. They can be used for generating decision alternatives and thus help water resources managers to identify desired policies. Compared with the ITSP method, the IB-ITSP model can provide a positive measure for solving water shortage problems and afford useful information for decision makers under uncertainty.

  5. Studies on orientation and rotation parameters of 4179 Toutatis from Chang'e-2 mission

    NASA Astrophysics Data System (ADS)

    Zhao, Yuhui; Ji, Jianghui; Hu, Shoucun

    The ginger-shaped near-Earth asteroid 4179 Toutatis is close to a 4:1 orbital resonance with the Earth and has made close Earth flybys approximately every four years in the recent 20 years. China’s lunar probe Chang’e-2 achieved a successful flyby the Toutatis on 13th Dec 2012 during its most recent flyby of Earth. During the mission, a series of image with high resolution has been obtained. Combined with the radar model of Toutatis, these figures show the attitude of the asteroid from the camera’s point of view and the orientation of it is then deduced based on the attitude of the camera and the relative position between 4179 Toutatis and Chang'e-2 in our works. According to the previous ground-based observations and works on the rotation parameters of Toutatis, this paper studies the rotating rate of the asteroid in accordance with the imaging result of Toutatis by Chang’e-2 and puts forward a correction to the spin rate parameters.

  6. Associations between results of post-stroke NDT-Bobath rehabilitation in gait parameters, ADL and hand functions.

    PubMed

    Mikołajewska, Emilia

    2013-01-01

    In patients after a stroke there are variable disorders. These patients often need rehabilitation in more than one area beceause of multiple limitations of the ability to perform everyday activities. The aim of the study was to assess correlations - statistical relationships between observed gait parameters, ADL and hand functions - results of rehabilitation of patients after ischaemic stroke according to the NDTBobath method for adults. The investigated group consisted of 60 patients after ischaemic stroke, who participated in the rehabilitation programme. 10 sessions of the NDT-Bobath therapy were provided in 2 weeks (10 days of the therapy). The calculation of correlations was made based on changes of parameters: Bobath Scale (to assess hand functions), Barthel Index (to assess ADL), gait velocity, cadence and stride lenght. Measurements were performed in every patient twice: on admission (before the therapy) and after last session of the therapy to assess rehabilitation effects. The main statistically relevant corellations observed in the study were as follows: in the whole group of patients: poor and moderate (negative) correlation between changes of gait parameters and Bobath Scale and Barthel Index, moderate and severe (negative) correlation between changes of gait parameters and Bobath Scale and Barthel Index in the group of women, correlation between changes in Bobath Scale and Barthel Index in the group of patients with left side of paresis, (negative) correlation between changes of gait parameters and Bobath Scale in group of patients younger than 68 years, moderate, high and very high correlations between changes in gait parameters in groups of women, men, younger than 68 years and older than 68 years. There have been observed statistically significant and favourable changes in the health status of patients, described by gait parameters, changes in hand functions and ADL. Based on the presented correlations there is an assumption that it is hard to achieve simultaneous recovery in all areas: gait parameters, hand functions and ADLs in two weeks of rehabilitation.

  7. Predictive Modeling and Optimization of Vibration-assisted AFM Tip-based Nanomachining

    NASA Astrophysics Data System (ADS)

    Kong, Xiangcheng

    The tip-based vibration-assisted nanomachining process offers a low-cost, low-effort technique in fabricating nanometer scale 2D/3D structures in sub-100 nm regime. To understand its mechanism, as well as provide the guidelines for process planning and optimization, we have systematically studied this nanomachining technique in this work. To understand the mechanism of this nanomachining technique, we firstly analyzed the interaction between the AFM tip and the workpiece surface during the machining process. A 3D voxel-based numerical algorithm has been developed to calculate the material removal rate as well as the contact area between the AFM tip and the workpiece surface. As a critical factor to understand the mechanism of this nanomachining process, the cutting force has been analyzed and modeled. A semi-empirical model has been proposed by correlating the cutting force with the material removal rate, which was validated using experimental data from different machining conditions. With the understanding of its mechanism, we have developed guidelines for process planning of this nanomachining technique. To provide the guideline for parameter selection, the effect of machining parameters on the feature dimensions (depth and width) has been analyzed. Based on ANOVA test results, the feature width is only controlled by the XY vibration amplitude, while the feature depth is affected by several machining parameters such as setpoint force and feed rate. A semi-empirical model was first proposed to predict the machined feature depth under given machining condition. Then, to reduce the computation intensity, linear and nonlinear regression models were also proposed and validated using experimental data. Given the desired feature dimensions, feasible machining parameters could be provided using these predictive feature dimension models. As the tip wear is unavoidable during the machining process, the machining precision will gradually decrease. To maintain the machining quality, the guideline for when to change the tip should be provided. In this study, we have developed several metrics to detect tip wear, such as tip radius and the pull-off force. The effect of machining parameters on the tip wear rate has been studied using these metrics, and the machining distance before a tip must be changed has been modeled using these machining parameters. Finally, the optimization functions have been built for unit production time and unit production cost subject to realistic constraints, and the optimal machining parameters can be found by solving these functions.

  8. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE PAGES

    Lu, Zhiming

    2018-01-30

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  9. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhiming

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  10. Physically-based modelling of high magnitude torrent events with uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Wing-Yuen Chow, Candace; Ramirez, Jorge; Zimmermann, Markus; Keiler, Margreth

    2017-04-01

    High magnitude torrent events are associated with the rapid propagation of vast quantities of water and available sediment downslope where human settlements may be established. Assessing the vulnerability of built structures to these events is a part of consequence analysis, where hazard intensity is related to the degree of loss sustained. The specific contribution of the presented work describes a procedure simulate these damaging events by applying physically-based modelling and to include uncertainty information about the simulated results. This is a first step in the development of vulnerability curves based on several intensity parameters (i.e. maximum velocity, sediment deposition depth and impact pressure). The investigation process begins with the collection, organization and interpretation of detailed post-event documentation and photograph-based observation data of affected structures in three sites that exemplify the impact of highly destructive mudflows and flood occurrences on settlements in Switzerland. Hazard intensity proxies are then simulated with the physically-based FLO-2D model (O'Brien et al., 1993). Prior to modelling, global sensitivity analysis is conducted to support a better understanding of model behaviour, parameterization and the quantification of uncertainties (Song et al., 2015). The inclusion of information describing the degree of confidence in the simulated results supports the credibility of vulnerability curves developed with the modelled data. First, key parameters are identified and selected based on literature review. Truncated a priori ranges of parameter values were then defined by expert solicitation. Local sensitivity analysis is performed based on manual calibration to provide an understanding of the parameters relevant to the case studies of interest. Finally, automated parameter estimation is performed to comprehensively search for optimal parameter combinations and associated values, which are evaluated using the observed data collected in the first stage of the investigation. O'Brien, J.S., Julien, P.Y., Fullerton, W. T., 1993. Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering 119(2): 244-261.
 Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., Xu C., 2015. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical frameworks, Journal of Hydrology 523: 739-757.

  11. Algorithms for adaptive stochastic control for a class of linear systems

    NASA Technical Reports Server (NTRS)

    Toda, M.; Patel, R. V.

    1977-01-01

    Control of linear, discrete time, stochastic systems with unknown control gain parameters is discussed. Two suboptimal adaptive control schemes are derived: one is based on underestimating future control and the other is based on overestimating future control. Both schemes require little on-line computation and incorporate in their control laws some information on estimation errors. The performance of these laws is studied by Monte Carlo simulations on a computer. Two single input, third order systems are considered, one stable and the other unstable, and the performance of the two adaptive control schemes is compared with that of the scheme based on enforced certainty equivalence and the scheme where the control gain parameters are known.

  12. The Pressure Coefficients of the Superconducting Order Parameters at the Ground State of Ferromagnetic Superconductors

    NASA Astrophysics Data System (ADS)

    Konno, R.; Hatayama, N.; Chaudhury, R.

    2014-04-01

    We investigated the pressure coefficients of the superconducting order parameters at the ground state of ferromagnetic superconductors based on the microscopic single band model by Linder et al. The superconducting gaps (i) similar to the ones seen in the thin film of A2 phase in liquid 3He and (ii) with the line node were used. This study shows that we would be able to estimate the pressure coefficients of the superconducting and magnetic order parameters at the ground state of ferromagnetic superconductors.

  13. Study of Far—Field Directivity Pattern for Linear Arrays

    NASA Astrophysics Data System (ADS)

    Ana-Maria, Chiselev; Luminita, Moraru; Laura, Onose

    2011-10-01

    A model to calculate directivity pattern in far field is developed in this paper. Based on this model, the three-dimensional beam pattern is introduced and analyzed in order to investigate geometric parameters of linear arrays and their influences on the directivity pattern. Simulations in azimuthal plane are made to highlight the influence of transducers parameters, including number of elements and inter-element spacing. It is true that these parameters are important factors that influence the directivity pattern and the appearance of side-lobes for linear arrays.

  14. Cluster kinetics model for mixtures of glassformers

    NASA Astrophysics Data System (ADS)

    Brenskelle, Lisa A.; McCoy, Benjamin J.

    2007-10-01

    For glassformers we propose a binary mixture relation for parameters in a cluster kinetics model previously shown to represent pure compound data for viscosity and dielectric relaxation as functions of either temperature or pressure. The model parameters are based on activation energies and activation volumes for cluster association-dissociation processes. With the mixture parameters, we calculated dielectric relaxation times and compared the results to experimental values for binary mixtures. Mixtures of sorbitol and glycerol (seven compositions), sorbitol and xylitol (three compositions), and polychloroepihydrin and polyvinylmethylether (three compositions) were studied.

  15. Trade-off Study for the Hit-to-kill Interception of Ballistic Missiles in the Boost Phase

    DTIC Science & Technology

    2009-12-01

    parabolic curve emerges, for any given Mach number. The relationship can be expressed as: CD = CD0 + k(CL –CL0)2 (IV.C.3) Graphically, the plot is shown...returned % from the SMTrajectory.m function based on the optimization parameters % and penalty parameters defined herein. This is a sub- funtion of the...of varied parameters "free" and boundary conditions "BC". % This is a sub- funtion of the SMGuidance.m function’s fminsearch. % This function

  16. An experimental study on the shear strength of FRP perfobond shear connector

    NASA Astrophysics Data System (ADS)

    Gwon, S. C.; Kim, S. H.; Yoon, S. J.; Choi, C. W.

    2018-06-01

    In this study, push-out tests were conducted to investigate shear behaviour of FRP perfobond shear connector. The parameters influencing shear capacity of FRP perfobond shear connector are concrete dowel effect, shear resistance effect of the laterally reinforced FRP re- bar, and frictional effect between shear connector and concrete. The specimens were designed to consider these parameters. The specimens coated with sand to increase frictional resistance between the FRP re-bar and concrete. Based on the test results and the parameters, new equation was suggested to predict shear strength of FRP perfobond shear connectors. The predicted results and the experimental results were compared to check the feasibility of prediction.

  17. A phase-transition model for the rise and collapse of ancient civilizations: A pre-ceramic Andean case study

    NASA Astrophysics Data System (ADS)

    Flores, J. C.

    2015-12-01

    For ancient civilizations, the shift from disorder to organized urban settlements is viewed as a phase-transition simile. The number of monumental constructions, assumed to be a signature of civilization processes, corresponds to the order parameter, and effective connectivity becomes related to the control parameter. Based on parameter estimations from archaeological and paleo-climatological data, this study analyzes the rise and fall of the ancient Caral civilization on the South Pacific coast during a period of small ENSO fluctuations (approximately 4500 BP). Other examples considered include civilizations on Easter Island and the Maya Lowlands. This work considers a typical nonlinear third order evolution equation and numerical simulations.

  18. Transverse Vibration of Tapered Single-Walled Carbon Nanotubes Embedded in Viscoelastic Medium

    NASA Astrophysics Data System (ADS)

    Lei, Y. J.; Zhang, D. P.; Shen, Z. B.

    2017-12-01

    Based on the nonlocal theory, Euler-Bernoulli beam theory and Kelvin viscoelastic foundation model, free transverse vibration is studied for a tapered viscoelastic single-walled carbon nanotube (visco-SWCNT) embedded in a viscoelastic medium. Firstly, the governing equations for vibration analysis are established. And then, we derive the natural frequencies in closed form for SWCNTs with arbitrary boundary conditions by applying transfer function method and perturbation method. Numerical results are also presented to discuss the effects of nonlocal parameter, relaxation time and taper parameter of SWCNTs, and material property parameters of the medium. This study demonstrates that the proposed model is available for vibration analysis of the tapered SWCNTs-viscoelastic medium coupling system.

  19. A Parameter Tuning Scheme of Sea-ice Model Based on Automatic Differentiation Technique

    NASA Astrophysics Data System (ADS)

    Kim, J. G.; Hovland, P. D.

    2001-05-01

    Automatic diferentiation (AD) technique was used to illustrate a new approach for parameter tuning scheme of an uncoupled sea-ice model. Atmospheric forcing field of 1992 obtained from NCEP data was used as enforcing variables in the study. The simulation results were compared with the observed ice movement provided by the International Arctic Buoy Programme (IABP). All of the numerical experiments were based on a widely used dynamic and thermodynamic model for simulating the seasonal sea-ice chnage of the main Arctic ocean. We selected five dynamic and thermodynamic parameters for the tuning process in which the cost function defined by the norm of the difference between observed and simulated ice drift locations was minimized. The selected parameters are the air and ocean drag coefficients, the ice strength constant, the turning angle at ice-air/ocean interface, and the bulk sensible heat transfer coefficient. The drag coefficients were the major parameters to control sea-ice movement and extent. The result of the study shows that more realistic simulations of ice thickness distribution was produced by tuning the simulated ice drift trajectories. In the tuning process, the L-BFCGS-B minimization algorithm of a quasi-Newton method was used. The derivative information required in the minimization iterations was provided by the AD processed Fortran code. Compared with a conventional approach, AD generated derivative code provided fast and robust computations of derivative information.

  20. Non-invasive diagnostics of several structural and biophysical parameters of skin cover by spectral light reflectance

    NASA Astrophysics Data System (ADS)

    Ivanov, Arkady P.; Barun, Vladimir V.

    2007-05-01

    A calculation scheme and an algorithm to simultaneously diagnose several structural and biophysical parameters of skin by reflected light are constructed in the paper. The procedure is based the fact that, after absorption and scattering, light reflected by tissue contains information on its optically active chromophores and structure. The problem on isolating the desired parameters is a spectroscopic one under multiple scattering conditions. The latter considerably complicates the solution of the problem and requires the elaboration of an approach that is specific to the object studied. The procedure presented in the paper is based on spectral tissue model properties proposed earlier and engineering methods for solving the radiative transfer equation. The desired parameters are melanin and blood volume fractions, f and c, epidermis thickness d, mean diameter D of capillaries, and blood oxygenation degree S. Spectral diffuse reflectance R(λ) of skin over the range of 400 to 850 nm was calculated as a first stage. Then the sensitivity of R(λ) to the above parameters was studied to optimize the algorithm by wavelengths and to propose an experimental scheme for diagnostics. It is shown that blood volume fraction and f*d product can be rather surely determined by the reflected green -- red light. One can find f and d separately as well as D by the blue reflectance. The last stage is the derivation of S at about 600 nm.

Top