NASA Astrophysics Data System (ADS)
Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.
2015-12-01
The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.
Experiments on Adaptive Self-Tuning of Seismic Signal Detector Parameters
NASA Astrophysics Data System (ADS)
Knox, H. A.; Draelos, T.; Young, C. J.; Chael, E. P.; Peterson, M. G.; Lawry, B.; Phillips-Alonge, K. E.; Balch, R. S.; Ziegler, A.
2016-12-01
Scientific applications, including underground nuclear test monitoring and microseismic monitoring can benefit enormously from data-driven dynamic algorithms for tuning seismic and infrasound signal detection parameters since continuous streams are producing waveform archives on the order of 1TB per month. Tuning is a challenge because there are a large number of data processing parameters that interact in complex ways, and because the underlying populating of true signal detections is generally unknown. The largely manual process of identifying effective parameters, often performed only over a subset of stations over a short time period, is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. We present improvements to an Adaptive Self-Tuning algorithm for continuously adjusting detection parameters based on consistency with neighboring sensors. Results are shown for 1) data from a very dense network ( 120 stations, 10 km radius) deployed during 2008 on Erebus Volcano, Antarctica, and 2) data from a continuous downhole seismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project. Performance is assessed in terms of missed detections and false detections relative to human analyst detections, simulated waveforms where ground-truth detections exist and visual inspection.
The feature-weighted receptive field: an interpretable encoding model for complex feature spaces.
St-Yves, Ghislain; Naselaris, Thomas
2017-06-20
We introduce the feature-weighted receptive field (fwRF), an encoding model designed to balance expressiveness, interpretability and scalability. The fwRF is organized around the notion of a feature map-a transformation of visual stimuli into visual features that preserves the topology of visual space (but not necessarily the native resolution of the stimulus). The key assumption of the fwRF model is that activity in each voxel encodes variation in a spatially localized region across multiple feature maps. This region is fixed for all feature maps; however, the contribution of each feature map to voxel activity is weighted. Thus, the model has two separable sets of parameters: "where" parameters that characterize the location and extent of pooling over visual features, and "what" parameters that characterize tuning to visual features. The "where" parameters are analogous to classical receptive fields, while "what" parameters are analogous to classical tuning functions. By treating these as separable parameters, the fwRF model complexity is independent of the resolution of the underlying feature maps. This makes it possible to estimate models with thousands of high-resolution feature maps from relatively small amounts of data. Once a fwRF model has been estimated from data, spatial pooling and feature tuning can be read-off directly with no (or very little) additional post-processing or in-silico experimentation. We describe an optimization algorithm for estimating fwRF models from data acquired during standard visual neuroimaging experiments. We then demonstrate the model's application to two distinct sets of features: Gabor wavelets and features supplied by a deep convolutional neural network. We show that when Gabor feature maps are used, the fwRF model recovers receptive fields and spatial frequency tuning functions consistent with known organizational principles of the visual cortex. We also show that a fwRF model can be used to regress entire deep convolutional networks against brain activity. The ability to use whole networks in a single encoding model yields state-of-the-art prediction accuracy. Our results suggest a wide variety of uses for the feature-weighted receptive field model, from retinotopic mapping with natural scenes, to regressing the activities of whole deep neural networks onto measured brain activity. Copyright © 2017. Published by Elsevier Inc.
Fine-tuning gene networks using simple sequence repeats
Egbert, Robert G.; Klavins, Eric
2012-01-01
The parameters in a complex synthetic gene network must be extensively tuned before the network functions as designed. Here, we introduce a simple and general approach to rapidly tune gene networks in Escherichia coli using hypermutable simple sequence repeats embedded in the spacer region of the ribosome binding site. By varying repeat length, we generated expression libraries that incrementally and predictably sample gene expression levels over a 1,000-fold range. We demonstrate the utility of the approach by creating a bistable switch library that programmatically samples the expression space to balance the two states of the switch, and we illustrate the need for tuning by showing that the switch’s behavior is sensitive to host context. Further, we show that mutation rates of the repeats are controllable in vivo for stability or for targeted mutagenesis—suggesting a new approach to optimizing gene networks via directed evolution. This tuning methodology should accelerate the process of engineering functionally complex gene networks. PMID:22927382
A universal multilingual weightless neural network tagger via quantitative linguistics.
Carneiro, Hugo C C; Pedreira, Carlos E; França, Felipe M G; Lima, Priscila M V
2017-07-01
In the last decade, given the availability of corpora in several distinct languages, research on multilingual part-of-speech tagging started to grow. Amongst the novelties there is mWANN-Tagger (multilingual weightless artificial neural network tagger), a weightless neural part-of-speech tagger capable of being used for mostly-suffix-oriented languages. The tagger was subjected to corpora in eight languages of quite distinct natures and had a remarkable accuracy with very low sample deviation in every one of them, indicating the robustness of weightless neural systems for part-of-speech tagging tasks. However, mWANN-Tagger needed to be tuned for every new corpus, since each one required a different parameter configuration. For mWANN-Tagger to be truly multilingual, it should be usable for any new language with no need of parameter tuning. This article proposes a study that aims to find a relation between the lexical diversity of a language and the parameter configuration that would produce the best performing mWANN-Tagger instance. Preliminary analyses suggested that a single parameter configuration may be applied to the eight aforementioned languages. The mWANN-Tagger instance produced by this configuration was as accurate as the language-dependent ones obtained through tuning. Afterwards, the weightless neural tagger was further subjected to new corpora in languages that range from very isolating to polysynthetic ones. The best performing instances of mWANN-Tagger are again the ones produced by the universal parameter configuration. Hence, mWANN-Tagger can be applied to new corpora with no need of parameter tuning, making it a universal multilingual part-of-speech tagger. Further experiments with Universal Dependencies treebanks reveal that mWANN-Tagger may be extended and that it has potential to outperform most state-of-the-art part-of-speech taggers if better word representations are provided. Copyright © 2017 Elsevier Ltd. All rights reserved.
Object recognition with hierarchical discriminant saliency networks.
Han, Sunhyoung; Vasconcelos, Nuno
2014-01-01
The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and computer vision literatures. This demonstrates benefits for all the functional enhancements of the HDSN, the class tuning inherent to discriminant saliency, and saliency layers based on templates of increasing target selectivity and invariance. Altogether, these experiments suggest that there are non-trivial benefits in integrating attention and recognition.
Network community-detection enhancement by proper weighting
NASA Astrophysics Data System (ADS)
Khadivi, Alireza; Ajdari Rad, Ali; Hasler, Martin
2011-04-01
In this paper, we show how proper assignment of weights to the edges of a complex network can enhance the detection of communities and how it can circumvent the resolution limit and the extreme degeneracy problems associated with modularity. Our general weighting scheme takes advantage of graph theoretic measures and it introduces two heuristics for tuning its parameters. We use this weighting as a preprocessing step for the greedy modularity optimization algorithm of Newman to improve its performance. The result of the experiments of our approach on computer-generated and real-world data networks confirm that the proposed approach not only mitigates the problems of modularity but also improves the modularity optimization.
Percolation mechanism drives actin gels to the critically connected state
NASA Astrophysics Data System (ADS)
Lee, Chiu Fan; Pruessner, Gunnar
2016-05-01
Cell motility and tissue morphogenesis depend crucially on the dynamic remodeling of actomyosin networks. An actomyosin network consists of an actin polymer network connected by cross-linker proteins and motor protein myosins that generate internal stresses on the network. A recent discovery shows that for a range of experimental parameters, actomyosin networks contract to clusters with a power-law size distribution [J. Alvarado, Nat. Phys. 9, 591 (2013), 10.1038/nphys2715]. Here, we argue that actomyosin networks can exhibit a robust critical signature without fine-tuning because the dynamics of the system can be mapped onto a modified version of percolation with trapping (PT), which is known to show critical behavior belonging to the static percolation universality class without the need for fine-tuning of a control parameter. We further employ our PT model to generate experimentally testable predictions.
NASA Astrophysics Data System (ADS)
Ogura, Tomoo; Shiogama, Hideo; Watanabe, Masahiro; Yoshimori, Masakazu; Yokohata, Tokuta; Annan, James D.; Hargreaves, Julia C.; Ushigami, Naoto; Hirota, Kazuya; Someya, Yu; Kamae, Youichi; Tatebe, Hiroaki; Kimoto, Masahide
2017-12-01
This study discusses how much of the biases in top-of-atmosphere (TOA) radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5) generation. We used output of a perturbed parameter ensemble (PPE) experiment conducted with an atmosphere-ocean general circulation model (AOGCM) without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5) was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude-longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.
Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network
Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui
2012-01-01
This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production. PMID:22778587
Compact localized states and flat-band generators in one dimension
NASA Astrophysics Data System (ADS)
Maimaiti, Wulayimu; Andreanov, Alexei; Park, Hee Chul; Gendelman, Oleg; Flach, Sergej
2017-03-01
Flat bands (FB) are strictly dispersionless bands in the Bloch spectrum of a periodic lattice Hamiltonian, recently observed in a variety of photonic and dissipative condensate networks. FB Hamiltonians are fine-tuned networks, still lacking a comprehensive generating principle. We introduce a FB generator based on local network properties. We classify FB networks through the properties of compact localized states (CLS) which are exact FB eigenstates and occupy U unit cells. We obtain the complete two-parameter FB family of two-band d =1 networks with nearest unit cell interaction and U =2 . We discover a novel high symmetry sawtooth chain with identical hoppings in a transverse dc field, easily accessible in experiments. Our results pave the way towards a complete description of FBs in networks with more bands and in higher dimensions.
Adaptive Control of Synchronization in Delay-Coupled Heterogeneous Networks of FitzHugh-Nagumo Nodes
NASA Astrophysics Data System (ADS)
Plotnikov, S. A.; Lehnert, J.; Fradkov, A. L.; Schöll, E.
We study synchronization in delay-coupled neural networks of heterogeneous nodes. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. We show that an adaptive tuning of the overall coupling strength can be used to counteract the effect of the heterogeneity. Our adaptive controller is demonstrated on ring networks of FitzHugh-Nagumo systems which are paradigmatic for excitable dynamics but can also — depending on the system parameters — exhibit self-sustained periodic firing. We show that the adaptively tuned time-delayed coupling enables synchronization even if parameter heterogeneities are so large that excitable nodes coexist with oscillatory ones.
NASA Astrophysics Data System (ADS)
Azmi, Nur Iffah Mohamed; Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Romlay, Fadhlur Rahman Mohd
2018-03-01
Controller that uses PID parameters requires a good tuning method in order to improve the control system performance. Tuning PID control method is divided into two namely the classical methods and the methods of artificial intelligence. Particle swarm optimization algorithm (PSO) is one of the artificial intelligence methods. Previously, researchers had integrated PSO algorithms in the PID parameter tuning process. This research aims to improve the PSO-PID tuning algorithms by integrating the tuning process with the Variable Weight Grey- Taguchi Design of Experiment (DOE) method. This is done by conducting the DOE on the two PSO optimizing parameters: the particle velocity limit and the weight distribution factor. Computer simulations and physical experiments were conducted by using the proposed PSO- PID with the Variable Weight Grey-Taguchi DOE and the classical Ziegler-Nichols methods. They are implemented on the hydraulic positioning system. Simulation results show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE has reduced the rise time by 48.13% and settling time by 48.57% compared to the Ziegler-Nichols method. Furthermore, the physical experiment results also show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE tuning method responds better than Ziegler-Nichols tuning. In conclusion, this research has improved the PSO-PID parameter by applying the PSO-PID algorithm together with the Variable Weight Grey-Taguchi DOE method as a tuning method in the hydraulic positioning system.
Ensemble method: Community detection based on game theory
NASA Astrophysics Data System (ADS)
Zhang, Xia; Xia, Zhengyou; Xu, Shengwu; Wang, J. D.
2014-08-01
Timely and cost-effective analytics over social network has emerged as a key ingredient for success in many businesses and government endeavors. Community detection is an active research area of relevance to analyze online social network. The problem of selecting a particular community detection algorithm is crucial if the aim is to unveil the community structure of a network. The choice of a given methodology could affect the outcome of the experiments because different algorithms have different advantages and depend on tuning specific parameters. In this paper, we propose a community division model based on the notion of game theory, which can combine advantages of previous algorithms effectively to get a better community classification result. By making experiments on some standard dataset, it verifies that our community detection model based on game theory is valid and better.
Competing dynamic phases of active polymer networks
NASA Astrophysics Data System (ADS)
Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.
Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Prediction of properties of wheat dough using intelligent deep belief networks
NASA Astrophysics Data System (ADS)
Guha, Paramita; Bhatnagar, Taru; Pal, Ishan; Kamboj, Uma; Mishra, Sunita
2017-11-01
In this paper, the rheological and chemical properties of wheat dough are predicted using deep belief networks. Wheat grains are stored at controlled environmental conditions. The internal parameters of grains viz., protein, fat, carbohydrates, moisture, ash are determined using standard chemical analysis and viscosity of the dough is measured using Rheometer. Here, fat, carbohydrates, moisture, ash and temperature are considered as inputs whereas protein and viscosity are chosen as outputs. The prediction algorithm is developed using deep neural network where each layer is trained greedily using restricted Boltzmann machine (RBM) networks. The overall network is finally fine-tuned using standard neural network technique. In most literature, it has been found that fine-tuning is done using back-propagation technique. In this paper, a new algorithm is proposed in which each layer is tuned using RBM and the final network is fine-tuned using deep neural network (DNN). It has been observed that with the proposed algorithm, errors between the actual and predicted outputs are less compared to the conventional algorithm. Hence, the given network can be considered as beneficial as it predicts the outputs more accurately. Numerical results along with discussions are presented.
Tuning of active vibration controllers for ACTEX by genetic algorithm
NASA Astrophysics Data System (ADS)
Kwak, Moon K.; Denoyer, Keith K.
1999-06-01
This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.
Auto-tuning for NMR probe using LabVIEW
NASA Astrophysics Data System (ADS)
Quen, Carmen; Pham, Stephanie; Bernal, Oscar
2014-03-01
Typical manual NMR-tuning method is not suitable for broadband spectra spanning several megahertz linewidths. Among the main problems encountered during manual tuning are pulse-power reproducibility, baselines, and transmission line reflections, to name a few. We present a design of an auto-tuning system using graphic programming language, LabVIEW, to minimize these problems. The program uses a simplified model of the NMR probe conditions near perfect tuning to mimic the tuning process and predict the position of the capacitor shafts needed to achieve the desirable impedance. The tuning capacitors of the probe are controlled by stepper motors through a LabVIEW/computer interface. Our program calculates the effective capacitance needed to tune the probe and provides controlling parameters to advance the motors in the right direction. The impedance reading of a network analyzer can be used to correct the model parameters in real time for feedback control.
A Novel Modulation Classification Approach Using Gabor Filter Network
Ghauri, Sajjad Ahmed; Qureshi, Ijaz Mansoor; Cheema, Tanveer Ahmed; Malik, Aqdas Naveed
2014-01-01
A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS) algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR) on AWGN channel. PMID:25126603
Tuning-free controller to accurately regulate flow rates in a microfluidic network
NASA Astrophysics Data System (ADS)
Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun
2016-03-01
We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.
Tuning-free controller to accurately regulate flow rates in a microfluidic network
Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun
2016-01-01
We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587
On the fusion of tuning parameters of fuzzy rules and neural network
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.
TCP performance in ATM networks: ABR parameter tuning and ABR/UBR comparisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien Fang; Lin, A.
1996-02-27
This paper explores two issues on TOP performance over ATM networks: ABR parameter tuning and performance comparison of binary mode ABR with enhanced UBR services. Of the fifteen parameters defined for ABR, two parameters dominate binary mode ABR performance: Rate Increase Factor (RIF) and Rate Decrease Factor (RDF). Using simulations, we study the effects of these two parameters on TOP over ABR performance. We compare TOP performance with different ABR parameter settings in terms of through-puts and fairness. The effects of different buffer sizes and LAN/WAN distances are also examined. We then compare TOP performance with the best ABR parametermore » setting with corresponding UBR service enhanced with Early Packet Discard and also with a fair buffer allocation scheme. The results show that TOP performance over binary mode ABR is very sensitive to parameter value settings, and that a poor choice of parameters can result in ABR performance worse than that of the much less expensive UBR-EPD scheme.« less
Tuning Parameters in Heuristics by Using Design of Experiments Methods
NASA Technical Reports Server (NTRS)
Arin, Arif; Rabadi, Ghaith; Unal, Resit
2010-01-01
With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.
Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware
Srinivasa, Narayan; Stepp, Nigel D.; Cruz-Albrecht, Jose
2015-01-01
Neuromorphic hardware are designed by drawing inspiration from biology to overcome limitations of current computer architectures while forging the development of a new class of autonomous systems that can exhibit adaptive behaviors. Several designs in the recent past are capable of emulating large scale networks but avoid complexity in network dynamics by minimizing the number of dynamic variables that are supported and tunable in hardware. We believe that this is due to the lack of a clear understanding of how to design self-tuning complex systems. It has been widely demonstrated that criticality appears to be the default state of the brain and manifests in the form of spontaneous scale-invariant cascades of neural activity. Experiment, theory and recent models have shown that neuronal networks at criticality demonstrate optimal information transfer, learning and information processing capabilities that affect behavior. In this perspective article, we argue that understanding how large scale neuromorphic electronics can be designed to enable emergent adaptive behavior will require an understanding of how networks emulated by such hardware can self-tune local parameters to maintain criticality as a set-point. We believe that such capability will enable the design of truly scalable intelligent systems using neuromorphic hardware that embrace complexity in network dynamics rather than avoiding it. PMID:26648839
The advantage of flexible neuronal tunings in neural network models for motor learning
Marongelli, Ellisha N.; Thoroughman, Kurt A.
2013-01-01
Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the widths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR), which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field widths. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model that is flexible in both basis function widths and weights, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies. PMID:23888141
A holistic approach to ZigBee performance enhancement for home automation networks.
Betzler, August; Gomez, Carles; Demirkol, Ilker; Paradells, Josep
2014-08-14
Wireless home automation networks are gaining importance for smart homes. In this ambit, ZigBee networks play an important role. The ZigBee specification defines a default set of protocol stack parameters and mechanisms that is further refined by the ZigBee Home Automation application profile. In a holistic approach, we analyze how the network performance is affected with the tuning of parameters and mechanisms across multiple layers of the ZigBee protocol stack and investigate possible performance gains by implementing and testing alternative settings. The evaluations are carried out in a testbed of 57 TelosB motes. The results show that considerable performance improvements can be achieved by using alternative protocol stack configurations. From these results, we derive two improved protocol stack configurations for ZigBee wireless home automation networks that are validated in various network scenarios. In our experiments, these improved configurations yield a relative packet delivery ratio increase of up to 33.6%, a delay decrease of up to 66.6% and an improvement of the energy efficiency for battery powered devices of up to 48.7%, obtainable without incurring any overhead to the network.
A Holistic Approach to ZigBee Performance Enhancement for Home Automation Networks
Betzler, August; Gomez, Carles; Demirkol, Ilker; Paradells, Josep
2014-01-01
Wireless home automation networks are gaining importance for smart homes. In this ambit, ZigBee networks play an important role. The ZigBee specification defines a default set of protocol stack parameters and mechanisms that is further refined by the ZigBee Home Automation application profile. In a holistic approach, we analyze how the network performance is affected with the tuning of parameters and mechanisms across multiple layers of the ZigBee protocol stack and investigate possible performance gains by implementing and testing alternative settings. The evaluations are carried out in a testbed of 57 TelosB motes. The results show that considerable performance improvements can be achieved by using alternative protocol stack configurations. From these results, we derive two improved protocol stack configurations for ZigBee wireless home automation networks that are validated in various network scenarios. In our experiments, these improved configurations yield a relative packet delivery ratio increase of up to 33.6%, a delay decrease of up to 66.6% and an improvement of the energy efficiency for battery powered devices of up to 48.7%, obtainable without incurring any overhead to the network. PMID:25196004
Highly adaptive tests for group differences in brain functional connectivity.
Kim, Junghi; Pan, Wei
2015-01-01
Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evidence and insights showing that altered brain functional networks are associated with neurological illnesses such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose, group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a network model and high noise levels in neuroimaging data. We are still in the early stage of method development as highlighted by Varoquaux and Craddock (2013) that "there is currently no unique solution, but a spectrum of related methods and analytical strategies" to learn and compare brain connectivity. In practice the important issue of how to choose several critical parameters in estimating a network, such as what association measure to use and what is the sparsity of the estimated network, has not been carefully addressed, largely because the answers are unknown yet. For example, even though the choice of tuning parameters in model estimation has been extensively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such parameters may lead to extremely low-powered tests. Here we develop highly adaptive tests to detect group differences in brain connectivity while accounting for unknown optimal choices of some tuning parameters. The proposed tests combine statistical evidence against a null hypothesis from multiple sources across a range of plausible tuning parameter values reflecting uncertainty with the unknown truth. These highly adaptive tests are not only easy to use, but also high-powered robustly across various scenarios. The usage and advantages of these novel tests are demonstrated on an Alzheimer's disease dataset and simulated data.
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles
Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando
2016-01-01
For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme. PMID:27608018
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.
Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando
2016-09-05
For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.
The application of neural network PID controller to control the light gasoline etherification
NASA Astrophysics Data System (ADS)
Cheng, Huanxin; Zhang, Yimin; Kong, Lingling; Meng, Xiangyong
2017-06-01
Light gasoline etherification technology can effectively improve the quality of gasoline, which is environmental- friendly and economical. By combining BP neural network and PID control and using BP neural network self-learning ability for online parameter tuning, this method optimizes the parameters of PID controller and applies this to the Fcc gas flow control to achieve the control of the final product- heavy oil concentration. Finally, through MATLAB simulation, it is found that the PID control based on BP neural network has better controlling effect than traditional PID control.
Spectral embedding finds meaningful (relevant) structure in image and microarray data
Higgs, Brandon W; Weller, Jennifer; Solka, Jeffrey L
2006-01-01
Background Accurate methods for extraction of meaningful patterns in high dimensional data have become increasingly important with the recent generation of data types containing measurements across thousands of variables. Principal components analysis (PCA) is a linear dimensionality reduction (DR) method that is unsupervised in that it relies only on the data; projections are calculated in Euclidean or a similar linear space and do not use tuning parameters for optimizing the fit to the data. However, relationships within sets of nonlinear data types, such as biological networks or images, are frequently mis-rendered into a low dimensional space by linear methods. Nonlinear methods, in contrast, attempt to model important aspects of the underlying data structure, often requiring parameter(s) fitting to the data type of interest. In many cases, the optimal parameter values vary when different classification algorithms are applied on the same rendered subspace, making the results of such methods highly dependent upon the type of classifier implemented. Results We present the results of applying the spectral method of Lafon, a nonlinear DR method based on the weighted graph Laplacian, that minimizes the requirements for such parameter optimization for two biological data types. We demonstrate that it is successful in determining implicit ordering of brain slice image data and in classifying separate species in microarray data, as compared to two conventional linear methods and three nonlinear methods (one of which is an alternative spectral method). This spectral implementation is shown to provide more meaningful information, by preserving important relationships, than the methods of DR presented for comparison. Tuning parameter fitting is simple and is a general, rather than data type or experiment specific approach, for the two datasets analyzed here. Tuning parameter optimization is minimized in the DR step to each subsequent classification method, enabling the possibility of valid cross-experiment comparisons. Conclusion Results from the spectral method presented here exhibit the desirable properties of preserving meaningful nonlinear relationships in lower dimensional space and requiring minimal parameter fitting, providing a useful algorithm for purposes of visualization and classification across diverse datasets, a common challenge in systems biology. PMID:16483359
On the effect of response transformations in sequential parameter optimization.
Wagner, Tobias; Wessing, Simon
2012-01-01
Parameter tuning of evolutionary algorithms (EAs) is attracting more and more interest. In particular, the sequential parameter optimization (SPO) framework for the model-assisted tuning of stochastic optimizers has resulted in established parameter tuning algorithms. In this paper, we enhance the SPO framework by introducing transformation steps before the response aggregation and before the actual modeling. Based on design-of-experiments techniques, we empirically analyze the effect of integrating different transformations. We show that in particular, a rank transformation of the responses provides significant improvements. A deeper analysis of the resulting models and additional experiments with adaptive procedures indicates that the rank and the Box-Cox transformation are able to improve the properties of the resultant distributions with respect to symmetry and normality of the residuals. Moreover, model-based effect plots document a higher discriminatory power obtained by the rank transformation.
Parameter tuning method for dither compensation of a pneumatic proportional valve with friction
NASA Astrophysics Data System (ADS)
Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei
2016-05-01
In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.
An efficient hybrid approach for multiobjective optimization of water distribution systems
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2014-05-01
An efficient hybrid approach for the design of water distribution systems (WDSs) with multiple objectives is described in this paper. The objectives are the minimization of the network cost and maximization of the network resilience. A self-adaptive multiobjective differential evolution (SAMODE) algorithm has been developed, in which control parameters are automatically adapted by means of evolution instead of the presetting of fine-tuned parameter values. In the proposed method, a graph algorithm is first used to decompose a looped WDS into a shortest-distance tree (T) or forest, and chords (Ω). The original two-objective optimization problem is then approximated by a series of single-objective optimization problems of the T to be solved by nonlinear programming (NLP), thereby providing an approximate Pareto optimal front for the original whole network. Finally, the solutions at the approximate front are used to seed the SAMODE algorithm to find an improved front for the original entire network. The proposed approach is compared with two other conventional full-search optimization methods (the SAMODE algorithm and the NSGA-II) that seed the initial population with purely random solutions based on three case studies: a benchmark network and two real-world networks with multiple demand loading cases. Results show that (i) the proposed NLP-SAMODE method consistently generates better-quality Pareto fronts than the full-search methods with significantly improved efficiency; and (ii) the proposed SAMODE algorithm (no parameter tuning) exhibits better performance than the NSGA-II with calibrated parameter values in efficiently offering optimal fronts.
Dynamical tuning for MPC using population games: A water supply network application.
Barreiro-Gomez, Julian; Ocampo-Martinez, Carlos; Quijano, Nicanor
2017-07-01
Model predictive control (MPC) is a suitable strategy for the control of large-scale systems that have multiple design requirements, e.g., multiple physical and operational constraints. Besides, an MPC controller is able to deal with multiple control objectives considering them within the cost function, which implies to determine a proper prioritization for each of the objectives. Furthermore, when the system has time-varying parameters and/or disturbances, the appropriate prioritization might vary along the time as well. This situation leads to the need of a dynamical tuning methodology. This paper addresses the dynamical tuning issue by using evolutionary game theory. The advantages of the proposed method are highlighted and tested over a large-scale water supply network with periodic time-varying disturbances. Finally, results are analyzed with respect to a multi-objective MPC controller that uses static tuning. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Synaptic Plasticity Enables Adaptive Self-Tuning Critical Networks
Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan
2015-01-01
During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1. PMID:25590427
Computational exploration of neuron and neural network models in neurobiology.
Prinz, Astrid A
2007-01-01
The electrical activity of individual neurons and neuronal networks is shaped by the complex interplay of a large number of non-linear processes, including the voltage-dependent gating of ion channels and the activation of synaptic receptors. These complex dynamics make it difficult to understand how individual neuron or network parameters-such as the number of ion channels of a given type in a neuron's membrane or the strength of a particular synapse-influence neural system function. Systematic exploration of cellular or network model parameter spaces by computational brute force can overcome this difficulty and generate comprehensive data sets that contain information about neuron or network behavior for many different combinations of parameters. Searching such data sets for parameter combinations that produce functional neuron or network output provides insights into how narrowly different neural system parameters have to be tuned to produce a desired behavior. This chapter describes the construction and analysis of databases of neuron or neuronal network models and describes some of the advantages and downsides of such exploration methods.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
Adjoint-Based Climate Model Tuning: Application to the Planet Simulator
NASA Astrophysics Data System (ADS)
Lyu, Guokun; Köhl, Armin; Matei, Ion; Stammer, Detlef
2018-01-01
The adjoint method is used to calibrate the medium complexity climate model "Planet Simulator" through parameter estimation. Identical twin experiments demonstrate that this method can retrieve default values of the control parameters when using a long assimilation window of the order of 2 months. Chaos synchronization through nudging, required to overcome limits in the temporal assimilation window in the adjoint method, is employed successfully to reach this assimilation window length. When assimilating ERA-Interim reanalysis data, the observations of air temperature and the radiative fluxes are the most important data for adjusting the control parameters. The global mean net longwave fluxes at the surface and at the top of the atmosphere are significantly improved by tuning two model parameters controlling the absorption of clouds and water vapor. The global mean net shortwave radiation at the surface is improved by optimizing three model parameters controlling cloud optical properties. The optimized parameters improve the free model (without nudging terms) simulation in a way similar to that in the assimilation experiments. Results suggest a promising way for tuning uncertain parameters in nonlinear coupled climate models.
A Recurrent Network Model of Somatosensory Parametric Working Memory in the Prefrontal Cortex
Miller, Paul; Brody, Carlos D; Romo, Ranulfo; Wang, Xiao-Jing
2015-01-01
A parametric working memory network stores the information of an analog stimulus in the form of persistent neural activity that is monotonically tuned to the stimulus. The family of persistent firing patterns with a continuous range of firing rates must all be realizable under exactly the same external conditions (during the delay when the transient stimulus is withdrawn). How this can be accomplished by neural mechanisms remains an unresolved question. Here we present a recurrent cortical network model of irregularly spiking neurons that was designed to simulate a somatosensory working memory experiment with behaving monkeys. Our model reproduces the observed positively and negatively monotonic persistent activity, and heterogeneous tuning curves of memory activity. We show that fine-tuning mathematically corresponds to a precise alignment of cusps in the bifurcation diagram of the network. Moreover, we show that the fine-tuned network can integrate stimulus inputs over several seconds. Assuming that such time integration occurs in neural populations downstream from a tonically persistent neural population, our model is able to account for the slow ramping-up and ramping-down behaviors of neurons observed in prefrontal cortex. PMID:14576212
A novel gene network inference algorithm using predictive minimum description length approach.
Chaitankar, Vijender; Ghosh, Preetam; Perkins, Edward J; Gong, Ping; Deng, Youping; Zhang, Chaoyang
2010-05-28
Reverse engineering of gene regulatory networks using information theory models has received much attention due to its simplicity, low computational cost, and capability of inferring large networks. One of the major problems with information theory models is to determine the threshold which defines the regulatory relationships between genes. The minimum description length (MDL) principle has been implemented to overcome this problem. The description length of the MDL principle is the sum of model length and data encoding length. A user-specified fine tuning parameter is used as control mechanism between model and data encoding, but it is difficult to find the optimal parameter. In this work, we proposed a new inference algorithm which incorporated mutual information (MI), conditional mutual information (CMI) and predictive minimum description length (PMDL) principle to infer gene regulatory networks from DNA microarray data. In this algorithm, the information theoretic quantities MI and CMI determine the regulatory relationships between genes and the PMDL principle method attempts to determine the best MI threshold without the need of a user-specified fine tuning parameter. The performance of the proposed algorithm was evaluated using both synthetic time series data sets and a biological time series data set for the yeast Saccharomyces cerevisiae. The benchmark quantities precision and recall were used as performance measures. The results show that the proposed algorithm produced less false edges and significantly improved the precision, as compared to the existing algorithm. For further analysis the performance of the algorithms was observed over different sizes of data. We have proposed a new algorithm that implements the PMDL principle for inferring gene regulatory networks from time series DNA microarray data that eliminates the need of a fine tuning parameter. The evaluation results obtained from both synthetic and actual biological data sets show that the PMDL principle is effective in determining the MI threshold and the developed algorithm improves precision of gene regulatory network inference. Based on the sensitivity analysis of all tested cases, an optimal CMI threshold value has been identified. Finally it was observed that the performance of the algorithms saturates at a certain threshold of data size.
Hierarchical winner-take-all particle swarm optimization social network for neural model fitting.
Coventry, Brandon S; Parthasarathy, Aravindakshan; Sommer, Alexandra L; Bartlett, Edward L
2017-02-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models.
Characterizing a four-qubit planar lattice for arbitrary error detection
NASA Astrophysics Data System (ADS)
Chow, Jerry M.; Srinivasan, Srikanth J.; Magesan, Easwar; Córcoles, A. D.; Abraham, David W.; Gambetta, Jay M.; Steffen, Matthias
2015-05-01
Quantum error correction will be a necessary component towards realizing scalable quantum computers with physical qubits. Theoretically, it is possible to perform arbitrarily long computations if the error rate is below a threshold value. The two-dimensional surface code permits relatively high fault-tolerant thresholds at the ~1% level, and only requires a latticed network of qubits with nearest-neighbor interactions. Superconducting qubits have continued to steadily improve in coherence, gate, and readout fidelities, to become a leading candidate for implementation into larger quantum networks. Here we describe characterization experiments and calibration of a system of four superconducting qubits arranged in a planar lattice, amenable to the surface code. Insights into the particular qubit design and comparison between simulated parameters and experimentally determined parameters are given. Single- and two-qubit gate tune-up procedures are described and results for simultaneously benchmarking pairs of two-qubit gates are given. All controls are eventually used for an arbitrary error detection protocol described in separate work [Corcoles et al., Nature Communications, 6, 2015].
Zhang, Bitao; Pi, YouGuo
2013-07-01
The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant. In this paper, an enhanced robust fractional order proportional-plus-integral (ERFOPI) controller based on neural network is proposed. The control law of the ERFOPI controller is acted on a fractional order implement function (FOIF) of tracking error but not tracking error directly, which, according to theory analysis, can enhance the robust performance of system. Tuning rules and approaches, based on phase margin, crossover frequency specification and robustness rejecting gain variation, are introduced to obtain the parameters of ERFOPI controller. And the neural network algorithm is used to adjust the parameter of FOIF. Simulation and experimental results show that the method proposed in this paper not only achieve favorable tracking performance, but also is robust with regard to external load disturbance and parameter variation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Adaptive Peer Sampling with Newscast
NASA Astrophysics Data System (ADS)
Tölgyesi, Norbert; Jelasity, Márk
The peer sampling service is a middleware service that provides random samples from a large decentralized network to support gossip-based applications such as multicast, data aggregation and overlay topology management. Lightweight gossip-based implementations of the peer sampling service have been shown to provide good quality random sampling while also being extremely robust to many failure scenarios, including node churn and catastrophic failure. We identify two problems with these approaches. The first problem is related to message drop failures: if a node experiences a higher-than-average message drop rate then the probability of sampling this node in the network will decrease. The second problem is that the application layer at different nodes might request random samples at very different rates which can result in very poor random sampling especially at nodes with high request rates. We propose solutions for both problems. We focus on Newscast, a robust implementation of the peer sampling service. Our solution is based on simple extensions of the protocol and an adaptive self-control mechanism for its parameters, namely—without involving failure detectors—nodes passively monitor local protocol events using them as feedback for a local control loop for self-tuning the protocol parameters. The proposed solution is evaluated by simulation experiments.
Effects of timbre and tempo change on memory for music.
Halpern, Andrea R; Müllensiefen, Daniel
2008-09-01
We investigated the effects of different encoding tasks and of manipulations of two supposedly surface parameters of music on implicit and explicit memory for tunes. In two experiments, participants were first asked to either categorize instrument or judge familiarity of 40 unfamiliar short tunes. Subsequently, participants were asked to give explicit and implicit memory ratings for a list of 80 tunes, which included 40 previously heard. Half of the 40 previously heard tunes differed in timbre (Experiment 1) or tempo (Experiment 2) in comparison with the first exposure. A third experiment compared similarity ratings of the tunes that varied in timbre or tempo. Analysis of variance (ANOVA) results suggest first that the encoding task made no difference for either memory mode. Secondly, timbre and tempo change both impaired explicit memory, whereas tempo change additionally made implicit tune recognition worse. Results are discussed in the context of implicit memory for nonsemantic materials and the possible differences in timbre and tempo in musical representations.
Fine-Tuning Neural Patient Question Retrieval Model with Generative Adversarial Networks.
Tang, Guoyu; Ni, Yuan; Wang, Keqiang; Yong, Qin
2018-01-01
The online patient question and answering (Q&A) system attracts an increasing amount of users in China. Patient will post their questions and wait for doctors' response. To avoid the lag time involved with the waiting and to reduce the workload on the doctors, a better method is to automatically retrieve the semantically equivalent question from the archive. We present a Generative Adversarial Networks (GAN) based approach to automatically retrieve patient question. We apply supervised deep learning based approaches to determine the similarity between patient questions. Then a GAN framework is used to fine-tune the pre-trained deep learning models. The experiment results show that fine-tuning by GAN can improve the performance.
NASA Astrophysics Data System (ADS)
Bramhe, V. S.; Ghosh, S. K.; Garg, P. K.
2018-04-01
With rapid globalization, the extent of built-up areas is continuously increasing. Extraction of features for classifying built-up areas that are more robust and abstract is a leading research topic from past many years. Although, various studies have been carried out where spatial information along with spectral features has been utilized to enhance the accuracy of classification. Still, these feature extraction techniques require a large number of user-specific parameters and generally application specific. On the other hand, recently introduced Deep Learning (DL) techniques requires less number of parameters to represent more abstract aspects of the data without any manual effort. Since, it is difficult to acquire high-resolution datasets for applications that require large scale monitoring of areas. Therefore, in this study Sentinel-2 image has been used for built-up areas extraction. In this work, pre-trained Convolutional Neural Networks (ConvNets) i.e. Inception v3 and VGGNet are employed for transfer learning. Since these networks are trained on generic images of ImageNet dataset which are having very different characteristics from satellite images. Therefore, weights of networks are fine-tuned using data derived from Sentinel-2 images. To compare the accuracies with existing shallow networks, two state of art classifiers i.e. Gaussian Support Vector Machine (SVM) and Back-Propagation Neural Network (BP-NN) are also implemented. Both SVM and BP-NN gives 84.31 % and 82.86 % overall accuracies respectively. Inception-v3 and VGGNet gives 89.43 % of overall accuracy using fine-tuned VGGNet and 92.10 % when using Inception-v3. The results indicate high accuracy of proposed fine-tuned ConvNets on a 4-channel Sentinel-2 dataset for built-up area extraction.
Zhang, Yang; Teng, Fei; Li, Suhang; Wan, Ling; Lin, Tingting
2017-10-27
The magnetic resonance sounding (MRS) technique is a non-invasive geophysical method that can provide unique insights into the hydrological properties of groundwater. The Cu coil sensor is the preferred choice for detecting the weak MRS signal because of its high sensitivity, low fabrication complexity and low cost. The tuned configuration was traditionally used for the MRS coil sensor design because of its high sensitivity and narrowband filtering. However, its narrow bandwidth may distort the MRS signals. To address this issue, a non-tuned design exhibiting a broad bandwidth has emerged recently, however, the sensitivity decreases as the bandwidth increases. Moreover, the effect of the MRS applications is often seriously influenced by power harmonic noises in the developed areas, especially low-frequency harmonics, resulting in saturation of the coil sensor, regardless of the tuned or non-tuned configuration. To solve the two aforementioned problems, we propose a matching network consisting of an LC broadband filter in parallel with a matching capacitor and provide a design for a coil sensor with a matching network (CSMN). The theoretical parameter calculations and the equivalent schematic of the CSMN with noise sources are investigated, and the sensitivity of the CSMN is evaluated by the Allan variance and the signal-to-noise ratio (SNR). Correspondingly, we constructed the CSMN with a 3 dB bandwidth, passband gain, normalized equivalent input noise and sensitivity (detection limit) of 1030 Hz, 4.6 dB, 1.78 nV/(Hz) 1/2 @ 2 kHz and 3 nV, respectively. Experimental tests in the laboratory show that the CSMN can not only improve the sensitivity, but also inhibit the signal distortion by suppressing power harmonic noises in the strong electromagnetic interference environment. Finally, a field experiment is performed with the CSMN to show a valid measurement of the signals of an MRS instrument system.
Zhang, Yang; Teng, Fei; Li, Suhang; Wan, Ling
2017-01-01
The magnetic resonance sounding (MRS) technique is a non-invasive geophysical method that can provide unique insights into the hydrological properties of groundwater. The Cu coil sensor is the preferred choice for detecting the weak MRS signal because of its high sensitivity, low fabrication complexity and low cost. The tuned configuration was traditionally used for the MRS coil sensor design because of its high sensitivity and narrowband filtering. However, its narrow bandwidth may distort the MRS signals. To address this issue, a non-tuned design exhibiting a broad bandwidth has emerged recently, however, the sensitivity decreases as the bandwidth increases. Moreover, the effect of the MRS applications is often seriously influenced by power harmonic noises in the developed areas, especially low-frequency harmonics, resulting in saturation of the coil sensor, regardless of the tuned or non-tuned configuration. To solve the two aforementioned problems, we propose a matching network consisting of an LC broadband filter in parallel with a matching capacitor and provide a design for a coil sensor with a matching network (CSMN). The theoretical parameter calculations and the equivalent schematic of the CSMN with noise sources are investigated, and the sensitivity of the CSMN is evaluated by the Allan variance and the signal-to-noise ratio (SNR). Correspondingly, we constructed the CSMN with a 3 dB bandwidth, passband gain, normalized equivalent input noise and sensitivity (detection limit) of 1030 Hz, 4.6 dB, 1.78 nV/(Hz)1/2 @ 2 kHz and 3 nV, respectively. Experimental tests in the laboratory show that the CSMN can not only improve the sensitivity, but also inhibit the signal distortion by suppressing power harmonic noises in the strong electromagnetic interference environment. Finally, a field experiment is performed with the CSMN to show a valid measurement of the signals of an MRS instrument system. PMID:29076986
Yang, Jiong; Xi, Lili; Qiu, Wujie; ...
2016-02-26
During the last two decades, we have witnessed great progress in research on thermoelectrics. There are two primary focuses. One is the fundamental understanding of electrical and thermal transport, enabled by the interplay of theory and experiment; the other is the substantial enhancement of the performance of various thermoelectric materials, through synergistic optimisation of those intercorrelated transport parameters. In this article, we review some of the successful strategies for tuning electrical and thermal transport. For electrical transport, we start from the classical but still very active strategy of tuning band degeneracy (or band convergence), then discuss the engineering of carriermore » scattering, and finally address the concept of conduction channels and conductive networks that emerge in complex thermoelectric materials. For thermal transport, we summarise the approaches for studying thermal transport based on phonon–phonon interactions valid for conventional solids, as well as some quantitative efforts for nanostructures. We also discuss the thermal transport in complex materials with chemical-bond hierarchy, in which a portion of the atoms (or subunits) are weakly bonded to the rest of the structure, leading to an intrinsic manifestation of part-crystalline part-liquid state at elevated temperatures. In this review, we provide a summary of achievements made in recent studies of thermoelectric transport properties, and demonstrate how they have led to improvements in thermoelectric performance by the integration of modern theory and experiment, and point out some challenges and possible directions.« less
JPARSS: A Java Parallel Network Package for Grid Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jie; Akers, Walter; Chen, Ying
2002-03-01
The emergence of high speed wide area networks makes grid computinga reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve bandwidth and to reduce latency on a high speed wide area network. This paper presents a Java package called JPARSS (Java Parallel Secure Stream (Socket)) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a grid environment without the necessity of tuning TCP window size.more » This package enables single sign-on, certificate delegation and secure or plain-text data transfer using several security components based on X.509 certificate and SSL. Several experiments will be presented to show that using Java parallelstreams is more effective than tuning TCP window size. In addition a simple architecture using Web services« less
Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.
2017-11-15
In Hezaveh et al. (2017) we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data,more » as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single hyperparameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that neural networks can be a fast alternative to Monte Carlo Markov Chains for parameter uncertainty estimation in many practical applications, allowing more than seven orders of magnitude improvement in speed.« less
NASA Astrophysics Data System (ADS)
Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.
2017-11-01
In Hezaveh et al. we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational-lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data, as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single variational parameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that the application of approximate Bayesian neural networks to astrophysical modeling problems can be a fast alternative to Monte Carlo Markov Chains, allowing orders of magnitude improvement in speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.
In Hezaveh et al. (2017) we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data,more » as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single hyperparameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that neural networks can be a fast alternative to Monte Carlo Markov Chains for parameter uncertainty estimation in many practical applications, allowing more than seven orders of magnitude improvement in speed.« less
Intelligent Machine Learning Approaches for Aerospace Applications
NASA Astrophysics Data System (ADS)
Sathyan, Anoop
Machine Learning is a type of artificial intelligence that provides machines or networks the ability to learn from data without the need to explicitly program them. There are different kinds of machine learning techniques. This thesis discusses the applications of two of these approaches: Genetic Fuzzy Logic and Convolutional Neural Networks (CNN). Fuzzy Logic System (FLS) is a powerful tool that can be used for a wide variety of applications. FLS is a universal approximator that reduces the need for complex mathematics and replaces it with expert knowledge of the system to produce an input-output mapping using If-Then rules. The expert knowledge of a system can help in obtaining the parameters for small-scale FLSs, but for larger networks we will need to use sophisticated approaches that can automatically train the network to meet the design requirements. This is where Genetic Algorithms (GA) and EVE come into the picture. Both GA and EVE can tune the FLS parameters to minimize a cost function that is designed to meet the requirements of the specific problem. EVE is an artificial intelligence developed by Psibernetix that is trained to tune large scale FLSs. The parameters of an FLS can include the membership functions and rulebase of the inherent Fuzzy Inference Systems (FISs). The main issue with using the GFS is that the number of parameters in a FIS increase exponentially with the number of inputs thus making it increasingly harder to tune them. To reduce this issue, the FLSs discussed in this thesis consist of 2-input-1-output FISs in cascade (Chapter 4) or as a layer of parallel FISs (Chapter 7). We have obtained extremely good results using GFS for different applications at a reduced computational cost compared to other algorithms that are commonly used to solve the corresponding problems. In this thesis, GFSs have been designed for controlling an inverted double pendulum, a task allocation problem of clustering targets amongst a set of UAVs, a fire detection problem and the aircraft conflict resolution problem. During the last decade, CNNs have become increasingly popular in the domain of image and speech processing. CNNs have a lot more parameters compared to GFSs that are tuned using the back-propagation algorithm. CNNs typically have hundreds of thousands or maybe millions of parameters that are tuned using common cost functions such as integral squared error, softmax loss etc. Chapter 5 discusses a classification problem to classify images as humans or not and Chapter 6 discusses a regression task using CNN for producing an approximate near-optimal route for the Traveling Salesman Problem (TSP) which is regarded as one of the most complicated decision making problem. Both the GFS and CNN are used to develop intelligent systems specific to the application providing them computational efficiency, robustness in the face of uncertainties and scalability.
PSO algorithm enhanced with Lozi Chaotic Map - Tuning experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan
2015-03-10
In this paper it is investigated the effect of tuning of control parameters of the Lozi Chaotic Map employed as a chaotic pseudo-random number generator for the particle swarm optimization algorithm. Three different benchmark functions are selected from the IEEE CEC 2013 competition benchmark set. The Lozi map is extensively tuned and the performance of PSO is evaluated.
Predictive minimum description length principle approach to inferring gene regulatory networks.
Chaitankar, Vijender; Zhang, Chaoyang; Ghosh, Preetam; Gong, Ping; Perkins, Edward J; Deng, Youping
2011-01-01
Reverse engineering of gene regulatory networks using information theory models has received much attention due to its simplicity, low computational cost, and capability of inferring large networks. One of the major problems with information theory models is to determine the threshold that defines the regulatory relationships between genes. The minimum description length (MDL) principle has been implemented to overcome this problem. The description length of the MDL principle is the sum of model length and data encoding length. A user-specified fine tuning parameter is used as control mechanism between model and data encoding, but it is difficult to find the optimal parameter. In this work, we propose a new inference algorithm that incorporates mutual information (MI), conditional mutual information (CMI), and predictive minimum description length (PMDL) principle to infer gene regulatory networks from DNA microarray data. In this algorithm, the information theoretic quantities MI and CMI determine the regulatory relationships between genes and the PMDL principle method attempts to determine the best MI threshold without the need of a user-specified fine tuning parameter. The performance of the proposed algorithm is evaluated using both synthetic time series data sets and a biological time series data set (Saccharomyces cerevisiae). The results show that the proposed algorithm produced fewer false edges and significantly improved the precision when compared to existing MDL algorithm.
Nagasaki, Masao; Yamaguchi, Rui; Yoshida, Ryo; Imoto, Seiya; Doi, Atsushi; Tamada, Yoshinori; Matsuno, Hiroshi; Miyano, Satoru; Higuchi, Tomoyuki
2006-01-01
We propose an automatic construction method of the hybrid functional Petri net as a simulation model of biological pathways. The problems we consider are how we choose the values of parameters and how we set the network structure. Usually, we tune these unknown factors empirically so that the simulation results are consistent with biological knowledge. Obviously, this approach has the limitation in the size of network of interest. To extend the capability of the simulation model, we propose the use of data assimilation approach that was originally established in the field of geophysical simulation science. We provide genomic data assimilation framework that establishes a link between our simulation model and observed data like microarray gene expression data by using a nonlinear state space model. A key idea of our genomic data assimilation is that the unknown parameters in simulation model are converted as the parameter of the state space model and the estimates are obtained as the maximum a posteriori estimators. In the parameter estimation process, the simulation model is used to generate the system model in the state space model. Such a formulation enables us to handle both the model construction and the parameter tuning within a framework of the Bayesian statistical inferences. In particular, the Bayesian approach provides us a way of controlling overfitting during the parameter estimations that is essential for constructing a reliable biological pathway. We demonstrate the effectiveness of our approach using synthetic data. As a result, parameter estimation using genomic data assimilation works very well and the network structure is suitably selected.
Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi
2015-08-01
Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.
Wang, Yikai; Kang, Jian; Kemmer, Phebe B.; Guo, Ying
2016-01-01
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package “DensParcorr” can be downloaded from CRAN for implementing the proposed statistical methods. PMID:27242395
Wang, Yikai; Kang, Jian; Kemmer, Phebe B; Guo, Ying
2016-01-01
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package "DensParcorr" can be downloaded from CRAN for implementing the proposed statistical methods.
Hierarchical Winner-Take-All Particle Swarm Optimization Social Network for Neural Model Fitting
Coventry, Brandon S.; Parthasarathy, Aravindakshan; Sommer, Alexandra L.; Bartlett, Edward L.
2016-01-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models. PMID:27726048
Online automatic tuning and control for fed-batch cultivation
van Straten, Gerrit; van der Pol, Leo A.; van Boxtel, Anton J. B.
2007-01-01
Performance of controllers applied in biotechnological production is often below expectation. Online automatic tuning has the capability to improve control performance by adjusting control parameters. This work presents automatic tuning approaches for model reference specific growth rate control during fed-batch cultivation. The approaches are direct methods that use the error between observed specific growth rate and its set point; systematic perturbations of the cultivation are not necessary. Two automatic tuning methods proved to be efficient, in which the adaptation rate is based on a combination of the error, squared error and integral error. These methods are relatively simple and robust against disturbances, parameter uncertainties, and initialization errors. Application of the specific growth rate controller yields a stable system. The controller and automatic tuning methods are qualified by simulations and laboratory experiments with Bordetella pertussis. PMID:18157554
PID Tuning Using Extremum Seeking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killingsworth, N; Krstic, M
2005-11-15
Although proportional-integral-derivative (PID) controllers are widely used in the process industry, their effectiveness is often limited due to poor tuning. Manual tuning of PID controllers, which requires optimization of three parameters, is a time-consuming task. To remedy this difficulty, much effort has been invested in developing systematic tuning methods. Many of these methods rely on knowledge of the plant model or require special experiments to identify a suitable plant model. Reviews of these methods are given in [1] and the survey paper [2]. However, in many situations a plant model is not known, and it is not desirable to openmore » the process loop for system identification. Thus a method for tuning PID parameters within a closed-loop setting is advantageous. In relay feedback tuning [3]-[5], the feedback controller is temporarily replaced by a relay. Relay feedback causes most systems to oscillate, thus determining one point on the Nyquist diagram. Based on the location of this point, PID parameters can be chosen to give the closed-loop system a desired phase and gain margin. An alternative tuning method, which does not require either a modification of the system or a system model, is unfalsified control [6], [7]. This method uses input-output data to determine whether a set of PID parameters meets performance specifications. An adaptive algorithm is used to update the PID controller based on whether or not the controller falsifies a given criterion. The method requires a finite set of candidate PID controllers that must be initially specified [6]. Unfalsified control for an infinite set of PID controllers has been developed in [7]; this approach requires a carefully chosen input signal [8]. Yet another model-free PID tuning method that does not require opening of the loop is iterative feedback tuning (IFT). IFT iteratively optimizes the controller parameters with respect to a cost function derived from the output signal of the closed-loop system, see [9]. This method is based on the performance of the closed-loop system during a step response experiment [10], [11]. In this article we present a method for optimizing the step response of a closed-loop system consisting of a PID controller and an unknown plant with a discrete version of extremum seeking (ES). Specifically, ES is used to minimize a cost function similar to that used in [10], [11], which quantifies the performance of the PID controller. ES, a non-model-based method, iteratively modifies the arguments (in this application the PID parameters) of a cost function so that the output of the cost function reaches a local minimum or local maximum. In the next section we apply ES to PID controller tuning. We illustrate this technique through simulations comparing the effectiveness of ES to other PID tuning methods. Next, we address the importance of the choice of cost function and consider the effect of controller saturation. Furthermore, we discuss the choice of ES tuning parameters. Finally, we offer some conclusions.« less
Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks.
Kalbitzer, Liv; Pompe, Tilo
2018-02-01
Three-dimensional fibrillar networks reconstituted from collagen I are widely used as biomimetic scaffolds for in vitro and in vivo cell studies. Various physicochemical parameters of buffer conditions for in vitro fibril formation are well known, including pH-value, ion concentrations and temperature. However, there is a lack of a detailed understanding of reconstituting well-defined 3D network topologies, which is required to mimic specific properties of the native extracellular matrix. We screened a wide range of relevant physicochemical buffer conditions and characterized the topology of the reconstituted 3D networks in terms of mean pore size and fibril diameter. A congruent analysis of fibril formation kinetics by turbidimetry revealed the adjustment of the lateral growth phase of fibrils by buffer conditions to be key in the determination of pore size and fibril diameter of the networks. Although the kinetics of nucleation and linear growth phase were affected by buffer conditions as well, network topology was independent of those two growth phases. Overall, the results of our study provide necessary insights into how to engineer 3D collagen matrices with an independent control over topology parameters, in order to mimic in vivo tissues in in vitro experiments and tissue engineering applications. The study reports a comprehensive analysis of physicochemical conditions of buffer solutions to reconstitute defined 3D collagen I matrices. By a combined analysis of network topology, i.e., pore size and fibril diameter, and the kinetics of fibril formation we can reveal the dependence of 3D network topology on buffer conditions, such as pH-value, phosphate concentration and sodium chloride content. With those results we are now able to provide engineering strategies to independently tune the topology parameters of widely used 3D collagen scaffolds based on the buffer conditions. By that, we enable the straightforward mimicking of extracellular matrices of in vivo tissues for in vitro cell culture experiments and tissue engineering applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Parameter meta-optimization of metaheuristics of solving specific NP-hard facility location problem
NASA Astrophysics Data System (ADS)
Skakov, E. S.; Malysh, V. N.
2018-03-01
The aim of the work is to create an evolutionary method for optimizing the values of the control parameters of metaheuristics of solving the NP-hard facility location problem. A system analysis of the tuning process of optimization algorithms parameters is carried out. The problem of finding the parameters of a metaheuristic algorithm is formulated as a meta-optimization problem. Evolutionary metaheuristic has been chosen to perform the task of meta-optimization. Thus, the approach proposed in this work can be called “meta-metaheuristic”. Computational experiment proving the effectiveness of the procedure of tuning the control parameters of metaheuristics has been performed.
Robust fixed-time synchronization of delayed Cohen-Grossberg neural networks.
Wan, Ying; Cao, Jinde; Wen, Guanghui; Yu, Wenwu
2016-01-01
The fixed-time master-slave synchronization of Cohen-Grossberg neural networks with parameter uncertainties and time-varying delays is investigated. Compared with finite-time synchronization where the convergence time relies on the initial synchronization errors, the settling time of fixed-time synchronization can be adjusted to desired values regardless of initial conditions. Novel synchronization control strategy for the slave neural network is proposed. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, some sufficient schemes are provided for selecting the control parameters to ensure synchronization with required convergence time and in the presence of parameter uncertainties. Corresponding criteria for tuning control inputs are also derived for the finite-time synchronization. Finally, two numerical examples are given to illustrate the validity of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Co-percolation to tune conductive behaviour in dynamical metallic nanowire networks.
Fairfield, J A; Rocha, C G; O'Callaghan, C; Ferreira, M S; Boland, J J
2016-11-03
Nanowire networks act as self-healing smart materials, whose sheet resistance can be tuned via an externally applied voltage stimulus. This memristive response occurs due to modification of junction resistances to form a connectivity path across the lowest barrier junctions in the network. While most network studies have been performed on expensive noble metal nanowires like silver, networks of inexpensive nickel nanowires with a nickel oxide coating can also demonstrate resistive switching, a common feature of metal oxides with filamentary conduction. However, networks made from solely nickel nanowires have high operation voltages which prohibit large-scale material applications. Here we show, using both experiment and simulation, that a heterogeneous network of nickel and silver nanowires allows optimization of the activation voltage, as well as tuning of the conduction behavior to be either resistive switching, memristive, or a combination of both. Small percentages of silver nanowires, below the percolation threshold, induce these changes in electrical behaviour, even for low area coverage and hence very transparent films. Silver nanowires act as current concentrators, amplifying conductivity locally as shown in our computational dynamical activation framework for networks of junctions. These results demonstrate that a heterogeneous nanowire network can act as a cost-effective adaptive material with minimal use of noble metal nanowires, without losing memristive behaviour that is essential for smart sensing and neuromorphic applications.
FRAN and RBF-PSO as two components of a hyper framework to recognize protein folds.
Abbasi, Elham; Ghatee, Mehdi; Shiri, M E
2013-09-01
In this paper, an intelligent hyper framework is proposed to recognize protein folds from its amino acid sequence which is a fundamental problem in bioinformatics. This framework includes some statistical and intelligent algorithms for proteins classification. The main components of the proposed framework are the Fuzzy Resource-Allocating Network (FRAN) and the Radial Bases Function based on Particle Swarm Optimization (RBF-PSO). FRAN applies a dynamic method to tune up the RBF network parameters. Due to the patterns complexity captured in protein dataset, FRAN classifies the proteins under fuzzy conditions. Also, RBF-PSO applies PSO to tune up the RBF classifier. Experimental results demonstrate that FRAN improves prediction accuracy up to 51% and achieves acceptable multi-class results for protein fold prediction. Although RBF-PSO provides reasonable results for protein fold recognition up to 48%, it is weaker than FRAN in some cases. However the proposed hyper framework provides an opportunity to use a great range of intelligent methods and can learn from previous experiences. Thus it can avoid the weakness of some intelligent methods in terms of memory, computational time and static structure. Furthermore, the performance of this system can be enhanced throughout the system life-cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fast ultrasonic wavelength tuning in X-ray experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagov, A. E., E-mail: blagov-ae@mail.ru; Pisarevskii, Yu. V.; Koval’chuk, M. V.
2016-03-15
A method of tuning (scanning) X-ray beam wavelength based on modulation of the lattice parameter of X-ray optical crystal by an ultrasonic standing wave excited in it has been proposed and experimentally implemented. The double-crystal antiparallel scheme of X-ray diffraction, in which an ultrasonic wave is excited in the second crystal, is used in the experiment. The profile of characteristic line k{sub α1} of an X-ray tube with a molybdenum anode is recorded using both the proposed tuning scheme and conventional mechanical rotation of crystal. The results obtained by both techniques are in good agreement.
Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines
Kurç, Tahsin M.; Taveira, Luís F. R.; Melo, Alba C. M. A.; Gao, Yi; Kong, Jun; Saltz, Joel H.
2017-01-01
Abstract Motivation: Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. Results: The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Conclusions: Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Availability and Implementation: Source code: https://github.com/SBU-BMI/region-templates/. Contact: teodoro@unb.br Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28062445
Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines.
Teodoro, George; Kurç, Tahsin M; Taveira, Luís F R; Melo, Alba C M A; Gao, Yi; Kong, Jun; Saltz, Joel H
2017-04-01
Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Source code: https://github.com/SBU-BMI/region-templates/ . teodoro@unb.br. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Generalized rules for the optimization of elastic network models
NASA Astrophysics Data System (ADS)
Lezon, Timothy; Eyal, Eran; Bahar, Ivet
2009-03-01
Elastic network models (ENMs) are widely employed for approximating the coarse-grained equilibrium dynamics of proteins using only a few parameters. An area of current focus is improving the predictive accuracy of ENMs by fine-tuning their force constants to fit specific systems. Here we introduce a set of general rules for assigning ENM force constants to residue pairs. Using a novel method, we construct ENMs that optimally reproduce experimental residue covariances from NMR models of 68 proteins. We analyze the optimal interactions in terms of amino acid types, pair distances and local protein structures to identify key factors in determining the effective spring constants. When applied to several unrelated globular proteins, our method shows an improved correlation with experiment over a standard ENM. We discuss the physical interpretation of our findings as well as its implications in the fields of protein folding and dynamics.
An Effective Evolutionary Approach for Bicriteria Shortest Path Routing Problems
NASA Astrophysics Data System (ADS)
Lin, Lin; Gen, Mitsuo
Routing problem is one of the important research issues in communication network fields. In this paper, we consider a bicriteria shortest path routing (bSPR) model dedicated to calculating nondominated paths for (1) the minimum total cost and (2) the minimum transmission delay. To solve this bSPR problem, we propose a new multiobjective genetic algorithm (moGA): (1) an efficient chromosome representation using the priority-based encoding method; (2) a new operator of GA parameters auto-tuning, which is adaptively regulation of exploration and exploitation based on the change of the average fitness of parents and offspring which is occurred at each generation; and (3) an interactive adaptive-weight fitness assignment mechanism is implemented that assigns weights to each objective and combines the weighted objectives into a single objective function. Numerical experiments with various scales of network design problems show the effectiveness and the efficiency of our approach by comparing with the recent researches.
A self-tuning automatic voltage regulator designed for an industrial environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, D.; Hogg, B.W.; Swidenbank, E.
Examination of the performance of fixed parameter controllers has resulted in the development of self-tuning strategies for excitation control of turbogenerator systems. In conjunction with the advanced control algorithms, sophisticated measurement techniques have previously been adopted on micromachine systems to provide generator terminal quantities. In power stations, however, a minimalist hardware arrangement would be selected leading to relatively simple measurement techniques. The performance of a range of self-tuning schemes is investigated on an industrial test-bed, employing a typical industrial hardware measurement system. Individual controllers are implemented on a standard digital automatic voltage regulator, as installed in power stations. This employsmore » a VME platform, and the self-tuning algorithms are introduced by linking to a transputer network. The AVR includes all normal features, such as field forcing, VAR limiting and overflux protection. Self-tuning controller performance is compared with that of a fixed gain digital AVR.« less
Tuning a climate model using nudging to reanalysis.
NASA Astrophysics Data System (ADS)
Cheedela, S. K.; Mapes, B. E.
2014-12-01
Tuning a atmospheric general circulation model involves a daunting task of adjusting non-observable parameters to adjust the mean climate. These parameters arise from necessity to describe unresolved flow through parametrizations. Tuning a climate model is often done with certain set of priorities, such as global mean temperature, net top of the atmosphere radiation. These priorities are hard enough to reach let alone reducing systematic biases in the models. The goal of currently study is to explore alternate ways to tune a climate model to reduce some systematic biases that can be used in synergy with existing efforts. Nudging a climate model to a known state is a poor man's inverse of tuning process described above. Our approach involves nudging the atmospheric model to state of art reanalysis fields thereby providing a balanced state with respect to the global mean temperature and winds. The tendencies derived from nudging are negative of errors from physical parametrizations as the errors from dynamical core would be small. Patterns of nudging are compared to the patterns of different physical parametrizations to decipher the cause for certain biases in relation to tuning parameters. This approach might also help in understanding certain compensating errors that arise from tuning process. ECHAM6 is a comprehensive general model, also used in recent Coupled Model Intercomparision Project(CMIP5). The approach used to tune it and effect of certain parameters that effect its mean climate are reported clearly, hence it serves as a benchmark for our approach. Our planned experiments include nudging ECHAM6 atmospheric model to European Center Reanalysis (ERA-Interim) and reanalysis from National Center for Environmental Prediction (NCEP) and decipher choice of certain parameters that lead to systematic biases in its simulations. Of particular interest are reducing long standing biases related to simulation of Asian summer monsoon.
Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar.
Lomp, Oliver; Richter, Mathis; Zibner, Stephan K U; Schöner, Gregor
2016-01-01
Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar , which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.
Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar
Lomp, Oliver; Richter, Mathis; Zibner, Stephan K. U.; Schöner, Gregor
2016-01-01
Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar, which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs. PMID:27853431
Strategy for Developing Expert-System-Based Internet Protocols (TCP/IP)
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1997-01-01
The Satellite Networks and Architectures Branch of NASA's Lewis Research is addressing the issue of seamless interoperability of satellite networks with terrestrial networks. One of the major issues is improving reliable transmission protocols such as TCP over long latency and error-prone links. Many tuning parameters are available to enhance the performance of TCP including segment size, timers and window sizes. There are also numerous congestion avoidance algorithms such as slow start, selective retransmission and selective acknowledgment that are utilized to improve performance. This paper provides a strategy to characterize the performance of TCP relative to various parameter settings in a variety of network environments (i.e. LAN, WAN, wireless, satellite, and IP over ATM). This information can then be utilized to develop expert-system-based Internet protocols.
Fault tolerant control of multivariable processes using auto-tuning PID controller.
Yu, Ding-Li; Chang, T K; Yu, Ding-Wen
2005-02-01
Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.
A Parameter Tuning Scheme of Sea-ice Model Based on Automatic Differentiation Technique
NASA Astrophysics Data System (ADS)
Kim, J. G.; Hovland, P. D.
2001-05-01
Automatic diferentiation (AD) technique was used to illustrate a new approach for parameter tuning scheme of an uncoupled sea-ice model. Atmospheric forcing field of 1992 obtained from NCEP data was used as enforcing variables in the study. The simulation results were compared with the observed ice movement provided by the International Arctic Buoy Programme (IABP). All of the numerical experiments were based on a widely used dynamic and thermodynamic model for simulating the seasonal sea-ice chnage of the main Arctic ocean. We selected five dynamic and thermodynamic parameters for the tuning process in which the cost function defined by the norm of the difference between observed and simulated ice drift locations was minimized. The selected parameters are the air and ocean drag coefficients, the ice strength constant, the turning angle at ice-air/ocean interface, and the bulk sensible heat transfer coefficient. The drag coefficients were the major parameters to control sea-ice movement and extent. The result of the study shows that more realistic simulations of ice thickness distribution was produced by tuning the simulated ice drift trajectories. In the tuning process, the L-BFCGS-B minimization algorithm of a quasi-Newton method was used. The derivative information required in the minimization iterations was provided by the AD processed Fortran code. Compared with a conventional approach, AD generated derivative code provided fast and robust computations of derivative information.
Nonlinear analysis of a family of LC tuned inverters
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1975-01-01
Four widely used self-oscillating dc-to-square-wave parallel inverters which employ an inductor-capacitor tuned network to determine the oscillation frequency are reduced to a common equivalent RLC network, The techniques of singular-point analysis and state-plane interpretations are employed to describe the steady-state and transient behavior of these circuits and to elucidate the three possible modes of operation: quasi-harmonic, relaxation, and discontinuous. Design guidelines are provided through a study of the influence of circuit parameter variations on the characteristics of oscillation and on frequency stability. Several examples are provided to illustrate the usefulness of this analysis when studying such problems as transistor emitter-to-base junction breakdown during oscillations and the design of starting circuits to insure self-excited oscillations in these inverters.
Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms
Hu, Haigen; Xu, Lihong; Wei, Ruihua; Zhu, Bingkun
2011-01-01
This paper investigates the issue of tuning the Proportional Integral and Derivative (PID) controller parameters for a greenhouse climate control system using an Evolutionary Algorithm (EA) based on multiple performance measures such as good static-dynamic performance specifications and the smooth process of control. A model of nonlinear thermodynamic laws between numerous system variables affecting the greenhouse climate is formulated. The proposed tuning scheme is tested for greenhouse climate control by minimizing the integrated time square error (ITSE) and the control increment or rate in a simulation experiment. The results show that by tuning the gain parameters the controllers can achieve good control performance through step responses such as small overshoot, fast settling time, and less rise time and steady state error. Besides, it can be applied to tuning the system with different properties, such as strong interactions among variables, nonlinearities and conflicting performance criteria. The results implicate that it is a quite effective and promising tuning method using multi-objective optimization algorithms in the complex greenhouse production. PMID:22163927
Particle transport through hydrogels is charge asymmetric.
Zhang, Xiaolu; Hansing, Johann; Netz, Roland R; DeRouchey, Jason E
2015-02-03
Transport processes within biological polymer networks, including mucus and the extracellular matrix, play an important role in the human body, where they serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate diffusive processes through finely tuned particle-network interactions. In this work, we present experimental and theoretical studies to examine the role of electrostatics on the basic mechanisms governing the diffusion of charged probe molecules inside model polymer networks. Translational diffusion coefficients are determined by fluorescence correlation spectroscopy measurements for probe molecules in uncharged as well as cationic and anionic polymer solutions. We show that particle transport in the charged hydrogels is highly asymmetric, with diffusion slowed down much more by electrostatic attraction than by repulsion, and that the filtering capability of the gel is sensitive to the solution ionic strength. Brownian dynamics simulations of a simple model are used to examine key parameters, including interaction strength and interaction range within the model networks. Simulations, which are in quantitative agreement with our experiments, reveal the charge asymmetry to be due to the sticking of particles at the vertices of the oppositely charged polymer networks. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
Tajbakhsh, Nima; Shin, Jae Y; Gurudu, Suryakanth R; Hurst, R Todd; Kendall, Christopher B; Gotway, Michael B; Jianming Liang
2016-05-01
Training a deep convolutional neural network (CNN) from scratch is difficult because it requires a large amount of labeled training data and a great deal of expertise to ensure proper convergence. A promising alternative is to fine-tune a CNN that has been pre-trained using, for instance, a large set of labeled natural images. However, the substantial differences between natural and medical images may advise against such knowledge transfer. In this paper, we seek to answer the following central question in the context of medical image analysis: Can the use of pre-trained deep CNNs with sufficient fine-tuning eliminate the need for training a deep CNN from scratch? To address this question, we considered four distinct medical imaging applications in three specialties (radiology, cardiology, and gastroenterology) involving classification, detection, and segmentation from three different imaging modalities, and investigated how the performance of deep CNNs trained from scratch compared with the pre-trained CNNs fine-tuned in a layer-wise manner. Our experiments consistently demonstrated that 1) the use of a pre-trained CNN with adequate fine-tuning outperformed or, in the worst case, performed as well as a CNN trained from scratch; 2) fine-tuned CNNs were more robust to the size of training sets than CNNs trained from scratch; 3) neither shallow tuning nor deep tuning was the optimal choice for a particular application; and 4) our layer-wise fine-tuning scheme could offer a practical way to reach the best performance for the application at hand based on the amount of available data.
Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.
Automatic brain MR image denoising based on texture feature-based artificial neural networks.
Chang, Yu-Ning; Chang, Herng-Hua
2015-01-01
Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.
Kermajani, Hamidreza; Gomez, Carles
2014-01-01
The IPv6 Routing Protocol for Low-power and Lossy Networks (RPL) has been recently developed by the Internet Engineering Task Force (IETF). Given its crucial role in enabling the Internet of Things, a significant amount of research effort has already been devoted to RPL. However, the RPL network convergence process has not yet been investigated in detail. In this paper we study the influence of the main RPL parameters and mechanisms on the network convergence process of this protocol in IEEE 802.15.4 multihop networks. We also propose and evaluate a mechanism that leverages an option available in RPL for accelerating the network convergence process. We carry out extensive simulations for a wide range of conditions, considering different network scenarios in terms of size and density. Results show that network convergence performance depends dramatically on the use and adequate configuration of key RPL parameters and mechanisms. The findings and contributions of this work provide a RPL configuration guideline for network convergence performance tuning, as well as a characterization of the related performance trade-offs. PMID:25004154
Kermajani, Hamidreza; Gomez, Carles
2014-07-07
The IPv6 Routing Protocol for Low-power and Lossy Networks (RPL) has been recently developed by the Internet Engineering Task Force (IETF). Given its crucial role in enabling the Internet of Things, a significant amount of research effort has already been devoted to RPL. However, the RPL network convergence process has not yet been investigated in detail. In this paper we study the influence of the main RPL parameters and mechanisms on the network convergence process of this protocol in IEEE 802.15.4 multihop networks. We also propose and evaluate a mechanism that leverages an option available in RPL for accelerating the network convergence process. We carry out extensive simulations for a wide range of conditions, considering different network scenarios in terms of size and density. Results show that network convergence performance depends dramatically on the use and adequate configuration of key RPL parameters and mechanisms. The findings and contributions of this work provide a RPL configuration guideline for network convergence performance tuning, as well as a characterization of the related performance trade-offs.
Tuning magnetofluidic spreading in microchannels
NASA Astrophysics Data System (ADS)
Wang, Zhaomeng; Varma, V. B.; Wang, Z. P.; Ramanujan, R. V.
2015-12-01
Magnetofluidic spreading (MFS) is a phenomenon in which a uniform magnetic field is used to induce spreading of a ferrofluid core cladded by diamagnetic fluidic streams in a three-stream channel. Applications of MFS include micromixing, cell sorting and novel microfluidic lab-on-a-chip design. However, the relative importance of the parameters which govern MFS is still unclear, leading to non-optimal control of MFS. Hence, in this work, the effect of various key parameters on MFS was experimentally and numerically studied. Our multi-physics model, which combines magnetic and fluidic analysis, showed excellent agreement between theory and experiment. It was found that spreading was mainly due to cross-sectional convection induced by magnetic forces, and can be enhanced by tuning various parameters. Smaller flow rate ratio, higher magnetic field, higher core stream or lower cladding stream dynamic viscosity, and larger magnetic particle size can increase MFS. These results can be used to tune magnetofluidic spreading in microchannels.
Signal Processing in Periodically Forced Gradient Frequency Neural Networks
Kim, Ji Chul; Large, Edward W.
2015-01-01
Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858
Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.
Lin, Chuan-Kai
2005-04-01
A new adaptive critic autopilot design for bank-to-turn missiles is presented. In this paper, the architecture of adaptive critic learning scheme contains a fuzzy-basis-function-network based associative search element (ASE), which is employed to approximate nonlinear and complex functions of bank-to-turn missiles, and an adaptive critic element (ACE) generating the reinforcement signal to tune the associative search element. In the design of the adaptive critic autopilot, the control law receives signals from a fixed gain controller, an ASE and an adaptive robust element, which can eliminate approximation errors and disturbances. Traditional adaptive critic reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment, however, the proposed tuning algorithm can significantly shorten the learning time by online tuning all parameters of fuzzy basis functions and weights of ASE and ACE. Moreover, the weight updating law derived from the Lyapunov stability theory is capable of guaranteeing both tracking performance and stability. Computer simulation results confirm the effectiveness of the proposed adaptive critic autopilot.
Artificial Neural Network Modeling of Pt/C Cathode Degradation in PEM Fuel Cells
NASA Astrophysics Data System (ADS)
Maleki, Erfan; Maleki, Nasim
2016-08-01
Use of computational modeling with a few experiments is considered useful to obtain the best possible result for a final product, without performing expensive and time-consuming experiments. Proton exchange membrane fuel cells (PEMFCs) can produce clean electricity, but still require further study. An oxygen reduction reaction (ORR) takes place at the cathode, and carbon-supported platinum (Pt/C) is commonly used as an electrocatalyst. The harsh conditions during PEMFC operation result in Pt/C degradation. Observation of changes in the Pt/C layer under operating conditions provides a tool to study the lifetime of PEMFCs and overcome durability issues. Recently, artificial neural networks (ANNs) have been used to solve, predict, and optimize a wide range of scientific problems. In this study, several rates of change at the cathode were modeled using ANNs. The backpropagation (BP) algorithm was used to train the network, and experimental data were employed for network training and testing. Two different models are constructed in the present study. First, the potential cycles, temperature, and humidity are used as inputs to predict the resulting Pt dissolution rate of the Pt/C at the cathode as the output parameter of the network. Thereafter, the Pt dissolution rate and Pt ion diffusivity are regarded as inputs to obtain values of the Pt particle radius change rate, Pt mass loss rate, and surface area loss rate as outputs. The networks are finely tuned, and the modeling results agree well with experimental data. The modeled responses of the ANNs are acceptable for this application.
Yang, Liang; Jin, Di; He, Dongxiao; Fu, Huazhu; Cao, Xiaochun; Fogelman-Soulie, Francoise
2017-03-29
Due to the importance of community structure in understanding network and a surge of interest aroused on community detectability, how to improve the community identification performance with pairwise prior information becomes a hot topic. However, most existing semi-supervised community detection algorithms only focus on improving the accuracy but ignore the impacts of priors on speeding detection. Besides, they always require to tune additional parameters and cannot guarantee pairwise constraints. To address these drawbacks, we propose a general, high-speed, effective and parameter-free semi-supervised community detection framework. By constructing the indivisible super-nodes according to the connected subgraph of the must-link constraints and by forming the weighted super-edge based on network topology and cannot-link constraints, our new framework transforms the original network into an equivalent but much smaller Super-Network. Super-Network perfectly ensures the must-link constraints and effectively encodes cannot-link constraints. Furthermore, the time complexity of super-network construction process is linear in the original network size, which makes it efficient. Meanwhile, since the constructed super-network is much smaller than the original one, any existing community detection algorithm is much faster when using our framework. Besides, the overall process will not introduce any additional parameters, making it more practical.
Tunable impedance matching network fundamental limits and practical considerations
NASA Astrophysics Data System (ADS)
Allen, Wesley N.
As wireless devices continue to increase in utility while decreasing in dimension, design of the RF front-end becomes more complex. It is common for a single handheld device to operate on a plethora of frequency bands, utilize multiple antennae, and be subjected to a variety of environments. One complexity in particular which arises from these factors is that of impedance mismatch. Recently, tunable impedance matching networks have begun to be implemented to address this problem. This dissertation presents the first in-depth study on the frequency tuning range of tunable impedance matching networks. Both the fundamental limitations of ideal networks as well as practical considerations for design and implementation are addressed. Specifically, distributed matching networks with a single tuning element are investigated for use with parallel resistor-capacitor and series resistor-inductor loads. Analytical formulas are developed to directly calculate the frequency tuning range TR of ideal topologies. The theoretical limit of TR for these topologies is presented and discussed. Additional formulas are developed which address limitations in transmission line characteristic impedance and varactor range. Equations to predict loss due to varactor quality factor are demonstrated and the ability of parasitics to both increase and decrease TR are shown. Measured results exemplify i) the potential to develop matching networks with a small impact from parasitics, ii) the need for accurate knowledge of parasitics when designing near transition points in optimal parameters, iii) the importance of using a transmission line with the right characteristic impedance, and iv) the ability to achieve extremely low loss at the design frequency with a lossy varactor under the right conditions (measured loss of -0.07 dB). In the area of application, tunable matching networks are designed and measured for mobile handset antennas, demonstrating up to a 3 dB improvement in power delivered to a planar inverted-F antenna and up to 4--5.6 dB improvement in power delivered to the iPhone(TM) antenna. Additionally, a single-varactor matching network is measured to achieve greater tuning range than a two-varactor matching network (> 824--960 MHz versus 850--915 MHz) and yield higher power handling. Addressing miniaturization, an accurate model of metal loss in planar integrated inductors for low-loss substrates is developed and demonstrated. Finally, immediate future research directions are suggested: i) expanding the topologies, tuning elements, and loads analyzed; ii) performing a deep study into parasitics; and iii) investigating power handling with various varactor technologies.
Interferometric modulation of quantum cascade interactions
NASA Astrophysics Data System (ADS)
Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio
2018-05-01
We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.
Reconstruction and Simulation of Neocortical Microcircuitry.
Markram, Henry; Muller, Eilif; Ramaswamy, Srikanth; Reimann, Michael W; Abdellah, Marwan; Sanchez, Carlos Aguado; Ailamaki, Anastasia; Alonso-Nanclares, Lidia; Antille, Nicolas; Arsever, Selim; Kahou, Guy Antoine Atenekeng; Berger, Thomas K; Bilgili, Ahmet; Buncic, Nenad; Chalimourda, Athanassia; Chindemi, Giuseppe; Courcol, Jean-Denis; Delalondre, Fabien; Delattre, Vincent; Druckmann, Shaul; Dumusc, Raphael; Dynes, James; Eilemann, Stefan; Gal, Eyal; Gevaert, Michael Emiel; Ghobril, Jean-Pierre; Gidon, Albert; Graham, Joe W; Gupta, Anirudh; Haenel, Valentin; Hay, Etay; Heinis, Thomas; Hernando, Juan B; Hines, Michael; Kanari, Lida; Keller, Daniel; Kenyon, John; Khazen, Georges; Kim, Yihwa; King, James G; Kisvarday, Zoltan; Kumbhar, Pramod; Lasserre, Sébastien; Le Bé, Jean-Vincent; Magalhães, Bruno R C; Merchán-Pérez, Angel; Meystre, Julie; Morrice, Benjamin Roy; Muller, Jeffrey; Muñoz-Céspedes, Alberto; Muralidhar, Shruti; Muthurasa, Keerthan; Nachbaur, Daniel; Newton, Taylor H; Nolte, Max; Ovcharenko, Aleksandr; Palacios, Juan; Pastor, Luis; Perin, Rodrigo; Ranjan, Rajnish; Riachi, Imad; Rodríguez, José-Rodrigo; Riquelme, Juan Luis; Rössert, Christian; Sfyrakis, Konstantinos; Shi, Ying; Shillcock, Julian C; Silberberg, Gilad; Silva, Ricardo; Tauheed, Farhan; Telefont, Martin; Toledo-Rodriguez, Maria; Tränkler, Thomas; Van Geit, Werner; Díaz, Jafet Villafranca; Walker, Richard; Wang, Yun; Zaninetta, Stefano M; DeFelipe, Javier; Hill, Sean L; Segev, Idan; Schürmann, Felix
2015-10-08
We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.
Applying deep neural networks to HEP job classification
NASA Astrophysics Data System (ADS)
Wang, L.; Shi, J.; Yan, X.
2015-12-01
The cluster of IHEP computing center is a middle-sized computing system which provides 10 thousands CPU cores, 5 PB disk storage, and 40 GB/s IO throughput. Its 1000+ users come from a variety of HEP experiments. In such a system, job classification is an indispensable task. Although experienced administrator can classify a HEP job by its IO pattern, it is unpractical to classify millions of jobs manually. We present how to solve this problem with deep neural networks in a supervised learning way. Firstly, we built a training data set of 320K samples by an IO pattern collection agent and a semi-automatic process of sample labelling. Then we implemented and trained DNNs models with Torch. During the process of model training, several meta-parameters was tuned with cross-validations. Test results show that a 5- hidden-layer DNNs model achieves 96% precision on the classification task. By comparison, it outperforms a linear model by 8% precision.
The role of community structure on the nature of explosive synchronization.
Lotfi, Nastaran; Rodrigues, Francisco A; Darooneh, Amir Hossein
2018-03-01
In this paper, we analyze explosive synchronization in networks with a community structure. The results of our study indicate that the mesoscopic structure of the networks could affect the synchronization of coupled oscillators. With the variation of three parameters, the degree probability distribution exponent, the community size probability distribution exponent, and the mixing parameter, we could have a fast or slow phase transition. Besides, in some cases, we could have communities which are synchronized inside but not with other communities and vice versa. We also show that there is a limit in these mesoscopic structures which suppresses the transition from the second-order phase transition and results in explosive synchronization. This could be considered as a tuning parameter changing the transition of the system from the second order to the first order.
Modeling Enclosure Design in Above-Grade Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lstiburek, J.; Ueno, K.; Musunuru, S.
2016-03-01
This report describes the modeling of typical wall assemblies that have performed well historically in various climate zones. The WUFI (Warme und Feuchte instationar) software (Version 5.3) model was used. A library of input data and results are provided. The provided information can be generalized for application to a broad population of houses, within the limits of existing experience. The WUFI software model was calibrated or tuned using wall assemblies with historically successful performance. The primary performance criteria or failure criteria establishing historic performance was moisture content of the exterior sheathing. The primary tuning parameters (simulation inputs) were airflow andmore » specifying appropriate material properties. Rational hygric loads were established based on experience - specifically rain wetting and interior moisture (RH levels). The tuning parameters were limited or bounded by published data or experience. The WUFI templates provided with this report supply useful information resources to new or less-experienced users. The files present various custom settings that will help avoid results that will require overly conservative enclosure assemblies. Overall, better material data, consistent initial assumptions, and consistent inputs among practitioners will improve the quality of WUFI modeling, and improve the level of sophistication in the field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, Barry A; Boemer, Jens C.; Vittal, Eknath
The response of low voltage networks with high penetration of PV systems to transmission network faults will, in the future, determine the overall power system performance during certain hours of the year. The WECC distributed PV system model (PVD1) is designed to represent small-scale distribution-connected systems. Although default values are provided by WECC for the model parameters, tuning of those parameters seems to become important in order to accurately estimate the partial loss of distributed PV systems for bulk system studies. The objective of this paper is to describe a new methodology to determine the WECC distributed PV system (PVD1)more » model parameters and to derive parameter sets obtained for six distribution circuits of a Californian investor-owned utility with large amounts of distributed PV systems. The results indicate that the parameters for the partial loss of distributed PV systems may differ significantly from the default values provided by WECC.« less
Avramov, Ivan D
2003-03-01
This practically oriented paper presents the fundamentals for analysis, optimization, and design of negative resistance oscillators (NRO) stabilized with surface transverse wave (STW)-based single-port resonators (SPR). Data on a variety of high-Q, low-loss SPR devices in the 900- to 2000-MHz range, suitable for NRO applications, are presented, and a simple method for SPR parameter extraction through Pi-circuit measurements is outlined. Negative resistance analysis, based on S-parameter data of the active device, is performed on a tuned-base, grounded collector transistor NRO, known for its good stability and tuning at microwave frequencies. By adding a SPR in the emitter network, the static transducer capacitance is absorbed by the circuit and is used to generate negative resistance only over the narrow bandwidth of the acoustic device, eliminating the risk of spurious oscillations. The analysis allows exact prediction of the oscillation frequency, tuning range, loaded Q, and excess gain. Simulation and experimental data on a 915-MHz fixed-frequency NRO and a wide tuning range, voltage-controlled STW oscillator, built and tested experimentally, are presented. Practical design aspects including the choice of transistor, negative feedback circuits, load coupling, and operation at the highest phase slope for minimum phase noise are discussed.
A versatile computer-controlled pulsed nuclear quadrupole resonance spectrometer
NASA Astrophysics Data System (ADS)
Fisher, Gregory; MacNamara, Ernesto; Santini, Robert E.; Raftery, Daniel
1999-12-01
A new, pulsed nuclear quadrupole resonance (NQR) spectrometer capable of performing a variety of pulsed and swept experiments is described. The spectrometer features phase locked, superheterodyne detection using a commercial spectrum analyzer and a fully automatic, computer-controlled tuning and matching network. The tuning and matching network employs stepper motors which turn high power air gap capacitors in a "moving grid" optimization strategy to minimize the reflected power from a directional coupler. In the duplexer circuit, digitally controlled relays are used to switch different lengths of coax cable appropriate for the different radio frequencies. A home-built pulse programmer card controls the timing of radio frequency pulses sent to the probe, while data acquisition and control software is written in Microsoft Quick Basic. Spin-echo acquisition experiments are typically used to acquire the data, although a variety of pulse sequences can be employed. Scan times range from one to several hours depending upon the step resolution and the spectral range required for each experiment. Pure NQR spectra of NaNO2 and 3-aminopyridine are discussed.
Artificial neuron-glia networks learning approach based on cooperative coevolution.
Mesejo, Pablo; Ibáñez, Oscar; Fernández-Blanco, Enrique; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana B
2015-06-01
Artificial Neuron-Glia Networks (ANGNs) are a novel bio-inspired machine learning approach. They extend classical Artificial Neural Networks (ANNs) by incorporating recent findings and suppositions about the way information is processed by neural and astrocytic networks in the most evolved living organisms. Although ANGNs are not a consolidated method, their performance against the traditional approach, i.e. without artificial astrocytes, was already demonstrated on classification problems. However, the corresponding learning algorithms developed so far strongly depends on a set of glial parameters which are manually tuned for each specific problem. As a consequence, previous experimental tests have to be done in order to determine an adequate set of values, making such manual parameter configuration time-consuming, error-prone, biased and problem dependent. Thus, in this paper, we propose a novel learning approach for ANGNs that fully automates the learning process, and gives the possibility of testing any kind of reasonable parameter configuration for each specific problem. This new learning algorithm, based on coevolutionary genetic algorithms, is able to properly learn all the ANGNs parameters. Its performance is tested on five classification problems achieving significantly better results than ANGN and competitive results with ANN approaches.
Epidemic outbreaks in growing scale-free networks with local structure
NASA Astrophysics Data System (ADS)
Ni, Shunjiang; Weng, Wenguo; Shen, Shifei; Fan, Weicheng
2008-09-01
The class of generative models has already attracted considerable interest from researchers in recent years and much expanded the original ideas described in BA model. Most of these models assume that only one node per time step joins the network. In this paper, we grow the network by adding n interconnected nodes as a local structure into the network at each time step with each new node emanating m new edges linking the node to the preexisting network by preferential attachment. This successfully generates key features observed in social networks. These include power-law degree distribution pk∼k, where μ=(n-1)/m is a tuning parameter defined as the modularity strength of the network, nontrivial clustering, assortative mixing, and modular structure. Moreover, all these features are dependent in a similar way on the parameter μ. We then study the susceptible-infected epidemics on this network with identical infectivity, and find that the initial epidemic behavior is governed by both of the infection scheme and the network structure, especially the modularity strength. The modularity of the network makes the spreading velocity much lower than that of the BA model. On the other hand, increasing the modularity strength will accelerate the propagation velocity.
Identification and control of plasma vertical position using neural network in Damavand tokamak.
Rasouli, H; Rasouli, C; Koohi, A
2013-02-01
In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.
Thermotaxis is a Robust Mechanism for Thermoregulation in C. elegans Nematodes
Ramot, Daniel; MacInnis, Bronwyn L.; Lee, Hau-Chen; Goodman, Miriam B.
2013-01-01
Many biochemical networks are robust to variations in network or stimulus parameters. Although robustness is considered an important design principle of such networks, it is not known whether this principle also applies to higher-level biological processes such as animal behavior. In thermal gradients, C. elegans uses thermotaxis to bias its movement along the direction of the gradient. Here we develop a detailed, quantitative map of C. elegans thermotaxis and use these data to derive a computational model of thermotaxis in the soil, a natural environment of C. elegans. This computational analysis indicates that thermotaxis enables animals to avoid temperatures at which they cannot reproduce, to limit excursions from their adapted temperature, and to remain relatively close to the surface of the soil, where oxygen is abundant. Furthermore, our analysis reveals that this mechanism is robust to large variations in the parameters governing both worm locomotion and temperature fluctuations in the soil. We suggest that, similar to biochemical networks, animals evolve behavioral strategies that are robust, rather than strategies that rely on fine-tuning of specific behavioral parameters. PMID:19020047
Pargett, Michael; Rundell, Ann E.; Buzzard, Gregery T.; Umulis, David M.
2014-01-01
Discovery in developmental biology is often driven by intuition that relies on the integration of multiple types of data such as fluorescent images, phenotypes, and the outcomes of biochemical assays. Mathematical modeling helps elucidate the biological mechanisms at play as the networks become increasingly large and complex. However, the available data is frequently under-utilized due to incompatibility with quantitative model tuning techniques. This is the case for stem cell regulation mechanisms explored in the Drosophila germarium through fluorescent immunohistochemistry. To enable better integration of biological data with modeling in this and similar situations, we have developed a general parameter estimation process to quantitatively optimize models with qualitative data. The process employs a modified version of the Optimal Scaling method from social and behavioral sciences, and multi-objective optimization to evaluate the trade-off between fitting different datasets (e.g. wild type vs. mutant). Using only published imaging data in the germarium, we first evaluated support for a published intracellular regulatory network by considering alternative connections of the same regulatory players. Simply screening networks against wild type data identified hundreds of feasible alternatives. Of these, five parsimonious variants were found and compared by multi-objective analysis including mutant data and dynamic constraints. With these data, the current model is supported over the alternatives, but support for a biochemically observed feedback element is weak (i.e. these data do not measure the feedback effect well). When also comparing new hypothetical models, the available data do not discriminate. To begin addressing the limitations in data, we performed a model-based experiment design and provide recommendations for experiments to refine model parameters and discriminate increasingly complex hypotheses. PMID:24626201
Event generator tunes obtained from underlying event and multiparton scattering measurements.
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Seva, T; Vander Velde, C; Yonamine, R; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Júnior, W L Aldá; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; De Souza Santos, A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; Abdelalim, A A; Awad, A; Mahrous, A; Mohammed, Y; Radi, A; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Dahms, T; Davignon, O; Filipovic, N; Granier de Cassagnac, R; Jo, M; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Lomidze, D; Autermann, C; Beranek, S; Edelhoff, M; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schulte, J F; Verlage, T; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Bartosik, N; Behnke, O; Behrens, U; Bell, A J; Borras, K; Burgmeier, A; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Gallo, E; Garcia, J Garay; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Trippkewitz, K D; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Rathjens, D; Sander, C; Scharf, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schwandt, J; Sola, V; Stadie, H; Steinbrück, G; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Descroix, A; Dierlamm, A; Fink, S; Frensch, F; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Sieber, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Bencze, G; Hajdu, C; Hazi, A; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Mal, P; Mandal, K; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Kumar, A; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, S; Chatterjee, K; Dey, S; Dutta, S; Jain, Sa; Majumdar, N; Modak, A; Mondal, K; Mukherjee, S; Mukhopadhyay, S; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Abdulsalam, A; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Miniello, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Primavera, F; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Cappello, G; Chiorboli, M; Costa, S; Mattia, A Di; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Fantinel, S; Fanzago, F; Gasparini, F; Gasparini, U; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Zanetti, A; Kropivnitskaya, T A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Sakharov, A; Son, D C; Brochero Cifuentes, J A; Kim, H; Kim, T J; Song, S; Choi, S; Go, Y; Gyun, D; Hong, B; Kim, H; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lee, S; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Wan Abdullah, W A T; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Da Cruz E Silva, C Beir Ao; Di Francesco, A; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Leonardo, N; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Savina, M; Shmatov, S; Shulha, S; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, L; Safronov, G; Spiridonov, A; Vlasov, E; Zhokin, A; Bylinkin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Baskakov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Myagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Ramos, J P Fernández; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Yzquierdo, A Pérez-Calero; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Palencia Cortezon, E; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; De Castro Manzano, P; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Berruti, G M; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Castello, R; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Kortelainen, M J; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Nemallapudi, M V; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Piparo, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrozzi, L; Quittnat, M; Rossini, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Robmann, P; Ronga, F J; Salerno, D; Yang, Y; Cardaci, M; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Yu, S S; Kumar, Arun; Bartek, R; Chang, P; Chang, Y H; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Grundler, U; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Petrakou, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Demiroglu, Z S; Dozen, C; Eskut, E; Gecit, F H; Girgis, S; Gokbulut, G; Guler, Y; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Onengut, G; Ozcan, M; Ozdemir, K; Polatoz, A; Sunar Cerci, D; Topakli, H; Vergili, M; Zorbilmez, C; Akin, I V; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Vardarlı, F I; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Cripps, N; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Elwood, A; Ferguson, W; Futyan, D; Hall, G; Iles, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Scarborough, T; Wu, Z; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Fantasia, C; Gastler, D; Lawson, P; Rankin, D; Richardson, C; Rohlf, J; St John, J; Sulak, L; Zou, D; Alimena, J; Berry, E; Bhattacharya, S; Cutts, D; Dhingra, N; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Funk, G; Gardner, M; Ko, W; Lander, R; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Bravo, C; Cousins, R; Everaerts, P; Farrell, C; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Schnaible, C; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Paneva, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Negrete, M Olmedo; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Welke, C; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Incandela, J; Mccoll, N; Mullin, S D; Mullin, S D; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Pierini, M; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Nauenberg, U; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Sun, W; Tan, S M; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Jung, A W; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Gleyzer, S V; Hugon, J; Konigsberg, J; Korytov, A; Kotov, K; Low, J F; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Rossin, R; Shchutska, L; Snowball, M; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, J R; Ackert, A; Adams, T; Askew, A; Bein, S; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, L D; Silkworth, C; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Anderson, I; Barnett, B A; Blumenfeld, B; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sady, A; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Xiao, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Majumder, D; Majumder, D; Malek, M; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bierwagen, K; Brandt, S; Bierwagen, K; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Ralph, D; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Keller, J; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Ratnikov, F; Siado, J E; Snow, G R; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Trovato, M; Velasco, M; Brinkerhoff, A; Dev, N; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Ji, W; Ling, T Y; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Saka, H; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Jha, M K; Jones, M; Jung, K; Miller, D H; Neumeister, N; Primavera, F; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Galanti, M; Garcia-Bellido, A; Han, J; Harel, A; Hindrichs, O; Hindrichs, O; Khukhunaishvili, A; Petrillo, G; Tan, P; Verzetti, M; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Lath, A; Nash, K; Panwalkar, S; Park, M; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Riley, G; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Krutelyov, V; Krutelyov, V; Mueller, R; Osipenkov, I; Pakhotin, Y; Patel, R; Patel, R; Perloff, A; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Mao, Y; Melo, A; Ni, H; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Wood, J; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Sarangi, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Woods, N
New sets of parameters ("tunes") for the underlying-event (UE) modelling of the pythia8, pythia6 and herwig++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE proton-proton ([Formula: see text]) data at [Formula: see text] and to UE proton-antiproton ([Formula: see text]) data from the CDF experiment at lower [Formula: see text], are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton-proton collisions at 13[Formula: see text]. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons are presented of the UE tunes to "minimum bias" (MB) events, multijet, and Drell-Yan ([Formula: see text] lepton-antilepton+jets) observables at 7 and 8[Formula: see text], as well as predictions for MB and UE observables at 13[Formula: see text].
Strategies for Optimal MAC Parameters Tuning in IEEE 802.15.6 Wearable Wireless Sensor Networks.
Alam, Muhammad Mahtab; Ben Hamida, Elyes
2015-09-01
Wireless body area networks (WBAN) has penetrated immensely in revolutionizing the classical heath-care system. Recently, number of WBAN applications has emerged which introduce potential limits to existing solutions. In particular, IEEE 802.15.6 standard has provided great flexibility, provisions and capabilities to deal emerging applications. In this paper, we investigate the application-specific throughput analysis by fine-tuning the physical (PHY) and medium access control (MAC) parameters of the IEEE 802.15.6 standard. Based on PHY characterizations in narrow band, at the MAC layer, carrier sense multiple access collision avoidance (CSMA/CA) and scheduled access protocols are extensively analyzed. It is concluded that, IEEE 802.15.6 standard can satisfy most of the WBANs applications throughput requirements by maximum achieving 680 Kbps. However, those emerging applications which require high quality audio or video transmissions, standard is not able to meet their constraints. Moreover, delay, energy efficiency and successful packet reception are considered as key performance metrics for comparing the MAC protocols. CSMA/CA protocol provides the best results to meet the delay constraints of medical and non-medical WBAN applications. Whereas, the scheduled access approach, performs very well both in energy efficiency and packet reception ratio.
Lin, Chuan-Kai; Wang, Sheng-De
2004-11-01
A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization.
Ma, Xiaofeng; Kohashi, Tsunehiko; Carlson, Bruce A
2013-07-01
Many sensory brain regions are characterized by extensive local network interactions. However, we know relatively little about the contribution of this microcircuitry to sensory coding. Detailed analyses of neuronal microcircuitry are usually performed in vitro, whereas sensory processing is typically studied by recording from individual neurons in vivo. The electrosensory pathway of mormyrid fish provides a unique opportunity to link in vitro studies of synaptic physiology with in vivo studies of sensory processing. These fish communicate by actively varying the intervals between pulses of electricity. Within the midbrain posterior exterolateral nucleus (ELp), the temporal filtering of afferent spike trains establishes interval tuning by single neurons. We characterized pairwise neuronal connectivity among ELp neurons with dual whole cell recording in an in vitro whole brain preparation. We found a densely connected network in which single neurons influenced the responses of other neurons throughout the network. Similarly tuned neurons were more likely to share an excitatory synaptic connection than differently tuned neurons, and synaptic connections between similarly tuned neurons were stronger than connections between differently tuned neurons. We propose a general model for excitatory network interactions in which strong excitatory connections both reinforce and adjust tuning and weak excitatory connections make smaller modifications to tuning. The diversity of interval tuning observed among this population of neurons can be explained, in part, by each individual neuron receiving a different complement of local excitatory inputs.
Recognition of Handwritten Arabic words using a neuro-fuzzy network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boukharouba, Abdelhak; Bennia, Abdelhak
We present a new method for the recognition of handwritten Arabic words based on neuro-fuzzy hybrid network. As a first step, connected components (CCs) of black pixels are detected. Then the system determines which CCs are sub-words and which are stress marks. The stress marks are then isolated and identified separately and the sub-words are segmented into graphemes. Each grapheme is described by topological and statistical features. Fuzzy rules are extracted from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data using a fuzzy c-means, and rule parameter tuning phase using gradient descentmore » learning. After learning, the network encodes in its topology the essential design parameters of a fuzzy inference system.The contribution of this technique is shown through the significant tests performed on a handwritten Arabic words database.« less
Recurrent connectivity can account for the dynamics of disparity processing in V1
Samonds, Jason M.; Potetz, Brian R.; Tyler, Christopher W.; Lee, Tai Sing
2013-01-01
Disparity tuning measured in the primary visual cortex (V1) is described well by the disparity energy model, but not all aspects of disparity tuning are fully explained by the model. Such deviations from the disparity energy model provide us with insight into how network interactions may play a role in disparity processing and help to solve the stereo correspondence problem. Here, we propose a neuronal circuit model with recurrent connections that provides a simple account of the observed deviations. The model is based on recurrent connections inferred from neurophysiological observations on spike timing correlations, and is in good accord with existing data on disparity tuning dynamics. We further performed two additional experiments to test predictions of the model. First, we increased the size of stimuli to drive more neurons and provide a stronger recurrent input. Our model predicted sharper disparity tuning for larger stimuli. Second, we displayed anti-correlated stereograms, where dots of opposite luminance polarity are matched between the left- and right-eye images and result in inverted disparity tuning in the disparity energy model. In this case, our model predicted reduced sharpening and strength of inverted disparity tuning. For both experiments, the dynamics of disparity tuning observed from the neurophysiological recordings in macaque V1 matched model simulation predictions. Overall, the results of this study support the notion that, while the disparity energy model provides a primary account of disparity tuning in V1 neurons, neural disparity processing in V1 neurons is refined by recurrent interactions among elements in the neural circuit. PMID:23407952
Beyond Fine Tuning: Adding capacity to leverage few labels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodas, Nathan O.; Shaffer, Kyle J.; Yankov, Artem
2017-12-09
In this paper we present a technique to train neural network models on small amounts of data. Current methods for training neural networks on small amounts of rich data typically rely on strategies such as fine-tuning a pre-trained neural networks or the use of domain-specific hand-engineered features. Here we take the approach of treating network layers, or entire networks, as modules and combine pre-trained modules with untrained modules, to learn the shift in distributions between data sets. The central impact of using a modular approach comes from adding new representations to a network, as opposed to replacing representations via fine-tuning.more » Using this technique, we are able surpass results using standard fine-tuning transfer learning approaches, and we are also able to significantly increase performance over such approaches when using smaller amounts of data.« less
Normal Stresses, Contraction, and Stiffening in Sheared Elastic Networks
NASA Astrophysics Data System (ADS)
Baumgarten, Karsten; Tighe, Brian P.
2018-04-01
When elastic solids are sheared, a nonlinear effect named after Poynting gives rise to normal stresses or changes in volume. We provide a novel relation between the Poynting effect and the microscopic Grüneisen parameter, which quantifies how stretching shifts vibrational modes. By applying this relation to random spring networks, a minimal model for, e.g., biopolymer gels and solid foams, we find that networks contract or develop tension because they vibrate faster when stretched. The amplitude of the Poynting effect is sensitive to the network's linear elastic moduli, which can be tuned via its preparation protocol and connectivity. Finally, we show that the Poynting effect can be used to predict the finite strain scale where the material stiffens under shear.
CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
Liu, Chengju; Chen, Qijun; Wang, Danwei
2011-06-01
This paper deals with the locomotion control of quadruped robots inspired by the biological concept of central pattern generator (CPG). A control architecture is proposed with a 3-D workspace trajectory generator and a motion engine. The workspace trajectory generator generates adaptive workspace trajectories based on CPGs, and the motion engine realizes joint motion imputes. The proposed architecture is able to generate adaptive workspace trajectories online by tuning the parameters of the CPG network to adapt to various terrains. With feedback information, a quadruped robot can walk through various terrains with adaptive joint control signals. A quadruped platform AIBO is used to validate the proposed locomotion control system. The experimental results confirm the effectiveness of the proposed control architecture. A comparison by experiments shows the superiority of the proposed method against the traditional CPG-joint-space control method.
Cochlear microphonic broad tuning curves
NASA Astrophysics Data System (ADS)
Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani
2015-12-01
It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the cochlear microphonic tuning curves.
Learning and tuning fuzzy logic controllers through reinforcements.
Berenji, H R; Khedkar, P
1992-01-01
A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
A Regularizer Approach for RBF Networks Under the Concurrent Weight Failure Situation.
Leung, Chi-Sing; Wan, Wai Yan; Feng, Ruibin
2017-06-01
Many existing results on fault-tolerant algorithms focus on the single fault source situation, where a trained network is affected by one kind of weight failure. In fact, a trained network may be affected by multiple kinds of weight failure. This paper first studies how the open weight fault and the multiplicative weight noise degrade the performance of radial basis function (RBF) networks. Afterward, we define the objective function for training fault-tolerant RBF networks. Based on the objective function, we then develop two learning algorithms, one batch mode and one online mode. Besides, the convergent conditions of our online algorithm are investigated. Finally, we develop a formula to estimate the test set error of faulty networks trained from our approach. This formula helps us to optimize some tuning parameters, such as RBF width.
View-invariant gait recognition method by three-dimensional convolutional neural network
NASA Astrophysics Data System (ADS)
Xing, Weiwei; Li, Ying; Zhang, Shunli
2018-01-01
Gait as an important biometric feature can identify a human at a long distance. View change is one of the most challenging factors for gait recognition. To address the cross view issues in gait recognition, we propose a view-invariant gait recognition method by three-dimensional (3-D) convolutional neural network. First, 3-D convolutional neural network (3DCNN) is introduced to learn view-invariant feature, which can capture the spatial information and temporal information simultaneously on normalized silhouette sequences. Second, a network training method based on cross-domain transfer learning is proposed to solve the problem of the limited gait training samples. We choose the C3D as the basic model, which is pretrained on the Sports-1M and then fine-tune C3D model to adapt gait recognition. In the recognition stage, we use the fine-tuned model to extract gait features and use Euclidean distance to measure the similarity of gait sequences. Sufficient experiments are carried out on the CASIA-B dataset and the experimental results demonstrate that our method outperforms many other methods.
Application of Artificial Neural Network to Optical Fluid Analyzer
NASA Astrophysics Data System (ADS)
Kimura, Makoto; Nishida, Katsuhiko
1994-04-01
A three-layer artificial neural network has been applied to the presentation of optical fluid analyzer (OFA) raw data, and the accuracy of oil fraction determination has been significantly improved compared to previous approaches. To apply the artificial neural network approach to solving a problem, the first step is training to determine the appropriate weight set for calculating the target values. This involves using a series of data sets (each comprising a set of input values and an associated set of output values that the artificial neural network is required to determine) to tune artificial neural network weighting parameters so that the output of the neural network to the given set of input values is as close as possible to the required output. The physical model used to generate the series of learning data sets was the effective flow stream model, developed for OFA data presentation. The effectiveness of the training was verified by reprocessing the same input data as were used to determine the weighting parameters and then by comparing the results of the artificial neural network to the expected output values. The standard deviation of the expected and obtained values was approximately 10% (two sigma).
Computational modeling of muscular thin films for cardiac repair
NASA Astrophysics Data System (ADS)
Böl, Markus; Reese, Stefanie; Parker, Kevin Kit; Kuhl, Ellen
2009-03-01
Motivated by recent success in growing biohybrid material from engineered tissues on synthetic polymer films, we derive a computational simulation tool for muscular thin films in cardiac repair. In this model, the polydimethylsiloxane base layer is simulated in terms of microscopically motivated tetrahedral elements. Their behavior is characterized through a volumetric contribution and a chain contribution that explicitly accounts for the polymeric microstructure of networks of long chain molecules. Neonatal rat ventricular cardiomyocytes cultured on these polymeric films are modeled with actively contracting truss elements located on top of the sheet. The force stretch response of these trusses is motivated by the cardiomyocyte force generated during active contraction as suggested by the filament sliding theory. In contrast to existing phenomenological models, all material parameters of this novel model have a clear biophyisical interpretation. The predictive features of the model will be demonstrated through the simulation of muscular thin films. First, the set of parameters will be fitted for one particular experiment documented in the literature. This parameter set is then used to validate the model for various different experiments. Last, we give an outlook of how the proposed simulation tool could be used to virtually predict the response of multi-layered muscular thin films. These three-dimensional constructs show a tremendous regenerative potential in repair of damaged cardiac tissue. The ability to understand, tune and optimize their structural response is thus of great interest in cardiovascular tissue engineering.
Evaluation of weather-based rice yield models in India.
Sudharsan, D; Adinarayana, J; Reddy, D Raji; Sreenivas, G; Ninomiya, S; Hirafuji, M; Kiura, T; Tanaka, K; Desai, U B; Merchant, S N
2013-01-01
The objective of this study was to compare two different rice simulation models--standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])--with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.
Noise-Assisted Concurrent Multipath Traffic Distribution in Ad Hoc Networks
Murata, Masayuki
2013-01-01
The concept of biologically inspired networking has been introduced to tackle unpredictable and unstable situations in computer networks, especially in wireless ad hoc networks where network conditions are continuously changing, resulting in the need of robustness and adaptability of control methods. Unfortunately, existing methods often rely heavily on the detailed knowledge of each network component and the preconfigured, that is, fine-tuned, parameters. In this paper, we utilize a new concept, called attractor perturbation (AP), which enables controlling the network performance using only end-to-end information. Based on AP, we propose a concurrent multipath traffic distribution method, which aims at lowering the average end-to-end delay by only adjusting the transmission rate on each path. We demonstrate through simulations that, by utilizing the attractor perturbation relationship, the proposed method achieves a lower average end-to-end delay compared to other methods which do not take fluctuations into account. PMID:24319375
NASA Astrophysics Data System (ADS)
Chen, Jingbo; Wang, Chengyi; Yue, Anzhi; Chen, Jiansheng; He, Dongxu; Zhang, Xiuyan
2017-10-01
The tremendous success of deep learning models such as convolutional neural networks (CNNs) in computer vision provides a method for similar problems in the field of remote sensing. Although research on repurposing pretrained CNN to remote sensing tasks is emerging, the scarcity of labeled samples and the complexity of remote sensing imagery still pose challenges. We developed a knowledge-guided golf course detection approach using a CNN fine-tuned on temporally augmented data. The proposed approach is a combination of knowledge-driven region proposal, data-driven detection based on CNN, and knowledge-driven postprocessing. To confront data complexity, knowledge-derived cooccurrence, composition, and area-based rules are applied sequentially to propose candidate golf regions. To confront sample scarcity, we employed data augmentation in the temporal domain, which extracts samples from multitemporal images. The augmented samples were then used to fine-tune a pretrained CNN for golf detection. Finally, commission error was further suppressed by postprocessing. Experiments conducted on GF-1 imagery prove the effectiveness of the proposed approach.
Bill, Johannes; Buesing, Lars; Habenschuss, Stefan; Nessler, Bernhard; Maass, Wolfgang; Legenstein, Robert
2015-01-01
During the last decade, Bayesian probability theory has emerged as a framework in cognitive science and neuroscience for describing perception, reasoning and learning of mammals. However, our understanding of how probabilistic computations could be organized in the brain, and how the observed connectivity structure of cortical microcircuits supports these calculations, is rudimentary at best. In this study, we investigate statistical inference and self-organized learning in a spatially extended spiking network model, that accommodates both local competitive and large-scale associative aspects of neural information processing, under a unified Bayesian account. Specifically, we show how the spiking dynamics of a recurrent network with lateral excitation and local inhibition in response to distributed spiking input, can be understood as sampling from a variational posterior distribution of a well-defined implicit probabilistic model. This interpretation further permits a rigorous analytical treatment of experience-dependent plasticity on the network level. Using machine learning theory, we derive update rules for neuron and synapse parameters which equate with Hebbian synaptic and homeostatic intrinsic plasticity rules in a neural implementation. In computer simulations, we demonstrate that the interplay of these plasticity rules leads to the emergence of probabilistic local experts that form distributed assemblies of similarly tuned cells communicating through lateral excitatory connections. The resulting sparse distributed spike code of a well-adapted network carries compressed information on salient input features combined with prior experience on correlations among them. Our theory predicts that the emergence of such efficient representations benefits from network architectures in which the range of local inhibition matches the spatial extent of pyramidal cells that share common afferent input. PMID:26284370
Tough and tunable adhesion of hydrogels: experiments and models
NASA Astrophysics Data System (ADS)
Zhang, Teng; Yuk, Hyunwoo; Lin, Shaoting; Parada, German A.; Zhao, Xuanhe
2017-06-01
As polymer networks infiltrated with water, hydrogels are major constituents of animal and plant bodies and have diverse engineering applications. While natural hydrogels can robustly adhere to other biological materials, such as bonding of tendons and cartilage on bones and adhesive plaques of mussels, it is challenging to achieve such tough adhesions between synthetic hydrogels and engineering materials. Recent experiments show that chemically anchoring long-chain polymer networks of tough synthetic hydrogels on solid surfaces create adhesions tougher than their natural counterparts, but the underlying mechanism has not been well understood. It is also challenging to tune systematically the adhesion of hydrogels on solids. Here, we provide a quantitative understanding of the mechanism for tough adhesions of hydrogels on solid materials via a combination of experiments, theory, and numerical simulations. Using a coupled cohesive-zone and Mullins-effect model validated by experiments, we reveal the interplays of intrinsic work of adhesion, interfacial strength, and energy dissipation in bulk hydrogels in order to achieve tough adhesions. We further show that hydrogel adhesion can be systematically tuned by tailoring the hydrogel geometry and silanization time of solid substrates, corresponding to the control of energy dissipation zone and intrinsic work of adhesion, respectively. The current work further provides a theoretical foundation for rational design of future biocompatible and underwater adhesives.
Trainable Gene Regulation Networks with Applications to Drosophila Pattern Formation
NASA Technical Reports Server (NTRS)
Mjolsness, Eric
2000-01-01
This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila melanogaster. For details the reader is referred to the papers introduced below. It will then introduce a new gene regulation network model which can describe promoter-level substructure in gene regulation. As described in chapter 2, gene regulation may be thought of as a combination of cis-acting regulation by the extended promoter of a gene (including all regulatory sequences) by way of the transcription complex, and of trans-acting regulation by the transcription factor products of other genes. If we simplify the cis-action by using a phenomenological model which can be tuned to data, such as a unit or other small portion of an artificial neural network, then the full transacting interaction between multiple genes during development can be modelled as a larger network which can again be tuned or trained to data. The larger network will in general need to have recurrent (feedback) connections since at least some real gene regulation networks do. This is the basic modeling approach taken, which describes how a set of recurrent neural networks can be used as a modeling language for multiple developmental processes including gene regulation within a single cell, cell-cell communication, and cell division. Such network models have been called "gene circuits", "gene regulation networks", or "genetic regulatory networks", sometimes without distinguishing the models from the actual modeled systems.
A Caveat Note on Tuning in the Development of Coupled Climate Models
NASA Astrophysics Data System (ADS)
Dommenget, Dietmar; Rezny, Michael
2018-01-01
State-of-the-art coupled general circulation models (CGCMs) have substantial errors in their simulations of climate. In particular, these errors can lead to large uncertainties in the simulated climate response (both globally and regionally) to a doubling of CO2. Currently, tuning of the parameterization schemes in CGCMs is a significant part of the developed. It is not clear whether such tuning actually improves models. The tuning process is (in general) neither documented, nor reproducible. Alternative methods such as flux correcting are not used nor is it clear if such methods would perform better. In this study, ensembles of perturbed physics experiments are performed with the Globally Resolved Energy Balance (GREB) model to test the impact of tuning. The work illustrates that tuning has, in average, limited skill given the complexity of the system, the limited computing resources, and the limited observations to optimize parameters. While tuning may improve model performance (such as reproducing observed past climate), it will not get closer to the "true" physics nor will it significantly improve future climate change projections. Tuning will introduce artificial compensating error interactions between submodels that will hamper further model development. In turn, flux corrections do perform well in most, but not all aspects. A main advantage of flux correction is that it is much cheaper, simpler, more transparent, and it does not introduce artificial error interactions between submodels. These GREB model experiments should be considered as a pilot study to motivate further CGCM studies that address the issues of model tuning.
NASA Astrophysics Data System (ADS)
Bunus, Peter
Online social networking is an important part in the everyday life of college students. Despite the increasing popularity of online social networking among students and faculty members, its educational benefits are largely untested. This paper presents our experience in using social networking applications and video content distribution websites as a complement of traditional classroom education. In particular, the solution has been based on effective adaptation, extension and integration of Facebook, Twitter, Blogger YouTube and iTunes services for delivering educational material to students on mobile platforms like iPods and 3 rd generation mobile phones. The goals of the proposed educational platform, described in this paper, are to make the learning experience more engaging, to encourage collaborative work and knowledge sharing among students, and to provide an interactive platform for the educators to reach students and deliver lecture material in a totally new way.
ATLAS I/O performance optimization in as-deployed environments
NASA Astrophysics Data System (ADS)
Maier, T.; Benjamin, D.; Bhimji, W.; Elmsheuser, J.; van Gemmeren, P.; Malon, D.; Krumnack, N.
2015-12-01
This paper provides an overview of an integrated program of work underway within the ATLAS experiment to optimise I/O performance for large-scale physics data analysis in a range of deployment environments. It proceeds to examine in greater detail one component of that work, the tuning of job-level I/O parameters in response to changes to the ATLAS event data model, and considers the implications of such tuning for a number of measures of I/O performance.
A recurrent self-organizing neural fuzzy inference network.
Juang, C F; Lin, C T
1999-01-01
A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some feedback connections representing the memory elements to a feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has its own meaning and represents a special element in a fuzzy rule. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially in the RSONFIN. They are created on-line via concurrent structure identification (the construction of dynamic fuzzy if-then rules) and parameter identification (the tuning of the free parameters of membership functions). The structure learning together with the parameter learning forms a fast learning algorithm for building a small, yet powerful, dynamic neural fuzzy network. Two major characteristics of the RSONFIN can thus be seen: 1) the recurrent property of the RSONFIN makes it suitable for dealing with temporal problems and 2) no predetermination, like the number of hidden nodes, must be given, since the RSONFIN can find its optimal structure and parameters automatically and quickly. Moreover, to reduce the number of fuzzy rules generated, a flexible input partition method, the aligned clustering-based algorithm, is proposed. Various simulations on temporal problems are done and performance comparisons with some existing recurrent networks are also made. Efficiency of the RSONFIN is verified from these results.
Three-Dimensional Bi₂Te₃ Networks of Interconnected Nanowires: Synthesis and Optimization.
Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martín-González, Marisol
2018-05-18
Self-standing Bi₂Te₃ networks of interconnected nanowires were fabricated in three-dimensional porous anodic alumina templates (3D⁻AAO) with a porous structure spreading in all three spatial dimensions. Pulsed electrodeposition parameters were optimized to grow highly oriented Bi₂Te₃ interconnected nanowires with stoichiometric composition inside those 3D⁻AAO templates. The nanowire networks were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Raman spectroscopy. The results are compared to those obtained in films and 1D nanowires grown under similar conditions. The crystalline structure and composition of the 3D Bi⁻Te nanowire network are finely tuned by controlling the applied voltage and the relaxation time off at zero current density during the deposition. With this fabrication method, and controlling the electrodeposition parameters, stoichiometric Bi₂Te₃ networks of interconnected nanowires have been obtained, with a preferential orientation along [1 1 0], which makes them optimal candidates for out-of-plane thermoelectric applications. Moreover, the templates in which they are grown can be dissolved and the network of interconnected nanowires is self-standing without affecting its composition and orientation properties.
Image aesthetic quality evaluation using convolution neural network embedded learning
NASA Astrophysics Data System (ADS)
Li, Yu-xin; Pu, Yuan-yuan; Xu, Dan; Qian, Wen-hua; Wang, Li-peng
2017-11-01
A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.
NASA Astrophysics Data System (ADS)
Jaspers, Maarten; Vaessen, Sarah L.; van Schayik, Pim; Voerman, Dion; Rowan, Alan E.; Kouwer, Paul H. J.
2017-05-01
The mechanical properties of cells and the extracellular environment they reside in are governed by a complex interplay of biopolymers. These biopolymers, which possess a wide range of stiffnesses, self-assemble into fibrous composite networks such as the cytoskeleton and extracellular matrix. They interact with each other both physically and chemically to create a highly responsive and adaptive mechanical environment that stiffens when stressed or strained. Here we show that hybrid networks of a synthetic mimic of biological networks and either stiff, flexible and semi-flexible components, even very low concentrations of these added components, strongly affect the network stiffness and/or its strain-responsive character. The stiffness (persistence length) of the second network, its concentration and the interaction between the components are all parameters that can be used to tune the mechanics of the hybrids. The equivalence of these hybrids with biological composites is striking.
Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan
2015-01-01
Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.
An Open-Source Arduino-based Controller for Mechanical Rain Simulators
NASA Astrophysics Data System (ADS)
Cantilina, K. K.
2017-12-01
Many commercial rain simulators currently used in hydrology rely on inflexible and outdated controller designs. These analog controllers typically only allow a handful of discrete parameter options, and do not support internal timing functions or continuously-changing parameters. A desire for finer control of rain simulation events necessitated the design and construction of a microcontroller-based controller, using widely available off-the-shelf components. A menu driven interface allows users to fine-tune simulation parameters without the need for training or experience with microcontrollers, and the accessibility of the Arduino IDE allows users with a minimum of programming and hardware experience to modify the controller program to suit the needs of individual experiments.
Convolutional Dictionary Learning: Acceleration and Convergence
NASA Astrophysics Data System (ADS)
Chun, Il Yong; Fessler, Jeffrey A.
2018-04-01
Convolutional dictionary learning (CDL or sparsifying CDL) has many applications in image processing and computer vision. There has been growing interest in developing efficient algorithms for CDL, mostly relying on the augmented Lagrangian (AL) method or the variant alternating direction method of multipliers (ADMM). When their parameters are properly tuned, AL methods have shown fast convergence in CDL. However, the parameter tuning process is not trivial due to its data dependence and, in practice, the convergence of AL methods depends on the AL parameters for nonconvex CDL problems. To moderate these problems, this paper proposes a new practically feasible and convergent Block Proximal Gradient method using a Majorizer (BPG-M) for CDL. The BPG-M-based CDL is investigated with different block updating schemes and majorization matrix designs, and further accelerated by incorporating some momentum coefficient formulas and restarting techniques. All of the methods investigated incorporate a boundary artifacts removal (or, more generally, sampling) operator in the learning model. Numerical experiments show that, without needing any parameter tuning process, the proposed BPG-M approach converges more stably to desirable solutions of lower objective values than the existing state-of-the-art ADMM algorithm and its memory-efficient variant do. Compared to the ADMM approaches, the BPG-M method using a multi-block updating scheme is particularly useful in single-threaded CDL algorithm handling large datasets, due to its lower memory requirement and no polynomial computational complexity. Image denoising experiments show that, for relatively strong additive white Gaussian noise, the filters learned by BPG-M-based CDL outperform those trained by the ADMM approach.
Flow-induced fiber deformation in a confined microchannel: in situ mechanical testing of gels
NASA Astrophysics Data System (ADS)
Duprat, Camille; Berthet, Helene; Wexler, Jason; Du Roure, Olivia; Lindner, Anke
2014-11-01
Photopolymerized hydrogels are a functional template for micro-particle fabrication, microflowsensors and microbiology experiments. The control and knowledge of their mechanical properties are paramount to many applications. We have designed a novel robust method to determine these properties. We measure the deformation of a gel beam of precisely controlled shape, under a controlled flow forcing, which provides a direct measurement of the Young's modulus of the gel upon its fabrication. We then use this method to determine the mechanical properties of the commonly used poly(ethylene glycol) diacrylate (PEGDA) under various experimental conditions. The mechanical properties of the gel can be highly tuned, yielding two orders of magnitude in the Young's modulus. We provide a simple control parameter, the UV exposure time, to have a great control over the network properties, and rationalize these observations by studying the kinetics of the polymerization reaction.
NASA Astrophysics Data System (ADS)
Walbaum, T.; Fallnich, C.
2012-07-01
We present the tuning of multimode interference bandpass filters made of standard fibers by mechanical bending. Our setup allows continuous adjustment of the bending radius from infinity down to about 5 cm. The impact of bending on the transmission spectrum and on polarization is investigated experimentally, and a filter with a continuous tuning range of 13.6 nm and 86 % peak transmission was realized. By use of numerical simulations employing a semi-analytical mode expansion approach, we obtain quantitative understanding of the underlying physics. Further breakdown of the governing equations enables us to identify the fiber parameters that are relevant for the design of customized filters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Cameron S.; Yin, Wen; Holt, Adam P.
Poly(3-hexyl thiophene) (P3HT) is widely regarded as the benchmark polymer when studying the physics of conjugated polymers used in organic electronic devices. P3HT can self-assemble via stacking of its backbone, leading to an assembly and growth of P3HT fi brils into 3D percolating organogels. These structures are capable of bridging the electrodes, providing multiple pathways for charge transport throughout the active layer. Here, a novel set of conditions is identified and discussed for P3HT organogel network formation via spin coating by monitoring the spin-coating process from various solvents. The development of organogel formation is detected by in situ static lightmore » scattering, which measures both the thinning rate by refl ectance and structural development in the fi lm via off-specular scattering during fi lm formation. Optical microscopy and thermal annealing experiments provide ex situ confi rmation of organogel fabrication. The role of solution characteristics, including solvent boiling point, P3HT solubility, and initial P3HT solution concentration on organogel formation, is examined to correlate these parameters to the rate of film formation, organogel-onset concentration, and overall network size. The correlation of film properties to the fabrication parameters is also analyzed within the context of the hole mobility and density-of-states measured by impedance spectroscopy.« less
A Systematic Approach to Sensor Selection for Aircraft Engine Health Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2009-01-01
A systematic approach for selecting an optimal suite of sensors for on-board aircraft gas turbine engine health estimation is presented. The methodology optimally chooses the engine sensor suite and the model tuning parameter vector to minimize the Kalman filter mean squared estimation error in the engine s health parameters or other unmeasured engine outputs. This technique specifically addresses the underdetermined estimation problem where there are more unknown system health parameters representing degradation than available sensor measurements. This paper presents the theoretical estimation error equations, and describes the optimization approach that is applied to select the sensors and model tuning parameters to minimize these errors. Two different model tuning parameter vector selection approaches are evaluated: the conventional approach of selecting a subset of health parameters to serve as the tuning parameters, and an alternative approach that selects tuning parameters as a linear combination of all health parameters. Results from the application of the technique to an aircraft engine simulation are presented, and compared to those from an alternative sensor selection strategy.
Embedded intelligent adaptive PI controller for an electromechanical system.
El-Nagar, Ahmad M
2016-09-01
In this study, an intelligent adaptive controller approach using the interval type-2 fuzzy neural network (IT2FNN) is presented. The proposed controller consists of a lower level proportional - integral (PI) controller, which is the main controller and an upper level IT2FNN which tuning on-line the parameters of a PI controller. The proposed adaptive PI controller based on IT2FNN (API-IT2FNN) is implemented practically using the Arduino DUE kit for controlling the speed of a nonlinear DC motor-generator system. The parameters of the IT2FNN are tuned on-line using back-propagation algorithm. The Lyapunov theorem is used to derive the stability and convergence of the IT2FNN. The obtained experimental results, which are compared with other controllers, demonstrate that the proposed API-IT2FNN is able to improve the system response over a wide range of system uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Zhang, Jie; Ji, Yuefeng; Li, Hui; Wang, Huitao; Ge, Chao
2015-10-01
The end-to-end tunability is important to provision elastic channel for the burst traffic of data center optical networks. Then, how to complete the end-to-end tunability based on elastic optical networks? Software defined networking (SDN) based end-to-end tunability solution is proposed for software defined data center optical networks, and the protocol extension and implementation procedure are designed accordingly. For the first time, the flexible grid all optical networks with Tbps end-to-end tunable transport and switch system have been online demonstrated for data center interconnection, which are controlled by OpenDayLight (ODL) based controller. The performance of the end-to-end tunable transport and switch system has been evaluated with wavelength number tuning, bit rate tuning, and transmit power tuning procedure.
Tuning the group delay of optical wave packets in liquid-crystal light valves
NASA Astrophysics Data System (ADS)
Bortolozzo, U.; Residori, S.; Huignard, J. P.
2009-05-01
By performing two-wave mixing experiments in a liquid-crystal light valve, optical pulses are slowed down to group velocities as slow as a few tenths of mm/s, corresponding to a very large group index. We present experiments and model of the slow-light process occurring in the liquid-crystal light valve, showing that this is characterized by multiple-beam diffraction in the Raman-Nath regime. Depending on the initial frequency detuning between pump and signal, the different output order beams are distinguished by different group delays. The group delay can be tuned by changing the main parameters of the experiment: the detuning between the pump and the input wave packet, the strength of the nonlinearity, and the intensity of the pump beam.
NASA Astrophysics Data System (ADS)
Tichý, Ondřej; Šmídl, Václav; Hofman, Radek; Stohl, Andreas
2016-11-01
Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. It is typically formalized as an inverse problem using a linear model that can explain observable quantities (e.g., concentrations or deposition values) as a product of the source-receptor sensitivity (SRS) matrix obtained from an atmospheric transport model multiplied by the unknown source-term vector. Since this problem is typically ill-posed, current state-of-the-art methods are based on regularization of the problem and solution of a formulated optimization problem. This procedure depends on manual settings of uncertainties that are often very poorly quantified, effectively making them tuning parameters. We formulate a probabilistic model, that has the same maximum likelihood solution as the conventional method using pre-specified uncertainties. Replacement of the maximum likelihood solution by full Bayesian estimation also allows estimation of all tuning parameters from the measurements. The estimation procedure is based on the variational Bayes approximation which is evaluated by an iterative algorithm. The resulting method is thus very similar to the conventional approach, but with the possibility to also estimate all tuning parameters from the observations. The proposed algorithm is tested and compared with the standard methods on data from the European Tracer Experiment (ETEX) where advantages of the new method are demonstrated. A MATLAB implementation of the proposed algorithm is available for download.
Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition
Shen, Sheng; Yao, Xiaohui; Sheng, Meiping; Wang, Chen
2018-01-01
Underwater acoustic target recognition based on ship-radiated noise belongs to the small-sample-size recognition problems. A competitive deep-belief network is proposed to learn features with more discriminative information from labeled and unlabeled samples. The proposed model consists of four stages: (1) A standard restricted Boltzmann machine is pretrained using a large number of unlabeled data to initialize its parameters; (2) the hidden units are grouped according to categories, which provides an initial clustering model for competitive learning; (3) competitive training and back-propagation algorithms are used to update the parameters to accomplish the task of clustering; (4) by applying layer-wise training and supervised fine-tuning, a deep neural network is built to obtain features. Experimental results show that the proposed method can achieve classification accuracy of 90.89%, which is 8.95% higher than the accuracy obtained by the compared methods. In addition, the highest accuracy of our method is obtained with fewer features than other methods. PMID:29570642
Fuzzy self-learning control for magnetic servo system
NASA Technical Reports Server (NTRS)
Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.
1994-01-01
It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.
NASA Astrophysics Data System (ADS)
Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.
2017-02-01
Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.
Interactions between neural networks: a mechanism for tuning chaos and oscillations.
Wang, Lipo
2007-06-01
We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory behaviors in systems that require stability.
NASA Astrophysics Data System (ADS)
Kruithof, Maarten C.; Bouma, Henri; Fischer, Noëlle M.; Schutte, Klamer
2016-10-01
Object recognition is important to understand the content of video and allow flexible querying in a large number of cameras, especially for security applications. Recent benchmarks show that deep convolutional neural networks are excellent approaches for object recognition. This paper describes an approach of domain transfer, where features learned from a large annotated dataset are transferred to a target domain where less annotated examples are available as is typical for the security and defense domain. Many of these networks trained on natural images appear to learn features similar to Gabor filters and color blobs in the first layer. These first-layer features appear to be generic for many datasets and tasks while the last layer is specific. In this paper, we study the effect of copying all layers and fine-tuning a variable number. We performed an experiment with a Caffe-based network on 1000 ImageNet classes that are randomly divided in two equal subgroups for the transfer from one to the other. We copy all layers and vary the number of layers that is fine-tuned and the size of the target dataset. We performed additional experiments with the Keras platform on CIFAR-10 dataset to validate general applicability. We show with both platforms and both datasets that the accuracy on the target dataset improves when more target data is used. When the target dataset is large, it is beneficial to freeze only a few layers. For a large target dataset, the network without transfer learning performs better than the transfer network, especially if many layers are frozen. When the target dataset is small, it is beneficial to transfer (and freeze) many layers. For a small target dataset, the transfer network boosts generalization and it performs much better than the network without transfer learning. Learning time can be reduced by freezing many layers in a network.
Masoli, Stefano; Rizza, Martina F; Sgritta, Martina; Van Geit, Werner; Schürmann, Felix; D'Angelo, Egidio
2017-01-01
In realistic neuronal modeling, once the ionic channel complement has been defined, the maximum ionic conductance (G i-max ) values need to be tuned in order to match the firing pattern revealed by electrophysiological recordings. Recently, selection/mutation genetic algorithms have been proposed to efficiently and automatically tune these parameters. Nonetheless, since similar firing patterns can be achieved through different combinations of G i-max values, it is not clear how well these algorithms approximate the corresponding properties of real cells. Here we have evaluated the issue by exploiting a unique opportunity offered by the cerebellar granule cell (GrC), which is electrotonically compact and has therefore allowed the direct experimental measurement of ionic currents. Previous models were constructed using empirical tuning of G i-max values to match the original data set. Here, by using repetitive discharge patterns as a template, the optimization procedure yielded models that closely approximated the experimental G i-max values. These models, in addition to repetitive firing, captured additional features, including inward rectification, near-threshold oscillations, and resonance, which were not used as features. Thus, parameter optimization using genetic algorithms provided an efficient modeling strategy for reconstructing the biophysical properties of neurons and for the subsequent reconstruction of large-scale neuronal network models.
NASA Astrophysics Data System (ADS)
Mäkelä, Jarmo; Susiluoto, Jouni; Markkanen, Tiina; Aurela, Mika; Järvinen, Heikki; Mammarella, Ivan; Hagemann, Stefan; Aalto, Tuula
2016-12-01
We examined parameter optimisation in the JSBACH (Kaminski et al., 2013; Knorr and Kattge, 2005; Reick et al., 2013) ecosystem model, applied to two boreal forest sites (Hyytiälä and Sodankylä) in Finland. We identified and tested key parameters in soil hydrology and forest water and carbon-exchange-related formulations, and optimised them using the adaptive Metropolis (AM) algorithm for Hyytiälä with a 5-year calibration period (2000-2004) followed by a 4-year validation period (2005-2008). Sodankylä acted as an independent validation site, where optimisations were not made. The tuning provided estimates for full distribution of possible parameters, along with information about correlation, sensitivity and identifiability. Some parameters were correlated with each other due to a phenomenological connection between carbon uptake and water stress or other connections due to the set-up of the model formulations. The latter holds especially for vegetation phenology parameters. The least identifiable parameters include phenology parameters, parameters connecting relative humidity and soil dryness, and the field capacity of the skin reservoir. These soil parameters were masked by the large contribution from vegetation transpiration. In addition to leaf area index and the maximum carboxylation rate, the most effective parameters adjusting the gross primary production (GPP) and evapotranspiration (ET) fluxes in seasonal tuning were related to soil wilting point, drainage and moisture stress imposed on vegetation. For daily and half-hourly tunings the most important parameters were the ratio of leaf internal CO2 concentration to external CO2 and the parameter connecting relative humidity and soil dryness. Effectively the seasonal tuning transferred water from soil moisture into ET, and daily and half-hourly tunings reversed this process. The seasonal tuning improved the month-to-month development of GPP and ET, and produced the most stable estimates of water use efficiency. When compared to the seasonal tuning, the daily tuning is worse on the seasonal scale. However, daily parametrisation reproduced the observations for average diurnal cycle best, except for the GPP for Sodankylä validation period, where half-hourly tuned parameters were better. In general, the daily tuning provided the largest reduction in model-data mismatch. The models response to drought was unaffected by our parametrisations and further studies are needed into enhancing the dry response in JSBACH.
Robust control for a biaxial servo with time delay system based on adaptive tuning technique.
Chen, Tien-Chi; Yu, Chih-Hsien
2009-07-01
A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Traveling Salesman Problem for Surveillance Mission Using Particle Swarm Optimization
2001-03-20
design of experiments, results of the experiments, and qualitative and quantitative analysis . Conclusions and recommendations based on the qualitative and...characterize the algorithm. Such analysis and comparison between LK and a non-deterministic algorithm produces claims such as "Lin-Kernighan algorithm takes... based on experiments 5 and 6. All other parameters are the same as the baseline (see 4.2.1.2). 4.2.2.6 Experiment 10 - Fine Tuning PSO AS: 85,95% Global
Zhang, BiTao; Pi, YouGuo; Luo, Ying
2012-09-01
A fractional order sliding mode control (FROSMC) scheme based on parameters auto-tuning for the velocity control of permanent magnet synchronous motor (PMSM) is proposed in this paper. The control law of the proposed F(R)OSMC scheme is designed according to Lyapunov stability theorem. Based on the property of transferring energy with adjustable type in F(R)OSMC, this paper analyzes the chattering phenomenon in classic sliding mode control (SMC) is attenuated with F(R)OSMC system. A fuzzy logic inference scheme (FLIS) is utilized to obtain the gain of switching control. Simulations and experiments demonstrate that the proposed FROSMC not only achieve better control performance with smaller chatting than that with integer order sliding mode control, but also is robust to external load disturbance and parameter variations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Toward a More Robust Pruning Procedure for MLP Networks
NASA Technical Reports Server (NTRS)
Stepniewski, Slawomir W.; Jorgensen, Charles C.
1998-01-01
Choosing a proper neural network architecture is a problem of great practical importance. Smaller models mean not only simpler designs but also lower variance for parameter estimation and network prediction. The widespread utilization of neural networks in modeling highlights an issue in human factors. The procedure of building neural models should find an appropriate level of model complexity in a more or less automatic fashion to make it less prone to human subjectivity. In this paper we present a Singular Value Decomposition based node elimination technique and enhanced implementation of the Optimal Brain Surgeon algorithm. Combining both methods creates a powerful pruning engine that can be used for tuning feedforward connectionist models. The performance of the proposed method is demonstrated by adjusting the structure of a multi-input multi-output model used to calibrate a six-component wind tunnel strain gage.
Gastric precancerous diseases classification using CNN with a concise model.
Zhang, Xu; Hu, Weiling; Chen, Fei; Liu, Jiquan; Yang, Yuanhang; Wang, Liangjing; Duan, Huilong; Si, Jianmin
2017-01-01
Gastric precancerous diseases (GPD) may deteriorate into early gastric cancer if misdiagnosed, so it is important to help doctors recognize GPD accurately and quickly. In this paper, we realize the classification of 3-class GPD, namely, polyp, erosion, and ulcer using convolutional neural networks (CNN) with a concise model called the Gastric Precancerous Disease Network (GPDNet). GPDNet introduces fire modules from SqueezeNet to reduce the model size and parameters about 10 times while improving speed for quick classification. To maintain classification accuracy with fewer parameters, we propose an innovative method called iterative reinforced learning (IRL). After training GPDNet from scratch, we apply IRL to fine-tune the parameters whose values are close to 0, and then we take the modified model as a pretrained model for the next training. The result shows that IRL can improve the accuracy about 9% after 6 iterations. The final classification accuracy of our GPDNet was 88.90%, which is promising for clinical GPD recognition.
Evaluation of weather-based rice yield models in India
NASA Astrophysics Data System (ADS)
Sudharsan, D.; Adinarayana, J.; Reddy, D. Raji; Sreenivas, G.; Ninomiya, S.; Hirafuji, M.; Kiura, T.; Tanaka, K.; Desai, U. B.; Merchant, S. N.
2013-01-01
The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lazareva, Maria V.
2010-05-01
In the paper we show that the biologically motivated conception of time-pulse encoding usage gives a set of advantages (single methodological basis, universality, tuning simplicity, learning and programming et al) at creation and design of sensor systems with parallel input-output and processing for 2D structures hybrid and next generations neuro-fuzzy neurocomputers. We show design principles of programmable relational optoelectronic time-pulse encoded processors on the base of continuous logic, order logic and temporal waves processes. We consider a structure that execute analog signal extraction, analog and time-pulse coded variables sorting. We offer optoelectronic realization of such base relational order logic element, that consists of time-pulse coded photoconverters (pulse-width and pulse-phase modulators) with direct and complementary outputs, sorting network on logical elements and programmable commutation blocks. We make technical parameters estimations of devices and processors on such base elements by simulation and experimental research: optical input signals power 0.2 - 20 uW, processing time 1 - 10 us, supply voltage 1 - 3 V, consumption power 10 - 100 uW, extended functional possibilities, learning possibilities. We discuss some aspects of possible rules and principles of learning and programmable tuning on required function, relational operation and realization of hardware blocks for modifications of such processors. We show that it is possible to create sorting machines, neural networks and hybrid data-processing systems with untraditional numerical systems and pictures operands on the basis of such quasiuniversal hardware simple blocks with flexible programmable tuning.
Deep greedy learning under thermal variability in full diurnal cycles
NASA Astrophysics Data System (ADS)
Rauss, Patrick; Rosario, Dalton
2017-08-01
We study the generalization and scalability behavior of a deep belief network (DBN) applied to a challenging long-wave infrared hyperspectral dataset, consisting of radiance from several manmade and natural materials within a fixed site located 500 m from an observation tower. The collections cover multiple full diurnal cycles and include different atmospheric conditions. Using complementary priors, a DBN uses a greedy algorithm that can learn deep, directed belief networks one layer at a time and has two layers form to provide undirected associative memory. The greedy algorithm initializes a slower learning procedure, which fine-tunes the weights, using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of spectral data and their labels, despite significant data variability between and within classes due to environmental and temperature variation occurring within and between full diurnal cycles. We argue, however, that more questions than answers are raised regarding the generalization capacity of these deep nets through experiments aimed at investigating their training and augmented learning behavior.
Interactions between neural networks: a mechanism for tuning chaos and oscillations
2007-01-01
We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory behaviors in systems that require stability. PMID:19003511
An Adaptive Kalman Filter using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
Adaptive mechanism-based congestion control for networked systems
NASA Astrophysics Data System (ADS)
Liu, Zhi; Zhang, Yun; Chen, C. L. Philip
2013-03-01
In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.
Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning
Kok, Kai Yit; Rajendran, Parvathy
2016-01-01
The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630
Schiavazzi, Daniele E.; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L.
2017-01-01
Summary Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. PMID:27155892
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Du, Pengwei; Kosterev, Dmitry
2013-05-01
Disturbance data recorded by phasor measurement units (PMU) offers opportunities to improve the integrity of dynamic models. However, manually tuning parameters through play-back events demands significant efforts and engineering experiences. In this paper, a calibration method using the extended Kalman filter (EKF) technique is proposed. The formulation of EKF with parameter calibration is discussed. Case studies are presented to demonstrate its validity. The proposed calibration method is cost-effective, complementary to traditional equipment testing for improving dynamic model quality.
TU-AB-BRC-05: Creation of a Monte Carlo TrueBeam Model by Reproducing Varian Phase Space Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Grady, K; Davis, S; Seuntjens, J
Purpose: To create a Varian TrueBeam 6 MV FFF Monte Carlo model using BEAMnrc/EGSnrc that accurately reproduces the Varian representative dataset, followed by tuning the model’s source parameters to accurately reproduce in-house measurements. Methods: A BEAMnrc TrueBeam model for 6 MV FFF has been created by modifying a validated 6 MV Varian CL21EX model. Geometric dimensions and materials were adjusted in a trial and error approach to match the fluence and spectra of TrueBeam phase spaces output by the Varian VirtuaLinac. Once the model’s phase space matched Varian’s counterpart using the default source parameters, it was validated to match 10more » × 10 cm{sup 2} Varian representative data obtained with the IBA CC13. The source parameters were then tuned to match in-house 5 × 5 cm{sup 2} PTW microDiamond measurements. All dose to water simulations included detector models to include the effects of volume averaging and the non-water equivalence of the chamber materials, allowing for more accurate source parameter selection. Results: The Varian phase space spectra and fluence were matched with excellent agreement. The in-house model’s PDD agreement with CC13 TrueBeam representative data was within 0.9% local percent difference beyond the first 3 mm. Profile agreement at 10 cm depth was within 0.9% local percent difference and 1.3 mm distance-to-agreement in the central axis and penumbra regions, respectively. Once the source parameters were tuned, PDD agreement with microDiamond measurements was within 0.9% local percent difference beyond 2 mm. The microDiamond profile agreement at 10 cm depth was within 0.6% local percent difference and 0.4 mm distance-to-agreement in the central axis and penumbra regions, respectively. Conclusion: An accurate in-house Monte Carlo model of the Varian TrueBeam was achieved independently of the Varian phase space solution and was tuned to in-house measurements. KO acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290).« less
Electronic frequency tuning of the acousto-optic mode-locking device of a laser
NASA Astrophysics Data System (ADS)
Magdich, L. N.; Balakshy, V. I.; Mantsevich, S. N.
2017-11-01
The effect of the electronic tuning of the acoustic resonances in an acousto-optic mode-locking device of a laser is investigated theoretically and experimentally. The problem of the excitation of a Fabry-Perot acoustic resonator by a plate-like piezoelectric transducer (PET) is solved in the approximation of plane acoustic waves taking into consideration the actual parameters of an RF generator and the elements for matching the PET to the generator. Resonances are tuned by changing the matching inductance that was connected in parallel to the transducer of the acousto-optic cell. The cell used in the experiment was manufactured from fused silica and included a lithium niobate PET. Changes in the matching inductance in the range of 0.025 to 0.2 μH provided the acoustic-resonance frequency tuning by 0.19 MHz, which exceeds the acoustic- resonance half-width.
Graphene Dirac point tuned by ferroelectric polarization field
NASA Astrophysics Data System (ADS)
Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao
2018-04-01
Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.
Dynamic Wireless Network Based on Open Physical Layer
2011-02-18
would yield the error- exponent optimal solutions. We solved this problem, and the detailed works are reported in [?]. It turns out that when Renyi ...is, during the communication session. A natural set of metrics of interests are the family of Renyi divergences. With a parameter of α that can be...tuned, Renyi entropy of a given distribution corresponds to the Shannon entropy, at α = 1, to the probability of detection error, at α =∞. This gives a
Optical fiber-fault surveillance for passive optical networks in S-band operation window
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chi, Sien
2005-07-01
An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.
Optical fiber-fault surveillance for passive optical networks in S-band operation window.
Yeh, Chien-Hung; Chi, Sien
2005-07-11
An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.
Node fingerprinting: an efficient heuristic for aligning biological networks.
Radu, Alex; Charleston, Michael
2014-10-01
With the continuing increase in availability of biological data and improvements to biological models, biological network analysis has become a promising area of research. An emerging technique for the analysis of biological networks is through network alignment. Network alignment has been used to calculate genetic distance, similarities between regulatory structures, and the effect of external forces on gene expression, and to depict conditional activity of expression modules in cancer. Network alignment is algorithmically complex, and therefore we must rely on heuristics, ideally as efficient and accurate as possible. The majority of current techniques for network alignment rely on precomputed information, such as with protein sequence alignment, or on tunable network alignment parameters, which may introduce an increased computational overhead. Our presented algorithm, which we call Node Fingerprinting (NF), is appropriate for performing global pairwise network alignment without precomputation or tuning, can be fully parallelized, and is able to quickly compute an accurate alignment between two biological networks. It has performed as well as or better than existing algorithms on biological and simulated data, and with fewer computational resources. The algorithmic validation performed demonstrates the low computational resource requirements of NF.
Veksler, Vladislav D; Buchler, Norbou; Hoffman, Blaine E; Cassenti, Daniel N; Sample, Char; Sugrim, Shridat
2018-01-01
Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting.
Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.
Talaei, Behzad; Jagannathan, Sarangapani; Singler, John
2018-04-01
This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.
Research on intrusion detection based on Kohonen network and support vector machine
NASA Astrophysics Data System (ADS)
Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi
2018-05-01
In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.
Szczecinski, Nicholas S.; Hunt, Alexander J.; Quinn, Roger D.
2017-01-01
A dynamical model of an animal’s nervous system, or synthetic nervous system (SNS), is a potentially transformational control method. Due to increasingly detailed data on the connectivity and dynamics of both mammalian and insect nervous systems, controlling a legged robot with an SNS is largely a problem of parameter tuning. Our approach to this problem is to design functional subnetworks that perform specific operations, and then assemble them into larger models of the nervous system. In this paper, we present networks that perform addition, subtraction, multiplication, division, differentiation, and integration of incoming signals. Parameters are set within each subnetwork to produce the desired output by utilizing the operating range of neural activity, R, the gain of the operation, k, and bounds based on biological values. The assembly of large networks from functional subnetworks underpins our recent results with MantisBot. PMID:28848419
NASA Astrophysics Data System (ADS)
Yukino, Ryoji; Sahoo, Pankaj K.; Sharma, Jaiyam; Takamura, Tsukasa; Joseph, Joby; Sandhu, Adarsh
2017-01-01
We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D) GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.
Electron beam lithographic modeling assisted by artificial intelligence technology
NASA Astrophysics Data System (ADS)
Nakayamada, Noriaki; Nishimura, Rieko; Miura, Satoru; Nomura, Haruyuki; Kamikubo, Takashi
2017-07-01
We propose a new concept of tuning a point-spread function (a "kernel" function) in the modeling of electron beam lithography using the machine learning scheme. Normally in the work of artificial intelligence, the researchers focus on the output results from a neural network, such as success ratio in image recognition or improved production yield, etc. In this work, we put more focus on the weights connecting the nodes in a convolutional neural network, which are naturally the fractions of a point-spread function, and take out those weighted fractions after learning to be utilized as a tuned kernel. Proof-of-concept of the kernel tuning has been demonstrated using the examples of proximity effect correction with 2-layer network, and charging effect correction with 3-layer network. This type of new tuning method can be beneficial to give researchers more insights to come up with a better model, yet it might be too early to be deployed to production to give better critical dimension (CD) and positional accuracy almost instantly.
An Adaptive Kalman Filter Using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
Utilization of Short-Simulations for Tuning High-Resolution Climate Model
NASA Astrophysics Data System (ADS)
Lin, W.; Xie, S.; Ma, P. L.; Rasch, P. J.; Qian, Y.; Wan, H.; Ma, H. Y.; Klein, S. A.
2016-12-01
Many physical parameterizations in atmospheric models are sensitive to resolution. Tuning the models that involve a multitude of parameters at high resolution is computationally expensive, particularly when relying primarily on multi-year simulations. This work describes a complementary set of strategies for tuning high-resolution atmospheric models, using ensembles of short simulations to reduce the computational cost and elapsed time. Specifically, we utilize the hindcast approach developed through the DOE Cloud Associated Parameterization Testbed (CAPT) project for high-resolution model tuning, which is guided by a combination of short (< 10 days ) and longer ( 1 year) Perturbed Parameters Ensemble (PPE) simulations at low resolution to identify model feature sensitivity to parameter changes. The CAPT tests have been found to be effective in numerous previous studies in identifying model biases due to parameterized fast physics, and we demonstrate that it is also useful for tuning. After the most egregious errors are addressed through an initial "rough" tuning phase, longer simulations are performed to "hone in" on model features that evolve over longer timescales. We explore these strategies to tune the DOE ACME (Accelerated Climate Modeling for Energy) model. For the ACME model at 0.25° resolution, it is confirmed that, given the same parameters, major biases in global mean statistics and many spatial features are consistent between Atmospheric Model Intercomparison Project (AMIP)-type simulations and CAPT-type hindcasts, with just a small number of short-term simulations for the latter over the corresponding season. The use of CAPT hindcasts to find parameter choice for the reduction of large model biases dramatically improves the turnaround time for the tuning at high resolution. Improvement seen in CAPT hindcasts generally translates to improved AMIP-type simulations. An iterative CAPT-AMIP tuning approach is therefore adopted during each major tuning cycle, with the former to survey the likely responses and narrow the parameter space, and the latter to verify the results in climate context along with assessment in greater detail once an educated set of parameter choice is selected. Limitations on using short-term simulations for tuning climate model are also discussed.
NASA Astrophysics Data System (ADS)
Jia, F.; Lichti, D.
2017-09-01
The optimal network design problem has been well addressed in geodesy and photogrammetry but has not received the same attention for terrestrial laser scanner (TLS) networks. The goal of this research is to develop a complete design system that can automatically provide an optimal plan for high-accuracy, large-volume scanning networks. The aim in this paper is to use three heuristic optimization methods, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO), to solve the first-order design (FOD) problem for a small-volume indoor network and make a comparison of their performances. The room is simplified as discretized wall segments and possible viewpoints. Each possible viewpoint is evaluated with a score table representing the wall segments visible from each viewpoint based on scanning geometry constraints. The goal is to find a minimum number of viewpoints that can obtain complete coverage of all wall segments with a minimal sum of incidence angles. The different methods have been implemented and compared in terms of the quality of the solutions, runtime and repeatability. The experiment environment was simulated from a room located on University of Calgary campus where multiple scans are required due to occlusions from interior walls. The results obtained in this research show that PSO and GA provide similar solutions while SA doesn't guarantee an optimal solution within limited iterations. Overall, GA is considered as the best choice for this problem based on its capability of providing an optimal solution and fewer parameters to tune.
Matching network for RF plasma source
Pickard, Daniel S.; Leung, Ka-Ngo
2007-11-20
A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.
Capsule implosion optimization during the indirect-drive National Ignition Campaign
NASA Astrophysics Data System (ADS)
Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Frenje, J. A.; Glenzer, S. H.; Hamza, A.; Hammel, B. A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kilkenny, J. D.; Kirkwood, R. K.; Kline, J. L.; Kyrala, G. A.; Marinak, M. M.; Meezan, N.; Meyerhofer, D. D.; Michel, P.; Munro, D. H.; Olson, R. E.; Nikroo, A.; Regan, S. P.; Suter, L. J.; Thomas, C. A.; Wilson, D. C.
2011-05-01
Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.
NASA Astrophysics Data System (ADS)
Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke
2016-01-01
A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.
González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel
2016-10-31
In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.
González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel
2016-01-01
In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented. PMID:27809229
MINE: Module Identification in Networks
2011-01-01
Background Graphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks. Results MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties. Conclusions MINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans. PMID:21605434
Shin, Hoo-Chang; Roth, Holger R; Gao, Mingchen; Lu, Le; Xu, Ziyue; Nogues, Isabella; Yao, Jianhua; Mollura, Daniel; Summers, Ronald M
2016-05-01
Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Bardachenko, Vitaliy F.; Nikolsky, Alexander I.; Lazarev, Alexander A.
2007-04-01
In the paper we show that the biologically motivated conception of the use of time-pulse encoding gives the row of advantages (single methodological basis, universality, simplicity of tuning, training and programming et al) at creation and designing of sensor systems with parallel input-output and processing, 2D-structures of hybrid and neuro-fuzzy neurocomputers of next generations. We show principles of construction of programmable relational optoelectronic time-pulse coded processors, continuous logic, order logic and temporal waves processes, that lie in basis of the creation. We consider structure that executes extraction of analog signal of the set grade (order), sorting of analog and time-pulse coded variables. We offer optoelectronic realization of such base relational elements of order logic, which consists of time-pulse coded phototransformers (pulse-width and pulse-phase modulators) with direct and complementary outputs, sorting network on logical elements and programmable commutations blocks. We make estimations of basic technical parameters of such base devices and processors on their basis by simulation and experimental research: power of optical input signals - 0.200-20 μW, processing time - microseconds, supply voltage - 1.5-10 V, consumption power - hundreds of microwatts per element, extended functional possibilities, training possibilities. We discuss some aspects of possible rules and principles of training and programmable tuning on the required function, relational operation and realization of hardware blocks for modifications of such processors. We show as on the basis of such quasiuniversal hardware simple block and flexible programmable tuning it is possible to create sorting machines, neural networks and hybrid data-processing systems with the untraditional numerical systems and pictures operands.
Perceptual learning as improved probabilistic inference in early sensory areas.
Bejjanki, Vikranth R; Beck, Jeffrey M; Lu, Zhong-Lin; Pouget, Alexandre
2011-05-01
Extensive training on simple tasks such as fine orientation discrimination results in large improvements in performance, a form of learning known as perceptual learning. Previous models have argued that perceptual learning is due to either sharpening and amplification of tuning curves in early visual areas or to improved probabilistic inference in later visual areas (at the decision stage). However, early theories are inconsistent with the conclusions of psychophysical experiments manipulating external noise, whereas late theories cannot explain the changes in neural responses that have been reported in cortical areas V1 and V4. Here we show that we can capture both the neurophysiological and behavioral aspects of perceptual learning by altering only the feedforward connectivity in a recurrent network of spiking neurons so as to improve probabilistic inference in early visual areas. The resulting network shows modest changes in tuning curves, in line with neurophysiological reports, along with a marked reduction in the amplitude of pairwise noise correlations.
Transient Volcano Deformation Event Detection over Variable Spatial Scales in Alaska
NASA Astrophysics Data System (ADS)
Li, J. D.; Rude, C. M.; Gowanlock, M.; Herring, T.; Pankratius, V.
2016-12-01
Transient deformation events driven by volcanic activity can be monitored using increasingly dense networks of continuous Global Positioning System (GPS) ground stations. The wide spatial extent of GPS networks, the large number of GPS stations, and the spatially and temporally varying scale of deformation events result in the mixing of signals from multiple sources. Typical analysis then necessitates manual identification of times and regions of volcanic activity for further study and the careful tuning of algorithmic parameters to extract possible transient events. Here we present a computer-aided discovery system that facilitates the discovery of potential transient deformation events at volcanoes by providing a framework for selecting varying spatial regions of interest and for tuning the analysis parameters. This site specification step in the framework reduces the spatial mixing of signals from different volcanic sources before applying filters to remove interfering signals originating from other geophysical processes. We analyze GPS data recorded by the Plate Boundary Observatory network and volcanic activity logs from the Alaska Volcano Observatory to search for and characterize transient inflation events in Alaska. We find 3 transient inflation events between 2008 and 2015 at the Akutan, Westdahl, and Shishaldin volcanoes in the Aleutian Islands. The inflation event detected in the first half of 2008 at Akutan is validated other studies, while the inflation events observed in early 2011 at Westdahl and in early 2013 at Shishaldin are previously unreported. Our analysis framework also incorporates modelling of the transient inflation events and enables a comparison of different magma chamber inversion models. Here, we also estimate the magma sources that best describe the deformation observed by the GPS stations at Akutan, Westdahl, and Shishaldin. We acknowledge support from NASA AIST-NNX15AG84G (PI: V. Pankratius).
Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava
2012-03-01
Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoshida, Yuki; Karakida, Ryo; Okada, Masato; Amari, Shun-ichi
2017-04-01
Weight normalization, a newly proposed optimization method for neural networks by Salimans and Kingma (2016), decomposes the weight vector of a neural network into a radial length and a direction vector, and the decomposed parameters follow their steepest descent update. They reported that learning with the weight normalization achieves better converging speed in several tasks including image recognition and reinforcement learning than learning with the conventional parameterization. However, it remains theoretically uncovered how the weight normalization improves the converging speed. In this study, we applied a statistical mechanical technique to analyze on-line learning in single layer linear and nonlinear perceptrons with weight normalization. By deriving order parameters of the learning dynamics, we confirmed quantitatively that weight normalization realizes fast converging speed by automatically tuning the effective learning rate, regardless of the nonlinearity of the neural network. This property is realized when the initial value of the radial length is near the global minimum; therefore, our theory suggests that it is important to choose the initial value of the radial length appropriately when using weight normalization.
Design and construction of a novel 1H/19F double-tuned coil system using PIN-diode switches at 9.4T.
Choi, Chang-Hoon; Hong, Suk-Min; Ha, YongHyun; Shah, N Jon
2017-06-01
A double-tuned 1 H/ 19 F coil using PIN-diode switches was developed and its performance evaluated. The is a key difference from the previous developments being that this design used a PIN-diode switch in series with an additionally inserted inductor in parallel to one of the capacitors on the loop. The probe was adjusted to 19 F when the reverse bias voltage was applied (PIN-diode OFF), whilst it was switched to 1 H when forward current was flowing (PIN-diode ON). S-parameters and Q-factors of single- and double-tuned coils were examined and compared with/without a phantom on the bench. Imaging experiments were carried out on a 9.4T preclinical scanner. All coils were tuned at resonance frequencies and matched well. It is shown that the Q-ratio and SNR of double-tuned coil at 19 F frequency are nearly as good as those of a single-tuned coil. Since the operating frequency was tuned to 19 F when the PIN-diodes were turned off, losses due to PIN-diodes were substantially lower resulting in the provision of excellent image quality of X-nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.
Adaptive control with self-tuning for non-invasive beat-by-beat blood pressure measurement.
Nogawa, Masamichi; Ogawa, Mitsuhiro; Yamakoshi, Takehiro; Tanaka, Shinobu; Yamakoshi, Ken-ichi
2011-01-01
Up to now, we have successfully carried out the non-invasive beat-by-beat measurement of blood pressure (BP) in the root of finger, superficial temporal and radial artery based on the volume-compensation technique with reasonable accuracy. The present study concerns with improvement of control method for this beat-by-beat BP measurement. The measurement system mainly consists of a partial pressurization cuff with a pair of LED and photo-diode for the detection of arterial blood volume, and a digital self-tuning control method. Using healthy subjects, the performance and accuracy of this system were evaluated through comparison experiments with the system using a conventional empirically tuned PID controller. The significant differences of BP measured in finger artery were not showed in systolic (SBP), p=0.52, and diastolic BP (DBP), p=0.35. With the advantage of the adaptive control with self-tuning method, which can tune the control parameters without disturbing the control system, the application area of the non-invasive beat-by-beat measurement method will be broadened.
An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.
Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun
2015-12-03
Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.
An automatic and effective parameter optimization method for model tuning
NASA Astrophysics Data System (ADS)
Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.
2015-05-01
Physical parameterizations in General Circulation Models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determines parameter sensitivity and the other chooses the optimum initial value of sensitive parameters, are introduced before the downhill simplex method to reduce the computational cost and improve the tuning performance. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9%. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameters tuning during the model development stage.
On mobile wireless ad hoc IP video transports
NASA Astrophysics Data System (ADS)
Kazantzidis, Matheos
2006-05-01
Multimedia transports in wireless, ad-hoc, multi-hop or mobile networks must be capable of obtaining information about the network and adaptively tune sending and encoding parameters to the network response. Obtaining meaningful metrics to guide a stable congestion control mechanism in the transport (i.e. passive, simple, end-to-end and network technology independent) is a complex problem. Equally difficult is obtaining a reliable QoS metrics that agrees with user perception in a client/server or distributed environment. Existing metrics, objective or subjective, are commonly used after or before to test or report on a transmission and require access to both original and transmitted frames. In this paper, we propose that an efficient and successful video delivery and the optimization of overall network QoS requires innovation in a) a direct measurement of available and bottleneck capacity for its congestion control and b) a meaningful subjective QoS metric that is dynamically reported to video sender. Once these are in place, a binomial -stable, fair and TCP friendly- algorithm can be used to determine the sending rate and other packet video parameters. An adaptive mpeg codec can then continually test and fit its parameters and temporal-spatial data-error control balance using the perceived QoS dynamic feedback. We suggest a new measurement based on a packet dispersion technique that is independent of underlying network mechanisms. We then present a binomial control based on direct measurements. We implement a QoS metric that is known to agree with user perception (MPQM) in a client/server, distributed environment by using predetermined table lookups and characterization of video content.
NASA Astrophysics Data System (ADS)
Mora, A.; Han, F.; Lubineau, G.
2018-04-01
One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in the remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite’s conductivity based on these parameters.
The effects of dynamical synapses on firing rate activity: a spiking neural network model.
Khalil, Radwa; Moftah, Marie Z; Moustafa, Ahmed A
2017-11-01
Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABA A signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam; Noraziah, A
2017-01-01
In this paper, an attempt is made to apply the African Buffalo Optimization (ABO) to tune the parameters of a PID controller for an effective Automatic Voltage Regulator (AVR). Existing metaheuristic tuning methods have been proven to be quite successful but there were observable areas that need improvements especially in terms of the system's gain overshoot and steady steady state errors. Using the ABO algorithm where each buffalo location in the herd is a candidate solution to the Proportional-Integral-Derivative parameters was very helpful in addressing these two areas of concern. The encouraging results obtained from the simulation of the PID Controller parameters-tuning using the ABO when compared with the performance of Genetic Algorithm PID (GA-PID), Particle-Swarm Optimization PID (PSO-PID), Ant Colony Optimization PID (ACO-PID), PID, Bacteria-Foraging Optimization PID (BFO-PID) etc makes ABO-PID a good addition to solving PID Controller tuning problems using metaheuristics.
Intervertebral disc detection in X-ray images using faster R-CNN.
Ruhan Sa; Owens, William; Wiegand, Raymond; Studin, Mark; Capoferri, Donald; Barooha, Kenneth; Greaux, Alexander; Rattray, Robert; Hutton, Adam; Cintineo, John; Chaudhary, Vipin
2017-07-01
Automatic identification of specific osseous landmarks on the spinal radiograph can be used to automate calculations for correcting ligament instability and injury, which affect 75% of patients injured in motor vehicle accidents. In this work, we propose to use deep learning based object detection method as the first step towards identifying landmark points in lateral lumbar X-ray images. The significant breakthrough of deep learning technology has made it a prevailing choice for perception based applications, however, the lack of large annotated training dataset has brought challenges to utilizing the technology in medical image processing field. In this work, we propose to fine tune a deep network, Faster-RCNN, a state-of-the-art deep detection network in natural image domain, using small annotated clinical datasets. In the experiment we show that, by using only 81 lateral lumbar X-Ray training images, one can achieve much better performance compared to traditional sliding window detection method on hand crafted features. Furthermore, we fine-tuned the network using 974 training images and tested on 108 images, which achieved average precision of 0.905 with average computation time of 3 second per image, which greatly outperformed traditional methods in terms of accuracy and efficiency.
Impact of Degree Heterogeneity on Attack Vulnerability of Interdependent Networks
NASA Astrophysics Data System (ADS)
Sun, Shiwen; Wu, Yafang; Ma, Yilin; Wang, Li; Gao, Zhongke; Xia, Chengyi
2016-09-01
The study of interdependent networks has become a new research focus in recent years. We focus on one fundamental property of interdependent networks: vulnerability. Previous studies mainly focused on the impact of topological properties upon interdependent networks under random attacks, the effect of degree heterogeneity on structural vulnerability of interdependent networks under intentional attacks, however, is still unexplored. In order to deeply understand the role of degree distribution and in particular degree heterogeneity, we construct an interdependent system model which consists of two networks whose extent of degree heterogeneity can be controlled simultaneously by a tuning parameter. Meanwhile, a new quantity, which can better measure the performance of interdependent networks after attack, is proposed. Numerical simulation results demonstrate that degree heterogeneity can significantly increase the vulnerability of both single and interdependent networks. Moreover, it is found that interdependent links between two networks make the entire system much more fragile to attacks. Enhancing coupling strength between networks can greatly increase the fragility of both networks against targeted attacks, which is most evident under the case of max-max assortative coupling. Current results can help to deepen the understanding of structural complexity of complex real-world systems.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Penas, David R; González, Patricia; Egea, Jose A; Doallo, Ramón; Banga, Julio R
2017-01-21
The development of large-scale kinetic models is one of the current key issues in computational systems biology and bioinformatics. Here we consider the problem of parameter estimation in nonlinear dynamic models. Global optimization methods can be used to solve this type of problems but the associated computational cost is very large. Moreover, many of these methods need the tuning of a number of adjustable search parameters, requiring a number of initial exploratory runs and therefore further increasing the computation times. Here we present a novel parallel method, self-adaptive cooperative enhanced scatter search (saCeSS), to accelerate the solution of this class of problems. The method is based on the scatter search optimization metaheuristic and incorporates several key new mechanisms: (i) asynchronous cooperation between parallel processes, (ii) coarse and fine-grained parallelism, and (iii) self-tuning strategies. The performance and robustness of saCeSS is illustrated by solving a set of challenging parameter estimation problems, including medium and large-scale kinetic models of the bacterium E. coli, bakerés yeast S. cerevisiae, the vinegar fly D. melanogaster, Chinese Hamster Ovary cells, and a generic signal transduction network. The results consistently show that saCeSS is a robust and efficient method, allowing very significant reduction of computation times with respect to several previous state of the art methods (from days to minutes, in several cases) even when only a small number of processors is used. The new parallel cooperative method presented here allows the solution of medium and large scale parameter estimation problems in reasonable computation times and with small hardware requirements. Further, the method includes self-tuning mechanisms which facilitate its use by non-experts. We believe that this new method can play a key role in the development of large-scale and even whole-cell dynamic models.
An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
2007-01-01
A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine's performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.
An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
2007-01-01
A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least-squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.
An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
2005-01-01
A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends upon knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined which accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.
Si, Lei; Wang, Zhongbin; Yang, Yinwei
2014-01-01
In order to efficiently and accurately adjust the shearer traction speed, a novel approach based on Takagi-Sugeno (T-S) cloud inference network (CIN) and improved particle swarm optimization (IPSO) is proposed. The T-S CIN is built through the combination of cloud model and T-S fuzzy neural network. Moreover, the IPSO algorithm employs parameter automation adjustment strategy and velocity resetting to significantly improve the performance of basic PSO algorithm in global search and fine-tuning of the solutions, and the flowchart of proposed approach is designed. Furthermore, some simulation examples are carried out and comparison results indicate that the proposed method is feasible, efficient, and is outperforming others. Finally, an industrial application example of coal mining face is demonstrated to specify the effect of proposed system. PMID:25506358
Solving large scale traveling salesman problems by chaotic neurodynamics.
Hasegawa, Mikio; Ikeguch, Tohru; Aihara, Kazuyuki
2002-03-01
We propose a novel approach for solving large scale traveling salesman problems (TSPs) by chaotic dynamics. First, we realize the tabu search on a neural network, by utilizing the refractory effects as the tabu effects. Then, we extend it to a chaotic neural network version. We propose two types of chaotic searching methods, which are based on two different tabu searches. While the first one requires neurons of the order of n2 for an n-city TSP, the second one requires only n neurons. Moreover, an automatic parameter tuning method of our chaotic neural network is presented for easy application to various problems. Last, we show that our method with n neurons is applicable to large TSPs such as an 85,900-city problem and exhibits better performance than the conventional stochastic searches and the tabu searches.
van der Lee, J H; Svrcek, W Y; Young, B R
2008-01-01
Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.
Booij, Sanne H; Wichers, Marieke; de Jonge, Peter; Sytema, Sjoerd; van Os, Jim; Wunderink, Lex; Wigman, Johanna T W
2018-01-21
Our current ability to predict the course and outcome of early psychotic symptoms is limited, hampering timely treatment. To improve our understanding of the development of psychosis, a different approach to psychopathology may be productive. We propose to reconceptualise psychopathology from a network perspective, according to which symptoms act as a dynamic, interconnected system, impacting on each other over time and across diagnostic boundaries to form symptom networks. Adopting this network approach, the Mapping Individual Routes of Risk and Resilience study aims to determine whether characteristics of symptom networks can predict illness course and outcome of early psychotic symptoms. The sample consists of n=100 participants aged 18-35 years, divided into four subgroups (n=4×25) with increasing levels of severity of psychopathology, representing successive stages of clinical progression. Individuals representing the initial stage have a relatively low expression of psychotic experiences (general population), whereas individuals representing the end stage are help seeking and display a psychometric expression of psychosis, putting them at ultra-high risk for transition to psychotic disorder. At baseline and 1-year follow-up, participants report their symptoms, affective states and experiences for three consecutive months in short, daily questionnaires on their smartphone, which will be used to map individual networks. Network parameters, including the strength and directionality of symptom connections and centrality indices, will be estimated and associated to individual differences in and within-individual progression through stages of clinical severity and functioning over the next 3 years. The study has been approved by the local medical ethical committee (ABR no. NL52974.042.15). The results of the study will be published in (inter)national peer-reviewed journals, presented at research, clinical and general public conferences. The results will assist in improving and fine-tuning dynamic models of psychopathology, stimulating both clinical and scientific progress. NTR6205 ; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Deficient GABAergic gliotransmission may cause broader sensory tuning in schizophrenia.
Hoshino, Osamu
2013-12-01
We examined how the depression of intracortical inhibition due to a reduction in ambient GABA concentration impairs perceptual information processing in schizophrenia. A neural network model with a gliotransmission-mediated ambient GABA regulatory mechanism was simulated. In the network, interneuron-to-glial-cell and principal-cell-to-glial-cell synaptic contacts were made. The former hyperpolarized glial cells and let their transporters import (remove) GABA from the extracellular space, thereby lowering ambient GABA concentration, reducing extrasynaptic GABAa receptor-mediated tonic inhibitory current, and thus exciting principal cells. In contrast, the latter depolarized the glial cells and let the transporters export GABA into the extracellular space, thereby elevating the ambient GABA concentration and thus inhibiting the principal cells. A reduction in ambient GABA concentration was assumed for a schizophrenia network. Multiple dynamic cell assemblies were organized as sensory feature columns. Each cell assembly responded to one specific feature stimulus. The tuning performance of the network to an applied feature stimulus was evaluated in relation to the level of ambient GABA. Transporter-deficient glial cells caused a deficit in GABAergic gliotransmission and reduced ambient GABA concentration, which markedly deteriorated the tuning performance of the network, broadening the sensory tuning. Interestingly, the GABAergic gliotransmission mechanism could regulate local ambient GABA levels: it augmented ambient GABA around stimulus-irrelevant principal cells, while reducing ambient GABA around stimulus-relevant principal cells, thereby ensuring their selective responsiveness to the applied stimulus. We suggest that a deficit in GABAergic gliotransmission may cause a reduction in ambient GABA concentration, leading to a broadening of sensory tuning in schizophrenia. The GABAergic gliotransmission mechanism proposed here may have an important role in the regulation of local ambient GABA levels, thereby improving the sensory tuning performance of the cortex.
McDermott, W R; Tri, J L; Mitchell, M P; Levens, S P; Wondrow, M A; Huie, L M; Khandheria, B K; Gilbert, B K
1999-01-01
A high data rate terrestrial and satellite network was implemented to transfer medical images and data. This article describes the a optimization of the workstations and switching equipment incorporated into the network. Topics discussed in this article include tuning of the network software, the configuration of the Sun Microsystems workstations, the FORE Systems asynchronous transfer mode switches, as well as the throughput results of two telemedicine experiments undertaken by Mayo's physician staff. The technical staff was successful in achieving the data throughput needed by the telemedicine software; particularly important was the proper determination of peak throughput and TCP window sizes to ensure optimum use of the resources available on the Sun Microsystems and Hewlett Packard workstations.
Cough event classification by pretrained deep neural network.
Liu, Jia-Ming; You, Mingyu; Wang, Zheng; Li, Guo-Zheng; Xu, Xianghuai; Qiu, Zhongmin
2015-01-01
Cough is an essential symptom in respiratory diseases. In the measurement of cough severity, an accurate and objective cough monitor is expected by respiratory disease society. This paper aims to introduce a better performed algorithm, pretrained deep neural network (DNN), to the cough classification problem, which is a key step in the cough monitor. The deep neural network models are built from two steps, pretrain and fine-tuning, followed by a Hidden Markov Model (HMM) decoder to capture tamporal information of the audio signals. By unsupervised pretraining a deep belief network, a good initialization for a deep neural network is learned. Then the fine-tuning step is a back propogation tuning the neural network so that it can predict the observation probability associated with each HMM states, where the HMM states are originally achieved by force-alignment with a Gaussian Mixture Model Hidden Markov Model (GMM-HMM) on the training samples. Three cough HMMs and one noncough HMM are employed to model coughs and noncoughs respectively. The final decision is made based on viterbi decoding algorihtm that generates the most likely HMM sequence for each sample. A sample is labeled as cough if a cough HMM is found in the sequence. The experiments were conducted on a dataset that was collected from 22 patients with respiratory diseases. Patient dependent (PD) and patient independent (PI) experimental settings were used to evaluate the models. Five criteria, sensitivity, specificity, F1, macro average and micro average are shown to depict different aspects of the models. From overall evaluation criteria, the DNN based methods are superior to traditional GMM-HMM based method on F1 and micro average with maximal 14% and 11% error reduction in PD and 7% and 10% in PI, meanwhile keep similar performances on macro average. They also surpass GMM-HMM model on specificity with maximal 14% error reduction on both PD and PI. In this paper, we tried pretrained deep neural network in cough classification problem. Our results showed that comparing with the conventional GMM-HMM framework, the HMM-DNN could get better overall performance on cough classification task.
A practical iterative PID tuning method for mechanical systems using parameter chart
NASA Astrophysics Data System (ADS)
Kang, M.; Cheong, J.; Do, H. M.; Son, Y.; Niculescu, S.-I.
2017-10-01
In this paper, we propose a method of iterative proportional-integral-derivative parameter tuning for mechanical systems that possibly possess hidden mechanical resonances, using a parameter chart which visualises the closed-loop characteristics in a 2D parameter space. We employ a hypothetical assumption that the considered mechanical systems have their upper limit of the derivative feedback gain, from which the feasible region in the parameter chart becomes fairly reduced and thus the gain selection can be extremely simplified. Then, a two-directional parameter search is carried out within the feasible region in order to find the best set of parameters. Experimental results show the validity of the assumption used and the proposed parameter tuning method.
An automatic and effective parameter optimization method for model tuning
NASA Astrophysics Data System (ADS)
Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.
2015-11-01
Physical parameterizations in general circulation models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time-consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determining the model's sensitivity to the parameters and the other choosing the optimum initial value for those sensitive parameters, are introduced before the downhill simplex method. This new method reduces the number of parameters to be tuned and accelerates the convergence of the downhill simplex method. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.
Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang
2018-01-01
Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Semantic priming of familiar songs.
Johnson, Sarah K; Halpern, Andrea R
2012-05-01
We explored the functional organization of semantic memory for music by comparing priming across familiar songs both within modalities (Experiment 1, tune to tune; Experiment 3, category label to lyrics) and across modalities (Experiment 2, category label to tune; Experiment 4, tune to lyrics). Participants judged whether or not the target tune or lyrics were real (akin to lexical decision tasks). We found significant priming, analogous to linguistic associative-priming effects, in reaction times for related primes as compared to unrelated primes, but primarily for within-modality comparisons. Reaction times to tunes (e.g., "Silent Night") were faster following related tunes ("Deck the Hall") than following unrelated tunes ("God Bless America"). However, a category label (e.g., Christmas) did not prime tunes from within that category. Lyrics were primed by a related category label, but not by a related tune. These results support the conceptual organization of music in semantic memory, but with potentially weaker associations across modalities.
A NARX damper model for virtual tuning of automotive suspension systems with high-frequency loading
NASA Astrophysics Data System (ADS)
Alghafir, M. N.; Dunne, J. F.
2012-02-01
A computationally efficient NARX-type neural network model is developed to characterise highly nonlinear frequency-dependent thermally sensitive hydraulic dampers for use in the virtual tuning of passive suspension systems with high-frequency loading. Three input variables are chosen to account for high-frequency kinematics and temperature variations arising from continuous vehicle operation over non-smooth surfaces such as stone-covered streets, rough or off-road conditions. Two additional input variables are chosen to represent tuneable valve parameters. To assist in the development of the NARX model, a highly accurate but computationally excessive physical damper model [originally proposed by S. Duym and K. Reybrouck, Physical characterization of non-linear shock absorber dynamics, Eur. J. Mech. Eng. M 43(4) (1998), pp. 181-188] is extended to allow for high-frequency input kinematics. Experimental verification of this extended version uses measured damper data obtained from an industrial damper test machine under near-isothermal conditions for fixed valve settings, with input kinematics corresponding to harmonic and random road profiles. The extended model is then used only for simulating data for training and testing the NARX model with specified temperature profiles and different valve parameters, both in isolation and within quarter-car vehicle simulations. A heat generation and dissipation model is also developed and experimentally verified for use within the simulations. Virtual tuning using the quarter-car simulation model then exploits the NARX damper to achieve a compromise between ride and handling under transient thermal conditions with harmonic and random road profiles. For quarter-car simulations, the paper shows that a single tuneable NARX damper makes virtual tuning computationally very attractive.
Digital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness.
Hribar, Kolin C; Choi, Yu Suk; Ondeck, Matthew; Engler, Adam J; Chen, Shaochen
2014-08-20
The mechanical properties of the extracellular matrix (ECM) can dictate cell fate in biological systems. In tissue engineering, varying the stiffness of hydrogels-water-swollen polymeric networks that act as ECM substrates-has previously been demonstrated to control cell migration, proliferation, and differentiation. Here, "digital plasmonic patterning" (DPP) is developed to mechanically alter a hydrogel encapsulated with gold nanorods using a near-infrared laser, according to a digital (computer-generated) pattern. DPP can provide orders of magnitude changes in stiffness, and can be tuned by laser intensity and speed of writing. In vitro cellular experiments using A7R5 smooth muscle cells confirm cell migration and alignment according to these patterns, making DPP a useful technique for mechanically patterning hydrogels for various biomedical applications.
Liao, Fei; Yuan, Hong; Du, Ke-Jie; You, Yong; Gao, Shu-Qin; Wen, Ge-Bo; Lin, Ying-Wu; Tan, Xiangshi
2016-10-20
A hydrogen-bond (H-bond) network, specifically a Tyr-associated H-bond network, plays key roles in regulating the structure and function of proteins, as exemplified by abundant heme proteins in nature. To explore an approach for fine-tuning the structure and function of artificial heme proteins, we herein used myoglobin (Mb) as a model protein and introduced a Tyr residue in the secondary sphere of the heme active site at two different positions (107 and 138). We performed X-ray crystallography, UV-Vis spectroscopy, stopped-flow kinetics, and electron paramagnetic resonance (EPR) studies for the two single mutants, I107Y Mb and F138Y Mb, and compared to that of wild-type Mb under the same conditions. The results showed that both Tyr107 and Tyr138 form a distinct H-bond network involving water molecules and neighboring residues, which fine-tunes ligand binding to the heme iron and enhances the protein stability, respectively. Moreover, the Tyr107-associated H-bond network was shown to fine-tune both H2O2 binding and activation. With two cases demonstrated for Mb, this study suggests that the Tyr-associated H-bond network has distinct roles in regulating the protein structure, properties and functions, depending on its location in the protein scaffold. Therefore, it is possible to design a Tyr-associated H-bond network in general to create other artificial heme proteins with improved properties and functions.
Toward Optimal Transport Networks
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.
2008-01-01
Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.
Engineering tough, highly compressible, biodegradable hydrogels by tuning the network architecture.
Gu, Dunyin; Tan, Shereen; Xu, Chenglong; O'Connor, Andrea J; Qiao, Greg G
2017-06-20
By precisely tuning the network architecture, tough, highly compressible hydrogels were engineered. The hydrogels were made by interconnecting high-functionality hydrophobic domains through linear tri-block chains, consisting of soft hydrophilic middle blocks, flanked with flexible hydrophobic blocks. In showing their applicability, the efficient encapsulation and prolonged release of hydrophobic drugs were achieved.
Capsule implosion optimization during the indirect-drive National Ignition Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landen, O. L.; Edwards, J.; Haan, S. W.
2011-05-15
Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analyticmore » models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.« less
NASA Astrophysics Data System (ADS)
Maimone, F.; Celona, L.; Lang, R.; Mäder, J.; Roßbach, J.; Spädtke, P.; Tinschert, K.
2011-12-01
The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.
Maimone, F; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Tinschert, K
2011-12-01
The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.
Longitudinal control of aircraft dynamics based on optimization of PID parameters
NASA Astrophysics Data System (ADS)
Deepa, S. N.; Sudha, G.
2016-03-01
Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.
Veksler, Vladislav D.; Buchler, Norbou; Hoffman, Blaine E.; Cassenti, Daniel N.; Sample, Char; Sugrim, Shridat
2018-01-01
Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting. PMID:29867661
A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems.
Horio, Yoshihiko; Ikeguchi, Tohru; Aihara, Kazuyuki
2005-01-01
We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.
The Art and Science of Climate Model Tuning
Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew; ...
2017-03-31
The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less
The Art and Science of Climate Model Tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew
The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less
Extending the Peak Bandwidth of Parameters for Softmax Selection in Reinforcement Learning.
Iwata, Kazunori
2016-05-11
Softmax selection is one of the most popular methods for action selection in reinforcement learning. Although various recently proposed methods may be more effective with full parameter tuning, implementing a complicated method that requires the tuning of many parameters can be difficult. Thus, softmax selection is still worth revisiting, considering the cost savings of its implementation and tuning. In fact, this method works adequately in practice with only one parameter appropriately set for the environment. The aim of this paper is to improve the variable setting of this method to extend the bandwidth of good parameters, thereby reducing the cost of implementation and parameter tuning. To achieve this, we take advantage of the asymptotic equipartition property in a Markov decision process to extend the peak bandwidth of softmax selection. Using a variety of episodic tasks, we show that our setting is effective in extending the bandwidth and that it yields a better policy in terms of stability. The bandwidth is quantitatively assessed in a series of statistical tests.
Self-healing multiphase polymers via dynamic metal-ligand interactions.
Mozhdehi, Davoud; Ayala, Sergio; Cromwell, Olivia R; Guan, Zhibin
2014-11-19
A new self-healing multiphase polymer is developed in which a pervasive network of dynamic metal-ligand (zinc-imidazole) interactions are programmed in the soft matrix of a hard/soft two-phase brush copolymer system. The mechanical and dynamic properties of the materials can be tuned by varying a number of molecular parameters (e.g., backbone/brush degree of polymerization and brush density) as well as the ligand/metal ratio. Following mechanical damage, these thermoplastic elastomers show excellent self-healing ability under ambient conditions without any intervention.
Li, Chen; Nagasaki, Masao; Koh, Chuan Hock; Miyano, Satoru
2011-05-01
Mathematical modeling and simulation studies are playing an increasingly important role in helping researchers elucidate how living organisms function in cells. In systems biology, researchers typically tune many parameters manually to achieve simulation results that are consistent with biological knowledge. This severely limits the size and complexity of simulation models built. In order to break this limitation, we propose a computational framework to automatically estimate kinetic parameters for a given network structure. We utilized an online (on-the-fly) model checking technique (which saves resources compared to the offline approach), with a quantitative modeling and simulation architecture named hybrid functional Petri net with extension (HFPNe). We demonstrate the applicability of this framework by the analysis of the underlying model for the neuronal cell fate decision model (ASE fate model) in Caenorhabditis elegans. First, we built a quantitative ASE fate model containing 3327 components emulating nine genetic conditions. Then, using our developed efficient online model checker, MIRACH 1.0, together with parameter estimation, we ran 20-million simulation runs, and were able to locate 57 parameter sets for 23 parameters in the model that are consistent with 45 biological rules extracted from published biological articles without much manual intervention. To evaluate the robustness of these 57 parameter sets, we run another 20 million simulation runs using different magnitudes of noise. Our simulation results concluded that among these models, one model is the most reasonable and robust simulation model owing to the high stability against these stochastic noises. Our simulation results provide interesting biological findings which could be used for future wet-lab experiments.
Image texture segmentation using a neural network
NASA Astrophysics Data System (ADS)
Sayeh, Mohammed R.; Athinarayanan, Ragu; Dhali, Pushpuak
1992-09-01
In this paper we use a neural network called the Lyapunov associative memory (LYAM) system to segment image texture into different categories or clusters. The LYAM system is constructed by a set of ordinary differential equations which are simulated on a digital computer. The clustering can be achieved by using a single tuning parameter in the simplest model. Pattern classes are represented by the stable equilibrium states of the system. Design of the system is based on synthesizing two local energy functions, namely, the learning and recall energy functions. Before the implementation of the segmentation process, a Gauss-Markov random field (GMRF) model is applied to the raw image. This application suitably reduces the image data and prepares the texture information for the neural network process. We give a simple image example illustrating the capability of the technique. The GMRF-generated features are also used for a clustering, based on the Euclidean distance.
Topological dimension tunes activity patterns in hierarchical modular networks
NASA Astrophysics Data System (ADS)
Safari, Ali; Moretti, Paolo; Muñoz, Miguel A.
2017-11-01
Connectivity patterns of relevance in neuroscience and systems biology can be encoded in hierarchical modular networks (HMNs). Recent studies highlight the role of hierarchical modular organization in shaping brain activity patterns, providing an excellent substrate to promote both segregation and integration of neural information. Here, we propose an extensive analysis of the critical spreading rate (or ‘epidemic’ threshold)—separating a phase with endemic persistent activity from one in which activity ceases—on diverse HMNs. By employing analytical and computational techniques we determine the nature of such a threshold and scrutinize how it depends on general structural features of the underlying HMN. We critically discuss the extent to which current graph-spectral methods can be applied to predict the onset of spreading in HMNs and, most importantly, we elucidate the role played by the network topological dimension as a relevant and unifying structural parameter, controlling the epidemic threshold.
Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.
Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza
2015-11-01
In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Ruqi; Xu, Bing; Zhang, Junhui; Cheng, Min
2017-08-01
Independent metering control systems are promising fluid power technologies compared with traditional valve controlled systems. By breaking the mechanical coupling between the inlet and outlet, the meter-out valve can open as large as possible to reduce energy consumptions. However, the lack of damping in outlet causes stronger vibrations. To address the problem, the paper designs a hybrid control method combining dynamic pressure-feedback and active damping control. The innovation resides in the optimization of damping by introducing pressure feedback to make trade-offs between high stability and fast response. To achieve this goal, the dynamic response pertaining to the control parameters consisting of feedback gain and cut-off frequency, are analyzed via pole-zero locations. Accordingly, these parameters are tuned online in terms of guaranteed dominant pole placement such that the optimal damping can be accurately captured under a considerable variation of operating conditions. The experiment is deployed in a mini-excavator. The results pertaining to different control parameters confirm the theoretical expectations via pole-zero locations. By using proposed self-tuning controller, the vibrations are almost eliminated after only one overshoot for different operation conditions. The overshoots are also reduced with less decrease of the response time. In addition, the energy-saving capability of independent metering system is still not affected by the improvement of controllability.
Tuning a physically-based model of the air-sea gas transfer velocity
NASA Astrophysics Data System (ADS)
Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.
Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.
Overlapping Modularity at the Critical Point of k-Clique Percolation
NASA Astrophysics Data System (ADS)
Tóth, Bálint; Vicsek, Tamás; Palla, Gergely
2013-05-01
One of the most remarkable social phenomena is the formation of communities in social networks corresponding to families, friendship circles, work teams, etc. Since people usually belong to several different communities at the same time, the induced overlaps result in an extremely complicated web of the communities themselves. Thus, uncovering the intricate community structure of social networks is a non-trivial task with great potential for practical applications, gaining a notable interest in the recent years. The Clique Percolation Method (CPM) is one of the earliest overlapping community finding methods, which was already used in the analysis of several different social networks. In this approach the communities correspond to k-clique percolation clusters, and the general heuristic for setting the parameters of the method is to tune the system just below the critical point of k-clique percolation. However, this rule is based on simple physical principles and its validity was never subject to quantitative analysis. Here we examine the quality of the partitioning in the vicinity of the critical point using recently introduced overlapping modularity measures. According to our results on real social and other networks, the overlapping modularities show a maximum close to the critical point, justifying the original criteria for the optimal parameter settings.
Analysis of filter tuning techniques for sequential orbit determination
NASA Technical Reports Server (NTRS)
Lee, T.; Yee, C.; Oza, D.
1995-01-01
This paper examines filter tuning techniques for a sequential orbit determination (OD) covariance analysis. Recently, there has been a renewed interest in sequential OD, primarily due to the successful flight qualification of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) using Doppler data extracted onboard the Extreme Ultraviolet Explorer (EUVE) spacecraft. TONS computes highly accurate orbit solutions onboard the spacecraft in realtime using a sequential filter. As the result of the successful TONS-EUVE flight qualification experiment, the Earth Observing System (EOS) AM-1 Project has selected TONS as the prime navigation system. In addition, sequential OD methods can be used successfully for ground OD. Whether data are processed onboard or on the ground, a sequential OD procedure is generally favored over a batch technique when a realtime automated OD system is desired. Recently, OD covariance analyses were performed for the TONS-EUVE and TONS-EOS missions using the sequential processing options of the Orbit Determination Error Analysis System (ODEAS). ODEAS is the primary covariance analysis system used by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). The results of these analyses revealed a high sensitivity of the OD solutions to the state process noise filter tuning parameters. The covariance analysis results show that the state estimate error contributions from measurement-related error sources, especially those due to the random noise and satellite-to-satellite ionospheric refraction correction errors, increase rapidly as the state process noise increases. These results prompted an in-depth investigation of the role of the filter tuning parameters in sequential OD covariance analysis. This paper analyzes how the spacecraft state estimate errors due to dynamic and measurement-related error sources are affected by the process noise level used. This information is then used to establish guidelines for determining optimal filter tuning parameters in a given sequential OD scenario for both covariance analysis and actual OD. Comparisons are also made with corresponding definitive OD results available from the TONS-EUVE analysis.
Meta-Learning Approach for Automatic Parameter Tuning: A Case Study with Educational Datasets
ERIC Educational Resources Information Center
Molina, M. M.; Luna, J. M.; Romero, C.; Ventura, S.
2012-01-01
This paper proposes to the use of a meta-learning approach for automatic parameter tuning of a well-known decision tree algorithm by using past information about algorithm executions. Fourteen educational datasets were analysed using various combinations of parameter values to examine the effects of the parameter values on accuracy classification.…
Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Massonnet, F.; Goosse, H.; Fichefet, T.; Counillon, F.
2014-07-01
The choice of parameter values is crucial in the course of sea ice model development, since parameters largely affect the modeled mean sea ice state. Manual tuning of parameters will soon become impractical, as sea ice models will likely include more parameters to calibrate, leading to an exponential increase of the number of possible combinations to test. Objective and automatic methods for parameter calibration are thus progressively called on to replace the traditional heuristic, "trial-and-error" recipes. Here a method for calibration of parameters based on the ensemble Kalman filter is implemented, tested and validated in the ocean-sea ice model NEMO-LIM3. Three dynamic parameters are calibrated: the ice strength parameter P*, the ocean-sea ice drag parameter Cw, and the atmosphere-sea ice drag parameter Ca. In twin, perfect-model experiments, the default parameter values are retrieved within 1 year of simulation. Using 2007-2012 real sea ice drift data, the calibration of the ice strength parameter P* and the oceanic drag parameter Cw improves clearly the Arctic sea ice drift properties. It is found that the estimation of the atmospheric drag Ca is not necessary if P* and Cw are already estimated. The large reduction in the sea ice speed bias with calibrated parameters comes with a slight overestimation of the winter sea ice areal export through Fram Strait and a slight improvement in the sea ice thickness distribution. Overall, the estimation of parameters with the ensemble Kalman filter represents an encouraging alternative to manual tuning for ocean-sea ice models.
Rennerfeldt, Deena A; Renth, Amanda N; Talata, Zsolt; Gehrke, Stevin H; Detamore, Michael S
2013-11-01
Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells. © 2013 Elsevier Ltd. All rights reserved.
A network monitor for HTTPS protocol based on proxy
NASA Astrophysics Data System (ADS)
Liu, Yangxin; Zhang, Lingcui; Zhou, Shuguang; Li, Fenghua
2016-10-01
With the explosive growth of harmful Internet information such as pornography, violence, and hate messages, network monitoring is essential. Traditional network monitors is based mainly on bypass monitoring. However, we can't filter network traffic using bypass monitoring. Meanwhile, only few studies focus on the network monitoring for HTTPS protocol. That is because HTTPS data is in the encrypted traffic, which makes it difficult to monitor. This paper proposes a network monitor for HTTPS protocol based on proxy. We adopt OpenSSL to establish TLS secure tunes between clients and servers. Epoll is used to handle a large number of concurrent client connections. We also adopt Knuth- Morris-Pratt string searching algorithm (or KMP algorithm) to speed up the search process. Besides, we modify request packets to reduce the risk of errors and modify response packets to improve security. Experiments show that our proxy can monitor the content of all tested HTTPS websites efficiently with little loss of network performance.
Designing allostery-inspired response in mechanical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocks, Jason W.; Pashine, Nidhi; Bischofberger, Irmgard
Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are then able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ~1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individualmore » response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.« less
Designing allostery-inspired response in mechanical networks
Rocks, Jason W.; Pashine, Nidhi; Bischofberger, Irmgard; ...
2017-02-21
Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are then able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ~1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individualmore » response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.« less
Designing allostery-inspired response in mechanical networks
Rocks, Jason W.; Pashine, Nidhi; Bischofberger, Irmgard; Goodrich, Carl P.; Liu, Andrea J.; Nagel, Sidney R.
2017-01-01
Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ∼1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individual response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks. PMID:28223534
Designing allostery-inspired response in mechanical networks.
Rocks, Jason W; Pashine, Nidhi; Bischofberger, Irmgard; Goodrich, Carl P; Liu, Andrea J; Nagel, Sidney R
2017-03-07
Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ∼1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individual response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.
Approximate reasoning-based learning and control for proximity operations and docking in space
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Jani, Yashvant; Lea, Robert N.
1991-01-01
A recently proposed hybrid-neutral-network and fuzzy-logic-control architecture is applied to a fuzzy logic controller developed for attitude control of the Space Shuttle. A model using reinforcement learning and learning from past experience for fine-tuning its knowledge base is proposed. Two main components of this approximate reasoning-based intelligent control (ARIC) model - an action-state evaluation network and action selection network are described as well as the Space Shuttle attitude controller. An ARIC model for the controller is presented, and it is noted that the input layer in each network includes three nodes representing the angle error, angle error rate, and bias node. Preliminary results indicate that the controller can hold the pitch rate within its desired deadband and starts to use the jets at about 500 sec in the run.
NASA Astrophysics Data System (ADS)
Svensson, Urban; Löfgren, Martin; Trinchero, Paolo; Selroos, Jan-Olof
2018-04-01
In sparsely fractured rock, the ubiquitous heterogeneity of the matrix, which has been observed in different laboratory and in situ experiments, has been shown to have a significant influence on retardation mechanisms that are of importance for the safety of deep geological repositories for nuclear waste. Here, we propose a conceptualisation of a typical heterogeneous granitic rock matrix based on micro-Discrete Fracture Networks (micro-DFN). Different sets of fractures are used to represent grain-boundary pores as well as micro fractures that transect different mineral grains. The micro-DFN model offers a great flexibility in the way inter- and intra-granular space is represented as the different parameters that characterise each fracture set can be fine tuned to represent samples of different characteristics. Here, the parameters of the model have been calibrated against experimental observations from granitic rock samples taken at Forsmark (Sweden) and different variant cases have been used to illustrate how the model can be tied to rock samples with different attributes. Numerical through-diffusion simulations have been carried out to infer the bulk properties of the model as well as to compare the computed mass flux with the experimental data from an analogous laboratory experiment. The general good agreement between the model results and the experimental observations shows that the model presented here is a reliable tool for the understanding of retardation mechanisms occurring at the mm-scale in the matrix.
Tuning and History: A Personal Overview
ERIC Educational Resources Information Center
Isaacs, Ann Katherine
2017-01-01
The text places Tuning History in the context of the rapidly developing international collaboration among historians which began in Europe in 1989, with the ECTS Pilot project, and continued, from 2000 on, with the European History Networks (for research and for curriculum development) working in parallel and in collaboration with Tuning, in…
2014-01-01
Background Accurate estimation of parameters of biochemical models is required to characterize the dynamics of molecular processes. This problem is intimately linked to identifying the most informative experiments for accomplishing such tasks. While significant progress has been made, effective experimental strategies for parameter identification and for distinguishing among alternative network topologies remain unclear. We approached these questions in an unbiased manner using a unique community-based approach in the context of the DREAM initiative (Dialogue for Reverse Engineering Assessment of Methods). We created an in silico test framework under which participants could probe a network with hidden parameters by requesting a range of experimental assays; results of these experiments were simulated according to a model of network dynamics only partially revealed to participants. Results We proposed two challenges; in the first, participants were given the topology and underlying biochemical structure of a 9-gene regulatory network and were asked to determine its parameter values. In the second challenge, participants were given an incomplete topology with 11 genes and asked to find three missing links in the model. In both challenges, a budget was provided to buy experimental data generated in silico with the model and mimicking the features of different common experimental techniques, such as microarrays and fluorescence microscopy. Data could be bought at any stage, allowing participants to implement an iterative loop of experiments and computation. Conclusions A total of 19 teams participated in this competition. The results suggest that the combination of state-of-the-art parameter estimation and a varied set of experimental methods using a few datasets, mostly fluorescence imaging data, can accurately determine parameters of biochemical models of gene regulation. However, the task is considerably more difficult if the gene network topology is not completely defined, as in challenge 2. Importantly, we found that aggregating independent parameter predictions and network topology across submissions creates a solution that can be better than the one from the best-performing submission. PMID:24507381
Learning to Estimate Dynamical State with Probabilistic Population Codes.
Makin, Joseph G; Dichter, Benjamin K; Sabes, Philip N
2015-11-01
Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH)-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.
NASA Astrophysics Data System (ADS)
Lähivaara, Timo; Kärkkäinen, Leo; Huttunen, Janne M. J.; Hesthaven, Jan S.
2018-02-01
We study the feasibility of data based machine learning applied to ultrasound tomography to estimate water-saturated porous material parameters. In this work, the data to train the neural networks is simulated by solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, we consider a high-order discontinuous Galerkin method while deep convolutional neural networks are used to solve the parameter estimation problem. In the numerical experiment, we estimate the material porosity and tortuosity while the remaining parameters which are of less interest are successfully marginalized in the neural networks-based inversion. Computational examples confirms the feasibility and accuracy of this approach.
He, ZeFang; Zhao, Long
2014-01-01
An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement.
Predictive design and interpretation of colliding pulse injected laser wakefield experiments
NASA Astrophysics Data System (ADS)
Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.
2010-11-01
The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.
A Distributed Transmission Rate Adjustment Algorithm in Heterogeneous CSMA/CA Networks
Xie, Shuanglong; Low, Kay Soon; Gunawan, Erry
2015-01-01
Distributed transmission rate tuning is important for a wide variety of IEEE 802.15.4 network applications such as industrial network control systems. Such systems often require each node to sustain certain throughput demand in order to guarantee the system performance. It is thus essential to determine a proper transmission rate that can meet the application requirement and compensate for network imperfections (e.g., packet loss). Such a tuning in a heterogeneous network is difficult due to the lack of modeling techniques that can deal with the heterogeneity of the network as well as the network traffic changes. In this paper, a distributed transmission rate tuning algorithm in a heterogeneous IEEE 802.15.4 CSMA/CA network is proposed. Each node uses the results of clear channel assessment (CCA) to estimate the busy channel probability. Then a mathematical framework is developed to estimate the on-going heterogeneous traffics using the busy channel probability at runtime. Finally a distributed algorithm is derived to tune the transmission rate of each node to accurately meet the throughput requirement. The algorithm does not require modifications on IEEE 802.15.4 MAC layer and it has been experimentally implemented and extensively tested using TelosB nodes with the TinyOS protocol stack. The results reveal that the algorithm is accurate and can satisfy the throughput demand. Compared with existing techniques, the algorithm is fully distributed and thus does not require any central coordination. With this property, it is able to adapt to traffic changes and re-adjust the transmission rate to the desired level, which cannot be achieved using the traditional modeling techniques. PMID:25822140
NASA Astrophysics Data System (ADS)
Hofmann, Daniela I.; Fabian, Karl; Schmieder, Frank; Donner, Barbara; Bleil, Ulrich
2005-12-01
Computer aided multi-parameter signal correlation is used to develop a common high-precision age model for eight gravity cores from the subtropical and subantarctic South Atlantic. Since correlations between all pairs of multi-parameter sequences are used, and correlation errors between core pairs ( A, B) and ( B, C) are controlled by comparison with ( A, C), the resulting age model is called a stratigraphic network. Precise inter-core correlation is achieved using high-resolution records of magnetic susceptibility κ, wet bulk density ρ and X-ray fluorescence scans of elemental composition. Additional δ18O records are available for two cores. The data indicate nearly undisturbed sediment series and the absence of significant hiatuses or turbidites. After establishing a high-precision common depth scale by synchronously correlating four densely measured parameters (Fe, Ca, κ, ρ), the final age model is obtained by simultaneously fitting the aligned δ18O and κ records of the stratigraphic network to orbitally tuned oxygen isotope [J. Imbrie, J. D. Hays, D. G. Martinson, A. McIntyre, A. C. Mix, J. J. Morley, N. G. Pisias, W. L. Prell, N. J. Shackleton, The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record, in: A. Berger, J. Imbrie, J. Hays, G. Kukla, B. Saltzman (Eds.), Milankovitch and Climate: Understanding the Response to Orbital Forcing, Reidel Publishing, Dordrecht, 1984, pp. 269-305; D. Martinson, N. Pisias, J. Hays, J. Imbrie, T. C. Moore Jr., N. Shackleton, Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0 to 300.000-Year chronostratigraphy, Quat. Res. 27 (1987) 1-29.] or susceptibility stacks [T. von Dobeneck, F.Schmieder, Using rock magnetic proxy records for orbital tuning and extended time series analyses into the super-and sub-Milankovitch Bands, in: G. Fischer, G. Wefer (Eds.), Use of proxies in paleoceanography: Examples from the South Atlantic, Springer-Verlag, Berlin (1999), pp. 601-633.]. Besides the detection and elimination of errors in single records, the stratigraphic network approach allows to check the intrinsic consistency of the final result by comparing it to the outcome of more restricted alignment procedures. The final South Atlantic stratigraphic network covers the last 400 kyr south and the last 1200 kyr north of the Subtropical Front (STF) and provides a highly precise age model across the STF representing extremely different sedimentary regimes. This allows to detect temporal shifts of the STF by mapping δMn / Fe. It turns out that the apparent STF movements by about 200 km are not directly related to marine oxygen isotope stages.
Simulation and Data Analytics for Mobile Road Weather Sensors
NASA Astrophysics Data System (ADS)
Chettri, S. R.; Evans, J. D.; Tislin, D.
2016-12-01
Numerous algorithmic and theoretical considerations arise in simulating a vehicle-based weather observation network known as the Mobile Platform Environmental Data (MoPED). MoPED integrates sensor data from a fleet of commercial vehicles (about 600 at last count, with thousands more to come) as they travel interstate, state and local routes and metropolitan areas throughout the conterminous United States. The MoPED simulator models a fleet of anywhere between 1000-10,000 vehicles that travel a highway network encoded in a geospatial database, starting and finishing at random times and moving at randomly-varying speeds. Virtual instruments aboard these vehicles interpolate surface weather parameters (such as temperature and pressure) from the High-Resolution Rapid Refresh (HRRR) data series, an hourly, coast-to-coast 3km grid of weather parameters modeled by the National Centers for Environmental Prediction. Whereas real MoPED sensors have noise characteristics that lead to drop-outs, drift, or physically unrealizable values, our simulation introduces a variety of noise distributions into the parameter values inferred from HRRR (Fig. 1). Finally, the simulator collects weather readings from the National Weather Service's Automated Surface Observation System (ASOS, comprised of over 800 airports around the country) for comparison, validation, and analytical experiments. The simulator's MoPED-like weather data stream enables studies like the following: Experimenting with data analysis and calibration methods - e.g., by comparing noisy vehicle data with ASOS "ground truth" in close spatial and temporal proximity (e.g., 10km, 10 min) (Fig. 2). Inter-calibrating different vehicles' sensors when they pass near each other. Detecting spatial structure in the surface weather - such as dry lines, sudden changes in humidity that accompany severe weather - and estimating how many vehicles are needed to reliably map these structures and their motion. Detecting bottlenecks in the MoPED data infrastructure to ensure real-time data filtering and dissemination as number of vehicles scales up; or tuning the data structures needed to keep track of individual sensor calibrations. Expanding the analytical and data management approach to other mobile weather sensors such as smartphones.
Digital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness
Hribar, Kolin C.; Choi, Yu Suk; Ondeck, Matthew; Engler, Adam J.
2015-01-01
The mechanical properties of the extracellular matrix (ECM) can dictate cell fate in biological systems. In tissue engineering, varying the stiffness of hydrogels—water-swollen polymeric networks that act as ECM substrates—has previously been demonstrated to control cell migration, proliferation, and differentiation. Here, “digital plasmonic patterning” (DPP) is developed to mechanically alter a hydrogel encapsulated with gold nanorods using a near-infrared laser, according to a digital (computer-generated) pattern. DPP can provide orders of magnitude changes in stiffness, and can be tuned by laser intensity and speed of writing. In vitro cellular experiments using A7R5 smooth muscle cells confirm cell migration and alignment according to these patterns, making DPP a useful technique for mechanically patterning hydrogels for various biomedical applications. PMID:26120293
Low-mass neutralino dark matter in supergravity scenarios: phenomenology and naturalness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peiró, M.; Robles, S., E-mail: mpeirogarcia@gmail.com, E-mail: sandra.robles@uam.es
2017-05-01
The latest experimental results from the LHC and dark matter (DM) searches suggest that the parameter space allowed in supersymmetric theories is subject to strong reductions. These bounds are especially constraining for scenarios entailing light DM particles. Previous studies have shown that light neutralino DM in the Minimal Supersymmetric Standard Model (MSSM), with parameters defined at the electroweak scale, is still viable when the low energy spectrum of the model features light sleptons, in which case, the relic density constraint can be fulfilled. In view of this, we have investigated the viability of light neutralinos as DM candidates in themore » MSSM, with parameters defined at the grand unification scale. We have analysed the optimal choices of non-universalities in the soft supersymmetry-breaking parameters for both, gauginos and scalars, in order to avoid the stringent experimental constraints. We show that light neutralinos, with a mass as low as 25 GeV, are viable in supergravity scenarios if the gaugino mass parameters at high energy are very non universal, while the scalar masses can remain of the same order. These scenarios typically predict a very small cross section of neutralinos off protons and neutrons, thereby being very challenging for direct detection experiments. However, a potential detection of smuons and selectrons at the LHC, together with a hypothetical discovery of a gamma-ray signal from neutralino annihilations in dwarf spheroidal galaxies could shed light on this kind of solutions. Finally, we have investigated the naturalness of these scenarios, taking into account all the potential sources of tuning. Besides the electroweak fine-tuning, we have found that the tuning to reproduce the correct DM relic abundance and that to match the measured Higgs mass can also be important when estimating the total degree of naturalness.« less
Low-mass neutralino dark matter in supergravity scenarios: phenomenology and naturalness
NASA Astrophysics Data System (ADS)
Peiró, M.; Robles, S.
2017-05-01
The latest experimental results from the LHC and dark matter (DM) searches suggest that the parameter space allowed in supersymmetric theories is subject to strong reductions. These bounds are especially constraining for scenarios entailing light DM particles. Previous studies have shown that light neutralino DM in the Minimal Supersymmetric Standard Model (MSSM), with parameters defined at the electroweak scale, is still viable when the low energy spectrum of the model features light sleptons, in which case, the relic density constraint can be fulfilled. In view of this, we have investigated the viability of light neutralinos as DM candidates in the MSSM, with parameters defined at the grand unification scale. We have analysed the optimal choices of non-universalities in the soft supersymmetry-breaking parameters for both, gauginos and scalars, in order to avoid the stringent experimental constraints. We show that light neutralinos, with a mass as low as 25 GeV, are viable in supergravity scenarios if the gaugino mass parameters at high energy are very non universal, while the scalar masses can remain of the same order. These scenarios typically predict a very small cross section of neutralinos off protons and neutrons, thereby being very challenging for direct detection experiments. However, a potential detection of smuons and selectrons at the LHC, together with a hypothetical discovery of a gamma-ray signal from neutralino annihilations in dwarf spheroidal galaxies could shed light on this kind of solutions. Finally, we have investigated the naturalness of these scenarios, taking into account all the potential sources of tuning. Besides the electroweak fine-tuning, we have found that the tuning to reproduce the correct DM relic abundance and that to match the measured Higgs mass can also be important when estimating the total degree of naturalness.
Self-tuning regulator for an interacting CSTR process
NASA Astrophysics Data System (ADS)
Rajendra Mungale, Niraj; Upadhyay, Akshay; Jaganatha Pandian, B.
2017-11-01
In the paper we have laid emphasis on STR that is Self Tuning Regulator and its application for an interacting process. CSTR has a great importance in Chemical Process when we deal with controlling different parameters of a process using CSTR. Basically CSTR is used to maintain a constant liquid temperature in the process. The proposed method called self-tuning regulator, is a different scheme where process parameters are updated and the controller parameters are obtained from the solution of a design problem. The paper deals with STR and methods associated with it.
Koutsoukas, Alexios; Monaghan, Keith J; Li, Xiaoli; Huan, Jun
2017-06-28
In recent years, research in artificial neural networks has resurged, now under the deep-learning umbrella, and grown extremely popular. Recently reported success of DL techniques in crowd-sourced QSAR and predictive toxicology competitions has showcased these methods as powerful tools in drug-discovery and toxicology research. The aim of this work was dual, first large number of hyper-parameter configurations were explored to investigate how they affect the performance of DNNs and could act as starting points when tuning DNNs and second their performance was compared to popular methods widely employed in the field of cheminformatics namely Naïve Bayes, k-nearest neighbor, random forest and support vector machines. Moreover, robustness of machine learning methods to different levels of artificially introduced noise was assessed. The open-source Caffe deep-learning framework and modern NVidia GPU units were utilized to carry out this study, allowing large number of DNN configurations to be explored. We show that feed-forward deep neural networks are capable of achieving strong classification performance and outperform shallow methods across diverse activity classes when optimized. Hyper-parameters that were found to play critical role are the activation function, dropout regularization, number hidden layers and number of neurons. When compared to the rest methods, tuned DNNs were found to statistically outperform, with p value <0.01 based on Wilcoxon statistical test. DNN achieved on average MCC units of 0.149 higher than NB, 0.092 than kNN, 0.052 than SVM with linear kernel, 0.021 than RF and finally 0.009 higher than SVM with radial basis function kernel. When exploring robustness to noise, non-linear methods were found to perform well when dealing with low levels of noise, lower than or equal to 20%, however when dealing with higher levels of noise, higher than 30%, the Naïve Bayes method was found to perform well and even outperform at the highest level of noise 50% more sophisticated methods across several datasets.
NASA Technical Reports Server (NTRS)
Zaychik, Kirill B.; Cardullo, Frank M.
2012-01-01
Results have been obtained using conventional techniques to model the generic human operator?s control behavior, however little research has been done to identify an individual based on control behavior. The hypothesis investigated is that different operators exhibit different control behavior when performing a given control task. Two enhancements to existing human operator models, which allow personalization of the modeled control behavior, are presented. One enhancement accounts for the testing control signals, which are introduced by an operator for more accurate control of the system and/or to adjust the control strategy. This uses the Artificial Neural Network which can be fine-tuned to model the testing control. Another enhancement takes the form of an equiripple filter which conditions the control system power spectrum. A novel automated parameter identification technique was developed to facilitate the identification process of the parameters of the selected models. This utilizes a Genetic Algorithm based optimization engine called the Bit-Climbing Algorithm. Enhancements were validated using experimental data obtained from three different sources: the Manual Control Laboratory software experiments, Unmanned Aerial Vehicle simulation, and NASA Langley Research Center Visual Motion Simulator studies. This manuscript also addresses applying human operator models to evaluate the effectiveness of motion feedback when simulating actual pilot control behavior in a flight simulator.
Event generator tunes obtained from underlying event and multiparton scattering measurements
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2016-03-17
Here, new sets of parameters (“tunes”) for the underlying-event (UE) modelling of the pythia8, pythia6 and herwig++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE proton–proton (more » $$\\mathrm {p}\\mathrm {p}$$ ) data at $$\\sqrt{s} = 7\\,\\text {TeV} $$ and to UE proton–antiproton ( $$\\mathrm {p}\\overline{\\mathrm{p}} $$ ) data from the CDF experiment at lower $$\\sqrt{s}$$ , are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton–proton collisions at 13 $$\\,\\text {TeV}$$ . In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons are presented of the UE tunes to “minimum bias” (MB) events, multijet, and Drell–Yan ( $$ \\mathrm{q} \\overline{\\mathrm{q}} \\rightarrow \\mathrm{Z}/ \\gamma ^* \\rightarrow $$ lepton-antilepton+jets) observables at 7 and 8 $$\\,\\text {TeV}$$ , as well as predictions for MB and UE observables at 13 $$\\,\\text {TeV}$$ .« less
Analysing neutron scattering data using McStas virtual experiments
NASA Astrophysics Data System (ADS)
Udby, L.; Willendrup, P. K.; Knudsen, E.; Niedermayer, Ch.; Filges, U.; Christensen, N. B.; Farhi, E.; Wells, B. O.; Lefmann, K.
2011-04-01
With the intention of developing a new data analysis method using virtual experiments we have built a detailed virtual model of the cold triple-axis spectrometer RITA-II at PSI, Switzerland, using the McStas neutron ray-tracing package. The parameters characterising the virtual instrument were carefully tuned against real experiments. In the present paper we show that virtual experiments reproduce experimentally observed linewidths within 1-3% for a variety of samples. Furthermore we show that the detailed knowledge of the instrumental resolution found from virtual experiments, including sample mosaicity, can be used for quantitative estimates of linewidth broadening resulting from, e.g., finite domain sizes in single-crystal samples.
NASA Astrophysics Data System (ADS)
Lu, Haohui; Chai, Tan; Cooley, Christopher G.
2018-03-01
This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.
Scheinker, Alexander; Huang, Xiaobiao; Wu, Juhao
2017-02-20
Here, we report on a beam-based experiment performed at the SPEAR3 storage ring of the Stanford Synchrotron Radiation Lightsource at the SLAC National Accelerator Laboratory, in which a model-independent extremum-seeking optimization algorithm was utilized to minimize betatron oscillations in the presence of a time-varying kicker magnetic field, by automatically tuning the pulsewidth, voltage, and delay of two other kicker magnets, and the current of two skew quadrupole magnets, simultaneously, in order to optimize injection kick matching. Adaptive tuning was performed on eight parameters simultaneously. The scheme was able to continuously maintain the match of a five-magnet lattice while the fieldmore » strength of a kicker magnet was continuously varied at a rate much higher (±6% sinusoidal voltage change over 1.5 h) than typically experienced in operation. Lastly, the ability to quickly tune or compensate for time variation of coupled components, as demonstrated here, is very important for the more general, more difficult problem of global accelerator tuning to quickly switch between various experimental setups.« less
Experimental study of the novel tuned mass damper with inerter which enables changes of inertance
NASA Astrophysics Data System (ADS)
Brzeski, P.; Lazarek, M.; Perlikowski, P.
2017-09-01
In this paper we present the experimental verification of the novel tuned mass damper which enables changes of inertance. Characteristic feature of the proposed device is the presence of special type of inerter. This inerter incorporates a continuously variable transmission that enables stepless changes of inertance. Thus, it enables to adjust the parameters of the damping device to the current forcing characteristic. In the paper we present and describe the experimental rig that consists of the massive main oscillator forced kinematically and the prototype of the investigated damper. We perform a series of dedicated experiments to characterize the device and asses its damping efficiency. Moreover, we perform numerical simulations using the simple mathematical model of investigated system. Comparing the numerical results and the experimental data we legitimize the model and demonstrate the capabilities of the investigated tuned mass damper. Presented results prove that the concept of the novel type of tuned mass damper can be realized and enable to confirm its main advantages. Investigated prototype device offers excellent damping efficiency in a wide range of forcing frequencies.
Energy optimization for upstream data transfer in 802.15.4 beacon-enabled star formulation
NASA Astrophysics Data System (ADS)
Liu, Hua; Krishnamachari, Bhaskar
2008-08-01
Energy saving is one of the major concerns for low rate personal area networks. This paper models energy consumption for beacon-enabled time-slotted media accessing control cooperated with sleeping scheduling in a star network formulation for IEEE 802.15.4 standard. We investigate two different upstream (data transfer from devices to a network coordinator) strategies: a) tracking strategy: the devices wake up and check status (track the beacon) in each time slot; b) non-tracking strategy: nodes only wake-up upon data arriving and stay awake till data transmitted to the coordinator. We consider the tradeoff between energy cost and average data transmission delay for both strategies. Both scenarios are formulated as optimization problems and the optimal solutions are discussed. Our results show that different data arrival rate and system parameters (such as contention access period interval, upstream speed etc.) result in different strategies in terms of energy optimization with maximum delay constraints. Hence, according to different applications and system settings, different strategies might be chosen by each node to achieve energy optimization for both self-interested view and system view. We give the relation among the tunable parameters by formulas and plots to illustrate which strategy is better under corresponding parameters. There are two main points emphasized in our results with delay constraints: on one hand, when the system setting is fixed by coordinator, nodes in the network can intelligently change their strategies according to corresponding application data arrival rate; on the other hand, when the nodes' applications are known by the coordinator, the coordinator can tune the system parameters to achieve optimal system energy consumption.
Natural implementation of neutralino dark matter
NASA Astrophysics Data System (ADS)
King, Steve F.; Roberts, Jonathan P.
2006-09-01
The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to ``supernatural dark matter'' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed ``well tempered neutralino'' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simultaneously. Although we have identified regions of ``supernatural dark matter'' in which there is no fine tuning to achieve successful dark matter, the usual MSSM fine tuning to achieve EWSB always remains.
ANUBIS: artificial neuromodulation using a Bayesian inference system.
Smith, Benjamin J H; Saaj, Chakravarthini M; Allouis, Elie
2013-01-01
Gain tuning is a crucial part of controller design and depends not only on an accurate understanding of the system in question, but also on the designer's ability to predict what disturbances and other perturbations the system will encounter throughout its operation. This letter presents ANUBIS (artificial neuromodulation using a Bayesian inference system), a novel biologically inspired technique for automatically tuning controller parameters in real time. ANUBIS is based on the Bayesian brain concept and modifies it by incorporating a model of the neuromodulatory system comprising four artificial neuromodulators. It has been applied to the controller of EchinoBot, a prototype walking rover for Martian exploration. ANUBIS has been implemented at three levels of the controller; gait generation, foot trajectory planning using Bézier curves, and foot trajectory tracking using a terminal sliding mode controller. We compare the results to a similar system that has been tuned using a multilayer perceptron. The use of Bayesian inference means that the system retains mathematical interpretability, unlike other intelligent tuning techniques, which use neural networks, fuzzy logic, or evolutionary algorithms. The simulation results show that ANUBIS provides significant improvements in efficiency and adaptability of the three controller components; it allows the robot to react to obstacles and uncertainties faster than the system tuned with the MLP, while maintaining stability and accuracy. As well as advancing rover autonomy, ANUBIS could also be applied to other situations where operating conditions are likely to change or cannot be accurately modeled in advance, such as process control. In addition, it demonstrates one way in which neuromodulation could fit into the Bayesian brain framework.
Hoo-Chang, Shin; Roth, Holger R.; Gao, Mingchen; Lu, Le; Xu, Ziyue; Nogues, Isabella; Yao, Jianhua; Mollura, Daniel
2016-01-01
Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets (i.e. ImageNet) and the revival of deep convolutional neural networks (CNN). CNNs enable learning data-driven, highly representative, layered hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models (supervised) pre-trained from natural image dataset to medical image tasks (although domain transfer between two medical image datasets is also possible). In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computeraided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, with 85% sensitivity at 3 false positive per patient, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks. PMID:26886976
The Magnetically-Tuned Transition-Edge Sensor
NASA Technical Reports Server (NTRS)
Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen J.; Busch, Sarah E.; Bandler, Simon R.; Adams, Joseph S.; Eckart, Megan E.; Chevenak, James A.; Kelley, Richard L.; Kilbourne, Caroline A.;
2014-01-01
We present the first measurements on the proposed magnetically-tuned superconducting transition-edge sensor (MTES) and compare the modified resistive transition with the theoretical prediction. A TES's resistive transition is customarily characterized in terms of the unit less device parameters alpha and beta corresponding to the resistive response to changes in temperature and current respectively. We present a new relationship between measured IV quantities and the parameters alpha and beta and use these relations to confirm we have stably biased a TES with negative beta parameter with magnetic tuning. Motivated by access to this new unexplored parameter space, we investigate the conditions for bias stability of a TES taking into account both self and externally applied magnetic fields.
Bayesian approach to analyzing holograms of colloidal particles.
Dimiduk, Thomas G; Manoharan, Vinothan N
2016-10-17
We demonstrate a Bayesian approach to tracking and characterizing colloidal particles from in-line digital holograms. We model the formation of the hologram using Lorenz-Mie theory. We then use a tempered Markov-chain Monte Carlo method to sample the posterior probability distributions of the model parameters: particle position, size, and refractive index. Compared to least-squares fitting, our approach allows us to more easily incorporate prior information about the parameters and to obtain more accurate uncertainties, which are critical for both particle tracking and characterization experiments. Our approach also eliminates the need to supply accurate initial guesses for the parameters, so it requires little tuning.
NASA Astrophysics Data System (ADS)
Dewaele, Hélène; Munier, Simon; Albergel, Clément; Planque, Carole; Laanaia, Nabil; Carrer, Dominique; Calvet, Jean-Christophe
2017-09-01
Soil maximum available water content (MaxAWC) is a key parameter in land surface models (LSMs). However, being difficult to measure, this parameter is usually uncertain. This study assesses the feasibility of using a 15-year (1999-2013) time series of satellite-derived low-resolution observations of leaf area index (LAI) to estimate MaxAWC for rainfed croplands over France. LAI interannual variability is simulated using the CO2-responsive version of the Interactions between Soil, Biosphere and Atmosphere (ISBA) LSM for various values of MaxAWC. Optimal value is then selected by using (1) a simple inverse modelling technique, comparing simulated and observed LAI and (2) a more complex method consisting in integrating observed LAI in ISBA through a land data assimilation system (LDAS) and minimising LAI analysis increments. The evaluation of the MaxAWC estimates from both methods is done using simulated annual maximum above-ground biomass (Bag) and straw cereal grain yield (GY) values from the Agreste French agricultural statistics portal, for 45 administrative units presenting a high proportion of straw cereals. Significant correlations (p value < 0.01) between Bag and GY are found for up to 36 and 53 % of the administrative units for the inverse modelling and LDAS tuning methods, respectively. It is found that the LDAS tuning experiment gives more realistic values of MaxAWC and maximum Bag than the inverse modelling experiment. Using undisaggregated LAI observations leads to an underestimation of MaxAWC and maximum Bag in both experiments. Median annual maximum values of disaggregated LAI observations are found to correlate very well with MaxAWC.
Scheinker, Alexander; Baily, Scott; Young, Daniel; ...
2014-08-01
In this work, an implementation of a recently developed model-independent adaptive control scheme, for tuning uncertain and time varying systems, is demonstrated on the Los Alamos linear particle accelerator. The main benefits of the algorithm are its simplicity, ability to handle an arbitrary number of components without increased complexity, and the approach is extremely robust to measurement noise, a property which is both analytically proven and demonstrated in the experiments performed. We report on the application of this algorithm for simultaneous tuning of two buncher radio frequency (RF) cavities, in order to maximize beam acceptance into the accelerating electromagnetic fieldmore » cavities of the machine, with the tuning based only on a noisy measurement of the surviving beam current downstream from the two bunching cavities. The algorithm automatically responds to arbitrary phase shift of the cavity phases, automatically re-tuning the cavity settings and maximizing beam acceptance. Because it is model independent it can be utilized for continuous adaptation to time-variation of a large system, such as due to thermal drift, or damage to components, in which the remaining, functional components would be automatically re-tuned to compensate for the failing ones. We start by discussing the general model-independent adaptive scheme and how it may be digitally applied to a large class of multi-parameter uncertain systems, and then present our experimental results.« less
Post-LHC7 fine-tuning in the minimal supergravity/CMSSM model with a 125 GeV Higgs boson
NASA Astrophysics Data System (ADS)
Baer, Howard; Barger, Vernon; Huang, Peisi; Mickelson, Dan; Mustafayev, Azar; Tata, Xerxes
2013-02-01
The recent discovery of a 125 GeV Higgs-like resonance at LHC, coupled with the lack of evidence for weak scale supersymmetry (SUSY), has severely constrained SUSY models such as minimal supergravity (mSUGRA)/CMSSM. As LHC probes deeper into SUSY model parameter space, the little hierarchy problem—how to reconcile the Z and Higgs boson mass scale with the scale of SUSY breaking—will become increasingly exacerbated unless a sparticle signal is found. We evaluate two different measures of fine-tuning in the mSUGRA/CMSSM model. The more stringent of these, ΔHS, includes effects that arise from the high-scale origin of the mSUGRA parameters while the second measure, ΔEW, is determined only by weak scale parameters: hence, it is universal to any model with the same particle spectrum and couplings. Our results incorporate the latest constraints from LHC7 sparticle searches, LHCb limits from Bs→μ+μ- and also require a light Higgs scalar with mh˜123-127GeV. We present fine-tuning contours in the m0 vs m1/2 plane for several sets of A0 and tanβ values. We also present results for ΔHS and ΔEW from a scan over the entire viable model parameter space. We find a ΔHS≳103, or at best 0.1%, fine-tuning. For the less stringent electroweak fine-tuning, we find ΔEW≳102, or at best 1%, fine-tuning. Two benchmark points are presented that have the lowest values of ΔHS and ΔEW. Our results provide a quantitative measure for ascertaining whether or not the remaining mSUGRA/CMSSM model parameter space is excessively fine-tuned and so could provide impetus for considering alternative SUSY models.
An implicit iterative algorithm with a tuning parameter for Itô Lyapunov matrix equations
NASA Astrophysics Data System (ADS)
Zhang, Ying; Wu, Ai-Guo; Sun, Hui-Jie
2018-01-01
In this paper, an implicit iterative algorithm is proposed for solving a class of Lyapunov matrix equations arising in Itô stochastic linear systems. A tuning parameter is introduced in this algorithm, and thus the convergence rate of the algorithm can be changed. Some conditions are presented such that the developed algorithm is convergent. In addition, an explicit expression is also derived for the optimal tuning parameter, which guarantees that the obtained algorithm achieves its fastest convergence rate. Finally, numerical examples are employed to illustrate the effectiveness of the given algorithm.
He, ZeFang
2014-01-01
An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement. PMID:25614879
A parametric model and estimation techniques for the inharmonicity and tuning of the piano.
Rigaud, François; David, Bertrand; Daudet, Laurent
2013-05-01
Inharmonicity of piano tones is an essential property of their timbre that strongly influences the tuning, leading to the so-called octave stretching. It is proposed in this paper to jointly model the inharmonicity and tuning of pianos on the whole compass. While using a small number of parameters, these models are able to reflect both the specificities of instrument design and tuner's practice. An estimation algorithm is derived that can run either on a set of isolated note recordings, but also on chord recordings, assuming that the played notes are known. It is applied to extract parameters highlighting some tuner's choices on different piano types and to propose tuning curves for out-of-tune pianos or piano synthesizers.
A novel auto-tuning PID control mechanism for nonlinear systems.
Cetin, Meric; Iplikci, Serdar
2015-09-01
In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Design of an iterative auto-tuning algorithm for a fuzzy PID controller
NASA Astrophysics Data System (ADS)
Saeed, Bakhtiar I.; Mehrdadi, B.
2012-05-01
Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.
Stable modeling based control methods using a new RBF network.
Beyhan, Selami; Alci, Musa
2010-10-01
This paper presents a novel model with radial basis functions (RBFs), which is applied successively for online stable identification and control of nonlinear discrete-time systems. First, the proposed model is utilized for direct inverse modeling of the plant to generate the control input where it is assumed that inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode control input. Finally, the network is employed to tune PID (proportional + integrative + derivative) controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov stability approach, the boundedness of the tracking errors and the system parameters are shown both theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network and the new model with sigmoid activation functions. To see the real-time capability of the new model, the proposed network is employed for online identification and control of a cascaded parallel two-tank liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates a suitable control input to track the reference signal better than other methods in both simulations and real time. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Cascaded K-means convolutional feature learner and its application to face recognition
NASA Astrophysics Data System (ADS)
Zhou, Daoxiang; Yang, Dan; Zhang, Xiaohong; Huang, Sheng; Feng, Shu
2017-09-01
Currently, considerable efforts have been devoted to devise image representation. However, handcrafted methods need strong domain knowledge and show low generalization ability, and conventional feature learning methods require enormous training data and rich parameters tuning experience. A lightened feature learner is presented to solve these problems with application to face recognition, which shares similar topology architecture as a convolutional neural network. Our model is divided into three components: cascaded convolution filters bank learning layer, nonlinear processing layer, and feature pooling layer. Specifically, in the filters learning layer, we use K-means to learn convolution filters. Features are extracted via convoluting images with the learned filters. Afterward, in the nonlinear processing layer, hyperbolic tangent is employed to capture the nonlinear feature. In the feature pooling layer, to remove the redundancy information and incorporate the spatial layout, we exploit multilevel spatial pyramid second-order pooling technique to pool the features in subregions and concatenate them together as the final representation. Extensive experiments on four representative datasets demonstrate the effectiveness and robustness of our model to various variations, yielding competitive recognition results on extended Yale B and FERET. In addition, our method achieves the best identification performance on AR and labeled faces in the wild datasets among the comparative methods.
Borisyuk, Alla; Semple, Malcolm N; Rinzel, John
2002-10-01
A mathematical model was developed for exploring the sensitivity of low-frequency inferior colliculus (IC) neurons to interaural phase disparity (IPD). The formulation involves a firing-rate-type model that does not include spikes per se. The model IC neuron receives IPD-tuned excitatory and inhibitory inputs (viewed as the output of a collection of cells in the medial superior olive). The model cell possesses cellular properties of firing rate adaptation and postinhibitory rebound (PIR). The descriptions of these mechanisms are biophysically reasonable, but only semi-quantitative. We seek to explain within a minimal model the experimentally observed mismatch between responses to IPD stimuli delivered dynamically and those delivered statically (McAlpine et al. 2000; Spitzer and Semple 1993). The model reproduces many features of the responses to static IPD presentations, binaural beat, and partial range sweep stimuli. These features include differences in responses to a stimulus presented in static or dynamic context: sharper tuning and phase shifts in response to binaural beats, and hysteresis and "rise-from-nowhere" in response to partial range sweeps. Our results suggest that dynamic response features are due to the structure of inputs and the presence of firing rate adaptation and PIR mechanism in IC cells, but do not depend on a specific biophysical mechanism. We demonstrate how the model's various components contribute to shaping the observed phenomena. For example, adaptation, PIR, and transmission delay shape phase advances and delays in responses to binaural beats, adaptation and PIR shape hysteresis in different ranges of IPD, and tuned inhibition underlies asymmetry in dynamic tuning properties. We also suggest experiments to test our modeling predictions: in vitro simulation of the binaural beat (phase advance at low beat frequencies, its dependence on firing rate), in vivo partial range sweep experiments (dependence of the hysteresis curve on parameters), and inhibition blocking experiments (to study inhibitory tuning properties by observation of phase shifts).
Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System.
Lee, Chengming; Chen, Rongshun
2015-05-20
Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server's fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.
Active semi-supervised learning method with hybrid deep belief networks.
Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong
2014-01-01
In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.
Anisotropic connectivity implements motion-based prediction in a spiking neural network.
Kaplan, Bernhard A; Lansner, Anders; Masson, Guillaume S; Perrinet, Laurent U
2013-01-01
Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons inspired by the architecture of retinotopic cortical areas that assumes predictive coding is implemented through network connectivity, namely in the connection delays and in selectiveness for the tuning properties of source and target cells. We show that the applied connection pattern leads to motion-based prediction in an experiment tracking a moving dot. In contrast to our proposed model, a network with random or isotropic connectivity fails to predict the path when the moving dot disappears. Furthermore, we show that a simple linear decoding approach is sufficient to transform neuronal spiking activity into a probabilistic estimate for reading out the target trajectory.
A proposed experimental search for chameleons using asymmetric parallel plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrage, Clare; Copeland, Edmund J.; Stevenson, James A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: ed.copeland@nottingham.ac.uk, E-mail: james.stevenson@nottingham.ac.uk
2016-08-01
Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate howmore » experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.« less
Markessis, Emily; Poncelet, Luc; Colin, Cécile; Hoonhorst, Ingrid; Collet, Grégory; Deltenre, Paul; Moore, Brian C J
2010-06-01
Auditory steady-state evoked potential (ASSEP) tuning curves were compared to compound action potential (CAP) tuning curves, both measured at 2 Hz, using sedated beagle puppies. The effect of two types of masker (narrowband noise and sinusoidal) on the tuning curve parameters was assessed. Whatever the masker type, CAP tuning curve parameters were qualitatively and quantitatively similar to the ASSEP ones, with a similar inter-subject variability, but with a greater incidence of upward tip displacement. Whatever the procedure, sinusoidal maskers produced sharper tuning curves than narrow-band maskers. Although these differences are not likely to have significant implications for clinical work, from a fundamental point of view, their origin requires further investigations. The same amount of time was needed to record a CAP and an ASSEP 13-point tuning curve. The data further validate the ASSEP technique, which has the advantages of having a smaller tendency to produce upward tip shifts than the CAP technique. Moreover, being non invasive, ASSEP tuning curves can be easily repeated over time in the same subject for clinical and research purposes.
Modeling polyvinyl chloride Plasma Modification by Neural Networks
NASA Astrophysics Data System (ADS)
Wang, Changquan
2018-03-01
Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.
Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; Del Toro Matamoros, Raúl M
2016-05-12
The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value.
Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; del Toro Matamoros, Raúl M.
2016-01-01
The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value. PMID:27187397
Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors
Feng, Ping; Shao, Feng; Shi, Yi; Wan, Qing
2014-01-01
One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs) are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed. PMID:25232915
Pujol, Jesus; Blanco-Hinojo, Laura; Batalla, Albert; López-Solà, Marina; Harrison, Ben J; Soriano-Mas, Carles; Crippa, Jose A; Fagundo, Ana B; Deus, Joan; de la Torre, Rafael; Nogué, Santiago; Farré, Magí; Torrens, Marta; Martín-Santos, Rocío
2014-04-01
Recreational drugs are generally used to intentionally alter conscious experience. Long-lasting cannabis users frequently seek this effect as a means to relieve negative affect states. As with conventional anxiolytic drugs, however, changes in subjective feelings may be associated with memory impairment. We have tested whether the use of cannabis, as a psychoactive compound, is associated with alterations in spontaneous activity in brain networks relevant to self-awareness, and whether such potential changes are related to perceived anxiety and memory performance. Functional connectivity was assessed in the Default and Insula networks during resting state using fMRI in 28 heavy cannabis users and 29 control subjects. Imaging assessments were conducted during cannabis use in the unintoxicated state and repeated after one month of controlled abstinence. Cannabis users showed increased functional connectivity in the core of the Default and Insula networks and selective enhancement of functional anticorrelation between both. Reduced functional connectivity was observed in areas overlapping with other brain networks. Observed alterations were associated with behavioral measurements in a direction suggesting anxiety score reduction and interference with memory performance. Alterations were also related to the amount of cannabis used and partially persisted after one month of abstinence. Chronic cannabis use was associated with significant effects on the tuning and coupling of brain networks relevant to self-awareness, which in turn are integrated into brain systems supporting the storage of personal experience and motivated behavior. The results suggest potential mechanisms for recreational drugs to interfere with higher-order network interactions generating conscious experience. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Adaptive Critic Approach to Reference Model Adaptation
NASA Technical Reports Server (NTRS)
Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.
2003-01-01
Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.
Kwon, Yea-Hoon; Shin, Sae-Byuk; Kim, Shin-Dug
2018-04-30
The purpose of this study is to improve human emotional classification accuracy using a convolution neural networks (CNN) model and to suggest an overall method to classify emotion based on multimodal data. We improved classification performance by combining electroencephalogram (EEG) and galvanic skin response (GSR) signals. GSR signals are preprocessed using by the zero-crossing rate. Sufficient EEG feature extraction can be obtained through CNN. Therefore, we propose a suitable CNN model for feature extraction by tuning hyper parameters in convolution filters. The EEG signal is preprocessed prior to convolution by a wavelet transform while considering time and frequency simultaneously. We use a database for emotion analysis using the physiological signals open dataset to verify the proposed process, achieving 73.4% accuracy, showing significant performance improvement over the current best practice models.
NASA Astrophysics Data System (ADS)
Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng
2016-09-01
It was an untouchable dream for remote sensing experts to realize total automatic image classification without inputting any parameter values. Experts usually spend hours and hours on tuning the input parameters of classification algorithms in order to obtain the best results. With the rapid development of knowledge engineering and cyberinfrastructure, a lot of data processing and knowledge reasoning capabilities become online accessible, shareable and interoperable. Based on these recent improvements, this paper presents an idea of parameterless automatic classification which only requires an image and automatically outputs a labeled vector. No parameters and operations are needed from endpoint consumers. An approach is proposed to realize the idea. It adopts an ontology database to store the experiences of tuning values for classifiers. A sample database is used to record training samples of image segments. Geoprocessing Web services are used as functionality blocks to finish basic classification steps. Workflow technology is involved to turn the overall image classification into a total automatic process. A Web-based prototypical system named PACS (Parameterless Automatic Classification System) is implemented. A number of images are fed into the system for evaluation purposes. The results show that the approach could automatically classify remote sensing images and have a fairly good average accuracy. It is indicated that the classified results will be more accurate if the two databases have higher quality. Once the experiences and samples in the databases are accumulated as many as an expert has, the approach should be able to get the results with similar quality to that a human expert can get. Since the approach is total automatic and parameterless, it can not only relieve remote sensing workers from the heavy and time-consuming parameter tuning work, but also significantly shorten the waiting time for consumers and facilitate them to engage in image classification activities. Currently, the approach is used only on high resolution optical three-band remote sensing imagery. The feasibility using the approach on other kinds of remote sensing images or involving additional bands in classification will be studied in future.
GrDHP: a general utility function representation for dual heuristic dynamic programming.
Ni, Zhen; He, Haibo; Zhao, Dongbin; Xu, Xin; Prokhorov, Danil V
2015-03-01
A general utility function representation is proposed to provide the required derivable and adjustable utility function for the dual heuristic dynamic programming (DHP) design. Goal representation DHP (GrDHP) is presented with a goal network being on top of the traditional DHP design. This goal network provides a general mapping between the system states and the derivatives of the utility function. With this proposed architecture, we can obtain the required derivatives of the utility function directly from the goal network. In addition, instead of a fixed predefined utility function in literature, we conduct an online learning process for the goal network so that the derivatives of the utility function can be adaptively tuned over time. We provide the control performance of both the proposed GrDHP and the traditional DHP approaches under the same environment and parameter settings. The statistical simulation results and the snapshot of the system variables are presented to demonstrate the improved learning and controlling performance. We also apply both approaches to a power system example to further demonstrate the control capabilities of the GrDHP approach.
Yi, Qu; Zhan-ming, Li; Er-chao, Li
2012-11-01
A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Transcranial magnetic stimulation changes response selectivity of neurons in the visual cortex
Kim, Taekjun; Allen, Elena A.; Pasley, Brian N.; Freeman, Ralph D.
2015-01-01
Background Transcranial magnetic stimulation (TMS) is used to selectively alter neuronal activity of specific regions in the cerebral cortex. TMS is reported to induce either transient disruption or enhancement of different neural functions. However, its effects on tuning properties of sensory neurons have not been studied quantitatively. Objective/Hypothesis Here, we use specific TMS application parameters to determine how they may alter tuning characteristics (orientation, spatial frequency, and contrast sensitivity) of single neurons in the cat’s visual cortex. Methods Single unit spikes were recorded with tungsten microelectrodes from the visual cortex of anesthetized and paralyzed cats (12 males). Repetitive TMS (4Hz, 4sec) was delivered with a 70mm figure-8 coil. We quantified basic tuning parameters of individual neurons for each pre- and post-TMS condition. The statistical significance of changes for each tuning parameter between the two conditions was evaluated with a Wilcoxon signed-rank test. Results We generally find long-lasting suppression which persists well beyond the stimulation period. Pre- and post-TMS orientation tuning curves show constant peak values. However, strong suppression at non-preferred orientations tends to narrow the widths of tuning curves. Spatial frequency tuning exhibits an asymmetric change in overall shape, which results in an emphasis on higher frequencies. Contrast tuning curves show nonlinear changes consistent with a gain control mechanism. Conclusions These findings suggest that TMS causes extended interruption of the balance between sub-cortical and intra-cortical inputs. PMID:25862599
Non-identical multiplexing promotes chimera states
NASA Astrophysics Data System (ADS)
Ghosh, Saptarshi; Zakharova, Anna; Jalan, Sarika
2018-01-01
We present the emergence of chimeras, a state referring to coexistence of partly coherent, partly incoherent dynamics in networks of identical oscillators, in a multiplex network consisting of two non-identical layers which are interconnected. We demonstrate that the parameter range displaying the chimera state in the homogeneous first layer of the multiplex networks can be tuned by changing the link density or connection architecture of the same nodes in the second layer. We focus on the impact of the interconnected second layer on the enlargement or shrinking of the coupling regime for which chimeras are displayed in the homogeneous first layer. We find that a denser homogeneous second layer promotes chimera in a sparse first layer, where chimeras do not occur in isolation. Furthermore, while a dense connection density is required for the second layer if it is homogeneous, this is not true if the second layer is inhomogeneous. We demonstrate that a sparse inhomogeneous second layer which is common in real-world complex systems can promote chimera states in a sparse homogeneous first layer.
Poisson-Like Spiking in Circuits with Probabilistic Synapses
Moreno-Bote, Rubén
2014-01-01
Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705
NASA Astrophysics Data System (ADS)
Babaveisi, Vahid; Paydar, Mohammad Mahdi; Safaei, Abdul Sattar
2018-07-01
This study aims to discuss the solution methodology for a closed-loop supply chain (CLSC) network that includes the collection of used products as well as distribution of the new products. This supply chain is presented on behalf of the problems that can be solved by the proposed meta-heuristic algorithms. A mathematical model is designed for a CLSC that involves three objective functions of maximizing the profit, minimizing the total risk and shortages of products. Since three objective functions are considered, a multi-objective solution methodology can be advantageous. Therefore, several approaches have been studied and an NSGA-II algorithm is first utilized, and then the results are validated using an MOSA and MOPSO algorithms. Priority-based encoding, which is used in all the algorithms, is the core of the solution computations. To compare the performance of the meta-heuristics, random numerical instances are evaluated by four criteria involving mean ideal distance, spread of non-dominance solution, the number of Pareto solutions, and CPU time. In order to enhance the performance of the algorithms, Taguchi method is used for parameter tuning. Finally, sensitivity analyses are performed and the computational results are presented based on the sensitivity analyses in parameter tuning.
NASA Astrophysics Data System (ADS)
Babaveisi, Vahid; Paydar, Mohammad Mahdi; Safaei, Abdul Sattar
2017-07-01
This study aims to discuss the solution methodology for a closed-loop supply chain (CLSC) network that includes the collection of used products as well as distribution of the new products. This supply chain is presented on behalf of the problems that can be solved by the proposed meta-heuristic algorithms. A mathematical model is designed for a CLSC that involves three objective functions of maximizing the profit, minimizing the total risk and shortages of products. Since three objective functions are considered, a multi-objective solution methodology can be advantageous. Therefore, several approaches have been studied and an NSGA-II algorithm is first utilized, and then the results are validated using an MOSA and MOPSO algorithms. Priority-based encoding, which is used in all the algorithms, is the core of the solution computations. To compare the performance of the meta-heuristics, random numerical instances are evaluated by four criteria involving mean ideal distance, spread of non-dominance solution, the number of Pareto solutions, and CPU time. In order to enhance the performance of the algorithms, Taguchi method is used for parameter tuning. Finally, sensitivity analyses are performed and the computational results are presented based on the sensitivity analyses in parameter tuning.
Database constraints applied to metabolic pathway reconstruction tools.
Vilaplana, Jordi; Solsona, Francesc; Teixido, Ivan; Usié, Anabel; Karathia, Hiren; Alves, Rui; Mateo, Jordi
2014-01-01
Our group developed two biological applications, Biblio-MetReS and Homol-MetReS, accessing the same database of organisms with annotated genes. Biblio-MetReS is a data-mining application that facilitates the reconstruction of molecular networks based on automated text-mining analysis of published scientific literature. Homol-MetReS allows functional (re)annotation of proteomes, to properly identify both the individual proteins involved in the process(es) of interest and their function. It also enables the sets of proteins involved in the process(es) in different organisms to be compared directly. The efficiency of these biological applications is directly related to the design of the shared database. We classified and analyzed the different kinds of access to the database. Based on this study, we tried to adjust and tune the configurable parameters of the database server to reach the best performance of the communication data link to/from the database system. Different database technologies were analyzed. We started the study with a public relational SQL database, MySQL. Then, the same database was implemented by a MapReduce-based database named HBase. The results indicated that the standard configuration of MySQL gives an acceptable performance for low or medium size databases. Nevertheless, tuning database parameters can greatly improve the performance and lead to very competitive runtimes.
NASA Astrophysics Data System (ADS)
Guex, Guillaume
2016-05-01
In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.
Tuned critical avalanche scaling in bulk metallic glasses
Antonaglia, James; Xie, Xie; Schwarz, Gregory; ...
2014-03-17
In this study, ingots of the bulk metallic glass (BMG), Zr 64.13Cu 15.75Ni 10.12Al 10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanchemore » depends on experimental tuning-parameters, such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.« less
Wei, Fang; Lu, Bin; Wang, Jian; Xu, Dan; Pan, Zhengqing; Chen, Dijun; Cai, Haiwen; Qu, Ronghui
2015-02-23
A precision and broadband laser frequency swept technique is experimentally demonstrated. Using synchronous current compensation, a slave diode laser is dynamically injection-locked to a specific high-order modulation-sideband of a narrow-linewidth master laser modulated by an electro-optic modulator (EOM), whose driven radio frequency (RF) signal can be agilely, precisely controlled by a frequency synthesizer, and the high-order modulation-sideband enables multiplied sweep range and tuning rate. By using 5th order sideband injection-locking, the original tuning range of 3 GHz and tuning rate of 0.5 THz/s is multiplied by 5 times to 15 GHz and 2.5 THz/s respectively. The slave laser has a 3 dB-linewidth of 2.5 kHz which is the same to the master laser. The settling time response of a 10 MHz frequency switching is 2.5 µs. By using higher-order modulation-sideband and optimized experiment parameters, an extended sweep range and rate could be expected.
Application to recognition of ferrography image with fractal neural network
NASA Astrophysics Data System (ADS)
Tian, Xianzhong; Hu, Tongsen; Zhang, Jian
2005-10-01
Because wear particles have fractal characteristics, it is necessary that adding fractal parameters to studying wear particles and diagnosing machine troubles. This paper discusses fractal parameters of wear particles, presents arithmetic calculating fractal dimension, and constructs a fractal neural network which can recognize wear particles image. It is proved by experiments that this fractal neural network can recognize some characteristics of wear particles image, and can also classify wear types.
Deep feature extraction and combination for synthetic aperture radar target classification
NASA Astrophysics Data System (ADS)
Amrani, Moussa; Jiang, Feng
2017-10-01
Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.
Audience-tuning effects on memory: the role of shared reality.
Echterhoff, Gerald; Higgins, E Tory; Groll, Stephan
2005-09-01
After tuning to an audience, communicators' own memories for the topic often reflect the biased view expressed in their messages. Three studies examined explanations for this bias. Memories for a target person were biased when feedback signaled the audience's successful identification of the target but not after failed identification (Experiment 1). Whereas communicators tuning to an in-group audience exhibited the bias, communicators tuning to an out-group audience did not (Experiment 2). These differences did not depend on communicators' mood but were mediated by communicators' trust in their audience's judgment about other people (Experiments 2 and 3). Message and memory were more closely associated for high than for low trusters. Apparently, audience-tuning effects depend on the communicators' experience of a shared reality.
Human face processing is tuned to sexual age preferences
Ponseti, J.; Granert, O.; van Eimeren, T.; Jansen, O.; Wolff, S.; Beier, K.; Deuschl, G.; Bosinski, H.; Siebner, H.
2014-01-01
Human faces can motivate nurturing behaviour or sexual behaviour when adults see a child or an adult face, respectively. This suggests that face processing is tuned to detecting age cues of sexual maturity to stimulate the appropriate reproductive behaviour: either caretaking or mating. In paedophilia, sexual attraction is directed to sexually immature children. Therefore, we hypothesized that brain networks that normally are tuned to mature faces of the preferred gender show an abnormal tuning to sexual immature faces in paedophilia. Here, we use functional magnetic resonance imaging (fMRI) to test directly for the existence of a network which is tuned to face cues of sexual maturity. During fMRI, participants sexually attracted to either adults or children were exposed to various face images. In individuals attracted to adults, adult faces activated several brain regions significantly more than child faces. These brain regions comprised areas known to be implicated in face processing, and sexual processing, including occipital areas, the ventrolateral prefrontal cortex and, subcortically, the putamen and nucleus caudatus. The same regions were activated in paedophiles, but with a reversed preferential response pattern. PMID:24850896
Influence and measurement of mass ablation in ICF implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, B K; Hicks, D; Velsko, C
2007-09-05
Point design ignition capsules designed for the National Ignition Facility (NIF) currently use an x-ray-driven Be(Cu) ablator to compress the DT fuel. Ignition specifications require that the mass of unablated Be(Cu), called residual mass, be known to within 1% of the initial ablator mass when the fuel reaches peak velocity. The specifications also require that the implosion bang time, a surrogate measurement for implosion velocity, be known to +/- 50 ps RMS. These specifications guard against several capsule failure modes associated with low implosion velocity or low residual mass. Experiments designed to measure and to tune experimentally the amount ofmore » residual mass are being developed as part of the National Ignition Campaign (NIC). Tuning adjustments of the residual mass and peak velocity can be achieved using capsule and laser parameters. We currently plan to measure the residual mass using streaked radiographic imaging of surrogate tuning capsules. Alternative techniques to measure residual mass using activated Cu debris collection and proton spectrometry have also been developed. These developing techniques, together with bang time measurements, will allow us to tune ignition capsules to meet NIC specs.« less
Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Fan, Gong; Wang, Yiwen; Zheng, Xiaoxiang
2014-01-01
Decoding algorithm in motor Brain Machine Interfaces translates the neural signals to movement parameters. They usually assume the connection between the neural firings and movements to be stationary, which is not true according to the recent studies that observe the time-varying neuron tuning property. This property results from the neural plasticity and motor learning etc., which leads to the degeneration of the decoding performance when the model is fixed. To track the non-stationary neuron tuning during decoding, we propose a dual model approach based on Monte Carlo point process filtering method that enables the estimation also on the dynamic tuning parameters. When applied on both simulated neural signal and in vivo BMI data, the proposed adaptive method performs better than the one with static tuning parameters, which raises a promising way to design a long-term-performing model for Brain Machine Interfaces decoder.
Asymmetric Operation of the Locomotor Central Pattern Generator in the Neonatal Mouse Spinal Cord
Endo, Toshiaki; Kiehn, Ole
2008-01-01
The rhythmic voltage oscillations in motor neurons (MNs) during locomotor movements reflect the operation of the pre-MN central pattern generator (CPG) network. Recordings from MNs can thus be used as a method to deduct the organization of CPGs. Here, we use continuous conductance measurements and decomposition methods to quantitatively assess the weighting and phase tuning of synaptic inputs to different flexor and extensor MNs during locomotor-like activity in the isolated neonatal mice lumbar spinal cord preparation. Whole cell recordings were obtained from 22 flexor and 18 extensor MNs in rostral and caudal lumbar segments. In all flexor and the large majority of extensor MNs the extracted excitatory and inhibitory synaptic conductances alternate but with a predominance of inhibitory conductances, most pronounced in extensors. These conductance changes are consistent with a “push–pull” operation of locomotor CPG. The extracted excitatory and inhibitory synaptic conductances varied between 2 and 56% of the mean total conductance. Analysis of the phase tuning of the extracted synaptic conductances in flexor and extensor MNs in the rostral lumbar cord showed that the flexor-phase–related synaptic conductance changes have sharper locomotor-phase tuning than the extensor-phase–related conductances, suggesting a modular organization of premotor CPG networks consisting of reciprocally coupled, but differently composed, flexor and extensor CPG networks. There was a clear difference between phase tuning in rostral and caudal MNs, suggesting a distinct operation of CPG networks in different lumbar segments. The highly asymmetric features were preserved throughout all ranges of locomotor frequencies investigated and with different combinations of locomotor-inducing drugs. The asymmetric nature of CPG operation and phase tuning of the conductance profiles provide important clues to the organization of the rodent locomotor CPG and are compatible with a multilayered and distributed structure of the network. PMID:18829847
Samarasinghe, S; Ling, H
In this paper, we show how to extend our previously proposed novel continuous time Recurrent Neural Networks (RNN) approach that retains the advantage of continuous dynamics offered by Ordinary Differential Equations (ODE) while enabling parameter estimation through adaptation, to larger signalling networks using a modular approach. Specifically, the signalling network is decomposed into several sub-models based on important temporal events in the network. Each sub-model is represented by the proposed RNN and trained using data generated from the corresponding ODE model. Trained sub-models are assembled into a whole system RNN which is then subjected to systems dynamics and sensitivity analyses. The concept is illustrated by application to G1/S transition in cell cycle using Iwamoto et al. (2008) ODE model. We decomposed the G1/S network into 3 sub-models: (i) E2F transcription factor release; (ii) E2F and CycE positive feedback loop for elevating cyclin levels; and (iii) E2F and CycA negative feedback to degrade E2F. The trained sub-models accurately represented system dynamics and parameters were in good agreement with the ODE model. The whole system RNN however revealed couple of parameters contributing to compounding errors due to feedback and required refinement to sub-model 2. These related to the reversible reaction between CycE/CDK2 and p27, its inhibitor. The revised whole system RNN model very accurately matched dynamics of the ODE system. Local sensitivity analysis of the whole system model further revealed the most dominant influence of the above two parameters in perturbing G1/S transition, giving support to a recent hypothesis that the release of inhibitor p27 from Cyc/CDK complex triggers cell cycle stage transition. To make the model useful in a practical setting, we modified each RNN sub-model with a time relay switch to facilitate larger interval input data (≈20min) (original model used data for 30s or less) and retrained them that produced parameters and protein concentrations similar to the original RNN system. Results thus demonstrated the reliability of the proposed RNN method for modelling relatively large networks by modularisation for practical settings. Advantages of the method are its ability to represent accurate continuous system dynamics and ease of: parameter estimation through training with data from a practical setting, model analysis (40% faster than ODE), fine tuning parameters when more data are available, sub-model extension when new elements and/or interactions come to light and model expansion with addition of sub-models. Copyright © 2017 Elsevier B.V. All rights reserved.
Homeostatic enhancement of sensory transduction
Milewski, Andrew R.; Ó Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.
2017-01-01
Our sense of hearing boasts exquisite sensitivity, precise frequency discrimination, and a broad dynamic range. Experiments and modeling imply, however, that the auditory system achieves this performance for only a narrow range of parameter values. Small changes in these values could compromise hair cells’ ability to detect stimuli. We propose that, rather than exerting tight control over parameters, the auditory system uses a homeostatic mechanism that increases the robustness of its operation to variation in parameter values. To slowly adjust the response to sinusoidal stimulation, the homeostatic mechanism feeds back a rectified version of the hair bundle’s displacement to its adaptation process. When homeostasis is enforced, the range of parameter values for which the sensitivity, tuning sharpness, and dynamic range exceed specified thresholds can increase by more than an order of magnitude. Signatures in the hair cell’s behavior provide a means to determine through experiment whether such a mechanism operates in the auditory system. Robustness of function through homeostasis may be ensured in any system through mechanisms similar to those that we describe here. PMID:28760949
Experimental implementation of array-compressed parallel transmission at 7 tesla.
Yan, Xinqiang; Cao, Zhipeng; Grissom, William A
2016-06-01
To implement and validate a hardware-based array-compressed parallel transmission (acpTx) system. In array-compressed parallel transmission, a small number of transmit channels drive a larger number of transmit coils, which are connected via an array compression network that implements optimized coil-to-channel combinations. A two channel-to-eight coil array compression network was developed using power splitters, attenuators and phase shifters, and a simulation was performed to investigate the effects of coil coupling on power dissipation in a simplified network. An eight coil transmit array was constructed using induced current elimination decoupling, and the coil and network were validated in benchtop measurements, B1+ mapping scans, and an accelerated spiral excitation experiment. The developed attenuators came within 0.08 dB of the desired attenuations, and reflection coefficients were -22 dB or better. The simulation demonstrated that up to 3× more power was dissipated in the network when coils were poorly isolated (-9.6 dB), versus well-isolated (-31 dB). Compared to split circularly-polarized coil combinations, the additional degrees of freedom provided by the array compression network led to 54% lower squared excitation error in the spiral experiment. Array-compressed parallel transmission was successfully implemented in a hardware system. Further work is needed to develop remote network tuning and to minimize network power dissipation. Magn Reson Med 75:2545-2552, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Taming parallel I/O complexity with auto-tuning
Behzad, Babak; Luu, Huong Vu Thanh; Huchette, Joseph; ...
2013-11-17
We present an auto-tuning system for optimizing I/O performance of HDF5 applications and demonstrate its value across platforms, applications, and at scale. The system uses a genetic algorithm to search a large space of tunable parameters and to identify effective settings at all layers of the parallel I/O stack. The parameter settings are applied transparently by the auto-tuning system via dynamically intercepted HDF5 calls. To validate our auto-tuning system, we applied it to three I/O benchmarks (VPIC, VORPAL, and GCRM) that replicate the I/O activity of their respective applications. We tested the system with different weak-scaling configurations (128, 2048, andmore » 4096 CPU cores) that generate 30 GB to 1 TB of data, and executed these configurations on diverse HPC platforms (Cray XE6, IBM BG/P, and Dell Cluster). In all cases, the auto-tuning framework identified tunable parameters that substantially improved write performance over default system settings. In conclusion, we consistently demonstrate I/O write speedups between 2x and 100x for test configurations.« less
An algorithm for the design and tuning of RF accelerating structures with variable cell lengths
NASA Astrophysics Data System (ADS)
Lal, Shankar; Pant, K. K.
2018-05-01
An algorithm is proposed for the design of a π mode standing wave buncher structure with variable cell lengths. It employs a two-parameter, multi-step approach for the design of the structure with desired resonant frequency and field flatness. The algorithm, along with analytical scaling laws for the design of the RF power coupling slot, makes it possible to accurately design the structure employing a freely available electromagnetic code like SUPERFISH. To compensate for machining errors, a tuning method has been devised to achieve desired RF parameters for the structure, which has been qualified by the successful tuning of a 7-cell buncher to π mode frequency of 2856 MHz with field flatness <3% and RF coupling coefficient close to unity. The proposed design algorithm and tuning method have demonstrated the feasibility of developing an S-band accelerating structure for desired RF parameters with a relatively relaxed machining tolerance of ∼ 25 μm. This paper discusses the algorithm for the design and tuning of an RF accelerating structure with variable cell lengths.
Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System
NASA Astrophysics Data System (ADS)
Bendjeghaba, Omar
2014-01-01
This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.
Learning to Estimate Dynamical State with Probabilistic Population Codes
Sabes, Philip N.
2015-01-01
Tracking moving objects, including one’s own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, “probabilistic population codes.” We show that a recurrent neural network—a modified form of an exponential family harmonium (EFH)—that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152
NASA Technical Reports Server (NTRS)
Carrier, Alain C.; Aubrun, Jean-Noel
1993-01-01
New frequency response measurement procedures, on-line modal tuning techniques, and off-line modal identification algorithms are developed and applied to the modal identification of the Advanced Structures/Controls Integrated Experiment (ASCIE), a generic segmented optics telescope test-bed representative of future complex space structures. The frequency response measurement procedure uses all the actuators simultaneously to excite the structure and all the sensors to measure the structural response so that all the transfer functions are measured simultaneously. Structural responses to sinusoidal excitations are measured and analyzed to calculate spectral responses. The spectral responses in turn are analyzed as the spectral data become available and, which is new, the results are used to maintain high quality measurements. Data acquisition, processing, and checking procedures are fully automated. As the acquisition of the frequency response progresses, an on-line algorithm keeps track of the actuator force distribution that maximizes the structural response to automatically tune to a structural mode when approaching a resonant frequency. This tuning is insensitive to delays, ill-conditioning, and nonproportional damping. Experimental results show that is useful for modal surveys even in high modal density regions. For thorough modeling, a constructive procedure is proposed to identify the dynamics of a complex system from its frequency response with the minimization of a least-squares cost function as a desirable objective. This procedure relies on off-line modal separation algorithms to extract modal information and on least-squares parameter subset optimization to combine the modal results and globally fit the modal parameters to the measured data. The modal separation algorithms resolved modal density of 5 modes/Hz in the ASCIE experiment. They promise to be useful in many challenging applications.
Adaptive logical stochastic resonance in time-delayed synthetic genetic networks
NASA Astrophysics Data System (ADS)
Zhang, Lei; Zheng, Wenbin; Song, Aiguo
2018-04-01
In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.
Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model
NASA Astrophysics Data System (ADS)
Williamson, Daniel B.; Blaker, Adam T.; Sinha, Bablu
2017-04-01
In this paper we discuss climate model tuning and present an iterative automatic tuning method from the statistical science literature. The method, which we refer to here as iterative refocussing (though also known as history matching), avoids many of the common pitfalls of automatic tuning procedures that are based on optimisation of a cost function, principally the over-tuning of a climate model due to using only partial observations. This avoidance comes by seeking to rule out parameter choices that we are confident could not reproduce the observations, rather than seeking the model that is closest to them (a procedure that risks over-tuning). We comment on the state of climate model tuning and illustrate our approach through three waves of iterative refocussing of the NEMO (Nucleus for European Modelling of the Ocean) ORCA2 global ocean model run at 2° resolution. We show how at certain depths the anomalies of global mean temperature and salinity in a standard configuration of the model exceeds 10 standard deviations away from observations and show the extent to which this can be alleviated by iterative refocussing without compromising model performance spatially. We show how model improvements can be achieved by simultaneously perturbing multiple parameters, and illustrate the potential of using low-resolution ensembles to tune NEMO ORCA configurations at higher resolutions.
Tagging the neuronal entrainment to beat and meter.
Nozaradan, Sylvie; Peretz, Isabelle; Missal, Marcus; Mouraux, André
2011-07-13
Feeling the beat and meter is fundamental to the experience of music. However, how these periodicities are represented in the brain remains largely unknown. Here, we test whether this function emerges from the entrainment of neurons resonating to the beat and meter. We recorded the electroencephalogram while participants listened to a musical beat and imagined a binary or a ternary meter on this beat (i.e., a march or a waltz). We found that the beat elicits a sustained periodic EEG response tuned to the beat frequency. Most importantly, we found that meter imagery elicits an additional frequency tuned to the corresponding metric interpretation of this beat. These results provide compelling evidence that neural entrainment to beat and meter can be captured directly in the electroencephalogram. More generally, our results suggest that music constitutes a unique context to explore entrainment phenomena in dynamic cognitive processing at the level of neural networks.
Advancing reversible shape memory by tuning the polymer network architecture
Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...
2016-02-02
Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K –1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less
NASA Astrophysics Data System (ADS)
Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu
2017-01-01
Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.
Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System
NASA Technical Reports Server (NTRS)
Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)
2002-01-01
Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.
NASA Astrophysics Data System (ADS)
Lee, Michael; Freed, Adrian; Wessel, David
1992-08-01
In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.
Simulator design for advanced ISDN satellite design and experiments
NASA Technical Reports Server (NTRS)
Pepin, Gerald R.
1992-01-01
This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.
1992-01-01
The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.
Tamm plasmon sub-wavelength structuration for loss reduction and resonance tuning
NASA Astrophysics Data System (ADS)
Gubaydullin, A. R.; Symonds, C.; Benoit, J.-M.; Ferrier, L.; Benyattou, T.; Jamois, C.; Lemaître, A.; Senellart, P.; Kaliteevski, M. A.; Bellessa, J.
2017-12-01
We have demonstrated experimentally and theoretically that losses in Tamm plasmon structures can be reduced by using a subwavelength structuration of the metal layer. The structures consist of a GaAs/Al0.95Ga0.05As Bragg reflector covered with a sub-wavelength silver grating. An active quantum dot layer is inserted to perform photoluminescence experiments. Experimental results show that the quality factor of the Tamm plasmon mode with grating increases substantially, with respect to the same structure without a grating. Moreover, a fine-tuning of the Tamm spectral position is obtained by changing the grating parameters. Finite element method simulations are in good agreement with the experimental values. Our results will promote the realization of lasing with the TP based devices at room temperature.
Zheng, Weijia; Pi, Youguo
2016-07-01
A tuning method of the fractional order proportional integral speed controller for a permanent magnet synchronous motor is proposed in this paper. Taking the combination of the integral of time and absolute error and the phase margin as the optimization index, the robustness specification as the constraint condition, the differential evolution algorithm is applied to search the optimal controller parameters. The dynamic response performance and robustness of the obtained optimal controller are verified by motor speed-tracking experiments on the motor speed control platform. Experimental results show that the proposed tuning method can enable the obtained control system to achieve both the optimal dynamic response performance and the robustness to gain variations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Luna, C. de
2003-01-01
This session will help you tune up your skills and knowledge on the latest advances in network design and management, to keep your agency's data communications running at peak performance, with minimal cost and effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Liwei; Qian, Yun; Zhou, Tianjun
2014-10-01
In this study, we calibrated the performance of regional climate model RegCM3 with Massachusetts Institute of Technology (MIT)-Emanuel cumulus parameterization scheme over CORDEX East Asia domain by tuning the selected seven parameters through multiple very fast simulated annealing (MVFSA) sampling method. The seven parameters were selected based on previous studies, which customized the RegCM3 with MIT-Emanuel scheme through three different ways by using the sensitivity experiments. The responses of model results to the seven parameters were investigated. Since the monthly total rainfall is constrained, the simulated spatial pattern of rainfall and the probability density function (PDF) distribution of daily rainfallmore » rates are significantly improved in the optimal simulation. Sensitivity analysis suggest that the parameter “relative humidity criteria” (RH), which has not been considered in the default simulation, has the largest effect on the model results. The responses of total rainfall over different regions to RH were examined. Positive responses of total rainfall to RH are found over northern equatorial western Pacific, which are contributed by the positive responses of explicit rainfall. Followed by an increase of RH, the increases of the low-level convergence and the associated increases in cloud water favor the increase of the explicit rainfall. The identified optimal parameters constrained by the total rainfall have positive effects on the low-level circulation and the surface air temperature. Furthermore, the optimized parameters based on the extreme case are suitable for a normal case and the model’s new version with mixed convection scheme.« less
Information dynamics algorithm for detecting communities in networks
NASA Astrophysics Data System (ADS)
Massaro, Emanuele; Bagnoli, Franco; Guazzini, Andrea; Lió, Pietro
2012-11-01
The problem of community detection is relevant in many scientific disciplines, from social science to statistical physics. Given the impact of community detection in many areas, such as psychology and social sciences, we have addressed the issue of modifying existing well performing algorithms by incorporating elements of the domain application fields, i.e. domain-inspired. We have focused on a psychology and social network-inspired approach which may be useful for further strengthening the link between social network studies and mathematics of community detection. Here we introduce a community-detection algorithm derived from the van Dongen's Markov Cluster algorithm (MCL) method [4] by considering networks' nodes as agents capable to take decisions. In this framework we have introduced a memory factor to mimic a typical human behavior such as the oblivion effect. The method is based on information diffusion and it includes a non-linear processing phase. We test our method on two classical community benchmark and on computer generated networks with known community structure. Our approach has three important features: the capacity of detecting overlapping communities, the capability of identifying communities from an individual point of view and the fine tuning the community detectability with respect to prior knowledge of the data. Finally we discuss how to use a Shannon entropy measure for parameter estimation in complex networks.
Rauber, Markus; Alber, Ina; Müller, Sven; Neumann, Reinhard; Picht, Oliver; Roth, Christina; Schökel, Alexander; Toimil-Molares, Maria Eugenia; Ensinger, Wolfgang
2011-06-08
The fabrication of three-dimensional assemblies consisting of large quantities of nanowires is of great technological importance for various applications including (electro-)catalysis, sensitive sensing, and improvement of electronic devices. Because the spatial distribution of the nanostructured material can strongly influence the properties, architectural design is required in order to use assembled nanowires to their full potential. In addition, special effort has to be dedicated to the development of efficient methods that allow precise control over structural parameters of the nanoscale building blocks as a means of tuning their characteristics. This paper reports the direct synthesis of highly ordered large-area nanowire networks by a method based on hard templates using electrodeposition within nanochannels of ion track-etched polymer membranes. Control over the complexity of the networks and the dimensions of the integrated nanostructures are achieved by a modified template fabrication. The networks possess high surface area and excellent transport properties, turning them into a promising electrocatalyst material as demonstrated by cyclic voltammetry studies on platinum nanowire networks catalyzing methanol oxidation. Our method opens up a new general route for interconnecting nanowires to stable macroscopic network structures of very high integration level that allow easy handling of nanowires while maintaining their connectivity.
Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data.
Sun, Wenqing; Tseng, Tzu-Liang Bill; Zhang, Jianying; Qian, Wei
2017-04-01
In this study we developed a graph based semi-supervised learning (SSL) scheme using deep convolutional neural network (CNN) for breast cancer diagnosis. CNN usually needs a large amount of labeled data for training and fine tuning the parameters, and our proposed scheme only requires a small portion of labeled data in training set. Four modules were included in the diagnosis system: data weighing, feature selection, dividing co-training data labeling, and CNN. 3158 region of interests (ROIs) with each containing a mass extracted from 1874 pairs of mammogram images were used for this study. Among them 100 ROIs were treated as labeled data while the rest were treated as unlabeled. The area under the curve (AUC) observed in our study was 0.8818, and the accuracy of CNN is 0.8243 using the mixed labeled and unlabeled data. Copyright © 2016. Published by Elsevier Ltd.
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-01-01
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-06-10
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.
NASA Astrophysics Data System (ADS)
Li, Lin; Deng, Pengcheng; Liu, Jiuzhou; Li, Chao
2018-03-01
The paper deals with the vibration suppression of a bladed disk with a piezoelectric network. The piezoelectric network has a different period (so called bi-period) from that of the bladed disk and there is no inductor in it. The system is simulated by an electromechanical lumped parameter model with two DOFs per sector. The research focuses on suppressing the amplitude magnification or reducing the vibration localization of the mistuned bladed disk. The dynamic equations of the system are derived. Both mechanical mistuning and electrical mistuning have been taken into account. The Modified Modal Assurance Criterion (MMAC) is used to evaluate the vibration suppression ability of the bi-periodic piezoelectric network. The Monte Carlo simulation is used to calculate the MMAC of the system with the random mistuning. As a reference, the forced responses of the bladed disk with and without the piezoelectric network are given. The results show that the piezoelectric network would effectively suppress amplitude magnification induced by mistuning. The vibration amplitude is even smaller than that of the tuned system. The robustness analysis shows that the bi-periodic piezoelectric network can provide a reliable assurance for avoiding the forced response amplification of the mistuned bladed disk. The amplified response induced by the mechanical mistuning with standard deviation 0.2 can be effectively suppressed through the bi-periodic piezoelectric network.
Fuzzy logic controllers for electrotechnical devices - On-site tuning approach
NASA Astrophysics Data System (ADS)
Hissel, D.; Maussion, P.; Faucher, J.
2001-12-01
Fuzzy logic offers nowadays an interesting alternative to the designers of non linear control laws for electrical or electromechanical systems. However, due to the huge number of tuning parameters, this kind of control is only used in a few industrial applications. This paper proposes a new, very simple, on-site tuning strategy for a PID-like fuzzy logic controller. Thanks to the experimental designs methodology, we will propose sets of optimized pre-established settings for this kind of fuzzy controllers. The proposed parameters are only depending on one on-site open-loop identification test. In this way, this on-site tuning methodology has to be compared to the Ziegler-Nichols one's for conventional controllers. Experimental results (on a permanent magnets synchronous motor and on a DC/DC converter) will underline all the efficiency of this tuning methodology. Finally, the field of validity of the proposed pre-established settings will be given.
Hass, Joachim; Hertäg, Loreen; Durstewitz, Daniel
2016-01-01
The prefrontal cortex is centrally involved in a wide range of cognitive functions and their impairment in psychiatric disorders. Yet, the computational principles that govern the dynamics of prefrontal neural networks, and link their physiological, biochemical and anatomical properties to cognitive functions, are not well understood. Computational models can help to bridge the gap between these different levels of description, provided they are sufficiently constrained by experimental data and capable of predicting key properties of the intact cortex. Here, we present a detailed network model of the prefrontal cortex, based on a simple computationally efficient single neuron model (simpAdEx), with all parameters derived from in vitro electrophysiological and anatomical data. Without additional tuning, this model could be shown to quantitatively reproduce a wide range of measures from in vivo electrophysiological recordings, to a degree where simulated and experimentally observed activities were statistically indistinguishable. These measures include spike train statistics, membrane potential fluctuations, local field potentials, and the transmission of transient stimulus information across layers. We further demonstrate that model predictions are robust against moderate changes in key parameters, and that synaptic heterogeneity is a crucial ingredient to the quantitative reproduction of in vivo-like electrophysiological behavior. Thus, we have produced a physiologically highly valid, in a quantitative sense, yet computationally efficient PFC network model, which helped to identify key properties underlying spike time dynamics as observed in vivo, and can be harvested for in-depth investigation of the links between physiology and cognition. PMID:27203563
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
NASA Astrophysics Data System (ADS)
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
Neuronal correlates of perception, imagery, and memory for familiar tunes.
Herholz, Sibylle C; Halpern, Andrea R; Zatorre, Robert J
2012-06-01
We used fMRI to investigate the neuronal correlates of encoding and recognizing heard and imagined melodies. Ten participants were shown lyrics of familiar verbal tunes; they either heard the tune along with the lyrics, or they had to imagine it. In a subsequent surprise recognition test, they had to identify the titles of tunes that they had heard or imagined earlier. The functional data showed substantial overlap during melody perception and imagery, including secondary auditory areas. During imagery compared with perception, an extended network including pFC, SMA, intraparietal sulcus, and cerebellum showed increased activity, in line with the increased processing demands of imagery. Functional connectivity of anterior right temporal cortex with frontal areas was increased during imagery compared with perception, indicating that these areas form an imagery-related network. Activity in right superior temporal gyrus and pFC was correlated with the subjective rating of imagery vividness. Similar to the encoding phase, the recognition task recruited overlapping areas, including inferior frontal cortex associated with memory retrieval, as well as left middle temporal gyrus. The results present new evidence for the cortical network underlying goal-directed auditory imagery, with a prominent role of the right pFC both for the subjective impression of imagery vividness and for on-line mental monitoring of imagery-related activity in auditory areas.
Numerical weather prediction model tuning via ensemble prediction system
NASA Astrophysics Data System (ADS)
Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.
2011-12-01
This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.
Neural self-tuning adaptive control of non-minimum phase system
NASA Technical Reports Server (NTRS)
Ho, Long T.; Bialasiewicz, Jan T.; Ho, Hai T.
1993-01-01
The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity, if not unstable, closed-loop behavior. Therefore, a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.
Optimizing Input/Output Using Adaptive File System Policies
NASA Technical Reports Server (NTRS)
Madhyastha, Tara M.; Elford, Christopher L.; Reed, Daniel A.
1996-01-01
Parallel input/output characterization studies and experiments with flexible resource management algorithms indicate that adaptivity is crucial to file system performance. In this paper we propose an automatic technique for selecting and refining file system policies based on application access patterns and execution environment. An automatic classification framework allows the file system to select appropriate caching and pre-fetching policies, while performance sensors provide feedback used to tune policy parameters for specific system environments. To illustrate the potential performance improvements possible using adaptive file system policies, we present results from experiments involving classification-based and performance-based steering.
Human face processing is tuned to sexual age preferences.
Ponseti, J; Granert, O; van Eimeren, T; Jansen, O; Wolff, S; Beier, K; Deuschl, G; Bosinski, H; Siebner, H
2014-05-01
Human faces can motivate nurturing behaviour or sexual behaviour when adults see a child or an adult face, respectively. This suggests that face processing is tuned to detecting age cues of sexual maturity to stimulate the appropriate reproductive behaviour: either caretaking or mating. In paedophilia, sexual attraction is directed to sexually immature children. Therefore, we hypothesized that brain networks that normally are tuned to mature faces of the preferred gender show an abnormal tuning to sexual immature faces in paedophilia. Here, we use functional magnetic resonance imaging (fMRI) to test directly for the existence of a network which is tuned to face cues of sexual maturity. During fMRI, participants sexually attracted to either adults or children were exposed to various face images. In individuals attracted to adults, adult faces activated several brain regions significantly more than child faces. These brain regions comprised areas known to be implicated in face processing, and sexual processing, including occipital areas, the ventrolateral prefrontal cortex and, subcortically, the putamen and nucleus caudatus. The same regions were activated in paedophiles, but with a reversed preferential response pattern. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Automatic tuned MRI RF coil for multinuclear imaging of small animals at 3T.
Muftuler, L Tugan; Gulsen, Gultekin; Sezen, Kumsal D; Nalcioglu, Orhan
2002-03-01
We have developed an MRI RF coil whose tuning can be adjusted automatically between 120 and 128 MHz for sequential spectroscopic imaging of hydrogen and fluorine nuclei at field strength 3 T. Variable capacitance (varactor) diodes were placed on each rung of an eight-leg low-pass birdcage coil to change the tuning frequency of the coil. The diode junction capacitance can be controlled by the amount of applied reverse bias voltage. Impedance matching was also done automatically by another pair of varactor diodes to obtain the maximum SNR at each frequency. The same bias voltage was applied to the tuning varactors on all rungs to avoid perturbations in the coil. A network analyzer was used to monitor matching and tuning of the coil. A Pentium PC controlled the analyzer through the GPIB bus. A code written in LABVIEW was used to communicate with the network analyzer and adjust the bias voltages of the varactors via D/A converters. Serially programmed D/A converter devices were used to apply the bias voltages to the varactors. Isolation amplifiers were used together with RF choke inductors to provide isolation between the RF coil and the DC bias lines. We acquired proton and fluorine images sequentially from a multicompartment phantom using the designed coil. Good matching and tuning were obtained at both resonance frequencies. The tuning and matching of the coil were changed from one resonance frequency to the other within 60 s. (c) 2002 Elsevier Science (USA).
Combustor Operability and Performance Verification for HIFiRE Flight 2
NASA Technical Reports Server (NTRS)
Storch, Andrea M.; Bynum, Michael; Liu, Jiwen; Gruber, Mark
2011-01-01
As part of the Hypersonic International Flight Research Experimentation (HIFiRE) Direct-Connect Rig (HDCR) test and analysis activity, three-dimensional computational fluid dynamics (CFD) simulations were performed using two Reynolds-Averaged Navier Stokes solvers. Measurements obtained from ground testing in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) were used to specify inflow conditions for the simulations and combustor data from four representative tests were used as benchmarks. Test cases at simulated flight enthalpies of Mach 5.84, 6.5, 7.5, and 8.0 were analyzed. Modeling parameters (e.g., turbulent Schmidt number and compressibility treatment) were tuned such that the CFD results closely matched the experimental results. The tuned modeling parameters were used to establish a standard practice in HIFiRE combustor analysis. Combustor performance and operating mode were examined and were found to meet or exceed the objectives of the HIFiRE Flight 2 experiment. In addition, the calibrated CFD tools were then applied to make predictions of combustor operation and performance for the flight configuration and to aid in understanding the impacts of ground and flight uncertainties on combustor operation.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2015-10-21
A summary of the constraints from the ATLAS experiment on R -parity-conserving supersymmetry is presented. Results from 22 separate ATLAS searches are considered, each based on analysis of up to 20.3 fb –1 of proton-proton collision data at centre-of-mass energies of √s =7 and 8 TeV at the Large Hadron Collider. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, in which the lightest supersymmetric particle is a neutralino, taking into account constraints from previous precision electroweak and flavour measurements as well as from dark matter related measurements. The results are presented in termsmore » of constraints on supersymmetric particle masses and are compared to limits from simplified models. The impact of ATLAS searches on parameters such as the dark matter relic density, the couplings of the observed Higgs boson, and the degree of electroweak fine-tuning is also shown. As a result, spectra for surviving supersymmetry model points with low fine-tunings are presented.« less
Brumboiu, Iulia Emilia; Prokopiou, Georgia; Kronik, Leeor; Brena, Barbara
2017-07-28
We analyse the valence electronic structure of cobalt phthalocyanine (CoPc) by means of optimally tuning a range-separated hybrid functional. The tuning is performed by modifying both the amount of short-range exact exchange (α) included in the hybrid functional and the range-separation parameter (γ), with two strategies employed for finding the optimal γ for each α. The influence of these two parameters on the structural, electronic, and magnetic properties of CoPc is thoroughly investigated. The electronic structure is found to be very sensitive to the amount and range in which the exact exchange is included. The electronic structure obtained using the optimal parameters is compared to gas-phase photo-electron data and GW calculations, with the unoccupied states additionally compared with inverse photo-electron spectroscopy measurements. The calculated spectrum with tuned γ, determined for the optimal value of α = 0.1, yields a very good agreement with both experimental results and with GW calculations that well-reproduce the experimental data.
A graph decomposition-based approach for water distribution network optimization
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.; Deuerlein, Jochen W.
2013-04-01
A novel optimization approach for water distribution network design is proposed in this paper. Using graph theory algorithms, a full water network is first decomposed into different subnetworks based on the connectivity of the network's components. The original whole network is simplified to a directed augmented tree, in which the subnetworks are substituted by augmented nodes and directed links are created to connect them. Differential evolution (DE) is then employed to optimize each subnetwork based on the sequence specified by the assigned directed links in the augmented tree. Rather than optimizing the original network as a whole, the subnetworks are sequentially optimized by the DE algorithm. A solution choice table is established for each subnetwork (except for the subnetwork that includes a supply node) and the optimal solution of the original whole network is finally obtained by use of the solution choice tables. Furthermore, a preconditioning algorithm is applied to the subnetworks to produce an approximately optimal solution for the original whole network. This solution specifies promising regions for the final optimization algorithm to further optimize the subnetworks. Five water network case studies are used to demonstrate the effectiveness of the proposed optimization method. A standard DE algorithm (SDE) and a genetic algorithm (GA) are applied to each case study without network decomposition to enable a comparison with the proposed method. The results show that the proposed method consistently outperforms the SDE and GA (both with tuned parameters) in terms of both the solution quality and efficiency.
Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G
2018-05-30
Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM-MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM-MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM-MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.
Dann, Benjamin
2016-01-01
Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity. PMID:27814352
Michaels, Jonathan A; Dann, Benjamin; Scherberger, Hansjörg
2016-11-01
Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity.
Patel, Neal M.; Kinzer-Ursem, Tamara L.
2017-01-01
A number of neurological disorders arise from perturbations in biochemical signaling and protein complex formation within neurons. Normally, proteins form networks that when activated produce persistent changes in a synapse’s molecular composition. In hippocampal neurons, calcium ion (Ca2+) flux through N-methyl-D-aspartate (NMDA) receptors activates Ca2+/calmodulin signal transduction networks that either increase or decrease the strength of the neuronal synapse, phenomena known as long-term potentiation (LTP) or long-term depression (LTD), respectively. The calcium-sensor calmodulin (CaM) acts as a common activator of the networks responsible for both LTP and LTD. This is possible, in part, because CaM binding proteins are “tuned” to different Ca2+ flux signals by their unique binding and activation dynamics. Computational modeling is used to describe the binding and activation dynamics of Ca2+/CaM signal transduction and can be used to guide focused experimental studies. Although CaM binds over 100 proteins, practical limitations cause many models to include only one or two CaM-activated proteins. In this work, we view Ca2+/CaM as a limiting resource in the signal transduction pathway owing to its low abundance relative to its binding partners. With this view, we investigate the effect of competitive binding on the dynamics of CaM binding partner activation. Using an explicit model of Ca2+, CaM, and seven highly-expressed hippocampal CaM binding proteins, we find that competition for CaM binding serves as a tuning mechanism: the presence of competitors shifts and sharpens the Ca2+ frequency-dependence of CaM binding proteins. Notably, we find that simulated competition may be sufficient to recreate the in vivo frequency dependence of the CaM-dependent phosphatase calcineurin. Additionally, competition alone (without feedback mechanisms or spatial parameters) could replicate counter-intuitive experimental observations of decreased activation of Ca2+/CaM-dependent protein kinase II in knockout models of neurogranin. We conclude that competitive tuning could be an important dynamic process underlying synaptic plasticity. PMID:29107982
An Advanced Sensor Network Design For Subglacial Sensing
NASA Astrophysics Data System (ADS)
Martinez, K.; Hart, J. K.; Elsaify, A.; Zou, G.; Padhy, P.; Riddoch, A.
2006-12-01
In the Glacsweb project a sensor network has been designed to take sensor measurements inside glaciers and send the data back to a web server autonomously. A wide range of experience was gained in the deployment of the earlier systems and this has been used to develop new hardware and software to better meet the needs of glaciologists using the data from the system. The system was reduced in size, new sensors (compass, light sensor) were added and the radio communications system completely changed. The new 173MHz radio system was designed with an antenna tuned to work in ice and a new network algorithm written to provide better data security. Probes can communicate data through each other (ad-hoc network) and store many months of data in a large buffer to cope with long term communications failures. New sensors include a light reflection measurement in order to provide data on the surrounding material. This paper will discuss the design decisions, the effectiveness of the final system and generic outcomes of use to sensor network designers deploying in difficult environments.
Inverse optimal self-tuning PID control design for an autonomous underwater vehicle
NASA Astrophysics Data System (ADS)
Rout, Raja; Subudhi, Bidyadhar
2017-01-01
This paper presents a new approach to path following control design for an autonomous underwater vehicle (AUV). A NARMAX model of the AUV is derived first and then its parameters are adapted online using the recursive extended least square algorithm. An adaptive Propotional-Integral-Derivative (PID) controller is developed using the derived parameters to accomplish the path following task of an AUV. The gain parameters of the PID controller are tuned using an inverse optimal control technique, which alleviates the problem of solving Hamilton-Jacobian equation and also satisfies an error cost function. Simulation studies were pursued to verify the efficacy of the proposed control algorithm. From the obtained results, it is envisaged that the proposed NARMAX model-based self-tuning adaptive PID control provides good path following performance even in the presence of uncertainty arising due to ocean current or hydrodynamic parameter.
Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load
NASA Astrophysics Data System (ADS)
Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.
2017-12-01
Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.
NASA Astrophysics Data System (ADS)
Bresnahan, Patricia A.; Pukinskis, Madeleine; Wiggins, Michael
1999-03-01
Image quality assessment systems differ greatly with respect to the number and types of mags they need to evaluate, and their overall architectures. Managers of these systems, however, all need to be able to tune and evaluate system performance, requirements often overlooked or under-designed during project planning. Performance tuning tools allow users to define acceptable quality standards for image features and attributes by adjusting parameter settings. Performance analysis tools allow users to evaluate and/or predict how well a system performs in a given parameter state. While image assessment algorithms are becoming quite sophisticated, duplicating or surpassing the human decision making process in their speed and reliability, they often require a greater investment in 'training' or fine tuning of parameters in order to achieve optimum performance. This process may involve the analysis of hundreds or thousands of images, generating a large database of files and statistics that can be difficult to sort through and interpret. Compounding the difficulty is the fact that personnel charged with tuning and maintaining the production system may not have the statistical or analytical background required for the task. Meanwhile, hardware innovations have greatly increased the volume of images that can be handled in a given time frame, magnifying the consequences of running a production site with an inadequately tuned system. In this paper, some general requirements for a performance evaluation and tuning data visualization system are discussed. A custom engineered solution to the tuning and evaluation problem is then presented, developed within the context of a high volume image quality assessment, data entry, OCR, and image archival system. A key factor influencing the design of the system was the context-dependent definition of image quality, as perceived by a human interpreter. This led to the development of a five-level, hierarchical approach to image quality evaluation. Lower-level pass-fail conditions and decision rules were coded into the system. Higher-level image quality states were defined by allowing the users to interactively adjust the system's sensitivity to various image attributes by manipulating graphical controls. Results were presented in easily interpreted bar graphs. These graphs were mouse- sensitive, allowing the user to more fully explore the subsets of data indicated by various color blocks. In order to simplify the performance evaluation and tuning process, users could choose to view the results of (1) the existing system parameter state, (2) the results of any arbitrary parameter values they chose, or (3) the results of a quasi-optimum parameter state, derived by applying a decision rule to a large set of possible parameter states. Giving managers easy- to-use tools for defining the more subjective aspects of quality resulted in a system that responded to contextual cues that are difficult to hard-code. It had the additional advantage of allowing the definition of quality to evolve over time, as users became more knowledgeable as to the strengths and limitations of an automated quality inspection system.
NASA Astrophysics Data System (ADS)
Bindhaiq, Salem; Supa'at, Abu Sahmah M.; Zulkifli, Nadiatulhuda; Shaddad, Redhwan Q.; Mataria, Abdallah
2014-07-01
A high data transmission rate is the main requirement for next-generation telecommunication networks. A design for a 40 Gb/s time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 is presented. The use of a modulated grating Y-branch (MG-Y) laser is proposed as an upstream tunable colorless laser source to upgrade the optical network unit. The electronically tuned MG-Y externally modulated laser with a 10 Gb/s modulation rate is applied to a TWDM-PON and presented across a 3.2-nm tuning range. The performance of the proposed laser is analyzed in terms of bit error rate, eye diagram, and optical signal-to-noise ratio. The proposed TWDM-PON achieved an aggregated data rate of 40 Gb/s along 40 km of bidirectional fiber at a 1:128 splitting ratio without amplification and dispersion compensation.
Auto-tuning system for NMR probe with LabView
NASA Astrophysics Data System (ADS)
Quen, Carmen; Mateo, Olivia; Bernal, Oscar
2013-03-01
Typical manual NMR-tuning method is not suitable for broadband spectra spanning several megahertz linewidths. Among the main problems encountered during manual tuning are pulse-power reproducibility, baselines, and transmission line reflections, to name a few. We present a design of an auto-tuning system using graphic programming language, LabVIEW, to minimize these problems. The program is designed to analyze the detected power signal of an antenna near the NMR probe and use this analysis to automatically tune the sample coil to match the impedance of the spectrometer (50 Ω). The tuning capacitors of the probe are controlled by a stepper motor through a LabVIEW/computer interface. Our program calculates the area of the power signal as an indicator to control the motor so disconnecting the coil to tune it through a network analyzer is unnecessary. Work supported by NSF-DMR 1105380
Abramyan, Tigran M.; Snyder, James A.; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.
2015-01-01
Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG–X–GTGT host–guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard–Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid–liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122
Pleasurable Emotional Response to Music: A Case of Neurodegenerative Generalized Auditory Agnosia
Matthews, Brandy R.; Chang, Chiung-Chih; De May, Mary; Engstrom, John; Miller, Bruce L.
2009-01-01
Recent functional neuroimaging studies implicate the network of mesolimbic structures known to be active in reward processing as the neural substrate of pleasure associated with listening to music. Psychoacoustic and lesion studies suggest that there is a widely distributed cortical network involved in processing discreet musical variables. Here we present the case of a young man with auditory agnosia as the consequence of cortical neurodegeneration who continues to experience pleasure when exposed to music. In a series of musical tasks the subject was unable to accurately identify any of the perceptual components of music beyond simple pitch discrimination, including musical variables know to impact the perception of affect. The subject subsequently misidentified the musical character of personally familiar tunes presented experimentally, but continued to report the activity of “listening” to specific musical genres was an emotionally rewarding experience. The implications of this case for the evolving understanding of music perception, music misperception, music memory, and music-associated emotion are discussed. PMID:19253088
Pleasurable emotional response to music: a case of neurodegenerative generalized auditory agnosia.
Matthews, Brandy R; Chang, Chiung-Chih; De May, Mary; Engstrom, John; Miller, Bruce L
2009-06-01
Recent functional neuroimaging studies implicate the network of mesolimbic structures known to be active in reward processing as the neural substrate of pleasure associated with listening to music. Psychoacoustic and lesion studies suggest that there is a widely distributed cortical network involved in processing discreet musical variables. Here we present the case of a young man with auditory agnosia as the consequence of cortical neurodegeneration who continues to experience pleasure when exposed to music. In a series of musical tasks, the subject was unable to accurately identify any of the perceptual components of music beyond simple pitch discrimination, including musical variables known to impact the perception of affect. The subject subsequently misidentified the musical character of personally familiar tunes presented experimentally, but continued to report that the activity of 'listening' to specific musical genres was an emotionally rewarding experience. The implications of this case for the evolving understanding of music perception, music misperception, music memory, and music-associated emotion are discussed.
Enabling IPv6 at FZU - WLCG Tier2 in Prague
NASA Astrophysics Data System (ADS)
Kouba, Tomáš; Chudoba, Jiří; Eliáš, Marek
2014-06-01
The usage of the new IPv6 protocol in production is becoming reality in the HEP community and the Computing Centre of the Institute of Physics in Prague participates in many IPv6 related activities. Our contribution presents experience with monitoring in HEPiX distributed IPv6 testbed which includes 11 remote sites. We use Nagios to check availability of services and Smokeping for monitoring the network latency. Since it is not always trivial to setup DNS in a dual stack environment properly, we developed a Nagios plugin for checking whether a domain name is resolvable when using only IP protocol version 6 and only version 4. We will also present local area network monitoring and tuning related to IPv6 performance. One of the most important software for a grid site is a batch system for a job execution. We will present our experience with configuring and running Torque batch system in a dual stack environment. We also discuss the steps needed to run VO specific jobs in our IPv6 testbed.
von Twickel, Arndt; Büschges, Ansgar; Pasemann, Frank
2011-02-01
This article presents modular recurrent neural network controllers for single legs of a biomimetic six-legged robot equipped with standard DC motors. Following arguments of Ekeberg et al. (Arthropod Struct Dev 33:287-300, 2004), completely decentralized and sensori-driven neuro-controllers were derived from neuro-biological data of stick-insects. Parameters of the controllers were either hand-tuned or optimized by an evolutionary algorithm. Employing identical controller structures, qualitatively similar behaviors were achieved for robot and for stick insect simulations. For a wide range of perturbing conditions, as for instance changing ground height or up- and downhill walking, swing as well as stance control were shown to be robust. Behavioral adaptations, like varying locomotion speeds, could be achieved by changes in neural parameters as well as by a mechanical coupling to the environment. To a large extent the simulated walking behavior matched biological data. For example, this was the case for body support force profiles and swing trajectories under varying ground heights. The results suggest that the single-leg controllers are suitable as modules for hexapod controllers, and they might therefore bridge morphological- and behavioral-based approaches to stick insect locomotion control.
The use of Argo for validation and tuning of mixed layer models
NASA Astrophysics Data System (ADS)
Acreman, D. M.; Jeffery, C. D.
We present results from validation and tuning of 1-D ocean mixed layer models using data from Argo floats and data from Ocean Weather Station Papa (145°W, 50°N). Model tests at Ocean Weather Station Papa showed that a bulk model could perform well provided it was tuned correctly. The Large et al. [Large, W.G., McWilliams, J.C., Doney, S.C., 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterisation. Rev. Geophys. 32 (Novermber), 363-403] K-profile parameterisation (KPP) model also gave a good representation of mixed layer depth provided the vertical resolution was sufficiently high. Model tests using data from a single Argo float indicated a tendency for the KPP model to deepen insufficiently over an annual cycle, whereas the tuned bulk model and general ocean turbulence model (GOTM) gave a better representation of mixed layer depth. The bulk model was then tuned using data from a sample of Argo floats and a set of optimum parameters was found; these optimum parameters were consistent with the tuning at OWS Papa.
Fine-grained leukocyte classification with deep residual learning for microscopic images.
Qin, Feiwei; Gao, Nannan; Peng, Yong; Wu, Zizhao; Shen, Shuying; Grudtsin, Artur
2018-08-01
Leukocyte classification and cytometry have wide applications in medical domain, previous researches usually exploit machine learning techniques to classify leukocytes automatically. However, constrained by the past development of machine learning techniques, for example, extracting distinctive features from raw microscopic images are difficult, the widely used SVM classifier only has relative few parameters to tune, these methods cannot efficiently handle fine-grained classification cases when the white blood cells have up to 40 categories. Based on deep learning theory, a systematic study is conducted on finer leukocyte classification in this paper. A deep residual neural network based leukocyte classifier is constructed at first, which can imitate the domain expert's cell recognition process, and extract salient features robustly and automatically. Then the deep neural network classifier's topology is adjusted according to the prior knowledge of white blood cell test. After that the microscopic image dataset with almost one hundred thousand labeled leukocytes belonging to 40 categories is built, and combined training strategies are adopted to make the designed classifier has good generalization ability. The proposed deep residual neural network based classifier was tested on microscopic image dataset with 40 leukocyte categories. It achieves top-1 accuracy of 77.80%, top-5 accuracy of 98.75% during the training procedure. The average accuracy on the test set is nearly 76.84%. This paper presents a fine-grained leukocyte classification method for microscopic images, based on deep residual learning theory and medical domain knowledge. Experimental results validate the feasibility and effectiveness of our approach. Extended experiments support that the fine-grained leukocyte classifier could be used in real medical applications, assist doctors in diagnosing diseases, reduce human power significantly. Copyright © 2018 Elsevier B.V. All rights reserved.
Unsupervised Sequential Outlier Detection With Deep Architectures.
Lu, Weining; Cheng, Yu; Xiao, Cao; Chang, Shiyu; Huang, Shuai; Liang, Bin; Huang, Thomas
2017-09-01
Unsupervised outlier detection is a vital task and has high impact on a wide variety of applications domains, such as image analysis and video surveillance. It also gains long-standing attentions and has been extensively studied in multiple research areas. Detecting and taking action on outliers as quickly as possible are imperative in order to protect network and related stakeholders or to maintain the reliability of critical systems. However, outlier detection is difficult due to the one class nature and challenges in feature construction. Sequential anomaly detection is even harder with more challenges from temporal correlation in data, as well as the presence of noise and high dimensionality. In this paper, we introduce a novel deep structured framework to solve the challenging sequential outlier detection problem. We use autoencoder models to capture the intrinsic difference between outliers and normal instances and integrate the models to recurrent neural networks that allow the learning to make use of previous context as well as make the learners more robust to warp along the time axis. Furthermore, we propose to use a layerwise training procedure, which significantly simplifies the training procedure and hence helps achieve efficient and scalable training. In addition, we investigate a fine-tuning step to update all parameters set by incorporating the temporal correlation in the sequence. We further apply our proposed models to conduct systematic experiments on five real-world benchmark data sets. Experimental results demonstrate the effectiveness of our model, compared with other state-of-the-art approaches.
NASA Astrophysics Data System (ADS)
Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman
2016-09-01
The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.
Database Constraints Applied to Metabolic Pathway Reconstruction Tools
Vilaplana, Jordi; Solsona, Francesc; Teixido, Ivan; Usié, Anabel; Karathia, Hiren; Alves, Rui; Mateo, Jordi
2014-01-01
Our group developed two biological applications, Biblio-MetReS and Homol-MetReS, accessing the same database of organisms with annotated genes. Biblio-MetReS is a data-mining application that facilitates the reconstruction of molecular networks based on automated text-mining analysis of published scientific literature. Homol-MetReS allows functional (re)annotation of proteomes, to properly identify both the individual proteins involved in the process(es) of interest and their function. It also enables the sets of proteins involved in the process(es) in different organisms to be compared directly. The efficiency of these biological applications is directly related to the design of the shared database. We classified and analyzed the different kinds of access to the database. Based on this study, we tried to adjust and tune the configurable parameters of the database server to reach the best performance of the communication data link to/from the database system. Different database technologies were analyzed. We started the study with a public relational SQL database, MySQL. Then, the same database was implemented by a MapReduce-based database named HBase. The results indicated that the standard configuration of MySQL gives an acceptable performance for low or medium size databases. Nevertheless, tuning database parameters can greatly improve the performance and lead to very competitive runtimes. PMID:25202745
Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P
2016-05-01
Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Takahashi, Y
1998-01-01
It is well known that the Hopfield Model (HM) for neural networks to solve the Traveling Salesman Problem (TSP) suffers from three major drawbacks. (1) It can converge on nonoptimal locally minimum solutions. (2) It can converge on infeasible solutions. (3) Results are very sensitive to the careful tuning of its parameters. A number of methods have been proposed to overcome (a) well. In contrast, work on (b) and (c) has not been sufficient; techniques have not been generalized to more general optimization problems. Thus this paper mathematically resolves (b) and (c) to such an extent that the resolution can be applied to solving with some general network continuous optimization problems including the Hopfield version of the TSP. It first constructs an Extended HM (E-HM) that overcomes both (b) and (c). Fundamental techniques of the E-HM lie in the addition of a synapse dynamical system cooperated with the current HM unit dynamical system. It is this synapse dynamical system that makes the TSP constraint hold at any final states for whatever choices of the IIM parameters and an initial state. The paper then generalizes the E-HM further to a network that can solve a class of continuous optimization problems with a constraint equation where both of the objective function and the constraint function are nonnegative and continuously differentiable.
Fine-tuned Remote Laser Welding of Aluminum to Copper with Local Beam Oscillation
NASA Astrophysics Data System (ADS)
Fetzer, Florian; Jarwitz, Michael; Stritt, Peter; Weber, Rudolf; Graf, Thomas
Local beam oscillation in remote laser welding of aluminum to copper was investigated. Sheets of 1 mm thickness were welded in overlap configuration with aluminum as top material. The laser beam was scanned in a sinusoidal mode perpendicular to the direction of feed and the influence of the oscillation parameters frequency and amplitude on the weld geometry was investigated. Scanning frequencies up to 1 kHz and oscillation amplitudes in the range from 0.25 mm to 1 mm were examined. Throughout the experiments the laser power and the feed rate were kept constant. A decrease of welding depth with amplitude and frequency is found. The scanning amplitude had a strong influence and allowed coarse setting of the welding depth into the lower material, while the frequency allowed fine tuning in the order of 10% of the obtained depth. The oscillation parameters were found to act differently on the aluminum sheet compared to copper sheet regarding the amount of fused material. It is possible to influence the geometry of the fused zones separately for both sheets. Therefore the average composition in the weld can be set with high precision via the oscillation parameters. A setting of the generated intermetallics in the weld zone is possible without adjustment of laser power and feed rate.
Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging.
Wang, Rui; Li, Rui; Lei, Yanyan; Zhu, Quing
2015-01-01
Support vector machine (SVM) is one of the most effective classification methods for cancer detection. The efficiency and quality of a SVM classifier depends strongly on several important features and a set of proper parameters. Here, a series of classification analyses, with one set of photoacoustic data from ovarian tissues ex vivo and a widely used breast cancer dataset- the Wisconsin Diagnostic Breast Cancer (WDBC), revealed the different accuracy of a SVM classification in terms of the number of features used and the parameters selected. A pattern recognition system is proposed by means of SVM-Recursive Feature Elimination (RFE) with the Radial Basis Function (RBF) kernel. To improve the effectiveness and robustness of the system, an optimized tuning ensemble algorithm called as SVM-RFE(C) with correlation filter was implemented to quantify feature and parameter information based on cross validation. The proposed algorithm is first demonstrated outperforming SVM-RFE on WDBC. Then the best accuracy of 94.643% and sensitivity of 94.595% were achieved when using SVM-RFE(C) to test 57 new PAT data from 19 patients. The experiment results show that the classifier constructed with SVM-RFE(C) algorithm is able to learn additional information from new data and has significant potential in ovarian cancer diagnosis.
Optimizing a reconfigurable material via evolutionary computation
NASA Astrophysics Data System (ADS)
Wilken, Sam; Miskin, Marc Z.; Jaeger, Heinrich M.
2015-08-01
Rapid prototyping by combining evolutionary computation with simulations is becoming a powerful tool for solving complex design problems in materials science. This method of optimization operates in a virtual design space that simulates potential material behaviors and after completion needs to be validated by experiment. However, in principle an evolutionary optimizer can also operate on an actual physical structure or laboratory experiment directly, provided the relevant material parameters can be accessed by the optimizer and information about the material's performance can be updated by direct measurements. Here we provide a proof of concept of such direct, physical optimization by showing how a reconfigurable, highly nonlinear material can be tuned to respond to impact. We report on an entirely computer controlled laboratory experiment in which a 6 ×6 grid of electromagnets creates a magnetic field pattern that tunes the local rigidity of a concentrated suspension of ferrofluid and iron filings. A genetic algorithm is implemented and tasked to find field patterns that minimize the force transmitted through the suspension. Searching within a space of roughly 1010 possible configurations, after testing only 1500 independent trials the algorithm identifies an optimized configuration of layered rigid and compliant regions.
Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d
NASA Astrophysics Data System (ADS)
Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.
This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.
T-wave end detection using neural networks and Support Vector Machines.
Suárez-León, Alexander Alexeis; Varon, Carolina; Willems, Rik; Van Huffel, Sabine; Vázquez-Seisdedos, Carlos Román
2018-05-01
In this paper we propose a new approach for detecting the end of the T-wave in the electrocardiogram (ECG) using Neural Networks and Support Vector Machines. Both, Multilayer Perceptron (MLP) neural networks and Fixed-Size Least-Squares Support Vector Machines (FS-LSSVM) were used as regression algorithms to determine the end of the T-wave. Different strategies for selecting the training set such as random selection, k-means, robust clustering and maximum quadratic (Rényi) entropy were evaluated. Individual parameters were tuned for each method during training and the results are given for the evaluation set. A comparison between MLP and FS-LSSVM approaches was performed. Finally, a fair comparison of the FS-LSSVM method with other state-of-the-art algorithms for detecting the end of the T-wave was included. The experimental results show that FS-LSSVM approaches are more suitable as regression algorithms than MLP neural networks. Despite the small training sets used, the FS-LSSVM methods outperformed the state-of-the-art techniques. FS-LSSVM can be successfully used as a T-wave end detection algorithm in ECG even with small training set sizes. Copyright © 2018 Elsevier Ltd. All rights reserved.
2015-01-01
Procedure. The simulated annealing (SA) algorithm is a well-known local search metaheuristic used to address discrete, continuous, and multiobjective...design of experiments (DOE) to tune the parameters of the optimiza- tion algorithm . Section 5 shows the results of the case study. Finally, concluding... metaheuristic . The proposed method is broken down into two phases. Phase I consists of a Monte Carlo simulation to obtain the simulated percentage of failure
Berríos, Soledad; López Fenner, Julio; Maignan, Aude
2018-06-19
We show that an inhomogeneous Bernoulli site percolation process running upon a fullerene's dual [Formula: see text] can be used for representing bivalents attached to the nuclear envelope in mouse Mus M. Domesticus 2n = 40 meiotic spermatocytes during pachytene. It is shown that the induced clustering generated by overlapping percolation domains correctly reproduces the probability distribution observed in the experiments (data) after fine tuning the parameters.
2011-04-01
particular, we examine the opportunity to tune the seating system design parameters with a prescribed vehicle mass and blast pulse to minimize the...behavior of the physical vertical drop tower tests used to study aircraft seat ejection and ground vehicle blast events. This model was created and...driver’s seat , though it is expected that passengers should experience a comparable range of acceleration pulses given that the blast positioning is uniform
Cheng, George Shu-Xing; Mulkey, Steven L; Wang, Qiang; Chow, Andrew J
2013-11-26
A method and apparatus for intelligently controlling continuous process variables. A Dream Controller comprises an Intelligent Engine mechanism and a number of Model-Free Adaptive (MFA) controllers, each of which is suitable to control a process with specific behaviors. The Intelligent Engine can automatically select the appropriate MFA controller and its parameters so that the Dream Controller can be easily used by people with limited control experience and those who do not have the time to commission, tune, and maintain automatic controllers.
Villarreal, Dario J.; Gregg, Robert D.
2016-01-01
This paper presents the experimental validation of a novel control strategy that unifies the entire gait cycle of a powered knee-ankle prosthetic leg without the need to switch between controllers for different periods of gait. Current control methods divide the gait cycle into several sequential periods each with independent controllers, resulting in many patient-specific control parameters and switching rules that must be tuned for a specific walking speed. The single controller presented is speed-invariant with a minimal number of control parameters to be tuned. A single, periodic virtual constraint is derived that exactly characterizes the desired actuated joint motion as a function of a mechanical phase variable across walking cycles. A single sensor was used to compute a phase variable related to the residual thigh angle’s phase plane, which was recently shown to robustly represent the phase of non-steady human gait. This phase variable allows the prosthesis to synchronize naturally with the human user for intuitive, biomimetic behavior. A custom powered knee-ankle prosthesis was designed and built to implement the control strategy and validate its performance. A human subject experiment was conducted across multiple walking speeds (1 to 3 miles/hour) in a continuous sequence with the single phase-based controller, demonstrating its adaptability to the user’s intended speed. PMID:28392969
Yang, Lei; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Wang, Wei; Zhang, Haibo; Han, Lu; Xu, Liang
2014-10-01
The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.
Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics
NASA Astrophysics Data System (ADS)
Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham
Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.
Intelligent Tracking Control for a Class of Uncertain High-Order Nonlinear Systems.
Zhao, Xudong; Shi, Peng; Zheng, Xiaolong; Zhang, Jianhua
2016-09-01
This brief is concerned with the problem of intelligent tracking control for a class of high-order nonlinear systems with completely unknown nonlinearities. An intelligent adaptive control algorithm is presented by combining the adaptive backstepping technique with the neural networks' approximation ability. It is shown that the practical output tracking performance of the system is achieved using the proposed state-feedback controller under two mild assumptions. In particular, by introducing a parameter in the derivations, the tracking error between the time-varying target signal and the output can be reduced via tuning the controller design parameters. Moreover, in order to solve the problem of overparameterization, which is a common issue in adaptive control design, a controller with one adaptive law is also designed. Finally, simulation results are given to show the effectiveness of the theoretical approaches and the potential of the proposed new design techniques.
Deformable Image Registration based on Similarity-Steered CNN Regression.
Cao, Xiaohuan; Yang, Jianhua; Zhang, Jun; Nie, Dong; Kim, Min-Jeong; Wang, Qian; Shen, Dinggang
2017-09-01
Existing deformable registration methods require exhaustively iterative optimization, along with careful parameter tuning, to estimate the deformation field between images. Although some learning-based methods have been proposed for initiating deformation estimation, they are often template-specific and not flexible in practical use. In this paper, we propose a convolutional neural network (CNN) based regression model to directly learn the complex mapping from the input image pair (i.e., a pair of template and subject) to their corresponding deformation field. Specifically, our CNN architecture is designed in a patch-based manner to learn the complex mapping from the input patch pairs to their respective deformation field. First, the equalized active-points guided sampling strategy is introduced to facilitate accurate CNN model learning upon a limited image dataset. Then, the similarity-steered CNN architecture is designed, where we propose to add the auxiliary contextual cue, i.e., the similarity between input patches, to more directly guide the learning process. Experiments on different brain image datasets demonstrate promising registration performance based on our CNN model. Furthermore, it is found that the trained CNN model from one dataset can be successfully transferred to another dataset, although brain appearances across datasets are quite variable.
Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics.
Sokoloski, Sacha
2017-09-01
In order to interact intelligently with objects in the world, animals must first transform neural population responses into estimates of the dynamic, unknown stimuli that caused them. The Bayesian solution to this problem is known as a Bayes filter, which applies Bayes' rule to combine population responses with the predictions of an internal model. The internal model of the Bayes filter is based on the true stimulus dynamics, and in this note, we present a method for training a theoretical neural circuit to approximately implement a Bayes filter when the stimulus dynamics are unknown. To do this we use the inferential properties of linear probabilistic population codes to compute Bayes' rule and train a neural network to compute approximate predictions by the method of maximum likelihood. In particular, we perform stochastic gradient descent on the negative log-likelihood of the neural network parameters with a novel approximation of the gradient. We demonstrate our methods on a finite-state, a linear, and a nonlinear filtering problem and show how the hidden layer of the neural network develops tuning curves consistent with findings in experimental neuroscience.
Smart pitch control strategy for wind generation system using doubly fed induction generator
NASA Astrophysics Data System (ADS)
Raza, Syed Ahmed
A smart pitch control strategy for a variable speed doubly fed wind generation system is presented in this thesis. A complete dynamic model of DFIG system is developed. The model consists of the generator, wind turbine, aerodynamic and the converter system. The strategy proposed includes the use of adaptive neural network to generate optimized controller gains for pitch control. This involves the generation of controller parameters of pitch controller making use of differential evolution intelligent technique. Training of the back propagation neural network has been carried out for the development of an adaptive neural network. This tunes the weights of the network according to the system states in a variable wind speed environment. Four cases have been taken to test the pitch controller which includes step and sinusoidal changes in wind speeds. The step change is composed of both step up and step down changes in wind speeds. The last case makes use of scaled wind data collected from the wind turbine installed at King Fahd University beach front. Simulation studies show that the differential evolution based adaptive neural network is capable of generating the appropriate control to deliver the maximum possible aerodynamic power available from wind to the generator in an efficient manner by minimizing the transients.
Application of stochastic processes in random growth and evolutionary dynamics
NASA Astrophysics Data System (ADS)
Oikonomou, Panagiotis
We study the effect of power-law distributed randomness on the dynamical behavior of processes such as stochastic growth patterns and evolution. First, we examine the geometrical properties of random shapes produced by a generalized stochastic Loewner Evolution driven by a superposition of a Brownian motion and a stable Levy process. The situation is defined by the usual stochastic Loewner Evolution parameter, kappa, as well as alpha which defines the power-law tail of the stable Levy distribution. We show that the properties of these patterns change qualitatively and singularly at critical values of kappa and alpha. It is reasonable to call such changes "phase transitions". These transitions occur as kappa passes through four and as alpha passes through one. Numerical simulations are used to explore the global scaling behavior of these patterns in each "phase". We show both analytically and numerically that the growth continues indefinitely in the vertical direction for alpha greater than 1, goes as logarithmically with time for alpha equals to 1, and saturates for alpha smaller than 1. The probability density has two different scales corresponding to directions along and perpendicular to the boundary. Scaling functions for the probability density are given for various limiting cases. Second, we study the effect of the architecture of biological networks on their evolutionary dynamics. In recent years, studies of the architecture of large networks have unveiled a common topology, called scale-free, in which a majority of the elements are poorly connected except for a small fraction of highly connected components. We ask how networks with distinct topologies can evolve towards a pre-established target phenotype through a process of random mutations and selection. We use networks of Boolean components as a framework to model a large class of phenotypes. Within this approach, we find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. While homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously towards the target phenotype. Moreover, we show that scale-free networks always evolve faster than homogeneous random networks; remarkably, this property does not depend on the precise value of the topological parameter. By contrast, homogeneous random networks require a specific tuning of their topological parameter in order to optimize their fitness. This model suggests that the evolutionary paths of biological networks, punctuated or continuous, may solely be determined by the network topology.
Combinatorial influence of environmental parameters on transcription factor activity.
Knijnenburg, T A; Wessels, L F A; Reinders, M J T
2008-07-01
Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. The Matlab code is available from the authors upon request. Supplementary data are available at Bioinformatics online.
Sadeh, Sadra; Rotter, Stefan
2015-01-01
The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold equally well for mean-driven and fluctuation-driven regimes of activity.
Sadeh, Sadra; Rotter, Stefan
2015-01-01
The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold equally well for mean-driven and fluctuation-driven regimes of activity. PMID:25569445
Six-port optical switch for cluster-mesh photonic network-on-chip
NASA Astrophysics Data System (ADS)
Jia, Hao; Zhou, Ting; Zhao, Yunchou; Xia, Yuhao; Dai, Jincheng; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin
2018-05-01
Photonic network-on-chip for high-performance multi-core processors has attracted substantial interest in recent years as it offers a systematic method to meet the demand of large bandwidth, low latency and low power dissipation. In this paper we demonstrate a non-blocking six-port optical switch for cluster-mesh photonic network-on-chip. The architecture is constructed by substituting three optical switching units of typical Spanke-Benes network to optical waveguide crossings. Compared with Spanke-Benes network, the number of optical switching units is reduced by 20%, while the connectivity of routing path is maintained. By this way the footprint and power consumption can be reduced at the expense of sacrificing the network latency performance in some cases. The device is realized by 12 thermally tuned silicon Mach-Zehnder optical switching units. Its theoretical spectral responses are evaluated by establishing a numerical model. The experimental spectral responses are also characterized, which indicates that the optical signal-to-noise ratios of the optical switch are larger than 13.5 dB in the wavelength range from 1525 nm to 1565 nm. Data transmission experiment with the data rate of 32 Gbps is implemented for each optical link.
Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O
2015-05-01
Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.
Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher
2013-10-01
This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example.
Rastogi, Vibhore Kumar; Stanssens, Dirk; Samyn, Pieter
2014-01-01
Although films of microfibrillated cellulose (MFC) have good oxygen barrier properties due to its fine network structure, properties strongly deteriorate after absorption of water. In this work, a new approach has been followed for actively tuning the water resistance of a MFC fiber network by the inclusion of dispersed organic nanoparticles with encapsulated plant wax. The modified pulp suspensions have been casted into films and were subsequently cured at 40 to 220 °C. As such, static water contact angles can be specifically tuned from 120 to 150° by selection of the curing temperature in relation with the intrinsic transition temperatures of the modified pulp, as determined by thermal analysis. The appearance of encapsulated wax after curing was followed by a combination of morphological analysis, infrared spectroscopy and Raman mapping, showing balanced mechanisms of progressive release and migration of wax into the fiber network controlling the surface properties and water contact angles. Finally, the appearance of nanoparticles covered with a thin wax layer after complete thermal release provides highest hydrophobicity. PMID:28788241
Polarization-dependent photon switch in a one-dimensional coupled-resonator waveguide.
Zhang, Zhe-Yong; Dong, Yu-Li; Zhang, Sheng-Li; Zhu, Shi-Qun
2013-09-09
Polarization-dependent photon switch is one of the most important ingredients in building future large-scale all-optical quantum network. We present a scheme for a single-photon switch in a one-dimensional coupled-resonator waveguide, where N(a) Λ-type three-level atoms are individually embedded in each of the resonator. By tuning the interaction between atom and field, we show that an initial incident photon with a certain polarization can be transformed into its orthogonal polarization state. Finally, we use the fidelity as a figure of merit and numerically evaluate the performance of our photon switch scheme in varieties of system parameters, such as number of atoms, energy detuning and dipole couplings.
Research on Daily Objects Detection Based on Deep Neural Network
NASA Astrophysics Data System (ADS)
Ding, Sheng; Zhao, Kun
2018-03-01
With the rapid development of deep learning, great breakthroughs have been made in the field of object detection. In this article, the deep learning algorithm is applied to the detection of daily objects, and some progress has been made in this direction. Compared with traditional object detection methods, the daily objects detection method based on deep learning is faster and more accurate. The main research work of this article: 1. collect a small data set of daily objects; 2. in the TensorFlow framework to build different models of object detection, and use this data set training model; 3. the training process and effect of the model are improved by fine-tuning the model parameters.
Functional Module Analysis for Gene Coexpression Networks with Network Integration.
Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K
2015-01-01
Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.
NASA Astrophysics Data System (ADS)
Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.
2016-11-01
With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.
Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior
NASA Technical Reports Server (NTRS)
Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.
2017-01-01
A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.
Lee, Gil-Ho; Jeong, Dongchan; Park, Kee-Su; Meir, Yigal; Cha, Min-Chul; Lee, Hu-Jong
2015-01-01
The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor–insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes. PMID:26310774
Lee, Gil-Ho; Jeong, Dongchan; Park, Kee-Su; Meir, Yigal; Cha, Min-Chul; Lee, Hu-Jong
2015-08-27
The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor-insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes.
Refinement of Earth's gravity field with Topex GPS measurements
NASA Technical Reports Server (NTRS)
Wu, Sien-Chong; Wu, Jiun-Tsong
1989-01-01
The NASA Ocean Topography Experiment satellite TOPEX will carry a microwave altimeter accurate to a few centimeters for the measurement of ocean height. The capability can be fully exploited only if TOPEX altitude can be independently determined to 15 cm or better. This in turn requires an accurate gravity model. The gravity will be tuned with selected nine 10-day arcs of laser ranging, which will be the baseline tracking data type, collected in the first six months of TOPEX flight. TOPEX will also carry onboard an experimental Global Positioning System (GPS) flight receiver capable of simultaneously observing six GPS satellites above its horizon to demonstrate the capability of GPS carrier phase and P-code pseudorange for precise determination of the TOPEX orbit. It was found that subdecimeter orbit accuracy can be achieved with a mere two-hour arc of GPS tracking data, provided that simultaneous measurements are also made at six of more ground tracking sites. The precision GPS data from TOPEX are also valuable for refining the gravity model. An efficient technique is presented for gravity tuning using GPS measurements. Unlike conventional global gravity tuning, this technique solves for far fewer gravity parameters in each filter run. These gravity parameters yield local gravity anomalies which can later be combined with the solutions over other parts of the earth to generate a global gravity map. No supercomputing power will be needed for such combining. The approaches used in this study are described and preliminary results of a covariance analysis presented.
NASA Astrophysics Data System (ADS)
Betta, G.; Capriglione, D.; Ferrigno, L.; Laracca, M.
2009-10-01
Power line telecommunication (PLT) technology offers cheap and fast ways for providing in-home broadband services and local area networking. Its main advantage is due to the possibility of using the pre-existing electrical grid as a communication channel. Nevertheless, technical challenges arise from the difficulty of operating on a hostile medium, not designed for communication purposes, characterized by complex channel modeling and by varying time response. These aspects put practical problems for designers and testers in the assessment of network quality of service performance parameters such as the throughput, the latency, the jitter, and the reliability. The measurement of these parameters has not yet been standardized so that there do not exist reference test set-ups and measurement methodologies (i.e. the type of isolation from the ac main, the observation time and the number of experiments, the measurement uncertainty and so on). Consequently, experiments executed by adopting different methods may lead to incompatible measurement results, thus making it also impossible to have reliable comparisons of different PLT modems. Really, the development of standard procedures is a very difficult task because the scenarios in which the PLT modems can work are very wide and then the application of an exhaustive approach (in which all the parameters influencing the PLT performance should be considered) would be very complex and time consuming, thus making the modem characterization very expensive. In this paper, the authors propose a methodological approach to develop an efficient measurement procedure able to reliably assess the performance of PLT modems (in terms of network quality of service parameters) with a minimum number of experiments. It is based on both creating a reconfigurable grid to which real disturbing loads are connected and implementing an original design of the experiment technique based on the effects of the uncertainty of the measurement results. Methods are also provided to analyze measurement results and to estimate the measurement uncertainty.
Unconventional and conventional quantum criticalities in CeRh0.58Ir0.42In5
NASA Astrophysics Data System (ADS)
Luo, Yongkang; Lu, Xin; Dioguardi, Aadm P.; Rosa, Priscila F. S.; Bauer, Eric D.; Si, Qimiao; Thompson, Joe D.
2018-03-01
An appropriate description of the state of matter that appears as a second order phase transition is tuned toward zero temperature, viz. quantum-critical point (QCP), poses fundamental and still not fully answered questions. Experiments are needed both to test basic conclusions and to guide further refinement of theoretical models. Here, charge and entropy transport properties as well as AC specific heat of the heavy-fermion compound CeRh0.58Ir0.42In5, measured as a function of pressure, reveal two qualitatively different QCPs in a single material driven by a single non-symmetry-breaking tuning parameter. A discontinuous sign-change jump in thermopower suggests an unconventional QCP at pc1 accompanied by an abrupt Fermi-surface reconstruction that is followed by a conventional spin-density-wave critical point at pc2 across which the Fermi surface evolves smoothly to a heavy Fermi-liquid state. These experiments are consistent with some theoretical predictions, including the sequence of critical points and the temperature dependence of the thermopower in their vicinity.
Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits
LaBerge, David; Kasevich, Ray S.
2017-01-01
Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz). Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention) within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity. PMID:28659768
Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits.
LaBerge, David; Kasevich, Ray S
2017-01-01
Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz). Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local "clock," which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention) within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system's timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.
A self-organizing neural network for job scheduling in distributed systems
NASA Astrophysics Data System (ADS)
Newman, Harvey B.; Legrand, Iosif C.
2001-08-01
The aim of this work is to describe a possible approach for the optimization of the job scheduling in large distributed systems, based on a self-organizing Neural Network. This dynamic scheduling system should be seen as adaptive middle layer software, aware of current available resources and making the scheduling decisions using the "past experience." It aims to optimize job specific parameters as well as the resource utilization. The scheduling system is able to dynamically learn and cluster information in a large dimensional parameter space and at the same time to explore new regions in the parameters space. This self-organizing scheduling system may offer a possible solution to provide an effective use of resources for the off-line data processing jobs for future HEP experiments.
An automated method for finding molecular complexes in large protein interaction networks
Bader, Gary D; Hogue, Christopher WV
2003-01-01
Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from . PMID:12525261
Musical experience sharpens human cochlear tuning.
Bidelman, Gavin M; Nelms, Caitlin; Bhagat, Shaum P
2016-05-01
The mammalian cochlea functions as a filter bank that performs a spectral, Fourier-like decomposition on the acoustic signal. While tuning can be compromised (e.g., broadened with hearing impairment), whether or not human cochlear frequency resolution can be sharpened through experiential factors (e.g., training or learning) has not yet been established. Previous studies have demonstrated sharper psychophysical tuning curves in trained musicians compared to nonmusicians, implying superior peripheral tuning. However, these findings are based on perceptual masking paradigms, and reflect engagement of the entire auditory system rather than cochlear tuning, per se. Here, by directly mapping physiological tuning curves from stimulus frequency otoacoustic emissions (SFOAEs)-cochlear emitted sounds-we show that estimates of human cochlear tuning in a high-frequency cochlear region (4 kHz) is further sharpened (by a factor of 1.5×) in musicians and improves with the number of years of their auditory training. These findings were corroborated by measurements of psychophysical tuning curves (PTCs) derived via simultaneous masking, which similarly showed sharper tuning in musicians. Comparisons between SFOAE and PTCs revealed closer correspondence between physiological and behavioral curves in musicians, indicating that tuning is also more consistent between different levels of auditory processing in trained ears. Our findings demonstrate an experience-dependent enhancement in the resolving power of the cochlear sensory epithelium and the spectral resolution of human hearing and provide a peripheral account for the auditory perceptual benefits observed in musicians. Both local and feedback (e.g., medial olivocochlear efferent) mechanisms are discussed as potential mechanisms for experience-dependent tuning. Copyright © 2016 Elsevier B.V. All rights reserved.
Krieger, J R; Ogle, M E; McFaline-Figueroa, J; Segar, C E; Temenoff, J S; Botchwey, E A
2016-01-01
Tissue repair processes are characterized by the biphasic recruitment of distinct subpopulations of blood monocytes, including classical ("inflammatory") monocytes (IMs, Ly6C(hi)Gr1(+)CX3CR1(lo)) and non-classical anti-inflammatory monocytes (AMs, Ly6C(lo)Gr1(-)CX3CR1(hi)). Drug-eluting biomaterial implants can be used to tune the endogenous repair process by the preferential recruitment of pro-regenerative cells. To enhance recruitment of AMs during inflammatory injury, a novel N-desulfated heparin-containing poly(ethylene glycol) diacrylate (PEG-DA) hydrogel was engineered to deliver exogenous stromal derived factor-1α (SDF-1α), utilizing the natural capacity of heparin to sequester and release growth factors. SDF-1α released from the hydrogels maintained its bioactivity and stimulated chemotaxis of bone marrow cells in vitro. Intravital microscopy and flow cytometry demonstrated that SDF-1α hydrogels implanted in a murine dorsal skinfold window chamber promoted spatially-localized recruitment of AMs relative to unloaded internal control hydrogels. SDF-1α delivery stimulated arteriolar remodeling that was correlated with AM enrichment in the injury niche. SDF-1α, but not unloaded control hydrogels, supported sustained arteriogenesis and microvascular network growth through 7 days. The recruitment of AMs correlated with parameters of vascular remodeling suggesting that tuning the innate immune response by biomaterial SDF-1α release is a promising strategy for promoting vascular remodeling in a spatially controlled manner. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2011-01-01
An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation applications such as model-based diagnostic, controls, and life usage calculations. The advantage of the innovation is the significant reduction in estimation errors that it can provide relative to the conventional approach of selecting a subset of health parameters to serve as the model tuning parameter vector. Because this technique needs only to be performed during the system design process, it places no additional computation burden on the onboard Kalman filter implementation. The technique has been developed for aircraft engine onboard estimation applications, as this application typically presents an under-determined estimation problem. However, this generic technique could be applied to other industries using gas turbine engine technology.
An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics
NASA Technical Reports Server (NTRS)
imon, Donald L.; Armstrong, Jeffrey B.
2012-01-01
A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.
NASA Astrophysics Data System (ADS)
Asay-Davis, X.; Galton-Fenzi, B.; Gwyther, D.; Jourdain, N.; Martin, D. F.; Nakayama, Y.; Seroussi, H. L.
2016-12-01
MISMIP+ (the third Marine Ice Sheet MIP), ISOMIP+ (the second Ice Shelf-Ocean MIP) and MISOMIP1 (the first Marine Ice Sheet-Ocean MIP) prescribe a set of idealized experiments for marine ice-sheet models, ocean models with ice-shelf cavities, and coupled ice sheet-ocean models, respectively. Here, we present results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among the ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (the heat- and salt-transfer coefficients across the sub-ice-shelf boundary layer) for each model. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to tuning the models to match observed melt rates. We compare the evolution of ocean temperature transects, melt rate, friction velocity and thermal driving between ocean models for the five ISOMIP+ experiments (Ocean0-4), which have prescribed ice-shelf topography. We find that melt patterns differ between models based on the relative importance of overturning strength and vertical mixing of temperature even when the models have been tuned to achieve similar melt rates near the grounding line. For the two MISOMIP1 experiments (IceOcean1 without dynamic calving and IceOcean2 with a simple calving parameterization), we compare temperature transects, melt rate, ice-shelf topography and grounded area across models and for several model configurations. Consistent with preliminary results from MISMIP+, we find that for a given coupled model, the use of a Coulomb-limited basal friction parameterization below grounded ice and the application of dynamic calving both significantly increase the rate of grounding-line retreat, whereas the rate of retreat appears to be less sensitive to the ice stress approximation (shallow-shelf approximation, higher-order, etc.). We show that models with similar mean melt rates, stress approximations and basal friction parameterizations produce markedly different rates of grounding-line retreat, and we investigate possible sources of these disparities (e.g. differences in coupling strategy or melt distribution).
NASA Astrophysics Data System (ADS)
Dong, Lin; Grissom, Michael; Fisher, Frank T.
2016-05-01
Vibration-based energy harvesting has been widely investigated to as a means to generate low levels of electrical energy for applications such as wireless sensor networks. However, for optimal performance it is necessary to ensure that resonant frequencies of the device match the ambient vibration frequencies for maximum energy harvested. Here a novel resonant frequency tuning approach is proposed by applying a bias voltage to a pre-stretched electroactive polymer (EAP) membrane, such that the resulting changes in membrane tension can tune the device to match the environmental vibration source. First, a material model which accounts for the change in properties due to the pre-stretch of a VHB 4910 EAP membrane is presented. The effect of the bias voltage on the EAP membrane, which induces an electrostatic pressure and corresponding reduction in membrane thickness, are then determined. The FEM results from ANSYS agree well with an analytical hyperelastic model of the activation response of the EAP membrane. Lastly, through a mass-loaded circular membrane vibration model, the effective resonant frequency of the energy harvester can be determined as a function of changes in membrane tension due to the applied bias voltage. In the case of an EAP membrane, pre-stretch contributes to the pre-stretch stiffness of the system while the applied bias voltage contributes to a change in bias voltage stiffness of the membrane. Preliminary experiments verified the resonant frequencies corresponding to the bias voltages predicted from the appropriate models. The proposed bias voltage tuning approach for the EAP membrane may provide a novel tuning strategy to enable energy harvesting from various ambient vibration sources in various application environments.
Application of genetic algorithms to tuning fuzzy control systems
NASA Technical Reports Server (NTRS)
Espy, Todd; Vombrack, Endre; Aldridge, Jack
1993-01-01
Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.
Tuning stochastic transition rates in a bistable genetic network.
NASA Astrophysics Data System (ADS)
Chickarmane, Vijay; Peterson, Carsten
2009-03-01
We investigate the stochastic dynamics of a simple genetic network, a toggle switch, in which the system makes transitions between the two alternative states. Our interest is in exploring whether such stochastic transitions, which occur due to the intrinsic noise such as transcriptional and degradation events, can be slowed down/speeded up, without changing the mean expression levels of the two genes, which comprise the toggle network. Such tuning is achieved by linking a signaling network to the toggle switch. The signaling network comprises of a protein, which can exist either in an active (phosphorylated) or inactive (dephosphorylated) form, and where its state is determined by one of the genetic network components. The active form of the protein in turn feeds back on the dynamics of the genetic network. We find that the rate of stochastic transitions from one state to the other, is determined essentially by the speed of phosphorylation, and hence the rate can be modulated by varying the phosphatase levels. We hypothesize that such a network architecture can be implemented as a general mechanism for controlling transition rates and discuss applications in population studies of two differentiated cell lineages, ex: the myeloid/erythroid lineage in hematopoiesis.
Radac, Mircea-Bogdan; Precup, Radu-Emil; Roman, Raul-Cristian
2018-02-01
This paper proposes a combined Virtual Reference Feedback Tuning-Q-learning model-free control approach, which tunes nonlinear static state feedback controllers to achieve output model reference tracking in an optimal control framework. The novel iterative Batch Fitted Q-learning strategy uses two neural networks to represent the value function (critic) and the controller (actor), and it is referred to as a mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach. Learning convergence of the Q-learning schemes generally depends, among other settings, on the efficient exploration of the state-action space. Handcrafting test signals for efficient exploration is difficult even for input-output stable unknown processes. Virtual Reference Feedback Tuning can ensure an initial stabilizing controller to be learned from few input-output data and it can be next used to collect substantially more input-state data in a controlled mode, in a constrained environment, by compensating the process dynamics. This data is used to learn significantly superior nonlinear state feedback neural networks controllers for model reference tracking, using the proposed Batch Fitted Q-learning iterative tuning strategy, motivating the original combination of the two techniques. The mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach is experimentally validated for water level control of a multi input-multi output nonlinear constrained coupled two-tank system. Discussions on the observed control behavior are offered. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
A case study of tuning MapReduce for efficient Bioinformatics in the cloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Lizhen; Wang, Zhong; Yu, Weikuan
The combination of the Hadoop MapReduce programming model and cloud computing allows biological scientists to analyze next-generation sequencing (NGS) data in a timely and cost-effective manner. Cloud computing platforms remove the burden of IT facility procurement and management from end users and provide ease of access to Hadoop clusters. However, biological scientists are still expected to choose appropriate Hadoop parameters for running their jobs. More importantly, the available Hadoop tuning guidelines are either obsolete or too general to capture the particular characteristics of bioinformatics applications. In this paper, we aim to minimize the cloud computing cost spent on bioinformatics datamore » analysis by optimizing the extracted significant Hadoop parameters. When using MapReduce-based bioinformatics tools in the cloud, the default settings often lead to resource underutilization and wasteful expenses. We choose k-mer counting, a representative application used in a large number of NGS data analysis tools, as our study case. Experimental results show that, with the fine-tuned parameters, we achieve a total of 4× speedup compared with the original performance (using the default settings). Finally, this paper presents an exemplary case for tuning MapReduce-based bioinformatics applications in the cloud, and documents the key parameters that could lead to significant performance benefits.« less
NASA Astrophysics Data System (ADS)
Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang
2018-05-01
In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.
Department of Defense High Performance Computing Modernization Program. 2008 Annual Report
2009-04-01
place to another on the network. Without it, a computer could only talk to itself - no email, no web browsing, and no iTunes . Most of the Internet...Your SecurID Card ), Ken Renard Secure Wireless, Rob Scott and Stephen Bowman Securing Today’s Networks, Rich Whittney, Juniper Networks, Federal
MIRAGE: The data acquisition, analysis, and display system
NASA Technical Reports Server (NTRS)
Rosser, Robert S.; Rahman, Hasan H.
1993-01-01
Developed for the NASA Johnson Space Center and Life Sciences Directorate by GE Government Services, the Microcomputer Integrated Real-time Acquisition Ground Equipment (MIRAGE) system is a portable ground support system for Spacelab life sciences experiments. The MIRAGE system can acquire digital or analog data. Digital data may be NRZ-formatted telemetry packets of packets from a network interface. Analog signal are digitized and stored in experimental packet format. Data packets from any acquisition source are archived to a disk as they are received. Meta-parameters are generated from the data packet parameters by applying mathematical and logical operators. Parameters are displayed in text and graphical form or output to analog devices. Experiment data packets may be retransmitted through the network interface. Data stream definition, experiment parameter format, parameter displays, and other variables are configured using spreadsheet database. A database can be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control. The MIRAGE system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability and ease of use make the MIRAGE a cost-effective solution to many experimental data processing requirements.
NASA Astrophysics Data System (ADS)
Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim
2018-02-01
We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications.
Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser
NASA Technical Reports Server (NTRS)
Wysocki, Gerard; Curl, Robert F.; Tittel, Frank K.
2010-01-01
The external-cavity quantum cascade laser (EC-QCL) system is based on an optical configuration of the Littrow type. It is a room-temperature, continuous wave, widely tunable, mode-hop-free, mid-infrared, EC-QCL spectroscopic source. It has a single-mode tuning range of 155 cm(exp -1) (approximately equal to 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm(exp -1) (approximately equal to 15% of the center wavelength), and a maximum power of 50 mW as demonstrated for 5.3 micron and 8.4 micron EC-QCLs, respectively. This technology is particularly suitable for high-resolution spectroscopic applications, multi-species tracegas detection, and spectroscopic measurements of broadband absorbers. Wavelength tuning of EC-QCL spectroscopic source can be implemented by varying three independent parameters of the laser: (1) the optical length of the gain medium (which, in this case, is equivalent to QCL injection current modulation), (2) the length of the EC (which can be independently varied in the Rice EC-QCL setup), and (3) the angle of beam incidence at the diffraction grating (frequency tuning related directly to angular dispersion of the grating). All three mechanisms of frequency tuning have been demonstrated and are required to obtain a true mode-hop-free laser frequency tuning. The precise frequency tuning characteristics of the EC-QCL output have been characterized using a variety of diagnostic tools available at Rice University (e.g., a monochromator, FTIR spectrometer, and a Fabry-Perot spectrometer). Spectroscopic results were compared with available databases (such as HITRAN, PNNL, EPA, and NIST). These enable precision verification of complete spectral parameters of the EC-QCL, such as wavelength, tuning range, tuning characteristics, and line width. The output power of the EC-QCL is determined by the performance of the QC laser chip, its operating conditions, and parameters of the QC laser cavity such as mirror reflectivity or intracavity losses. In order to maximize the output power, an analysis and optimization of the EC laser parameters has been performed. The parameters of the beam emitted from the gain medium, such as divergence angle, beam profile, and astigmatism, have been investigated. The gain medium has been fully characterized before and after each stage of modification. The main modification steps are coating one facet of the gain chip with a high reflectivity mirror and the other facet with an anti-reflection layer. Then the chip is mounted in the EC-QCL. The optomechanical design has been reviewed and improved to provide for precise collimation of the strongly divergent beam of the QCL and the tuning diffraction grating.
Robust and Efficient Anti-Phishing Techniques
2012-08-27
card Phishing email ............................................................. 11 Figure 3 Architecture of prototype system...retailers, and social networking services such as Fidelity, Twitter, and iTunes , Amazon, Paypal, Ebay, Visa, Facebook, Bank of America, Chase, and...Services 1 13 iTunes Online Retailer 1 14 Other Online Services/Retailer 13 Table 3 Type 1 Legitimate Email Dataset Vendor Type No. of Emails
Cavallari, Stefano; Panzeri, Stefano; Mazzoni, Alberto
2014-01-01
Models of networks of Leaky Integrate-and-Fire (LIF) neurons are a widely used tool for theoretical investigations of brain function. These models have been used both with current- and conductance-based synapses. However, the differences in the dynamics expressed by these two approaches have been so far mainly studied at the single neuron level. To investigate how these synaptic models affect network activity, we compared the single neuron and neural population dynamics of conductance-based networks (COBNs) and current-based networks (CUBNs) of LIF neurons. These networks were endowed with sparse excitatory and inhibitory recurrent connections, and were tested in conditions including both low- and high-conductance states. We developed a novel procedure to obtain comparable networks by properly tuning the synaptic parameters not shared by the models. The so defined comparable networks displayed an excellent and robust match of first order statistics (average single neuron firing rates and average frequency spectrum of network activity). However, these comparable networks showed profound differences in the second order statistics of neural population interactions and in the modulation of these properties by external inputs. The correlation between inhibitory and excitatory synaptic currents and the cross-neuron correlation between synaptic inputs, membrane potentials and spike trains were stronger and more stimulus-modulated in the COBN. Because of these properties, the spike train correlation carried more information about the strength of the input in the COBN, although the firing rates were equally informative in both network models. Moreover, the network activity of COBN showed stronger synchronization in the gamma band, and spectral information about the input higher and spread over a broader range of frequencies. These results suggest that the second order statistics of network dynamics depend strongly on the choice of synaptic model. PMID:24634645
Cavallari, Stefano; Panzeri, Stefano; Mazzoni, Alberto
2014-01-01
Models of networks of Leaky Integrate-and-Fire (LIF) neurons are a widely used tool for theoretical investigations of brain function. These models have been used both with current- and conductance-based synapses. However, the differences in the dynamics expressed by these two approaches have been so far mainly studied at the single neuron level. To investigate how these synaptic models affect network activity, we compared the single neuron and neural population dynamics of conductance-based networks (COBNs) and current-based networks (CUBNs) of LIF neurons. These networks were endowed with sparse excitatory and inhibitory recurrent connections, and were tested in conditions including both low- and high-conductance states. We developed a novel procedure to obtain comparable networks by properly tuning the synaptic parameters not shared by the models. The so defined comparable networks displayed an excellent and robust match of first order statistics (average single neuron firing rates and average frequency spectrum of network activity). However, these comparable networks showed profound differences in the second order statistics of neural population interactions and in the modulation of these properties by external inputs. The correlation between inhibitory and excitatory synaptic currents and the cross-neuron correlation between synaptic inputs, membrane potentials and spike trains were stronger and more stimulus-modulated in the COBN. Because of these properties, the spike train correlation carried more information about the strength of the input in the COBN, although the firing rates were equally informative in both network models. Moreover, the network activity of COBN showed stronger synchronization in the gamma band, and spectral information about the input higher and spread over a broader range of frequencies. These results suggest that the second order statistics of network dynamics depend strongly on the choice of synaptic model.
Adaptive method for electron bunch profile prediction
Scheinker, Alexander; Gessner, Spencer
2015-10-15
We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. Thus, the simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrialmore » control system. Finally, the main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.« less
Adaptive method for electron bunch profile prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheinker, Alexander; Gessner, Spencer
2015-10-01
We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial controlmore » system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.« less
Pandey, Vinay Kumar; Kar, Indrani; Mahanta, Chitralekha
2017-07-01
In this paper, an adaptive control method using multiple models with second level adaptation is proposed for a class of nonlinear multi-input multi-output (MIMO) coupled systems. Multiple estimation models are used to tune the unknown parameters at the first level. The second level adaptation provides a single parameter vector for the controller. A feedback linearization technique is used to design a state feedback control. The efficacy of the designed controller is validated by conducting real time experiment on a laboratory setup of twin rotor MIMO system (TRMS). The TRMS setup is discussed in detail and the experiments were performed for regulation and tracking problem for pitch and yaw control using different reference signals. An Extended Kalman Filter (EKF) has been used to observe the unavailable states of the TRMS. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Tuning History: The French Experience
ERIC Educational Resources Information Center
Lamboley, Jean-Luc
2017-01-01
The paper shows that Tuning Project has generated indifference more than resistance within the French academic community. It proposes an analysis of the reasons of this situation: difficulties arising from Tuning itself, the resistance of the French academic tradition, the institutional inhibitors and facilitators. The impact of Tuning on French…
The neural circuit and synaptic dynamics underlying perceptual decision-making
NASA Astrophysics Data System (ADS)
Liu, Feng
2015-03-01
Decision-making with several choice options is central to cognition. To elucidate the neural mechanisms of multiple-choice motion discrimination, we built a continuous recurrent network model to represent a local circuit in the lateral intraparietal area (LIP). The network is composed of pyramidal cells and interneurons, which are directionally tuned. All neurons are reciprocally connected, and the synaptic connectivity strength is heterogeneous. Specifically, we assume two types of inhibitory connectivity to pyramidal cells: opposite-feature and similar-feature inhibition. The model accounted for both physiological and behavioral data from monkey experiments. The network is endowed with slow excitatory reverberation, which subserves the buildup and maintenance of persistent neural activity, and predominant feedback inhibition, which underlies the winner-take-all competition and attractor dynamics. The opposite-feature and opposite-feature inhibition have different effects on decision-making, and only their combination allows for a categorical choice among 12 alternatives. Together, our work highlights the importance of structured synaptic inhibition in multiple-choice decision-making processes.
Tuning Features of Chinese Folk Song Singing: A Case Study of Hua'er Music.
Yang, Yang; Welch, Graham; Sundberg, Johan; Himonides, Evangelos
2015-07-01
The learning and teaching of different singing styles, such as operatic and Chinese folk singing, was often found to be very challenging in professional music education because of the complexity of varied musical properties and vocalizations. By studying the acoustical and musical parameters of the singing voice, this study identified distinctive tuning characteristics of a particular folk music in China-Hua'er music-to inform the ineffective folk singing practices, which were hampered by the neglect of inherent tuning issues in music. Thirteen unaccompanied folk song examples from four folk singers were digitally audio recorded in a sound studio. Using an analyzing toolkit consisting of Praat, PeakFit, and MS Excel, the fundamental frequencies (F0) of these song examples were extracted into sets of "anchor pitches" mostly used, which were further divided into 253 F0 clusters. The interval structures of anchor pitches within each song were analyzed and then compared across 13 examples providing parameters that indicate the tuning preference of this particular singing style. The data analyses demonstrated that all singers used a tuning pattern consisting of five major anchor pitches suggesting a nonequal-tempered bias in singing. This partly verified the pentatonic scale proposed in previous empirical research but also argued a potential misunderstanding of the studied folk music scale that failed to take intrinsic tuning issues into consideration. This study suggests that, in professional music training, any tuning strategy should be considered in terms of the reference pitch and likely tuning systems. Any accompanying instruments would need to be tuned to match the underlying tuning bias. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Pu; Xiang, Changle; Liu, Hui; Zhou, Han
2018-07-01
Based on a multiple degrees of freedom dynamic model of a vehicle powertrain system, natural vibration analyses and sensitivity analyses of the eigenvalues are performed to determine the key inertia for each natural vibration of a powertrain system. Then, the results are used to optimize the installation position of each adaptive tuned vibration absorber. According to the relationship between the variable frequency torque excitation and the natural vibration of a powertrain system, the entire vibration frequency band is divided into segments, and the auxiliary vibration absorber and dominant vibration absorber are determined for each sensitive frequency band. The optimum parameters of the auxiliary vibration absorber are calculated based on the optimal frequency ratio and the optimal damping ratio of the passive vibration absorber. The instantaneous change state of the natural vibrations of a powertrain system with adaptive tuned vibration absorbers is studied, and the optimized start and stop tuning frequencies of the adaptive tuned vibration absorber are obtained. These frequencies can be translated into the optimum parameters of the dominant vibration absorber. Finally, the optimal tuning scheme for the adaptive tuned vibration absorber group, which can be used to reduce the variable frequency vibrations of a powertrain system, is proposed, and corresponding numerical simulations are performed. The simulation time history signals are transformed into three-dimensional information related to time, frequency and vibration energy via the Hilbert-Huang transform (HHT). A comprehensive time-frequency analysis is then conducted to verify that the optimal tuning scheme for the adaptive tuned vibration absorber group can significantly reduce the variable frequency vibrations of a powertrain system.
Robotic excavator trajectory control using an improved GA based PID controller
NASA Astrophysics Data System (ADS)
Feng, Hao; Yin, Chen-Bo; Weng, Wen-wen; Ma, Wei; Zhou, Jun-jing; Jia, Wen-hua; Zhang, Zi-li
2018-05-01
In order to achieve excellent trajectory tracking performances, an improved genetic algorithm (IGA) is presented to search for the optimal proportional-integral-derivative (PID) controller parameters for the robotic excavator. Firstly, the mathematical model of kinematic and electro-hydraulic proportional control system of the excavator are analyzed based on the mechanism modeling method. On this basis, the actual model of the electro-hydraulic proportional system are established by the identification experiment. Furthermore, the population, the fitness function, the crossover probability and mutation probability of the SGA are improved: the initial PID parameters are calculated by the Ziegler-Nichols (Z-N) tuning method and the initial population is generated near it; the fitness function is transformed to maintain the diversity of the population; the probability of crossover and mutation are adjusted automatically to avoid premature convergence. Moreover, a simulation study is carried out to evaluate the time response performance of the proposed controller, i.e., IGA based PID against the SGA and Z-N based PID controllers with a step signal. It was shown from the simulation study that the proposed controller provides the least rise time and settling time of 1.23 s and 1.81 s, respectively against the other tested controllers. Finally, two types of trajectories are designed to validate the performances of the control algorithms, and experiments are performed on the excavator trajectory control experimental platform. It was demonstrated from the experimental work that the proposed IGA based PID controller improves the trajectory accuracy of the horizontal line and slope line trajectories by 23.98% and 23.64%, respectively in comparison to the SGA tuned PID controller. The results further indicate that the proposed IGA tuning based PID controller is effective for improving the tracking accuracy, which may be employed in the trajectory control of an actual excavator.
Simulation of Laboratory Tests of Steel Arch Support
NASA Astrophysics Data System (ADS)
Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel; Pacześniowski, Krzysztof
2017-03-01
The total load-bearing capacity of steel arch yielding roadways supports is among their most important characteristics. These values can be obtained in two ways: experimental measurements in a specialized laboratory or computer modelling by FEM. Experimental measurements are significantly more expensive and more time-consuming. However, for proper tuning, a computer model is very valuable and can provide the necessary verification by experiment. In the cooperating workplaces of GIG Katowice, VSB-Technical University of Ostrava and the Institute of Geonics ASCR this verification was successful. The present article discusses the conditions and results of this verification for static problems. The output is a tuned computer model, which may be used for other calculations to obtain the load-bearing capacity of other types of steel arch supports. Changes in other parameters such as the material properties of steel, size torques, friction coefficient values etc. can be determined relatively quickly by changing the properties of the investigated steel arch supports.
Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering
NASA Technical Reports Server (NTRS)
Shirley, John A.; Winter, Michael
1993-01-01
An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.
NASA Astrophysics Data System (ADS)
Kwon, Sung-il; Lynch, M.; Prokop, M.
2005-02-01
This paper addresses the system identification and the decoupling PI controller design for a normal conducting RF cavity. Based on the open-loop measurement data of an SNS DTL cavity, the open-loop system's bandwidths and loop time delays are estimated by using batched least square. With the identified system, a PI controller is designed in such a way that it suppresses the time varying klystron droop and decouples the In-phase and Quadrature of the cavity field. The Levenberg-Marquardt algorithm is applied for nonlinear least squares to obtain the optimal PI controller parameters. The tuned PI controller gains are downloaded to the low-level RF system by using channel access. The experiment of the closed-loop system is performed and the performance is investigated. The proposed tuning method is running automatically in real time interface between a host computer with controller hardware through ActiveX Channel Access.
Distributed weighted least-squares estimation with fast convergence for large-scale systems.
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods.
Distributed weighted least-squares estimation with fast convergence for large-scale systems☆
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods. PMID:25641976
Zhou, Caigen; Zeng, Xiaoqin; Luo, Chaomin; Zhang, Huaguang
In this paper, local bipolar auto-associative memories are presented based on discrete recurrent neural networks with a class of gain type activation function. The weight parameters of neural networks are acquired by a set of inequalities without the learning procedure. The global exponential stability criteria are established to ensure the accuracy of the restored patterns by considering time delays and external inputs. The proposed methodology is capable of effectively overcoming spurious memory patterns and achieving memory capacity. The effectiveness, robustness, and fault-tolerant capability are validated by simulated experiments.In this paper, local bipolar auto-associative memories are presented based on discrete recurrent neural networks with a class of gain type activation function. The weight parameters of neural networks are acquired by a set of inequalities without the learning procedure. The global exponential stability criteria are established to ensure the accuracy of the restored patterns by considering time delays and external inputs. The proposed methodology is capable of effectively overcoming spurious memory patterns and achieving memory capacity. The effectiveness, robustness, and fault-tolerant capability are validated by simulated experiments.
NASA Astrophysics Data System (ADS)
Gomez Llorente, J. M.; Plata, J.
2016-06-01
We focus on a technique recently implemented for controlling the magnitude of synthetic spin-orbit coupling (SOC) in ultracold atoms in the Raman-coupling scenario. This technique uses a periodic modulation of the Raman-coupling amplitude to tune the SOC. Specifically, it has been shown that the effect of a high-frequency sinusoidal modulation of the Raman-laser intensity can be incorporated into the undriven Hamiltonian via effective parameters, whose adiabatic variation can therefore be used to tune the SOC. Here, we characterize the heating mechanisms that can be relevant to this method. We identify the main mechanism responsible for the heating observed in the experiments as basically rooted in driving-induced transfer of population to excited states. Characteristics of that process determined by the harmonic trapping, the decay of the excited states, and the technique used for preparing the system are discussed. Additional heating, rooted in departures from adiabaticity in the variation of the effective parameters, is also described. Our analytical study provides some clues that may be useful in the design of strategies for curbing the effects of heating on the efficiency of the control methods.
Combinatorial influence of environmental parameters on transcription factor activity
Knijnenburg, T.A.; Wessels, L.F.A.; Reinders, M.J.T.
2008-01-01
Motivation: Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. Results: We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. Availability: The Matlab code is available from the authors upon request. Contact: t.a.knijnenburg@tudelft.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18586711
Lifelong learning of human actions with deep neural network self-organization.
Parisi, German I; Tani, Jun; Weber, Cornelius; Wermter, Stefan
2017-12-01
Lifelong learning is fundamental in autonomous robotics for the acquisition and fine-tuning of knowledge through experience. However, conventional deep neural models for action recognition from videos do not account for lifelong learning but rather learn a batch of training data with a predefined number of action classes and samples. Thus, there is the need to develop learning systems with the ability to incrementally process available perceptual cues and to adapt their responses over time. We propose a self-organizing neural architecture for incrementally learning to classify human actions from video sequences. The architecture comprises growing self-organizing networks equipped with recurrent neurons for processing time-varying patterns. We use a set of hierarchically arranged recurrent networks for the unsupervised learning of action representations with increasingly large spatiotemporal receptive fields. Lifelong learning is achieved in terms of prediction-driven neural dynamics in which the growth and the adaptation of the recurrent networks are driven by their capability to reconstruct temporally ordered input sequences. Experimental results on a classification task using two action benchmark datasets show that our model is competitive with state-of-the-art methods for batch learning also when a significant number of sample labels are missing or corrupted during training sessions. Additional experiments show the ability of our model to adapt to non-stationary input avoiding catastrophic interference. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Parallel discrete event simulation using shared memory
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.
1988-01-01
With traditional event-list techniques, evaluating a detailed discrete-event simulation-model can often require hours or even days of computation time. By eliminating the event list and maintaining only sufficient synchronization to ensure causality, parallel simulation can potentially provide speedups that are linear in the numbers of processors. A set of shared-memory experiments, using the Chandy-Misra distributed-simulation algorithm, to simulate networks of queues is presented. Parameters of the study include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential-simulation of most queueing network models.
Luo, Yanting; Yang, Yongmin; Chen, Zhongsheng
2014-04-10
Sub-resonances often happen in wireless power transmission (WPT) systems using coupled magnetic resonances (CMR) due to environmental changes, coil movements or component degradations, which is a serious challenge for high efficiency power transmission. Thus self-tuning is very significant to keep WPT systems following strongly magnetic resonant conditions in practice. Traditional coupled-mode ways is difficult to solve this problem. In this paper a two-port power wave model is presented, where power matching and the overall systemic power transmission efficiency are firstly defined by scattering (S) parameters. Then we propose a novel self-tuning scheme based on on-line S parameters measurements and two-side power matching. Experimental results testify the feasibility of the proposed method. These findings suggest that the proposed method is much potential to develop strongly self-adaptive WPT systems with CMR.
Li, Yongming; Tong, Shaocheng
2017-06-28
In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.
Can we recognize horses by their ocular biometric traits using deep convolutional neural networks?
NASA Astrophysics Data System (ADS)
Trokielewicz, Mateusz; Szadkowski, Mateusz
2017-08-01
This paper aims at determining the viability of horse recognition by the means of ocular biometrics and deep convolutional neural networks (deep CNNs). Fast and accurate identification of race horses before racing is crucial for ensuring that exactly the horses that were declared are participating, using methods that are non-invasive and friendly to these delicate animals. As typical iris recognition methods require lot of fine-tuning of the method parameters and high-quality data, CNNs seem like a natural candidate to be applied for recognition thanks to their potentially excellent abilities in describing texture, combined with ease of implementation in an end-to-end manner. Also, with such approach we can easily utilize both iris and periocular features without constructing complicated algorithms for each. We thus present a simple CNN classifier, able to correctly identify almost 80% of the samples in an identification scenario, and give equal error rate (EER) of less than 10% in a verification scenario.
Enhanced Attitude Control Experiment for SSTI Lewis Spacecraft
NASA Technical Reports Server (NTRS)
Maghami, Peoman G.
1997-01-01
The enhanced attitude control system experiment is a technology demonstration experiment on the NASA's small spacecraft technology initiative program's Lewis spacecraft to evaluate advanced attitude control strategies. The purpose of the enhanced attitude control system experiment is to evaluate the feasibility of designing and implementing robust multi-input/multi-output attitude control strategies for enhanced pointing performance of spacecraft to improve the quality of the measurements of the science instruments. Different control design strategies based on modern and robust control theories are being considered for the enhanced attitude control system experiment. This paper describes the experiment as well as the design and synthesis of a mixed H(sub 2)/H(sub infinity) controller for attitude control. The control synthesis uses a nonlinear programming technique to tune the controller parameters and impose robustness and performance constraints. Simulations are carried out to demonstrate the feasibility of the proposed attitude control design strategy. Introduction
Adaptive control of nonlinear uncertain active suspension systems with prescribed performance.
Huang, Yingbo; Na, Jing; Wu, Xing; Liu, Xiaoqin; Guo, Yu
2015-01-01
This paper proposes adaptive control designs for vehicle active suspension systems with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise linear damper dynamics). An adaptive control is first proposed to stabilize the vertical vehicle displacement and thus to improve the ride comfort and to guarantee other suspension requirements (e.g., road holding and suspension space limitation) concerning the vehicle safety and mechanical constraints. An augmented neural network is developed to online compensate for the unknown nonlinearities, and a novel adaptive law is developed to estimate both NN weights and uncertain model parameters (e.g., sprung mass), where the parameter estimation error is used as a leakage term superimposed on the classical adaptations. To further improve the control performance and simplify the parameter tuning, a prescribed performance function (PPF) characterizing the error convergence rate, maximum overshoot and steady-state error is used to propose another adaptive control. The stability for the closed-loop system is proved and particular performance requirements are analyzed. Simulations are included to illustrate the effectiveness of the proposed control schemes. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Garg, Devendra P.
1998-01-01
This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.
Evaluating System Parameters on a Dragonfly using Simulation and Visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatele, Abhinav; Jain, Nikhil; Livnat, Yarden
The dragon y topology is becoming a popular choice for build- ing high-radix, low-diameter networks with high-bandwidth links. Even with a powerful network, preliminary experi- ments on Edison at NERSC have shown that for communica- tion heavy applications, job interference and thus presumably job placement remains an important factor. In this paper, we explore the e ects of job placement, job sizes, parallel workloads and network con gurations on network through- put to better understand inter-job interference. We use a simulation tool called Damsel y to model the network be- havior of Edison and study the impact of various systemmore » parameters on network throughput. Parallel workloads based on ve representative communication patters are used and the simulation studies on up to 131,072 cores are aided by a new visualization of the dragon y network.« less
2018-01-01
On-chip LiDAR sensors for vehicle collision avoidance are a rapidly expanding area of research and development. The assessment of reliable obstacle detection using data collected by LiDAR sensors has become a key issue that the scientific community is actively exploring. The design of a self-tuning methodology and its implementation are presented in this paper, to maximize the reliability of LiDAR sensors network for obstacle detection in the ‘Internet of Things’ (IoT) mobility scenarios. The Webots Automobile 3D simulation tool for emulating sensor interaction in complex driving environments is selected in order to achieve that objective. Furthermore, a model-based framework is defined that employs a point-cloud clustering technique, and an error-based prediction model library that is composed of a multilayer perceptron neural network, and k-nearest neighbors and linear regression models. Finally, a reinforcement learning technique, specifically a Q-learning method, is implemented to determine the number of LiDAR sensors that are required to increase sensor reliability for obstacle localization tasks. In addition, a IoT driving assistance user scenario, connecting a five LiDAR sensor network is designed and implemented to validate the accuracy of the computational intelligence-based framework. The results demonstrated that the self-tuning method is an appropriate strategy to increase the reliability of the sensor network while minimizing detection thresholds. PMID:29748521
Castaño, Fernando; Beruvides, Gerardo; Villalonga, Alberto; Haber, Rodolfo E
2018-05-10
On-chip LiDAR sensors for vehicle collision avoidance are a rapidly expanding area of research and development. The assessment of reliable obstacle detection using data collected by LiDAR sensors has become a key issue that the scientific community is actively exploring. The design of a self-tuning methodology and its implementation are presented in this paper, to maximize the reliability of LiDAR sensors network for obstacle detection in the 'Internet of Things' (IoT) mobility scenarios. The Webots Automobile 3D simulation tool for emulating sensor interaction in complex driving environments is selected in order to achieve that objective. Furthermore, a model-based framework is defined that employs a point-cloud clustering technique, and an error-based prediction model library that is composed of a multilayer perceptron neural network, and k-nearest neighbors and linear regression models. Finally, a reinforcement learning technique, specifically a Q-learning method, is implemented to determine the number of LiDAR sensors that are required to increase sensor reliability for obstacle localization tasks. In addition, a IoT driving assistance user scenario, connecting a five LiDAR sensor network is designed and implemented to validate the accuracy of the computational intelligence-based framework. The results demonstrated that the self-tuning method is an appropriate strategy to increase the reliability of the sensor network while minimizing detection thresholds.
A multiple degree of freedom electromechanical Helmholtz resonator.
Liu, Fei; Horowitz, Stephen; Nishida, Toshikazu; Cattafesta, Louis; Sheplak, Mark
2007-07-01
The development of a tunable, multiple degree of freedom (MDOF) electromechanical Helmholtz resonator (EMHR) is presented. An EMHR consists of an orifice, backing cavity, and a compliant piezoelectric composite diaphragm. Electromechanical tuning of the acoustic impedance is achieved via passive electrical networks shunted across the piezoceramic. For resistive and capacitive loads, the EMHR is a 2DOF system possessing one acoustic and one mechanical DOF. When inductive ladder networks are employed, multiple electrical DOF are added. The dynamics of the multi-energy domain system are modeled using lumped elements and are represented in an equivalent electrical circuit, which is used to analyze the tunable acoustic input impedance of the EMHR. The two-microphone method is used to measure the acoustic impedance of two EMHR designs with a variety of resistive, capacitive, and inductive shunts. For the first design, the data demonstrate that the tuning range of the second resonant frequency for an EMHR with non-inductive shunts is limited by short- and open-circuit conditions, while an inductive shunt results in a 3DOF system possessing an enhanced tuning range. The second design achieves stronger coupling between the Helmholtz resonator and the piezoelectric backplate, and both resonant frequencies can be tuned with different non-inductive loads.
High-efficiency resonant coupled wireless power transfer via tunable impedance matching
NASA Astrophysics Data System (ADS)
Anowar, Tanbir Ibne; Barman, Surajit Das; Wasif Reza, Ahmed; Kumar, Narendra
2017-10-01
For magnetic resonant coupled wireless power transfer (WPT), the axial movement of near-field coupled coils adversely degrades the power transfer efficiency (PTE) of the system and often creates sub-resonance. This paper presents a tunable impedance matching technique based on optimum coupling tuning to enhance the efficiency of resonant coupled WPT system. The optimum power transfer model is analysed from equivalent circuit model via reflected load principle, and the adequate matching are achieved through the optimum tuning of coupling coefficients at both the transmitting and receiving end of the system. Both simulations and experiments are performed to evaluate the theoretical model of the proposed matching technique, and results in a PTE over 80% at close coil proximity without shifting the original resonant frequency. Compared to the fixed coupled WPT, the extracted efficiency shows 15.1% and 19.9% improvements at the centre-to-centre misalignment of 10 and 70 cm, respectively. Applying this technique, the extracted S21 parameter shows more than 10 dB improvements at both strong and weak couplings. Through the developed model, the optimum coupling tuning also significantly improves the performance over matching techniques using frequency tracking and tunable matching circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kambali, Prashant N.; Swain, Gyanadutta; Pandey, Ashok Kumar, E-mail: ashok@iith.ac.in
2015-08-10
Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict themore » variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V.« less
Learning in fully recurrent neural networks by approaching tangent planes to constraint surfaces.
May, P; Zhou, E; Lee, C W
2012-10-01
In this paper we present a new variant of the online real time recurrent learning algorithm proposed by Williams and Zipser (1989). Whilst the original algorithm utilises gradient information to guide the search towards the minimum training error, it is very slow in most applications and often gets stuck in local minima of the search space. It is also sensitive to the choice of learning rate and requires careful tuning. The new variant adjusts weights by moving to the tangent planes to constraint surfaces. It is simple to implement and requires no parameters to be set manually. Experimental results show that this new algorithm gives significantly faster convergence whilst avoiding problems like local minima. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ren, Jun; Zhou, Wei; Wang, Jianxin
2014-01-01
Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes. PMID:25143945
NASA Astrophysics Data System (ADS)
Shaw, Jeremy A.; Daescu, Dacian N.
2017-08-01
This article presents the mathematical framework to evaluate the sensitivity of a forecast error aspect to the input parameters of a weak-constraint four-dimensional variational data assimilation system (w4D-Var DAS), extending the established theory from strong-constraint 4D-Var. Emphasis is placed on the derivation of the equations for evaluating the forecast sensitivity to parameters in the DAS representation of the model error statistics, including bias, standard deviation, and correlation structure. A novel adjoint-based procedure for adaptive tuning of the specified model error covariance matrix is introduced. Results from numerical convergence tests establish the validity of the model error sensitivity equations. Preliminary experiments providing a proof-of-concept are performed using the Lorenz multi-scale model to illustrate the theoretical concepts and potential benefits for practical applications.
Filter parameter tuning analysis for operational orbit determination support
NASA Technical Reports Server (NTRS)
Dunham, J.; Cox, C.; Niklewski, D.; Mistretta, G.; Hart, R.
1994-01-01
The use of an extended Kalman filter (EKF) for operational orbit determination support is being considered by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). To support that investigation, analysis was performed to determine how an EKF can be tuned for operational support of a set of earth-orbiting spacecraft. The objectives of this analysis were to design and test a general purpose scheme for filter tuning, evaluate the solution accuracies, and develop practical methods to test the consistency of the EKF solutions in an operational environment. The filter was found to be easily tuned to produce estimates that were consistent, agreed with results from batch estimation, and compared well among the common parameters estimated for several spacecraft. The analysis indicates that there is not a sharply defined 'best' tunable parameter set, especially when considering only the position estimates over the data arc. The comparison of the EKF estimates for the user spacecraft showed that the filter is capable of high-accuracy results and can easily meet the current accuracy requirements for the spacecraft included in the investigation. The conclusion is that the EKF is a viable option for FDD operational support.
Automatic target recognition and detection in infrared imagery under cluttered background
NASA Astrophysics Data System (ADS)
Gundogdu, Erhan; Koç, Aykut; Alatan, A. Aydın.
2017-10-01
Visual object classification has long been studied in visible spectrum by utilizing conventional cameras. Since the labeled images has recently increased in number, it is possible to train deep Convolutional Neural Networks (CNN) with significant amount of parameters. As the infrared (IR) sensor technology has been improved during the last two decades, labeled images extracted from IR sensors have been started to be used for object detection and recognition tasks. We address the problem of infrared object recognition and detection by exploiting 15K images from the real-field with long-wave and mid-wave IR sensors. For feature learning, a stacked denoising autoencoder is trained in this IR dataset. To recognize the objects, the trained stacked denoising autoencoder is fine-tuned according to the binary classification loss of the target object. Once the training is completed, the test samples are propagated over the network, and the probability of the test sample belonging to a class is computed. Moreover, the trained classifier is utilized in a detect-by-classification method, where the classification is performed in a set of candidate object boxes and the maximum confidence score in a particular location is accepted as the score of the detected object. To decrease the computational complexity, the detection step at every frame is avoided by running an efficient correlation filter based tracker. The detection part is performed when the tracker confidence is below a pre-defined threshold. The experiments conducted on the real field images demonstrate that the proposed detection and tracking framework presents satisfactory results for detecting tanks under cluttered background.
NASA Astrophysics Data System (ADS)
Rallapalli, Arjun
A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical. In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications. We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.
Prediction of silicon oxynitride plasma etching using a generalized regression neural network
NASA Astrophysics Data System (ADS)
Kim, Byungwhan; Lee, Byung Teak
2005-08-01
A prediction model of silicon oxynitride (SiON) etching was constructed using a neural network. Model prediction performance was improved by means of genetic algorithm. The etching was conducted in a C2F6 inductively coupled plasma. A 24 full factorial experiment was employed to systematically characterize parameter effects on SiON etching. The process parameters include radio frequency source power, bias power, pressure, and C2F6 flow rate. To test the appropriateness of the trained model, additional 16 experiments were conducted. For comparison, four types of statistical regression models were built. Compared to the best regression model, the optimized neural network model demonstrated an improvement of about 52%. The optimized model was used to infer etch mechanisms as a function of parameters. The pressure effect was noticeably large only as relatively large ion bombardment was maintained in the process chamber. Ion-bombardment-activated polymer deposition played the most significant role in interpreting the complex effect of bias power or C2F6 flow rate. Moreover, [CF2] was expected to be the predominant precursor to polymer deposition.
Que, Ruiyi; Zhu, Rong
2012-01-01
Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed. PMID:23112638
Que, Ruiyi; Zhu, Rong
2012-01-01
Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.
Design and Theoretical Analysis of a Resonant Sensor for Liquid Density Measurement
Zheng, Dezhi; Shi, Jiying; Fan, Shangchun
2012-01-01
In order to increase the accuracy of on-line liquid density measurements, a sensor equipped with a tuning fork as the resonant sensitive component is designed in this paper. It is a quasi-digital sensor with simple structure and high precision. The sensor is based on resonance theory and composed of a sensitive unit and a closed-loop control unit, where the sensitive unit consists of the actuator, the resonant tuning fork and the detector and the closed-loop control unit comprises precondition circuit, digital signal processing and control unit, analog-to-digital converter and digital-to-analog converter. An approximate parameters model of the tuning fork is established and the impact of liquid density, position of the tuning fork, temperature and structural parameters on the natural frequency of the tuning fork are also analyzed. On this basis, a tuning fork liquid density measurement sensor is developed. In addition, experimental testing on the sensor has been carried out on standard calibration facilities under constant 20 °C, and the sensor coefficients are calibrated. The experimental results show that the repeatability error is about 0.03% and the accuracy is about 0.4 kg/m3. The results also confirm that the method to increase the accuracy of liquid density measurement is feasible. PMID:22969378
Design and theoretical analysis of a resonant sensor for liquid density measurement.
Zheng, Dezhi; Shi, Jiying; Fan, Shangchun
2012-01-01
In order to increase the accuracy of on-line liquid density measurements, a sensor equipped with a tuning fork as the resonant sensitive component is designed in this paper. It is a quasi-digital sensor with simple structure and high precision. The sensor is based on resonance theory and composed of a sensitive unit and a closed-loop control unit, where the sensitive unit consists of the actuator, the resonant tuning fork and the detector and the closed-loop control unit comprises precondition circuit, digital signal processing and control unit, analog-to-digital converter and digital-to-analog converter. An approximate parameters model of the tuning fork is established and the impact of liquid density, position of the tuning fork, temperature and structural parameters on the natural frequency of the tuning fork are also analyzed. On this basis, a tuning fork liquid density measurement sensor is developed. In addition, experimental testing on the sensor has been carried out on standard calibration facilities under constant 20 °C, and the sensor coefficients are calibrated. The experimental results show that the repeatability error is about 0.03% and the accuracy is about 0.4 kg/m(3). The results also confirm that the method to increase the accuracy of liquid density measurement is feasible.
Detection of network attacks based on adaptive resonance theory
NASA Astrophysics Data System (ADS)
Bukhanov, D. G.; Polyakov, V. M.
2018-05-01
The paper considers an approach to intrusion detection systems using a neural network of adaptive resonant theory. It suggests the structure of an intrusion detection system consisting of two types of program modules. The first module manages connections of user applications by preventing the undesirable ones. The second analyzes the incoming network traffic parameters to check potential network attacks. After attack detection, it notifies the required stations using a secure transmission channel. The paper describes the experiment on the detection and recognition of network attacks using the test selection. It also compares the obtained results with similar experiments carried out by other authors. It gives findings and conclusions on the sufficiency of the proposed approach. The obtained information confirms the sufficiency of applying the neural networks of adaptive resonant theory to analyze network traffic within the intrusion detection system.
Chen, Siyuan; Epps, Julien
2014-12-01
Monitoring pupil and blink dynamics has applications in cognitive load measurement during human-machine interaction. However, accurate, efficient, and robust pupil size and blink estimation pose significant challenges to the efficacy of real-time applications due to the variability of eye images, hence to date, require manual intervention for fine tuning of parameters. In this paper, a novel self-tuning threshold method, which is applicable to any infrared-illuminated eye images without a tuning parameter, is proposed for segmenting the pupil from the background images recorded by a low cost webcam placed near the eye. A convex hull and a dual-ellipse fitting method are also proposed to select pupil boundary points and to detect the eyelid occlusion state. Experimental results on a realistic video dataset show that the measurement accuracy using the proposed methods is higher than that of widely used manually tuned parameter methods or fixed parameter methods. Importantly, it demonstrates convenience and robustness for an accurate and fast estimate of eye activity in the presence of variations due to different users, task types, load, and environments. Cognitive load measurement in human-machine interaction can benefit from this computationally efficient implementation without requiring a threshold calibration beforehand. Thus, one can envisage a mini IR camera embedded in a lightweight glasses frame, like Google Glass, for convenient applications of real-time adaptive aiding and task management in the future.
Tuning the DARHT Axis-II linear induction accelerator focusing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl A.
2012-04-24
Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST)more » to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an accelerator cell to replace a failed solenoid in March of 2012. We took advantage of this opportunity to improve the design of the focusing tune with better models of the remaining partially failed solenoids, better estimates of beam initial conditions, and better values for pulsed-power voltages. As with all previous tunes for Axis-II, this one incorporates measures to mitigate beam-breakup (BBU) instability, image displacement instability (IDI), corkscrew (sweep), and emittance growth. Section II covers the general approach to of design of focusing solenoid tunes for the DARHT Axis-2 LIA. Section III explains the specific requirements and simulations needed to design the tune for the injector, which includes the thermionic electron source, diode, and six induction cells. Section IV explains the requirements and simulations for tuning the main accelerator, which consists of 68 induction cells. Finally, Section V explores sensitivity of the tune to deviations of parameters from nominal, random variations, and uncertainties in values. Four appendices list solenoid settings for this new tune, discuss comparisons of different simulation codes, show halo formation in mismatched beams, and present a brief discussion of the beam envelope equation, which is the heart of the method used to design LIA solenoid tunes.« less
A new model to compute the desired steering torque for steer-by-wire vehicles and driving simulators
NASA Astrophysics Data System (ADS)
Fankem, Steve; Müller, Steffen
2014-05-01
This paper deals with the control of the hand wheel actuator in steer-by-wire (SbW) vehicles and driving simulators (DSs). A novel model for the computation of the desired steering torque is presented. The introduced steering torque computation does not only aim to generate a realistic steering feel, which means that the driver should not miss the basic steering functionality of a modern conventional steering system such as an electric power steering (EPS) or hydraulic power steering (HPS), and this in every driving situation. In addition, the modular structure of the steering torque computation combined with suitably selected tuning parameters has the objective to offer a high degree of customisability of the steering feel and thus to provide each driver with his preferred steering feel in a very intuitive manner. The task and the tuning of each module are firstly described. Then, the steering torque computation is parameterised such that the steering feel of a series EPS system is reproduced. For this purpose, experiments are conducted in a hardware-in-the-loop environment where a test EPS is mounted on a steering test bench coupled with a vehicle simulator and parameter identification techniques are applied. Subsequently, how appropriate the steering torque computation mimics the test EPS system is objectively evaluated with respect to criteria concerning the steering torque level and gradient, the feedback behaviour and the steering return ability. Finally, the intuitive tuning of the modular steering torque computation is demonstrated for deriving a sportier steering feel configuration.
Neuro-Analogical Gate Tuning of Trajectory Data Fusion for a Mecanum-Wheeled Special Needs Chair
ElSaharty, M. A.; zakzouk, Ezz Eldin
2017-01-01
Trajectory tracking of mobile wheeled chairs using internal shaft encoder and inertia measurement unit(IMU), exhibits several complications and accumulated errors in the tracking process due to wheel slippage, offset drift and integration approximations. These errors can be realized when comparing localization results from such sensors with a camera tracking system. In long trajectory tracking, such errors can accumulate and result in significant deviations which make data from these sensors unreliable for tracking. Meanwhile the utilization of an external camera tracking system is not always a feasible solution depending on the implementation environment. This paper presents a novel sensor fusion method that combines the measurements of internal sensors to accurately predict the location of the wheeled chair in an environment. The method introduces a new analogical OR gate structured with tuned parameters using multi-layer feedforward neural network denoted as “Neuro-Analogical Gate” (NAG). The resulting system minimize any deviation error caused by the sensors, thus accurately tracking the wheeled chair location without the requirement of an external camera tracking system. The fusion methodology has been tested with a prototype Mecanum wheel-based chair, and significant improvement over tracking response, error and performance has been observed. PMID:28045973
Passive vibration suppression using inerters for a multi-storey building structure
NASA Astrophysics Data System (ADS)
Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon
2016-09-01
This paper investigates the use of inerters for vibration suppression of a multistorey building structure. The inerter was proposed as a two-terminal replacement for the mass element, with the property that the applied force is proportional to the relative acceleration across its terminals. It completes the force-current mechanical-electrical network analogy, providing the mechanical equivalent to a capacitor. Thus allows all passive mechanical impedances to be synthesised. The inerter has been used in Formula 1 racing cars and applications to various systems such as vehicle suspension have been identified. Several devices that incoporate inerter(s), as well as spring(s) and damper(s), have also been identified for vibration suppression of building structures. These include the tuned inerter damper (TID) and the tuned viscous mass damper (TVMD). In this paper, a three-storey building model with an absorber located at the bottom subjected to base excitation is studied. Four simple absorber layouts, in terms of how spring, damper and inerter components should be arranged, have been studied. In order to minimise the maximum relative displacement of the building, the optimum parameter values for each of the layouts have been obtained with respect to the inerter's size.
NASA Astrophysics Data System (ADS)
Lossouarn, B.; Deü, J.-F.; Aucejo, M.; Cunefare, K. A.
2016-11-01
Multimodal damping can be achieved by coupling a mechanical structure to an electrical network exhibiting similar modal properties. Focusing on a plate, a new topology for such an electrical analogue is found from a finite difference approximation of the Kirchhoff-Love theory and the use of the direct electromechanical analogy. Discrete models based on element dynamic stiffness matrices are proposed to simulate square plate unit cells coupled to their electrical analogues through two-dimensional piezoelectric transducers. A setup made of a clamped plate covered with an array of piezoelectric patches is built in order to validate the control strategy and the numerical models. The analogous electrical network is implemented with passive components as inductors, transformers and the inherent capacitance of the piezoelectric patches. The effect of the piezoelectric coupling on the dynamics of the clamped plate is significant as it creates the equivalent of a multimodal tuned mass damping. An adequate tuning of the network then yields a broadband vibration reduction. In the end, the use of an analogous electrical network appears as an efficient solution for the multimodal control of a plate.
Recurrent Neural Network Applications for Astronomical Time Series
NASA Astrophysics Data System (ADS)
Protopapas, Pavlos
2017-06-01
The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Smith, Ira C.
1991-01-01
Tuning maps are an aid in the controller tuning process because they provide a convenient way for the plant operator to determine the consequences of adjusting different controller parameters. In this application the maps provide a graphical representation of the effect of varying the gains in the state feedback matrix on startup and load disturbance transients for a three capacity process. Nominally, the three tank system, represented in diagonal form, has a Proportional-Integral control on each loop. Cross coupling is then introduced between the loops by using non-zero off-diagonal proportional parameters. Changes in transient behavior due to setpoint and load changes are examined by varying the gains of the cross coupling terms.
Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F
2015-01-01
Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940
Quantitative analysis of bloggers' collective behavior powered by emotions
NASA Astrophysics Data System (ADS)
Mitrović, Marija; Paltoglou, Georgios; Tadić, Bosiljka
2011-02-01
Large-scale data resulting from users' online interactions provide the ultimate source of information to study emergent social phenomena on the Web. From individual actions of users to observable collective behaviors, different mechanisms involving emotions expressed in the posted text play a role. Here we combine approaches of statistical physics with machine-learning methods of text analysis to study the emergence of emotional behavior among Web users. Mapping the high-resolution data from digg.com onto bipartite networks of users and their comments onto posted stories, we identify user communities centered around certain popular posts and determine emotional contents of the related comments by the emotion classifier developed for this type of text. Applied over different time periods, this framework reveals strong correlations between the excess of negative emotions and the evolution of communities. We observe avalanches of emotional comments exhibiting significant self-organized critical behavior and temporal correlations. To explore the robustness of these critical states, we design a network-automaton model on realistic network connections and several control parameters, which can be inferred from the dataset. Dissemination of emotions by a small fraction of very active users appears to critically tune the collective states.
Monowar, Muhammad Mostafa; Bajaber, Fuad
2015-06-15
In this paper, we address the thermal rise and Quality-of-Service (QoS) provisioning issue for an intra-body Wireless Body Area Network (WBAN) having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s), and keeps the temperature rise along the network to an acceptable level. TLQoS exploits modular architecture wherein different modules perform integrated operations in providing multiple QoS service with lower temperature rise. To address the challenges of highly dynamic wireless environment inside the human body. TLQoS implements potential-based localized routing that requires only local neighborhood information. TLQoS avoids routing loop formation as well as reduces the number of hop traversal exploiting hybrid potential, and tuning a configurable parameter. We perform extensive simulations of TLQoS, and the results show that TLQoS has significant performance improvements over state-of-the-art approaches.
Monowar, Muhammad Mostafa; Bajaber, Fuad
2015-01-01
In this paper, we address the thermal rise and Quality-of-Service (QoS) provisioning issue for an intra-body Wireless Body Area Network (WBAN) having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s), and keeps the temperature rise along the network to an acceptable level. TLQoS exploits modular architecture wherein different modules perform integrated operations in providing multiple QoS service with lower temperature rise. To address the challenges of highly dynamic wireless environment inside the human body. TLQoS implements potential-based localized routing that requires only local neighborhood information. TLQoS avoids routing loop formation as well as reduces the number of hop traversal exploiting hybrid potential, and tuning a configurable parameter. We perform extensive simulations of TLQoS, and the results show that TLQoS has significant performance improvements over state-of-the-art approaches. PMID:26083228
NASA Astrophysics Data System (ADS)
Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.
2011-12-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.