NASA Astrophysics Data System (ADS)
Hassanimatin, M. M.; Tavassoli, S. H.
2018-05-01
A combination of electrical spark and laser induced breakdown spectroscopy (LIBS), which is called spark assisted LIBS (SA-LIBS), has shown its capability in plasma spectral emission enhancement. The aim of this paper is a detailed study of plasma emission to determine the effect of plasma and experimental parameters on increasing the spectral signal. An enhancement ratio of SA-LIBS spectral lines compared with LIBS is theoretically introduced. The parameters affecting the spectral enhancement ratio including ablated mass, plasma temperature, the lifetime of neutral and ionic spectral lines, plasma volume, and electron density are experimentally investigated and discussed. By substitution of the effective parameters, the theoretical spectral enhancement ratio is calculated and compared with the experimental one. Two samples of granite as a dielectric and aluminum as a metal at different laser pulse energies are studied. There is a good agreement between the calculated and the experimental enhancement ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, He; Lv, Hongliang; Guo, Hui, E-mail: hguan@stu.xidian.edu.cn
2015-11-21
Impact ionization affects the radio-frequency (RF) behavior of high-electron-mobility transistors (HEMTs), which have narrow-bandgap semiconductor channels, and this necessitates complex parameter extraction procedures for HEMT modeling. In this paper, an enhanced small-signal equivalent circuit model is developed to investigate the impact ionization, and an improved method is presented in detail for direct extraction of intrinsic parameters using two-step measurements in low-frequency and high-frequency regimes. The practicability of the enhanced model and the proposed direct parameter extraction method are verified by comparing the simulated S-parameters with published experimental data from an InAs/AlSb HEMT operating over a wide frequency range. The resultsmore » demonstrate that the enhanced model with optimal intrinsic parameter values that were obtained by the direct extraction approach can effectively characterize the effects of impact ionization on the RF performance of HEMTs.« less
Effect of dietary plant extract on meat quality and sensory parameters of meat from Equidae.
Rossi, Raffaella; Ratti, Sabrina; Pastorelli, Grazia; Maghin, Federica; Martemucci, Giovanni; Casamassima, Donato; D'Alessandro, Angela Gabriella; Corino, Carlo
2017-11-01
Plant extracts as Lippia spp. have been proven antioxidant properties. Recent studies have been shown that dietary supplementation with plant extracts is able to enhance meat quality parameters. Studies regarding meat quality in Equidae are limited. The effect of dietary plant extract (PE), containing verbascoside, on meat quality, oxidative stability and sensory parameters of Longissimus Lumborum (LL) muscle in Equidae was studied. Dietary treatment did not affect (P > 0.05) pH, colour indices and chemical parameters of muscle in both donkey and horse. Dietary PE improved (P < 0.01) oxidative stability in donkey muscle during refrigerated storage. Sensory characteristics of LL muscle were positively affected (P < 0.05) by dietary PE in both donkey and horse. In particular, colour, taste and texture were enhanced in LL muscle from animals fed PE. Oxidative stability was lower (P < 0.05) in LL muscle of horse than that of donkey. Dietary plant extract, containing verbascoside, can be considered as a natural source of antioxidants, and is also able to improve oxidative stability of donkey meat and to affect the sensory attributes of Equidae meat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Chiu, Su-Chin; Cheng, Cheng-Chieh; Chang, Hing-Chiu; Chung, Hsiao-Wen; Chiu, Hui-Chu; Liu, Yi-Jui; Hsu, Hsian-He; Juan, Chun-Jung
2016-04-01
To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s(-1)) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s(-1), respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.
Enhanced sampling simulations of DNA step parameters.
Karolak, Aleksandra; van der Vaart, Arjan
2014-12-15
A novel approach for the selection of step parameters as reaction coordinates in enhanced sampling simulations of DNA is presented. The method uses three atoms per base and does not require coordinate overlays or idealized base pairs. This allowed for a highly efficient implementation of the calculation of all step parameters and their Cartesian derivatives in molecular dynamics simulations. Good correlation between the calculated and actual twist, roll, tilt, shift, and slide parameters is obtained, while the correlation with rise is modest. The method is illustrated by its application to the methylated and unmethylated 5'-CATGTGACGTCACATG-3' double stranded DNA sequence. One-dimensional umbrella simulations indicate that the flexibility of the central CG step is only marginally affected by methylation. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Su-Chin; Cheng, Cheng-Chieh; Chang, Hing-Chiu
Purpose: To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). Methods: This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fatmore » suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. Results: NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s{sup −1}) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s{sup −1}, respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). Conclusions: On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.« less
Modulating Wnt Signaling Pathway to Enhance Allograft Integration in Orthopedic Trauma Treatment
2013-10-01
presented below. Quantitative output provides an extensive set of data but we have chosen to present the most relevant parameters that are reflected in...multiple parameters . Most samples have been mechanically tested and data extracted for multiple parameters . Histological evaluation of subset of...Sumner, D. R. Saline Irrigation Does Not Affect Bone Formation or Fixation Strength of Hydroxyapatite /Tricalcium Phosphate-Coated Implants in a Rat Model
Terrestrial photovoltaic cell process testing
NASA Technical Reports Server (NTRS)
Burger, D. R.
1985-01-01
The paper examines critical test parameters, criteria for selecting appropriate tests, and the use of statistical controls and test patterns to enhance PV-cell process test results. The coverage of critical test parameters is evaluated by examining available test methods and then screening these methods by considering the ability to measure those critical parameters which are most affected by the generic process, the cost of the test equipment and test performance, and the feasibility for process testing.
Terrestrial photovoltaic cell process testing
NASA Astrophysics Data System (ADS)
Burger, D. R.
The paper examines critical test parameters, criteria for selecting appropriate tests, and the use of statistical controls and test patterns to enhance PV-cell process test results. The coverage of critical test parameters is evaluated by examining available test methods and then screening these methods by considering the ability to measure those critical parameters which are most affected by the generic process, the cost of the test equipment and test performance, and the feasibility for process testing.
Webb, R.E.; Leslie, David M.; Lochmiller, R.L.; Masters, R.E.
2003-01-01
We examined effects of supplementation of food quantity and quality (=enhanced methionine) on hematologic and immunologic parameters of wild, but enclosed, adult male cotton rats (Sigmodon hispidus) in north-central Oklahoma. Sheet metal enclosures were stocked with a high density of wild-caught cotton rats (160 animals/ha) and randomly assigned a treatment of no supplementation, mixed-ration supplementation or methionine-enhanced supplementation. Aside from small increases in counts of red blood cells and hematocrit levels, most indices of erythrocytic characteristics were not affected by supplementation with the mixed-ration or enhanced methionine. In contrast, platelet counts were highest in mixed-ration and methionine treatments and counts of total white blood cells were highest with methionine supplementation, albeit relative proportions of different leukocytes did not differ among treatments. Immunologically, neither delayed-type hypersensitivity response nor hemolytic-complement activity differed among treatments. Supplementation of food quantity and quality did not broadly affect hematologic parameters and immune function of male cotton rats, but enhanced platelet and leukocyte counts may confer advantages to overall health. Clarification of the role of such effects on population limitation or regulation requires additional research.
Dong, Chao; Ma, Yuanchun; Zheng, Dan; Wisniewski, Michael; Cheng, Zong-Ming
2018-01-01
Dehydration-responsive element binding proteins are transcription factors that play a critical role in plant response to temperature stress. Over-expression of DREB genes has been demonstrated to enhance temperature stress tolerance. A series of physiological and biochemical modifications occur in a complex and integrated way when plants respond to temperature stress, which makes it difficult to assess the mechanism underlying the DREB enhancement of stress tolerance. A meta-analysis was conducted of the effect of DREB overexpression on temperature stress tolerance and the various parameters modulated by overexpression that were statistically quantified in 75 published articles. The meta-analysis was conducted to identify the overall influence of DREB on stress-related parameters in transgenic plants, and to determine how different experimental variables affect the impact of DREB overexpression. Viewed across all the examined studies, 7 of the 8 measured plant parameters were significantly (p ≤ 0.05) modulated in DREB-transgenic plants when they were subjected to temperature stress, while 2 of the 8 parameters were significantly affected in non-stressed control plants. The measured parameters were modulated by 32% or more by various experimental variables. The modulating variables included, acclimated or non-acclimated, type of promoter, stress time and severity, source of the donor gene, and whether the donor and recipient were the same genus. These variables all had a significant effect on the observed impact of DREB overexpression. Further studies should be conducted under field conditions to better understand the role of DREB transcription factors in enhancing plant tolerance to temperature stress. PMID:29896212
Piloted studies of Enhanced or Synthetic Vision display parameters
NASA Technical Reports Server (NTRS)
Harris, Randall L., Sr.; Parrish, Russell V.
1992-01-01
This paper summarizes the results of several studies conducted at Langley Research Center over the past few years. The purposes of these studies were to investigate parameters of pictorial displays and imaging sensors that affect pilot approach and landing performance. Pictorial displays have demonstrated exceptional tracking performance and improved the pilots' spatial awareness. Stereopsis cueing improved pilot flight performance and reduced pilot stress. Sensor image parameters such as increased field-of-view. faster image update rate, and aiding symbology improved flare initiation. Finer image resolution and magnification improved attitude control performance parameters.
Wang, Xueqin; Cui, Hongyang; Shi, Jianhong; Zhao, Xinyu; Zhao, Yue; Wei, Zimin
2015-12-01
The aim of this study was to compare the bacterial structure of seven different composts. The primary environmental factors affecting bacterial species were identified, and a strategy to enhance the abundance of uncultured bacteria through controlling relevant environmental parameters was proposed. The results showed that the physical-chemical parameters of each different pile changed in its own manner during composting, which affected the structure and succession of bacteria in different ways. DGGE profiles showed that there were 10 prominent species during composting. Among them, four species existed in all compost types, two species existed in several piles and four species were detected in a single material. Redundancy analysis results showed that bacterial species compositions were significantly influenced by C/N and moisture (p<0.05). The optimal range of C/N was 14-27. Based on these results, the primary environmental factors affecting a certain species were further identified as a potential control of bacterial diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pandey, S N; Vishal, Vikram
2017-12-06
3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.
NASA Astrophysics Data System (ADS)
Bharatish, A.; Soundarapandian, S.
2018-04-01
Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.
NASA Astrophysics Data System (ADS)
Bharatish, A.; Soundarapandian, S.
2018-06-01
Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.
The Impact of Sleep Loss on Hippocampal Function
ERIC Educational Resources Information Center
Prince, Toni-Moi; Abel, Ted
2013-01-01
Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep…
An ignored variable: solution preparation temperature in protein crystallization.
Chen, Rui-Qing; Lu, Qin-Qin; Cheng, Qing-Di; Ao, Liang-Bo; Zhang, Chen-Yan; Hou, Hai; Liu, Yong-Ming; Li, Da-Wei; Yin, Da-Chuan
2015-01-19
Protein crystallization is affected by many parameters, among which certain parameters have not been well controlled. The temperature at which the protein and precipitant solutions are mixed (i.e., the ambient temperature during mixing) is such a parameter that is typically not well controlled and is often ignored. In this paper, we show that this temperature can influence protein crystallization. The experimental results showed that both higher and lower mixing temperatures can enhance the success of crystallization, which follows a parabolic curve with an increasing ambient temperature. This work illustrates that the crystallization solution preparation temperature is also an important parameter for protein crystallization. Uncontrolled or poorly controlled room temperature may yield poor reproducibility in protein crystallization.
NASA Astrophysics Data System (ADS)
Zhang, Zhongya; Pan, Bing; Grédiac, Michel; Song, Weidong
2018-04-01
The virtual fields method (VFM) is generally used with two-dimensional digital image correlation (2D-DIC) or grid method (GM) for identifying constitutive parameters. However, when small out-of-plane translation/rotation occurs to the test specimen, 2D-DIC and GM are prone to yield inaccurate measurements, which further lessen the accuracy of the parameter identification using VFM. In this work, an easy-to-implement but effective "special" stereo-DIC (SS-DIC) method is proposed for accuracy-enhanced VFM identification. The SS-DIC can not only deliver accurate deformation measurement without being affected by unavoidable out-of-plane movement/rotation of a test specimen, but can also ensure evenly distributed calculation data in space, which leads to simple data processing. Based on the accurate kinematics fields with evenly distributed measured points determined by SS-DIC method, constitutive parameters can be identified by VFM with enhanced accuracy. Uniaxial tensile tests of a perforated aluminum plate and pure shear tests of a prismatic aluminum specimen verified the effectiveness and accuracy of the proposed method. Experimental results show that the constitutive parameters identified by VFM using SS-DIC are more accurate and stable than those identified by VFM using 2D-DIC. It is suggested that the proposed SS-DIC can be used as a standard measuring tool for mechanical identification using VFM.
Simulation for light extraction efficiency of OLEDs with spheroidal microlenses in hexagonal array
NASA Astrophysics Data System (ADS)
Bae, Hyungchul; Kim, Jun Soo; Hong, Chinsoo
2018-05-01
A theoretical model based on ray optics is used to simulate the optical performance of organic light-emitting diodes (OLEDs) with spheroidal microlens arrays (MLAs) in a hexagonal array configuration using the Monte Carlo method. In simulations, ray tracing was performed until 20 reflections occurred from the metal cathode, with 10 consecutive reflections permitted in a single lens pattern. The parameters describing the shape and array of the lens pattern of a MLA are its radius, height, contact angle, and fill factor (FF). Many previous results on how these parameters affect light extraction efficiency (LEE) are inconsistent. In this paper, these contradictory results are discussed and explained by introducing a new parameter. To examine light extraction from an OLED through a MLA, the LEE enhancement is studied considering the effect of absorption by indium tin oxide during multiple reflections from the metal cathode. The device size where LEE enhancement is unchanged with changing lens pattern was identified for a fixed FF; under this condition, the optimal LEE enhancement, 84%, can be obtained using an OLED with a close-packed spheroidal MLA. An ideal maximum LEE enhancement of 120% was achieved with a device with an infinite-sized MLA. The angular intensity distribution of light emitted through a MLA is considered in addition to LEE enhancement for an optimized MLA.
Marcolin, Giuseppe; Buriani, Alessandro; Giacomelli, Andrea; Blow, David; Grigoletto, Davide; Gesi, Marco
2017-06-24
Kinesiologic elastic tape is widely used for both clinical and sport applications although its efficacy in enhancing agonistic performance is still controversial. Aim of the study was to verify in a group of healthy basketball players whether a neuromuscular taping application (NMT) on ankle and knee joints could affect the kinematic and the kinetic parameters of the jump, either by enhancing or inhibiting the functional performance. Fourteen healthy male basketball players without any ongoing pathologies at upper limbs, lower limbs and trunk volunteered in the study. They randomly performed 2 sets of 5 counter movement jumps (CMJ) with and without application of Kinesiologic tape. The best 3 jumps of each set were considered for the analysis. The Kinematics parameters analyzed were: knees maximal flexion and ankles maximal dorsiflexion during the push off phase, jump height and take off velocity. Vertical ground reaction force and maximal power expressed in the push off phase of the jump were also investigated. The NMT application in both knees and ankles showed no statistically significant differences in the kinematic and kinetic parameters and did not interfere with the CMJ performance. Bilateral NMT application in the group of healthy male basketball players did not change kinematics and kinetics jump parameters, thus suggesting that its routine use should have no negative effect on functional performance. Similarly, the combined application of the tape on both knees and ankles did not affect in either way jump performance.
Marcolin, Giuseppe; Buriani, Alessandro; Giacomelli, Andrea; Blow, David; Grigoletto, Davide; Gesi, Marco
2017-01-01
Kinesiologic elastic tape is widely used for both clinical and sport applications although its efficacy in enhancing agonistic performance is still controversial. Aim of the study was to verify in a group of healthy basketball players whether a neuromuscular taping application (NMT) on ankle and knee joints could affect the kinematic and the kinetic parameters of the jump, either by enhancing or inhibiting the functional performance. Fourteen healthy male basketball players without any ongoing pathologies at upper limbs, lower limbs and trunk volunteered in the study. They randomly performed 2 sets of 5 counter movement jumps (CMJ) with and without application of Kinesiologic tape. The best 3 jumps of each set were considered for the analysis. The Kinematics parameters analyzed were: knees maximal flexion and ankles maximal dorsiflexion during the push off phase, jump height and take off velocity. Vertical ground reaction force and maximal power expressed in the push off phase of the jump were also investigated. The NMT application in both knees and ankles showed no statistically significant differences in the kinematic and kinetic parameters and did not interfere with the CMJ performance. Bilateral NMT application in the group of healthy male basketball players did not change kinematics and kinetics jump parameters, thus suggesting that its routine use should have no negative effect on functional performance. Similarly, the combined application of the tape on both knees and ankles did not affect in either way jump performance. PMID:28713536
An ignored variable: solution preparation temperature in protein crystallization
Chen, Rui-Qing; Lu, Qin-Qin; Cheng, Qing-Di; Ao, Liang-Bo; Zhang, Chen-Yan; Hou, Hai; Liu, Yong-Ming; Li, Da-Wei; Yin, Da-Chuan
2015-01-01
Protein crystallization is affected by many parameters, among which certain parameters have not been well controlled. The temperature at which the protein and precipitant solutions are mixed (i.e., the ambient temperature during mixing) is such a parameter that is typically not well controlled and is often ignored. In this paper, we show that this temperature can influence protein crystallization. The experimental results showed that both higher and lower mixing temperatures can enhance the success of crystallization, which follows a parabolic curve with an increasing ambient temperature. This work illustrates that the crystallization solution preparation temperature is also an important parameter for protein crystallization. Uncontrolled or poorly controlled room temperature may yield poor reproducibility in protein crystallization. PMID:25597864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleksandrov, P. A., E-mail: Alexandrov-PA@nrcki.ru; Baranova, E. K.; Budaragin, V. V.
2016-08-15
We investigate the efficiency of the introduction of a porous layer into the substrate of a silicon-onsapphire structure by the implantation of He ions to enhance the radiation resistance of devices. The properties of the introduced layer and its parameters affecting the concentration of minority charge carriers generated by irradiation are analyzed. The reported results of the analysis and calculations can be used to optimize He-ion implantation conditions during the formation of a porous layer.
Macroscopic brain dynamics during verbal and pictorial processing of affective stimuli.
Keil, Andreas
2006-01-01
Emotions can be viewed as action dispositions, preparing an individual to act efficiently and successfully in situations of behavioral relevance. To initiate optimized behavior, it is essential to accurately process the perceptual elements indicative of emotional relevance. The present chapter discusses effects of affective content on neural and behavioral parameters of perception, across different information channels. Electrocortical data are presented from studies examining affective perception with pictures and words in different task contexts. As a main result, these data suggest that sensory facilitation has an important role in affective processing. Affective pictures appear to facilitate perception as a function of emotional arousal at multiple levels of visual analysis. If the discrimination between affectively arousing vs. nonarousing content relies on fine-grained differences, amplification of the cortical representation may occur as early as 60-90 ms after stimulus onset. Affectively arousing information as conveyed via visual verbal channels was not subject to such very early enhancement. However, electrocortical indices of lexical access and/or activation of semantic networks showed that affectively arousing content may enhance the formation of semantic representations during word encoding. It can be concluded that affective arousal is associated with activation of widespread networks, which act to optimize sensory processing. On the basis of prioritized sensory analysis for affectively relevant stimuli, subsequent steps such as working memory, motor preparation, and action may be adjusted to meet the adaptive requirements of the situation perceived.
Wang, Hesong; Ni, Xueqin; Qing, Xiaodan; Liu, Lei; Xin, Jinge; Luo, Min; Khalique, Abdul; Dan, Yan; Pan, Kangcheng; Jing, Bo; Zeng, Dong
2018-01-01
The probiotic strain Lactobacillus johnsonii BS15 could exert beneficial effects on growth performance, lipid metabolism, and intestinal microflora in healthy broilers and those afflicted with subclinical necrotic enteritis (SNE). In particular, BS15 prevents SNE by enhancing intestinal immunity. To further understand the immune regulatory mechanism of BS15, we evaluated its effects on the overall immunity of broilers by determining blood parameters in healthy and SNE broilers. In this study, two experiments were conducted. Experiment 1 involved a 42-day experimental period and used 450 1-day-old male chicks. The chicks were randomly divided into three groups and fed with a basal diet with or without 1 × 105 or 106 colony-forming units (cfu) BS15/g as feed. Experiment 2 involved a 28-day experimental period and used 180 1-day-old male chicks. The chicks were randomly allotted into three groups and given with or without 1 × 106 cfu BS15/g BS15 as feed. SNE infection was treated in all broilers, except in those in the normal diet group. Antioxidant abilities, immunoglobulins, and cytokines in the serum were assessed. T-lymphocyte subsets in peripheral blood were also determined. The first experiment demonstrated that BS15 enhanced the antioxidant abilities; the serum levels of immunoglobulins, interleukin-2, and interferon-gamma; and CD3+CD4+ T-lymphocyte percentage in peripheral blood on day 21. However, limited significant changes were observed on day 42. The second experiment revealed that BS15 supplementation positively influenced the antioxidant abilities and increased the serum levels of immunoglobulins and cytokines that were affected by SNE. BS15 also positively affected T-lymphocyte subsets in peripheral blood during SNE infection. These findings suggest that BS15 supplementation may prevent SNE in broilers by improving blood parameters related to immunity and enhancing intestinal immunity. Furthermore, BS15 supplementation can improve blood parameters in healthy broilers, especially at the starter phase. PMID:29441047
Wang, Hesong; Ni, Xueqin; Qing, Xiaodan; Liu, Lei; Xin, Jinge; Luo, Min; Khalique, Abdul; Dan, Yan; Pan, Kangcheng; Jing, Bo; Zeng, Dong
2018-01-01
The probiotic strain Lactobacillus johnsonii BS15 could exert beneficial effects on growth performance, lipid metabolism, and intestinal microflora in healthy broilers and those afflicted with subclinical necrotic enteritis (SNE). In particular, BS15 prevents SNE by enhancing intestinal immunity. To further understand the immune regulatory mechanism of BS15, we evaluated its effects on the overall immunity of broilers by determining blood parameters in healthy and SNE broilers. In this study, two experiments were conducted. Experiment 1 involved a 42-day experimental period and used 450 1-day-old male chicks. The chicks were randomly divided into three groups and fed with a basal diet with or without 1 × 10 5 or 10 6 colony-forming units (cfu) BS15/g as feed. Experiment 2 involved a 28-day experimental period and used 180 1-day-old male chicks. The chicks were randomly allotted into three groups and given with or without 1 × 10 6 cfu BS15/g BS15 as feed. SNE infection was treated in all broilers, except in those in the normal diet group. Antioxidant abilities, immunoglobulins, and cytokines in the serum were assessed. T-lymphocyte subsets in peripheral blood were also determined. The first experiment demonstrated that BS15 enhanced the antioxidant abilities; the serum levels of immunoglobulins, interleukin-2, and interferon-gamma; and CD3 + CD4 + T-lymphocyte percentage in peripheral blood on day 21. However, limited significant changes were observed on day 42. The second experiment revealed that BS15 supplementation positively influenced the antioxidant abilities and increased the serum levels of immunoglobulins and cytokines that were affected by SNE. BS15 also positively affected T-lymphocyte subsets in peripheral blood during SNE infection. These findings suggest that BS15 supplementation may prevent SNE in broilers by improving blood parameters related to immunity and enhancing intestinal immunity. Furthermore, BS15 supplementation can improve blood parameters in healthy broilers, especially at the starter phase.
Conditional imitation might promote cooperation under high temptations to defect
NASA Astrophysics Data System (ADS)
Dai, Qionglin; Li, Haihong; Cheng, Hongyan; Qian, Xiaolan; Zhang, Mei; Yang, Junzhong
2012-07-01
In this paper we introduce a conditional imitation rule into an evolutionary game, in which the imitation probabilities of individuals are determined by a function of payoff difference and two crucial parameters μ and σ. The parameter μ characterizes the most adequate goal for individuals and the parameter σ characterizes the tolerance of individuals. By using the pair approximation method and numerical simulations, we find an anomalous cooperation enhancement in which the cooperation level shows a nonmonotonic variation with the increase of temptation. The parameter μ affects the regime of the payoff parameter which supports the anomalous cooperation enhancement, whereas the parameter σ plays a decisive role on the appearance of the nonmonotonic variation of the cooperation level. Furthermore, to give explicit implications for the parameters μ and σ we present an alterative form of the conditional imitation rule based on the benefit and the cost incurred to individuals during strategy updates. In this way, we also provide a phenomenological interpretation for the nonmonotonic behavior of cooperation with the increase of temptation. The results give a clue that a higher cooperation level could be obtained under adverse environments for cooperation by applying the conditional imitation rule, which is possible to be manipulated in real life. More generally, the results in this work might point out an efficient way to maintain cooperation in the risky environments to cooperators.
Kumar, A; Biradar, A M
2011-04-01
We present here the dielectric and electro-optical studies of cadmium telluride quantum dots (CdTe QDs) doped ferroelectric liquid crystals (FLCs). It has been observed that the doping of CdTe QDs not only induced a pronounced memory effect but also affected the physical parameters of FLC material (LAHS19). The modifications in the physical parameters and memory effect of LAHS19 are found to depend on the concentration ratio of CdTe QDs. The lower concentration of CdTe QDs (1-3 wt%) enhanced the values of spontaneous polarization and rotational viscosity of LAHS19 material but did not favor the memory effect, whereas a higher concentration of CdTe QDs (>5 wt%) degraded the alignment of LAHS19 material. The doping of ∼5 wt% of CdTe QDs is found to be the most suitable for achieving good memory effect without significantly affecting the material parameters. ©2011 American Physical Society
Wolvers, Danielle AW; van Herpen-Broekmans, Wendy MR; Logman, Margot HGM; van der Wielen, Reggy PJ; Albers, Ruud
2006-01-01
Background Supplementation of nutritional deficiencies helps to improve immune function and resistance to infections in malnourished subjects. However, the suggested benefits of dietary supplementation for immune function in healthy well nourished subjects is less clear. Among the food constituents frequently associated with beneficial effects on immune function are micronutrients such as vitamin C, vitamin E, β-carotene and zinc, and colostrum. This study was designed to investigate the effects these ingredients on immune function markers in healthy volunteers. Methods In a double-blind, randomized, parallel, 2*2, placebo-controlled intervention study one hundred thirty-eight healthy volunteers aged 40–80 y (average 57 ± 10 y) received one of the following treatments: (1) bovine colostrum concentrate 1.2 g/d (equivalent to ~500 mg/d immunoglobulins), (2) micronutrient mix of 288 mg vitamin E, 375 mg vitamin C, 12 mg β-carotene and 15 mg zinc/day, (3) combination of colostrum and micronutrient mix, or (4) placebo. Several immune function parameters were assessed after 6 and 10 weeks. Data were analyzed by analysis of variance. Groups were combined to test micronutrient treatment versus no micronutrient treatment, and colostrum treatment versus no colostrum treatment. Results Overall, consumption of the micronutrient mix significantly enhanced delayed-type hypersensitivity (DTH) responses (p < 0.05). Adjusted covariance analysis showed a positive association between DTH and age. Separate analysis of younger and older age groups indicated that it was the older population that benefited from micronutrient consumption. The other immune function parameters including responses to systemic tetanus and oral typhoid vaccination, phagocytosis, oxidative burst, lymphocyte proliferation and lymphocyte subset distribution were neither affected by the consumption of micronutrients nor by the consumption of bovine colostrum concentrate. Conclusion Consumption of bovine colostrum had no effect on any of the immune parameters assessed. The micronutrient mix enhanced cellular immunity as measured by DTH, with an increased effect by incremental age, but did not affect any of the other immune parameters measured. Although correlations between decreased DTH and enhanced risk of certain infection have been reported, it remains unclear whether and enhanced DTH response actually improves immune defense. The present data suggests that improvement of immune parameters in a population with a generally good immune and nutritional status is limited and that improvement of immune function in this population may be difficult. PMID:17118191
Clasen, Bárbara; Loro, Vania Lucia; Cattaneo, Roberta; Moraes, Bibiana; Lópes, Thais; de Avila, Luis Antonio; Zanella, Renato; Reimche, Geovane Boschmann; Baldisserotto, Bernardo
2012-03-01
The aim of this research was to evaluate possible toxic effects of commercial formulation containing fipronil on Cyprinus carpio tissues under rice field conditions. Antioxidant profile (SOD, catalase, glutathione S-transferase), oxidative stress parameters (thiobarbituric acid-reactive substances, protein carbonyl), and growth were investigated in carp exposed to fipronil under rice field conditions for 7, 30, and 90 days. Waterborne insecticide concentrations were measured and the detectable concentration of fipronil was observed up to 45 day after application. Common carp survival and growth was not affected by fipronil. Liver superoxide dismutase activity was enhanced while liver catalase activity was inhibited at 7, 30, and 90 days. Alterations were not observed in the glutathione S-transferase activity in any experimental periods. Protein carbonyl increased only after 30 and 90 days of exposure. The thiobarbituric acid-reactive substances levels were enhanced in all analyzed tissues (liver, muscle, and brain) and periods of exposure. This study demonstrates that fipronil insecticides cause alterations in the biochemical parameters in different tissues of carp without affecting the growth or the survival of the fish. Copyright © 2011 Elsevier Inc. All rights reserved.
Monte Carlo Model Insights into the Lunar Sodium Exosphere
NASA Technical Reports Server (NTRS)
Hurley, Dana M.; Killen, R. M.; Sarantos, M.
2012-01-01
Sodium in the lunar exosphere is released from the lunar regolith by several mechanisms. These mechanisms include photon stimulated desorption (PSD), impact vaporization, electron stimulated desorption, and ion sputtering. Usually, PSD dominates; however, transient events can temporarily enhance other release mechanisms so that they are dominant. Examples of transient events include meteor showers and coronal mass ejections. The interaction between sodium and the regolith is important in determining the density and spatial distribution of sodium in the lunar exosphere. The temperature at which sodium sticks to the surface is one factor. In addition, the amount of thermal accommodation during the encounter between the sodium atom and the surface affects the exospheric distribution. Finally, the fraction of particles that are stuck when the surface is cold that are rereleased when the surface warms up also affects the exospheric density. In [1], we showed the "ambient" sodium exosphere from Monte Carlo modeling with a fixed source rate and fixed surface interaction parameters. We compared the enhancement when a CME passes the Moon to the ambient conditions. Here, we compare model results to data in order to determine the source rates and surface interaction parameters that provide the best fit of the model to the data.
Moya, Aurélie; Ferrier-Pagès, Christine; Furla, Paola; Richier, Sophie; Tambutté, Eric; Allemand, Denis; Tambutté, Sylvie
2008-09-01
High calcification rates observed in reef coral organisms are due to the symbiotic relationship established between scleractinian corals and their photosynthetic dinoflagellates, commonly called zooxanthellae. Zooxanthellae are known to enhance calcification in the light, a process referred as "light-enhanced calcification". The disruption of the relationship between corals and their zooxanthellae leads to bleaching. Bleaching is one of the major causes of the present decline of coral reefs related to climate change and anthropogenic activities. In our aquaria, corals experienced a chemical pollution leading to bleaching and ending with the death of corals. During the time course of this bleaching event, we measured multiple parameters and could evidence four major consecutive steps: 1) at month 1 (January 2005), the stress affected primarily the photosystem II machinery of zooxanthellae resulting in an immediate decrease of photosystem II efficiency, 2) at month 2, the stress affected the photosynthetic production of O2 by zooxanthellae and the rate of light calcification, 3) at month 3, there was a decrease in both light and dark calcification rates, the appearance of the first oxidative damage in the zooxanthellae, the disruption of symbiosis, 4) and finally the death of corals at month 6.
Comparison of parameters affecting GNP-loaded choroidal melanoma dosimetry; Monte Carlo study
NASA Astrophysics Data System (ADS)
Sharabiani, Marjan; Asadi, Somayeh; Barghi, Amir Rahnamai; Vaezzadeh, Mehdi
2018-04-01
The current study reports the results of tumor dosimetry in the presence of gold nanoparticles (GNPs) with different sizes and concentrations. Due to limited number of works carried out on the brachytherapy of choroidal melanoma in combination with GNPs, this study was performed to determine the optimum size and concentration for GNPs which contributes the highest dose deposition in tumor region, using two phantom test cases namely water phantom and a full Monte Carlo model of human eye. Both water and human eye phantoms were simulated with MCNP5 code. Tumor dosimetry was performed for a typical point photon source with an energy of 0.38 MeV as a high energy source and 103Pd brachytherapy source with an average energy of 0.021 MeV as a low energy source in water phantom and eye phantom respectively. Such a dosimetry was done for different sizes and concentrations of GNPs. For all of the diameters, increase in concentration of GNPs resulted in an increase in dose deposited in the region of interest. In a certain concentration, GNPs with larger diameters contributed more dose to the tumor region, which was more pronounced using eye phantom. 100 nm was reported as the optimum size in order to achieve the highest energy deposition within the target. This work investigated the optimum parameters affecting macroscopic dose enhancement in GNP-aided brachytherapy of choroidal melanoma. The current work also had implications on using low energy photon sources in the presence of GNPs to acquire the highest dose enhancement. This study is conducted through four different sizes and concentrations of GNPs. Considering the sensitivity of human eye tissue, in order to report the precise optimum parameters affecting radiosensitivity, a comprehensive study on a wide range of sizes and concentrations are required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajric, Sendin
Additive manufacturing needs a broader selection of materials for part production. In order for the Los Alamos National Laboratory (LANL) to investigate new materials for selective laser sintering (SLS), this paper reviews research on the effect of print parameters on part density, accuracy, and surface roughness of polyamide 12 (PA12, PA2200). The literature review serves to enhance the understanding of how changing the laser powder, scan speed, etc. will affect the mechanical properties of a commercial powder. By doing so, this understanding will help the investigation of new materials for SLS.
Sharon, Maheshwar; Apte, P R; Purandare, S C; Zacharia, Renju
2005-02-01
Seven variable parameters of the chemical vapor deposition system have been optimized with the help of the Taguchi analytical method for getting a desired product, e.g., carbon nanotubes or carbon nanobeads. It is observed that almost all selected parameters influence the growth of carbon nanotubes. However, among them, the nature of precursor (racemic, R or Technical grade camphor) and the carrier gas (hydrogen, argon and mixture of argon/hydrogen) seem to be more important parameters affecting the growth of carbon nanotubes. Whereas, for the growth of nanobeads, out of seven parameters, only two, i.e., catalyst (powder of iron, cobalt, and nickel) and temperature (1023 K, 1123 K, and 1273 K), are the most influential parameters. Systematic defects or islands on the substrate surface enhance nucleation of novel carbon materials. Quantitative contributions of process parameters as well as optimum factor levels are obtained by performing analysis of variance (ANOVA) and analysis of mean (ANOM), respectively.
Tribulus terrestris Extract Improves Human Sperm Parameters In Vitro
Khaleghi, Sara; Bakhtiari, Mitra; Asadmobini, Atefeh; Esmaeili, Farzane
2016-01-01
Objective. The object of present study was to investigate the effects of direct addition of Tribulus terrestris extract on human sperm parameters. Design. Semen specimens from 40 healthy men volunteers were divided into 4 groups: one group received no treatment (control group) while the others were incubated with 20, 40, and 50 µg/mL of T terrestris extract (experimental groups). Motility, viability, and DNA fragmentation were assessed in all groups. Results. The incubation of human semen with 40 and 50 μg/mL of T terrestris extract significantly enhanced total sperm motility, number of progressive motile spermatozoa, and curvilinear velocity over 60 to 120 minutes’ holding time (P < .05 or P < < .01). Furthermore, viability was significantly enhanced by using T terrestris extract (P < .01). Conclusions. In vitro addition of the T terrestris extract to human sperm could affect male fertility capacity. PMID:27694560
Tribulus terrestris Extract Improves Human Sperm Parameters In Vitro.
Khaleghi, Sara; Bakhtiari, Mitra; Asadmobini, Atefeh; Esmaeili, Farzane
2016-09-30
The object of present study was to investigate the effects of direct addition of Tribulus terrestris extract on human sperm parameters. Semen specimens from 40 healthy men volunteers were divided into 4 groups: one group received no treatment (control group) while the others were incubated with 20, 40, and 50 µg/mL of T terrestris extract (experimental groups). Motility, viability, and DNA fragmentation were assessed in all groups. The incubation of human semen with 40 and 50 μg/mL of T terrestris extract significantly enhanced total sperm motility, number of progressive motile spermatozoa, and curvilinear velocity over 60 to 120 minutes' holding time (P < .05 or P < < .01). Furthermore, viability was significantly enhanced by using T terrestris extract (P < .01). In vitro addition of the T terrestris extract to human sperm could affect male fertility capacity. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
Schiller, Q.; Kanekal, S. G.; Jian, L. K,; Li, X.; Jones, A.; Baker, D. N.; Jaynes, A.; Spence, H. E.
2016-01-01
We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E greater than 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.
Josuttis, Melanie; Dietrich, Helmut; Treutter, Dieter; Will, Frank; Linnemannstöns, Ludger; Krüger, Erika
2010-12-22
Strawberries (Fragaria × ananassa Duch. cvs. Everest, Elsanta) were grown in a tunnel covered with two films, which were distinguished in their ultraviolet transparency, as well as under open-field conditions. One applied film was not transparent for UVB radiation, and the second film transmitted 70% of UVB radiation. During the present study, the nutritional value and quality parameters of the fruits were evaluated. Strawberries were UV-unresponsive in view of the content of ascorbic acid and sum parameters like total anthocyanins and antioxidant capacity measured with TEAC (trolox equivalent antioxidant capacity), ORAC (oxygen radical absorbance capacity) and total phenols. These parameters were mainly affected by sampling date and cultivar. However, HPLC analysis showed that individual phenolics were affected in the absence of UV radiation. The content of the anthocyanin cyanidin 3-glucoside and the flavonols quercetin 3-glucuronide and kaempferol 3-glucoside was decreased in the fruits grown under UV blocking film compared to open-field grown strawberries. By means of the UV transparent film the content of the mentioned flavonoids could be enhanced up to similar amounts like in open-field grown strawberries. All other phenolics were not consistently affected by UV radiation. This result was independent of cultivar.
Rosa, B V; Blair, H T; Vickers, M H; Morel, P C; Cockrem, J F; Firth, E C
2012-12-01
The objectives of this study were to examine the effects of voluntary exercise during pregnancy on maternal post-lactation bone parameters and offspring growth. Pregnant Wistar rats were housed in conventional cages (control), or were housed in raised cages requiring them to rise to an erect, bipedal stance to obtain food/water, throughout pregnancy. Dual energy X-ray absorptiometry and peripheral quantitative computed tomography scans were performed pre-mating and post-weaning. Maternal stress was assessed by fecal corticosterone measurement. Offspring weights were assessed at postnatal days 1 and 25 (weaning). Changes in bone mineral over the pregnancy/lactation period were site-specific. Exercise did not affect loss of bone mineral from the lumbar spine, but did attenuate the loss of trabecular bone mineral from the tibial metaphysis and enhance the strength strain index and cross-sectional moment of inertia at the tibial diaphysis (P≤0.05) in dams in the exercised group. Fecal corticosterone did not differ between dam groups. There were no significant differences in offspring weight between the exercised and control group at either time point. Voluntary exercise in the pregnant rat can improve some post-lactation bone parameters and does not adversely affect early postnatal outcomes of the offspring.
NASA Astrophysics Data System (ADS)
Xing, Wanqiu; Wang, Weiguang; Shao, Quanxi; Yong, Bin
2018-01-01
Quantifying precipitation (P) partition into evapotranspiration (E) and runoff (Q) is of great importance for global and regional water availability assessment. Budyko framework serves as a powerful tool to make simple and transparent estimation for the partition, using a single parameter, to characterize the shape of the Budyko curve for a "specific basin", where the single parameter reflects the overall effect by not only climatic seasonality, catchment characteristics (e.g., soil, topography and vegetation) but also agricultural activities (e.g., cultivation and irrigation). At the regional scale, these influencing factors are interconnected, and the interactions between them can also affect the single parameter of Budyko-type equations' estimating. Here we employ the multivariate adaptive regression splines (MARS) model to estimate the Budyko curve shape parameter (n in the Choudhury's equation, one form of the Budyko framework) of the selected 96 catchments across China using a data set of long-term averages for climatic seasonality, catchment characteristics and agricultural activities. Results show average storm depth (ASD), vegetation coverage (M), and seasonality index of precipitation (SI) are three statistically significant factors affecting the Budyko parameter. More importantly, four pairs of interactions are recognized by the MARS model as: The interaction between CA (percentage of cultivated land area to total catchment area) and ASD shows that the cultivation can weaken the reducing effect of high ASD (>46.78 mm) on the Budyko parameter estimating. Drought (represented by the value of Palmer drought severity index < -0.74) and uneven distribution of annual rainfall (represented by the value of coefficient of variation of precipitation > 0.23) tend to enhance the Budyko parameter reduction by large SI (>0.797). Low vegetation coverage (34.56%) is likely to intensify the rising effect on evapotranspiration ratio by IA (percentage of irrigation area to total catchment area). The Budyko n values estimated by the MARS model reproduce the calculated ones by the observation well for the selected 96 catchments (with R = 0.817, MAE = 4.09). Compared to the multiple stepwise regression model estimating the parameter n taken the influencing factors as independent inputs, the MARS model enhances the capability of the Budyko framework for assessing water availability at regional scale using readily available data.
Optimizing laser crater enhanced Raman scattering spectroscopy
NASA Astrophysics Data System (ADS)
Lednev, V. N.; Sdvizhenskii, P. A.; Grishin, M. Ya.; Fedorov, A. N.; Khokhlova, O. V.; Oshurko, V. B.; Pershin, S. M.
2018-05-01
The laser crater enhanced Raman scattering (LCERS) spectroscopy technique has been systematically studied for chosen sampling strategy and influence of powder material properties on spectra intensity enhancement. The same nanosecond pulsed solid state Nd:YAG laser (532 nm, 10 ns, 0.1-1.5 mJ/pulse) was used for laser crater production and Raman scattering experiments for L-aspartic acid powder. Increased sampling area inside crater cavity is the key factor for Raman signal improvement for the LCERS technique, thus Raman signal enhancement was studied as a function of numerous experimental parameters including lens-to-sample distance, wavelength (532 and 1064 nm) and laser pulse energy utilized for crater production. Combining laser pulses of 1064 and 532 nm wavelengths for crater ablation was shown to be an effective way for additional LCERS signal improvement. Powder material properties (particle size distribution, powder compactness) were demonstrated to affect LCERS measurements with better results achieved for smaller particles and lower compactness.
NASA Astrophysics Data System (ADS)
Sun, Jincheng; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong
2018-03-01
The effects of heat input parameters on inclusion and microstructure characteristics have been investigated using welding thermal simulations. Inclusion features from heat-affected zones (HAZs) were profiled. It was found that, under heat input of 120 kJ/cm, Al-Mg-Ti-O-(Mn-S) composite inclusions can act effectively as nucleation sites for acicular ferrites. However, this ability disappears when the heat input is increased to 210 kJ/cm. In addition, confocal scanning laser microscopy (CSLM) was used to document possible inclusion-microstructure interactions, shedding light on how inclusions assist beneficial transformations toward property enhancement.
NASA Astrophysics Data System (ADS)
Sun, Jincheng; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong
2018-06-01
The effects of heat input parameters on inclusion and microstructure characteristics have been investigated using welding thermal simulations. Inclusion features from heat-affected zones (HAZs) were profiled. It was found that, under heat input of 120 kJ/cm, Al-Mg-Ti-O-(Mn-S) composite inclusions can act effectively as nucleation sites for acicular ferrites. However, this ability disappears when the heat input is increased to 210 kJ/cm. In addition, confocal scanning laser microscopy (CSLM) was used to document possible inclusion-microstructure interactions, shedding light on how inclusions assist beneficial transformations toward property enhancement.
NASA Astrophysics Data System (ADS)
Shi, Peiming; Yuan, Danzhen; Han, Dongying; Zhang, Ying; Fu, Rongrong
2018-06-01
Stochastic resonance (SR) phenomena in a time-delayed feedback tristable system driven by Gaussian white noise are investigated by simulating the potential function, mean first-passage time (MFPT), and signal-to-noise ratio (SNR) of the system. Through the use of a short delay time, the generalized potential function and stationary probability density function (PDF) are obtained. The delay feedback term has a significant effect on both equations, and that the parameters b, c, and d have different effects on the three wells of the potential function. The MFPT is calculated, which plays an extremely important role in research on particles escape rates. We find that the delay feedback term can affect the noise enhanced stability (NES). In addition, the SR characteristics are studied by the index of SNR. The simulation demonstrates that SNR is a non-monotonic distributed and that the peak SNR value can be attained by adjusting the appropriate parameters. Finally, the proposed theory is combined with a variable step method and applied to the detection of high frequencies in experiments. The result indicates that the fault frequency can be identified, and that the energy of the fault signal can be enhanced under suitable delay feedback parameters.
Penny, Christian; Grothendick, Beau; Zhang, Lin; Borror, Connie M.; Barbano, Duane; Cornelius, Angela J.; Gilpin, Brent J.; Fagerquist, Clifton K.; Zaragoza, William J.; Jay-Russell, Michele T.; Lastovica, Albert J.; Ragimbeau, Catherine; Cauchie, Henry-Michel; Sandrin, Todd R.
2016-01-01
MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this study was to enhance strain level resolution for Campylobacter jejuni through the optimization of spectrum processing parameters using a series of designed experiments. A collection of 172 strains of C. jejuni were collected from Luxembourg, New Zealand, North America, and South Africa, consisting of four groups of antibiotic resistant isolates. The groups included: (1) 65 strains resistant to cefoperazone (2) 26 resistant to cefoperazone and beta-lactams (3) 5 strains resistant to cefoperazone, beta-lactams, and tetracycline, and (4) 76 strains resistant to cefoperazone, teicoplanin, amphotericin, B and cephalothin. Initially, a model set of 16 strains (three biological replicates and three technical replicates per isolate, yielding a total of 144 spectra) of C. jejuni was subjected to each designed experiment to enhance detection of antibiotic resistance. The most optimal parameters were applied to the larger collection of 172 isolates (two biological replicates and three technical replicates per isolate, yielding a total of 1,031 spectra). We observed an increase in antibiotic resistance detection whenever either a curve based similarity coefficient (Pearson or ranked Pearson) was applied rather than a peak based (Dice) and/or the optimized preprocessing parameters were applied. Increases in antimicrobial resistance detection were scored using the jackknife maximum similarity technique following cluster analysis. From the first four groups of antibiotic resistant isolates, the optimized preprocessing parameters increased detection respective to the aforementioned groups by: (1) 5% (2) 9% (3) 10%, and (4) 2%. An additional second categorization was created from the collection consisting of 31 strains resistant to beta-lactams and 141 strains sensitive to beta-lactams. Applying optimal preprocessing parameters, beta-lactam resistance detection was increased by 34%. These results suggest that spectrum processing parameters, which are rarely optimized or adjusted, affect the performance of MALDI-TOF MS-based detection of antibiotic resistance and can be fine-tuned to enhance screening performance. PMID:27303397
On the influence of surfactant on the coarsening of aqueous foams.
Briceño-Ahumada, Zenaida; Langevin, Dominique
2017-06-01
We review the coarsening process of foams made with various surfactants and gases, focusing on physico-chemical aspects. Several parameters strongly affect coarsening: foam liquid fraction and foam film permeability, this permeability depending on the surfactant used. Both parameters may evolve with time: the liquid fraction, due to gravity drainage, and the film permeability, due to the decrease of capillary pressure during bubble growth, and to the subsequent increase in film thickness. Bubble coalescence may enhance the bubble's growth rate, in which case the bubble polydispersity increases. The differences found between the experiments reported in the literature and between experiments and theories are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Adaptive firefly algorithm: parameter analysis and its application.
Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin
2014-01-01
As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise.
Adaptive Firefly Algorithm: Parameter Analysis and its Application
Shen, Hong-Bin
2014-01-01
As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm — adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem — protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812
Laser tailored nanoparticle arrays to detect molecules at dilute concentration
NASA Astrophysics Data System (ADS)
Zanchi, Chiara; Lucotti, Andrea; Tommasini, Matteo; Trusso, Sebastiano; de Grazia, Ugo; Ciusani, Emilio; Ossi, Paolo M.
2017-02-01
By nanosecond pulsed laser ablation in an ambient gas gold nanoparticles (NPs) were produced that self-assemble on a substrate resulting in increasingly elaborated architectures of growing thickness, from isolated NP arrays up to percolated films. NPs nucleate and grow in the plasma plume propagating through the gas. Process parameters including laser wavelength, laser energy density, target to substrate distance, nature and pressure of the gas affect plasma expansion, thus asymptotic NP size and kinetic energy. NP size, energy and mobility at landing determine film growth and morphology that affect the physico-chemical properties of the film. Keeping fixed the other process parameters, we discuss the sensitive dependence of film surface nanostructure on Ar pressure and on laser pulse number. The initial plume velocity and average ablated mass per pulse allow predicting the asymptotic NP size. The control of growth parameters favors fine-tuning of NP aggregation, relevant to plasmonics to get optimized substrates for surface enhanced Raman spectroscopy (SERS). Their behavior is discussed for testing conditions of interest for clinical application. Both in aqueous and in biological solutions we obtained good sensitivity and reproducibility of the SERS signals for the anti-Parkinson drug apomorphine, and for the anti-epilepsy drug carbamazepine.
González, Eva; Vegara, Salud; Martí, Nuria; Valero, Manuel; Saura, Domingo
2015-03-01
Technological process for production of non-astringent persimmon (Diospyros kaki Thunb. cv. "Rojo Brillante") juice was described. The degree of fruit ripening expressed as color index (CI) varied between 12.37 and 16.33. Persimmon juice was characterized by determining physicochemical quality parameters as yield, total soluble solids (TSS), pH, titratable acidity (TA), organic acids, and main sugars. A thermal treatment of 90 ºC for 10 s was effective in controlling naturally occurring microorganisms for at least 105 d of storage without significantly affecting production of soluble brown pigments (BPs) and 5-hydroxymethyl furfural (5-HMF), total phenolic compounds (TPC), antioxidant capacity and acceptability of juice by panelists. Storage time affected all and each of the above parameters, reducing BPs, TPC and antioxidant capacity but increasing 5-HMF content. Refrigerated storage enhanced the acceptability of the juices. This information may be used by the juice industry as a starting point for production of pure persimmon juices. © 2015 Institute of Food Technologists®
Effectiveness of Vegetated Drainage Ditches for Domestic Sewage Effluent Mitigation.
Kumwimba, Mathieu Nsenga; Zhu, Bo
2017-05-01
Plant species have an important role in eco-ditches; however, the Michaelis-Menten kinetic parameters of nutrient uptake, growth rate and purification efficiency of ditch plants and their influences on domestic sewage treatment efficiency are still unclear. Growth rates of all nine species, but especially Lemna gibba, Cladophora and Myriophyllum verticillatum were best in undiluted domestic sewage as opposed to a mixture of domestic sewage. Performance of species to accumulate nutrients was not only species-specific, but was also affected by both sewage treatments. Removal efficiency of nutrients was dependent on both plant species and treatment. Uptake kinetic parameters were significantly affected by both nutrient form and plant species. The maximum uptake rate (Vmax) of NH 4 -N was higher than NO 3 -N. Similarly, Km values for NH 4 -N were greater than NO 3 -N. These results could be used to identify plants for sewage treatment efficiency and enhance water quality in eco-ditch treatment systems.
Parameters affecting the photocatalytic degradation of dyes using TiO2: a review
NASA Astrophysics Data System (ADS)
Reza, Khan Mamun; Kurny, ASW; Gulshan, Fahmida
2017-07-01
Traditional chemical, physical and biological processes for treating wastewater containing textile dye have such disadvantages as high cost, high energy requirement and generation of secondary pollution during treatment process. The advanced oxidation processes technology has been attracting growing attention for the decomposition of organic dyes. Such processes are based on the light-enhanced generation of highly reactive hydroxyl radicals, which oxidize the organic matter in solution and convert it completely into water, CO2 and inorganic compounds. In this presentation, the photocatalytic degradation of dyes in aqueous solution using TiO2 as photocatalyst under solar and UV irradiation has been reviewed. It is observed that the degradation of dyes depends on several parameters such as pH, catalyst concentration, substrate concentration and the presence of oxidants. Reaction temperature and the intensity of light also affect the degradation of dyes. Particle size, BET-surface area and different mineral forms of TiO2 also have influence on the degradation rate.
Relationships between Soil and Levels of Meloidogyne incognita and Tobacco Yield and Quality.
Barker, K R; Weeks, W W
1991-01-01
A 2-year study with six soils and four levels of Meloidogyne incognita in microplots was designed to determine the effects of these parameters on nematode activity and tobacco yield and quality. Key components under study were affected by soil, nematode level, and season (year-cultivar). In 1980, low initial nematode numbers (1,250) enhanced tobacco yield in Cecil clay loam, but caused slight to moderate yield losses in the other soils. Yield losses to M. incognita were generally greatest in sandy and muck soils. In 1980, regression analyses of the independent parameters Pi - clay-sand vs. yield gave an R(2) of 0.40. Examples of other coefficients of determination for yield vs. selected factors were root-necrosis index, 0.40; root-gall index, 0.18; root-gall index-cation exchange capacity (CEC), 0.34; root-necrosis index-CEC, 0.56; and root-necrosis index-sand-soil acidity-calcium, 0.62. In contrast, the R(2) for Pi alone versus yield in 1981 was 0.84. Soil also affected nematode reproduction with the greatest increases occurring in the sandy soils. In both years, low nematode numbers enhanced the synthesis of sugar in tobacco, whereas leaves from all other nematode treatments had low sugar levels. A low nicotine content was associated with nematode infection. Tobacco from sandy soils had a higher nicotine content than tobacco from clay soils.
Fradique, Mónica; Batista, Ana Paula; Nunes, M Cristiana; Gouveia, Luísa; Bandarra, Narcisa M; Raymundo, Anabela
2010-08-15
Microalgae are able to enhance the nutritional content of conventional foods and hence to positively affect human health, due to their original chemical composition. The aim of the present study was to prepare fresh spaghetti enriched with different amounts of microalgae biomass (Chlorella vulgaris and Spirulina maxima) and to compare the quality parameters (optimal cooking time, cooking losses, swelling index and water absorption), chemical composition, instrumental texture and colour of the raw and cooked pasta enriched with microalgae biomass with standard semolina spaghetti. The incorporation of microalgae results in an increase of quality parameters when compared to the control sample. The colour of microalgae pastas remained relatively stable after cooking. The addition of microalgae resulted in an increase in the raw pasta firmness when compared to the control sample. Of all the microalgae studied, an increase in the biomass concentration (0.5-2.0%) resulted in a general tendency of an increase in the pasta firmness. Sensory analysis revealed that microalgae pastas had higher acceptance scores by the panellists than the control pasta. Microalgae pastas presented very appellative colours, such as orange and green, similar to pastas produced with vegetables, with nutritional advantages, showing energetic values similar to commercial pastas. The use of microalgae biomass can enhance the nutritional and sensorial quality of pasta, without affecting its cooking and textural properties. Copyright (c) 2010 Society of Chemical Industry.
Biomechanics of forearm rotation: force and efficiency of pronator teres.
Ibáñez-Gimeno, Pere; Galtés, Ignasi; Jordana, Xavier; Malgosa, Assumpció; Manyosa, Joan
2014-01-01
Biomechanical models are useful to assess the effect of muscular forces on bone structure. Using skeletal remains, we analyze pronator teres rotational efficiency and its force components throughout the entire flexion-extension and pronation-supination ranges by means of a new biomechanical model and 3D imaging techniques, and we explore the relationship between these parameters and skeletal structure. The results show that maximal efficiency is the highest in full elbow flexion and is close to forearm neutral position for each elbow angle. The vertical component of pronator teres force is the highest among all components and is greater in pronation and elbow extension. The radial component becomes negative in pronation and reaches lower values as the elbow flexes. Both components could enhance radial curvature, especially in pronation. The model also enables to calculate efficiency and force components simulating changes in osteometric parameters. An increase of radial curvature improves efficiency and displaces the position where the radial component becomes negative towards the end of pronation. A more proximal location of pronator teres radial enthesis and a larger humeral medial epicondyle increase efficiency and displace the position where this component becomes negative towards forearm neutral position, which enhances radial curvature. Efficiency is also affected by medial epicondylar orientation and carrying angle. Moreover, reaching an object and bringing it close to the face in a close-to-neutral position improve efficiency and entail an equilibrium between the forces affecting the elbow joint stability. When the upper-limb skeleton is used in positions of low efficiency, implying unbalanced force components, it undergoes plastic changes, which improve these parameters. These findings are useful for studies on ergonomics and orthopaedics, and the model could also be applied to fossil primates in order to infer their locomotor form. Moreover, activity patterns in human ancient populations could be deduced from parameters reported here.
A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy.
Tantra, Ratna; Brown, Richard J C; Milton, Martin J T; Gohil, Dipak
2008-09-01
We describe a practical method of fabricating surface-enhanced Raman spectroscopy (SERS) substrates based on dip-coating poly-L-lysine derivatized microscope slides in a gold colloidal suspension. The use of only commercially available starting materials in this preparation is particularly advantageous, aimed at both reducing time and the inconsistency associated with surface modification of substrates. The success of colloid deposition has been demonstrated by scanning electron microscopy (SEM) and the corresponding SERS response (giving performance comparable to the corresponding traditional colloidal SERS substrates). Reproducibility was evaluated by conducting replicate measurements across six different locations on the substrate and assessing the extent of the variability (standard deviation values of spectral parameters: peak width and height), in response to either Rhodamine 6G or Isoniazid. Of particular interest is the observation of how some peaks in a given spectrum are more susceptible to data variability than others. For example, in a Rhodamine 6G SERS spectrum, spectral parameters of the peak at 775 cm(-1) were shown to have a relative standard deviation (RSD) % of <10%, while the peak at 1573 cm(-1) has a RSD of >or=10%. This observation is best explained by taking into account spectral variations that arise from the effect of a chemisorption process and the local nature of chemical enhancement mechanisms, which affects the enhancement of some spectral peaks but not others (analogous to resonant Raman phenomenon).
Galaxy-galaxy weak gravitational lensing in f(R) gravity
NASA Astrophysics Data System (ADS)
Li, Baojiu; Shirasaki, Masato
2018-03-01
We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon f(R) gravity - a leading candidate of non-standard gravity models. For the analysis, we have created mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the f(R) and Λ cold dark matter (ΛCDM) models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the f(R) model predicts an enhancement of the convergence power spectrum by up to ˜ 30 per cent compared to the standard ΛCDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5 per cent on separations above ˜1-2 h-1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy autocorrelations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in f(R) gravity. We find that the galaxy-matter cross-correlation coefficient remains at unity down to ˜2-3 h-1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allows us to break the degeneracy between f(R) gravity and other cosmological parameters such as Ωm and σ8.
Bioremediation of Petroleum Hydrocarbon Contaminated Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallgren, Paul
Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop amore » biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of environmental parameters on bioremediation is important in designing a bioremediation system to reduce petroleum hydrocarbon concentrations in impacted soils.« less
TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties
Galstyan, Vardan; Comini, Elisabetta; Faglia, Guido; Sberveglieri, Giorgio
2013-01-01
Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes. PMID:24184919
NASA Astrophysics Data System (ADS)
Housaindokht, Mohammad Reza; Moosavi, Fatemeh
2018-06-01
The effect of magnetization on the properties of a system containing a peptide model is studied by molecular dynamics simulation at a range of 298-318 K. Two mole fractions of 0.001 and 0.002 of peptide were simulated and the variation of hydrogen bond number, orientational ordering parameter, gyration radius, mean square displacement, as well as radial distribution function, were under consideration. The results show that applying magnetic field will increase the number of hydrogen bonds between water molecules by clustering them and decreases the interaction of water and peptide. This reduction may cause more available free space and enhance the movement of the peptide. As a result, the diffusion coefficient of the peptide becomes greater and its conformation changes. Orientational ordering parameter besides radius of gyration demonstrates that peptide is expanded by static magnetic field and its orientational ordering parameter is affected.
NASA Astrophysics Data System (ADS)
Machado, M. R.; Adhikari, S.; Dos Santos, J. M. C.; Arruda, J. R. F.
2018-03-01
Structural parameter estimation is affected not only by measurement noise but also by unknown uncertainties which are present in the system. Deterministic structural model updating methods minimise the difference between experimentally measured data and computational prediction. Sensitivity-based methods are very efficient in solving structural model updating problems. Material and geometrical parameters of the structure such as Poisson's ratio, Young's modulus, mass density, modal damping, etc. are usually considered deterministic and homogeneous. In this paper, the distributed and non-homogeneous characteristics of these parameters are considered in the model updating. The parameters are taken as spatially correlated random fields and are expanded in a spectral Karhunen-Loève (KL) decomposition. Using the KL expansion, the spectral dynamic stiffness matrix of the beam is expanded as a series in terms of discretized parameters, which can be estimated using sensitivity-based model updating techniques. Numerical and experimental tests involving a beam with distributed bending rigidity and mass density are used to verify the proposed method. This extension of standard model updating procedures can enhance the dynamic description of structural dynamic models.
The TGAS HR diagram of S-type stars
NASA Astrophysics Data System (ADS)
Shetye, Shreeya; van Eck, Sophie; Jorissen, Alain; van Winckel, Hans; Siess, Lionel
2018-04-01
S-type stars are late-type giants enhanced with s-process elements originating either from nucleosynthesis during the Asymptotic Giant Branch (AGB) or from a pollution by a binary companion. The former are called intrinsic S stars, and the latter extrinsic S stars. The atmospheric parameters of S stars are more numerous than those of M-type giants (C/O ratio and s-process abundances affect the thermal structure and spectral synthesis), and hence they are more difficult to derive. Nevertheless, high-resolution spectroscopic data of S stars combined with the TGAS (Tycho-Gaia Astrometric solution) parallaxes were used to derive effective temperatures, surface gravities, and luminosities. These parameters allow to locate the intrinsic and extrinsic S stars in the Hertzsprung-Russell diagram.
Vialet-Chabrand, Silvere; Griffiths, Howard
2017-01-01
The physical requirement for charge to balance across biological membranes means that the transmembrane transport of each ionic species is interrelated, and manipulating solute flux through any one transporter will affect other transporters at the same membrane, often with unforeseen consequences. The OnGuard systems modeling platform has helped to resolve the mechanics of stomatal movements, uncovering previously unexpected behaviors of stomata. To date, however, the manual approach to exploring model parameter space has captured little formal information about the emergent connections between parameters that define the most interesting properties of the system as a whole. Here, we introduce global sensitivity analysis to identify interacting parameters affecting a number of outputs commonly accessed in experiments in Arabidopsis (Arabidopsis thaliana). The analysis highlights synergies between transporters affecting the balance between Ca2+ sequestration and Ca2+ release pathways, notably those associated with internal Ca2+ stores and their turnover. Other, unexpected synergies appear, including with the plasma membrane anion channels and H+-ATPase and with the tonoplast TPK K+ channel. These emergent synergies, and the core hubs of interaction that they define, identify subsets of transporters associated with free cytosolic Ca2+ concentration that represent key targets to enhance plant performance in the future. They also highlight the importance of interactions between the voltage regulation of the plasma membrane and tonoplast in coordinating transport between the different cellular compartments. PMID:28432256
Amos, Richard T.; Mayer, K. Ulrich
2006-01-01
Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.
Zailani, Ahmed H; Balogun, Elizabeth A; Adebayo, Joseph O
2009-05-01
Evaluation of the effects of daily oral administration of ethanolic extract of C. violaceum leaves (13 mg/kg body weight) for 5 days on some kidney function indices of uninfected and Plasmodium berghei-infected mice was done on days 3, 8 and 14 post-infection. The indices studied include serum urea and creatinine concentrations with the specific activities of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase in the kidney. Treatment of P. berghei-infected mice with ethanolic extract of C. violaceum leaves (13 mg/kg body weight) for 5 days was able to ameliorate significantly the alterations in the various parameters observed in infected untreated mice, comparing favourably with chloroquine treatment in most cases. Administration of extract to uninfected mice had no significant effect on both serum and kidney parameters compared to the uninfected control. The results suggest that the ethanolic extract of C. violaceum leaves does not adversely affect kidney function at the dose used in traditional medicine for the treatment of malaria but rather enhances it.
Zhang, Daqing; Xiao, Jianfeng; Zhou, Nannan; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian
2015-01-01
Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration. PMID:26504797
NASA Astrophysics Data System (ADS)
Gill, Andrew B.; Black, Richard T.; Bowden, David J.; Priest, Andrew N.; Graves, Martin J.; Lomas, David J.
2014-06-01
This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2-20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR.
Chen, Yaoning; Ma, Shuang; Li, Yuanping; Yan, Ming; Zeng, Guangming; Zhang, Jiachao; Zhang, Jie; Tan, Xuebin
2016-11-01
This paper studied the degradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in contaminated soil under composting and natural conditions, respectively. BDE-47 residue in agricultural waste-composting pile was determined during 45-day composting. The microbial communities were determined by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and the relationships between the DGGE results and physico-chemical parameters were evaluated by redundancy analysis (RDA) and heatmap-clustering analysis. The results showed that the degradation rate of BDE-47 was significantly higher in agricultural waste-composting pile compared with control group, which was enhanced up to almost 15 % at the end of composting. There were different environmental factors which affected the distribution of composting bacterial and fungal communities. The bacterial community composition was more significantly affected by the addition of BDE-47 compared with other physico-chemical parameters, and BDE-47 had stronger influences on bacterial community than fungal community during the composting. Meanwhile, the most variation in distribution of fungal community was explained by pile temperature.
González-Cebrino, Francisco; Durán, Rocío; Delgado-Adámez, Jonathan; Contador, Rebeca; Bernabé, Rosario Ramírez
2016-04-01
Physicochemical parameters, bioactive compounds' content (carotenoids and total phenols), total antioxidant activity, and enzymatic activity of polyphenol oxidase (PPO) were evaluated after high pressure processing (HPP) on a pumpkin purée (cv. 'Butternut'). Three pressure levels (400, 500, and 600 MPa) were combined with three holding times (200, 400, and 600 s). The applied treatments reduced the levels of total aerobic mesophilic (TAM), total psychrophilic and psychrotrophic bacteria (TPP), and molds and yeasts (M&Y). All applied treatments did not affect enzymatic activity of PPO. Pressure level increased CIE L* values, which could enhance the lightness perception of high pressure (HP)-treated purées. No differences were found between the untreated and HP-treated purées regarding total phenols and carotenoids content (lutein, α-carotene, and β-carotene) and total antioxidant activity. HPP did not affect most quality parameters and maintained the levels of bioactive compounds. However, it did not achieve the complete inhibition of PPO, which could reduce the shelf-life of the pumpkin purée. © The Author(s) 2015.
Tamhane, Ashish A; Arfanakis, Konstantinos
2009-07-01
Periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo (FSE) and gradient and spin-echo (GRASE), respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. (c) 2009 Wiley-Liss, Inc.
Immobilization of Microbial Cells for Alcoholic and Malolactic Fermentation of Wine and Cider
NASA Astrophysics Data System (ADS)
Kourkoutas, Yiannis; Manojlović, Verica; Nedović, Viktor A.
Wine- or cider-making is highly associated with biotechnology owing to the traditional nature of must fermentation.. Nowadays, there have been considerable developments in wine- or cider-making techniques affecting all phases of wine or cider production, but more importantly, the fermentation process. It is well-known that the transformation of grape must by microbial activity results in the production of wine, and the fermentation of apples (or sometimes pears) in the production of cider. In this process, a variety of compounds affecting the organoleptic profile of wine or cider are synthesized. It is also common sense that in wine- or cider-making, the main objective is to achieve an adequate quality of the product. The technological progress and the improved quality of the wines or ciders have been associated with the control of technical parameters. Herein, cell immobilization offers numerous advantages, such as enhanced fermentation productivity, ability for cell recycling, application of continuous configurations, enhanced cell stability and viability, and improvement of quality (Margaritis and Merchant 1984; Stewart and Russel 1986; Kourkoutas et al. 2004a).
A review of passive thermal management of LED module
NASA Astrophysics Data System (ADS)
Huaiyu, Ye; Koh, Sau; van Zeijl, Henk; Gielen, A. W. J.; Guoqi, Zhang
2011-01-01
Recently, the high-brightness LEDs have begun to be designed for illumination application. The increased electrical currents used to drive LEDs lead to thermal issues. Thermal management for LED module is a key design parameter as high operation temperature directly affects their maximum light output, quality, reliability and life time. In this review, only passive thermal solutions used on LED module will be studied. Moreover, new thermal interface materials and passive thermal solutions applied on electronic equipments are discussed which have high potential to enhance the thermal performance of LED Module.
Method and apparatus for imparting strength to a material using sliding loads
Hughes, Darcy Anne; Dawson, Daniel B.; Korellis, John S.
1999-01-01
A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: 1) asperity interactions and 2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example.
Method And Apparatus For Imparting Strength To Materials Using Sliding Loads
Hughes, Darcy Anne; Dawson, Daniel B.; Korellis, John S.
1999-03-16
A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: 1) asperity interactions and 2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example.
Cabrera, Laura Y
2015-01-01
The past decade has seen a rise in the use of different technologies aimed at enhancing cognition of normal healthy individuals. While values have been acknowledged to be an important aspect of cognitive enhancement practices, the discussion has predominantly focused on just a few values, such as safety, peer pressure, and authenticity. How are values, in a broader sense, affected by enhancing cognitive abilities? Is this dependent on the type of technology or intervention used to attain the enhancement, or does the cognitive domain targeted play a bigger role in how values are affected? Values are not only likely to be affected by cognitive enhancement practices; they also play a crucial role in defining the type of interventions that are likely to be undertaken. This paper explores the way values affect and are affected by enhancing cognitive abilities. Furthermore, it argues that knowledge of the interplay between values and cognitive enhancement makes a strong case for social responsibility around cognitive enhancement practices.
Optimization of a thermal hydrolysis process for sludge pre-treatment.
Sapkaite, I; Barrado, E; Fdz-Polanco, F; Pérez-Elvira, S I
2017-05-01
At industrial scale, thermal hydrolysis is the most used process to enhance biodegradability of the sludge produced in wastewater treatment plants. Through statistically guided Box-Behnken experimental design, the present study analyses the effect of TH as pre-treatment applied to activated sludge. The selected process variables were temperature (130-180 °C), time (5-50 min) and decompression mode (slow or steam-explosion effect), and the parameters evaluated were sludge solubilisation and methane production by anaerobic digestion. A quadratic polynomial model was generated to compare the process performance for the 15 different combinations of operation conditions by modifying the process variables evaluated. The statistical analysis performed exhibited that methane production and solubility were significantly affected by pre-treatment time and temperature. During high intensity pre-treatment (high temperature and long times), the solubility increased sharply while the methane production exhibited the opposite behaviour, indicating the formation of some soluble but non-biodegradable materials. Therefore, solubilisation is not a reliable parameter to quantify the efficiency of a thermal hydrolysis pre-treatment, since it is not directly related to methane production. Based on the operational parameters optimization, the estimated optimal thermal hydrolysis conditions to enhance of sewage sludge digestion were: 140-170 °C heating temperature, 5-35min residence time, and one sudden decompression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barnes, Samuel R; Ng, Thomas S C; Montagne, Axel; Law, Meng; Zlokovic, Berislav V; Jacobs, Russell E
2016-05-01
To determine optimal parameters for acquisition and processing of dynamic contrast-enhanced MRI (DCE-MRI) to detect small changes in near normal low blood-brain barrier (BBB) permeability. Using a contrast-to-noise ratio metric (K-CNR) for Ktrans precision and accuracy, the effects of kinetic model selection, scan duration, temporal resolution, signal drift, and length of baseline on the estimation of low permeability values was evaluated with simulations. The Patlak model was shown to give the highest K-CNR at low Ktrans . The Ktrans transition point, above which other models yielded superior results, was highly dependent on scan duration and tissue extravascular extracellular volume fraction (ve ). The highest K-CNR for low Ktrans was obtained when Patlak model analysis was combined with long scan times (10-30 min), modest temporal resolution (<60 s/image), and long baseline scans (1-4 min). Signal drift as low as 3% was shown to affect the accuracy of Ktrans estimation with Patlak analysis. DCE acquisition and modeling parameters are interdependent and should be optimized together for the tissue being imaged. Appropriately optimized protocols can detect even the subtlest changes in BBB integrity and may be used to probe the earliest changes in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis. © 2015 Wiley Periodicals, Inc.
Continuous cardiac troponin I release in Fabry disease.
Feustel, Andreas; Hahn, Andreas; Schneider, Christian; Sieweke, Nicole; Franzen, Wolfgang; Gündüz, Dursun; Rolfs, Arndt; Tanislav, Christian
2014-01-01
Fabry disease (FD) is a rare lysosomal storage disorder also affecting the heart. The aims of this study were to determine the frequency of cardiac troponin I (cTNI) elevation, a sensitive parameter reflecting myocardial damage, in a smaller cohort of FD-patients, and to analyze whether persistent cTNI can be a suitable biomarker to assess cardiac dysfunction in FD. cTNI values were determined at least twice per year in 14 FD-patients (6 males and 8 females) regularly followed-up in our centre. The data were related to other parameters of heart function including cardiac magnetic resonance imaging (cMRI). Three patients (21%) without specific vascular risk factors other than FD had persistent cTNI-elevations (range 0.05-0.71 ng/ml, normal: <0.01). cMRI disclosed late gadolinium enhancement (LGE) in all three individuals with cTNI values ≥0.01, while none of the 11 patients with cTNI <0.01 showed a pathological enhancement (p<0.01). Two subjects with increased cTNI-values underwent coronary angiography, excluding relevant stenoses. A myocardial biopsy performed in one during this procedure demonstrated substantial accumulation of globotriaosylceramide (Gb3) in cardiomyocytes. Continuous cTNI elevation seems to occur in a substantial proportion of patients with FD. The high accordance with LGE, reflecting cardiac dysfunction, suggests that cTNI-elevation can be a useful laboratory parameter for assessing myocardial damage in FD.
Wu, Yueh-Feng; Wang, Shiou-Han; Wu, Pei-Shan; Fan, Sabrina Mai-Yi; Chiu, Hsien-Yi; Tsai, Tsung-Hua; Lin, Sung-Jan
2015-04-01
Identification of methods to enhance anagen entry can be helpful for alopecia. Recently, nonablative laser has been proposed as a potential treatment for alopecia. However, how the laser parameters affect stem cell activity, hair cycles and the associated side effects have not been well characterized. Here we examine the effects of irradiation parameters of 1,550-nm fractional laser on hair cycles. The dorsal skin of eight-week-old female C57BL/6 mice with hair follicles in synchronized telogen was shaved and irradiated with a 1,550-nm fractional erbium-glass laser (Fraxel RE:STORE (SR1500) Laser System, Solta Medical, U.S.A.) with varied beam energies (5-35 mJ) and beam densities (500-3500 microthermal zones/cm(2) ). The cutaneous changes were evaluated both grossly and histologically. Hair follicle stem cell activity was detected by BrdU incorporation and changes in gene expression were quantified by real-time PCR. Direct thermal injury to hair follicles could be observed early after irradiation, especially at higher beam energy. Anagen induction in the irradiated skin showed an all-or-non change. Anagen induction and ulcer formation were affected by the combination of beam energy and density. The lowest beam energy of 5 mJ failed to promote anagen entry at all beam densities tested. As beam energy increased from 10 mJ to 35 mJ, we found a decreasing trend of beam density that could induce anagen entry within 7-9 days with activation of hair follicle stem cells. Beam density above the pro-regeneration density could lead to ulcers and scarring followed by anagen entry in adjacent skin. Analysis of inflammatory cytokines, including TNF-α, IL-1β, and IL-6, revealed that transient moderate inflammation was associated with anagen induction and intense prolonged inflammation preceded ulcer formation. To avoid side effects of hair follicle injury and scarring, appropriate combination of beam energy and density is required. Parameters outside the therapeutic window can result in either no anagen promotion or ulcer formation. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wadas, S. H.; Tanner, D. C.; Tschache, S.; Polom, U.; Krawczyk, C. M.
2017-12-01
Subrosion, the dissolution of soluble rocks, e.g., sulfate, salt, or carbonate, requires unsaturated water and fluid pathways that enable the water to flow through the subsurface and generate cavities. Over time, different structures can occur that depend on, e.g., rock solubility, flow rate, and overburden type. The two main structures are sinkholes and depressions. To analyze the link between faults, groundwater flow, and soluble rocks, and to determine parameters that are useful to characterize hazard zones, several shear-wave (SH) reflection seismic profiles were surveyed in Thuringia in Germany, where Permian sulfate rocks and salt subcrop close to the surface. From the analysis of the seismic sections we conclude that areas affected by tectonic deformation phases are prone to enhanced subrosion. The deformation of fault blocks leads to the generation of a damage zone with a dense fracture network. This increases the rock permeability and thus serves as a fluid pathway for, e.g., artesian-confined groundwater. The more complex the fault geometry and the more interaction between faults, the more fractures are generated, e.g., in a strike slip-fault zone. The faults also act as barriers for horizontal groundwater flow perpendicular to the fault surfaces and as conduits for groundwater flow along the fault strike. In addition, seismic velocity anomalies and attenuation of seismic waves are observed. Low velocities <200 m/s and high attenuation may indicate areas affected by subrosion. Other parameters that characterize the underground stability are the shear modulus and the Vp/Vs ratio. The data revealed zones of low shear modulus <100 MPa and high Vp/Vs ratio >2.5, which probably indicate unstable areas due to subrosion. Structural analysis of S-wave seismics is a valuable tool to detect near-surface faults in order to determine whether or not an area is prone to subrosion. The recognition of even small fault blocks can help to better understand the hydrodynamic groundwater conditions, which is another key factor to understand the subrosion process. The elastic parameters derived from seismic velocities can help to identify possible zones of instability.
Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.
Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki
2014-02-01
This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue-implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. Copyright © 2013 Elsevier B.V. All rights reserved.
Florczyk, Stephen J; Kim, Dae-Joon; Wood, David L; Zhang, Miqin
2011-09-15
Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.
Bioeffects due to acoustic droplet vaporization
NASA Astrophysics Data System (ADS)
Bull, Joseph
2015-11-01
Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.
Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro
2018-06-01
Square-wave pulsed light is characterized by three parameters, namely average photosynthetic photon flux density (PPFD), pulsed-light frequency, and duty ratio (the ratio of light-period duration to that of the light-dark cycle). In addition, the light-period PPFD is determined by the averaged PPFD and duty ratio. We investigated the effects of these parameters and their interactions on net photosynthetic rate (P n ) of cos lettuce leaves for every combination of parameters. Averaged PPFD values were 0-500 µmol m -2 s -1 . Frequency values were 0.1-1000 Hz. White LED arrays were used as the light source. Every parameter affected P n and interactions between parameters were observed for all combinations. The P n under pulsed light was lower than that measured under continuous light of the same averaged PPFD, and this difference was enhanced with decreasing frequency and increasing light-period PPFD. A mechanistic model was constructed to estimate the amount of stored photosynthetic intermediates over time under pulsed light. The results indicated that all effects of parameters and their interactions on P n were explainable by consideration of the dynamics of accumulation and consumption of photosynthetic intermediates.
Duñabeitia, Iratxe; Arrieta, Haritz; Torres-Unda, Jon; Gil, Javier; Santos-Concejero, Jordan; Gil, Susana M; Irazusta, Jon; Bidaurrazaga-Letona, Iraia
2018-05-26
This study compared the effects of a capacitive-resistive electric transfer therapy (Tecar) and passive rest on physiological and biomechanical parameters in recreational runners when performed shortly after an exhausting training session. Randomized controlled crossover trial. University biomechanical research laboratory. Fourteen trained male runners MAIN OUTCOME MEASURES: Physiological (running economy, oxygen uptake, respiratory exchange ratio, ventilation, heart rate, blood lactate concentration) and biomechanical (step length; stride angle, height, frequency, and contact time; swing time; contact phase; support phase; push-off phase) parameters were measured during two incremental treadmill running tests performed two days apart after an exhaustive training session. When running at 14 km/h and 16 km/h, the Tecar treatment group presented greater increases in stride length (p < 0.001), angle (p < 0.05) and height (p < 0.001) between the first and second tests than the control group and, accordingly, greater decreases in stride frequency (p < 0.05). Physiological parameters were similar between groups. The present study suggests that a Tecar therapy intervention enhances biomechanical parameters in recreational runners after an exhaustive training session more than passive rest, generating a more efficient running pattern without affecting selected physiological parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neumann, Verena
2016-01-01
A biophysical model of the excitation-contraction pathway, which has previously been validated for slow-twitch and fast-twitch skeletal muscles, is employed to investigate key biophysical processes leading to peripheral muscle fatigue. Special emphasis hereby is on investigating how the model's original parameter sets can be interpolated such that realistic behaviour with respect to contraction time and fatigue progression can be obtained for a continuous distribution of the model's parameters across the muscle units, as found for the functional properties of muscles. The parameters are divided into 5 groups describing (i) the sarcoplasmatic reticulum calcium pump rate, (ii) the cross-bridge dynamics rates, (iii) the ryanodine receptor calcium current, (iv) the rates of binding of magnesium and calcium ions to parvalbumin and corresponding dissociations, and (v) the remaining processes. The simulations reveal that the first two parameter groups are sensitive to contraction time but not fatigue, the third parameter group affects both considered properties, and the fourth parameter group is only sensitive to fatigue progression. Hence, within the scope of the underlying model, further experimental studies should investigate parvalbumin dynamics and the ryanodine receptor calcium current to enhance the understanding of peripheral muscle fatigue. PMID:27980606
Tewari, S; Arora, K
2014-12-24
Stress tolerating strain of Pseudomonas aeruginosa PF07 possessing plant growth promoting activity was screened for the production of exopolysaccharides (EPS). EPS production was monitored in the cell free culture supernatant (CFCS) and extracted EPS was further purified by thin layer chromatography. EPS producing cells were taken to design talc based formulation and its efficacy was checked on oilseed crop sunflower (Hellianthus annuus), under in vivo saline conditions (soil irrigated with 125 mM of saline water). Application of bioformulation significantly enhanced the yield and growth attributes of the plant in comparison to control (untreated seeds) under stress and non—stress conditions. Germination rate, plant length, dry weight and seed weight increased remarkably. The above findings suggest the application and benefits of utilizing EPS formulation in boosting early seedling emergence, enhancing plant growth parameters, increasing seed weight and mitigating stress in saline affected regions. Such bioformulation may enhance RAS/RT (Root Adhering Soil to Root Tissue ratio), texture of the soil, increase porosity, improve uptake of nutrients, and hence may be considered as commercially important formulation for renovation of stressed sites and enhancing plant growth.
NASA Astrophysics Data System (ADS)
Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng
2016-05-01
Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.
Thermodynamic Approach to Boron Nitride Nanotube Solubility and Dispersion
NASA Technical Reports Server (NTRS)
Tiano, A. L.; Gibbons, L.; Tsui, M.; Applin, S. I.; Silva, R.; Park, C.; Fay, C. C.
2016-01-01
Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(exp 1/2) for delta d, delta p, and delta h, respectively, with a calculated Hildebrand parameter of 21.8 MPa)exp 1/2).
Losio, C.; Della Corte, A.; Venturini, E.; Ambrosi, A.; Panizza, P.; De Cobelli, F.
2018-01-01
Purpose To assess correlations between volumetric first-order texture parameters on baseline MRI and pathological response after neoadjuvant chemotherapy (NAC) for locally advanced breast cancer (BC). Materials and Methods 69 patients with locally advanced BC candidate to neoadjuvant chemotherapy underwent MRI within 4 weeks from the start of therapeutic regimen. T2, DWI, and DCE sequences were analyzed and maps were generated for Apparent Diffusion Coefficient (ADC), T2 signal intensity, and the following dynamic parameters: k-trans, peak enhancement, area under curve (AUC), time to maximal enhancement (TME), wash-in rate, and washout rate. Volumetric analysis of these parameters was performed, yielding a histogram analysis including first-order texture kinetics (percentiles, maximum value, minimum value, range, standard deviation, mean, median, mode, skewness, and kurtosis). Finally, correlations between these values and response to NAC (evaluated on the surgical specimen according to RECIST 1.1 criteria) were assessed. Results Out of 69 tumors, 33 (47.8%) achieved complete pathological response, 26 (37.7%) partial response, and 10 (14.5%) no response. Higher levels of AUCmax (p value = 0.0338), AUCrange (p value = 0.0311), and TME75 (p value = 0.0452) and lower levels of washout10 (p value = 0.0417), washout20 (p value = 0.0138), washout25 (p value = 0.0114), and washout30 (p value = 0.05) were predictive of noncomplete response. Conclusion Histogram-derived texture analysis of MRI images allows finding quantitative parameters predictive of nonresponse to NAC in women affected by locally advanced BC. PMID:29853811
Panzeri, M M; Losio, C; Della Corte, A; Venturini, E; Ambrosi, A; Panizza, P; De Cobelli, F
2018-01-01
To assess correlations between volumetric first-order texture parameters on baseline MRI and pathological response after neoadjuvant chemotherapy (NAC) for locally advanced breast cancer (BC). 69 patients with locally advanced BC candidate to neoadjuvant chemotherapy underwent MRI within 4 weeks from the start of therapeutic regimen. T2, DWI, and DCE sequences were analyzed and maps were generated for Apparent Diffusion Coefficient (ADC), T2 signal intensity, and the following dynamic parameters: k -trans, peak enhancement, area under curve (AUC), time to maximal enhancement (TME), wash-in rate, and washout rate. Volumetric analysis of these parameters was performed, yielding a histogram analysis including first-order texture kinetics (percentiles, maximum value, minimum value, range, standard deviation, mean, median, mode, skewness, and kurtosis). Finally, correlations between these values and response to NAC (evaluated on the surgical specimen according to RECIST 1.1 criteria) were assessed. Out of 69 tumors, 33 (47.8%) achieved complete pathological response, 26 (37.7%) partial response, and 10 (14.5%) no response. Higher levels of AUCmax ( p value = 0.0338), AUCrange ( p value = 0.0311), and TME 75 ( p value = 0.0452) and lower levels of washout 10 ( p value = 0.0417), washout 20 ( p value = 0.0138), washout 25 ( p value = 0.0114), and washout 30 ( p value = 0.05) were predictive of noncomplete response. Histogram-derived texture analysis of MRI images allows finding quantitative parameters predictive of nonresponse to NAC in women affected by locally advanced BC.
Thermodynamic approach to boron nitride nanotube solubility and dispersion.
Tiano, A L; Gibbons, L; Tsui, M; Applin, S I; Silva, R; Park, C; Fay, C C
2016-02-21
Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(1/2) for δd, δp, and δh, respectively, with a calculated Hildebrand parameter of 21.8 MPa(1/2).
Enhancing coronary Wave Intensity Analysis robustness by high order central finite differences.
Rivolo, Simone; Asrress, Kaleab N; Chiribiri, Amedeo; Sammut, Eva; Wesolowski, Roman; Bloch, Lars Ø; Grøndal, Anne K; Hønge, Jesper L; Kim, Won Y; Marber, Michael; Redwood, Simon; Nagel, Eike; Smith, Nicolas P; Lee, Jack
2014-09-01
Coronary Wave Intensity Analysis (cWIA) is a technique capable of separating the effects of proximal arterial haemodynamics from cardiac mechanics. Studies have identified WIA-derived indices that are closely correlated with several disease processes and predictive of functional recovery following myocardial infarction. The cWIA clinical application has, however, been limited by technical challenges including a lack of standardization across different studies and the derived indices' sensitivity to the processing parameters. Specifically, a critical step in WIA is the noise removal for evaluation of derivatives of the acquired signals, typically performed by applying a Savitzky-Golay filter, to reduce the high frequency acquisition noise. The impact of the filter parameter selection on cWIA output, and on the derived clinical metrics (integral areas and peaks of the major waves), is first analysed. The sensitivity analysis is performed either by using the filter as a differentiator to calculate the signals' time derivative or by applying the filter to smooth the ensemble-averaged waveforms. Furthermore, the power-spectrum of the ensemble-averaged waveforms contains little high-frequency components, which motivated us to propose an alternative approach to compute the time derivatives of the acquired waveforms using a central finite difference scheme. The cWIA output and consequently the derived clinical metrics are significantly affected by the filter parameters, irrespective of its use as a smoothing filter or a differentiator. The proposed approach is parameter-free and, when applied to the 10 in-vivo human datasets and the 50 in-vivo animal datasets, enhances the cWIA robustness by significantly reducing the outcome variability (by 60%).
NASA Astrophysics Data System (ADS)
Vets, Robert
An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. The defining non-dimensional parameter for the system is the ratio of the surface velocity to the free stream velocity, us/Uo. Results show a general increase in lift with increasing us/Uo. The endurance parameter served as an additional metric for the system's performance. Examining the results of the endurance parameter shows general increase in endurance and lift with the moving surface activated. Peak performance in terms of increased endurance along with increased lift occurs at or slightly above us/Uo = 1. Water tunnel visualization showed a marked difference in the downwash for velocity ratios greater than 1, supporting the measured data. Reynolds numbers for this investigation were 1.9E5 and 4.3E5, relevant to the class of fixed wing, Tier-1, Unmanned Aerial Vehicles (UAV).
Using Supercritical Fluid Technology (SFT) in Preparation of Tacrolimus Solid Dispersions.
Obaidat, Rana M; Tashtoush, Bassam M; Awad, Alaa Abu; Al Bustami, Rana T
2017-02-01
Tacrolimus is an immunosuppressant agent that suffers from poor and variable bioavailability. This can be related to limited solubility and dissolution. The main objective of this study is to use SFT to prepare solid dispersions of tacrolimus in order to enhance its dissolution. SFT was selected since it offers several advantages over conventional techniques such as efficiency and stability. Several solid dispersions of tacrolimus were prepared using SFT to enhance its dissolution. The selected polymers included soluplus, PVP, HPMC, and porous chitosan. TPGS was used as a surfactant additive with chitosan, HPMC, and PVP. Soluplus dispersions were used to study the effect of processing parameters (time, temperature, and pressure) on loading efficiency (LE) and dissolution of the preparation. Physicochemical characterization was performed using DSC, X-ray diffraction, FTIR analysis, SEM, and in vitro drug release. Stability testing was evaluated after 3 months for selected dispersions. Significant improvement for the release profile was achieved for the prepared dispersions. Better release achieved in the soluplus dispersions which reached maximum cumulative release equal to 98.76% after 24 h. Drug precipitated in its amorphous form in all prepared dispersions except those prepared from chitosan. All dispersions were physically stable except for PVP preparations that contained TPGS which started to re-crystallize after one month. Prepared dispersions were proved to be affected by supercritical processing parameters. In conclusion, SFT was successfully used to prepare dispersions of tacrolimus that exhibited higher dissolution than raw drug. Dissolution rate and stability are affected by the type of the polymer.
Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results†
Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M.; Cauffman, Stephen R.; Felch, Kevin L.; Weber, Ralph T.; Temkin, Richard J.; Griffin, Robert G.; Maas, Werner E.
2015-01-01
Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524
NASA Astrophysics Data System (ADS)
Zhao, D.
2012-12-01
The exchange of carbon dioxide across the air-sea interface is an important component of the atmospheric CO2 budget. Understanding how future changes in climate will affect oceanic uptake and releaser CO2 requires accurate estimation of air-sea CO2 flux. This flux is typically expressed as the product of gas transfer velocity, CO2 partial pressure difference in seawater and air, and the CO2 solubility. As the key parameter, gas transfer velocity has long been known to be controlled by the near-surface turbulence in water, which is affected by many factors, such as wind forcing, ocean waves, water-side convection and rainfall. Although the wind forcing is believed as the major factor dominating the near-surface turbulence, many studies have shown that the wind waves and their breaking would greatly enhance turbulence compared with the classical solid wall theory. Gas transfer velocity has been parameterized in terms of wind speed, turbulent kinetic energy dissipation rate, and wave parameters on the basis of observational data or theoretical analysis. However, great discrepancies, as large as one order, exist among these formulas. In this study, we will systematically analyze the differences of gas transfer velocity proposed so far, and try to find the reason that leads to their uncertainties. Finally, a new formula for gas transfer velocity will be given in terms of wind speed and wind wave parameter.
Zeb, Alam; Rahman, Saleem Ur
2017-01-25
The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.
Transition from Direct to Inverse Cascade in Three-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Sahoo, Ganapati; Alexakis, Alexandros; Biferale, Luca
2017-11-01
We study a model system where the triadic interactions in Navier-Stokes equations are enhanced or suppressed in a controlled manner without affecting neither the total number of degrees of freedom nor the ideal invariants and without breaking any of the symmetries of original equations. Our numerical simulations are based on the helical decomposition of velocity Fourier modes. We introduced a parameter (0 <= λ <= 1) that controls the relative weight among homochiral and heterochiral triads in the nonlinear evolution. We show that by using this weighting protocol the turbulent evolution displays a sharp transition, for a critical value of the control parameter, from forward to backward energy transfer but still keeping the dynamics fully three dimensional, isotropic, and parity invariant. AtMath Collaboration of University of Helsinki and ERC Grant No. 339032 `NewTurb'.
López-Granada, G; Barceinas-Sánchez, J D O; López, R; Gómez, R
2013-12-15
The incorporation of aluminum acetylacetonate as alumina source during the gelation of titanium alkoxide reduces the nucleation sites for the formation of large rutile crystals on temperatures ranging from 400 to 800°C. As a result, the aggregation of anatase crystals is prevented at high temperature. A relationship among the specific surface area, pore size, energy band gap, crystalline structure and crystallite size as the most relevant parameters are evaluated and discussed. According to the results for the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, the specific surface area, pore size, Eg band gap are not determinant in the photocatalytic properties. It was found that the anatase crystallite size is the mores important parameter affecting the degradation efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos
2016-09-14
An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.
Novel methods for parameter-based analysis of myocardial tissue in MR images
NASA Astrophysics Data System (ADS)
Hennemuth, A.; Behrens, S.; Kuehnel, C.; Oeltze, S.; Konrad, O.; Peitgen, H.-O.
2007-03-01
The analysis of myocardial tissue with contrast-enhanced MR yields multiple parameters, which can be used to classify the examined tissue. Perfusion images are often distorted by motion, while late enhancement images are acquired with a different size and resolution. Therefore, it is common to reduce the analysis to a visual inspection, or to the examination of parameters related to the 17-segment-model proposed by the American Heart Association (AHA). As this simplification comes along with a considerable loss of information, our purpose is to provide methods for a more accurate analysis regarding topological and functional tissue features. In order to achieve this, we implemented registration methods for the motion correction of the perfusion sequence and the matching of the late enhancement information onto the perfusion image and vice versa. For the motion corrected perfusion sequence, vector images containing the voxel enhancement curves' semi-quantitative parameters are derived. The resulting vector images are combined with the late enhancement information and form the basis for the tissue examination. For the exploration of data we propose different modes: the inspection of the enhancement curves and parameter distribution in areas automatically segmented using the late enhancement information, the inspection of regions segmented in parameter space by user defined threshold intervals and the topological comparison of regions segmented with different settings. Results showed a more accurate detection of distorted regions in comparison to the AHA-model-based evaluation.
NASA Astrophysics Data System (ADS)
Theil, Jeremy Alfred
The motivation of this thesis is to discuss the major issues of remote plasma enhanced chemical vapor deposition (remote PECVD) that affect the properties Si-based thin films. In order to define the issues required for process optimization, the behavior of remote PECVD process must be understood. The remote PECVD process is defined as having four segments: (1) plasma generation, (2) excited species extraction, (3) excited species/downstream gas mixing, and (4) surface reaction. The double Langmuir probe technique is employed to examine plasma parameters under 13.56 MHz and 2.54 GHz excitation. Optical emission spectroscopy is used to determine changes in the excited states of radiating species in the plasma afterglow. Mass spectrometry is used to determine the excitation and consumption of process gases within the reactor during film growth. Various analytical techniques such as infrared absorption spectroscopy, (ir), high resolution transmission electron microscopy, (HRTEM), and reflected high energy electron diffraction, (RHEED), are used to ascertain film properties. The results of the Langmuir probe show that plasma coupling is frequency dependent and that the capacitive coupling mode is characterized by orders of magnitude higher electron densities in the reactor than inductive coupling. These differences can be manifested in the degree to which a hydrogenated amorphous silicon, a-Si:H, component co-deposition reaction affects film stoichiometry. Mass spectrometry shows that there is an additional excitation source in the downstream glow. In addition the growth of microcrystalline silicon, muc-Si, is correlated with the decrease in the production of disilane and heavier Si-containing species. Chloronium, H_2 Cl^{+}, a super acid ion is identified for the first time in a CVD reactor. It forms from plasma fragmentation of SiH_2 Cl_2, and H_2 . Addition of impurity gases was shown not to affect the electron temperature of the plasma. By products of deposition reactions can affect film properties by post -deposition reactions with the film. In the case of SiO _2 film growth, residual H _2O is shown to create OH groups within the film by reacting with distorted Si-O-Si bonding groups.
Karabagias, Ioannis K; Karabournioti, Sofia
2018-05-03
Twenty-two honey samples, namely clover and citrus honeys, were collected from the greater Cairo area during the harvesting year 2014⁻2015. The main purpose of the present study was to characterize the aforementioned honey types and to investigate whether the use of easily assessable physicochemical parameters, including color attributes in combination with chemometrics, could differentiate honey floral origin. Parameters taken into account were: pH, electrical conductivity, ash, free acidity, lactonic acidity, total acidity, moisture content, total sugars (degrees Brix-°Bx), total dissolved solids and their ratio to total acidity, salinity, CIELAB color parameters, along with browning index values. Results showed that all honey samples analyzed met the European quality standards set for honey and had variations in the aforementioned physicochemical parameters depending on floral origin. Application of linear discriminant analysis showed that eight physicochemical parameters, including color, could classify Egyptian honeys according to floral origin ( p < 0.05). Correct classification rate was 95.5% using the original method and 90.9% using the cross validation method. The discriminatory ability of the developed model was further validated using unknown honey samples. The overall correct classification rate was not affected. Specific physicochemical parameter analysis in combination with chemometrics has the potential to enhance the differences in floral honeys produced in a given geographical zone.
Karabournioti, Sofia
2018-01-01
Twenty-two honey samples, namely clover and citrus honeys, were collected from the greater Cairo area during the harvesting year 2014–2015. The main purpose of the present study was to characterize the aforementioned honey types and to investigate whether the use of easily assessable physicochemical parameters, including color attributes in combination with chemometrics, could differentiate honey floral origin. Parameters taken into account were: pH, electrical conductivity, ash, free acidity, lactonic acidity, total acidity, moisture content, total sugars (degrees Brix-°Bx), total dissolved solids and their ratio to total acidity, salinity, CIELAB color parameters, along with browning index values. Results showed that all honey samples analyzed met the European quality standards set for honey and had variations in the aforementioned physicochemical parameters depending on floral origin. Application of linear discriminant analysis showed that eight physicochemical parameters, including color, could classify Egyptian honeys according to floral origin (p < 0.05). Correct classification rate was 95.5% using the original method and 90.9% using the cross validation method. The discriminatory ability of the developed model was further validated using unknown honey samples. The overall correct classification rate was not affected. Specific physicochemical parameter analysis in combination with chemometrics has the potential to enhance the differences in floral honeys produced in a given geographical zone. PMID:29751543
Yao, Jun; Kong, Qingna; Zhu, Huayue; Long, Yuyang; Shen, Dongsheng
2015-01-01
The retention and leaching of nitrite by municipal solid waste incinerator (MSWI) bottom ash could affect its migration in the landfill. In this study, the effect of the dosage of MSWI bottom ash as well as the variation of the landfill environmental parameters including pH, anions and organic matter on the nitrite retention and leaching behavior was investigated by batch experiments. The highest removal percentage (73.0%) of nitrite was observed when the dosage of MSWI bottom ash was 10 g L(-1) in 2 mg L(-1) nitrite solution. Further increase of the dosage would retard the retention, as the nitrite leaching from MSWI bottom ash was enhanced. The optimum retention of nitrite was observed when the pH was 5.0, while the leaching of nitrite showed a consistent reduction with the increase of pH. Besides, the presence of Cl(-), SO4(2)(-) and acetic acid could enhance the leaching of nitrite and mitigate the retention process. However, the retention of nitrite was enhanced by PO4(3)(-), which was probably due to the formation of the apatite, an active material for the adsorption of the nitrite. These results suggested that MSWI bottom ash could affect the migration of nitrite in the landfill, which was related to the variation of the landfill circumstance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coagulation of dust particles in a plasma
NASA Technical Reports Server (NTRS)
Horanyi, M.; Goertz, C. K.
1990-01-01
The electrostatic charge of small dust grains in a plasma in which the temperature varies in time is discussed, pointing out that secondary electron emission might introduce charge separation. If the sign of the charge on small grains is opposite to that on big ones, enhanced coagulation can occur which will affect the size distribution of grains in a plasma. Two scenarios where this process might be relevant are considered: a hot plasma environment with temperature fluctuations and a cold plasma environment with transient heating events. The importance of the enhanced coagulation is uncertain, because the plasma parameters in grain-producing environments such as a molecular cloud or a protoplanetary disk are not known. It is possible, however, that this process is the most efficient mechanism for the growth of grains in the size range of 0.1-500 microns.
An enhanced velocity-based algorithm for safe implementations of gain-scheduled controllers
NASA Astrophysics Data System (ADS)
Lhachemi, H.; Saussié, D.; Zhu, G.
2017-09-01
This paper presents an enhanced velocity-based algorithm to implement gain-scheduled controllers for nonlinear and parameter-dependent systems. A new scheme including pre- and post-filtering is proposed with the assumption that the time-derivative of the controller inputs is not available for feedback control. It is shown that the proposed control structure can preserve the input-output properties of the linearised closed-loop system in the neighbourhood of each equilibrium point, avoiding the emergence of the so-called hidden coupling terms. Moreover, it is guaranteed that this implementation will not introduce unobservable or uncontrollable unstable modes, and hence the internal stability will not be affected. A case study dealing with the design of a pitch-axis missile autopilot is carried out and the numerical simulation results confirm the validity of the proposed approach.
A mathematical model for the iron/chromium redox battery
NASA Technical Reports Server (NTRS)
Fedkiw, P. S.; Watts, R. W.
1984-01-01
A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cell performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: (1) an optimum electrode thickness and electrolyte flow rate exist; (2) the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; (3) countercurrent flow results in enhanced cell performance over cocurrent flow; and (4) elevated temperature operation enhances cell performance.
NASA Astrophysics Data System (ADS)
Shchinnikov, P. A.; Safronov, A. V.
2014-12-01
General principles of a procedure for matching energy balances of thermal power plants (TPPs), whose use enhances the accuracy of information-measuring systems (IMSs) during calculations of performance characteristics (PCs), are stated. To do this, there is the possibility for changing values of measured and calculated variables within intervals determined by measurement errors and regulations. An example of matching energy balances of the thermal power plants with a T-180 turbine is made. The proposed procedure allows one to reduce the divergence of balance equations by 3-4 times. It is shown also that the equipment operation mode affects the profit deficiency. Dependences for the divergence of energy balances on the deviation of input parameters and calculated data for the fuel economy before and after matching energy balances are represented.
Gupta, Madhu; Vaidya, Bhuvaneshwar; Mishra, Neeraj; Vyas, Suresh P
2011-12-01
Fluconazole-loaded niosomes were prepared by the film hydration method with different surfactants (Span and Brij series) and characterized for various parameters. Results showed that niosomes composed of Span 40, Span 60, and Brij 72 were most stable with smaller size, i.e. 0.378 ± 0.022 μm, 0.343 ± 0.063 μm, and 0.287 ± 0.012 μm, respectively, along with higher entrapment efficiency (approx. > 41%). In vitro skin permeation and retention studies suggested that cutaneous accumulation was affected by surfactant property and vesicle size. Therefore the niosomes consisting of Span 40, Span 60, and Brij 72 surfactant are seemingly accumulated and form localized drug depots in the skin, thereby releasing the contents in a sustained manner and able to greatly enhance cutaneous retention of the drug.
NASA Astrophysics Data System (ADS)
Michioka, Takenobu; Sato, Ayumu; Sada, Koichi
2011-10-01
Large-scale turbulent motions enhancing horizontal gas spread in an atmospheric boundary layer are simulated in a wind-tunnel experiment. The large-scale turbulent motions can be generated using an active grid installed at the front of the test section in the wind tunnel, when appropriate parameters for the angular deflection and the rotation speed are chosen. The power spectra of vertical velocity fluctuations are unchanged with and without the active grid because they are strongly affected by the surface. The power spectra of both streamwise and lateral velocity fluctuations with the active grid increase in the low frequency region, and are closer to the empirical relations inferred from field observations. The large-scale turbulent motions do not affect the Reynolds shear stress, but change the balance of the processes involved. The relative contributions of ejections to sweeps are suppressed by large-scale turbulent motions, indicating that the motions behave as sweep events. The lateral gas spread is enhanced by the lateral large-scale turbulent motions generated by the active grid. The large-scale motions, however, do not affect the vertical velocity fluctuations near the surface, resulting in their having a minimal effect on the vertical gas spread. The peak concentration normalized using the root-mean-squared value of concentration fluctuation is remarkably constant over most regions of the plume irrespective of the operation of the active grid.
Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality
NASA Astrophysics Data System (ADS)
de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.
2016-12-01
The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.
Does reef structure affect oyster food resources? A stable isotope assessment.
Blomberg, Brittany N; Lebreton, Benoit; Palmer, Terence A; Guillou, Gaël; Beseres Pollack, Jennifer; Montagna, Paul A
2017-06-01
As ecosystem engineers, oysters create and maintain structured habitat and can influence trophodynamics and benthic-pelagic coupling in the surrounding landscape. The physical reef structure and associated biotic parameters can affect the availability of food resources for oysters. Oysters and potential composite food sources - suspended particulate organic matter (SPOM) and surface sediment organic matter (SSOM) - were assessed using a dual stable isotope (δ 13 C, δ 15 N) approach at three reef types (natural, restored, and unconsolidated) seasonally for two years to determine if changes in physical and/or biotic parameters affected the relative availability and/or use of food resources by oysters. SPOM was more depleted in 13 C (-24.2 ± 0.6‰, mean ± SD) than SSOM (-21.2 ± 0.8‰). SPOM composition is likely dominated by autochthonous phytoplankton production, while SSOM includes trapped phytoplankton and benthic microalgae. SSOM was used by oysters in increasing proportions relative to SPOM over time at all reef types. This temporal trend is likely due to increased oyster biomass over time, promoting enhanced microphytobenthos growth through feedback effects related to oyster biodeposits. Structural differences between reef types observed in this study had no effect on food resource availability and use by oysters, indicating strong bentho-pelagic coupling likely due to shallow depths as well as strong and consistent winds. This study provides insights for restoration of oyster reefs as it highlights that food resources used by oysters remain similar among reef types despite changes in abiotic and biotic parameters among habitats and over time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oxaliplatin loaded PLAGA microspheres: design of specific release profiles.
Lagarce, F; Cruaud, O; Deuschel, C; Bayssas, M; Griffon-Etienne, G; Benoit, J
2002-08-21
Oxaliplatin loaded PLAGA microspheres have been prepared by solvent extraction process. Parameters affecting the release kinetics in vitro have been studied in order to design specific release profiles suitable for direct intra-tumoral injection. By varying the nature and the relative proportions of different polymers we managed to prepare microspheres with good encapsulation efficiency (75-90%) and four different release profiles: zero order kinetics (type II) and the classical sigmoïd release profile with three different sizes of plateau and burst. These results, if correlated with in vivo activity, are promising to enhance effectiveness of local tumor treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Liu, Hui; Jiang, Binhao
A model of a plasma–antenna system is developed to study the mechanism of the effect of the plasma layer on antenna radiation. Results show a plasma layer with negative permittivity is inductive, and thus affects the phase difference between electric and magnetic fields. In the near field of antenna radiation, a plasma layer with proper parameters can compensate the capacitivity of the vacuum and enhance the radiation power. In the far field of antenna radiation, the plasma layer with negative permittivity increases the inductivity of the vacuum and reduces the radiation power.
Satellite derived forest phenology and its relation with nephropathia epidemica in Belgium.
Barrios, José Miguel; Verstraeten, Willem W; Maes, Piet; Clement, Jan; Aerts, Jean-Marie; Haredasht, Sara Amirpour; Wambacq, Julie; Lagrou, Katrien; Ducoffre, Geneviève; Van Ranst, Marc; Berckmans, Daniel; Coppin, Pol
2010-06-01
The connection between nephropathia epidemica (NE) and vegetation dynamics has been emphasized in recent studies. Changing climate has been suggested as a triggering factor of recently observed epidemiologic peaks in reported NE cases. We have investigated whether there is a connection between the NE occurrence pattern in Belgium and specific trends in remotely sensed phenology parameters of broad-leaved forests. The analysis of time series of the MODIS Enhanced Vegetation Index revealed that changes in forest phenology, considered in literature as an effect of climate change, may affect the mechanics of NE transmission.
Satellite Derived Forest Phenology and Its Relation with Nephropathia Epidemica in Belgium
Barrios, José Miguel; Verstraeten, Willem W.; Maes, Piet; Clement, Jan; Aerts, Jean-Marie; Haredasht, Sara Amirpour; Wambacq, Julie; Lagrou, Katrien; Ducoffre, Geneviève; Van Ranst, Marc; Berckmans, Daniel; Coppin, Pol
2010-01-01
The connection between nephropathia epidemica (NE) and vegetation dynamics has been emphasized in recent studies. Changing climate has been suggested as a triggering factor of recently observed epidemiologic peaks in reported NE cases. We have investigated whether there is a connection between the NE occurrence pattern in Belgium and specific trends in remotely sensed phenology parameters of broad-leaved forests. The analysis of time series of the MODIS Enhanced Vegetation Index revealed that changes in forest phenology, considered in literature as an effect of climate change, may affect the mechanics of NE transmission. PMID:20644685
Method and apparatus for imparting strength to a material using sliding loads
Hughes, D.A.; Dawson, D.B.; Korellis, J.S.
1999-03-16
A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads is disclosed. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: (1) asperity interactions and (2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example. 11 figs.
Bariatric CT Imaging: Challenges and Solutions.
Fursevich, Dzmitry M; LiMarzi, Gary M; O'Dell, Matthew C; Hernandez, Manuel A; Sensakovic, William F
2016-01-01
The obesity epidemic in the adult and pediatric populations affects all aspects of health care, including diagnostic imaging. With the increasing prevalence of obese and morbidly obese patients, bariatric computed tomographic (CT) imaging is becoming common in day-to-day radiology practice, and a basic understanding of the unique problems that bariatric patients pose to the imaging community is crucial in any setting. Because larger patients may not fit into conventional scanners, having a CT scanner with an adequate table load limit, a large gantry aperture, a large scan field of view, and a high-power generator is a prerequisite for bariatric imaging. Iterative reconstruction methods, high tube current, and high tube voltage can reduce the image noise that is frequently seen in bariatric CT images. Truncation artifacts, cropping artifacts, and ring artifacts frequently complicate the interpretation of CT images of larger patients. If recognized, these artifacts can be easily reduced by using the proper CT equipment, scan acquisition parameters, and postprocessing options. Lastly, because of complex contrast material dynamics, contrast material-enhanced studies of bariatric patients require special attention. Understanding how the rate of injection, the scan timing, and the total mass of iodine affect vascular and parenchymal enhancement will help to optimize contrast-enhanced studies in the bariatric population. This article familiarizes the reader with the challenges that are frequently encountered at CT imaging of bariatric patients, beginning with equipment selection and ending with a review of the most commonly encountered obesity-related artifacts and the technical considerations in the acquisition of contrast-enhanced images. (©)RSNA, 2016.
Cui, Enming; Long, Wansheng; Luo, Liangping; Hu, Maoqing; Huang, Liebin; Chen, Xiangmeng
2017-10-01
Background Insufficient enhancement of liver parenchyma negatively affects diagnostic accuracy of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI). Currently, there is no reliable method for predicting insufficient enhancement during the hepatobiliary phase (HBP) in Gd-EOB-DTPA-enhanced MRI. Purpose To develop a predictor for insufficient enhancement of liver parenchyma during HBP in Gd-EOB-DTPA-enhanced MRI. Material and Methods In order to formulate a HBP enhancement test (HBP-ET), clinical factors associated with relative enhancement ratio (RER) of liver parenchyma were retrospectively determined from the datasets of 156 patients (Development group) who underwent Gd-EOB-DTPA-enhanced MRI between November 2012 and May 2015. The independent clinical factors were identified by Pearson's correlation and multiple stepwise regression analysis; the performance of HBP-ET was compared to Child-Pugh score (CPS), Model for End-stage Liver Disease score (MELD), and total bilirubin (TBIL) using receiver operating characteristic (ROC) curve analysis. The datasets of 52 patients (Validation group), which were examined between June 2015 and Oct 2015, were applied to validate the HBP-ET. Results Six biochemical parameters independently influenced RER and were used to develop HBP-ET. The mean HBP-ET score of patients with insufficient enhancement was significantly higher than that of patients with sufficient enhancement ( P < 0.001) in both the Development and Validation groups. HBP-ET (area under the curve [AUC] = 0.895) had better performance in predicting insufficient enhancement than CPS (AUC = 0.707), MELD (AUC = 0.798), and TBIL (AUC = 0.729). Conclusion The HBP-ET is more accurate than routine indicators in predicting insufficient enhancement during HBP, which is valuable to aid clinical decisions.
Zhang, Manyun; Wang, Jun; Bai, Shahla Hosseini; Teng, Ying; Xu, Zhihong
2018-06-02
Phytoremediation with biochar addition might alleviate pollutant toxicity to soil microorganism. It is uncertain to what extent biochar addition rate could affect activities of enzymes related to soil nitrogen (N) mineralization and alter fungal community under the phytoremediation. This study aimed to reveal the effects of Medicago sativa L. (alfalfa) phytoremediation, alone or with biochar additions, on soil protease and chitinase and fungal community and link the responses of microbial parameters with biochar addition rates. The alfalfa phytoremediation enhanced soil protease activities, and relative to the phytoremediation alone, biochar additions had inconsistent impacts on the corresponding functional gene abundances. Compared with the blank control, alfalfa phytoremediation, alone or with biochar additions, increased fungal biomass and community richness estimators. Moreover, relative to the phytoremediation alone, the relative abundances of phylum Zygomycota were also increased by biochar additions. The whole soil fungal community was not significantly changed by the alfalfa phytoremediation alone, but was indeed changed by alfalfa phytoremediation with 3.0% (w/w) or 6.0% biochar addition. This study suggested that alfalfa phytoremediation could enhance N mineralization enzyme activities and that biochar addition rates affected the responses of fungal community to the alfalfa phytoremediation.
Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability
NASA Astrophysics Data System (ADS)
Hamdan, Lubna
Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values equal to 0.93, using the data of total cloud cover, aerosol optical depth, relative humidity and extraterrestrial radiation. However, for prediction purposes, using nonlinear terms or nonlinear models might enhance the prediction of diffuse radiation.
Non-electrical-power temperature-time integrating sensor for RFID based on microfluidics
NASA Astrophysics Data System (ADS)
Schneider, Mike; Hoffmann, Martin
2011-06-01
The integration of RFID tags into packages offers the opportunity to combine logistic advantages of the technology with monitoring different parameters from inside the package at the same time. An essential demand for enhanced product safety especially in pharmacy or food industry is the monitoring of the time-temperature-integral. Thus, completely passive time-temperature-integrators (TTI) requiring no battery, microprocessor nor data logging devices are developed. TTI representing the sterilization process inside an autoclave system is a demanding challenge: a temperature of at least 120 °C have to be maintained over 45 minutes to assure that no unwanted organism remains. Due to increased temperature, the viscosity of a fluid changes and thus the speed of the fluid inside the channel increases. The filled length of the channel represents the time temperature integral affecting the system. Measurements as well as simulations allow drawing conclusions about the influence of the geometrical parameters of the system and provide the possibility of adaptation. Thus a completely passive sensor element for monitoring an integral parameter with waiving of external electrical power supply and data processing technology is demonstrated. Furthermore, it is shown how to adjust the specific TTI parameters of the sensor to different applications and needs by modifying the geometrical parameters of the system.
Zhang, Yong; Green, Christopher T.; Tick, Geoffrey R.
2015-01-01
This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer–aquitard complexes.
Process Control Strategies for Dual-Phase Steel Manufacturing Using ANN and ANFIS
NASA Astrophysics Data System (ADS)
Vafaeenezhad, H.; Ghanei, S.; Seyedein, S. H.; Beygi, H.; Mazinani, M.
2014-11-01
In this research, a comprehensive soft computational approach is presented for the analysis of the influencing parameters on manufacturing of dual-phase steels. A set of experimental data have been gathered to obtain the initial database used for the training and testing of both artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The parameters used in the strategy were intercritical annealing temperature, carbon content, and holding time which gives off martensite percentage as an output. A fraction of the data set was chosen to train both ANN and ANFIS, and the rest was put into practice to authenticate the act of the trained networks while seeing unseen data. To compare the obtained results, coefficient of determination and root mean squared error indexes were chosen. Using artificial intelligence methods, it is not necessary to consider and establish a preliminary mathematical model and formulate its affecting parameters on its definition. In conclusion, the martensite percentages corresponding to the manufacturing parameters can be determined prior to a production using these controlling algorithms. Although the results acquired from both ANN and ANFIS are very encouraging, the proposed ANFIS has enhanced performance over the ANN and takes better effect on cost-reduction profit.
NASA Astrophysics Data System (ADS)
Taverniers, Søren; Tartakovsky, Daniel M.
2017-11-01
Predictions of the total energy deposited into a brain tumor through X-ray irradiation are notoriously error-prone. We investigate how this predictive uncertainty is affected by uncertainty in both the location of the region occupied by a dose-enhancing iodinated contrast agent and the agent's concentration. This is done within the probabilistic framework in which these uncertain parameters are modeled as random variables. We employ the stochastic collocation (SC) method to estimate statistical moments of the deposited energy in terms of statistical moments of the random inputs, and the global sensitivity analysis (GSA) to quantify the relative importance of uncertainty in these parameters on the overall predictive uncertainty. A nonlinear radiation-diffusion equation dramatically magnifies the coefficient of variation of the uncertain parameters, yielding a large coefficient of variation for the predicted energy deposition. This demonstrates that accurate prediction of the energy deposition requires a proper treatment of even small parametric uncertainty. Our analysis also reveals that SC outperforms standard Monte Carlo, but its relative efficiency decreases as the number of uncertain parameters increases from one to three. A robust GSA ameliorates this problem by reducing this number.
Lampert, F M; Kütscher, C; Stark, G B; Finkenzeller, G
2016-03-01
Reconstruction of large bone defects still represents a major medical challenge. In recent years tissue engineering has developed techniques based on adult mesenchymal stem cells (MSCs) that could represent an attractive therapeutical option to treat large bone defects in the future. It has been demonstrated in various animal models that ex vivo expanded MSCs are capable of promoting the regeneration of skeletal defects after implantation. However, for the efficient regeneration of bone in tissue engineering applications, a rapid vascularization of implanted grafts is essential to ensure the survival of cells in the early post-implantational phase. A promising strategy to enhance vascularization of MSC-containing implants could consist of overexpression of the angiogenic master transcription factor Hypoxia-inducible factor 1 (Hif-1) in the MSCs in order to induce angiogenesis and support osteogenesis. In the present study, we overexpressed Hif-1α in MSCs by using recombinant adenoviruses and investigated cell-autonomous effects. Overexpression of Hif-1α enhanced proliferation, migration, cell survival and expression of pro-angiogenic genes. Other parameters such as expression of the osteogenic markers BMP-2 and RunX2 were decreased. Hif-1α overexpression had no effect on invasion, senescence and osteogenic differentiation of MSCs. Our experiments revealed multifarious effects of Hif-1α overexpression on cell-autonomous parameters. Therefore, Hif-1α overexpression may represent a therapeutic option to improve cellular functions of MSCs to treat critical sized bone defects. © 2015 Wiley Periodicals, Inc.
Continuous Cardiac Troponin I Release in Fabry Disease
Schneider, Christian; Sieweke, Nicole; Franzen, Wolfgang; Gündüz, Dursun; Rolfs, Arndt
2014-01-01
Background Fabry disease (FD) is a rare lysosomal storage disorder also affecting the heart. The aims of this study were to determine the frequency of cardiac troponin I (cTNI) elevation, a sensitive parameter reflecting myocardial damage, in a smaller cohort of FD-patients, and to analyze whether persistent cTNI can be a suitable biomarker to assess cardiac dysfunction in FD. Methods cTNI values were determined at least twice per year in 14 FD-patients (6 males and 8 females) regularly followed-up in our centre. The data were related to other parameters of heart function including cardiac magnetic resonance imaging (cMRI). Results Three patients (21%) without specific vascular risk factors other than FD had persistent cTNI-elevations (range 0.05–0.71 ng/ml, normal: <0.01). cMRI disclosed late gadolinium enhancement (LGE) in all three individuals with cTNI values ≥0.01, while none of the 11 patients with cTNI <0.01 showed a pathological enhancement (p<0.01). Two subjects with increased cTNI-values underwent coronary angiography, excluding relevant stenoses. A myocardial biopsy performed in one during this procedure demonstrated substantial accumulation of globotriaosylceramide (Gb3) in cardiomyocytes. Conclusion Continuous cTNI elevation seems to occur in a substantial proportion of patients with FD. The high accordance with LGE, reflecting cardiac dysfunction, suggests that cTNI-elevation can be a useful laboratory parameter for assessing myocardial damage in FD. PMID:24626231
Johansson, Adam; Balter, James; Cao, Yue
2018-03-01
Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P < 0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Rihm, Julia S; Rasch, Björn
2015-07-01
Emotional memories are reprocessed during sleep, and it is widely assumed that this reprocessing occurs mainly during rapid eye movement (REM) sleep. In support for this notion, vivid emotional dreams occur mainly during REM sleep, and several studies have reported emotional memory enhancement to be associated with REM sleep or REM sleep-related parameters. However, it is still unknown whether reactivation of emotional memories during REM sleep strengthens emotional memories. Here, we tested whether re-presentation of emotionally learned stimuli during REM sleep enhances emotional memory. In a split-night design, participants underwent Pavlovian conditioning after the first half of the night. Neutral sounds served as conditioned stimuli (CS) and were either paired with a negative odor (CS+) or an odorless vehicle (CS-). During sound replay in subsequent late REM or N2 sleep, half of the CS+ and half of the CS- were presented again. In contrast to our hypothesis, replay during sleep did not affect emotional memory as measured by the differentiation between CS+ and CS- in expectancy, arousal and valence ratings. However, replay unspecifically decreased subjective arousal ratings of both emotional and neutral sounds and increased positive valence ratings also for both CS+ and CS- sounds, respectively. These effects were slightly more pronounced for replay during REM sleep. Our results suggest that re-exposure to previously conditioned stimuli during late sleep does not affect emotional memory strength, but rather influences the affective tone of both emotional and neutral memories. Copyright © 2015 Elsevier Inc. All rights reserved.
Rao, Harsha L; Venkatesh, Chirravuri R; Vidyasagar, Kelli; Yadav, Ravi K; Addepalli, Uday K; Jude, Aarthi; Senthil, Sirisha; Garudadri, Chandra S
2014-12-01
To evaluate the (i) effects of biological (age and axial length) and instrument-related [typical scan score (TSS) and corneal birefringence] parameters on the retinal nerve fiber layer (RNFL) measurements and (ii) repeatability of RNFL measurements with the enhanced corneal compensation (ECC) protocol of scanning laser polarimetry (SLP) in healthy subjects. In a cross-sectional study, 140 eyes of 73 healthy subjects underwent RNFL imaging with the ECC protocol of SLP. Linear mixed modeling methods were used to evaluate the effects of age, axial length, TSS, and corneal birefringence on RNFL measurements. One randomly selected eye of 48 subjects from the cohort underwent 3 serial scans during the same session to determine the repeatability. Age significantly influenced all RNFL measurements. RNFL measurements decreased by 1 µm for every decade increase in age. TSS affected the overall average RNFL measurement (β=-0.62, P=0.003), whereas residual anterior segment retardance affected the superior quadrant measurement (β=1.14, P=0.01). Axial length and corneal birefringence measurements did not influence RNFL measurements. Repeatability, as assessed by the coefficient of variation, ranged between 1.7% for the overall average RNFL measurement and 11.4% for th nerve fiber indicator. Age significantly affected all RNFL measurements with the ECC protocol of SLP, whereas TSS and residual anterior segment retardance affected the overall average and the superior average RNFL measurements, respectively. Axial length and corneal birefringence measurements did not influence any RNFL measurements. RNFL measurements had good intrasession repeatability. These results are important while evaluating the change in structural measurements over time in glaucoma patients.
Awole, Kedija D; Kettlewell, Peter S; Hare, Martin C; Agu, Reginald C; Brosnan, James M; Bringhurst, Thomas A
2012-02-01
Following the Renewable Transport Fuel Obligation (RTFO), there is an increasing demand for wheat grain for liquid biofuel in the UK. In order to enhance productivity of the bioethanol industry, good quality wheat must be used. A total of 84 grain samples comprising 14 varieties collected from 11 sites in two harvest years were analysed for a range of grain quality parameters and ethanol yield (EY). The grain quality parameters studied were starch and protein concentration, specific weight, grain density, packing efficiency, thousand-grain weight (TGW), grain length, width, length/width ratio and hardness index. Regression analysis was used to establish the relationships between grain quality parameters and EY. Apart from grain length and density, all grain parameters had significant relationships with EY. In the order of importance, protein concentration, TGW, packing efficiency and specific weight showed good relationships with EY. All other parameters, including starch concentration, showed a poor correlation with EY. EY and the relationship with the grain parameters were affected more by environment than by variety. Some sites gave consistently higher EY than others. When site and variety were considered with TGW and protein, a good prediction of EY could be made (variance accounted for = 87%). Combining TGW and protein concentration could be a better indicator of EY than the current practice of specific weight and protein. Copyright © 2011 Society of Chemical Industry.
Pineda, F D; Medved, M; Fan, X; Ivancevic, M K; Abe, H; Shimauchi, A; Newstead, G M
2015-01-01
Objective: To compare dynamic contrast-enhanced (DCE) MRI parameters from scans of breast lesions at 1.5 and 3.0 T. Methods: 11 patients underwent paired MRI examinations in both Philips 1.5 and 3.0 T systems (Best, Netherlands) using a standard clinical fat-suppressed, T1 weighted DCE-MRI protocol, with 70–76 s temporal resolution. Signal intensity vs time curves were fit with an empirical mathematical model to obtain semi-quantitative measures of uptake and washout rates as well as time-to-peak enhancement (TTP). Maximum percent enhancement and signal enhancement ratio (SER) were also measured for each lesion. Percent differences between parameters measured at the two field strengths were compared. Results: TTP and SER parameters measured at 1.5 and 3.0 T were similar; with mean absolute differences of 19% and 22%, respectively. Maximum percent signal enhancement was significantly higher at 3 T than at 1.5 T (p = 0.006). Qualitative assessment showed that image quality was significantly higher at 3 T (p = 0.005). Conclusion: Our results suggest that TTP and SER are more robust to field strength change than other measured kinetic parameters, and therefore measurements of these parameters can be more easily standardized than measurements of other parameters derived from DCE-MRI. Semi-quantitative measures of overall kinetic curve shape showed higher reproducibility than do discrete classification of kinetic curve early and delayed phases in a majority of the cases studied. Advances in knowledge: Qualitative measures of curve shape are not consistent across field strength even when acquisition parameters are standardized. Quantitative measures of overall kinetic curve shape, by contrast, have higher reproducibility. PMID:25785918
Enhancing coronary Wave Intensity Analysis robustness by high order central finite differences
Rivolo, Simone; Asrress, Kaleab N.; Chiribiri, Amedeo; Sammut, Eva; Wesolowski, Roman; Bloch, Lars Ø.; Grøndal, Anne K.; Hønge, Jesper L.; Kim, Won Y.; Marber, Michael; Redwood, Simon; Nagel, Eike; Smith, Nicolas P.; Lee, Jack
2014-01-01
Background Coronary Wave Intensity Analysis (cWIA) is a technique capable of separating the effects of proximal arterial haemodynamics from cardiac mechanics. Studies have identified WIA-derived indices that are closely correlated with several disease processes and predictive of functional recovery following myocardial infarction. The cWIA clinical application has, however, been limited by technical challenges including a lack of standardization across different studies and the derived indices' sensitivity to the processing parameters. Specifically, a critical step in WIA is the noise removal for evaluation of derivatives of the acquired signals, typically performed by applying a Savitzky–Golay filter, to reduce the high frequency acquisition noise. Methods The impact of the filter parameter selection on cWIA output, and on the derived clinical metrics (integral areas and peaks of the major waves), is first analysed. The sensitivity analysis is performed either by using the filter as a differentiator to calculate the signals' time derivative or by applying the filter to smooth the ensemble-averaged waveforms. Furthermore, the power-spectrum of the ensemble-averaged waveforms contains little high-frequency components, which motivated us to propose an alternative approach to compute the time derivatives of the acquired waveforms using a central finite difference scheme. Results and Conclusion The cWIA output and consequently the derived clinical metrics are significantly affected by the filter parameters, irrespective of its use as a smoothing filter or a differentiator. The proposed approach is parameter-free and, when applied to the 10 in-vivo human datasets and the 50 in-vivo animal datasets, enhances the cWIA robustness by significantly reducing the outcome variability (by 60%). PMID:25187852
Ferromagnets without inversion symmetry - room for superconductivity?
NASA Astrophysics Data System (ADS)
Nevidomskyy, Andriy; Linder, Jacob; Sudbø, Asle
2009-03-01
Motivated by the recent discoveries of ferromagnetic and non-centrosymmetric superconductors, we present a mean-field theory [1] for a superconductor that both lacks inversion symmetry and displays ferromagnetism, a scenario which is believed to be realized in UIr under applied pressure [2]. We study the interplay between the order parameters to clarify how superconductivity is affected by the presence of ferromagnetism and spin-orbit coupling. We find that the spin-orbit coupling seems to enhance both ferromagnetism and superconductivity in both singlet and triplet channels. We discuss our results in the context of the heavy fermion superconductor UIr and analyze possible symmetries of the order parameter. [3pt] [1] J. Linder, A. H. Nevidomskyy, and A. Sudbø, Phys. Rev. B 78, 172502 (2008). [0pt] [2] T. Akazawa et al., J. Phys. Cond. Mat. 16, L29 (2004); J. Phys. Soc. Jpn. 73, 3129 (2004).
Gilbert Damping Parameter in MgO-Based Magnetic Tunnel Junctions from First Principles
NASA Astrophysics Data System (ADS)
Tang, Hui-Min; Xia, Ke
2017-03-01
We perform a first-principles study of the Gilbert damping parameter (α ) in normal-metal/MgO-cap/ferromagnet/MgO-barrier/ferromagnetic magnetic tunnel junctions. The damping is enhanced by interface spin pumping, which can be parametrized by the spin-mixing conductance (G↑↓ ). The calculated dependence of Gilbert damping on the thickness of the MgO capping layer is consistent with experiment and indicates that the decreases in α with increasing thickness of the MgO capping layer is caused by suppression of spin pumping. Smaller α can be achieved by using a clean interface and alloys. For a thick MgO capping layer, the imaginary part of the spin-mixing conductance nearly equals the real part, and the large imaginary mixing conductance implies that the change in the frequency of ferromagnetic resonance can be observed experimentally. The normal-metal cap significantly affects the Gilbert damping.
Qin, Wen; Li, Wei-Guang; Gong, Xu-Jin; Huang, Xiao-Fei; Fan, Wen-Biao; Zhang, Duoying; Yao, Peng; Wang, Xiao-Ju; Song, Yang
2017-08-01
To determine the potential effects of seasonal changes on water temperature and water quality upon removal of ammonium and organic carbon pollutants and to characterize the variations in microbial characteristics, a pilot-scale activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria was investigated for 528 days. The results show that 69.2 ± 28.6% of ammonium and 23.1 ± 11.6% of the dissolved organic carbon were removed by the biologically enhanced activated carbon (BEAC) reactor. It is shown that higher biodegradable dissolved organic carbon enhances ammonium removal, even at low temperatures. The C/N ratio consumed by the BEAC reactor reached a steady value (i.e., 3.3) after 2 months of operation. Despite seasonal fluctuations and competition of the indigenous community, the heterotrophic nitrifying bacteria (Acinetobacter sp. HRBLi 16 and Acinetobacter harbinensis strain HITLi 7) remained relatively stable. The amount of carbon source was the most significant environmental parameter and dramatically affected the microbial community compositions in the BEAC reactor. The present study provides new insights into the application of a BEAC reactor for ammonium removal from drinking water, resisting strong seasonal changes.
Numerical simulation of fluid flow and heat transfer in enhanced copper tube
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Zhen, T.; Kadir, A. K.
2013-06-01
Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.
Selfridge, J. Eva; Wilkins, Heather M.; Lezi, E; Carl, Steven M.; Koppel, Scott; Funk, Eric; Fields, Timothy; Lu, Jianghua; Tang, Ee Phie; Slawson, Chad; Wang, WenFang; Zhu, Hao; Swerdlow, Russell H.
2014-01-01
Diet composition may affect energy metabolism in a tissue-specific manner. Using C57Bl/6J mice, we tested the effect of ketosis-inducing and non-inducing high fat diets on genes relevant to brain bioenergetic infrastructures, and on proteins that constitute and regulate that infrastructure. At the end of a one-month study period the two high fat diets appeared to differentially affect peripheral insulin signaling, but brain insulin signaling was not obviously altered. Some bioenergetic infrastructure parameters were similarly impacted by both high fat diets, while other parameters were only impacted by the ketogenic diet. For both diets, mRNA levels for CREB, PGC1α, and NRF2 increased while NRF1, TFAM, and COX4I1 mRNA levels decreased. PGC1β mRNA increased and TNFα mRNA decreased only with the ketogenic diet. Brain mtDNA levels fell in both the ketogenic and non-ketogenic high fat diet groups, although TOMM20 and COX4I1 protein levels were maintained, and mRNA and protein levels of the mtDNA-encoded COX2 subunit were also preserved. Overall, the pattern of changes observed in mice fed ketogenic and non-ketogenic high fat diets over a one month time period suggests these interventions enhance some aspects of the brain’s aerobic infrastructure, and may enhance mtDNA transcription efficiency. Further studies to determine which diet effects are due to changes in brain ketone body levels, fatty acid levels, glucose levels, altered brain insulin signaling, or other factors such as adipose tissue-associated hormones are indicated. PMID:25104046
Fukushima, Kikuro; Barnes, Graham R; Ito, Norie; Olley, Peter M; Warabi, Tateo
2014-07-01
Aging affects virtually all functions including sensory/motor and cognitive activities. While retinal image motion is the primary input for smooth-pursuit, its efficiency/accuracy depends on cognitive processes. Elderly subjects exhibit gain decrease during initial and steady-state pursuit, but reports on latencies are conflicting. Using a cue-dependent memory-based smooth-pursuit task, we identified important extra-retinal mechanisms for initial pursuit in young adults including cue information priming and extra-retinal drive components (Ito et al. in Exp Brain Res 229:23-35, 2013). We examined aging effects on parameters for smooth-pursuit using the same tasks. Elderly subjects were tested during three task conditions as previously described: memory-based pursuit, simple ramp-pursuit just to follow motion of a single spot, and popping-out of the correct spot during memory-based pursuit to enhance retinal image motion. Simple ramp-pursuit was used as a task that did not require visual motion working memory. To clarify aging effects, we then compared the results with the previous young subject data. During memory-based pursuit, elderly subjects exhibited normal working memory of cue information. Most movement-parameters including pursuit latencies differed significantly between memory-based pursuit and simple ramp-pursuit and also between young and elderly subjects. Popping-out of the correct spot motion was ineffective for enhancing initial pursuit in elderly subjects. However, the latency difference between memory-based pursuit and simple ramp-pursuit in individual subjects, which includes decision-making delay in the memory task, was similar between the two groups. Our results suggest that smooth-pursuit latencies depend on task conditions and that, although the extra-retinal mechanisms were functional for initial pursuit in elderly subjects, they were less effective.
Liu, Dongyang; Cui, Chenyang; Wu, Yanhong; Chen, Huiying; Geng, Junfeng; Xia, Jianxin
2018-01-01
A new approach, based on dielectrophoresis (DEP), was developed in this work to enhance traditional adsorption for the removal of ammonia nitrogen (NH 3 -N) from wastewater. The factors that affected the removal efficiency were systematically investigated, which allowed us to determine optimal operation parameters. With this new method we found that the removal efficiency was significantly improved from 66.7% by adsorption only to 95% by adsorption-DEP using titanium metal mesh as electrodes of the DEP and zeolite as the absorbent material. In addition, the dosage of the absorbent/zeolite and the processing time needed for the removal were greatly reduced after the introduction of DEP into the process. In addition, a very low discharge concentration (C, 1.5 mg/L) of NH 3 -N was achieved by the new method, which well met the discharge criterion of C < 8 mg/L (the emission standard of pollutants for rare earth industry in China).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, L.S.
1982-12-01
Model water-soluble graft copolymers have been synthesized with acrylamide as the major grafting monomer and dextran as the substrate in order to define more clearly the structural parameters that are important in enhanced oil recovery applications. The structures of the model graft copolymer samples were studied by aqueous size exclusion chromatography, viscometry, elemental analysis, and selective hydrolysis of the graft copolymer backbone. The grafting systems with selected grafting monomers included Fe(II)/H/sub 2/O/sub 2/ with acrylamide, and Ce(IV)/HNO/sub 3/ with acrylamide, acrylamide/2-acrylamido-2-meth propane sulfonic acid, or acrylamide/diacetone acrylamide. The viscosity and pseudoplasticity of the resulting graft copolymers were affected by bothmore » total molecular weight and length of grafted chains; however, the latter was apparently more important when behavior was compared to linear counterparts.« less
The impact of sleep loss on hippocampal function
Prince, Toni-Moi; Abel, Ted
2013-01-01
Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep deprivation to impair memory consolidation and plasticity. In this review, we address these topics with a focus on the detrimental effects of post-learning sleep deprivation on memory consolidation. Obtaining adequate sleep is challenging in a society that values “work around the clock.” Therefore, the development of interventions to combat the negative cognitive effects of sleep deprivation is key. However, there are a limited number of therapeutics that are able to enhance cognition in the face of insufficient sleep. The identification of molecular pathways implicated in the deleterious effects of sleep deprivation on memory could potentially yield new targets for the development of more effective drugs. PMID:24045505
L-acetylcarnitine enhances functional muscle re-innervation.
Pettorossi, V E; Brunetti, O; Carobi, C; Della Torre, G; Grassi, S
1991-01-01
The efficacy of L-acetylcarnitine and L-carnitine treatment on motor re-innervation was analyzed by evaluating different muscular parameters describing functional muscle recovery after denervation and re-innervation. The results show that L-acetylcarnitine markedly enhances functional muscle re-innervation, which on the contrary is unaffected by L-carnitine. The medial gastrocnemius muscle was denervated by cutting the nerve at the muscle entry point. After 20 days the sectioned nerve was resutured into the medial gastrocnemius muscle, and the extent of re-innervation was monitored 45 days later. L-acetylcarnitine-treated animals show significantly higher twitch and tetanic tensions of re-innervated muscle. Furthermore the results, obtained by analysing the twitch time to peak and tetanic contraction-relaxation times, suggest that L-acetylcarnitine mostly affects the functional re-innervation of slow motor units. The possible mechanisms by which L-acetylcarnitine facilitates such motor and nerve recovery are discussed.
Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Fan, Mingde; Yuan, Aihua; Zhu, Jianxi; He, Hongping
2010-12-21
The inherent or enhanced solid acidity of raw or activated diatomite is found to have significant effects on the synthesis of hierarchically porous diatomite-templated carbon with high surface area and special porous structure. The solid acidity makes raw/activated diatomite a catalyst for the generation of porous carbon, and the porous parameters of the carbon products are strongly dependent on the solid acidity of diatomite templates. The morphology of diatomite also dramatically affects the textural structure of porous carbon. Two types of macroporous structures in the carbon product, the partially solid pillars and the ordered hollow tubes, derive from the replication of the central and the edge pores of diatom shell, respectively. The hierarchically porous carbon shows good capability for the adsorption of solvent naphtha and H(2), enabling potential applications in adsorption and gas storage.
Clay mineral type effect on bacterial enteropathogen survival in soil.
Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M
2014-01-15
Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.
NASA Astrophysics Data System (ADS)
Pandey, V.; Srivastava, P. K.
2018-04-01
Change in soil moisture regime is highly relevant for agricultural drought, which can be best analyzed in terms of Soil Moisture Deficit Index (SMDI). A macroscale hydrological model Variable Infiltration Capacity (VIC) was used to simulate the hydro-climatological fluxes including evapotranspiration, runoff, and soil moisture storage to reconstruct the severity and duration of agricultural drought over semi-arid region of India. The simulations in VIC were performed at 0.25° spatial resolution by using a set of meteorological forcing data, soil parameters and Land Use Land Cover (LULC) and vegetation parameters. For calibration and validation, soil parameters obtained from National Bureau of Soil Survey and Land Use Planning (NBSSLUP) and ESA's Climate Change Initiative soil moisture (CCI-SM) data respectively. The analysis of results demonstrates that most of the study regions (> 80 %) especially for central northern part are affected by drought condition. The year 2001, 2002, 2007, 2008 and 2009 was highly affected by agricultural drought. Due to high average and maximum temperature, we observed higher soil evaporation that reduces the surface soil moisture significantly as well as the high topographic variations; coarse soil texture and moderate to high wind speed enhanced the drying upper soil moisture layer that incorporate higher negative SMDI over the study area. These findings can also facilitate the archetype in terms of daily time step data, lengths of the simulation period, various hydro-climatological outputs and use of reasonable hydrological model.
Exploring the nonlinear cloud and rain equation
NASA Astrophysics Data System (ADS)
Koren, Ilan; Tziperman, Eli; Feingold, Graham
2017-01-01
Marine stratocumulus cloud decks are regarded as the reflectors of the climate system, returning back to space a significant part of the income solar radiation, thus cooling the atmosphere. Such clouds can exist in two stable modes, open and closed cells, for a wide range of environmental conditions. This emergent behavior of the system, and its sensitivity to aerosol and environmental properties, is captured by a set of nonlinear equations. Here, using linear stability analysis, we express the transition from steady to a limit-cycle state analytically, showing how it depends on the model parameters. We show that the control of the droplet concentration (N), the environmental carrying-capacity (H0), and the cloud recovery parameter (τ) can be linked by a single nondimensional parameter (μ=√{N }/(ατH0) ) , suggesting that for deeper clouds the transition from open (oscillating) to closed (stable fixed point) cells will occur for higher droplet concentration (i.e., higher aerosol loading). The analytical calculations of the possible states, and how they are affected by changes in aerosol and the environmental variables, provide an enhanced understanding of the complex interactions of clouds and rain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddad, K; Alopoor, H
Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parametersmore » of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.« less
Bioresorbable polymer coated drug eluting stent: a model study.
Rossi, Filippo; Casalini, Tommaso; Raffa, Edoardo; Masi, Maurizio; Perale, Giuseppe
2012-07-02
In drug eluting stent technologies, an increased demand for better control, higher reliability, and enhanced performances of drug delivery systems emerged in the last years and thus offered the opportunity to introduce model-based approaches aimed to overcome the remarkable limits of trial-and-error methods. In this context a mathematical model was studied, based on detailed conservation equations and taking into account the main physical-chemical mechanisms involved in polymeric coating degradation, drug release, and restenosis inhibition. It allowed highlighting the interdependence between factors affecting each of these phenomena and, in particular, the influence of stent design parameters on drug antirestenotic efficacy. Therefore, the here-proposed model is aimed to simulate the diffusional release, for both in vitro and the in vivo conditions: results were verified against various literature data, confirming the reliability of the parameter estimation procedure. The hierarchical structure of this model also allows easily modifying the set of equations describing restenosis evolution to enhance model reliability and taking advantage of the deep understanding of physiological mechanisms governing the different stages of smooth muscle cell growth and proliferation. In addition, thanks to its simplicity and to the very low system requirements and central processing unit (CPU) time, our model allows obtaining immediate views of system behavior.
NASA Technical Reports Server (NTRS)
Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.
2011-01-01
The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.
NASA Astrophysics Data System (ADS)
Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A.; Ghosh, Partha Pratim; Mitra, Prasenjit
2016-06-01
Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation.
Enhanced orbit determination filter sensitivity analysis: Error budget development
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Burkhart, P. D.
1994-01-01
An error budget analysis is presented which quantifies the effects of different error sources in the orbit determination process when the enhanced orbit determination filter, recently developed, is used to reduce radio metric data. The enhanced filter strategy differs from more traditional filtering methods in that nearly all of the principal ground system calibration errors affecting the data are represented as filter parameters. Error budget computations were performed for a Mars Observer interplanetary cruise scenario for cases in which only X-band (8.4-GHz) Doppler data were used to determine the spacecraft's orbit, X-band ranging data were used exclusively, and a combined set in which the ranging data were used in addition to the Doppler data. In all three cases, the filter model was assumed to be a correct representation of the physical world. Random nongravitational accelerations were found to be the largest source of error contributing to the individual error budgets. Other significant contributors, depending on the data strategy used, were solar-radiation pressure coefficient uncertainty, random earth-orientation calibration errors, and Deep Space Network (DSN) station location uncertainty.
Sensitivity-enhanced detection of non-labile proton and carbon NMR spectra on water resonances.
Novakovic, Mihajlo; Martinho, Ricardo P; Olsen, Gregory L; Lustig, Michael S; Frydman, Lucio
2017-12-20
Chemical exchange saturation transfer (CEST) experiments enhance the NMR signals of labile protons by continuously transferring these protons' saturation to an abundant solvent pool like water. The present study expands these principles by fusing into these experiments homonuclear isotropic mixing sequences, enabling the water-enhanced detection of non-exchangeable species. Further opportunities are opened by the addition of coupling-mediated heteronuclear polarization transfers, which then impose on the water resonance a saturation stemming from non-labile heteronuclear species like 13 C. To multiplex the ensuing experiments, these relayed approaches are combined with time-domain schemes involving multiple Ramsey-labeling experiments imparting the frequencies of the non-labile sites on the water resonance, via chemical exchange. 13 C and 1 H NMR spectra were detected in this fashion with about two-fold SNR amplification vis-à-vis conventionally detected spectroscopies. When combined with non-uniform sampling principles, this methodology thus becomes a sensitive alternative to detect non-exchangeable species in biomolecules. Still, multiple parameters including the scalar couplings and solvent exchange rates, will affect the efficiency and consequently the practicality of the overall experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegfried, M.
2015-10-14
The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For thismore » study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.« less
Feng, Qishuai; Shen, Yajing; Fu, Yingjie; Muroski, Megan E.; Zhang, Peng; Wang, Qiaoyue; Xu, Chang; Lesniak, Maciej S.; Li, Gang; Cheng, Yu
2017-01-01
Inorganic nanoparticles with unique physical properties have been explored as nanomedicines for brain tumor treatment. However, the clinical applications of the inorganic formulations are often hindered by the biological barriers and failure to be bioeliminated. The size of the nanoparticle is an essential design parameter which plays a significant role to affect the tumor targeting and biodistribution. Here, we report a feasible approach for the assembly of gold nanoparticles into ~80 nm nanospheres as a drug delivery platform for enhanced retention in brain tumors with the ability to be dynamically switched into the single formulation for excretion. These nanoassemblies can target epidermal growth factor receptors on cancer cells and are responsive to tumor microenvironmental characteristics, including high vascular permeability and acidic and redox conditions. Anticancer drug release was controlled by a pH-responsive mechanism. Intracellular L-glutathione (GSH) triggered the complete breakdown of nanoassemblies to single gold nanoparticles. Furthermore, in vivo studies have shown that nanospheres display enhanced tumor-targeting efficiency and therapeutic effects relative to single-nanoparticle formulations. Hence, gold nanoassemblies present an effective targeting strategy for brain tumor treatment. PMID:28638474
Mitra, Sayani; Gachhui, Ratan; Mukherjee, Joydeep
2015-01-01
A direct relationship between biofilm formation and melanogenesis in Shewanella colwelliana with increased oyster recruitment is already established. Previously, S. colwelliana was grown in a newly patented biofilm-cultivation device, the conico-cylindrical flask (CCF), offering interchangeable hydrophobic/hydrophilic surfaces. Melanization was enhanced when S. colwelliana was cultivated in a hydrophobic vessel compared with a hydrophilic vessel. In the present study, melanogenesis in the CCF was positively correlated with increased architectural parameters of the biofilm (mean thickness and biovolume obtained by confocal laser scanning microscopy) and melanin gene (melA) expression observed by densitometry. Niche intertidal conditions were mimicked in a process operated in an ultra-low-speed rotating disk bioreactor, which demonstrated enhanced biofilm formation, melanogenesis, exopolysaccharide synthesis and melA gene expression compared with a process where 12-h periodic immersion and emersion was prevented. The wettability properties of the settling plane as well as intermittent wetting and drying, which influenced biofilm formation and melA expression, may affect oyster settlement in nature.
Joshi, Jagdish C; Ray, Arunabha; Gulati, Kavita
2014-04-15
The present study evaluated the effects of morphine treatments on elevated plus maze test parameters, oxidative stress markers and Hsp70 expression in normal and stressed rats. Acute and chronic stress caused neurobehavioral suppression, altered prooxidant-antioxidant balance and increased Hsp70 expression in brain homogenates in a differential manner. Morphine (1 and 5mg/kg) attenuated RS induced anxiogenesis, changes in MDA and GSH but further enhanced Hsp70 expression. Similar anxiolytic and Hsp70 enhancing effects were seen after morphine in normal rats (no RS). Exposure to chronic RS did not elicit any appreciable neurobehavioral response in EPM but enhanced MDA, lowered GSH and exaggerated the Hsp70 expression. Pretreatment with morphine did not affect the neurobehavioral response to chronic RS, but reverted the GSH and Hsp70 expression. The results suggest that morphine differentially influences acute and chronic stress induced changes in anxiety behavior and complex interactions between oxidative stress markers and Hsp70 expression which may contribute to these effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Feng, Qishuai; Shen, Yajing; Fu, Yingjie; Muroski, Megan E; Zhang, Peng; Wang, Qiaoyue; Xu, Chang; Lesniak, Maciej S; Li, Gang; Cheng, Yu
2017-01-01
Inorganic nanoparticles with unique physical properties have been explored as nanomedicines for brain tumor treatment. However, the clinical applications of the inorganic formulations are often hindered by the biological barriers and failure to be bioeliminated. The size of the nanoparticle is an essential design parameter which plays a significant role to affect the tumor targeting and biodistribution. Here, we report a feasible approach for the assembly of gold nanoparticles into ~80 nm nanospheres as a drug delivery platform for enhanced retention in brain tumors with the ability to be dynamically switched into the single formulation for excretion. These nanoassemblies can target epidermal growth factor receptors on cancer cells and are responsive to tumor microenvironmental characteristics, including high vascular permeability and acidic and redox conditions. Anticancer drug release was controlled by a pH-responsive mechanism. Intracellular L-glutathione (GSH) triggered the complete breakdown of nanoassemblies to single gold nanoparticles. Furthermore, in vivo studies have shown that nanospheres display enhanced tumor-targeting efficiency and therapeutic effects relative to single-nanoparticle formulations. Hence, gold nanoassemblies present an effective targeting strategy for brain tumor treatment.
Enhanced production of lovastatin by Omphalotus olearius (DC.) Singer in solid state fermentation.
Atlı, Burcu; Yamaç, Mustafa; Yıldız, Zeki; Isikhuemnen, Omoanghe S
2015-01-01
Although lovastatin production has been reported for different microorganism species, there is limited information about lovastatin production by basidiomycetes. The optimization of culture parameters that enhances lovastatin production by Omphalotus olearius OBCC 2002 was investigated, using statistically based experimental designs under solid state fermentation. The Plackett Burman design was used in the first step to test the relative importance of the variables affecting production of lovastatin. Amount and particle size of barley were identified as efficient variables. In the latter step, the interactive effects of selected efficient variables were studied with a full factorial design. A maximum lovastatin yield of 139.47mg/g substrate was achieved by the fermentation of 5g of barley, 1-2mm particle diam., at 28°C. This study showed that O. olearius OBCC 2002 has a high capacity for lovastatin production which could be enhanced by using solid state fermentation with novel and cost-effective substrates, such as barley. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A; Ghosh, Partha Pratim; Mitra, Prasenjit
2016-01-01
Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation. PMID:27282931
Fenofibrate Nanocrystals Embedded in Oral Strip-Films for Bioavailability Enhancement
Barvaliya, Manish; Zhang, Lu; Anovadiya, Ashish; Brahmbhatt, Harshad; Paul, Parimal; Tripathi, Chandrabhanu
2018-01-01
The aim of the present study was to make a fenofibrate (FNB) nanocrystal (NC) by wet media milling, characterizations and formulates into oral strip-films (OSFs). Mechanical properties, redispersion study, and solid-state characterizations results suggested that reduction of drug crystal size at nanoscale and incorporation into OSFs does not affect the solid-state properties of the drug. In vitro dissolution kinetics showed enhanced dissolution rate was easily manipulated by changing the thickness of the OSF. In situ UV-imaging was used to monitor drug dissolution qualitatively and quantitatively in real time. Results confirm that the intrinsic dissolution rates and surface drug concentration measured with this device were in agreement with the USP-IV dissolution profiles. In vivo pharmacokinetics in rabbits showed a significant difference in the pharmacokinetics parameter (1.4 fold increase bioavailability) of FNB NC-loaded OSFs as compared to the marketed formulation “Tricor” and as-received (pristine) drug. This approach of drug nanocrystallization and incorporation into OSFs may have significant applications in cost-effective tools for bioavailability enhancement of FNB. PMID:29438297
Jia, Li; Liu, Yaling; Du, Yanyan; Xing, Da
2007-06-22
A pressurized capillary electrochromatography (pCEC) system was developed for the separation of water-soluble vitamins, in which UV absorbance was used as the detection method and a monolithic silica-ODS column as the separation column. The parameters (type and content of organic solvent in the mobile phase, type and concentration of electrolyte, pH of the electrolyte buffer, applied voltage and flow rate) affecting the separation resolution were evaluated. The combination of two on-line concentration techniques, namely, solvent gradient zone sharpening effect and field-enhanced sample stacking, was utilized to improve detection sensitivity, which proved to be beneficial to enhance the detection sensitivity by enabling the injection of large volumes of samples. Coupling electrokinetic injection with the on-line concentration techniques was much more beneficial for the concentration of positively charged vitamins. Comparing with the conventional injection mode, the enhancement in the detection sensitivities of water-soluble vitamins using the on-line concentration technique is in the range of 3 to 35-fold. The developed pCEC method was applied to evaluate water-soluble vitamins in corns.
SU-F-J-160: Clinical Evaluation of Targeting Accuracy in Radiosurgery Using Tractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juh, R; Han, J; Kim, C
Purpose: Focal radiosurgery is a common treatment modality for trigeminal neuralgia (TN), a neuropathic facial pain condition. Assessment of treatment effectiveness is primarily clinical, given the paucity of investigational tools to assess trigeminal nerve changes. The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgery with Gamma knife. We hypothesized that trigeminal tractography provides more information than 2D-MR imaging, allowing detection of unique, focal changes in the target area after radiosurgery. Methods: Sixteen TN patients (2 females, 4 males, average age 65.3 years) treated with Gamma Knife radiosurgery, 40 Gy/50% isodosemore » line underwent 1.5Tesla MR trigeminal nerve. Target accuracy was assessed from deviation of the coordinates of the target compared with the center of enhancement on post MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated. Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was within 1mm. The radiation doses fitting within the borders of the contrast enhancement the target ranged from 37.5 to 40 Gy. Trigeminal tractography accurately detected the radiosurgical target. Radiosurgery resulted in 47% drop in FA values at the target with no significant change in FA outside the target, suggesting that radiosurgery primarily affects myelin. Tractography was more sensitive, since FA changes were detected regardless of trigeminal nerve enhancement. Conclusion: The median deviation found in clinical assessment of gamma knife treatment for TN Is low and compatible with its high rate of efficiency. DTI parameters accurately detect the effects of focal radiosurgery on the trigeminal nerve, serving as an in vivo imaging tool to study TN. This study is a proof of principle for further assessment of DTI parameters to understand the pathophysiology of TN and treatment effects.« less
SU-E-J-34: Clinical Evaluation of Targeting Accuracy and Tractogrphy Delineation of Radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juh, R; Suh, T; Kim, Y
2014-06-01
Purpose: Focal radiosurgery is a common treatment modality for trigeminal neuralgia (TN), a neuropathic facial pain condition. Assessment of treatment effectiveness is primarily clinical, given the paucity of investigational tools to assess trigeminal nerve changes. The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgery with Gamma knife. We hypothesized that trigeminal tractography provides more information than 2D-MR imaging, allowing detection of unique, focal changes in the target area after radiosurgery. Methods: Sixteen TN patients (2 females, 4 male, average age 65.3 years) treated with Gamma Knife radiosurgery, 40 Gy/50% isodosemore » line underwent 1.5Tesla MR trigeminal nerve . Target accuracy was assessed from deviation of the coordinates of the target compared with the center of enhancement on post MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was within 1mm. The radiation doses fitting within the borders of the contrast enhancement the target ranged from 37.5 to 40 Gy. Trigeminal tractography accurately detected the radiosurgical target. Radiosurgery resulted in 47% drop in FA values at the target with no significant change in FA outside the target, suggesting that radiosurgery primarily affects myelin. Tractography was more sensitive, since FA changes were detected regardless of trigeminal nerve enhancement Conclusion: The median deviation found in clinical assessment of gamma knife treatment for TN Is low and compatible with its high rate of efficiency. DTI parameters accurately detect the effects of focal radiosurgery on the trigeminal nerve, serving as an in vivo imaging tool to study TN. This study is a proof of principle for further assessment of DTI parameters to understand the pathophysiology of TN and treatment effects.« less
Nguyen, Hai T; Guiard, Bruno P; Bacq, Alexandre; David, Denis J; David, Indira; Quesseveur, Gaël; Gautron, Sophie; Sanchez, Connie; Gardier, Alain M
2013-01-01
BACKGROUND AND PURPOSE Escitalopram, the S(+)-enantiomer of citalopram is the most selective 5-HT reuptake inhibitor approved. Although all 5-HT selective reuptake inhibitors (SSRIs) increase extracellular levels of 5-HT ([5-HT]ext). some also enhance, to a lesser extent, extracellular levels of noradrenaline ([NA]ext). However, the mechanisms by which SSRIs activate noradrenergic transmission in the brain remain to be determined. EXPERIMENTAL APPROACH This study examined the effects of escitalopram, on both [5-HT]ext and [NA]ext in the frontal cortex (FCx) of freely moving wild-type (WT) and mutant mice lacking the 5-HT transporter (SERT−/−) by using intracerebral microdialysis. We explored the possibilities that escitalopram enhances [NA]ext, either by a direct mechanism involving the inhibition of the low- or high-affinity noradrenaline transporters, or by an indirect mechanism promoted by [5-HT]ext elevation. The forced swim test (FST) was used to investigate whether enhancing cortical [5-HT]ext and/or [NA]ext affected the antidepressant-like activity of escitalopram. KEY RESULTS In WT mice, a single systemic administration of escitalopram produced a significant increase in cortical [5-HT]ext and [NA]ext. As expected, escitalopram failed to increase cortical [5-HT]ext in SERT−/− mice, whereas its neurochemical effects on [NA]ext persisted in these mutants. In WT mice subjected to the FST, escitalopram increased swimming parameters without affecting climbing behaviour. Finally, escitalopram, at relevant concentrations, failed to inhibit cortical noradrenaline and 5-HT uptake mediated by low-affinity monoamine transporters. CONCLUSIONS AND IMPLICATIONS These experiments suggest that escitalopram enhances, although moderately, cortical [NA]extin vivo by a direct mechanism involving the inhibition of the high-affinity noradrenaline transporter (NET). PMID:22233336
Newcomb, Anna G. U. S.; Baek, Seungwon; Kelly, Brian P.; Crawford, Neil R.
2016-01-01
Angled screw insertion has been advocated to enhance fixation strength during posterior spine fixation. Stresses on a pedicle screw and surrounding vertebral bone with different screw angles were studied by finite element analysis during simulated multidirectional loading. Correlations between screw-specific vertebral geometric parameters and stresses were studied. Angulations in both the sagittal and axial planes affected stresses on the cortical and cancellous bones and the screw. Pedicle screws pointing laterally (vs. straight or medially) in the axial plane during superior screw angulation may be advantageous in terms of reducing the risk of both screw loosening and screw breakage. PMID:27454197
Cooperation and age structure in spatial games
NASA Astrophysics Data System (ADS)
Wang, Zhen; Wang, Zhen; Zhu, Xiaodan; Arenzon, Jeferson J.
2012-01-01
We study the evolution of cooperation in evolutionary spatial games when the payoff correlates with the increasing age of players (the level of correlation is set through a single parameter, α). The demographic heterogeneous age distribution, directly affecting the outcome of the game, is thus shown to be responsible for enhancing the cooperative behavior in the population. In particular, moderate values of α allow cooperators not only to survive but to outcompete defectors, even when the temptation to defect is large and the ageless, standard α=0 model does not sustain cooperation. The interplay between age structure and noise is also considered, and we obtain the conditions for optimal levels of cooperation.
Baswan, Sudhir; Kasting, Gerald B.; Li, S. Kevin; Wickett, Randy; Adams, Brian; Eurich, Sean; Schamper, Ryan
2016-01-01
The topical treatment of nail fungal infections has been a focal point of nail research in the past few decades as it offers a much safer and focused alternative to conventional oral therapy. Although the current focus remains on exploring the ways of enhancing permeation through the formidable nail barrier, the understanding of the nail microstructure and composition is far from complete. This article reviews our current understanding of the nail microstructure, composition and diseases. A few of the parameters affecting the nail permeability and potential causes of the recurrence of fungal nail infection are also discussed. PMID:28098391
Baswan, Sudhir; Kasting, Gerald B; Li, S Kevin; Wickett, Randy; Adams, Brian; Eurich, Sean; Schamper, Ryan
2017-05-01
The topical treatment of nail fungal infections has been a focal point of nail research in the past few decades as it offers a much safer and focused alternative to conventional oral therapy. Although the current focus remains on exploring the ways of enhancing permeation through the formidable nail barrier, the understanding of the nail microstructure and composition is far from complete. This article reviews our current understanding of the nail microstructure, composition and diseases. A few of the parameters affecting the nail permeability and potential causes of the recurrence of fungal nail infection are also discussed. © 2017 Blackwell Verlag GmbH.
Correlates of bone quality in older persons
Lauretani, F.; Bandinelli, S.; Russo, C.R.; Maggio, M.; Di Iorio, A.; Cherubini, A.; Maggio, D.; Ceda, G.P.; Valenti, G.; Guralnik, J.M.; Ferrucci, L.
2009-01-01
Purpose of the study In a population-based sample of older persons, we studied the relationship between tibial bone density and geometry and factors potentially affecting osteoporosis. Methods Of the 1260 participants aged 65 years or older eligible for the InCHIANTI study, 1155 received an interview and 915 (79.2%) had complete data on tibial QCTscans and other variables used in the analysis presented here. The final study population included 807 persons (372 men and 435 women, age range 65–96 years) after exclusion of participants affected by bone diseases or treated with drugs that interfere with bone metabolism. Results In both sexes, calf cross-sectional muscle area (CSMA) was significantly and independently associated with total bone cross-sectional area (tCSA) and cortical bone cross-sectional area (cCSA) but not with trabecular or cortical volumetric bone mineral density (vBMD). Bioavailable testosterone (Bio-T) was independently associated with both trabecular and cortical vBMD in both sexes. In women, independently of confounders, 25(OH)-vitamin D was positively associated with tCSA and cortical vBMD, while PTH was negatively associated with cortical vBMD. IL-1 beta was negatively correlated with cortical vBMD in women, while TNF-alpha was associated with enhanced bone geometrical adaptation in men. Conclusions Physiological parameters that are generically considered risk factors for osteoporosis were associated with specific bone parameters assessed by tibial QCT. Factors known to be associated with increased bone reabsorption, such as 25(OH)-vitamin D, PTH and Bio-T, affected mainly volumetric BMD, while factors associated with bone mechanical stimulation, such as CSMA, affected primarily bone geometry. Our results also suggested that pro-inflammatory cytokines might be considered as markers of bone resorption. PMID:16709469
Zhang, Yong; Green, Christopher T; Tick, Geoffrey R
2015-01-01
This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes. Copyright © 2015 Elsevier B.V. All rights reserved.
Shahabivand, Saleh; Parvaneh, Azar; Aliloo, Ali Asghar
2017-11-01
Cadmium (Cd) pollution in the soil threatens the quality of environmental health, and deleteriously affects physiological activities of crops. Symbiosis of endophytic fungi with various plants is a promising manner to improving numerous plant characteristics and remediating heavy metal-polluted soils. In this pot experiment, the influence of root endophyte fungus Piriformospora indica on growth, physiological parameters and organs Cd accumulation in sunflower cv. Zaria plants under the toxic levels of Cd (0, 40, 80 and 120mg/kg soil) were studied. Increasing Cd concentration in the soil reduced growth parameters, chlorophyll (Chl) a and Chl b contents, and Fv/Fm and ETR (electron transport rate) values, but increased root, stem and leaf Cd accumulation, and proline content. The presence of P. indica significantly enhanced growth, Chl a, Chl b and proline contents, and Fv/Fm and ETR values. Compared to non-inoculated ones, P. indica-inoculated plants had higher Cd accumulation in root, whereas lower Cd accumulation in stem and leaf. The present study strongly supports the established ability of P. indica to alleviate Cd toxicity by improving the physiological status in sunflower. Furthermore, this endophyte fungus can be useful for Cd phyto-stabilization in sunflower roots in contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.
Betker, Jamie L.; Gomez, Joe; Anchordoquy, Thomas J.
2013-01-01
The use of lipoplexes for the intracellular delivery of nucleic acids typically involves the optimization of several parameters that are known to affect delivery. Researchers commonly vary charge ratio, and often incorporate different amounts of helper lipids (e.g., cholesterol) to optimize formulations for transfection in cell culture and in vivo. The results of such experiments are often interpreted in the context of nuclease resistance and cell association, but effects on the protein corona are usually not considered. While many studies have demonstrated that lipoplex structure and function can be dramatically compromised in the presence of serum, little attention has been paid to the adsorption of specific proteins and how this might be affected by formulation parameters. In this study, we characterize changes in the protein corona that occur as DOTAP-based lipoplexes are formulated with different amounts of cholesterol and prepared at different charge ratios. Our results demonstrate a significant effect of lipid composition on both total protein adsorption as well as the individual proteins from fetal calf serum that are associated with lipoplexes. In addition, we show that PEGylation increases protein adsorption with our formulations; effects that depend on the type of PEG conjugate employed in the lipoplex. Attempts to identify a specific protein responsible for enhancing transfection were unsuccessful. PMID:23920037
Enhancement of low power CO2 laser cutting process for injection molded polycarbonate
NASA Astrophysics Data System (ADS)
Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.
2017-11-01
Laser cutting technology is a non-contact process that typically is used for industrial manufacturing applications. Laser cut quality is strongly influenced by the cutting processing parameters. In this research, CO2 laser cutting specifications have been investigated by using design of experiments (DOE) with considering laser cutting speed, laser power and focal plane position as process input parameters and kerf geometry dimensions (i.e. top and bottom kerf width, ratio of the upper kerf to lower kerf, upper heat affected zone (HAZ)) and surface roughness of the kerf wall as process output responses. A 60 Watts CO2 laser cutting machine is used for cutting the injection molded samples of polycarbonate sheet with the thickness of 3.2 mm. Results reveal that by decreasing the laser focal plane position and laser power, the bottom kerf width will be decreased. Also the bottom kerf width decreases by increasing the cutting speed. As a general result, locating the laser spot point in the depth of the workpiece the laser cutting quality increases. Minimum value of the responses (top kerf, heat affected zone, ratio of the upper kerf to lower kerf, and surface roughness) are considered as optimization criteria. Validating the theoretical results using the experimental tests is carried out in order to analyze the results obtained via software.
Optimization of process parameters of pulsed TIG welded maraging steel C300
NASA Astrophysics Data System (ADS)
Deepak, P.; Jualeash, M. J.; Jishnu, J.; Srinivasan, P.; Arivarasu, M.; Padmanaban, R.; Thirumalini, S.
2016-09-01
Pulsed TIG welding technology provides excellent welding performance on thin sections which helps to increase productivity, enhance weld quality, minimize weld costs, and boost operator efficiency and this has drawn the attention of the welding society. Maraging C300 steel is extensively used in defence and aerospace industry and thus its welding becomes an area of paramount importance. In pulsed TIG welding, weld quality depends on the process parameters used. In this work, Pulsed TIG bead-on-plate welding is performed on a 5mm thick maraging C300 plate at different combinations of input parameters: peak current (Ip), base current (Ib) and pulsing frequency (HZ) as per box behnken design with three-levels for each factor. Response surface methodology is utilized for establishing a mathematical model for predicting the weld bead depth. The effect of Ip, Ib and HZ on the weld bead depth is investigated using the developed model. The weld bead depth is found to be affected by all the three parameters. Surface and contour plots developed from regression equation are used to optimize the processing parameters for maximizing the weld bead depth. Optimum values of Ip, Ib and HZ are obtained as 259 A, 120 A and 8 Hz respectively. Using this optimum condition, maximum bead depth of the weld is predicted to be 4.325 mm.
Application of describing function analysis to a model of deep brain stimulation.
Davidson, Clare Muireann; de Paor, Annraoi M; Lowery, Madeleine M
2014-03-01
Deep brain stimulation effectively alleviates motor symptoms of medically refractory Parkinson's disease, and also relieves many other treatment-resistant movement and affective disorders. Despite its relative success as a treatment option, the basis of its efficacy remains elusive. In Parkinson's disease, increased functional connectivity and oscillatory activity occur within the basal ganglia as a result of dopamine loss. A correlative relationship between pathological oscillatory activity and the motor symptoms of the disease, in particular bradykinesia, rigidity, and tremor, has been established. Suppression of the oscillations by either dopamine replacement or DBS also correlates with an improvement in motor symptoms. DBS parameters are currently chosen empirically using a "trial and error" approach, which can be time-consuming and costly. The work presented here amalgamates concepts from theories of neural network modeling with nonlinear control engineering to describe and analyze a model of synchronous neural activity and applied stimulation. A theoretical expression for the optimum stimulation parameters necessary to suppress oscillations is derived. The effect of changing stimulation parameters (amplitude and pulse duration) on induced oscillations is studied in the model. Increasing either stimulation pulse duration or amplitude enhanced the level of suppression. The predicted parameters were found to agree well with clinical measurements reported in the literature for individual patients. It is anticipated that the simplified model described may facilitate the development of protocols to aid optimum stimulation parameter choice on a patient by patient basis.
Effects of sex change on the implications of marine reserves for fisheries.
Chan, Neil C S; Connolly, Sean R; Mapstone, Bruce D
2012-04-01
Marine reserves have become widely used in biodiversity conservation and are increasingly proposed as fisheries management tools. Previous modeling studies have found that reserves may increase or decrease yields, depending on local environmental conditions and on the specific life-history traits of the fishery species. Sex-changing (female-to-male) fish are targets of some of the most important commercial and recreational fisheries in the world. The potential for disproportionate removal of the larger, older sex of such species requires new theory to facilitate our understanding of how reserves will affect the yields of surrounding fisheries, relative to fishes with separate sexes. We investigated this question by modeling the effects of marine reserves on a non-sex-changing and a sex-changing population. We used demographic parameter estimates for the common coral trout as a baseline, and we conducted extensive sensitivity analyses to determine how sustainable yields of sex-changing species are likely to be affected by reserves across a broad range of life-history parameters. Our findings indicate that fisheries for sex-changing species are unlikely to receive the same yield-enhancing benefit that non-sex-changing fisheries enjoy from marine reserves, and that often reserves tend to reduce sustainable yields for a given overall population size. Specifically, the increased egg production and high fertilization success within reserves is more than offset by the reduced egg production and fertilization success in the fished areas, relative to a system in which fishing mortality is distributed more evenly over the entire system. A key reason for this appears to be that fertilization success is reduced, on average, when males are unevenly distributed among subpopulations, as is the case when reserves are present. These findings suggests that, for sex-changing populations, reserves are more suited to rebuilding overfished populations and sustaining fishery viability, rather than enhancing fishery yields. These results are robust over a range of sex-change regimes, stock-recruitment relationships, adult mortality rates, individual growth strategies, and fertilization-success functions. Our findings highlight the importance of considering the different contributions of males and females to population growth and fishery yields when evaluating the efficacy of marine reserves for enhancement of fished species.
Improving the quantification of contrast enhanced ultrasound using a Bayesian approach
NASA Astrophysics Data System (ADS)
Rizzo, Gaia; Tonietto, Matteo; Castellaro, Marco; Raffeiner, Bernd; Coran, Alessandro; Fiocco, Ugo; Stramare, Roberto; Grisan, Enrico
2017-03-01
Contrast Enhanced Ultrasound (CEUS) is a sensitive imaging technique to assess tissue vascularity, that can be useful in the quantification of different perfusion patterns. This can be particularly important in the early detection and staging of arthritis. In a recent study we have shown that a Gamma-variate can accurately quantify synovial perfusion and it is flexible enough to describe many heterogeneous patterns. Moreover, we have shown that through a pixel-by-pixel analysis the quantitative information gathered characterizes more effectively the perfusion. However, the SNR ratio of the data and the nonlinearity of the model makes the parameter estimation difficult. Using classical non-linear-leastsquares (NLLS) approach the number of unreliable estimates (those with an asymptotic coefficient of variation greater than a user-defined threshold) is significant, thus affecting the overall description of the perfusion kinetics and of its heterogeneity. In this work we propose to solve the parameter estimation at the pixel level within a Bayesian framework using Variational Bayes (VB), and an automatic and data-driven prior initialization. When evaluating the pixels for which both VB and NLLS provided reliable estimates, we demonstrated that the parameter values provided by the two methods are well correlated (Pearson's correlation between 0.85 and 0.99). Moreover, the mean number of unreliable pixels drastically reduces from 54% (NLLS) to 26% (VB), without increasing the computational time (0.05 s/pixel for NLLS and 0.07 s/pixel for VB). When considering the efficiency of the algorithms as computational time per reliable estimate, VB outperforms NLLS (0.11 versus 0.25 seconds per reliable estimate respectively).
Gentilucci, Maurizio; Bernardis, Paolo; Crisi, Girolamo; Dalla Volta, Riccardo
2006-07-01
The aim of the present study was to determine whether Broca's area is involved in translating some aspects of arm gesture representations into mouth articulation gestures. In Experiment 1, we applied low-frequency repetitive transcranial magnetic stimulation over Broca's area and over the symmetrical loci of the right hemisphere of participants responding verbally to communicative spoken words, to gestures, or to the simultaneous presentation of the two signals. We performed also sham stimulation over the left stimulation loci. In Experiment 2, we performed the same stimulations as in Experiment 1 to participants responding with words congruent and incongruent with gestures. After sham stimulation voicing parameters were enhanced when responding to communicative spoken words or to gestures as compared to a control condition of word reading. This effect increased when participants responded to the simultaneous presentation of both communicative signals. In contrast, voicing was interfered when the verbal responses were incongruent with gestures. The left stimulation neither induced enhancement on voicing parameters of words congruent with gestures nor interference on words incongruent with gestures. We interpreted the enhancement of the verbal response to gesturing in terms of intention to interact directly. Consequently, we proposed that Broca's area is involved in the process of translating into speech aspects concerning the social intention coded by the gesture. Moreover, we discussed the results in terms of evolution to support the theory [Corballis, M. C. (2002). From hand to mouth: The origins of language. Princeton, NJ: Princeton University Press] proposing spoken language as evolved from an ancient communication system using arm gestures.
NASA Astrophysics Data System (ADS)
Rahman, Ata-ur-; Kerr, Michael Mc; El-Taibany, Wael F.; Kourakis, Ioannis; Qamar, A.
2015-02-01
A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.
Kawakami, Kohsaku; Usui, Toshinori; Hattori, Mitsunari
2012-09-01
Amorphous solid dispersions have great potential for enhancing oral absorption of poorly soluble drugs. Crystallization behavior during storage and after exposure to aqueous media must be examined in detail for designing stable and effective amorphous formulations, and it is significantly affected by the intrinsic properties of an amorphous drug. Many attempts have been made to correlate various thermodynamic parameters of pharmaceutical glasses with their crystallization behavior; however, variations in model drugs that could be used for such investigation has been limited because the amorphous characteristics of drugs possessing a high crystallization tendency are difficult to evaluate. In this study, high-speed differential scanning calorimetry, which could inhibit their crystallization using high cooling rates up to 2000°C/s, was employed for assessing such drugs. The thermodynamic parameters of the glasses, including glass transition temperature (T(g)) and fragility, were obtained to show that their crystallization tendency cannot be explained simply by the parameters, although there have been general thought that fragility may be correlated with crystallization tendency. Also investigated was correlation between the thermodynamic parameters and crystallization tendency upon contact with water, which influences in vivo efficacy of amorphous formulations. T(g) was correlated well with the crystallization tendency upon contact with water. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Moehler, S.; Landsman, W. B.; Sweigart, A. V.; Grundahl, F.
2003-01-01
We present the results of spectroscopic analyses of hot horizontal branch (HB) stars in M 13 and M 3, which form a famous "second parameter" pair. F rom the spectra and Stromgren photometry we derived - for the first time in M 13 - atmospheric parameters (effective temperature and surface gravity). For stars with Stromgren temperatures between 10,000 and 12,000 K we found excellent agreement between the atmospheric parameters derived from Stromgren photometry and those derived from Balmer line profile fits. However, for cooler stars there is a disagreement in the parameters derived by the two methods, for which we have no satisfactory explanation. Stars hotter than 12,000 K show evidence for helium depletion and iron enrichment, both in M 3 and M 13. Accounting for the iron enrichment substantially improves the agreement with canonical evolutionary models, although the derived gravities and masses are still somewhat too low. This remaining discrepancy may be an indication that scaled-solar metal-rich model atmospheres do not adequately represent the highly non-solar abundance ratios found in blue HB stars affected by diffusion. We discuss the effects of an enhancement in the envelope helium abundance on the atmospheric parameters of the blue HB stars, as might be caused by deep mixing on the red giant branch or primordial pollution from an earlier generation of intermediate mass asymptotic giant branch stars. Key words. Stars: atmospheres - Stars: evolution - Stars: horizontal branch - Globular clusters: individual: M 3 - Globular clusters: individual: M 13
NASA Astrophysics Data System (ADS)
Valhondo, Cristina; Martinez-Landa, Lurdes; Carrera, Jesús; Hidalgo, Juan J.; Ayora, Carlos
2017-04-01
Artificial recharge of aquifers (AR) is a standard technique to replenish and enhance groundwater resources, that have widely been used due to the increasing demand of quality water. AR through infiltration basins consists on infiltrate surface water, that might be affected in more or less degree by treatment plant effluents, runoff and others undesirables water sources, into an aquifer. The water quality enhances during the passage through the soil and organic matter, nutrients, organic contaminants, and bacteria are reduced mainly due to biodegradation and adsorption. Therefore, one of the goals of AR is to ensure a good quality status of the aquifer even if lesser quality water is used for recharge. Understand the behavior and transport of the potential contaminants is essential for an appropriate management of the artificial recharge system. The knowledge of the flux distribution around the recharge system and the relationship between the recharge system and the aquifer (area affected by the recharge, mixing ratios of recharged and native groundwater, travel times) is essential to achieve this goal. Evaluate the flux distribution is not always simple because the complexity and heterogeneity of natural systems. Indeed, it is not so much regulate by hydraulic conductivity of the different geological units as by their continuity and inter-connectivity particularly in the vertical direction. In summary for an appropriate management of an artificial recharge system it is needed to acknowledge the heterogeneity of the media. Aiming at characterizing the residence time distribution (RTDs) of a pilot artificial recharge system and the extent to which heterogeneity affects RTDs, we performed and evaluated a pulse injection tracer test. The artificial recharge system was simulated as a multilayer model which was used to evaluate the measured breakthrough curves at six monitoring points. Flow and transport parameters were calibrated under two hypotheses. The first hypothesis considered a homogeneous medium where flow and transport parameters were constant for all layers. The second hypothesis considered heterogeneous media and thus parameters were different for each layer. Heterogeneous model yielded to a better fit, measured as root mean square weighted error, of the measured tracer breakthrough curves. Both homogeneous and heterogeneous models reproduce the long tails observed in some observation points implying that the broad RTDs are caused not only by heterogeneity but also by the mean flow structure. We contend that it is this broad RTD, together with the sequence of redox states produced by our reactive layer, what explains the excellent behavior of the system in removing recalcitrant organic micropollutants.
Wang, Shijun; Liu, Peter; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Summers, Ronald M
2012-01-01
In this paper, we propose a new pharmacokinetic model for parameter estimation of dynamic contrast-enhanced (DCE) MRI by using Gaussian process inference. Our model is based on the Tofts dual-compartment model for the description of tracer kinetics and the observed time series from DCE-MRI is treated as a Gaussian stochastic process. The parameter estimation is done through a maximum likelihood approach and we propose a variant of the coordinate descent method to solve this likelihood maximization problem. The new model was shown to outperform a baseline method on simulated data. Parametric maps generated on prostate DCE data with the new model also provided better enhancement of tumors, lower intensity on false positives, and better boundary delineation when compared with the baseline method. New statistical parameter maps from the process model were also found to be informative, particularly when paired with the PK parameter maps.
Sorption, desorption, and surface oxidative fate of nicotine.
Petrick, Lauren; Destaillats, Hugo; Zouev, Irena; Sabach, Sara; Dubowski, Yael
2010-09-21
Nicotine dynamics in an indoor environment can be greatly affected by building parameters (e.g. relative humidity (RH), air exchange rate (AER), and presence of ozone), as well as surface parameters (e.g. surface area (SA) and polarity). To better understand the indoor fate of nicotine, these parameter effects on its sorption, desorption, and oxidation rates were investigated on model indoor surfaces that included fabrics, wallboard paper, and wood materials. Nicotine sorption under dry conditions was enhanced by higher SA and higher polarity of the substrate. Interestingly, nicotine sorption to cotton and nylon was facilitated by increased RH, while sorption to polyester was hindered by it. Desorption was affected by RH, AER, and surface type. Heterogeneous nicotine-ozone reaction was investigated by Fourier transform infrared spectrometry with attenuated total reflection (FTIR-ATR), and revealed a pseudo first-order surface reaction rate of 0.035 +/- 0.015 min(-1) (at [O(3)] = 6 +/- 0.3 x 10(15) molecules cm(-3)) that was partially inhibited at high RH. Extrapolation to a lower ozone level ([O(3)] = 42 ppb) showed oxidation on the order of 10(-5) min(-1) corresponding to a half-life of 1 week. In addition, similar surface products were identified in dry and high RH using gas chromatography-mass spectrometry (GC-MS). However, FTIR analysis revealed different product spectra for these conditions, suggesting additional unidentified products and association with surface water. Knowing the indoor fate of condensed and gas phase nicotine and its oxidation products will provide a better understanding of nicotine's impact on personal exposures as well as overall indoor air quality.
Construction and Application of Enhanced Remote Sensing Ecological Index
NASA Astrophysics Data System (ADS)
Wang, X.; Liu, C.; Fu, Q.; Yin, B.
2018-04-01
In order to monitor the change of regional ecological environment quality, this paper use MODIS and DMSP / OLS remote sensing data, from the production capacity, external disturbance changes and human socio-economic development of the three main factors affecting the quality of ecosystems, select the net primary productivity, vegetation index and light index, using the principal component analysis method to automatically determine the weight coefficient, construction of the formation of enhanced remote sensing ecological index, and the ecological environment quality of Hainan Island from 2001 to 2013 was monitored and analyzed. The enhanced remote sensing ecological index combines the effects of the natural environment and human activities on ecosystems, and according to the contribution of each principal component automatically determine the weight coefficient, avoid the design of the weight of the parameters caused by the calculation of the human error, which provides a new method for the operational operation of regional macro ecological environment quality monitoring. During the period from 2001 to 2013, the ecological environment quality of Hainan Island showed the characteristics of decend first and then rise, the ecological environment in 2005 was affected by severe natural disasters, and the quality of ecological environment dropped sharply. Compared with 2001, in 2013 about 20000 square kilometers regional ecological environmental quality has improved, about 8760 square kilometers regional ecological environment quality is relatively stable, about 5272 square kilometers regional ecological environment quality has decreased. On the whole, the quality of ecological environment in the study area is good, the frequent occurrence of natural disasters, on the quality of the ecological environment to a certain extent.
Ahmed, Tarek A; Suhail, Mohammad A A; Hosny, Khaled M; Abd-Allah, Fathy I
2018-01-01
Implementation of a new pharmaceutical technique to improve aqueous solubility and thus dissolution, enhancement of drug permeation, and finally formulation of a controlled release tablet loaded with glimepiride (GLMP). Improve GLMP bioavailability and pharmacokinetics in type II diabetic patients. Different polymers were used to enhance aqueous GLMP solubility of which a saturated polymeric drug solution was prepared and physically adsorbed onto silica. An experimental design was employed to optimize the formulation parameters affecting the preparation of GLMP matrix tablets. A compatibility study was conducted to study components interactions. Scanning electron microscope (SEM) was performed before and after the tablets were placed in the dissolution medium. An in vivo study in human volunteers was performed with the optimized GLMP tablets, which were compared to pure and marketed drug products. Enhancement of GLMP aqueous solubility, using the polymeric drug solution technique, by more than 6-7 times when compared with the binary system. All the studied formulation factors significantly affected the studied variables. No significant interaction was detected among components. SEM illustrated the surface and inner tablet structure, and confirmed the drug release which was attributed to diffusion mechanism. The volunteer group administered the optimized GLMP tablet exhibited higher drug plasma concentration (147.4 ng/mL), longer time to reach maximum plasma concentration (4 h) and longer t 1/2 (7.236 h) compared to other groups. Matrix tablet loaded with a physically modified drug form could represent a key solution for drugs with inconsistent dissolution and absorption profiles.
Numerical study of phase conjugation in stimulated Brillouin scattering from an optical waveguide
NASA Astrophysics Data System (ADS)
Lehmberg, R. H.
1983-05-01
Stimulated Brillouin scattering (SBS) in a multimode optical waveguide is examined, and the parameters that affect the wavefront conjugation fidelity are studied. The nonlinear propagation code is briefly described and the calculated quantities are defined. The parameter study in the low reflectivity limit is described, and the effects of pump depletion are considered. The waveguide produced significantly higher fidelities than the focused configuration, in agreement with several experimental studies. The light scattered back through the phase aberrator exhibited a farfield intenstiy profile closely matching that of the incident beam; however, the nearfield intensity exhibited large and rapid spatial inhomogeneities across the entire aberrator, even for conjugation fidelities as high as 98 percent. In the absence of pump depletion, the fidelity increased with average pump intensity for amplitude gains up to around e to the 10th and then decreased slowly and monotonically with higher intensity. For all cases, pump depletion significantly enhanced the fidelity of the wavefront conjugation by inhibiting the small-scale pulling effect.
NASA Astrophysics Data System (ADS)
Ray, Nadja; Rupp, Andreas; Prechtel, Alexander
2017-09-01
Upscaling transport in porous media including both biomass development and simultaneous structural changes in the solid matrix is extremely challenging. This is because both affect the medium's porosity as well as mass transport parameters and flow paths. We address this challenge by means of a multiscale model. At the pore scale, the local discontinuous Galerkin (LDG) method is used to solve differential equations describing particularly the bacteria's and the nutrient's development. Likewise, a sticky agent tightening together solid or bio cells is considered. This is combined with a cellular automaton method (CAM) capturing structural changes of the underlying computational domain stemming from biomass development and solid restructuring. Findings from standard homogenization theory are applied to determine the medium's characteristic time- and space-dependent properties. Investigating these results enhances our understanding of the strong interplay between a medium's functional properties and its geometric structure. Finally, integrating such properties as model parameters into models defined on a larger scale enables reflecting the impact of pore scale processes on the larger scale.
Multiscale modeling for SiO2 atomic layer deposition for high-aspect-ratio hole patterns
NASA Astrophysics Data System (ADS)
Miyano, Yumiko; Narasaki, Ryota; Ichikawa, Takashi; Fukumoto, Atsushi; Aiso, Fumiki; Tamaoki, Naoki
2018-06-01
A multiscale simulation model is developed for optimizing the parameters of SiO2 plasma-enhanced atomic layer deposition of high-aspect-ratio hole patterns in three-dimensional (3D) stacked memory. This model takes into account the diffusion of a precursor in a reactor, that in holes, and the adsorption onto the wafer. It is found that the change in the aperture ratio of the holes on the wafer affects the concentration of the precursor near the top of the wafer surface, hence the deposition profile in the hole. The simulation results reproduced well the experimental results of the deposition thickness for the various hole aperture ratios. By this multiscale simulation, we can predict the deposition profile in a high-aspect-ratio hole pattern in 3D stacked memory. The atomic layer deposition parameters for conformal deposition such as precursor feeding time and partial pressure of precursor for wafers with various hole aperture ratios can be estimated.
Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi
2015-09-01
Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.
Effects of a modulated vortex structure on the diffraction dynamics of ring Airy Gaussian beams.
Huang, Xianwei; Shi, Xiaohui; Deng, Zhixiang; Bai, Yanfeng; Fu, Xiquan
2017-09-01
The evolution of the ring Airy Gaussian beams with a modulated vortex in free space is numerically investigated. Compared with the unmodulated vortex, the unique property is that the beam spots first break up, and then gather. The evolution of the beams is influenced by the parameters of the vortex modulation, and the splitting phenomenon gets enhanced with multiple rings becoming light spots if the modulation depth increases. The symmetric branch pattern of the beam spots gets changed when the number of phase folds increases, and the initial modulation phase only impacts the angle of the beam spots. Moreover, a large distribution factor correlates to a hollow Gaussian vortex shape and weakens the splitting and gathering trend. By changing the initial parameters of the vortex modulation and the distribution factor, the peak intensity is greatly affected. In addition, the energy flow and the angular momentum are elucidated with the beam evolution features being confirmed.
Sanni, Steinar; Lyng, Emily; Pampanin, Daniela M; Smit, Mathijs G D
2017-06-01
The aim of this paper is to bridge gaps between biomarker and whole organism responses related to oil based offshore discharges. These biomarker bridges will facilitate acceptance criteria for biomarker data linked to environmental risk assessment and translate biomarker results to higher order effects. Biomarker based species sensitivity distributions (SSD biomarkers ) have been constructed for relevant groups of biomarkers based on laboratory data from oil exposures. SSD curves express the fraction of species responding to different types of biomarkers. They have been connected to SSDs for whole organism responses (WORs) constructed in order to relate the SSD biomarkers to animal fitness parameters that are commonly used in environmental risk assessment. The resulting SSD curves show that biomarkers and WORs can be linked through their potentially affected fraction of species (PAF) distributions, enhancing the capability to monitor field parameters with better correlation to impact and risk assessment criteria and providing improved chemical/biological integration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Observing Inflationary Reheating
NASA Astrophysics Data System (ADS)
Martin, Jérôme; Ringeval, Christophe; Vennin, Vincent
2015-02-01
Reheating is the epoch which connects inflation to the subsequent hot big-bang phase. Conceptually very important, this era is, however, observationally poorly known. We show that the current Planck satellite measurements of the cosmic microwave background (CMB) anisotropies constrain the kinematic properties of the reheating era for most of the inflationary models. This result is obtained by deriving the marginalized posterior distributions of the reheating parameter for about 200 models of slow-roll inflation. Weighted by the statistical evidence of each model to explain the data, we show that the Planck 2013 measurements induce an average reduction of the posterior-to-prior volume by 40%. Making some additional assumptions on reheating, such as specifying a mean equation of state parameter, or focusing the analysis on peculiar scenarios, can enhance or reduce this constraint. Our study also indicates that the Bayesian evidence of a model can substantially be affected by the reheating properties. The precision of the current CMB data is therefore such that estimating the observational performance of a model now requires incorporating information about its reheating history.
Coherent Exciton Dynamics in the Presence of Underdamped Vibrations
Dijkstra, Arend G.; Wang, Chen; Cao, Jianshu; ...
2015-01-22
Recent ultrafast optical experiments show that excitons in large biological light-harvesting complexes are coupled to molecular vibration modes. These high-frequency vibrations will not only affect the optical response, but also drive the exciton transport. Here, using a model dimer system, the frequency of the underdamped vibration is shown to have a strong effect on the exciton dynamics such that quantum coherent oscillations in the system can be present even in the case of strong noise. Two mechanisms are identified to be responsible for the enhanced transport efficiency: critical damping due to the tunable effective strength of the coupling to themore » bath, and resonance coupling where the vibrational frequency coincides with the energy gap in the system. The interplay of these two mechanisms determines parameters responsible for the most efficient transport, and these optimal control parameters are comparable to those in realistic light-harvesting complexes. Interestingly, oscillations in the excitonic coherence at resonance are suppressed in comparison to the case of an off-resonant vibration.« less
A robust momentum management and attitude control system for the space station
NASA Technical Reports Server (NTRS)
Speyer, J. L.; Rhee, Ihnseok
1991-01-01
A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very assurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance.
Microstructural Influence on Mechanical Properties in Plasma Microwelding of Ti6Al4V Alloy
NASA Astrophysics Data System (ADS)
Baruah, M.; Bag, S.
2016-11-01
The complexity of joining Ti6Al4V alloy enhances with reduction in sheet thickness. The present work puts emphasis on microplasma arc welding (MPAW) of 500-μm-thick Ti6Al4V alloy in butt joint configuration. Using controlled and regulated arc current, the MPAW process is specifically designed to use in joining of thin sheet components over a wide range of process parameters. The weld quality is assessed by carefully controlling the process parameters and by reducing the formation of oxides. The combined effect of welding speed and current on the weld joint properties is evaluated for joining of Ti6Al4V alloy. The macro- and microstructural characterizations of the weldment by optical microscopy as well as the analysis of mechanical properties by microtensile and microhardness test have been performed. The weld joint quality is affected by specifically designed fixture that controls the oxidation of the joint and introduces high cooling rate. Hence, the solidified microstructure of welded specimen influences the mechanical properties of the joint. The butt joint of titanium alloy by MPAW at optimal process parameters is of very high quality, without any internal defects and with minimum residual distortion.
Robust momentum management and attitude control system for the Space Station
NASA Technical Reports Server (NTRS)
Rhee, Ihnseok; Speyer, Jason L.
1992-01-01
A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very accurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance.
Lee, Sindre; Norheim, Frode; Langleite, Torgrim M; Noreng, Hans J; Storås, Trygve H; Afman, Lydia A; Frost, Gary; Bell, Jimmy D; Thomas, E Louise; Kolnes, Kristoffer J; Tangen, Daniel S; Stadheim, Hans K; Gilfillan, Gregor D; Gulseth, Hanne L; Birkeland, Kåre I; Jensen, Jørgen; Drevon, Christian A; Holen, Torgeir
2016-11-01
Overweight and obesity lead to changes in adipose tissue such as inflammation and reduced insulin sensitivity. The aim of this study was to assess how altered energy balance by reduced food intake or enhanced physical activity affect these processes. We studied sedentary subjects with overweight/obesity in two intervention studies, each lasting 12 weeks affecting energy balance either by energy restriction (~20% reduced intake of energy from food) in one group, or by enhanced energy expenditure due to physical exercise (combined endurance- and strength-training) in the other group. We monitored mRNA expression by microarray and mRNA sequencing from adipose tissue biopsies. We also measured several plasma parameters as well as fat distribution with magnetic resonance imaging and spectroscopy. Comparison of microarray and mRNA sequencing showed strong correlations, which were also confirmed using RT-PCR In the energy restricted subjects (body weight reduced by 5% during a 12 weeks intervention), there were clear signs of enhanced lipolysis as monitored by mRNA in adipose tissue as well as plasma concentration of free-fatty acids. This increase was strongly related to increased expression of markers for M1-like macrophages in adipose tissue. In the exercising subjects (glucose infusion rate increased by 29% during a 12-week intervention), there was a marked reduction in the expression of markers of M2-like macrophages and T cells, suggesting that physical exercise was especially important for reducing inflammation in adipose tissue with insignificant reduction in total body weight. Our data indicate that energy restriction and physical exercise affect energy-related pathways as well as inflammatory processes in different ways, probably related to macrophages in adipose tissue. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Experimental demonstration of chaotic scattering of microwaves
NASA Astrophysics Data System (ADS)
Doron, E.; Smilansky, U.; Frenkel, A.
1990-12-01
Reflection of microwaves from a cavity is measured in a frequency domain where the underlying classical chaotic scattering leaves a clear mark on the wave dynamics. We check the hypothesis that the fluctuations of the S matrix can be described in terms of parameters characterizing the chaotic classical scatteirng. Absorption of energy in the cavity walls is shown to significantly affect the results, and is linked to time-domain properties of the scattering in a general way. We also show that features whose origin is entirely due to wave dynamics (e.g., the enhancement of the Wigner time delay due to time-reversal symmetry) coexist with other features which characterize the underlying classical dynamics.
Composite Overwrapped Pressure Vessel (COPV) Stress Rupture Testing
NASA Technical Reports Server (NTRS)
Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.
2010-01-01
This paper reports stress rupture testing of Kevlar(TradeMark) composite overwrapped pressure vessels (COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm (40-in.) diameter Kevlar(TradeMark) COPV was tested to failure (burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potomkin, Mykhailo; Kaiser, Andreas; Berlyand, Leonid
We consider active particles swimming in a convergent fluid flow in a trapezoid nozzle with no-slip walls. We use mathematical modeling to analyze trajectories of these particles inside the nozzle. By extensive Monte Carlo simulations, we show that trajectories are strongly affected by the background fluid flow and geometry of the nozzle leading to wall accumulation and upstream motion (rheotaxis). In particular, we describe the non-trivial focusing of active rods depending on physical and geometrical parameters. It is also established that the convergent component of the background flow leads to stability of both downstream and upstream swimming at the centerline.more » The stability of downstream swimming enhances focusing, and the stability of upstream swimming enables rheotaxis in the bulk.« less
A Study on L-Asparaginase of Nocardia levis MK-VL_113
Kavitha, Alapati; Vijayalakshmi, Muvva
2012-01-01
An enzyme-based drug, L-asparaginase, was produced by Nocardia levis MK-VL_113 isolated from laterite soils of Guntur region. Cultural parameters affecting the production of L-asparaginase by the strain were optimized. Maximal yields of L-asparaginase were recorded from 3-day-old culture grown in modified asparagine-glycerol salts broth with initial pH 7.0 at temperature 30°C. Glycerol (2%) and yeast extract (1.5%) served as good carbon and nitrogen sources for L-asparaginase production, respectively. Cell-disrupting agents like EDTA slightly enhanced the productivity of L-asparaginase. Ours is the first paper on the production of L-asparaginase by N. levis. PMID:22619604
A study on L-asparaginase of Nocardia levis MK-VL_113.
Kavitha, Alapati; Vijayalakshmi, Muvva
2012-01-01
An enzyme-based drug, L-asparaginase, was produced by Nocardia levis MK-VL_113 isolated from laterite soils of Guntur region. Cultural parameters affecting the production of L-asparaginase by the strain were optimized. Maximal yields of L-asparaginase were recorded from 3-day-old culture grown in modified asparagine-glycerol salts broth with initial pH 7.0 at temperature 30°C. Glycerol (2%) and yeast extract (1.5%) served as good carbon and nitrogen sources for L-asparaginase production, respectively. Cell-disrupting agents like EDTA slightly enhanced the productivity of L-asparaginase. Ours is the first paper on the production of L-asparaginase by N. levis.
Rato, L.; Alves, M. G.; Dias, T. R.; Cavaco, J. E.; Oliveira, Pedro F.
2015-01-01
Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM) induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ) T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by 1H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters. PMID:26064993
Rato, L; Alves, M G; Dias, T R; Cavaco, J E; Oliveira, Pedro F
2015-01-01
Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM) induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ) T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by (1)H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters.
Wei, Jianjun; Qian, Yajing; Liu, Wenjuan; Wang, Lutao; Ge, Yijie; Zhang, Jianghao; Yu, Jiang; Ma, Xingmao
2014-05-01
Catalytic nickel was successfully incorporated into nanoscale iron to enhance its dechlorination efficiency for trichloroethylene (TCE), one of the most commonly detected chlorinated organic compounds in groundwater. Ethane was the predominant product. The greatest dechlorination efficiency was achieved at 22 molar percent of nickel. This nanoscale Ni-Fe is poorly ordered and inhomogeneous; iron dissolution occurred whereas nickel was relatively stable during the 24-hr reaction. The morphological characterization provided significant new insights on the mechanism of catalytic hydrodechlorination by bimetallic nanoparticles. TCE degradation and ethane production rates were greatly affected by environmental parameters such as solution pH, temperature and common groundwater ions. Both rate constants decreased and then increased over the pH range of 6.5 to 8.0, with the minimum value occurring at pH 7.5. TCE degradation rate constant showed an increasing trend over the temperature range of 10 to 25°C. However, ethane production rate constant increased and then decreased over the range, with the maximum value occurring at 20°C. Most salts in the solution appeared to enhance the reaction in the first half hour but overall they displayed an inhibitory effect. Combined ions showed a similar effect as individual salts. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Widodo, Edy; Kariyam
2017-03-01
To determine the input variable settings that create the optimal compromise in response variable used Response Surface Methodology (RSM). There are three primary steps in the RSM problem, namely data collection, modelling, and optimization. In this study focused on the establishment of response surface models, using the assumption that the data produced is correct. Usually the response surface model parameters are estimated by OLS. However, this method is highly sensitive to outliers. Outliers can generate substantial residual and often affect the estimator models. Estimator models produced can be biased and could lead to errors in the determination of the optimal point of fact, that the main purpose of RSM is not reached. Meanwhile, in real life, the collected data often contain some response variable and a set of independent variables. Treat each response separately and apply a single response procedures can result in the wrong interpretation. So we need a development model for the multi-response case. Therefore, it takes a multivariate model of the response surface that is resistant to outliers. As an alternative, in this study discussed on M-estimation as a parameter estimator in multivariate response surface models containing outliers. As an illustration presented a case study on the experimental results to the enhancement of the surface layer of aluminium alloy air by shot peening.
An enhancement to the NA4 gear vibration diagnostic parameter
NASA Technical Reports Server (NTRS)
Decker, Harry J.; Handschuh, Robert F.; Zakrajsek, James J.
1994-01-01
A new vibration diagnostic parameter for health monitoring of gears, NA4*, is proposed and tested. A recently developed gear vibration diagnostic parameter NA4 outperformed other fault detection methods at indicating the start and initial progression of damage. However, in some cases, as the damage progressed, the sensitivity of the NA4 and FM4 parameters tended to decrease and no longer indicated damage. A new parameter, NA4* was developed by enhancing NA4 to improve the trending of the parameter. This allows for the indication of damage both at initiation and also as the damage progresses. The NA4* parameter was verified and compared to the NA4 and FM4 parameters using experimental data from single mesh spur and spiral bevel gear fatigue rigs. The primary failure mode for the test cases was naturally occurring tooth surface pitting. The NA4* parameter is shown to be a more robust indicator of damage.
Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishiokada, Takuya, E-mail: nishiokada@nf.eie.eng.osaka-u.ac.jp; Nagaya, Tomoki; Hagino, Shogo
2016-02-15
Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection aremore » investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.« less
Enhancements to the TOUGH2 Simulator as Implemented in iTOUGH2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, Stefan
iTOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis. It is based on the TOUGH2 simulator for non-isothermal multiphase, multicomponent flow and transport in fractured and porous media [Pruess, 1987, 1991, 2005, 2011; Falta et al., 1995; Pruess et al., 1999, 2002, 2012; Doughty, 2013]. The core of iTOUGH2 contains slightly modified versions of TOUGH2 modules. Most code modifications are editorial and do not affect the simulation results. As a result, standard TOUGH2 input files can be used in iTOUGH2, and identical results are obtained if iTOUGH2 is run in forward mode. However, a number ofmore » modifications have been made as described in this report. They enhance the functionality, flexibilitu, and eas-of-use of the forward simulator. This report complements the reports iTOUGH2 User's Guide, iTOUGH2 Command Referecne, and the collection of tutorial examples in iTOUGH2 Sample Problems.« less
Vraníková, Barbora; Pavloková, Sylvie; Gajdziok, Jan
2017-03-01
The preparation of liquisolid systems presents a promising and innovative possibility for enhancing dissolution profiles and improving the bioavailability of poorly soluble drugs. This study aims to evaluate the differences in the properties of liquisolid systems containing combinations of 3 commercially used superdisintegrants (sodium starch glycolate, crospovidone, and croscarmellose sodium). Multiple regression models and contour plots were used to study how the amount and the type of superdisintegrant used affected the quality parameters of liquisolid tablets. The results revealed that an increased amount of crospovidone in the mixture improves disintegration and wetting time and enhances drug release from the prepared liquisolid tablets. Moreover, it was observed that a binary blend of crospovidone and sodium starch glycolate improved tablet disintegration. Considering the obtained results, it could be stated that crospovidone showed the best properties to be used as superdisintegrant for the preparation of liquisolid systems containing rosuvastatin. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Muramatsu, Masayuki; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi
2016-02-01
Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.
Cultures differ in the ability to enhance affective neural responses.
Varnum, Michael E W; Hampton, Ryan S
2017-10-01
The present study (N = 55) used an event-related potential paradigm to investigate whether cultures differ in the ability to upregulate affective responses. Using stimuli selected from the International Affective Picture System, we found that European-Americans (N = 29) enhanced central-parietal late positive potential (LPP) (400-800 ms post-stimulus) responses to affective stimuli when instructed to do so, whereas East Asians (N = 26) did not. We observed cultural differences in the ability to enhance central-parietal LPP responses for both positively and negativelyvalenced stimuli, and the ability to enhance these two types of responses was positively correlated for Americans but negatively for East Asians. These results are consistent with the notion that cultural variations in norms and values regarding affective expression and experiences shape how the brain regulates emotions.
Enabling Disabled Persons to Gain Access to Digital Media
NASA Technical Reports Server (NTRS)
Beach, Glenn; OGrady, Ryan
2011-01-01
A report describes the first phase in an effort to enhance the NaviGaze software to enable profoundly disabled persons to operate computers. (Running on a Windows-based computer equipped with a video camera aimed at the user s head, the original NaviGaze software processes the user's head movements and eye blinks into cursor movements and mouse clicks to enable hands-free control of the computer.) To accommodate large variations in movement capabilities among disabled individuals, one of the enhancements was the addition of a graphical user interface for selection of parameters that affect the way the software interacts with the computer and tracks the user s movements. Tracking algorithms were improved to reduce sensitivity to rotations and reduce the likelihood of tracking the wrong features. Visual feedback to the user was improved to provide an indication of the state of the computer system. It was found that users can quickly learn to use the enhanced software, performing single clicks, double clicks, and drags within minutes of first use. Available programs that could increase the usability of NaviGaze were identified. One of these enables entry of text by using NaviGaze as a mouse to select keys on a virtual keyboard.
NASA Astrophysics Data System (ADS)
Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel
2016-10-01
In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.
Imanidis, Georgios; Luetolf, Peter
2006-07-01
An extended model for iontophoretic enhancement of transdermal drug permeation under constant voltage is described based on the previously modified Nernst-Planck equation, which included the effect of convective solvent flow. This model resulted in an analytical expression for the enhancement factor as a function of applied voltage, convective flow velocity due to electroosmosis, ratio of lipid to aqueous pathway passive permeability, and weighted average net ionic valence of the permeant in the aqueous epidermis domain. The shift of pH in the epidermis compared to bulk caused by the electrical double layer at the lipid-aqueous domain interface was evaluated using the Poisson-Boltzmann equation. This was solved numerically for representative surface charge densities and yielded pH differences between bulk and epidermal aqueous domain between 0.05 and 0.4 pH units. The developed model was used to analyze the experimental enhancement of an amphoteric weak electrolyte measured in vitro using human cadaver epidermis and a voltage of 250 mV at different pH values. Parameter values characterizing the involved factors were determined that yielded the experimental enhancement factors and passive permeability coefficients at all pH values. The model provided a very good agreement between experimental and calculated enhancement and passive permeability. The deduced parameters showed (i) that the pH shift in the aqueous permeation pathway had a notable effect on the ionic valence and the partitioning of the drug in this domain for a high surface charge density and depending on the pK(a) and pI of the drug in relation to the bulk pH; (ii) the magnitude and the direction of convective transport due to electroosmosis typically reflected the density and sign, respectively, of surface charge of the tissue and its effect on enhancement was substantial for bulk pH values differing from the pI of epidermal tissue; (iii) the aqueous pathway predominantly determined passive permeability of the studied compound despite its measurable lipophilicity and therefore the lipid pathway did not notably affect enhancement. Hence, the proposed model can provide a good quantitative insight into the interplay between different phenomena and permeant properties influencing iontophoresis and can potentially be used as a predictive tool of the process.
Vajapeyam, S; Stamoulis, C; Ricci, K; Kieran, M; Poussaint, T Young
2017-01-01
Pharmacokinetic parameters from dynamic contrast-enhanced MR imaging have proved useful for differentiating brain tumor grades in adults. In this study, we retrospectively reviewed dynamic contrast-enhanced perfusion data from children with newly diagnosed brain tumors and analyzed the pharmacokinetic parameters correlating with tumor grade. Dynamic contrast-enhanced MR imaging data from 38 patients were analyzed by using commercially available software. Subjects were categorized into 2 groups based on pathologic analyses consisting of low-grade (World Health Organization I and II) and high-grade (World Health Organization III and IV) tumors. Pharmacokinetic parameters were compared between the 2 groups by using linear regression models. For parameters that were statistically distinct between the 2 groups, sensitivity and specificity were also estimated. Eighteen tumors were classified as low-grade, and 20, as high-grade. Transfer constant from the blood plasma into the extracellular extravascular space (K trans ), rate constant from extracellular extravascular space back into blood plasma (K ep ), and extracellular extravascular volume fraction (V e ) were all significantly correlated with tumor grade; high-grade tumors showed higher K trans , higher K ep , and lower V e . Although all 3 parameters had high specificity (range, 82%-100%), K ep had the highest specificity for both grades. Optimal sensitivity was achieved for V e , with a combined sensitivity of 76% (compared with 71% for K trans and K ep ). Pharmacokinetic parameters derived from dynamic contrast-enhanced MR imaging can effectively discriminate low- and high-grade pediatric brain tumors. © 2017 by American Journal of Neuroradiology.
Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu
2016-01-01
Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.
Song, Xianzhi; Peng, Chi; Li, Gensheng
2016-01-01
Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells. PMID:27249026
Qu, En-Ze; Zhang, Ying-Cai; Li, Zhi-Yan; Liu, Yang; Wang, Jin-Rui
2014-11-01
The clinical utility of contrast-enhanced sonography in portal hypertension remains unclear. We explored the feasibility of using contrast-enhanced sonography for noninvasive assessment of portal venous pressure. Twenty healthy individuals (control group; 9 men; mean age, 46.4 years) and 18 patients with portal hypertension (15 men; mean age, 46.2 years) were enrolled in this study. The portal hypertension group included patients who underwent splenectomy and pericardial blood vessel disarticulation at our hospital from October 2010 to March 2011. One week before surgery, patients with portal hypertension underwent preoperative liver contrast-enhanced sonography. Two-dimensional, Doppler, and contrast-enhanced sonographic parameters were compared between the groups. Portal venous pressure was measured intraoperatively by portal vein puncture in the portal hypertension group, and its relationship with the other parameters was analyzed. The 2-dimensional, Doppler, and contrast-enhanced sonographic parameters differed between the groups (P < .01). Portal venous pressure was inversely correlated with the area under the portal vein/hepatic artery time-intensity curve ratio (Qp/Qa), portal vein/hepatic artery strength ratio (Ip/Ia), and portal vein/hepatic artery wash-in perfusion slope ratio (βp/βa), with correlation coefficients of -0.701, -0.625, and -0.494, respectively. Measurement of the liver contrast-enhanced sonographic parameters Qp/Qa, Ip/Ia, and βp/βa could be used as a new quantitative method for noninvasively assessing portal venous pressure. © 2014 by the American Institute of Ultrasound in Medicine.
Dillman, Jonathan R; Rubin, Jonathan M; Johnson, Laura A; Moons, David S; Higgins, Peter D R
2017-03-01
To determine whether contrast-enhanced sonographic quantitative perfusion parameters can detect bowel wall fibrosis in the setting of mixed inflammatory and fibrotic lesions in a Crohn disease animal model. This study was approved by the institutional Committee on the Use and Care of Animals. Multiple (range, 1-5) 2,4,6-trinitrobenzenesulfonic acid-ethanol enemas were used to create intestinal inflammatory lesions with variable fibrosis in female Lewis rats. Low-mechanical index contrast-enhanced sonography was performed 3 days after the final enema using a 0.2-mL bolus of sulfur hexafluoride microbubbles injected through a tail vein. Contrast-enhanced sonographic data were analyzed with software that converts video data into echo-power (linearized) data. Colorectal lesions were scored for histopathologic inflammation and fibrosis; bowel wall collagen was quantified by Western blotting. The Spearman correlation was used to assess associations between contrast-enhanced sonographic quantitative parameters and bowel wall collagen; the Kruskal-Wallis test was used to compare continuous results between histopathologic groups. Thirty-one animals were included in our analysis. Animals were placed into 3 histopathologic cohorts: (1) severe bowel wall inflammation/minimal or no fibrosis (n = 11); (2) severe bowel wall inflammation/moderate fibrosis (n = 9); and (3) severe bowel wall inflammation/severe fibrosis (n = 11). Western blotting showed a significant difference in bowel wall collagen between histopathologic cohorts (P = .0001). There was no correlation between any contrast-enhanced sonographic quantitative parameter and bowel wall collagen (P > .05). There was no difference between histopathologic cohorts for any contrast-enhanced sonographic quantitative parameter (P > .05). Contrast-enhanced sonographic quantitative perfusion parameters failed to effectively detect bowel wall fibrosis in the setting of superimposed inflammation in a Crohn disease animal model. © 2017 by the American Institute of Ultrasound in Medicine.
Gable, Philip A; Harmon-Jones, Eddie
2010-08-01
Emotions influence attention and processes involved in memory. Although some research has suggested that positive affect categorically influences these processes differently than neutral affect, recent research suggests that motivational intensity of positive affective states influences these processes. The present experiments examined memory for centrally or peripherally presented information after the evocation of approach-motivated positive affect. Experiment 1 found that, relative to neutral conditions, pregoal, approach-motivated positive affect (caused by a monetary incentives task) enhanced memory for centrally presented information, whereas postgoal, low approach-motivated positive affect enhanced memory for peripherally presented information. Experiment 2 found that, relative to a neutral condition, high approach-motivated positive affect (caused by appetitive pictures) enhanced memory for centrally presented information but hindered memory for peripheral information. These results suggest a more complex relationship between positive affect and memory processes and highlight the importance of considering the motivational intensity of positive affects in cognitive processes. Copyright 2010 APA
Kumar Dubey, Arvind; Kumar, Navin; Ranjan, Ruma; Gautam, Ambedkar; Pande, Veena; Sanyal, Indraneel; Mallick, Shekhar
2018-02-01
The present study was intended to investigate the role of amino acid glycine in detoxification of As in Oryza sativa L. The growth parameters such as, shoot length and fresh weight were decreased during As(III) and As(V) toxicity. However, the application of glycine recovered the growth parameters against As stress. The application of glycine reduced the As accumulation in all the treatments, and it was more effective against As(III) treatment and reduced the accumulation by 68% in root and 71% in shoot. Similarly, the translocation of As from root to shoot, was higher against As(III) and As(V) treatments, whereas, reduced upon glycine application. The translocation of Fe and Na was also affected by As, which was lower under As(III) and As(V) treatments. However, the application of glycine significantly enhanced the translocation of Fe and Na in the shoot. Besides, the expression of lower silicon transporters i.e. Lsi-1 and Lsi-2 was observed to be significantly suppressed in the root with the application of glycine against As treatment. Similarly, the expression of three GRX and two GST gene isoforms were found to be significantly increased with glycine application. Simultaneously, the activities of antioxidant enzymes i.e. l-arginine dependent NOS, SOD, NTR and GRX were found to be significantly enhanced in the presence of glycine. Increased activities of antioxidant enzymes coincided with the decreased level of TBARS and H 2 O 2 in rice seedlings. Overall, the results suggested that the application of glycine reduces As accumulation through suppressing the gene expression of lower silicon transporters and ameliorates As toxicity by enhancing antioxidants defense mechanism in rice seedlings. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Maktouf, Nabaouia; Moussa, Ali Ben; Turki, Saïd
2018-06-01
Active control of the flow behind a bluff body is obtained by integrating a vibrating membrane. A numerical study has been conducted to investigate the effect of the vibration of a flexible membrane, stuck to the rear side of a circular cylinder, on the global flow parameters such as the Strouhal number, the drag and lift coefficients. The shape of the membrane is evolving as a vibrating chord using a dynamic mesh. The governing equations of 2D and laminar flow have been solved using ANSYS Fluent 16.0 as a solver and the Gambit as a modeler. The motion of the membrane is managed by two parameters: frequency f and amplitude A. The effect of the flexible membrane motion is studied for the range of conditions as 0.1 Hz ≤ f ≤ 6 Hz and 5 × 10-4 m ≤ A ≤ 10-3 m at a fixed Reynolds number, Re = 150. Three different sizes of the flexible membrane have been studied. Results show that a beat phenomenon affects the drag coefficient. The amplitude does not affect significantly the Strouhal number as well as drag and lift coefficients. By increasing the size of the flexible membrane, we show a lift enhancement by a growth rate equal to 39.15% comparing to the uncontrolled case.
Microphysical Modelling of the 1999-2000 Arctic Winter. 2; Chlorine Activation and Ozone Depletion
NASA Technical Reports Server (NTRS)
Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)
2001-01-01
The effect of a range of assumptions about polar stratospheric clouds (PSCs) on ozone depletion has been assessed using at couple microphysical/photochemical model. The composition of the PSCs was varied (ternary solutions, nitric acid trihydrate, nitric acid dehydrate, or ice), as were parameters that affected the levels of denitrification and dehydration. Ozone depletion was affected by assumptions about PSC freezing because of the variability in resultant nitrification chlorine activation in all scenarios was similar despite the range of assumed PSC compositions. Vortex-average ozone loss exceeded 40% in the lower stratosphere for simulations without nitrification an additional ozone loss of 15-20% was possible in scenarios where vortex-average nitrification reached 60%. Ozone loss intensifies non-linearly with enhanced nitrification in air parcels with 90% nitrification 40% ozone loss in mid-April can be attributed to nitrification alone. However, these effects are sensitive to the stability of the vortex in springtime: nitrification only began to influence ozone depletion in mid-March.
Current transmission and nonlinear effects in un-gated thermionic cathode RF guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Harris, J. R.
Un-gated thermionic cathode RF guns are well known as a robust source of electrons for many accelerator applications. These sources are in principle scalable to high currents without degradation of the transverse emittance due to control grids but they are also known for being limited by back-bombardment. While back-bombardment presents a significant limitation, there is still a lack of general understanding on how emission over the whole RF period will affect the nature of the beams produced from these guns. In order to improve our understanding of how these guns can be used in general we develop analytical models thatmore » predict the transmission efficiency as a function of the design parameters, study how bunch compression and emission enhancement caused by Schottky barrier lowering affect the output current profile in the gun, and study the onset of space-charge limited effects and the resultant virtual cathode formation leading to a modulation in the output current distribution.« less
Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang-Yang; Stanek, Christopher Richard; Andersson, Anders David Ragnar
2015-07-21
The thermal conductivity of uranium dioxide (UO 2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO 2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO 2, as a function of defectmore » concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].« less
Samperio-Ramos, Guillermo; Olsen, Ylva S; Tomas, Fiona; Marbà, Núria
2015-07-15
The Mediterranean Sea is a hotspot for invasive species and projected Mediterranean warming might affect their future spreading. We experimentally examined ecophysiological responses to the temperature range 23-31 °C in three invasive seaweeds commonly found in the Mediterranean: Acrothamnion preissii, Caulerpa cylindracea and Lophocladia lallemandii. The warming range tested encompassed current and projected (for the end of 21st Century) maximum temperatures for the Mediterranean Sea. Optimal ecophysiological temperatures for A. preissii, C. cylindracea and L. lallemandii were 25 °C, 27 °C and 29 °C, respectively. Warming below the optimal temperatures enhanced RGR of all studied invasive seaweeds. Although sensitive, seaweed photosynthetic yield was less temperature-dependent than growth. Our results demonstrate that temperature is a key environmental parameter in regulating the ecophysiological performance of these invasive seaweeds and that Mediterranean warming conditions may affect their invasion trajectory. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blais, AR; Dekaban, M; Lee, T-Y
2014-08-15
Quantitative analysis of dynamic positron emission tomography (PET) data usually involves minimizing a cost function with nonlinear regression, wherein the choice of starting parameter values and the presence of local minima affect the bias and variability of the estimated kinetic parameters. These nonlinear methods can also require lengthy computation time, making them unsuitable for use in clinical settings. Kinetic modeling of PET aims to estimate the rate parameter k{sub 3}, which is the binding affinity of the tracer to a biological process of interest and is highly susceptible to noise inherent in PET image acquisition. We have developed linearized kineticmore » models for kinetic analysis of dynamic contrast enhanced computed tomography (DCE-CT)/PET imaging, including a 2-compartment model for DCE-CT and a 3-compartment model for PET. Use of kinetic parameters estimated from DCE-CT can stabilize the kinetic analysis of dynamic PET data, allowing for more robust estimation of k{sub 3}. Furthermore, these linearized models are solved with a non-negative least squares algorithm and together they provide other advantages including: 1) only one possible solution and they do not require a choice of starting parameter values, 2) parameter estimates are comparable in accuracy to those from nonlinear models, 3) significantly reduced computational time. Our simulated data show that when blood volume and permeability are estimated with DCE-CT, the bias of k{sub 3} estimation with our linearized model is 1.97 ± 38.5% for 1,000 runs with a signal-to-noise ratio of 10. In summary, we have developed a computationally efficient technique for accurate estimation of k{sub 3} from noisy dynamic PET data.« less
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sumaira; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
Flow of second grade fluid by a rotating disk with heat and mass transfer is discussed. Additional effects of heat generation/absorption are also analyzed. Flow is also subjected to homogeneous-heterogeneous reactions. The convergence of computed solution is assured through appropriate choices of initial guesses and auxiliary parameters. Investigation is made for the effects of involved parameters on velocities (radial, axial, tangential), temperature and concentration. Skin friction and Nusselt number are also analyzed. Graphical results depict that an increase in viscoelastic parameter enhances the axial, radial and tangential velocities. Opposite behavior of temperature is observed for larger values of viscoelastic and heat generation/absorption parameters. Concentration profile is increasing function of Schmidt number, viscoelastic parameter and heterogeneous reaction parameter. Magnitude of skin friction and Nusselt number are enhanced for larger viscoelastic parameter.
Bamberg, Fabian; Hetterich, Holger; Rospleszcz, Susanne; Lorbeer, Roberto; Auweter, Sigrid D; Schlett, Christopher L; Schafnitzel, Anina; Bayerl, Christian; Schindler, Andreas; Saam, Tobias; Müller-Peltzer, Katharina; Sommer, Wieland; Zitzelsberger, Tanja; Machann, Jürgen; Ingrisch, Michael; Selder, Sonja; Rathmann, Wolfgang; Heier, Margit; Linkohr, Birgit; Meisinger, Christa; Weber, Christian; Ertl-Wagner, Birgit; Massberg, Steffen; Reiser, Maximilian F; Peters, Annette
2017-01-01
Detailed pathophysiological manifestations of early disease in the context of prediabetes are poorly understood. This study aimed to evaluate the extent of early signs of metabolic and cardio-cerebrovascular complications affecting multiple organs in individuals with prediabetes. Subjects without a history of stroke, coronary artery disease, or peripheral artery disease were enrolled in a case-control study nested within the Cooperative Health Research in the Region of Augsburg (KORA) FF4 cohort and underwent comprehensive MRI assessment to characterize cerebral parameters (white matter lesions, microbleeds), cardiovascular parameters (carotid plaque, left ventricular function, and myocardial late gadolinium enhancement [LGE]), and metabolic parameters (hepatic proton-density fat fraction [PDFF] and subcutaneous and visceral abdominal fat). Among 400 subjects who underwent MRI, 103 subjects had prediabetes and 54 had established diabetes. Subjects with prediabetes had an increased risk for carotid plaque and adverse functional cardiac parameters, including reduced early diastolic filling rates as well as a higher prevalence of LGE compared with healthy control subjects. In addition, people with prediabetes had significantly elevated levels of PDFF and total and visceral fat. Thus, subjects with prediabetes show early signs of subclinical disease that include vascular, cardiac, and metabolic changes, as measured by whole-body MRI after adjusting for cardiometabolic risk factors. © 2017 by the American Diabetes Association.
NASA Astrophysics Data System (ADS)
Kornfeld, A.; Van der Tol, C.; Berry, J. A.
2015-12-01
Recent advances in optical remote sensing of photosynthesis offer great promise for estimating gross primary productivity (GPP) at leaf, canopy and even global scale. These methods -including solar-induced chlorophyll fluorescence (SIF) emission, fluorescence spectra, and hyperspectral features such as the red edge and the photochemical reflectance index (PRI) - can be used to greatly enhance the predictive power of global circulation models (GCMs) by providing better constraints on GPP. The way to use measured optical data to parameterize existing models such as SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) is not trivial, however. We have therefore extended a biochemical model to include fluorescence and other parameters in a coupled treatment. To help parameterize the model, we then use nonlinear curve-fitting routines to determine the parameter set that enables model results to best fit leaf-level gas exchange and optical data measurements. To make the tool more accessible to all practitioners, we have further designed a graphical user interface (GUI) based front-end to allow researchers to analyze data with a minimum of effort while, at the same time, allowing them to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. Here we discuss the tool and its effectiveness, using recently-gathered leaf-level data.
Differential neurobiological effects of expert advice on risky choice in adolescents and adults.
Engelmann, Jan B; Moore, Sara; Monica Capra, C; Berns, Gregory S
2012-06-01
We investigated behavioral and neurobiological mechanisms by which risk-averse advice, provided by an expert, affected risky decisions across three developmental groups [early adolescents (12-14 years), late adolescents (15-17 years), adults (18+ years)]. Using cumulative prospect theory, we modeled choice behavior during a risky-choice task. Results indicate that advice had a significantly greater impact on risky choice in both adolescent groups than in adults. Using functional magnetic resonance imaging, we investigated the neural correlates of this behavioral effect. Developmental effects on correlations between brain activity and valuation parameters were obtained in regions that can be classified into (i) cognitive control regions, such as dorsolateral prefrontal cortex (DLPFC) and ventrolateral PFC; (ii) social cognition regions, such as posterior temporoparietal junction; and (iii) reward-related regions, such as ventromedial PFC (vmPFC) and ventral striatum. Within these regions, differential effects of advice on neural correlates of valuation were observed across development. Specifically, advice increased the correlation strength between brain activity and parameters reflective of safe choice options in adolescent DLPFC and decreased correlation strength between activity and parameters reflective of risky choice options in adult vmPFC. Taken together, results indicate that, across development, distinct brain systems involved in cognitive control and valuation mediate the risk-reducing effect of advice during decision making under risk via specific enhancements and reductions of the correlation strength between brain activity and valuation parameters.
Estimation of actual evapotranspiration in the Nagqu river basin of the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Zou, Mijun; Zhong, Lei; Ma, Yaoming; Hu, Yuanyuan; Feng, Lu
2018-05-01
As a critical component of the energy and water cycle, terrestrial actual evapotranspiration (ET) can be influenced by many factors. This study was mainly devoted to providing accurate and continuous estimations of actual ET for the Tibetan Plateau (TP) and analyzing the effects of its impact factors. In this study, summer observational data from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) for 2003 to 2004 was selected to determine actual ET and investigate its relationship with energy, hydrological, and dynamical parameters. Multiple-layer air temperature, relative humidity, net radiation flux, wind speed, precipitation, and soil moisture were used to estimate actual ET. The regression model simulation results were validated with independent data retrieved using the combinatory method. The results suggested that significant correlations exist between actual ET and hydro-meteorological parameters in the surface layer of the Nagqu river basin, among which the most important factors are energy-related elements (net radiation flux and air temperature). The results also suggested that how ET is eventually affected by precipitation and two-layer wind speed difference depends on whether their positive or negative feedback processes have a more important role. The multivariate linear regression method provided reliable estimations of actual ET; thus, 6-parameter simplified schemes and 14-parameter regular schemes were established.
In Vivo Mitochondrial Oxygen Tension Measured by a Delayed Fluorescence Lifetime Technique
Mik, Egbert G.; Johannes, Tanja; Zuurbier, Coert J.; Heinen, Andre; Houben-Weerts, Judith H. P. M.; Balestra, Gianmarco M.; Stap, Jan; Beek, Johan F.; Ince, Can
2008-01-01
Mitochondrial oxygen tension (mitoPO2) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO2 in vivo exists. Here we report in vivo measurement of mitoPO2 and the recovery of mitoPO2 histograms in rat liver by a novel optical technique under normal and pathological circumstances. The technique is based on oxygen-dependent quenching of the delayed fluorescence lifetime of protoporphyrin IX. Application of 5-aminolevulinic acid enhanced mitochondrial protoporphyrin IX levels and induced oxygen-dependent delayed fluorescence in various tissues, without affecting mitochondrial respiration. Using fluorescence microscopy, we demonstrate in isolated hepatocytes that the signal is of mitochondrial origin. The delayed fluorescence lifetime was calibrated in isolated hepatocytes and isolated perfused livers. Ultimately, the technique was applied to measure mitoPO2 in rat liver in vivo. The results demonstrate mitoPO2 values of ∼30–40 mmHg. mitoPO2 was highly sensitive to small changes in inspired oxygen concentration around atmospheric oxygen level. Ischemia-reperfusion interventions showed altered mitoPO2 distribution, which flattened overall compared to baseline conditions. The reported technology is scalable from microscopic to macroscopic applications, and its reliance on an endogenous compound greatly enhances its potential field of applications. PMID:18641065
Wieser, Gerhard; Grams, Thorsten E.E.; Matysssek, Rainer; Oberhuber, Walter; Gruber, Andreas
2016-01-01
The study quantified the effect of soil warming on sap flow density (Qs) of Pinus cembra at treeline in the Central Tyrolean Alps. To enhance soil temperature we installed a transparent roof construction above the forest floor around six trees. Six other trees served as controls in the absence of any manipulation. Roofing enhanced growing season mean soil temperature by 1.6, 1.3, and 1.0 °C at 5, 10, and 20 cm soil depth, respectively, while soil water availability was not affected. Sap flow density (using Granier-type thermal dissipation probes) and environmental parameters were monitored throughout three growing seasons. During the first year of treatment, no warming effect was detected on Qs. However, soil warming caused Qs to increase significantly by 11 and 19% above levels in control trees during the second and third year, respectively. This effect appeared to result from warming-induced root production, a reduction in viscosity and perhaps an increase also in root hydraulic conductivity. Hardly affected were leaf-level net CO2 uptake rate and conductance for water vapor, so that water-use efficiency stayed unchanged as confirmed by needle δ13C analysis. We conclude that tree water loss will increase with soil warming, which may alter the water balance within the treeline ecotone of the Central Austrian Alps in a future warming environment. PMID:25737326
Rassu, Giovanna; Gavini, Elisabetta; Spada, Gianpiera; Giunchedi, Paolo; Marceddu, Salvatore
2008-11-01
The preparation of ketoprofen spray-dried microspheres can be affected by the long drug recrystallization time. Polymer type and drug-polymer ratio as well as manufacturing parameters affect the preparation. The purpose of this work was to evaluate the possibility to obtain ketoprofen spray-dried microspheres using the Eudragit RS and RL; the influence of the spray-drying parameters on morphology, dimension, and physical stability of microspheres was studied. Ketoprofen microspheres based on Eudragit blend can be prepared by spray-drying and the nebulization parameters do not influence significantly particle properties; nevertheless, they can be affected by drying and storage methods. No effect of the container material is found.
Dynamic contrast enhanced MRI of the placenta: A tool for prenatal diagnosis of placenta accreta?
Millischer, A E; Deloison, B; Silvera, S; Ville, Y; Boddaert, N; Balvay, D; Siauve, N; Cuenod, C A; Tsatsaris, V; Sentilhes, L; Salomon, L J
2017-05-01
Ultrasound (US) is the primary imaging modality for the diagnosis of placenta accreta, but it is not sufficiently accurate. MRI morphologic criteria have recently emerged as a useful tool in this setting, but their analysis is too subjective. Recent studies suggest that gadolinium enhancement may help to distinguish between the stretched myometrium and placenta within a scar area. However, objective MRI criteria are still required for prenatal diagnosis of placenta accreta. The purpose of this study was to assess the diagnostic value of dynamic contrast gadolinium enhancement (DCE) MRI patterns for placenta accreta. MR images were acquired with a 1.5-T unit at 30-35 weeks of gestation in women with a history of Caesarian section, a low-lying anterior placenta, and US features compatible with placenta accreta. Sagittal, axial and coronal SSFP (Steady State Free Precession) sequences were acquired before injection. Then, contrast-enhanced dynamic T1-weighted images were acquired through the entire cross-sectional area of the placenta. Images were obtained sequentially at 10- to 14-s intervals for 2 min, beginning simultaneously with the bolus injection. Functional analysis was performed retrospectively, and tissular relative enhancement parameters were extracted from the recorded images. The suspected area of accreta (SAA) was placed in the region of the previous scar, and a control area (CA) of similar size was placed on the same image plane, as far as possible from the SAA. Semi-quantitative analysis of DCE-MR images was based on the kinetic enhancement curves in these two regions of interest (ROI). Three tissular relative enhancement parameters were compared according to the pregnancy outcomes, namely time to peak, maximal signal intensity, and area under the enhancement curve. We studied 9 women (43%) with accreta and 12 women (57%) with a normal placenta. All three tissular relative enhancement parameters differed significantly between the two groups (p < 10 -3 ). The use of dynamic contrast-enhanced MRI at 30-35 weeks of gestation in women with a high risk of placenta accreta allows the extraction of tissular enhancement parameters that differ significantly between placenta accreta and normal placenta. It therefore provides objective parameters on which to base the diagnosis and patient management. Copyright © 2017. Published by Elsevier Ltd.
Zalvidea; Colautti; Sicre
2000-05-01
An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.
Identification of Bouc-Wen hysteretic parameters based on enhanced response sensitivity approach
NASA Astrophysics Data System (ADS)
Wang, Li; Lu, Zhong-Rong
2017-05-01
This paper aims to identify parameters of Bouc-Wen hysteretic model using time-domain measured data. It follows a general inverse identification procedure, that is, identifying model parameters is treated as an optimization problem with the nonlinear least squares objective function. Then, the enhanced response sensitivity approach, which has been shown convergent and proper for such kind of problems, is adopted to solve the optimization problem. Numerical tests are undertaken to verify the proposed identification approach.
Xu, Yanqun; Charles, Marie Thérèse; Luo, Zisheng; Roussel, Dominique; Rolland, Daniel
2017-07-01
Preharvest ultraviolet-C (UV-C) treatment of strawberry is a very new approach, and little information is available on the effect of this treatment on plant growth regulators. In this study, the effect of preharvest UV-C irradiations at three different doses on strawberry yield, fruit quality parameters and endogenous phytohormones was investigated simultaneously. The overall marketable yield of strawberry was not affected by the preharvest UV-C treatments, although more aborted and misshapen fruits were found in UV-C treated groups than in the untreated control. The fruits in the high dose group were firmer and had approximately 20% higher sucrose content and 15% higher ascorbic acid content than the control, while fruits from the middle and low dose groups showed no significant changes in these parameters. The lower abscisic acid (ABA) content found in the fruits in the high UV-C group may be associated with those quality changes. The citric acid content decreased only in the low dose group (reduction of 5.8%), with a concomitant 37% reduction in jasmonic acid (JA) content, compared to the control. The antioxidant status of fruits that received preharvest UV-C treatment was considered enhanced based on their oxygen radical absorbance capacity (ORAC) and malondialdehyde (MDA) content. In terms of aroma, three volatile alcohols differed significantly among the various treatments with obvious activation of alcohol acyltransferase (AAT) activity. The observed synchronous influence on physiological indexes and related phytohormones suggests that preharvest UV-C might affect fruit quality via the action of plant hormones. Crown Copyright © 2017. Published by Elsevier Masson SAS. All rights reserved.
Understanding the Yellowstone magmatic system using 3D geodynamic inverse models
NASA Astrophysics Data System (ADS)
Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.
2017-12-01
The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.
Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.
Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D
2012-11-15
This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights reserved.
Ozone and nitrogen effects on yield and nutritive quality of the annual legume Trifolium cherleri
NASA Astrophysics Data System (ADS)
Sanz, J.; González-Fernández, I.; Calvete-Sogo, H.; Lin, J. S.; Alonso, R.; Muntifering, R.; Bermejo, V.
2014-09-01
Two independent experiments were performed in an Open-Top Chamber facility to determine the response of biomass and nutritive quality of the annual legume Trifolium cherleri to increased levels of ozone (O3) and nitrogen (N) deposition, two main drivers of global change. Plants growing in pots were exposed to three O3 treatments: charcoal-filtered air (CFA); non-filtered air, reproducing ambient O3 levels of the site (NFA); and non-filtered air supplemented with 40 nl l-1 (NFA+). Nitrogen was added in biweekly doses to achieve final doses of 5 (N5), 15 (N15) and 30 kg ha-1 (N30), reproducing the N deposition range in the Iberian Peninsula. Ozone negatively affected all the growth-related parameters and increased plant senescent biomass. The pollutant affected subterranean biomass to a greater extent than aerial biomass, resulting in altered aerial/subterranean ratio. Effects in the second experiment followed the same pattern as in the first, but were of lesser magnitude. However, these differences between assays could not be explained adequately by the absorbed O3 fluxes (Phytotoxic Ozone Dose, POD). Concentrations of cell-wall constituents related to nutritive quality increased with the O3 exposure, reducing the Relative Food Value index (RFV) that indicates decreased nutritive quality of the forage. Nitrogen stimulated all growth-related parameters, but increased the aboveground biomass more than the subterranean biomass. No effects of N fertilizer were detected for the nutritive quality parameters. A significant interaction between O3 and N was found in the second experiment. N further enhanced the increase of senescent biomass caused by O3. Results indicate that O3 is a potentially significant environmental stress factor in terms of structure and diversity of Mediterranean pastures.
Preparation of lactic acid bacteria fermented wheat-yoghurt mixtures.
Magala, Michal; Kohajdová, Zlatica; Karovičová, Jolana
2013-01-01
Tarhana, a wheat-yoghurt fermented mixture, is considered as a good source of saccharides, proteins, some vitamins and minerals. Moreover, their preparation is inexpensive and lactic acid fermentation offers benefits like product preservation, enhancement of nutritive value and sensory properties improvement. The aim of this work was to evaluate changes of some chemical parameters during fermentation of tarhana, when the level of salt and amount of yoghurt used were varied. Some functional and sensory characteristics of the fi nal product were also determined. Chemical analysis included determination of pH, titrable acidity, content of reducing saccharides, lactic, acetic and citric acid. Measured functional properties of tarhana powder were foaming capacity, foam stability, water absorption capacity, oil absorption capacity and emulsifying activity. Tarhana soups samples were evaluated for their sensory characteristics (colour, odor, taste, consistency and overall acceptability). Fermentation of tarhana by lactic acid bacteria and yeasts led to decrease in pH, content of reducing saccharides and citric acid, while titrable acidity and concentration of lactic and acetic acid increased. Determination of functional properties of tarhana powder showed, that salt absence and increased amount of yoghurt in tarhana recipe reduced foaming capacity and oil absorption capacity, whereas foam stability and water absorption capacity were improved. Sensory evaluation of tarhana soups showed that variations in tarhana recipe adversly affected sensory parameters of fi nal products. Variations in tarhana recipe (salt absence, increased proportion of yoghurt) led to changes in some chemical parameters (pH, titrable acidity, reducing saccharides, content of lactic, acetic and citric acid). Functional properties were also affected with changed tarhana recipe. Sensory characteristics determination showed, that standard tarhana fermented for 144 h had the highest overall acceptability.
Ippolito, Davide; Trattenero, Chiara; Talei Franzesi, Cammillo; Casiraghi, Alessandra; Lombardi, Sophie; Vacirca, Francesco; Corso, Rocco; Sironi, Sandro
2016-01-01
The aim of this study was to investigate the role of dynamic contrast-enhanced magnetic resonance imaging (MRI) in evaluation of blood flow changes related to transarterial chemoembolization (TACE) and radiofrequency ablation (RFA) procedures in patients with hepatocellular carcinoma (HCC) lesions. Fifty-four patients, with biopsy-proven HCC, who underwent TACE or RFA, were evaluated, 1 month after treatment, with upper abdominal MRI examination. Multiplanar T2-weighted, T1-weighted, and dynamic contrast-enhanced sequences were acquired. Dedicated perfusion software (T1 Perfusion Package, Viewforum; Philips Medical Systems, The Netherlands) was used to generate color permeability maps. After placing regions of interest in normal hepatic parenchyma, in successfully treated lesions, and in area of recurrence, the following perfusion parameters were calculated and statistically analyzed: relative arterial, venous, and late enhancement; maximum enhancement; maximum relative enhancement, and time to peak. Twenty-one of 54 patients had residual disease, and perfusion parameters values measured within tumor tissue were: relative arterial enhancement median, 42%; relative venous enhancement median, 69%; relative late enhancement median, 57.7%; maximum enhancement median, 749.6%; maximum relative enhancement median, 69%; time to peak median, 81.1 seconds. As for all the evaluated parameters, a significant difference (P < 0.05) was found between residual viable tumor tissue and effective treated lesions. Dynamic contrast-enhanced MRI represents a complementary noninvasive tool that may offer quantitative and qualitative information about HCC lesions treated with TACE and RFA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Erlend K.F.; Hole, Knut Hakon; Lund, Kjersti V.
Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test,more » resulting in p value and relative risk maps of all percentile-time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile-time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile-time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile-time interval of nRSI was associated with progression-free survival. Conclusions: The percentile-time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.« less
Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio
2016-04-01
Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag(+) concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50mM of Ag(+), 30s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~1.1 × 10(6) and a low relative standard deviation of ~0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Vibration paradox in orthodontics: Anabolic and catabolic effects
Alikhani, Mani; Alansari, Sarah; Hamidaddin, Mohammad A.; Sangsuwon, Chinapa; Alyami, Bandar; Thirumoorthy, Soumya N.; Oliveira, Serafim M.; Nervina, Jeanne M.
2018-01-01
Vibration in the form of High Frequency Acceleration (HFA) is anabolic on the craniofacial skeleton in the absence of inflammation. Orthodontic forces trigger an inflammation-dependent catabolic cascade that is crucial for tooth movement. It is unknown what effect HFA has on alveolar bone if applied during orthodontic treatment. The objectives of this study are to examine the effect of HFA on the rate of tooth movement and alveolar bone, and determine the mechanism by which HFA affects tooth movement. Adult Sprague Dawley rats were divided to control, orthodontic force alone (OTM), and different experimental groups that received the same orthodontic forces and different HFA regimens. Orthodontic tooth movement was assessed when HFA parameters, frequency, acceleration, duration of exposure, and direct or indirect application were varied. We found that HFA treatment significantly enhanced the inflammation-dependent catabolic cascade during orthodontic tooth movement. HFA treatment increased inflammatory mediators and osteoclastogenesis, and decreased alveolar bone density during orthodontic tooth movement. Each of the HFA variables produced significant changes in the rate of tooth movement and the effect was PDL-dependent. This is the first report that HFA enhances inflammation-dependent catabolic cascades in bone. The clinical implications of our study are highly significant, as HFA can be utilized to enhance the rate of orthodontic tooth movement during the catabolic phase of treatment and subsequently be utilized to enhance retention during the anabolic remodeling phase after orthodontic forces are removed. PMID:29734391
Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells
NASA Astrophysics Data System (ADS)
Spyridopoulou, K.; Makridis, A.; Maniotis, N.; Karypidou, N.; Myrovali, E.; Samaras, T.; Angelakeris, M.; Chlichlia, K.; Kalogirou, O.
2018-04-01
Recent investigations have attempted to understand and exploit the impact of magnetic field-actuated internalized magnetic nanoparticles (MNPs) on the proliferation rate of cancer cells. Due to the complexity of the parameters governing magnetic field-exposure though, individual studies to date have raised contradictory results. In our approach we performed a comparative analysis of key parameters related to the cell exposure of cancer cells to magnetic field-actuated MNPs, and to the magnetic field, in order to better understand the factors affecting cellular responses to magnetic field-stimulated MNPs. We used magnetite MNPs with a hydrodynamic diameter of 100 nm and studied the proliferation rate of MNPs-treated versus untreated HT29 human colon cancer cells, exposed to either static or alternating low frequency magnetic fields with varying intensity (40-200 mT), frequency (0-8 Hz) and field gradient. All three parameters, field intensity, frequency, and field gradient affected the growth rate of cells, with or without internalized MNPs, as compared to control MNPs-untreated and magnetic field-untreated cells. We observed that the growth inhibitory effects induced by static and rotating magnetic fields were enhanced by pre-treating the cells with MNPs, while the growth promoting effects observed in alternating field-treated cells were weakened by MNPs. Compared to static, rotating magnetic fields of the same intensity induced a similar extend of cell growth inhibition, while alternating fields of varying intensity (70 or 100 mT) and frequency (0, 4 or 8 Hz) induced cell proliferation in a frequency-dependent manner. These results, highlighting the diverse effects of mode, intensity, and frequency of the magnetic field on cell growth, indicate that consistent and reproducible results can be achieved by controlling the complexity of the exposure of biological samples to MNPs and external magnetic fields, through monitoring crucial experimental parameters. We demonstrate that further research focusing on the accurate manipulation of the aforementioned magnetic field exposure parameters could lead to the development of successful non-invasive therapeutic anticancer approaches.
Broniowska, Żaneta; Ślusarczyk, Joanna; Starek-Świechowicz, Beata; Trojan, Ewa; Pomierny, Bartosz; Krzyżanowska, Weronika; Basta-Kaim, Agnieszka; Budziszewska, Bogusława
2018-04-13
Benzophenones used as UV filters, in addition to the effects on the skin, can be absorbed into the blood and affect the function of certain organs. So far, their effects on the sex hormone receptors and gonadal function have been studied, but not much is known about their potential action on other systems. The aim of the present study was to determine the effect of benzophenone-2 (BP-2) on immune system activity, hypothalamic-pituitary-thyroid (HPT) axis activity and hematological parameters. BP-2 was administered dermally, twice daily at a dose of 100 mg/kg for 4-weeks to male Wistar rats. Immunological and hematological parameters and HPT axis activity were assayed 24 h after the last administration. It was found that BP-2 did not change relative weights of the thymus and spleen and did not exert toxic effect on tymocytes and splenocytes. However, this compound increased proliferative activity of splenocytes, enhanced metabolic activity of splenocytes and thymocytes and nitric oxide production of these cells. In animals exposed to BP-2, the HPT axis activity was increased, as evidenced by reduction in the thyroid stimulating hormone (TRH) level and increase in free fraction of triiodothyronine (fT3) and thyroxin (fT4) in blood. BP-2 had no effect on leukocyte, erythrocyte and platelet counts or on morphology and hemoglobin content in erythrocytes. The conducted research showed that dermal, sub-chronic BP-2 administration evoked hyperthyroidism, increased activity or function of the immune cells but did not affect hematological parameters. We suggest that topical administration of BP-2 leading to a prolonged elevated BP-2 level in blood causes hyperthyroidism, which in turn may be responsible for the increased immune cell activity or function. However, only future research can explain the mechanism and functional importance of the changes in thyroid hormones and immunological parameters observed after exposure to BP-2. Copyright © 2018 Elsevier B.V. All rights reserved.
Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.
2004-01-01
A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic optimization technique are found to be most effective in determining the optimal value of the tectonic parameters. Preliminary 1-D studies indicate that one can determine the geothermal gradient even in the presence of observation and numerical uncertainties. The algorithm succeeds even when the synthetic data has detailed information only in a limited depth interval and has a different dominant frequency in the synthetic and observed seismograms. The methodology presented here even works when the basin input data contains only 75 per cent of the stratigraphic layering information compared with the actual basin in a limited depth interval.
NASA Technical Reports Server (NTRS)
Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)
1982-01-01
A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.
Amphetamine enhances endurance by increasing heat dissipation.
Morozova, Ekaterina; Yoo, Yeonjoo; Behrouzvaziri, Abolhassan; Zaretskaia, Maria; Rusyniak, Daniel; Zaretsky, Dmitry; Molkov, Yaroslav
2016-09-01
Athletes use amphetamines to improve their performance through largely unknown mechanisms. Considering that body temperature is one of the major determinants of exhaustion during exercise, we investigated the influence of amphetamine on the thermoregulation. To explore this, we measured core body temperature and oxygen consumption of control and amphetamine-trea ted rats running on a treadmill with an incrementally increasing load (both speed and incline). Experimental results showed that rats treated with amphetamine (2 mg/kg) were able to run significantly longer than control rats. Due to a progressively increasing workload, which was matched by oxygen consumption, the control group exhibited a steady increase in the body temperature. The administration of amphetamine slowed down the temperature rise (thus decreasing core body temperature) in the beginning of the run without affecting oxygen consumption. In contrast, a lower dose of amphetamine (1 mg/kg) had no effect on measured parameters. Using a mathematical model describing temperature dynamics in two compartments (the core and the muscles), we were able to infer what physiological parameters were affected by amphetamine. Modeling revealed that amphetamine administration increases heat dissipation in the core. Furthermore, the model predicted that the muscle temperature at the end of the run in the amphetamine-treated group was significantly higher than in the control group. Therefore, we conclude that amphetamine may mask or delay fatigue by slowing down exercise-induced core body temperature growth by increasing heat dissipation. However, this affects the integrity of thermoregulatory system and may result in potentially dangerous overheating of the muscles. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiangkun; Pan, Chuzhong; Fan, Zuhui
With numerical simulations, we analyze in detail how the bad data removal, i.e., the mask effect, can influence the peak statistics of the weak-lensing convergence field reconstructed from the shear measurement of background galaxies. It is found that high peak fractions are systematically enhanced because of the presence of masks; the larger the masked area is, the higher the enhancement is. In the case where the total masked area is about 13% of the survey area, the fraction of peaks with signal-to-noise ratio ν ≥ 3 is ∼11% of the total number of peaks, compared with ∼7% of the mask-freemore » case in our considered cosmological model. This can have significant effects on cosmological studies with weak-lensing convergence peak statistics, inducing a large bias in the parameter constraints if the effects are not taken into account properly. Even for a survey area of 9 deg{sup 2}, the bias in (Ω {sub m}, σ{sub 8}) is already intolerably large and close to 3σ. It is noted that most of the affected peaks are close to the masked regions. Therefore, excluding peaks in those regions in the peak statistics can reduce the bias effect but at the expense of losing usable survey areas. Further investigations find that the enhancement of the number of high peaks around the masked regions can be largely attributed to the smaller number of galaxies usable in the weak-lensing convergence reconstruction, leading to higher noise than that of the areas away from the masks. We thus develop a model in which we exclude only those very large masks with radius larger than 3' but keep all the other masked regions in peak counting statistics. For the remaining part, we treat the areas close to and away from the masked regions separately with different noise levels. It is shown that this two-noise-level model can account for the mask effect on peak statistics very well, and the bias in cosmological parameters is significantly reduced if this model is applied in the parameter fitting.« less
Consideration of probability of bacterial growth for Jovian planets and their satellites
NASA Technical Reports Server (NTRS)
Taylor, D. M.; Berkman, R. M.; Divine, N.
1974-01-01
Environmental parameters affecting growth of bacteria are compared with current atmospheric models for Jupiter and Saturn, and with the available physical data for their satellites. Different zones of relative probability of growth are identified for Jupiter and Saturn. Of the more than two dozen satellites, only the largest (Io, Europa, Ganymede, Callisto, and Titan) are found to be interesting biologically. Titan's atmosphere may produce a substantial greenhouse effect providing increased surface temperatures. Models predicting a dense atmosphere are compatible with microbial growth for a range of pressures at Titan's surface. For Titan's surface the probability of growth would be enhanced if: (1) the surface is entirely or partially liquid; (2) volcanism is present; or (3) access to internal heat sources is significant.
Focusing of active particles in a converging flow
Potomkin, Mykhailo; Kaiser, Andreas; Berlyand, Leonid; ...
2017-10-20
We consider active particles swimming in a convergent fluid flow in a trapezoid nozzle with no-slip walls. We use mathematical modeling to analyze trajectories of these particles inside the nozzle. By extensive Monte Carlo simulations, we show that trajectories are strongly affected by the background fluid flow and geometry of the nozzle leading to wall accumulation and upstream motion (rheotaxis). In particular, we describe the non-trivial focusing of active rods depending on physical and geometrical parameters. It is also established that the convergent component of the background flow leads to stability of both downstream and upstream swimming at the centerline.more » The stability of downstream swimming enhances focusing, and the stability of upstream swimming enables rheotaxis in the bulk.« less
Polymer-based doping control for performance enhancement of wet-processed short-channel CNTFETs
NASA Astrophysics Data System (ADS)
Hartmann, Martin; Schubel, René; Claus, Martin; Jordan, Rainer; Schulz, Stefan E.; Hermann, Sascha
2018-01-01
The electrical transport properties of short-channel transistors based on single-walled carbon nanotubes (CNT) are significantly affected by bundling along with solution processing. We report that especially high off currents of CNT transistors are not only related to the incorporation of metallic CNTs but also to the incorporation of CNT bundles. By applying device passivation with poly(4-vinylpyridine), the impact of CNT bundling on the device performance can be strongly reduced due to increased gate efficiency as well as reduced oxygen and water-induced p-type doping, boosting essential field-effect transistor performance parameters by several orders of magnitude. Moreover, this passivation approach allows the hysteresis and threshold voltage of CNT transistors to be tuned.
Boni, R; Gallo, A; Cecchini, S
2017-01-01
Owing to the progressive decline of sperm motility during storage there is a need to find substances capable of enhancing sperm energy metabolism and motility and/or preserving it from oxidative damage. The aim of this study was to evaluate in frozen/thawed bovine spermatozoa the effect of several compounds, such as myo-inositol, pentoxifylline, penicillamine + hypotaurine + epinephrine mixture (PHE), caffeine and coenzyme Q10+ zinc + d-aspartate mixture (CZA), on either kinetic or metabolic parameters. Sperm kinetics was evaluated by Sperm Class Analyser whereas specific fluorochromes were used to evaluated mitochondrial membrane potential (MMP), intracellular pH, intracellular calcium concentration and lipid peroxidation. Lipid peroxidation was also evaluated by TBARS analysis. Treatments significantly affected total and progressive motility with different dynamics in relation to the incubation time. After the first hour of incubation, CZA treatment produced the best performance in total and progressive sperm motility as well as in curvilinear velocity, average path velocity and amplitude of head displacement, whereas pentoxifylline stimulated the highest straight-line velocity. MMP showed higher values (p < 0.01) after treatment with pentoxifylline and PHE. Intracytoplasmic calcium concentration and lipid peroxidation were significantly (p < 0.05) affected by the incubation time rather than the treatments. Intracellular pH varied significantly (p < 0.01) in relation to either the incubation time or treatments. In particular, it showed a progressive increase throughout incubation with values in control group significantly higher than in myo-inositol, PHE, caffeine, pentoxifylline and CZA groups (7.37 ± 0.03 vs. 7.29 ± 0.03, 7.28 ± 0.03, 7.26 ± 0.03, 7.22 ± 0.03 and 7.00 ± 0.03, respectively; p < 0.01).; however, among treatments, CZA displayed the lowest values. Significant correlations were found between sperm kinetic and metabolic parameters. These findings provide new comparative information on the effects of putative metabolic enhancers on kinetics and metabolic activities of bovine spermatozoa. In this study, a rapid methodological approach for evaluating sperm quality is proposed. © 2016 American Society of Andrology and European Academy of Andrology.
NASA Technical Reports Server (NTRS)
Kim, Won S.; Tendick, Frank; Stark, Lawrence
1989-01-01
A teleoperation simulator was constructed with vector display system, joysticks, and a simulated cylindrical manipulator, in order to quantitatively evaluate various display conditions. The first of two experiments conducted investigated the effects of perspective parameter variations on human operators' pick-and-place performance, using a monoscopic perspective display. The second experiment involved visual enhancements of the monoscopic perspective display, by adding a grid and reference lines, by comparison with visual enhancements of a stereoscopic display; results indicate that stereoscopy generally permits superior pick-and-place performance, but that monoscopy nevertheless allows equivalent performance when defined with appropriate perspective parameter values and adequate visual enhancements.
Thakore, Neha; Reno, James M.; Gonzales, Rueben A.; Schallert, Timothy; Bell, Richard L.; Maddox, W. Todd; Duvauchelle, Christine L.
2016-01-01
Heightened emotional states increase impulsive behaviors such as excessive ethanol consumption in humans. Though positive and negative affective states in rodents can be monitored in real-time through ultrasonic vocalization (USV) emissions, few animal studies have focused on the role of emotional status as a stimulus for initial ethanol drinking. Our laboratory has recently developed reliable, high-speed analysis techniques to compile USV data during multiple-hour drinking sessions. Since High Alcohol Drinking (HAD-1) rats are selectively bred to voluntarily consume intoxicating levels of alcohol, we hypothesized that USVs emitted by HAD-1 rats would reveal unique emotional phenotypes predictive of alcohol intake and sensitive to alcohol experience. In this study, male HAD-1 rats had access to water, 15% and 30% EtOH or water only (i.e., Controls) during 8 weeks of daily 7-hr drinking-in-the-dark (DID) sessions. USVs, associated with both positive (i.e., 50–55 kHz frequency-modulated or FM) and negative (i.e., 22–28 kHz) emotional states, emitted during these daily DID sessions were examined. Findings showed basal 22–28 kHz USVs were emitted by both EtOH-Naïve (Control) and EtOH-experienced rats, alcohol experience enhanced 22–28 kHz USV emissions, and USV acoustic parameters (i.e., mean frequency in kHz) of both positive and negative USVs were significantly suppressed by chronic alcohol experience. These data suggest that negative affective status initiates and maintains excessive alcohol intake in selectively bred HAD-1 rats and support the notion that unprovoked emissions of negative affect-associated USVs (i.e., 22–28 kHz) predict vulnerability to excessive alcohol intake in distinct rodent models. PMID:26802730
Saito, Takeshi; Hamamoto, Shoichiro; Ueki, Takashi; Ohkubo, Satoshi; Moldrup, Per; Kawamoto, Ken; Komatsu, Toshiko
2016-05-01
Global warming and urbanization together with development of subsurface infrastructures (e.g. subways, shopping complexes, sewage systems, and Ground Source Heat Pump (GSHP) systems) will likely cause a rapid increase in the temperature of relatively shallow groundwater reservoirs (subsurface thermal pollution). However, potential effects of a subsurface temperature change on groundwater quality due to changed physical, chemical, and microbial processes have received little attention. We therefore investigated changes in 34 groundwater quality parameters during a 13-month enhanced-heating period, followed by 14 months of natural or enhanced cooling in a confined marine aquifer at around 17 m depth on the Saitama University campus, Japan. A full-scale GSHP test facility consisting of a 50 m deep U-tube for circulating the heat-carrying fluid and four monitoring wells at 1, 2, 5, and 10 m from the U-tube were installed, and groundwater quality was monitored every 1-2 weeks. Rapid changes in the groundwater level in the area, especially during the summer, prevented accurate analyses of temperature effects using a single-well time series. Instead, Dual-Well Analysis (DWA) was applied, comparing variations in subsurface temperature and groundwater chemical concentrations between the thermally-disturbed well and a non-affected reference well. Using the 1 m distant well (temperature increase up to 7 °C) and the 10 m distant well (non-temperature-affected), the DWA showed an approximately linear relationships for eight components (B, Si, Li, dissolved organic carbon (DOC), Mg(2+), NH4(+), Na(+), and K(+)) during the combined 27 months of heating and cooling, suggesting changes in concentration between 4% and 31% for a temperature change of 7 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thakore, Neha; Reno, James M; Gonzales, Rueben A; Schallert, Timothy; Bell, Richard L; Maddox, W Todd; Duvauchelle, Christine L
2016-04-01
Heightened emotional states increase impulsive behaviors such as excessive ethanol consumption in humans. Though positive and negative affective states in rodents can be monitored in real-time through ultrasonic vocalization (USV) emissions, few animal studies have focused on the role of emotional status as a stimulus for initial ethanol drinking. Our laboratory has recently developed reliable, high-speed analysis techniques to compile USV data during multiple-hour drinking sessions. Since High Alcohol Drinking (HAD-1) rats are selectively bred to voluntarily consume intoxicating levels of alcohol, we hypothesized that USVs emitted by HAD-1 rats would reveal unique emotional phenotypes predictive of alcohol intake and sensitive to alcohol experience. In this study, male HAD-1 rats had access to water, 15% and 30% EtOH or water only (i.e., Controls) during 8 weeks of daily 7-h drinking-in-the-dark (DID) sessions. USVs, associated with both positive (i.e., 50-55 kHz frequency-modulated or FM) and negative (i.e., 22-28 kHz) emotional states, emitted during these daily DID sessions were examined. Findings showed basal 22-28 kHz USVs were emitted by both EtOH-Naïve (Control) and EtOH-experienced rats, alcohol experience enhanced 22-28 kHz USV emissions, and USV acoustic parameters (i.e., mean frequency in kHz) of both positive and negative USVs were significantly suppressed by chronic alcohol experience. These data suggest that negative affective status initiates and maintains excessive alcohol intake in selectively bred HAD-1 rats and support the notion that unprovoked emissions of negative affect-associated USVs (i.e., 22-28 kHz) predict vulnerability to excessive alcohol intake in distinct rodent models. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Adha, Kurniawan; Yusoff, Wan Ismail Wan; Almanna Lubis, Luluan
2017-10-01
Determining the pore pressure data and overpressure zone is a compulsory part of oil and gas exploration in which the data can enhance the safety with profit and preventing the drilling hazards. Investigation of thermophysical parameters such as temperature and thermal conductivity can enhance the pore pressure estimation for overpressure mechanism determination. Since those parameters are dependent on rock properties, it may reflect the changes on the column of thermophysical parameters when there is abnormally in pore pressure. The study was conducted in “MRI 1” well offshore Sarawak, where a new approach method designed to determine the overpressure generation. The study was insisted the contribution of thermophysical parameters for supporting the velocity analysis method, petrophysical analysis were done in these studies. Four thermal facies were identified along the well. The overpressure developed below the thermal facies 4, where the pressure reached 38 Mpa and temperature was increasing significantly. The velocity and the thermal conductivity cross plots shows a linear relationship since the both parameters mainly are the function of the rock compaction. When the rock more compact, the particles were brought closer into contact and making the sound wave going faster while the thermal conductivity were increasing. In addition, the increment of temperature and high heat flow indicated the presence of fluid expansion mechanism. Since the shale sonic velocity and density analysis were the common methods in overpressure mechanism and pore pressure estimation. As the addition parameters for determining overpressure zone, the presence of thermophysical analysis was enhancing the current method, where the current method was the single function of velocity analysis. The presence of thermophysical analysis will improve the understanding in overpressure mechanism determination as the new input parameters. Thus, integrated of thermophysical technique and velocity analysis are important parameters in investigating the overpressure mechanisms and pore pressure estimation during oil and gas exploitation in the future.
Vibration parameters affecting vibration-induced reflex muscle activity.
Cidem, Muharrem; Karacan, Ilhan; Cakar, Halil Ibrahim; Cidem, Mehmet; Sebik, Oguz; Yilmaz, Gizem; Turker, Kemal Sitki; Karamehmetoglu, Safak Sahir
2017-03-01
To determine vibration parameters affecting the amplitude of the reflex activity of soleus muscle during low-amplitude whole-body vibration (WBV). This study was conducted on 19 participants. Vibration frequencies of 25, 30, 35, 40, 45, and 50 Hz were used. Surface electromyography, collision force between vibration platform and participant's heel measured using a force sensor, and acceleration measured using an accelerometer fixed to the vibration platform were simultaneously recorded. The collision force was the main independent predictor of electromyographic amplitude. The essential parameter of vibration affecting the amplitude of the reflex muscle activity is the collision force.
Iordache, Sevastiţa; Filip, Maria-Monalisa; Georgescu, Claudia-Valentina; Angelescu, Cristina; Ciurea, Tudorel; Săftoiu, Adrian
2012-06-01
Besides representing angiogenesis markers, microvascular density (MVD) and vascular endothelial growth factor (VEGF) are two important tools for the assessment of prognosis in patients with gastric cancer. The aim of our study was to assess the Doppler parameters (resistivity and pulsatility indexes) and vascularity index (VI) calculated by contrast-enhanced power Doppler endoscopic ultrasound (CEPD-EUS) in correlation with the expression of intra-tumoral MVD and VEGF in patients with gastric cancer. The study included 20 consecutive patients with advanced gastric carcinoma, but without distant metastasis at initial assessment. All the patients were assessed by contrast-enhanced power Doppler endoscopic ultrasound (EUS) combined with pulsed Doppler examinations in the late venous phase. The vascularity index (VI) was calculated before and after injection of second generation microbubble contrast specific agent (SonoVue 2.4 mL), used as a Doppler signal enhancer. Moreover, pulsed Doppler parameters (resistivity and pulsatility indexes) were further calculated. The correlation between power Doppler parameters and pathological/molecular parameters (MVD assessed through immunohistochemistry with CD31 and CD34, as well as VEGF assessed through real-time PCR) was assessed. Kaplan-Meier survival analysis was used for the assessment of prognosis. Significantly statistical correlations were found between post-contrast VI and CD34 (p=0.0226), VEGF (p=0.0231), VEGF-A (p=0.0464) and VEGF-B (p=0.0022) while pre-contrast VI was correlated only with CD34 expression. Pulsatility index and resistivity index were not correlated with MVD or VEGF expression. Survival analysis demonstrated that VEGF-A is an accurate parameter for survival rate (p=0.045), as compared to VEGF (p=0.085) and VEGF-B (p=0.230). We did not find any correlation between the survival rate and ultrasound parameters (RI, PI, pre-contrast VI or post-contrast VI). Assessment of tumor vascularity using contrast-enhanced EUS, including analysis of spectral Doppler parameters is possible and feasible in gastric cancer patients. A correlation between measured EUS vascularity and pathological parameters of angiogenesis (MVD and VEGF expression) was found.
TCP performance in ATM networks: ABR parameter tuning and ABR/UBR comparisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien Fang; Lin, A.
1996-02-27
This paper explores two issues on TOP performance over ATM networks: ABR parameter tuning and performance comparison of binary mode ABR with enhanced UBR services. Of the fifteen parameters defined for ABR, two parameters dominate binary mode ABR performance: Rate Increase Factor (RIF) and Rate Decrease Factor (RDF). Using simulations, we study the effects of these two parameters on TOP over ABR performance. We compare TOP performance with different ABR parameter settings in terms of through-puts and fairness. The effects of different buffer sizes and LAN/WAN distances are also examined. We then compare TOP performance with the best ABR parametermore » setting with corresponding UBR service enhanced with Early Packet Discard and also with a fair buffer allocation scheme. The results show that TOP performance over binary mode ABR is very sensitive to parameter value settings, and that a poor choice of parameters can result in ABR performance worse than that of the much less expensive UBR-EPD scheme.« less
NASA Astrophysics Data System (ADS)
Yu, Fengyi; Wei, Yanhong
2018-05-01
The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.
Self-assembled block copolymer-nanoparticle hybrids: interplay between enthalpy and entropy.
Sarkar, Biswajit; Alexandridis, Paschalis
2012-11-13
The dispersion of nanoparticles in ordered block copolymer nanostructures can provide control over particle location and orientation, and pave the way for engineered nanomaterials that have enhanced mechanical, electrical, or optical properties. Fundamental questions pertaining to the role of enthalpic and entropic particle-polymer interactions remain open and motivate the present work. We consider here a system of 10.6 nm silica nanoparticles (NPs) dispersed in ordered cylinders formed by hydrated poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic P105: EO(37)PO(56)EO(37)). Protonation of silica was used to vary the NP-polymer enthalpic interactions, while polar organic solvents (glycerol, DMSO, ethanol, and DMF) were used to modulate the NP-polymer entropic interactions. The introduction of deprotonated NPs in the place of an equal mass of water did not affect the lattice parameter of the PEO-PPO-PEO block copolymer hexagonal lyotropic liquid crystalline structures. However, the dispersion of protonated NPs led to an increase in the lattice parameter, which was attributed to stronger NP-polymer hydrogen bonding (enthalpic) interactions. Dispersion of protonated NPs into cylindrical structures formed by Pluronic P105 in 80/20 water/organic solvents does not influence the lattice parameter, different from the case of protonated NP in plain water. Organic solvents appear to screen the NP-polymer hydrogen bonding interactions.
NASA Astrophysics Data System (ADS)
Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.
2017-09-01
This paper presents a systematic methodology to analyse the warpage of the side arm part using Autodesk Moldflow Insight software. Response Surface Methodology (RSM) was proposed to optimise the processing parameters that will result in optimal solutions by efficiently minimising the warpage of the side arm part. The variable parameters considered in this study was based on most significant parameters affecting warpage stated by previous researchers, that is melt temperature, mould temperature and packing pressure while adding packing time and cooling time as these is the commonly used parameters by researchers. The results show that warpage was improved by 10.15% and the most significant parameters affecting warpage are packing pressure.
Kim, Young-sun; Kim, Byoung-Gie; Rhim, Hyunchul; Bae, Duk-Soo; Lee, Jeong-Won; Kim, Tae-Joong; Choi, Chel Hun; Lee, Yoo-Young; Lim, Hyo Keun
2014-11-01
To determine whether semiquantitative perfusion magnetic resonance (MR) imaging parameters are associated with therapeutic effectiveness of MR imaging-guided high-intensity focused ultrasound ( HIFU high-intensity focused ultrasound ) ablation of uterine fibroids and which semiquantitative perfusion parameters are significant with regard to treatment efficiency. This study was approved by the institutional review board, and informed consent was obtained from all subjects. Seventy-seven women (mean age, 43.3 years) with 119 fibroids (mean diameter, 7.5 cm) treated with MR imaging-guided HIFU high-intensity focused ultrasound ablation were analyzed. The correlation between semiquantitative perfusion MR parameters (peak enhancement, relative peak enhancement, time to peak, wash-in rate, washout rate) and heating and ablation efficiencies (lethal thermal dose volume based on MR thermometry and nonperfused volume based on immediate contrast-enhanced image divided by intended treatment volume) were evaluated by using a linear mixed model on a per-fibroid basis. The specific value of the significant parameter that had a substantial effect on treatment efficiency was determined. The mean peak enhancement, relative peak enhancement, time to peak, wash-in rate, and washout rate of the fibroids were 1293.1 ± 472.8 (range, 570.2-2477.8), 171.4% ± 57.2 (range, 0.6%-370.2%), 137.2 seconds ± 119.8 (range, 20.0-300.0 seconds), 79.5 per second ± 48.2 (range, 12.5-236.7 per second), and 11.4 per second ± 10.1 (range, 0-39.3 per second), respectively. Relative peak enhancement was found to be independently significant for both heating and ablation efficiencies (B = -0.002, P < .001 and B = -0.003, P = .050, respectively). The washout rate was significantly associated with ablation efficiency (B = -0.018, P = .043). Both efficiencies showed the most abrupt transitions at 220% of relative peak enhancement. Relative peak enhancement at semiquantitative perfusion MR imaging was significantly associated with treatment efficiency of MR imaging-guided HIFU high-intensity focused ultrasound ablation of uterine fibroids, and a value of 220% or less is suggested as a screening guideline for more efficient treatment.
Jo, ByungWan
2018-01-01
The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH4, CO, SO2, and H2S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R2 and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality. PMID:29561777
Jo, ByungWan; Khan, Rana Muhammad Asad
2018-03-21
The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH₄, CO, SO₂, and H₂S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R ² and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality.
Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.
Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C
2012-08-01
Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately.
NASA Astrophysics Data System (ADS)
Zyubin, A. Y.; Konstantinova, E. I.; Matveeva, K. I.; Slezhkin, V. A.; Samusev, I. G.; Demin, M. V.; Bryukhanov, V. V.
2018-01-01
In this paper, the rough silver films parameters investigation, used as media for surface enhancement Raman spectroscopy for health and septic human serum albumin (HSA) study results have been presented. The detection of small concentrations of HSA isolated from blood serum and it main vibrational groups identification has been done.
Biological optimization systems for enhancing photosynthetic efficiency and methods of use
Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim
2012-11-06
Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.
Structural damage identification using an enhanced thermal exchange optimization algorithm
NASA Astrophysics Data System (ADS)
Kaveh, A.; Dadras, A.
2018-03-01
The recently developed optimization algorithm-the so-called thermal exchange optimization (TEO) algorithm-is enhanced and applied to a damage detection problem. An offline parameter tuning approach is utilized to set the internal parameters of the TEO, resulting in the enhanced heat transfer optimization (ETEO) algorithm. The damage detection problem is defined as an inverse problem, and ETEO is applied to a wide range of structures. Several scenarios with noise and noise-free modal data are tested and the locations and extents of damages are identified with good accuracy.
Galea, Joseph M.; Ruge, Diane; Buijink, Arthur; Bestmann, Sven; Rothwell, John C.
2013-01-01
Action selection describes the high-level process which selects between competing movements. In animals, behavioural variability is critical for the motor exploration required to select the action which optimizes reward and minimizes cost/punishment, and is guided by dopamine (DA). The aim of this study was to test in humans whether low-level movement parameters are affected by punishment and reward in ways similar to high-level action selection. Moreover, we addressed the proposed dependence of behavioural and neurophysiological variability on DA, and whether this may underpin the exploration of kinematic parameters. Participants performed an out-and-back index finger movement and were instructed that monetary reward and punishment were based on its maximal acceleration (MA). In fact, the feedback was not contingent on the participant’s behaviour but pre-determined. Blocks highly-biased towards punishment were associated with increased MA variability relative to blocks with either reward or without feedback. This increase in behavioural variability was positively correlated with neurophysiological variability, as measured by changes in cortico-spinal excitability with transcranial magnetic stimulation over the primary motor cortex. Following the administration of a DA-antagonist, the variability associated with punishment diminished and the correlation between behavioural and neurophysiological variability no longer existed. Similar changes in variability were not observed when participants executed a pre-determined MA, nor did DA influence resting neurophysiological variability. Thus, under conditions of punishment, DA-dependent processes influence the selection of low-level movement parameters. We propose that the enhanced behavioural variability reflects the exploration of kinematic parameters for less punishing, or conversely more rewarding, outcomes. PMID:23447607
Color Image Enhancement Using Multiscale Retinex Based on Particle Swarm Optimization Method
NASA Astrophysics Data System (ADS)
Matin, F.; Jeong, Y.; Kim, K.; Park, K.
2018-01-01
This paper introduces, a novel method for the image enhancement using multiscale retinex and practical swarm optimization. Multiscale retinex is widely used image enhancement technique which intemperately pertains on parameters such as Gaussian scales, gain and offset, etc. To achieve the privileged effect, the parameters need to be tuned manually according to the image. In order to handle this matter, a developed retinex algorithm based on PSO has been used. The PSO method adjusted the parameters for multiscale retinex with chromaticity preservation (MSRCP) attains better outcome to compare with other existing methods. The experimental result indicates that the proposed algorithm is an efficient one and not only provides true color loyalty in low light conditions but also avoid color distortion at the same time.
A review of the meteorological parameters which affect aerial application
NASA Technical Reports Server (NTRS)
Christensen, L. S.; Frost, W.
1979-01-01
The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available.
Nguyen, N; Milanfar, P; Golub, G
2001-01-01
In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters. We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cross-validation method (GCV). We propose efficient approximation techniques based on the Lanczos algorithm and Gauss quadrature theory, reducing the computational complexity of the GCV. Data-driven PSF and regularization parameter estimation experiments with synthetic and real image sequences are presented to demonstrate the effectiveness and robustness of our method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonk, Elisa C.M., E-mail: ilse.tonk@rivm.nl; Laboratory for Health Protection Research, National Institute for Public Health and the Environment; Verhoef, Aart
The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10–50 or PND 50–90 atmore » doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology. -- Highlights: ► In this study we evaluate the relative sensitivities for DEHP induced effects. ► Results of this study demonstrate the age-dependency of DEHP toxicity. ► Functional immune parameters were more sensitive than structural immune parameters. ► Immune parameters were affected at lower dose levels than developmental parameters. ► Findings demonstrate the susceptibility of the developing immune system for DEHP.« less
Actigraphy and motion analysis: new tools for psychiatry.
Teicher, M H
1995-01-01
Altered locomotor activity is a cardinal sign of several psychiatric disorders. With advances in technology, activity can now be measured precisely. Contemporary studies quantifying activity in psychiatric patients are reviewed. Studies were located by a Medline search (1965 to present; English language only) cross-referencing motor activity and major psychiatric disorders. The review focused on mood disorders and attention-deficit hyperactivity disorder (ADHD). Activity levels are elevated in mania, agitated depression, and ADHD and attenuated in bipolar depression and seasonal depression. The percentage of low-level daytime activity is directly related to severity of depression, and change in this parameter accurately mirrors recovery. Demanding cognitive tasks elicit fidgeting in children with ADHD, and precise measures of activity and attention may provide a sensitive and specific marker for this disorder. Circadian rhythm analysis enhances the sophistication of activity measures. Affective disorders in children and adolescents are characterized by an attenuated circadian rhythm and an enhanced 12-hour harmonic rhythm (diurnal variation). Circadian analysis may help to distinguish between the activity patterns of mania (dysregulated) and ADHD (intact or enhanced). Persistence of hyperactivity or circadian dysregulation in bipolar patients treated with lithium appears to predict rapid relapse once medication is discontinued. Activity monitoring is a valuable research tool, with the potential to aid clinicians in diagnosis and in prediction of treatment response.
Steel-reinforced concrete-filled steel tubular columns under axial and lateral cyclic loading
NASA Astrophysics Data System (ADS)
Farajpourbonab, Ebrahim; Kute, Sunil Y.; Inamdar, Vilas M.
2018-03-01
SRCFT columns are formed by inserting a steel section into a concrete-filled steel tube. These types of columns are named steel-reinforced concrete-filled steel tubular (SRCFT) columns. The current study aims at investigating the various types of reinforcing steel section to improve the strength and hysteresis behavior of SRCFT columns under axial and lateral cyclic loading. To attain this objective, a numerical study has been conducted on a series of composite columns. First, FEM procedure has been verified by the use of available experimental studies. Next, eight composite columns having different types of cross sections were analyzed. For comparison purpose, the base model was a CFT column used as a benchmark specimen. Nevertheless, the other specimens were SRCFT types. The results indicate that reinforcement of a CFT column through this method leads to enhancement in load-carrying capacity, enhancement in lateral drift ratio, ductility, preventing of local buckling in steel shell, and enhancement in energy absorption capacity. Under cyclic displacement history, it was observed that the use of cross-shaped reinforcing steel section causes a higher level of energy dissipation and the moment of inertia of the reinforcing steel sections was found to be the most significant parameter affecting the hysteresis behavior of SRCFT columns.
Assessment of the Use of Nanofluids in Spacecraft Active Thermal Control Systems
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.; Erickson, Lisa R.
2011-01-01
The addition of metallic nanoparticles to a base heat transfer fluid can dramatically increase its thermal conductivity. These nanofluids have been shown to have advantages in some heat transport systems. Their enhanced properties can allow lower system volumetric flow rates and can reduce the required pumping power. Nanofluids have been suggested for use as working fluids for spacecraft Active Thermal Control Systems (ATCSs). However, there are no studies showing the end-to-end effect of nanofluids on the design and performance of spacecraft ATCSs. In the present work, a parametric study is performed to assess the use of nanofluids in a spacecraft ATCSs. The design parameters of the current Orion capsule and the tabulated thermophysical properties of nanofluids are used to assess the possible benefits of nanofluids and how their incorporation affects the overall design of a spacecraft ATCS. The study shows that the unique system and component-level design parameters of spacecraft ATCSs render them best suited for pure working fluids. The addition of nanoparticles to typical spacecraft thermal control working fluids actually results in an increase in the system mass and required pumping power.
NASA Astrophysics Data System (ADS)
Karakoti, Indira; Kesarwani, Kapil; Mehta, Manish; Dobhal, D. P.
2016-10-01
Two enhanced temperature-index (T-index) models are proposed by incorporating meteorological parameters viz. relative humidity, wind speed and net radiation. The models are an attempt to explore different climatic variables other than temperature affecting glacier surface melting. Weather data were recorded at Chorabari Glacier using an automatic weather station during the summers of 2010 (July 10 to September 10) and 2012 (June 10 to October 25). The modelled surface melt is validated against the measured point surface melting at the snout. Performance of the developed models is evaluated by comparing with basic temperature-index model and is quantified through different efficiency criteria. The results suggest that proposed models yield considerable improvement in surface melt simulation . Consequently, the study reveals that glacier surface melt depends not only on temperature but also on weather parameters viz. relative humidity, wind speed and net radiation play a significant role in glacier surface melting. This approach provides a major improvement on basic temperature-index method and offers an alternative to energy balance model.
NASA Astrophysics Data System (ADS)
Yossifon, Gilad; Park, Sinwook
2016-11-01
Previously, it has been shown that for a prescribed system, the diffusion length may be affected by any number of mechanisms including natural and forced convection, electroosmotic flow of the second kind and electro-convective instability. In all of the above mentioned cases the length of the diffusion layer is indirectly prescribed by the complicated competition between several mechanisms which are primarily dictated by the various system parameters and applied voltage. In contrast, we suggest that by embedding electrodes/heaters within a microchannel interfacing a permselective medium, the diffusion layer length may be controlled regardless of the dominating overlimiting current mechanism and system parameters. As well as demonstrating that the simple presence of electrodes can enhance mixing via induced-charge electrokinetic effects, we also offer a means of externally activating embedded electrodes and heaters to maintain external, dynamic control of the diffusion length. Such control is particularly important in applications requiring intense ion transport, such as electrodialysis. At the same time, we will also investigate means of suppressing these mechanisms which is of fundamental importance for sensing applications.
Bahrami, Mahsa; Heidari, Mostafa; Ghorbani, Hadi
2016-07-01
In general, salinity and heavy metals interfere with several physiological processes and reduce plant growth. In order to evaluate of three levels of salinity (0, 4 and 8 ds m(-1)) and three concentration of chromium (0, 10 and 20 mg kg(-1) soil) in bitter melon (Momordica charantia), a plot experiment was conducted in greenhouse at university of Shahrood, Iran. The results revealed that chromium treatment had no significant affect on fresh and dry weight, but salinity caused reduction of fresh and dry weight in growth parameter. Salinity and chromium enhanced antioxidant enzymes activities like catalase (CAT), guaiacol peroxidase (GPX) and sodium content in leaves. However salinity and chromium treatments had no effect on potassium, phosphorus in leaves, soluble carbohydrate concentration in leaves and root, but decreased the carotenoid content in leaves. On increasing salinity from control to 8 ds m(-1) chlorophyll a, b and anthocyanin content decreased by 41.6%, 61.1% and 26.5% respectively but chromium treatments had no significant effect on these photosynthetic pigments.
Food structure: Its formation and relationships with other properties.
Joardder, Mohammad U H; Kumar, Chandan; Karim, M A
2017-04-13
Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food.
Guidelines to electrode positioning for human and animal electrical impedance myography research
NASA Astrophysics Data System (ADS)
Sanchez, Benjamin; Pacheck, Adam; Rutkove, Seward B.
2016-09-01
The positioning of electrodes in electrical impedance myography (EIM) is critical for accurately assessing disease progression and effectiveness of treatment. In human and animal trials for neuromuscular disorders, inconsistent electrode positioning adds errors to the muscle impedance. Despite its importance, how the reproducibility of resistance and reactance, the two parameters that define EIM, are affected by changes in electrode positioning remains unknown. In this paper, we present a novel approach founded on biophysical principles to study the reproducibility of resistance and reactance to electrode misplacements. The analytical framework presented allows the user to quantify a priori the effect on the muscle resistance and reactance using only one parameter: the uncertainty placing the electrodes. We also provide quantitative data on the precision needed to position the electrodes and the minimum muscle length needed to achieve a pre-specified EIM reproducibility. The results reported here are confirmed with finite element model simulations and measurements on five healthy subjects. Ultimately, our data can serve as normative values to enhance the reliability of EIM as a biomarker and facilitate comparability of future human and animal studies.
Spectroscopy Made Easy: Evolution
NASA Astrophysics Data System (ADS)
Piskunov, Nikolai; Valenti, Jeff A.
2017-01-01
Context. The Spectroscopy Made Easy (SME) package has become a popular tool for analyzing stellar spectra, often in connection with large surveys or exoplanet research. SME has evolved significantly since it was first described in 1996, but many of the original caveats and potholes still haunt users. The main drivers for this paper are complexity of the modeling task, the large user community, and the massive effort that has gone into SME. Aims: We do not intend to give a comprehensive introduction to stellar atmospheres, but will describe changes to key components of SME: the equation of state, opacities, and radiative transfer. We will describe the analysis and fitting procedure and investigate various error sources that affect inferred parameters. Methods: We review the current status of SME, emphasizing new algorithms and methods. We describe some best practices for using the package, based on lessons learned over two decades of SME usage. We present a new way to assess uncertainties in derived stellar parameters. Results: Improvements made to SME, better line data, and new model atmospheres yield more realistic stellar spectra, but in many cases systematic errors still dominate over measurement uncertainty. Future enhancements are outlined.
Pérez, A G; Sanz, C
2001-05-01
The effect of high-oxygen atmospheres on strawberry flavor was studied. Strawberry fruits (Fragariax ananassa Duch. cv. Camarosa) were stored at 8 degrees C in four different atmospheres: air, 5% O(2)/20% CO(2), 80% O(2)/20% CO(2), and 90% O(2)/10% CO(2). Changes in several quality parameters were evaluated. Atmospheres combining high O(2) and high CO(2) were the most effective in preventing fungal growth and enhancing strawberry firmness. Other quality parameters such as color, titrable acidity, sugars and organic acids distribution, off-flavor development, and aroma were only mildly affected by superatmospheric O(2) levels. After one week of storage, unexpected high contents of off-flavor related compounds were found in the 80% O(2)/20% CO(2) and 90% O(2)/10% CO(2) atmospheres. Evidence of an altered ester biosynthesis was also found in fruits stored under these high-O(2) atmospheres. Data obtained suggest that stress induced by high CO(2) and stress induced by high O(2) have an additive effect on strawberry flavor alteration.
NASA Astrophysics Data System (ADS)
Tsang, Sik-Ho; Chan, Yui-Lam; Siu, Wan-Chi
2017-01-01
Weighted prediction (WP) is an efficient video coding tool that was introduced since the establishment of the H.264/AVC video coding standard, for compensating the temporal illumination change in motion estimation and compensation. WP parameters, including a multiplicative weight and an additive offset for each reference frame, are required to be estimated and transmitted to the decoder by slice header. These parameters cause extra bits in the coded video bitstream. High efficiency video coding (HEVC) provides WP parameter prediction to reduce the overhead. Therefore, WP parameter prediction is crucial to research works or applications, which are related to WP. Prior art has been suggested to further improve the WP parameter prediction by implicit prediction of image characteristics and derivation of parameters. By exploiting both temporal and interlayer redundancies, we propose three WP parameter prediction algorithms, enhanced implicit WP parameter, enhanced direct WP parameter derivation, and interlayer WP parameter, to further improve the coding efficiency of HEVC. Results show that our proposed algorithms can achieve up to 5.83% and 5.23% bitrate reduction compared to the conventional scalable HEVC in the base layer for SNR scalability and 2× spatial scalability, respectively.
NASA Astrophysics Data System (ADS)
Zhao, Wei; Yang, Fang; Qiao, Rui; Wang, Guiren; Rui Qiao Collaboration
2015-11-01
Understanding the instantaneous response of flows to applied AC electric fields may help understand some unsolved issues in induced-charge electrokinetics and enhance performance of microfluidic devices. Since currently available velocimeters have difficulty in measuring velocity fluctuations with frequency higher than 1 kHz, most experimental studies so far focus only on the average velocity measurement in AC electrokinetic flows. Here, we present measurements of AC electroosmotic flow (AC-EOF) response time in microchannels by a novel velocimeter with submicrometer spatial resolution and microsecond temporal resolution, i.e. laser-induced fluorescence photobleaching anemometer (LIFPA). Several parameters affecting the AC-EOF response time to the applied electric signal were investigated, i.e. channel length, transverse position and solution conductivity. The experimental results show that the EOF response time under a pulsed electric field decreases with the reduction of the microchannel length, distance between the detection position to the wall and the conductivity of the solution. This work could provide a new powerful tool to measure AC electrokinetics and enhance our understanding of AC electrokinetic flows.
Parent, Marianne; Baradari, Hiva; Champion, Eric; Damia, Chantal; Viana-Trecant, Marylène
2017-04-28
Effective treatment of critical-size defects is a key challenge in restorative surgery of bone. The strategy covers the implantation of biocompatible, osteoconductive, bioactive and biodegradable devices which (1) well interact with native tissue, mimic multi-dimensional and hierarchical structure of bone and (2) are able to enhance bone repair, treating post implantation pathologies or bone diseases by local delivery of therapeutic agents. Among different options, calcium phosphate biomaterials are found to be attractive choices, due to their excellent biocompatibility, customisable bioactivity and biodegradability. Several approaches have been established to enhance this material ability to be loaded with a therapeutic agent, in order to obtain an in situ controlled release that meets the clinical needs. This article reviews the most important factors influencing on both drug loading and release capacity of porous calcium phosphate bone substitutes. Characteristics of the carrier, drug/carrier interactions, experimental conditions of drug loading and evaluation of drug delivery are considered successively. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing
2017-04-01
Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.
Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério; Dragone, Giuliano; Mussatto, Solange I; Santos, Júlio César Dos
2018-06-01
Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also presented and discussed.
Optical in situ monitoring of plasma-enhanced atomic layer deposition process
NASA Astrophysics Data System (ADS)
Zeeshan Arshad, Muhammad; Jo, Kyung Jae; Kim, Hyun Gi; Jeen Hong, Sang
2018-06-01
An optical in situ process monitoring method for the early detection of anomalies in plasma process equipment is presented. Cyclic process steps of precursor treatment and plasma reaction for the deposition of an angstrom-scale film increase their complexity to ensure the process quality. However, a small deviation in process parameters, for instance, gas flow rate, process temperature, or RF power, may jeopardize the deposited film quality. As a test vehicle for the process monitoring, we have investigated the aluminum-oxide (Al2O3) encapsulation process in plasma-enhanced atomic layer deposition (PEALD) to form a moisture and oxygen diffusion barrier in organic-light emitting diodes (OLEDs). By optical in situ monitoring, we successfully identified the reduction in oxygen flow rates in the reaction steps, which resulted in a 2.67 times increase in the water vapor transmission ratio (WVTR) of the deposited Al2O3 films. Therefore, we are convinced that the suggested in situ monitoring method is useful for the detection of process shifts or drifts that adversely affect PEALD film quality.
Guo, Chaohua; Wei, Mingzhen; Liu, Hong
2018-01-01
Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs' production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs.
Wei, Mingzhen; Liu, Hong
2018-01-01
Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs’ production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs. PMID:29320489
A model to describe potential effects of chemotherapy on critical radiobiological treatments
NASA Astrophysics Data System (ADS)
Rodríguez-Pérez, D.; Desco, M. M.; Antoranz, J. C.
2016-08-01
Although chemo- and radiotherapy can annihilate tumors on their own. they are also used in coadjuvancy: improving local effects of radiotherapy using chemotherapy as a radiosensit.izer. The effects of radiotherapy are well described by current radiobiological models. The goal of this work is to describe a discrete radiotherapy model, that has been previously used describe high radiation dose response as well as unusual radio-responses of some types of tumors (e.g. prostate cancer), to obtain a model of chemo+radiotherapy that can describe how the outcome of their combination is a more efficient removal of the tumor. Our hypothesis is that, although both treatments haven different mechanisms, both affect similar key points of cell metabolism and regulation, that lead to cellular death. Hence, we will consider a discrete model where chemotherapy may affect a fraction of the same targets destroyed by radiotherapy. Although radiotherapy reaches all cells equally, chemotherapy diffuses through a tumor attaining lower concentration in its center and higher in its surface. With our simulations we study the enhanced effect of combined therapy treatment and how it depends on the tissue critical parameters (the parameters of the lion-extensive radiobiological model), the number of “targets” aimed at by chemotherapy, and the concentration and diffusion rate of the drug inside the tumor. The results show that an equivalent, cliemo-radio-dose can be computed that allows the prediction of the lower radiation dose that causes the same effect than a radio-only treatment.
Effect of driver impedance on dense plasma focus Z-pinch neutron yield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sears, Jason, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Link, Anthony, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Schmidt, Andrea, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov
2014-12-15
The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation duringmore » the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.« less
NASA Astrophysics Data System (ADS)
Bay, Annick; Mayer, Alexandre
2014-09-01
The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.
Signatures of the Martian rotation parameters in the Doppler and range observables
NASA Astrophysics Data System (ADS)
Yseboodt, Marie; Dehant, Véronique; Péters, Marie-Julie
2017-09-01
The position of a Martian lander is affected by different aspects of Mars' rotational motions: the nutations, the precession, the length-of-day variations and the polar motion. These various motions have a different signature in a Doppler observable between the Earth and a lander on Mars' surface. Knowing the correlations between these signatures and the moments when these signatures are not null during one day or on a longer timescale is important to identify strategies that maximize the geophysical return of observations with a geodesy experiment, in particular for the ones on-board the future NASA InSight or ESA-Roscosmos ExoMars2020 missions. We provide first-order formulations of the signature of the rotation parameters in the Doppler and range observables. These expressions are functions of the diurnal rotation of Mars, the lander position, the planet radius and the rotation parameter. Additionally, the nutation signature in the Doppler observable is proportional to the Earth declination with respect to Mars. For a lander on Mars close to the equator, the motions with the largest signature in the Doppler observable are due to the length-of-day variations, the precession rate and the rigid nutations. The polar motion and the liquid core signatures have a much smaller amplitude. For a lander closer to the pole, the polar motion signature is enhanced while the other signatures decrease. We also numerically evaluate the amplitudes of the rotation parameters signature in the Doppler observable for landers on other planets or moons.
Nakagawa, Masataka; Namimoto, Tomohiro; Shimizu, Kie; Morita, Kosuke; Sakamoto, Fumi; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Shiraishi, Shinya; Yamashita, Yasuyuki
2017-07-01
To determine the utility of liver T1-mapping on gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) enhanced magnetic resonance (MR) imaging for the measurement of liver functional reserve compared with the signal intensity (SI) based parameters, technetium-99m-galactosyl serum albumin ( 99m Tc-GSA) scintigraphy and indocyanine green (ICG) clearance. This retrospective study included 111 patients (Child-Pugh-A 90; -B 21) performed with both Gd-EOB-DTPA enhanced liver MR imaging and 99m Tc-GSA (76 patients with ICG). Receiver operating characteristic (ROC) curve analysis was performed to compare diagnostic performances of T1-relaxation-time parameters [pre-(T1pre) and post-contrast (T1hb) Gd-EOB-DTPA], SI based parameters [relative enhancement (RE), liver-to-muscle-ratio (LMR), liver-to-spleen-ratio (LSR)] and 99m Tc-GSA scintigraphy blood clearance index (HH15)] for Child-Pugh classification. Pearson's correlation was used for comparisons among T1-relaxation-time parameters, SI-based parameters, HH15 and ICG. A significant difference was obtained for Child-Pugh classification with T1hb, ΔT1, all SI based parameters and HH15. T1hb had the highest AUC followed by RE, LMR, LSR, ΔT1, HH15 and T1pre. The correlation coefficients with HH15 were T1pre 0.22, T1hb 0.53, ΔT1 -0.38 of T1 relaxation parameters; RE -0.44, LMR -0.45, LSR -0.43 of SI-based parameters. T1hb was highest for correlation with HH15. The correlation coefficients with ICG were T1pre 0.29, T1hb 0.64, ΔT1 -0.42 of T1 relaxation parameters; RE -0.50, LMR -0.61, LSR -0.58 of SI-based parameters; 0.64 of HH15. Both T1hb and HH15 were highest for correlation with ICG. T1 relaxation time at post-contrast of Gd-EOB-DTPA (T1hb) was strongly correlated with ICG clearance and moderately correlated HH15 with 99m Tc-GSA. T1hb has the potential to provide robust parameter of liver functional reserve. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi, E-mail: ktakahashi@astron.s.u-tokyo.ac.jp
We perform a stellar evolution simulation of first stars and calculate stellar yields from the first supernovae. The initial masses are taken from 12 to 140 M {sub ☉} to cover the whole range of core-collapse supernova progenitors, and stellar rotation is included, which results in efficient internal mixing. A weak explosion is assumed in supernova yield calculations, thus only outer distributed matter, which is not affected by the explosive nucleosynthesis, is ejected in the models. We show that the initial mass and the rotation affect the explosion yield. All the weak explosion models have abundances of [C/O] larger thanmore » unity. Stellar yields from massive progenitors of >40-60 M {sub ☉} show enhancement of Mg and Si. Rotating models yield abundant Na and Al, and Ca is synthesized in nonrotating heavy massive models of >80 M {sub ☉}. We fit the stellar yields to the three most iron-deficient stars and constrain the initial parameters of the mother progenitor stars. The abundance pattern in SMSS 0313–6708 is well explained by 50-80 M {sub ☉} nonrotating models, rotating 30-40 M {sub ☉} models well fit the abundance of HE 0107-5240, and both nonrotating and rotating 15-40 M {sub ☉} models explain HE 1327-2326. The presented analysis will be applicable to other carbon-enhanced hyper-metal-poor stars observed in the future. The abundance analyses will give valuable information about the characteristics of the first stars.« less
Kafri, Michal; Zaltsberg, Nir; Dickstein, Ruth
2015-01-01
Somatosensory stimulation modulates cortical and corticospinal excitability and consequently affects motor output. Therefore, low-amplitude transcutaneous electrical nerve stimulation (TENS) has the potential to elicit favorable motor responses. The purpose of the two presented pilot studies was to shed light on TENS parameters that are relevant for the enhancement of two desirable motor outcomes, namely, electromyographic (EMG) activity and contraction strength of the finger flexors and wrist muscles. In 5 and 10 healthy young adults (in Study I and Study II, respectively) TENS was delivered to the volar aspect of the forearm. We manipulated TENS frequency (150 Hz vs. 5 Hz), length of application (10, 20, and 60 min), and side of application (unilateral, right forearm vs. bilateral forearms). EMG amplitude and grip force were measured before (Pre), immediately after (Post), and following 15 min of no stimulation (Study I only). The results indicated that low-frequency bursts of TENS applied to the skin overlying the finger flexor muscles enhance the EMG activity of the finger flexors and grip force. The increase in EMG activity of the flexor muscles was observed after 20 min of stimulation, while grip force was increased only after 1 h. The effects of uni- and bilateral TENS were comparable. These observations allude to a modulatory effect of TENS on the tested motor responses; however, unequivocal conclusions of the findings are hampered by individual differences that affect motor outcomes, such as in level of attention.
Enhanced momentum feedback from clustered supernovae
NASA Astrophysics Data System (ADS)
Gentry, Eric S.; Krumholz, Mark R.; Dekel, Avishai; Madau, Piero
2017-02-01
Young stars typically form in star clusters, so the supernovae (SNe) they produce are clustered in space and time. This clustering of SNe may alter the momentum per SN deposited in the interstellar medium (ISM) by affecting the local ISM density, which in turn affects the cooling rate. We study the effect of multiple SNe using idealized 1D hydrodynamic simulations which explore a large parameter space of the number of SNe, and the background gas density and metallicity. The results are provided as a table and an analytic fitting formula. We find that for clusters with up to ˜100 SNe, the asymptotic momentum scales superlinearly with the number of SNe, resulting in a momentum per SN which can be an order of magnitude larger than for a single SN, with a maximum efficiency for clusters with 10-100 SNe. We argue that additional physical processes not included in our simulations - self-gravity, breakout from a galactic disc, and galactic shear - can slightly reduce the momentum enhancement from clustering, but the average momentum per SN still remains a factor of 4 larger than the isolated SN value when averaged over a realistic cluster mass function for a star-forming galaxy. We conclude with a discussion of the possible role of mixing between hot and cold gas, induced by multidimensional instabilities or pre-existing density variations, as a limiting factor in the build-up of momentum by clustered SNe, and suggest future numerical experiments to explore these effects.
Interaction of Chlamydia trachomatis organisms and HeLa 229 cells.
Kuo, C C; Grayston, T
1976-01-01
The infection of HeLa 229 cells in monolayer culture with trachoma (B/TW-5/OT) and lymphogranuloma venereum (LGV) (L2/434/Bu) organism was studied in terms of two parameters: radioactivity counts of cell-associated tritium labeled organisms at the initial stage of inoculation for measurement of attachment, and inclusion counts of infection cells after incubation for measurement of growth. Factors affecting attachment and inclusion formation and correlation of the two are presented. It was shown that attachment is an important initial step in infection by Chlamydia trachomatis. The rate of attachment was temperature dependent. The attachment of LGV organisms was affected more profoundly by temperature than was that of trachoma organisms. Attachment and inclusion formation of trachoma and LGV organisms were inhibited by heparin. Diethylaminoethyl-dextran was again shown to enhance attachment and inclusion formation of trachoma but not LGV organisms. NaF had no effect on attachment, but inhibited inclusion formation of both trachoma and LGV organisms. Both attachment and inclusion formation of trachoma organisms were strongly enhanced by centrifugation of the inoculum onto the cell monolayer. Although inclusion formation of trachoma organism was much greater in susceptible cells (HeLa 229) than relatively insusceptible cells (fetal tonsil), attachment was only slightly greater. The results based on the test of two cell lines suggested that attachment prpbably is not a critical factor in determing a cell line's susceptibility to infection with trachoma organisms. PMID:179950
Pijl, H; de Meijer, P H; Langius, J; Coenegracht, C I; van den Berk, A H; Chandie Shaw, P K; Boom, H; Schoemaker, R C; Cohen, A F; Burggraaf, J; Meinders, A E
2001-12-01
We explored energy and macronutrient intake in patients with Graves' hyperthyroidism. We specifically hypothesized that hyperthyroidism is associated with increased appetite for carbohydrates, because of enhanced sympathetic tone and diminished serotonin mediated neurotransmission in the brain. To test this hypothesis, we measured food intake by dietary history and food selected for lunch in the laboratory in 14 patients with Graves' hyperthyroidism. Twenty-four-hour catecholamine excretion was used as a measure of activity of the sympathetic nervous system (SNS) and the plasma [Trp]/[NAA] ratio was measured to estimate (rate limiting) precursor availability for brain 5-hydroxytryptamine synthesis. All measurements were repeated after the subjects had been treated to establish euthyroidism. In addition, the effects of nonselective beta-adrenoceptor blockade upon these parameters were studied to evaluate the influence of beta-adrenergic hyperactivity on food intake. Hyperthyroidism was marked by increased SNS activity and reduced plasma [Trp]/[NAA] ratio. Accordingly, energy intake was considerably and significantly increased in hyper vs. euthyroidism, which was fully attributable to enhanced carbohydrate consumption, as protein and fat intake were not affected. These results suggest that hyperthyroidism alters the neurophysiology of food intake regulation. Increased SNS activity and reduced Trp precursor availability for 5-hydroxytryptamine synthesis in the brain may drive the marked hyperphagia and craving for carbohydrates that appears to characterize hyperthyroid patients. Because propranolol did not affect food intake in hyperthyroidism, the potential effect of catecholamines on food intake might be mediated by alpha-adrenoceptors.
Perceived barriers to medical-error reporting: an exploratory investigation.
Uribe, Claudia L; Schweikhart, Sharon B; Pathak, Dev S; Dow, Merrell; Marsh, Gail B
2002-01-01
Medical-error reporting is an essential component for patient safety enhancement. Unfortunately, medical errors are largely underreported across healthcare institutions. This problem can be attributed to different factors and barriers present at organizational and individual levels that ultimately prevent individuals from generating the report. This study explored the factors that affect medical-error reporting among physicians and nurses at a large academic medical center located in the midwest United States. A nominal group session was conducted to identify the most relevant factors that act as barriers for error reporting. These factors were then used to design a questionnaire that explored the likelihood of the factors to act as barriers and their likelihood to be modified. Using these two parameters, the results were analyzed and combined into a Factor Relevance Matrix. The matrix identifies the factors for which immediate actions should be undertaken to improve medical-error reporting (immediate action factors). It also identifies factors that require long-term strategies (long-term strategy factors) as well as factors that the organization should be aware of but that are of lower priority (awareness factors). The strategies outlined in this study may assist healthcare organizations in improving medical-error reporting, as part of the efforts toward patient-safety enhancement. Although factors affecting medical-error reporting may vary between different organizations, the process used in identifying the factors and the Factor Relevance Matrix developed in this study are easily adaptable to any organizational setting.
Dynamic Contrast-Enhanced MRI in the Evaluation of Carotid Space Paraganglioma versus Schwannoma.
Gaddikeri, Santhosh; Hippe, Daniel S; Anzai, Yoshimi
2016-11-01
To describe the potential role of dynamic contrast-enhanced (DCE) MRI in differentiating carotid space (CS) paraganglioma from schwannoma in the head and neck. We retrospectively reviewed records of 126 patients who had undergone DCE-MRI between June 2008 and July 2014 and found six patients with histologically verified benign CS tumors. The images were evaluated for tumor T1 and T2 signal characteristics, flow voids, and enhancement pattern. The dynamic data were analyzed for quantitative parameters using extended Toft's model (K trans , K ep , V e , and V p ) and semiquantitative parameters based on time-intensity curve (area under curve, peak enhancement, wash-in, wash-out, signal-enhancement ratio [SER], and time for maximum enhancement [TME]). Due to the small sample size, groups were compared qualitatively. Patients with CS paraganglioma (P group, n = 2) and schwannoma (S group, n = 4) were included. All tumors were hypointense on T1W imaging, hyperintense on T2W imaging, and show avid enhancement. One patient with paraganglioma had subtle flow voids. The conventional MR images were insufficient to confidently diagnose tumor type. Both paragangliomas had high peak enhancement and SER, and a short TME, while the schwannomas had relatively low peak enhancement and SER with a longer TME. K trans , K ep , and V e were relatively low in the paragangliomas than in the schwannomas. DCE-MRI could potentially be used to assist differentiating paraganglioma from schwannoma, when diagnosis is difficult on the conventional MR imaging sequences. Simple assessment of semiquantitative parameters suffices to provide supportive information. Copyright © 2016 by the American Society of Neuroimaging.
NASA Astrophysics Data System (ADS)
Deininger, Anne; Bergström, Ann-Kristin
2013-04-01
Input of inorganic nitrogen (N) in boreal unproductive lakes is steadily increasing due to anthropogenic deposition and usage of artificial fertilizers. N enrichment is predicted to have a major impact on the ecosystem productivity and food web structure in unproductive clear-water and humic lakes. For a long time, pelagic primary production (PP) has been mainly regarded as being phosphorus (P) limited. However, recent studies have shown that this is not true for unproductive lakes in northern Sweden, where phytoplankton is mainly N limited. Addition of inorganic N should therefore increase phytoplankton growth in these lake ecosystems. Bacterial production (BP) in the pelagic habitat, on the other hand, is usually limited by P. Nevertheless, elevated N could have a stimulating effect on BP through enhanced leakage of dissolved organic carbon (DOC) from phytoplankton following enhanced N availability and higher PP. Further, unproductive lakes vary naturally in their DOC content which affects overall nutrient- (N and P), energy- and carbon availability (light, C) for the basal producers (phytoplankton, bacteria). It is still not clear how higher inorganic N availability affects primary- and bacterial production in the pelagic in lakes with varying DOC content. We subsequently assessed this question by conducting whole-lake fertilization experiments with inorganic N additions in 6 lakes with varying DOC concentrations (2 low DOC; 2 medium DOC; 2 high DOC). For each DOC level one lake functioned as a reference and one was fertilized with N. Year 2011 was a reference year (all lakes) and 2012 was the first year of fertilization (i.e. in 3 lakes). Measurements included basal productivity such as primary production and bacteria production, lake water chemistry and physical parameters (i.e. light, temperature). The results of this study will help to develop a conceptual understanding of how increased inorganic N availability (through land use such as forestry and/or enhanced N deposition) affects basal productivity in boreal lakes which can have consequences for overall whole lake-ecosystem productivity and functioning.
Panda, Shasanka Shekhar; Bajpai, Minu; Mallick, Saumyaranjan; Sharma, Mehar C
2014-01-01
The objective of the following study is to determine and to compare the different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters of rats. Unilateral upper ureteric obstruction was created in 60 adult Wistar rats that were reversed after predetermined intervals. Rats were sacrificed and ipsilateral kidneys were subjected for analysis of morphological parameters such as renal height, cranio-caudal diameter, antero-posterior diameter, lateral diameter, volume of the pelvis and average cortical thickness: Renal height. Renal height and cranio-caudal diameter of renal pelvis after ipsilateral upper ureteric obstruction started rising as early as 7 days of creating obstruction and were affected earlier than antero-posterior and lateral diameter and also were reversed earlier than other parameters after reversal of obstruction. Renal cortical thickness and volume of the pelvis were affected after prolonged obstruction (> 3 weeks) and were the late parameters to be reversed after reversal of obstruction. Cranio-caudal diameter and renal height were the early morphological parameters to be affected and reversed after reversal of obstruction in experimentally created ipsilateral upper ureteric obstruction.
Autry, Adam; Phillips, Joanna J; Maleschlijski, Stojan; Roy, Ritu; Molinaro, Annette M; Chang, Susan M; Cha, Soonmee; Lupo, Janine M; Nelson, Sarah J
2017-12-01
Although the contrast-enhancing (CE) lesion on T 1 -weighted MR images is widely used as a surrogate for glioblastoma (GBM), there are also non-enhancing regions of infiltrative tumor within the T 2 -weighted lesion, which elude radiologic detection. Because non-enhancing GBM (Enh-) challenges clinical patient management as latent disease, this study sought to characterize ex vivo metabolic profiles from Enh- and CE GBM (Enh+) samples, alongside histological and in vivo MR parameters, to assist in defining criteria for estimating total tumor burden. Fifty-six patients with newly diagnosed GBM received a multi-parametric pre-surgical MR examination. Targets for obtaining image-guided tissue samples were defined based on in vivo parameters that were suspicious for tumor. The actual location from where tissue samples were obtained was recorded, and half of each sample was analyzed for histopathology while the other half was scanned using HR-MAS spectroscopy. The Enh+ and Enh- tumor samples demonstrated comparable mitotic activity, but also significant heterogeneity in microvascular morphology. Ex vivo spectroscopic parameters indicated similar levels of total choline and N-acetylaspartate between these contrast-based radiographic subtypes of GBM, and characteristic differences in the levels of myo-inositol, creatine/phosphocreatine, and phosphoethanolamine. Analysis of in vivo parameters at the sample locations were consistent with histological and ex vivo metabolic data. The similarity between ex vivo levels of choline and NAA, and between in vivo levels of choline, NAA and nADC in Enh+ and Enh- tumor, indicate that these parameters can be used in defining non-invasive metrics of total tumor burden for patients with GBM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Lang, Ning; Yuan, Huishu; Yu, Hon J; Su, Min-Ying
2017-07-01
This study aimed to evaluate the diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in differentiation of four spinal lesions by using heuristic and pharmacokinetic parameters analyzed from DCE signal intensity time course. DCE-MRI of 62 subjects with confirmed myeloma (n = 9), metastatic cancer (n = 22), lymphoma (n = 7), and inflammatory tuberculosis (TB) (n = 24) in the spine were analyzed retrospectively. The region of interest was placed on strongly enhanced tissues. The DCE time course was categorized as the "wash-out," "plateau," or "persistent enhancement" pattern. The maximum enhancement, steepest wash-in enhancement, and wash-out slope using the signal intensity at 67 seconds after contrast injection as reference were measured. The Tofts 2-compartmental pharmacokinetic model was applied to obtain K trans and k ep . Pearson correlation between heuristic and pharmacokinetic parameters was evaluated, and receiver operating characteristic curve analysis was performed for pairwise group differentiation. The mean wash-out slope was -22% ± 10% for myeloma, 1% ± 0.4% for metastatic cancer, 3% ± 3% for lymphoma, and 7% ± 10% for TB, and it could significantly distinguish myeloma from metastasis (area under the curve [AUC] = 0.884), lymphoma (AUC = 1.0), and TB (AUC = 1.0) with P = .001, and distinguish metastasis from TB (AUC = 0.741) with P = .005. The k ep and wash-out slope were highly correlated (r = 0.92), and they showed a similar diagnostic performance. The K trans was significantly correlated with the maximum enhancement (r = 0.71) and the steepest wash-in enhancement (r = 0.85), but they had inferior diagnostic performance compared to the wash-out slope. DCE-MRI may provide additional diagnostic information, and a simple wash-out slope had the best diagnostic performance. The heuristic and pharmacokinetic parameters were highly correlated. Copyright © 2017. Published by Elsevier Inc.
Saarela, Ville; Falck, Aura; Airaksinen, P Juhani; Tuulonen, Anja
2012-03-01
To evaluate the factors affecting the sensitivity and specificity of the stereometric optic nerve head (ONH) parameters of the Heidelberg Retina Tomograph (HRT) to glaucomatous progression in stereoscopic ONH photographs. The factors affecting the sensitivity and specificity of the vertical cup : disc ratio, the cup : disc area ratio, the cup volume, the rim area and a linear discriminant function to progression were analysed. These parameters were the best indicators of progression in a retrospective study of 476 eyes. The reference standard for progression was the masked evaluation of stereoscopic ONH photographs. The factors having the most significant effect on the sensitivity and specificity of the stereometric ONH parameters were the reference height difference and the mean topography standard deviation (TSD), indicating image quality. Also, the change in the TSD and age showed consistent, but variably significant, influence on all parameters tested. The sensitivity and specificity improved when there was little change in the reference height, the image quality was good and stable, and the patients were younger. The sensitivity and specificity of the vertical cup : disc ratio was improved by a large disc area and high baseline cup : disc area ratio. The rim area showed a better sensitivity and specificity for progression with a small disc area and low baseline cup : disc area ratio. The factors affecting the sensitivity and specificity of the stereometric ONH parameters to glaucomatous progression in disc photographs are essentially the same as those affecting the measurement variability of the HRT. © 2010 The Authors. Acta Ophthalmologica © 2010 Acta Ophthalmologica Scandinavica Foundation.
Transitions induced by solubilized fat into reverse hexagonal mesophases.
Amar-Yuli, Idit; Garti, Nissim
2005-06-25
Lyotropic liquid crystals of glycerol monooleate (GMO) and water binary mixtures have been extensively studied and their resemblance to human membranes has intrigued many scientists. Biological systems as well as food mixtures are composed of lipids and fat components including triacylglycerols (TAGs, triglycerides) that can affect the nature of the assembly of the mesophase. The present study examines the effect of TAGs of different chain lengths (C(2)-C(18)) at various water/GMO compositions, on phase transitions from lamellar or cubic to reverse hexagonal (L(alpha)-H(II) and Q-H(II)). The ability of the triglycerides to promote the formation of an H(II) mesophase is chain length-dependent. It was found that TAG molecules with very short acyl chains (triacetin) can hydrate the head groups of the lipid and do not affect the critical packing parameter (CPP) of the amphiphile; therefore, they do not affect the self-assembly of the GMO in water, and the mesophase remains lamellar or cubic. However, TAGs with medium chain fatty acids will solvate the tails of the lipid, and will affect the CPP of the GMO, and transform the lamellar or cubic phases into hexagonal mesophase. TAGs with long chain fatty acids are very bulky, not very miscible with the GMO, and therefore, kinetically are very slow to solvate the lipid tails of the amphiphile and are difficult to accommodate into the lipophilic parts of the GMO. Their effect on the transitions from a lamellar or cubic phase to hexagonal is detected only after months of equilibration. In order to enhance the effect of the TAG on the phase transitions in the GMO/triglyceride/water systems, temperature and electrolytes effects were examined. In the presence of short and medium chain triglycerides, increasing temperature caused a transition from lamellar or hexagonal to L(2) phase (highest CPP value). However, in the presence of long chain TAGs, increasing temperature to ca. 40 degrees C caused a formation of H(II) mesophase. In addition, it was found that in tricaprylin/GMO/water systems, the increase in temperature caused a decrease in the lattice parameter. The effect of NaCl on the H(II) mesophase revealed interesting results. At low concentration of tricaprylin (5 wt%), the addition of only 0.1 wt% of NaCl was sufficient to cause the formation of well-defined H(II) mesophase, while further addition of electrolyte increased the hexagonal lattice parameters. At higher TAGs concentrations (10 wt%), addition of electrolyte resulted in the formation of H(II) with modifications of the lattice parameter. All the examined effects were more pronounced with increasing water content.
Customizing vacuum fluctuations for enhanced entanglement creation
NASA Astrophysics Data System (ADS)
Wang, Jin
2018-07-01
This paper connects the creation of entanglement through cavity enhanced decay rate with practical design parameters such as cavity dimension and cavity mirror reflectivity. The clarification of specific physical parameters on cavity enhanced emission in relation to entanglement creation is discussed. It is found that entanglement increases as the size of the cavity decreases, or the reflectivity of the cavity mirrors increases. Additionally, the negative effect of individual qubit decoherence on the entanglement is discussed. These results can be used to design or choose a practical system for implementing entanglement between two qubits for quantum computation and information processing.
Modeling stress/strain-dependent permeability changes for deep geoenergy applications
NASA Astrophysics Data System (ADS)
Rinaldi, Antonio Pio; Rutqvist, Jonny
2016-04-01
Rock permeability is a key parameter in deep geoenergy systems. Stress and strain changes induced at depth by fluid injection or extraction may substantially alter the rock permeability in an irreversible way. With regard to the geoenergies, some applications require the permeability to be enhanced to improve productivity. The rock permeability is generally enhanced by shearing process of faults and fractures (e.g. hydroshearing for Enhanced and Deep Geothermal Systems), or the creation of new fractures (e.g. hydrofracturing for shale gas). However, such processes may, at the same time, produce seismicity that can be felt by the local population. Moreover, the increased permeability due to fault reactivation may pose at risk the sealing capacity of a storage site (e.g. carbon sequestration or nuclear waste disposal), providing then a preferential pathway for the stored fluids to escape at shallow depth. In this work we present a review of some recent applications aimed at understanding the coupling between stress (or strain) and permeability. Examples of geoenergy applications include both EGS and CO2 sequestration. To investigate both "wanted" and "unwanted" effects, THM simulations have been carried out with the TOUGH-FLAC simulator. Our studies include constitutive equations relating the permeability to mean effective stress, effective normal stress, volumetric strain, as well as accounting for permeability variation as related to fault/fracture reactivation. Results show that the geomechanical effects have a large role in changing the permeability, hence affecting fluids leakage, reservoir enhancement, as well as the induced seismicity.
Does plant-Microbe interaction confer stress tolerance in plants: A review?
Kumar, Akhilesh; Verma, Jay Prakash
2018-03-01
The biotic and abiotic stresses are major constraints for crop yield, food quality and global food security. A number of parameters such as physiological, biochemical, molecular of plants are affected under stress condition. Since the use of inorganic fertilizers and pesticides in agriculture practices cause degradation of soil fertility and environmental pollutions. Hence it is necessary to develop safer and sustainable means for agriculture production. The application of plant growth promoting microbes (PGPM) and mycorrhizal fungi enhance plant growth, under such conditions. It offers an economically fascinating and ecologically sound ways for protecting plants against stress condition. PGPM may promote plant growth by regulating plant hormones, improve nutrition acquisition, siderophore production and enhance the antioxidant system. While acquired systemic resistance (ASR) and induced systemic resistance (ISR) effectively deal with biotic stress. Arbuscular mycorrhiza (AM) enhance the supply of nutrients and water during stress condition and increase tolerance to stress. This plant-microbe interaction is vital for sustainable agriculture and industrial purpose, because it depends on biological processes and replaces conventional agriculture practices. Therefore, microbes may play a key role as an ecological engineer to solve environmental stress problems. So, it is a feasible and potential technology in future to feed global population at available resources with reduced impact on environmental quality. In this review, we have attempted to explore about abiotic and biotic stress tolerant beneficial microorganisms and their modes of action to enhance the sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.
Content dependent selection of image enhancement parameters for mobile displays
NASA Astrophysics Data System (ADS)
Lee, Yoon-Gyoo; Kang, Yoo-Jin; Kim, Han-Eol; Kim, Ka-Hee; Kim, Choon-Woo
2011-01-01
Mobile devices such as cellular phones and portable multimedia player with capability of playing terrestrial digital multimedia broadcasting (T-DMB) contents have been introduced into consumer market. In this paper, content dependent image quality enhancement method for sharpness and colorfulness and noise reduction is presented to improve perceived image quality on mobile displays. Human visual experiments are performed to analyze viewers' preference. Relationship between the objective measures and the optimal values of image control parameters are modeled by simple lookup tables based on the results of human visual experiments. Content dependent values of image control parameters are determined based on the calculated measures and predetermined lookup tables. Experimental results indicate that dynamic selection of image control parameters yields better image quality.
Numerical Simulations of SCR DeNOx System for a 660MW coal-fired power station
NASA Astrophysics Data System (ADS)
Yongqiang, Deng; Zhongming, Mei; Yijun, Mao; Nianping, Liu; Guoming, Yin
2018-06-01
Aimed at the selective catalytic reduction (SCR) DeNOx system of a 660 MW coal-fired power station, which is limited by low denitrification efficiency, large ammonia consumption and over-high ammonia escape rate, numerical simulations were conducted by employing STAR-CCM+ (CFD tool). The simulations results revealed the problems existed in the SCR DeNOx system. Aimed at limitations of the target SCR DeNOx system, factors affecting the denitrification performance of SCR, including the structural parameters and ammonia injected by the ammonia nozzles, were optimized. Under the optimized operational conditions, the denitrification efficiency of the SCR system was enhanced, while the ammonia escape rate was reduced below 3ppm. This study serves as references for optimization and modification of SCR systems.
Micro-structural integrity of dental enamel subjected to two tooth whitening regimes.
Tanaka, Reina; Shibata, Yo; Manabe, Atsufumi; Miyazaki, Takashi
2010-04-01
Colour modification of tooth enamel has proven successful, but it is unclear how various bleaching applications affect micro-structural integrity of the whitened enamel. To investigate the internal structural integrity of human intact tooth enamel with the application of two commonly used whitening regimes (in-office power bleaching with 35% hydrogen peroxide and home bleaching with 10% carbamide peroxide), evaluations were performed on teeth of identical colour classification. After the bleaching applications, the enamel mineral density was quantified and visualised with micro-computed tomography. The micro-structural differences between the whitened tooth enamel samples were distinctive, though the colour parameter changes within the samples were equivalent. Home bleaching achieved colour modification by demineralisation, whereas in-office bleaching depended on redistribution of the minerals after treatment and subsequent enhanced mineralisation.
Subelectron readout noise focal plane arrays for space imaging
NASA Astrophysics Data System (ADS)
Atlas, Gene; Wadsworth, Mark
2004-01-01
Readout noise levels of under 1 electron have long been a goal for the FPA community. In the quest to enhance the FPA sensitivity, various approaches have been attempted ranging from the exotic Photo-multiplier tubes, Image Intensifier tubes, Avalanche photo diodes, and now the on-chip avalanche charge amplification technologies from the CCD manufacturers. While these techniques reduce the readout noise, each offers a set of compromises that negatively affect the overall performance of the sensor in parameters such as power dissipation, dynamic range, uniformity or system complexity. In this work, we overview the benefits and tradeoffs of each approach, and introduce a new technique based on ImagerLabs" exclusive HIT technology which promises sub-electron read noise and other benefits without the tradeoffs of the other noise reduction techniques.
VLF Wave Properties During Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Blancarte, J.; Artemyev, A.; Mozer, F.; Agapitov, O. V.
2017-12-01
Whistler-mode chorus is important for the global dynamics of the inner magnetosphere electron population due to its ability to scatter and accelerate electrons of a wide energy range in the outer radiation belt. The parameters of these VLF emissions change dynamically during geomagnetic storms. Presented is an analysis of four years of Van Allen probe data, utilizing electric and magnetic field in the VLF range focused on the dynamics of chorus wave properties during the enhancement of geomagnetic activity. It is found that VLF emissions respond to geomagnetic storms in more complicated ways than just by affecting the waves' amplitude growth or depletion. Oblique wave amplitudes grow together with parallel waves during periods of intermediate geomagnetic activity, while the occurrence rate of oblique waves decreases during larger geomagnetic storms.
A CDMA system implementation with dimming control for visible light communication
NASA Astrophysics Data System (ADS)
Chen, Danyang; Wang, Jianping; Jin, Jianli; Lu, Huimin; Feng, Lifang
2018-04-01
Visible light communication (VLC), using solid-state lightings to transmit information, has become a complement technology to wireless radio communication. As a realistic multiple access scheme for VLC system, code division multiple access (CDMA) has attracted more and more attentions in recent years. In this paper, we address and implement an improved CDMA scheme for VLC system. The simulation results reveal that the improved CDMA scheme not only supports multi-users' transmission but also maintains dimming value at about 50% and enhances the system efficiency. It can also realize the flexible dimming control by adjusting some parameters of system structure, which rarely affects the system BER performance. A real-time experimental VLC system with improved CDMA scheme is performed based on field programmable gate array (FPGA), reaching a good BER performance.
Measures of GCM Performance as Functions of Model Parameters Affecting Clouds and Radiation
NASA Astrophysics Data System (ADS)
Jackson, C.; Mu, Q.; Sen, M.; Stoffa, P.
2002-05-01
This abstract is one of three related presentations at this meeting dealing with several issues surrounding optimal parameter and uncertainty estimation of model predictions of climate. Uncertainty in model predictions of climate depends in part on the uncertainty produced by model approximations or parameterizations of unresolved physics. Evaluating these uncertainties is computationally expensive because one needs to evaluate how arbitrary choices for any given combination of model parameters affects model performance. Because the computational effort grows exponentially with the number of parameters being investigated, it is important to choose parameters carefully. Evaluating whether a parameter is worth investigating depends on two considerations: 1) does reasonable choices of parameter values produce a large range in model response relative to observational uncertainty? and 2) does the model response depend non-linearly on various combinations of model parameters? We have decided to narrow our attention to selecting parameters that affect clouds and radiation, as it is likely that these parameters will dominate uncertainties in model predictions of future climate. We present preliminary results of ~20 to 30 AMIPII style climate model integrations using NCAR's CCM3.10 that show model performance as functions of individual parameters controlling 1) critical relative humidity for cloud formation (RHMIN), and 2) boundary layer critical Richardson number (RICR). We also explore various definitions of model performance that include some or all observational data sources (surface air temperature and pressure, meridional and zonal winds, clouds, long and short-wave cloud forcings, etc...) and evaluate in a few select cases whether the model's response depends non-linearly on the parameter values we have selected.
Polyelectrolyte brushes on dielectric surfaces
NASA Astrophysics Data System (ADS)
Antila, Hanne; Luijten, Erik
When chains of charged polymers are grafted to a solid surface, a polyelectrolyte (PE) brush results. These types of PE assemblies have a wide range of applications ranging from fuel cells and switchable electrodes to drug delivery. Many of these applications stem from the ability of PE brushes to respond to external stimuli: the brush properties can be tuned, for example, by varying electric field, PE grafting density, pH, salt concentration or salt valency. Accordingly, deciphering the brush behavior under different conditions has been a subject of considerable experimental, theoretical, and computational research efforts. However, the effect of the dielectric properties of the substrate on the PE brush has received much less attention. We use coarse-grained molecular dynamics simulations to show how varying the dielectric mismatch between the solvent and the substrate can significantly affect the brush. We demonstrate how tuning this mismatch can either diminish or enhance the effects of other control parameters, such as pH, on the brush properties. Furthermore, we investigate how dielectric properties of the substrate affect the brush, and the ion distribution and mobility within the brush, when the brush is exposed to an electric field.
Variability of individual genetic load: consequences for the detection of inbreeding depression.
Restoux, Gwendal; Huot de Longchamp, Priscille; Fady, Bruno; Klein, Etienne K
2012-03-01
Inbreeding depression is a key factor affecting the persistence of natural populations, particularly when they are fragmented. In species with mixed mating systems, inbreeding depression can be estimated at the population level by regressing the average progeny fitness by the selfing rate of their mothers. We applied this method using simulated populations to investigate how population genetic parameters can affect the detection power of inbreeding depression. We simulated individual selfing rates and genetic loads from which we computed fitness values. The regression method yielded high statistical power, inbreeding depression being detected as significant (5 % level) in 92 % of the simulations. High individual variation in selfing rate and high mean genetic load led to better detection of inbreeding depression while high among-individual variation in genetic load made it more difficult to detect inbreeding depression. For a constant sampling effort, increasing the number of progenies while decreasing the number of individuals per progeny enhanced the detection power of inbreeding depression. We discuss the implication of among-mother variability of genetic load and selfing rate on inbreeding depression studies.
Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis.
Soltani, Azita; Volz, Kim R; Hansmann, Doulas R
2008-12-07
The potential of ultrasound to enhance enzyme-mediated thrombolysis by application of constant operating parameters (COP) has been widely demonstrated. In this study, the effect of ultrasound with modulated operating parameters (MOP) on enzyme-mediated thrombolysis was investigated. The MOP protocol was applied to an in vitro model of thrombolysis. The results were compared to a COP with the equivalent soft tissue thermal index (TIS) over the duration of ultrasound exposure of 30 min (p < 0.14). To explore potential differences in the mechanism responsible for ultrasound-induced thrombolysis, a perfusion model was used to measure changes in average fibrin pore size of clot before, after and during exposure to MOP and COP protocols and cavitational activity was monitored in real time for both protocols using a passive cavitation detection system. The relative lysis enhancement by each COP and MOP protocol compared to alteplase alone yielded values of 33.69 +/- 12.09% and 63.89 +/- 15.02% in a thrombolysis model, respectively (p < 0.007). Both COP and MOP protocols caused an equivalent significant increase in average clot pore size of 2.09 x 10(-2) +/- 0.01 microm and 1.99 x 10(-2) +/- 0.004 microm, respectively (p < 0.74). No signatures of inertial or stable cavitation were observed for either acoustic protocol. In conclusion, due to mechanisms other than cavitation, application of ultrasound with modulated operating parameters has the potential to significantly enhance the relative lysis enhancement compared to application of ultrasound with constant operating parameters.
Zhang, Bitao; Pi, YouGuo
2013-07-01
The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant. In this paper, an enhanced robust fractional order proportional-plus-integral (ERFOPI) controller based on neural network is proposed. The control law of the ERFOPI controller is acted on a fractional order implement function (FOIF) of tracking error but not tracking error directly, which, according to theory analysis, can enhance the robust performance of system. Tuning rules and approaches, based on phase margin, crossover frequency specification and robustness rejecting gain variation, are introduced to obtain the parameters of ERFOPI controller. And the neural network algorithm is used to adjust the parameter of FOIF. Simulation and experimental results show that the method proposed in this paper not only achieve favorable tracking performance, but also is robust with regard to external load disturbance and parameter variation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Automatic x-ray image contrast enhancement based on parameter auto-optimization.
Qiu, Jianfeng; Harold Li, H; Zhang, Tiezhi; Ma, Fangfang; Yang, Deshan
2017-11-01
Insufficient image contrast associated with radiation therapy daily setup x-ray images could negatively affect accurate patient treatment setup. We developed a method to perform automatic and user-independent contrast enhancement on 2D kilo voltage (kV) and megavoltage (MV) x-ray images. The goal was to provide tissue contrast optimized for each treatment site in order to support accurate patient daily treatment setup and the subsequent offline review. The proposed method processes the 2D x-ray images with an optimized image processing filter chain, which consists of a noise reduction filter and a high-pass filter followed by a contrast limited adaptive histogram equalization (CLAHE) filter. The most important innovation is to optimize the image processing parameters automatically to determine the required image contrast settings per disease site and imaging modality. Three major parameters controlling the image processing chain, i.e., the Gaussian smoothing weighting factor for the high-pass filter, the block size, and the clip limiting parameter for the CLAHE filter, were determined automatically using an interior-point constrained optimization algorithm. Fifty-two kV and MV x-ray images were included in this study. The results were manually evaluated and ranked with scores from 1 (worst, unacceptable) to 5 (significantly better than adequate and visually praise worthy) by physicians and physicists. The average scores for the images processed by the proposed method, the CLAHE, and the best window-level adjustment were 3.92, 2.83, and 2.27, respectively. The percentage of the processed images received a score of 5 were 48, 29, and 18%, respectively. The proposed method is able to outperform the standard image contrast adjustment procedures that are currently used in the commercial clinical systems. When the proposed method is implemented in the clinical systems as an automatic image processing filter, it could be useful for allowing quicker and potentially more accurate treatment setup and facilitating the subsequent offline review and verification. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Zolal, Amir; Juratli, Tareq A; Linn, Jennifer; Podlesek, Dino; Sitoci Ficici, Kerim Hakan; Kitzler, Hagen H; Schackert, Gabriele; Sobottka, Stephan B; Rieger, Bernhard; Krex, Dietmar
2016-05-01
Objective To determine the value of apparent diffusion coefficient (ADC) histogram parameters for the prediction of individual survival in patients undergoing surgery for recurrent glioblastoma (GBM) in a retrospective cohort study. Methods Thirty-one patients who underwent surgery for first recurrence of a known GBM between 2008 and 2012 were included. The following parameters were collected: age, sex, enhancing tumor size, mean ADC, median ADC, ADC skewness, ADC kurtosis and fifth percentile of the ADC histogram, initial progression free survival (PFS), extent of second resection and further adjuvant treatment. The association of these parameters with survival and PFS after second surgery was analyzed using log-rank test and Cox regression. Results Using log-rank test, ADC histogram skewness of the enhancing tumor was significantly associated with both survival (p = 0.001) and PFS after second surgery (p = 0.005). Further parameters associated with prolonged survival after second surgery were: gross total resection at second surgery (p = 0.026), tumor size (0.040) and third surgery (p = 0.003). In the multivariate Cox analysis, ADC histogram skewness was shown to be an independent prognostic factor for survival after second surgery. Conclusion ADC histogram skewness of the enhancing lesion, enhancing lesion size, third surgery, as well as gross total resection have been shown to be associated with survival following the second surgery. ADC histogram skewness was an independent prognostic factor for survival in the multivariate analysis.
NASA Astrophysics Data System (ADS)
Cobourn, W. Geoffrey
2010-08-01
An enhanced PM 2.5 air quality forecast model based on nonlinear regression (NLR) and back-trajectory concentrations has been developed for use in the Louisville, Kentucky metropolitan area. The PM 2.5 air quality forecast model is designed for use in the warm season, from May through September, when PM 2.5 air quality is more likely to be critical for human health. The enhanced PM 2.5 model consists of a basic NLR model, developed for use with an automated air quality forecast system, and an additional parameter based on upwind PM 2.5 concentration, called PM24. The PM24 parameter is designed to be determined manually, by synthesizing backward air trajectory and regional air quality information to compute 24-h back-trajectory concentrations. The PM24 parameter may be used by air quality forecasters to adjust the forecast provided by the automated forecast system. In this study of the 2007 and 2008 forecast seasons, the enhanced model performed well using forecasted meteorological data and PM24 as input. The enhanced PM 2.5 model was compared with three alternative models, including the basic NLR model, the basic NLR model with a persistence parameter added, and the NLR model with persistence and PM24. The two models that included PM24 were of comparable accuracy. The two models incorporating back-trajectory concentrations had lower mean absolute errors and higher rates of detecting unhealthy PM2.5 concentrations compared to the other models.
Effects of clozapine on adipokine secretions/productions and lipid droplets in 3T3-L1 adipocytes.
Tsubai, Tomomi; Yoshimi, Akira; Hamada, Yoji; Nakao, Makoto; Arima, Hiroshi; Oiso, Yutaka; Noda, Yukihiro
2017-02-01
Clozapine, a second-generation antipsychotic (SGA), is a cause of side effects related to metabolic syndrome. The participation of serotonin 5-HT 2C and histamine H 1 receptors in the central nervous system has been reported as a mechanism of the weight gain caused by clozapine. In the present study, we investigated the direct pharmacological action of clozapine on the 3T3-L1 adipocytes and compared it to that of blonanserin, an SGA with low affinity for both receptors. Short-term exposure to clozapine decreased secretion and mRNA expression of leptin. Long-term exposure decreased leptin as well as adiponectin secretion, and further increased lipid droplets accumulation. However, short- and long-term exposures to blonanserin did not affect these parameters. A selective serotonin 5-HT 2C , but not a histamine H 1 , receptor antagonist enhanced the decreased secretion of leptin induced by short-term exposure to clozapine, but did not affect the increased accumulation of lipid droplets. Our findings indicate that clozapine, but not blonanserin, strongly and directly affected the secretion of adipokines, such as leptin, in adipocytes and caused adipocyte enlargement. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Tramonti Fantozzi, Maria Paola; De Cicco, Vincenzo; Barresi, Massimo; Cataldo, Enrico; Faraguna, Ugo; Bruschini, Luca; Manzoni, Diego
2017-01-01
Trigeminal input to the ascending activating system is important for the maintenance of arousal and may affect the discharge of the noradrenergic neurons of the locus coeruleus (LC), whose activity influences both vigilance state and pupil size, inducing mydriasis. For this reason, pupil size evaluation is now considered an indicator of LC activity. Since mastication activates trigeminal afferent neurons, the aims of the present study, conducted on healthy adult participants, were to investigate whether chewing a bolus of different hardness may: (1) differentially affect the performance on a cognitive task (consisting in the retrieval of specific target numbers within numerical matrices) and (2) increase the dilatation of the pupil (mydriasis) induced by a haptic task, suggesting a change in LC activation. Results show that chewing significantly increased both the velocity of number retrieval (without affecting the number of errors) and the mydriasis associated with the haptic task, whereas simple task repetition did not modify either retrieval or mydriasis. Handgrip exercise, instead, significantly decreased both parameters. Effects were significantly stronger and longer lasting when subjects chewed hard pellets. Finally, chewing-induced improvements in performance and changes in mydriasis were positively correlated, which suggests that trigeminal signals enhanced by chewing may boost the cognitive performance by increasing LC activity. PMID:28848404
Pietrasik, Z; Janz, J A M
2009-03-01
Effects of salt/phosphate injection level (112% or 125% pump), salt level (0.5% or 1.5% salt), and freezing/thawing on hydration characteristics, quality, and consumer acceptance of beef semitendinosus were investigated. All enhancement treatments decreased shear force by 25-35%, but negatively affected colour. Increased salt concentration yielded lower purge and cooking losses, and higher water holding capacity. The higher injection level reduced water binding properties, however, the loss in functionality with higher water addition was overcome with increased salt content. Freezing and subsequent thawing was generally detrimental to colour and water binding properties and tended to increase shear force. Freezing and subsequent thawing did not affect fluid release in steaks held for 1 day before analysis, but resulted in decreased water retention in samples held for 7 days. Holding vacuum packaged steaks for 7 days generally increased package purge and negatively affected colour parameters, although water binding characteristics were improved. Consumer panel results demonstrated a negative effect on juiciness and tenderness where meat subject to low salt/high injection was frozen then thawed - the low salt level was insufficient to maintain any positive effect of injection treatment. In general, salt/phosphate injection improved product acceptability and increased willingness to purchase.
Ting, Miriam; Tenaglia, Matthew S; Jones, Gary H; Suzuki, Jon B
2017-04-01
The objective of this systematic review was to perform a comprehensive overview of systematic reviews and meta-analyses of surgical and patient factors affecting marginal bone loss around osseointegrated dental implants in humans. Electronic databases were searched for systematic reviews and meta-analyses published up to November 2015. Of the 41 articles selected, 11 evaluated implant factors, 10 evaluated patient factors, 19 evaluated surgical protocol-related factors, and one evaluated all three factors. The chosen studies were AMSTAR rated for quality. The following parameters have statistically significant effect on marginal bone loss: (1) marginal bone loss was significantly more in patients with periodontitis than in periodontally healthy patients; (2) significantly greater in generalized aggressive periodontitis patients compared with chronic periodontitis patients; (3) significantly less in alveolar socket preservation techniques; (4) significantly more in alveolar ridge augmentation sites; (5) significantly more in men than in women; (6) significantly more in smokers than in nonsmokers; and (7) smokers also have significantly more marginal bone loss in the maxilla than in the mandible. Knowledge of the surgical and patient factors that affect marginal bone loss can aid the clinician in making informed choices in selecting implant treatment options that will enhance the longevity and long-term success of their implant-supported cases.
Hydration of amino acids: FTIR spectra and molecular dynamics studies.
Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz
2015-11-01
The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.
Armeli, Stephen; Conner, Tamlin S; Cullum, Jerry; Tennen, Howard
2010-03-01
We examined among college students (N = 530; 276 women) the moderating effects of avoidance (coping) and appetitive (social-enhancement) drinking motives on the within-person associations between anxious and depressive affect and drinking frequency and quantity. Once per year for up to 4 years participants completed standard measures of drinking motives and retrospective reports of affect and drinking in the previous month. In addition, each year they completed a 30-day daily diary of affect and drinking. Results from models examining both the retrospective and aggregate daily data indicated that individuals with high compared with low social-enhancement motives showed stronger positive associations among changes in monthly negative affect and drinking frequency. Weak evidence was found for the predicted moderating effects of coping motives, although some results indicated that its effects were contingent on levels of social-enhancement motives. Our findings suggest that appetitive drinking motives might play an integral role in stress- and negative-affect related drinking among college students.
The heuristic value of redundancy models of aging.
Boonekamp, Jelle J; Briga, Michael; Verhulst, Simon
2015-11-01
Molecular studies of aging aim to unravel the cause(s) of aging bottom-up, but linking these mechanisms to organismal level processes remains a challenge. We propose that complementary top-down data-directed modelling of organismal level empirical findings may contribute to developing these links. To this end, we explore the heuristic value of redundancy models of aging to develop a deeper insight into the mechanisms causing variation in senescence and lifespan. We start by showing (i) how different redundancy model parameters affect projected aging and mortality, and (ii) how variation in redundancy model parameters relates to variation in parameters of the Gompertz equation. Lifestyle changes or medical interventions during life can modify mortality rate, and we investigate (iii) how interventions that change specific redundancy parameters within the model affect subsequent mortality and actuarial senescence. Lastly, as an example of data-directed modelling and the insights that can be gained from this, (iv) we fit a redundancy model to mortality patterns observed by Mair et al. (2003; Science 301: 1731-1733) in Drosophila that were subjected to dietary restriction and temperature manipulations. Mair et al. found that dietary restriction instantaneously reduced mortality rate without affecting aging, while temperature manipulations had more transient effects on mortality rate and did affect aging. We show that after adjusting model parameters the redundancy model describes both effects well, and a comparison of the parameter values yields a deeper insight in the mechanisms causing these contrasting effects. We see replacement of the redundancy model parameters by more detailed sub-models of these parameters as a next step in linking demographic patterns to underlying molecular mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Widhiarso, Wahyu; Rosyidi, Cucuk Nur
2018-02-01
Minimizing production cost in a manufacturing company will increase the profit of the company. The cutting parameters will affect total processing time which then will affect the production cost of machining process. Besides affecting the production cost and processing time, the cutting parameters will also affect the environment. An optimization model is needed to determine the optimum cutting parameters. In this paper, we develop an optimization model to minimize the production cost and the environmental impact in CNC turning process. The model is used a multi objective optimization. Cutting speed and feed rate are served as the decision variables. Constraints considered are cutting speed, feed rate, cutting force, output power, and surface roughness. The environmental impact is converted from the environmental burden by using eco-indicator 99. Numerical example is given to show the implementation of the model and solved using OptQuest of Oracle Crystal Ball software. The results of optimization indicate that the model can be used to optimize the cutting parameters to minimize the production cost and the environmental impact.
Natural Environmental Service Support to NASA Vehicle, Technology, and Sensor Development Programs
NASA Technical Reports Server (NTRS)
1993-01-01
The research performed under this contract involved definition of the natural environmental parameters affecting the design, development, and operation of space and launch vehicles. The Universities Space Research Association (USRA) provided the manpower and resources to accomplish the following tasks: defining environmental parameters critical for design, development, and operation of launch vehicles; defining environmental forecasts required to assure optimal utilization of launch vehicles; and defining orbital environments of operation and developing models on environmental parameters affecting launch vehicle operations.
Model of Energy Spectrum Parameters of Ground Level Enhancement Events in Solar Cycle 23
NASA Astrophysics Data System (ADS)
Wu, S.-S.; Qin, G.
2018-01-01
Mewaldt et al. (2012) fitted the observations of the ground level enhancement (GLE) events during solar cycle 23 to the double power law equation to obtain the four spectral parameters, the normalization constant C, low-energy power law slope γ1, high-energy power law slope γ2, and break energy E0. There are 16 GLEs from which we select 13 for study by excluding some events with complicated situation. We analyze the four parameters with conditions of the corresponding solar events. According to solar event conditions, we divide the GLEs into two groups, one with strong acceleration by interplanetary shocks and another one without strong acceleration. By fitting the four parameters with solar event conditions we obtain models of the parameters for the two groups of GLEs separately. Therefore, we establish a model of energy spectrum of solar cycle 23 GLEs, which may be used in prediction in the future.
Positive affect improves working memory: implications for controlled cognitive processing.
Yang, Hwajin; Yang, Sujin; Isen, Alice M
2013-01-01
This study examined the effects of positive affect on working memory (WM) and short-term memory (STM). Given that WM involves both storage and controlled processing and that STM primarily involves storage processing, we hypothesised that if positive affect facilitates controlled processing, it should improve WM more than STM. The results demonstrated that positive affect, compared with neutral affect, significantly enhanced WM, as measured by the operation span task. The influence of positive affect on STM, however, was weaker. These results suggest that positive affect enhances WM, a task that involves controlled processing, not just storage processing. Additional analyses of recall and processing times and accuracy further suggest that improved WM under positive affect is not attributable to motivational differences, but results instead from improved controlled cognitive processing.
NASA Astrophysics Data System (ADS)
Liu, Hong; Nodine, Calvin F.
1996-07-01
This paper presents a generalized image contrast enhancement technique, which equalizes the perceived brightness distribution based on the Heinemann contrast discrimination model. It is based on the mathematically proven existence of a unique solution to a nonlinear equation, and is formulated with easily tunable parameters. The model uses a two-step log-log representation of luminance contrast between targets and surround in a luminous background setting. The algorithm consists of two nonlinear gray scale mapping functions that have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of the gray-level distribution of the given image, and can be uniquely determined once the previous three are set. Tests have been carried out to demonstrate the effectiveness of the algorithm for increasing the overall contrast of radiology images. The traditional histogram equalization can be reinterpreted as an image enhancement technique based on the knowledge of human contrast perception. In fact, it is a special case of the proposed algorithm.
Paño, Blanca; Macías, Napoleon; Salvador, Rafael; Torres, Ferran; Buñesch, Laura; Sebastià, Carmen; Nicolau, Carlos
2016-04-01
The objective of our study was to identify the most useful parameters to differentiate between renal cell carcinoma (RCC) and oncocytoma using four-phase CT. Ninety-seven patients with solid renal lesions who underwent surgery with four-phase preoperative CT evaluation and with pathologic diagnosis of RCC or oncocytoma were included in the study. Features of tumors and the enhancement pattern in the four CT phases were evaluated and analyzed. Logistic regression models were used to assess independent predictors for malignancy. Histopathologically, 13 tumors were oncocytomas and 84 were RCCs. RCCs were larger (6.20 cm vs 3.21 cm, p = 0.0004) and more often enhanced heterogeneously (66 vs 6, p = 0.02). Lesions that were larger than 4 cm showed a significantly higher risk of malignancy (p = 0.0046). Significant differences were found in intensity of nodule enhancement between the nephrographic and the excretory phases with respect to the unenhanced phase (p = 0.003 and p = 0.0026). At multivariate analysis, parameters that were independent predictors of malignancy were enhancement pattern, with RCCs more often having heterogeneous enhancement than oncocytomas (odds ratio [OR], 0.18; 95% CI, 0.04-0.90), and nodule enhancement in the excretory phase in relation to the unenhanced phase, with RCCs showing lower enhancement (OR, 0.93; 95% CI, 0.88-0.97), and a size larger than 4 cm (OR, 4.01; 95% CI, 0.70-23.14). The combination of different CT parameters including lesion size larger than 4 cm, lesion enhancement in the excretory phase in relation to the unenhanced phase, and heterogeneous enhancement pattern helps distinguish RCC from oncocytoma.
Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra.
Liang, Junyi; Xia, Jiangyang; Shi, Zheng; Jiang, Lifen; Ma, Shuang; Lu, Xingjie; Mauritz, Marguerite; Natali, Susan M; Pegoraro, Elaine; Penton, C Ryan; Plaza, César; Salmon, Verity G; Celis, Gerardo; Cole, James R; Konstantinidis, Konstantinos T; Tiedje, James M; Zhou, Jizhong; Schuur, Edward A G; Luo, Yiqi
2018-05-26
Climate warming can result in both abiotic (e.g., permafrost thaw) and biotic (e.g., microbial functional genes) changes in Arctic tundra. Recent research has incorporated dynamic permafrost thaw in Earth system models (ESMs) and indicates that Arctic tundra could be a significant future carbon (C) source due to the enhanced decomposition of thawed deep soil C. However, warming-induced biotic changes may influence biologically related parameters and the consequent projections in ESMs. How model parameters associated with biotic responses will change under warming and to what extent these changes affect projected C budgets have not been carefully examined. In this study, we synthesized six data sets over five years from a soil warming experiment at the Eight Mile Lake, Alaska, into the Terrestrial ECOsystem (TECO) model with a probabilistic inversion approach. The TECO model used multiple soil layers to track dynamics of thawed soil under different treatments. Our results show that warming increased light use efficiency of vegetation photosynthesis but decreased baseline (i.e., environment-corrected) turnover rates of SOC in both the fast and slow pools in comparison with those under control. Moreover, the parameter changes generally amplified over time, suggesting processes of gradual physiological acclimation and functional gene shifts of both plants and microbes. The TECO model predicted that field warming from 2009 to 2013 resulted in cumulative C losses of 224 or 87 g m -2 , respectively, without or with changes in those parameters. Thus, warming-induced parameter changes reduced predicted soil C loss by 61%. Our study suggests that it is critical to incorporate biotic changes in ESMs to improve the model performance in predicting C dynamics in permafrost regions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Musik, Irena; Kocot, Joanna; Kiełczykowska, Małgorzata
2015-06-01
Selenium is an essential element of antioxidant properties. Lithium is widely used in medicine but its administration can cause numerous side effects including oxidative stress. The present study aimed at evaluating if sodium selenite could influence chosen anti- and pro-oxidant parameters in rats treated with lithium. The experiment was performed on four groups of Wistar rats: I (control) - treated with saline; II (Li) - treated with lithium (2.7 mgLi/kg b.w. as Li2CO3), III (Se) - treated with selenium (0.5 mgSe/kg b.w. as Na2SeO3), IV (Li+Se) - treated with Li2CO3 and Na2SeO3 together at the same doses as in group II and III, respectively. All treatments were performed by stomach tube for three weeks in form of water solutions. The following anti- and pro-oxidant parameters: total antioxidant status (TAS) value, catalase (CAT) activity, concentrations of ascorbic acid (AA) and malonyldialdehyde (MDA) in plasma as well as whole blood superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured. Selenium given alone markedly enhanced whole blood GPx and diminished plasma CAT vs. Lithium significantly decreased plasma CAT and slightly increased AA vs. Selenium co-administration restored these parameters to the values observed in control animals. Furthermore, selenium co-administration significantly increased GPx in Li-treated rats. All other parameters (TAS, SOD and MDA) were not affected by lithium and/or selenium. Further research seems to be warranted to decide if application of selenium as an adjuvant in lithium therapy is worth considering. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Impact of Auditory Context on Executed Motor Actions
Yoles-Frenkel, Michal; Avron, Maayan; Prut, Yifat
2016-01-01
The auditory and motor systems are strongly coupled, as is evident in the specifically tight motor synchronization that occurs in response to regularly occurring auditory cues compared with cues of other modalities. Timing of rhythmic action is known to rely on multiple neural centers including the cerebellum and the basal-ganglia which have access to both motor cortical and spinal circuitries. To date, however, there is little information on the motor mechanisms that operate during preparation and execution of rhythmic vs. non-rhythmic movements. We measured acceleration profile and muscle activity while subjects performed tapping movements in response to auditory cues. We found that when tapping at random intervals there was a higher variability of both acceleration profile and muscle activity during motor preparation compared to rhythmic tapping. However, the specific rhythmic context (cued, self-paced, or syncopation) did not affect the motor parameters of the executed taps. Finally, during entrainment we found a gradual as opposed to episodic change in low-level motor parameters (i.e., preparatory muscle activity) that was strongly correlated with changes in high-level parameters (i.e., shift in the reaction time to negative asynchrony). These findings suggest that motor entrainment involves not only adjusting the timing of movement but also modifying parameters that are related to its production. These changes in motor output were insensitive to the specifics of the rhythmic cue: although it took subjects different times to become entrained to different types of rhythmic cues, the motor actions produced once entrainment was obtained were indistinguishable. These findings suggest that motor entrainment involves not only adjusting the timing of movement but also modifying parameters related to its production. The reduced variability of muscle activity during the preparatory period could be one mechanism used by the motor system to enhance the accuracy of motor timing. PMID:26834584
NASA Astrophysics Data System (ADS)
Segers, Marijke C.; Oppenheimer, Benjamin D.; Schaye, Joop; Richings, Alexander J.
2017-10-01
We study the effect of a fluctuating active galactic nucleus (AGN) on the abundance of circumgalactic O VI in galaxies selected from the Evolution and Assembly of GaLaxies and their Environments simulations. We follow the time-variable O VI abundance in post-processing around four galaxies - two at z = 0.1 with stellar masses of M* ˜ 1010 M⊙ and M* ˜ 1011 M⊙, and two at z = 3 with similar stellar masses - out to impact parameters of twice their virial radii, implementing a fluctuating central source of ionizing radiation. Due to delayed recombination, the AGN leave significant 'AGN proximity zone fossils' around all four galaxies, where O VI and other metal ions are out of ionization equilibrium for several megayears after the AGN fade. The column density of O VI is typically enhanced by ≈0.3-1.0 dex at impact parameters within 0.3Rvir, and by ≈0.06-0.2 dex at 2Rvir, thereby also enhancing the covering fraction of O VI above a given column density threshold. The fossil effect tends to increase with increasing AGN luminosity, and towards shorter AGN lifetimes and larger AGN duty cycle fractions. In the limit of short AGN lifetimes, the effect converges to that of a continuous AGN with a luminosity of (fduty/100 per cent) times the AGN luminosity. We also find significant fossil effects for other metal ions, where low-ionization state ions are decreased (Si IV, C IV at z = 3) and high-ionization state ions are increased (C IV at z = 0.1, Ne viii, Mg x). Using observationally motivated AGN parameters, we predict AGN proximity zone fossils to be ubiquitous around M* ˜ 1010-11 M⊙ galaxies, and to affect observations of metals in the circumgalactic medium at both low and high redshifts.
MRI Texture Analysis of Background Parenchymal Enhancement of the Breast
Woo, Jun; Amano, Maki; Yanagisawa, Fumi; Yamamoto, Hiroshi; Tani, Mayumi
2017-01-01
Purpose The purpose of this study was to determine texture parameters reflecting the background parenchymal enhancement (BPE) of the breast, which were acquired using texture analysis (TA). Methods We investigated 52 breasts of the 26 subjects who underwent dynamic contrast-enhanced MRI. One experienced reader scored BPE visually (i.e., minimal, mild, moderate, and marked). TA, including 12 texture parameters, was performed to distinguish the BPE scores quantitatively. Relationships between the visual BPE scores and texture parameters were evaluated using analysis of variance and receiver operating characteristic analysis. Results The variance and skewness of signal intensity were useful for differentiating between moderate and mild or minimal BPE or between mild and minimal BPE, respectively, with the cutoff value of 356.7 for variance and that of 0.21 for skewness. Some TA features could be useful for defining breast lesions from the BPE. Conclusion TA may be useful for quantifying the BPE of the breast. PMID:28812015
Schomburg, A; Schilling, O S; Guenat, C; Schirmer, M; Le Bayon, R C; Brunner, P
2018-10-15
Ecosystem services provided by floodplains are strongly controlled by the structural stability of soils. The development of a stable structure in floodplain soils is affected by a complex and poorly understood interplay of hydrological, physico-chemical and biological processes. This paper aims at analysing relations between fluctuating groundwater levels, soil physico-chemical and biological parameters on soil structure stability in a restored floodplain. Water level fluctuations in the soil are modelled using a numerical surface-water-groundwater flow model and correlated to soil physico-chemical parameters and abundances of plants and earthworms. Causal relations and multiple interactions between the investigated parameters are tested through structural equation modelling (SEM). Fluctuating water levels in the soil did not directly affect the topsoil structure stability, but indirectly through affecting plant roots and soil parameters that in turn determine topsoil structure stability. These relations remain significant for mean annual days of complete and partial (>25%) water saturation. Ecosystem functioning of a restored floodplain might already be affected by the fluctuation of groundwater levels alone, and not only through complete flooding by surface water during a flood period. Surprisingly, abundances of earthworms did not show any relation to other variables in the SEM. These findings emphasise that earthworms have efficiently adapted to periodic stress and harsh environmental conditions. Variability of the topsoil structure stability is thus stronger driven by the influence of fluctuating water levels on plants than by the abundance of earthworms. This knowledge about the functional network of soil engineering organisms, soil parameters and fluctuating water levels and how they affect soil structural stability is of fundamental importance to define management strategies of near-natural or restored floodplains in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Enhancement of the orientational order parameter of nematic liquid crystals in thin cells.
Dhara, Surajit; Madhusudana, N V
2004-04-01
Abstract. We report measurements of birefringence (Delta n) of several nematic liquid crystals having transverse as well as longitudinal dipole moments in thin (1.4 to 2.3 microm) and thick (7 to 16 microm) cells. Rubbed polyimide-coated glass plates are used to get planar alignment of the nematic director in these cells. We find significant enhancement (6 to 18%) of Delta n (proportional to S, where S is the orientational order parameter) in thin cells in all compounds with aromatic cores even at temperatures far approximately 20 degrees C) below the nematic-isotropic transition point. The enhancement is larger in compounds having several phenyl rings and lower if the number of phenyl rings is reduced. In a compound that does not have an aromatic core no significant enhancement is observed, implying that the strength of the surface potential depends on the aromaticity of the cores. Assuming a perfect orientational order at the surface, calculations based on the Landau-de Gennes theory show that the thickness averaged enhancement of S is sharply reduced as the temperature is lowered in the nematic phase. The measured order parameter S is further enhanced in thin cells because of the stiffening of the elastic constant which reduces the thermal fluctuations of the nematic director. The combined effect is however too small at low temperatures to account for the experimental data.
NASA Astrophysics Data System (ADS)
Khanmohammadi, Neda; Rezaie, Hossein; Montaseri, Majid; Behmanesh, Javad
2017-10-01
The reference evapotranspiration (ET0) plays an important role in water management plans in arid or semi-arid countries such as Iran. For this reason, the regional analysis of this parameter is important. But, ET0 process is affected by several meteorological parameters such as wind speed, solar radiation, temperature and relative humidity. Therefore, the effect of distribution type of effective meteorological variables on ET0 distribution was analyzed. For this purpose, the regional probability distribution of the annual ET0 and its effective parameters were selected. Used data in this research was recorded data at 30 synoptic stations of Iran during 1960-2014. Using the probability plot correlation coefficient (PPCC) test and the L-moment method, five common distributions were compared and the best distribution was selected. The results of PPCC test and L-moment diagram indicated that the Pearson type III distribution was the best probability distribution for fitting annual ET0 and its four effective parameters. The results of RMSE showed that the ability of the PPCC test and L-moment method for regional analysis of reference evapotranspiration and its effective parameters was similar. The results also showed that the distribution type of the parameters which affected ET0 values can affect the distribution of reference evapotranspiration.
SNDR enhancement in noisy sinusoidal signals by non-linear processing elements
NASA Astrophysics Data System (ADS)
Martorell, Ferran; McDonnell, Mark D.; Abbott, Derek; Rubio, Antonio
2007-06-01
We investigate the possibility of building linear amplifiers capable of enhancing the Signal-to-Noise and Distortion Ratio (SNDR) of sinusoidal input signals using simple non-linear elements. Other works have proven that it is possible to enhance the Signal-to-Noise Ratio (SNR) by using limiters. In this work we study a soft limiter non-linear element with and without hysteresis. We show that the SNDR of sinusoidal signals can be enhanced by 0.94 dB using a wideband soft limiter and up to 9.68 dB using a wideband soft limiter with hysteresis. These results indicate that linear amplifiers could be constructed using non-linear circuits with hysteresis. This paper presents mathematical descriptions for the non-linear elements using statistical parameters. Using these models, the input-output SNDR enhancement is obtained by optimizing the non-linear transfer function parameters to maximize the output SNDR.
Tissue redox activity as a hallmark of carcinogenesis: from early to terminal stages of cancer.
Bakalova, Rumiana; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo
2013-05-01
The study aimed to clarify the dynamics of tissue redox activity (TRA) in cancer progression and assess the importance of this parameter for therapeutic strategies. The experiments were carried out on brain tissues of neuroblastoma-bearing, glioma-bearing, and healthy mice. TRA was visualized in vivo by nitroxide-enhanced MRI on anesthetized animals or in vitro by electron paramagnetic resonance spectroscopy on isolated tissue specimens. Two biochemical parameters were analyzed in parallel: tissue total antioxidant capacity (TTAC) and plasma levels of matrix metalloproteinases (MMP). In the early stage of cancer, the brain tissues were characterized by a shorter-lived MRI signal than that from healthy brains (indicating a higher reducing activity for the nitroxide radical), which was accompanied by an enhancement of TTAC and MMP9 plasma levels. In the terminal stage of cancer, tissues in both hemispheres were characterized by a longer-lived MRI signal than in healthy brains (indicating a high-oxidative activity) that was accompanied by a decrease in TTAC and an increase in the MMP2/MMP9 plasma levels. Cancer progression also affected the redox potential of tissues distant from the primary tumor locus (liver and lung). Their oxidative status increased in both stages of cancer. The study shows that tissue redox balance is very sensitive to the progression of cancer and can be used as a diagnostic marker of carcinogenesis. The study also suggests that the noncancerous tissues of a cancer-bearing organism are susceptible to oxidative damage and should be considered a therapeutic target. ©2013 AACR.
Goudarzi, Nasser; Amirnavaee, Monavar; Arab Chamjangali, Mansour; Farsimadan, Sahar
2017-07-01
An improved microextraction method is proposed on the basis of ultrasound-assisted surfactant-enhanced emulsification and solidification of a floating organic droplet procedure combined with high performance liquid chromatography for the preconcentration and quantification of alprazolam (ALP) and chlordiazepoxide (CHL) present in a number of human serum samples. Several parameters affecting the extraction efficiency were investigated by the Plackett -Burman factorial design as the screening design. Then the response surface methodology based on the Box-Behnken design was used to optimize the effective parameters in the proposed procedure. The limits of detection for the proposed method were found to be 3.0 and 3.1 ng mL-1 for CHL and ALP, respectively. The calibration curves obtained for the method were linear in the ranges of 10.0-3,500.0 and 10.0-3,000.0 ng mL-1 for CHL and ALP, respectively, with a good determination coefficient. The recoveries of the drugs in the spiked human serum samples were above 93.0%. The developed method was successfully applied to the analysis of these studied drugs in human serum samples. The pre-treatment of the serum samples was performed using acetonitrile to remove the proteins. The proposed procedure was an accurate and reliable one for the determination and preconcentration of these drugs in blood samples. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Chen, Xiao; Dong, Gang; Jiang, Hua
2017-04-01
The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step chemical reaction and a high resolution, 9th-order weighted essentially non-oscillatory scheme. The computational results were validated by the grid independence test and the experimental results in the literature. The computational results show that after the passage of incident shock wave the flame interface develops in symmetric structure accompanied by large-scale transverse vortex structures. After the interactions by successive reshock waves, the flame interface is gradually destabilized and broken up, and the large-scale vortex structures are gradually transformed into small-scale vortex structures. The small-scale vortices tend to be isotropic later. The results also reveal that the evolution of the flame interface is affected by both mixing process and chemical reaction. In order to identify the relationship between the mixing and the chemical reaction, a dimensionless parameter, η , that is defined as the ratio of mixing time scale to chemical reaction time scale, is introduced. It is found that at each interaction stage the effect of chemical reaction is enhanced with time. The enhanced effect of chemical reaction at the interaction stage by incident shock wave is greater than that at the interaction stages by reshock waves. The result suggests that the parameter η can reasonably character the features of flame interface development induced by the multiple shock waves.
Aquino, R P; Prota, L; Auriemma, G; Santoro, A; Mencherini, T; Colombo, G; Russo, P
2012-04-15
The high hygroscopicity of gentamicin (G) as raw material hampers the production of respirable particles during aerosol generation and prevents its direct use as powder for inhalation in patients suffering from cystic fibrosis (CF). Therefore, this research aimed to design a new dry powder formulation of G studying dispersibility properties of an aminoacid, L-leucine (leu), and appropriate process conditions. Spray-dried powders were characterized as to water uptake, particle size distribution, morphology and stability, in correlation with process parameters. Aerodynamic properties were analyzed both by Single Stage Glass Impinger and Andersen Cascade Impactor. Moreover, the potential cytotoxicity on bronchial epithelial cells bearing a CFTR F508/F508 mutant genotype (CuFi1) were tested. Results indicated that leu may improve the aerosol performance of G-dried powders. The maximum fine particle fraction (FPF) of about 58.3% was obtained when water/isopropyl alcohol 7:3 system and 15-20% (w/w) of leu were used, compared to a FPF value of 13.4% for neat G-dried powders. The enhancement of aerosol efficiency was credited both to the improvement of the powder flowability, caused by the dispersibility enhancer (aminoacid), and to the modification of the particle surface due to the influence of the organic co-solvent on drying process. No significant degradation of the dry powder was observed up to 6 months of storage. Moreover, particle engineering did not affect either the cell viability or cell proliferation of CuFi1 over a 24 h period. Copyright © 2012 Elsevier B.V. All rights reserved.
Research on characteristics of forward scattering light based on Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Ding, Kun; Jin, Wei-qi
2008-03-01
In ocean inspection, laser system has the advantages of high precision, high efficiency and being enacted on the temperature or salinity of seawater. It has been developed greatly in recent years. But it is not yet a mature inspection technique because of the complicacy of oceanic channel and water-scattering. There are many problems to be resolved. In this paper, the work principle and of general developing situation of ocean lidar techniques are introduced first. The author points out that the intense scattering and absorbing acting on light by water is the bottleneck to limit the development of ocean lidar. The Monet Carlo method is adopted finally to be a basal way of study in this paper after discussing several method of studying the light transmitting in seawater. Based on the theory of photon transmitted in the seawater and the particularity of underwater target detecting, we have studied the characters of laser scattering on underwater target surface and spatial and temporal characters of forward scattering. Starting from the particularity of underwater target detecting, a new model to describe the characters of laser scattering is presented. Based on this model, we developed the fast arithmetic, which enhanced the computation speed greatly and the precision was also assured. It made detecting real-time realizable. Basing on the Monte Carlo simulation and starting from the theory of photon transmitted in the seawater, we studied how the parameters of water quality and other systemic parameters affect the light forward scattering through seawater at spatial and temporal region and provided the theoretical sustentation of enhancing the SNR and operational distance.
Characterizing Total Radiation Belt Electron Content Using Van Allen Probes Data
NASA Astrophysics Data System (ADS)
Huang, C. L.; Spence, H. E.; Boyd, A. J.; Jordan, A.; Paulson, K. W.; Zhang, J.; Blake, J. B.; Kletzing, C.
2014-12-01
The comprehensive particle and wave measurements of the Van Allen Probes enable us to monitor the entire radiation belt near the equator from L-shells of 2.5 to 6. Using the particle measurements, we create an improved, high-level quantity representing the entire outer belt. This quantity, the total radiation belt electron content (TRBEC), is the half-orbit sum of outer belt electrons over the radiation belt energy ranges of importance and all pitch angles using data from RBSP-ECT instrument on board both spacecraft. The goal is to characterize statistically the dynamics of the entire radiation belt by comparing TRBEC with solar wind parameters, magnetospheric waves, and electron seed population. When comparing TRBEC with solar wind velocity, our result shows a triangle-distribution similar to that which Reeves et al. (2011) found using geosynchronous electron flux. We also correlate TRBEC with other solar wind parameters to identify which solar wind conditions effectively enhance or deplete radiation belt electrons. In addition, plasma waves in the inner magnetosphere, via wave-particle interaction, are key elements affecting the dynamics of the radiation belt. Therefore, we compare TRBEC with integrated EMIC and chorus (upper and lower bands) wave power calculated from EMFISIS wave measurements to determine the relative importance between each wave-particle process. Finally, we demonstrate the ~100 keV seed population's characteristics that correspond to the MeV population enhancement. While the gross features of the two populations are similar, the MeV population's dynamics lag behind those of the seed population by 5 to 60 hours, which implies the acceleration or loss processes vary by event.
Enhanced multimaterial 4D printing with active hinges
NASA Astrophysics Data System (ADS)
Akbari, Saeed; Hosein Sakhaei, Amir; Kowsari, Kavin; Yang, Bill; Serjouei, Ahmad; Yuanfang, Zhang; Ge, Qi
2018-06-01
Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.
Advantages and risks of using steel slag in preparing composts from raw organic waste.
Tu, Xuefei; Aneksampant, Apichaya; Kobayashi, Shizusa; Tanaka, Atsushi; Nishimoto, Ryo; Fukushima, Masami
2017-01-02
It had been reported that iron and manganese oxides in steel slag enhanced the production of humic acid (HA) from low-molecular-weight compounds, such as phenolic acids, amino acids, and saccharides. In the present study, this function of steel slag was applied to the composting of raw organic wastes (ROWs). The degree of humification of HAs is an important factor in evaluating compost quality. Thus, HAs were extracted from the prepared composts and the humification parameters were determined, in terms of elemental compositions, acidic functional group contents, molecular weights, spectroscopic parameters from UV-vis absorption and 13 C NMR spectra. The timing for adding steel slag affected the degree of humification of HAs in the composts. The weight average molecular weight of a HA when slag was added initially (29 kDa) was significantly higher than when slag was added after elevating the temperature of the compost pile (17-18 kDa). These results show that ROWs are decomposed to low-molecular-weight compounds after the pile temperature is elevated and the presence of slag enhances the polycondensation of these compounds to produce HAs with a higher degree of humification. Because the slag used in the present study contained several-tens ng g -1 to several μg g -1 of toxic elements (B, Cu, Cr, and Zn), leaching tests for these elements from the prepared composts were carried out. Levels for leaching boron from composts prepared by adding slag (0.2-0.4 mg L -1 ) were obviously higher than the corresponding levels without slag (0.05 mg L -1 ).
Sepsis-induced activation of endogenous GLP-1 system is enhanced in type 2 diabetes.
Perl, Sivan H; Bloch, Olga; Zelnic-Yuval, Dana; Love, Itamar; Mendel-Cohen, Lior; Flor, Hadar; Rapoport, Micha J
2018-05-01
High levels of circulating GLP-1 are associated with severity of sepsis in critically ill nondiabetic patients. Whether patients with type 2 diabetes (T2D) display different activation of the endogenous GLP-1 system during sepsis and whether it is affected by diabetes-related metabolic parameters are not known. Serum levels of GLP-1 (total and active forms) and its inhibitor enzyme sDPP-4 were determined by ELISA on admission and after 2 to 4 days in 37 sepsis patients with (n = 13) and without T2D (n = 24) and compared to normal healthy controls (n = 25). Correlations between GLP-1 system activation and clinical, inflammatory, and diabetes-related metabolic parameters were performed. A 5-fold (P < .001) and 2-fold (P < .05) increase in active and total GLP-1 levels, respectively, were found on admission as compared to controls. At 2 to 4 days from admission, the level of active GLP-1 forms in surviving patients were decreased significantly (P < .005), and positively correlated with inflammatory marker CRP (r = 0.33, P = .05). T2D survivors displayed a similar but more enhanced pattern of GLP-1 response than nondiabetic survivors. Nonsurvivors demonstrate an early extreme increase of both total and active GLP-1 forms, 9.5-fold and 5-fold, respectively (P < .05). The initial and late levels of circulating GLP-1 inhibitory enzyme sDPP-4 were twice lower in all studied groups (P < .001), compared with healthy controls. Taken together, these data indicate that endogenous GLP-1 system is activated during sepsis. Patients with T2D display an enhanced and prolonged activation as compared to nondiabetic patients. Extreme early increased GLP-1 levels during sepsis indicate poor prognosis. Copyright © 2018 John Wiley & Sons, Ltd.
The role of small-scale convection on the formation of volcanic passive margins
NASA Astrophysics Data System (ADS)
Van Hunen, J.; Phethean, J. J. J.
2014-12-01
Several models have been presented in the literature to explain volcanic passive margins (VPMs), including variation in rifting speed or history, enhanced melting from mantle plumes, and enhanced flow through the melting zone by small-scale convection (SSC) driven by lithospheric detachments. Understanding the mechanism is important to constrain the paleo-heat flow and petroleum potential of VPM. Using 2D and 3D numerical models, we investigate the influence of SSC on the rate of crust production during continental rifting. Conceptually, SSC results in up/downwellings with a typical spacing of a few-100 km, and may lead to enhanced decompression melting. Subsequent mantle depletion changes buoyancy (from latent heat consumption and compositional changes), and affects mantle dynamics under the MOR and potentially any further melting. Decompression melting leads to a colder, thermally denser residue (from consumption of latent heat of melting), but also a compositionally more buoyant one. A parameter sensitivity study of the effects of mantle viscosity, spreading rate, mantle temperature, and a range material parameters indicates that competition between thermal and compositional buoyancy determines the mantle dynamics. For mantle viscosities ηm > ~1022 Pa s, no SSC occurs, and a uniform 7-8 km-thick oceanic crust forms. For ηm < ~1021 Pa s, SSC is vigorous and can form VPMs with > 10-20 km crust. If thermal density effects dominate, a vigorous (inverted) convection may drive significant decompression melting, and create VPMs. Such dynamics could also explain the continent-dipping normal faults that are commonly observed at VPMs. After the initial rifting phase, the crustal thickness reduces significantly, but not always to a uniformly thick 7-8 km, as would be appropriate for mature oceanic basins. Transverse convection rolls may result in margin-parallel crustal thickness variation, possibly related to observations such as the East-Coast Magnetic Anomaly.
Bernacki, Maciej Jerzy; Czarnocka, Weronika; Witoń, Damian; Rusaczonek, Anna; Szechyńska-Hebda, Magdalena; Ślesak, Ireneusz; Dąbrowska-Bronk, Joanna; Karpiński, Stanisław
2018-04-25
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) was first described as a protein involved in salicylic acid (SA)-, ethylene-, and reactive oxygen species (ROS)-dependent defense and acclimation responses. It is a molecular regulator of biotic and abiotic stress-induced programmed cell death. Its role is relatively well known in annual plants, such as Arabidopsis thaliana or Nicotiana benthamiana. However, little is known about its functions in woody plants. Therefore, in this study, we aimed to characterize the function of EDS1 in the Populus tremula L. × P. tremuloides hybrid grown for several seasons in the natural environment. We used two transgenic lines, eds1-7 and eds1-12, with decreased EDS1 expression levels in this study. The observed changes in physiological and biochemical parameters corresponded with the EDS1 silencing level. Both transgenic lines produced more lateral shoots in comparison to the wild-type (WT) plants, which resulted in the modification of tree morphology. Photosynthetic parameters, such as quantum yield of photosystem II (ϕPSII), photochemical and non-photochemical quenching (qP and NPQ, respectively), as well as chlorophyll content were found to be increased in both transgenic lines, which resulted in changes in photosynthetic efficiency. Our data also revealed lower foliar concentrations of SA and ROS, the latter resulting most probably from more efficient antioxidant system in both transgenic lines. In addition, our data indicated significantly decreased rate of leaf senescence during several autumn seasons. Transcriptomic analysis revealed deregulation of 2215 and 376 genes in eds1-12 and eds1-7, respectively, and also revealed 207 genes that were commonly deregulated in both transgenic lines. The deregulation was primarily observed in the genes involved in photosynthesis, signaling, hormonal metabolism, and development, which was found to agree with the results of biochemical and physiological tests. In general, our data proved that poplar EDS1 affects tree morphology, photosynthetic efficiency, ROS and SA metabolism, as well as leaf senescence. Copyright © 2018. Published by Elsevier GmbH.
Brownlow, Milene L.; Jung, Seung H.; Moore, Raquel J.; Bechmann, Naomi; Jankord, Ryan
2017-01-01
Nutritional ketosis may enhance cerebral energy metabolism and has received increased interest as a way to improve or preserve performance and resilience. Most studies to date have focused on metabolic or neurological disorders while anecdotal evidence suggests that ketosis may enhance performance in the absence of underlying dysfunction. Moreover, decreased availability of glucose in the brain following stressful events is associated with impaired cognition, suggesting the need for more efficient energy sources. We tested the hypotheses that ketosis induced by endogenous or exogenous ketones could: (a) augment cognitive outcomes in healthy subjects; and (b) prevent stress-induced detriments in cognitive parameters. Adult, male, Sprague Dawley rats were used to investigate metabolic and behavioral outcomes in 3 dietary conditions: ketogenic (KD), ketone supplemented (KS), or NIH-31 control diet in both control or chronic stress conditions. Acute administration of exogenous ketones resulted in reduction in blood glucose and sustained ketosis. Chronic experiments showed that in control conditions, only KD resulted in pronounced metabolic alterations and improved performance in the novel object recognition test. The hypothalamic-pituitary-adrenal (HPA) axis response revealed that KD-fed rats maintained peripheral ketosis despite increases in glucose whereas no diet effects were observed in ACTH or CORT levels. Both KD and KS-fed rats decreased escape latencies on the third day of water maze, whereas only KD prevented stress-induced deficits on the last testing day and improved probe test performance. Stress-induced decrease in hippocampal levels of β-hydroxybutyrate was attenuated in KD group while both KD and KS prevented stress effects on BDNF levels. Mitochondrial enzymes associated with ketogenesis were increased in both KD and KS hippocampal samples and both endothelial and neuronal glucose transporters were affected by stress but only in the control diet group. Our results highlight the complex relationship between peripheral metabolism, behavioral performance and biochemical changes in the hippocampus. Endogenous ketosis improved behavioral and metabolic parameters associated with energy metabolism and cognition while ketone supplementation replicated the biochemical effects within the hippocampus but only showed modest effects on behavioral improvements. PMID:28555095
Faulkner, William B; Shaw, Bryan W; Grosch, Tom
2008-10-01
As of December 2006, the American Meteorological Society/U.S. Environmental Protection Agency (EPA) Regulatory Model with Plume Rise Model Enhancements (AERMOD-PRIME; hereafter AERMOD) replaced the Industrial Source Complex Short Term Version 3 (ISCST3) as the EPA-preferred regulatory model. The change from ISCST3 to AERMOD will affect Prevention of Significant Deterioration (PSD) increment consumption as well as permit compliance in states where regulatory agencies limit property line concentrations using modeling analysis. Because of differences in model formulation and the treatment of terrain features, one cannot predict a priori whether ISCST3 or AERMOD will predict higher or lower pollutant concentrations downwind of a source. The objectives of this paper were to determine the sensitivity of AERMOD to various inputs and compare the highest downwind concentrations from a ground-level area source (GLAS) predicted by AERMOD to those predicted by ISCST3. Concentrations predicted using ISCST3 were sensitive to changes in wind speed, temperature, solar radiation (as it affects stability class), and mixing heights below 160 m. Surface roughness also affected downwind concentrations predicted by ISCST3. AERMOD was sensitive to changes in albedo, surface roughness, wind speed, temperature, and cloud cover. Bowen ratio did not affect the results from AERMOD. These results demonstrate AERMOD's sensitivity to small changes in wind speed and surface roughness. When AERMOD is used to determine property line concentrations, small changes in these variables may affect the distance within which concentration limits are exceeded by several hundred meters.
Cox, Melissa D; Myerscough, Mary R
2003-07-21
This paper develops and explores a model of foraging in honey bee colonies. The model may be applied to forage sources with various properties, and to colonies with different foraging-related parameters. In particular, we examine the effect of five foraging-related parameters on the foraging response and consequent nectar intake of a homogeneous colony. The parameters investigated affect different quantities critical to the foraging cycle--visit rate (affected by g), probability of dancing (mpd and bpd), duration of dancing (mcirc), or probability of abandonment (A). We show that one parameter, A, affects nectar intake in a nonlinear way. Further, we show that colonies with a midrange value of any foraging parameter perform better than the average of colonies with high- and low-range values, when profitable sources are available. Together these observations suggest that a heterogeneous colony, in which a range of parameter values are present, may perform better than a homogeneous colony. We modify the model to represent heterogeneous colonies and use it to show that the most important effect of heterogeneous foraging behaviour within the colony is to reduce the variance in the average quantity of nectar collected by heterogeneous colonies.
Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.
Xia, Youshen; Wang, Jun
2015-07-01
This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kinetics of Mixed Microbial Assemblages Enhance Removal of Highly Dilute Organic Substrates
Lewis, David L.; Hodson, Robert E.; Hwang, Huey-Min
1988-01-01
Our experiments with selected organic substrates reveal that the rate-limiting process governing microbial degradation rates changes with substrate concentration, S, in such a manner that substrate removal is enhanced at lower values of S. This enhancement is the result of the dominance of very efficient systems for substrate removal at low substrate concentrations. The variability of dominant kinetic parameters over a range of S causes the kinetics of complex assemblages to be profoundly dissimilar to those of systems possessing a single set of kinetic parameters; these findings necessitate taking a new approach to predicting substrate removal rates over wide ranges of S. PMID:16347715
Instruction-level performance modeling and characterization of multimedia applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y.; Cameron, K.W.
1999-06-01
One of the challenges for characterizing and modeling realistic multimedia applications is the lack of access to source codes. On-chip performance counters effectively resolve this problem by monitoring run-time behaviors at the instruction-level. This paper presents a novel technique of characterizing and modeling workloads at the instruction level for realistic multimedia applications using hardware performance counters. A variety of instruction counts are collected from some multimedia applications, such as RealPlayer, GSM Vocoder, MPEG encoder/decoder, and speech synthesizer. These instruction counts can be used to form a set of abstract characteristic parameters directly related to a processor`s architectural features. Based onmore » microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. The biggest advantage of this new characterization technique is a better understanding of processor utilization efficiency and architectural bottleneck for each application. This technique also provides predictive insight of future architectural enhancements and their affect on current codes. In this paper the authors also attempt to model architectural effect on processor utilization without memory influence. They derive formulas for calculating CPI{sub 0}, CPI without memory effect, and they quantify utilization of architectural parameters. These equations are architecturally diagnostic and predictive in nature. Results provide promise in code characterization, and empirical/analytical modeling.« less
Long non-coding RNA biomarker for human laryngeal squamous cell carcinoma prognosis.
Chen, Jingjing; Shen, Zhisen; Deng, Hongxia; Zhou, Wei; Liao, Qi; Mu, Ying
2018-05-15
Long non-coding RNAs (lncRNA) were discovered in tumors. The regulation of lncRNA in human laryngeal squamous cell carcinoma (LSCC) remains incomplete. Uncovering the potential of lncRNA to stratify the prognosis of LSCC and streamline the vast amount of clinical information will affect medical interventions. The surgical resected LSCC tissues, adjacent non-cancerous tissues (ANCT) and lymph node metastatic tissue (LNM) were collected from 76 patients for lncRNA AC008440.10 expression assay. The stages of LSCC and LNM were classified accordingly. We integrated the epigenetic information with enhanced CT imaging and pathological evaluations to predict the patients' survival by comprehensive statistical algorithms using equal weighting. Significant downregulation of lncRNA AC008440.10 was detected in LSCC tumor and metastatic lymph node in advanced stage of patient samples compared with those in early stage. The pattern of differentially expressed AC008440.10 displayed a clear trend that significantly related to tumor progression. The downregulation of lncRNA AC008440.10 correlates with increasing risk of metastasis, poor prognosis and patient survival. The potential for lncRNA AC008440.10 to be developed as a novel biomarker for stratification of the prognosis was especially promising when clinic parameters were hybridized with equal weight, and using a panel of complementary parameters yielded a more powerful predictability of LSCC prognosis than any single parameter individually. Copyright © 2017. Published by Elsevier B.V.
Synergistic effects in threshold models on networks.
Juul, Jonas S; Porter, Mason A
2018-01-01
Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can-depending on a parameter-either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.
NASA Astrophysics Data System (ADS)
Belloni, Diogo; Zorotovic, Mónica; Schreiber, Matthias R.; Leigh, Nathan W. C.; Giersz, Mirek; Askar, Abbas
2017-06-01
In this third of a series of papers related to cataclysmic variables (CVs) and related objects, we analyse the population of CVs in a set of 12 globular cluster models evolved with the MOCCA Monte Carlo code, for two initial binary populations (IBPs), two choices of common-envelope phase (CEP) parameters, and three different models for the evolution of CVs and the treatment of angular momentum loss. When more realistic models and parameters are considered, we find that present-day cluster CV duty cycles are extremely low (≲0.1 per cent) that makes their detection during outbursts rather difficult. Additionally, the IBP plays a significant role in shaping the CV population properties, and models that follow the Kroupa IBP are less affected by enhanced angular momentum loss. We also predict from our simulations that CVs formed dynamically in the past few Gyr (massive CVs) correspond to bright CVs (as expected) and that faint CVs formed several Gyr ago (dynamically or not) represent the overwhelming majority. Regarding the CV formation rate, we rule out the notion that it is similar irrespective of the cluster properties. Finally, we discuss the differences in the present-day CV properties related to the IBPs, the initial cluster conditions, the CEP parameters, formation channels, the CV evolution models and the angular momentum loss treatments.
Hartmann, Nanna B; Jensen, Keld Alstrup; Baun, Anders; Rasmussen, Kirsten; Rauscher, Hubert; Tantra, Ratna; Cupi, Denisa; Gilliland, Douglas; Pianella, Francesca; Riego Sintes, Juan M
2015-01-01
Selecting appropriate ways of bringing engineered nanoparticles (ENP) into aqueous dispersion is a main obstacle for testing, and thus for understanding and evaluating, their potential adverse effects to the environment and human health. Using different methods to prepare (stock) dispersions of the same ENP may be a source of variation in the toxicity measured. Harmonization and standardization of dispersion methods applied in mammalian and ecotoxicity testing are needed to ensure a comparable data quality and to minimize test artifacts produced by modifications of ENP during the dispersion preparation process. Such harmonization and standardization will also enhance comparability among tests, labs, and studies on different types of ENP. The scope of this review was to critically discuss the essential parameters in dispersion protocols for ENP. The parameters are identified from individual scientific studies and from consensus reached in larger scale research projects and international organizations. A step-wise approach is proposed to develop tailored dispersion protocols for ecotoxicological and mammalian toxicological testing of ENP. The recommendations of this analysis may serve as a guide to researchers, companies, and regulators when selecting, developing, and evaluating the appropriateness of dispersion methods applied in mammalian and ecotoxicity testing. However, additional experimentation is needed to further document the protocol parameters and investigate to what extent different stock dispersion methods affect ecotoxicological and mammalian toxicological responses of ENP.
NASA Astrophysics Data System (ADS)
Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd
2017-12-01
In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.
Davis, Nick J.
2017-01-01
Advances in neuroscience and pharmacology have led to improvements in the cognitive performance of people with neurological disease and other forms of cognitive decline. These same methods may also afford cognitive enhancement in people of otherwise normal cognitive abilities. “Cosmetic”, or supranormal, cognitive enhancement offers opportunities to enrich our social or financial status, our interactions with others, and the common wealth of our community. It is common to focus on the potential benefits of cognitive enhancement, while being less than clear about the possible drawbacks. Here I examine the harms or side-effects associated with a range of cognitive enhancement interventions. I propose a taxonomy of harms in cognitive enhancement, with harms classified as (neuro)biological, ethical, or societal. Biological harms are those that directly affect the person’s biological functioning, such as when a drug affects a person’s mood or autonomic function. Ethical harms are those that touch on issues such as fairness and cheating, or on erosion of autonomy and coercion. Societal harms are harms that affect whole populations, and which are normally the province of governments, such as the use of enhancement in military contexts. This taxonomy of harms will help to focus the debate around the use and regulation of cognitive enhancement. In particular it will help to clarify the appropriate network of stakeholders who should take an interest in each potential harm, and in minimizing the impact of these harms. PMID:28261075
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, K; Lu, Z; MacMahon, H
Purpose: To investigate the effect of varying system image processing parameters on lung nodule detectability in digital radiography. Methods: An anthropomorphic chest phantom was imaged in the posterior-anterior position using a GE Discovery XR656 digital radiography system. To simulate lung nodules, a polystyrene board with 6.35mm diameter PMMA spheres was placed adjacent to the phantom (into the x-ray path). Due to magnification, the projected simulated nodules had a diameter in the radiographs of approximately 7.5 mm. The images were processed using one of GE’s default chest settings (Factory3) and reprocessed by varying the “Edge” and “Tissue Contrast” processing parameters, whichmore » were the two user-configurable parameters for a single edge and contrast enhancement algorithm. For each parameter setting, the nodule signals were calculated by subtracting the chest-only image from the image with simulated nodules. Twenty nodule signals were averaged, Gaussian filtered, and radially averaged in order to generate an approximately noiseless signal. For each processing parameter setting, this noise-free signal and 180 background samples from across the lung were used to estimate ideal observer performance in a signal-known-exactly detection task. Performance was estimated using a channelized Hotelling observer with 10 Laguerre-Gauss channel functions. Results: The “Edge” and “Tissue Contrast” parameters each had an effect on the detectability as calculated by the model observer. The CHO-estimated signal detectability ranged from 2.36 to 2.93 and was highest for “Edge” = 4 and “Tissue Contrast” = −0.15. In general, detectability tended to decrease as “Edge” was increased and as “Tissue Contrast” was increased. A human observer study should be performed to validate the relation to human detection performance. Conclusion: Image processing parameters can affect lung nodule detection performance in radiography. While validation with a human observer study is needed, model observer detectability for common tasks could provide a means for optimizing image processing parameters.« less
Affective Teaching: A Method to Enhance Classroom Management
ERIC Educational Resources Information Center
Shechtman, Zipora; Leichtentritt, Judy
2004-01-01
The purpose of the study was to enhance classroom management in special education classrooms. "Affective teaching" was compared with "cognitive teaching" in 52 classrooms in Israel. Data was collected based on observations of three 90 minute lessons, equally divided into the two types of instruction. Results of MANOVA…
A Case Study Showing Parameters Affecting the Quality of Education: Faculty Perspective
ERIC Educational Resources Information Center
Kumari, Neeraj
2014-01-01
The study aims to examine the faculty members' perspective (age Wise, Gender Wise and Work Experience wise) of parameters affecting the quality of education in an affiliated Undergraduate Engineering Institution in Haryana. It is a descriptive type of research. The data has been collected with the help of 'Questionnaire Based Survey'. The sample…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Jesse D.; Grace Chang; Jason Magalen
A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deploymentmore » location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .« less
History dependent quantum walk on the cycle with an unbalanced coin
NASA Astrophysics Data System (ADS)
Krawec, Walter O.
2015-06-01
Recently, a new model of quantum walk, utilizing recycled coins, was introduced; however little is yet known about its properties. In this paper, we study its behavior on the cycle graph. In particular, we will consider its time averaged distribution and how it is affected by the walk's "memory parameter"-a real parameter, between zero and eight, which affects the walk's coin flip operator. Despite an infinite number of different parameters, our analysis provides evidence that only a few produce non-uniform behavior. Our analysis also shows that the initial state, and cycle size modulo four all affect the behavior of this walk. We also prove an interesting relationship between the recycled coin model and a different memory-based quantum walk recently proposed.
Fountas, Grigorios; Sarwar, Md Tawfiq; Anastasopoulos, Panagiotis Ch; Blatt, Alan; Majka, Kevin
2018-04-01
Traditional accident analysis typically explores non-time-varying (stationary) factors that affect accident occurrence on roadway segments. However, the impact of time-varying (dynamic) factors is not thoroughly investigated. This paper seeks to simultaneously identify pre-crash stationary and dynamic factors of accident occurrence, while accounting for unobserved heterogeneity. Using highly disaggregate information for the potential dynamic factors, and aggregate data for the traditional stationary elements, a dynamic binary random parameters (mixed) logit framework is employed. With this approach, the dynamic nature of weather-related, and driving- and pavement-condition information is jointly investigated with traditional roadway geometric and traffic characteristics. To additionally account for the combined effect of the dynamic and stationary factors on the accident occurrence, the developed random parameters logit framework allows for possible correlations among the random parameters. The analysis is based on crash and non-crash observations between 2011 and 2013, drawn from urban and rural highway segments in the state of Washington. The findings show that the proposed methodological framework can account for both stationary and dynamic factors affecting accident occurrence probabilities, for panel effects, for unobserved heterogeneity through the use of random parameters, and for possible correlation among the latter. The comparative evaluation among the correlated grouped random parameters, the uncorrelated random parameters logit models, and their fixed parameters logit counterpart, demonstrate the potential of the random parameters modeling, in general, and the benefits of the correlated grouped random parameters approach, specifically, in terms of statistical fit and explanatory power. Published by Elsevier Ltd.
Effect of microneedles on transdermal permeation enhancement of amlodipine.
Nalluri, Buchi N; Uppuluri, Chandrateja; Devineni, Jyothirmayee; Nayak, Atul; Nair, Karthik J; Whiteside, Benjamin R; Das, Diganta B
2017-06-01
The present study aimed to investigate the effect of microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation enhancement of amlodipine (AMLO). Two types of MN devices viz. AdminPatch® arrays (ADM) (0.6, 1.2 and 1.5 mm lengths) and laboratory-fabricated polymeric MNs (PM) of 0.6 mm length were employed. In the case of PMs, arrays were applied thrice at different places within a 1.77-cm 2 skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Scaling analyses were done using dimensionless parameters like concentration of AMLO (C t /C s ), thickness (h/L) and surface area of the skin (Sa/L 2 ). Microinjection moulding technique was employed to fabricate PM. Histological studies revealed that the PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 6.84- and 6.11-fold increase in the cumulative amount (48 h) of AMLO permeated was observed with 1.5 mm ADM and PM-3 treatments respectively, when compared to passive permeation amounts. Good correlations (R 2 > 0.89) were observed between different dimensionless parameters with scaling analyses. The enhancement in AMLO permeation was found to be in the order of 1.5 mm ADM ≥ PM-3 > 1.2 mm ADM > 0.6 mm ADM ≥PM-1 > passive. The study suggests that MN application enhances the AMLO transdermal permeation and the geometrical parameters of MNs play an important role in the degree of such enhancement.
Wei, Guoke; Wang, Jinliang; Chen, Yu
2015-01-01
The enhancement factor (EF) of surface-enhanced Raman scattering (SERS) from two-dimensional (2D) hexagonal silver nanorod (AgNR) arrays were investigated in terms of electromagnetic (EM) mechanism by using the discrete dipole approximation (DDA) method. The dependence of EF on several parameters, i.e., structure, length, excitation wavelength, incident angle and polarization, and gap size has been investigated. "Hotspots" were found distributed in the gaps between adjacent nanorods. Simulations of AgNR arrays of different lengths revealed that increasing the rod length from 374 to 937 nm (aspect ratio from 2.0 to 5.0) generated more "hotspots" but not necessarily increased EF under both 514 and 532 nm excitation. A narrow lateral gap (in the incident plane) was found to result in strong EF, while the dependence of EF on the diagonal gap (out of the incident plane) showed an oscillating behavior. The EF of the array was highly dependent on the angle and polarization of the incident light. The structure of AgNR and the excitation wavelength were also found to affect the EF. The EF of random arrays was stronger than that of an ordered one with the same average gap of 21 nm, which could be explained by the exponential dependence of EF on the lateral gap size. Our results also suggested that absorption rather than extinction or scattering could be a good indicator of EM enhancement. It is expected that the understanding of the dependence of local field enhancement on the structure of the nanoarrays and incident excitations will shine light on the optimal design of efficient SERS substrates and improved performance.
Numerical Convergence in the Dark Matter Halos Properties Using Cosmological Simulations
NASA Astrophysics Data System (ADS)
Mosquera-Escobar, X. E.; Muñoz-Cuartas, J. C.
2017-07-01
Nowadays, the accepted cosmological model is the so called -Cold Dark Matter (CDM). In such model, the universe is considered to be homogeneous and isotropic, composed of diverse components as the dark matter and dark energy, where the latter is the most abundant one. Dark matter plays an important role because it is responsible for the generation of gravitational potential wells, commonly called dark matter halos. At the end, dark matter halos are characterized by a set of parameters (mass, radius, concentration, spin parameter), these parameters provide valuable information for different studies, such as galaxy formation, gravitational lensing, etc. In this work we use the publicly available code Gadget2 to perform cosmological simulations to find to what extent the numerical parameters of the simu- lations, such as gravitational softening, integration time step and force calculation accuracy affect the physical properties of the dark matter halos. We ran a suite of simulations where these parameters were varied in a systematic way in order to explore accurately their impact on the structural parameters of dark matter halos. We show that the variations on the numerical parameters affect the structural pa- rameters of dark matter halos, such as concentration, virial radius, and concentration. We show that these modifications emerged when structures become non- linear (at redshift 2) for the scale of our simulations, such that these variations affected the formation and evolution structure of halos mainly at later cosmic times. As a quantitative result, we propose which would be the most appropriate values for the numerical parameters of the simulations, such that they do not affect the halo properties that are formed. For force calculation accuracy we suggest values smaller or equal to 0.0001, integration time step smaller o equal to 0.005 and for gravitational softening we propose equal to 1/60th of the mean interparticle distance, these values, correspond to the smaller values in the numerical parameters variations. This is an important numerical exercise, since for instance, it is believed that galaxy structural parameters are strongly dependent on dark matter halo structural parameters.
Spatial-temporal parameters of gait in women with fibromyalgia.
Heredia Jiménez, José María; Aparicio García-Molina, Virginia A; Porres Foulquie, Jesús M; Delgado Fernández, Manuel; Soto Hermoso, Victor M
2009-05-01
The aim of the present study was to determine if there are differences in such parameters among patients affected by fibromyalgia (FM) and healthy subjects and whether the degree of affectation by FM can decrease the gait parameters. We studied 55 women with FM and 44 controls. Gait analysis was performed using an instrumented walkway for measurement of the kinematic parameters of gait (GAITRite system), and patients completed a Spanish version of Fibromyalgia Impact Questionnaire (FIQ). Significant differences (p < 0.001) between FM and control groups were found in velocity, stride length, cadence, single support ratio, double support ratio, stance phase ratio, and swing phase ratio. There were significant inverse correlations between FIQ and velocity, stride length, swing phase, and single support, whereas significant direct correlations were found with stance phase and double support. Gait parameters of women affected by FM were severely impaired when compared to those of healthy women. Different factors such as lack of physical activity, bradikinesia, overweight, fatigue, and pain together with a lower isometric force in the legs can be responsible for the alterations in gait and poorer life quality of women with FM.
Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy
NASA Astrophysics Data System (ADS)
Karimi, S.; Marsh, B. D.; Hilpert, M.
2017-12-01
A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the terrains with relatively high background heat flux or for vanes located in relatively deep layers, the RAD-EGS can produce economic geothermal energy for more than 40 years. Moreover, these simulations show that the geothermal vane design with the injection well at the bottom and production well at the top of the vane greatly contributes to the longevity of the system.
Root xylem plasticity to improve water use and yield in water-stressed soybean
Prince, Silvas J.; Murphy, Mackensie; Durnell, Lorellin A.; Shannon, J. Grover
2017-01-01
Abstract We tested the hypothesis that increasing the number of metaxylem vessels would enhance the efficiency of water uptake in soybean (Glycine max) and decrease the yield gap in water-limited environments. A panel of 41 soybean accessions was evaluated in greenhouse, rainout shelter, and rain-fed field environments. The metaxylem number influenced the internal capture of CO2 and improved stomatal conductance, enhancing water uptake/use in soybeans exposed to stress during the reproductive stage. We determined that other root anatomical features, such as cortex cell area and the percentage of stele that comprised cortical cells, also affected seed yield under similar growth parameters. Seed yield was also impacted by pod retention rates under drought stress (24–80 pods/plant). We surmise that effective biomass allocation, that is, the transport of available photosynthates to floral structures at late reproductive growth stages (R6–R7), enables yield protection under drought stress. A mesocosm study of contrasting lines for yield under drought stress and root anatomical features revealed that increases in metaxylem number as an adaptation to drought in the high-yielding lines improved root hydraulic conductivity, which reduced the metabolic cost of exploring water in deeper soil strata and enhanced water transport. This allowed the maintenance of shoot physiological processes under water-limited conditions. PMID:28064176
Sliding window adaptive histogram equalization of intraoral radiographs: effect on image quality.
Sund, T; Møystad, A
2006-05-01
To investigate whether contrast enhancement by non-interactive, sliding window adaptive histogram equalization (SWAHE) can enhance the image quality of intraoral radiographs in the dental clinic. Three dentists read 22 periapical and 12 bitewing storage phosphor (SP) radiographs. For the periapical readings they graded the quality of the examination with regard to visually locating the root apex. For the bitewing readings they registered all occurrences of approximal caries on a confidence scale. Each reading was first done on an unprocessed radiograph ("single-view"), and then re-done with the image processed with SWAHE displayed beside the unprocessed version ("twin-view"). The processing parameters for SWAHE were the same for all the images. For the periapical examinations, twin-view was judged to raise the image quality for 52% of those cases where the single-view quality was below the maximum. For the bitewing radiographs, there was a change of caries classification (both positive and negative) with twin-view in 19% of the cases, but with only a 3% net increase in the total number of caries registrations. For both examinations interobserver variance was unaffected. Non-interactive SWAHE applied to dental SP radiographs produces a supplemental contrast enhanced image which in twin-view reading improves the image quality of periapical examinations. SWAHE also affects caries diagnosis of bitewing images, and further study using a gold standard is warranted.
Moroni, Maria; Ngudiankama, Barbara F.; Christensen, Christine; Olsen, Cara H.; Owens, Rossitsa; Lombardini, Eric D.; Holt, Rebecca K.; Whitnall, Mark H.
2013-01-01
Purpose We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the Acute Radiation Syndrome (ARS), to enhance discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematological parameters and dynamics of cell loss/recovery following irradiation provide a convenient means to compare efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials Male Gottingen minipigs, 4–5 months old and weighing 9–11 kg were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen®, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body gamma-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results Results indicate G-CSF enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusion These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing numbers of circulating granulocytes. PMID:23845847
Quasi-periodic Oscillation of a Coronal Bright Point
NASA Astrophysics Data System (ADS)
Samanta, Tanmoy; Banerjee, Dipankar; Tian, Hui
2015-06-01
Coronal bright points (BPs) are small-scale luminous features seen in the solar corona. Quasi-periodic brightenings are frequently observed in the BPs and are generally linked with underlying magnetic flux changes. We study the dynamics of a BP seen in the coronal hole using the Atmospheric Imaging Assembly images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory, and spectroscopic data from the newly launched Interface Region Imaging Spectrograph (IRIS). The detailed analysis shows that the BP evolves throughout our observing period along with changes in underlying photospheric magnetic flux and shows periodic brightenings in different EUV and far-UV images. With the highest possible spectral and spatial resolution of IRIS, we attempted to identify the sources of these oscillations. IRIS sit-and-stare observation provided a unique opportunity to study the time evolution of one footpoint of the BP as the slit position crossed it. We noticed enhanced line profile asymmetry, enhanced line width, intensity enhancements, and large deviation from the average Doppler shift in the line profiles at specific instances, which indicate the presence of sudden flows along the line-of-sight direction. We propose that transition region explosive events originating from small-scale reconnections and the reconnection outflows are affecting the line profiles. The correlation between all these parameters is consistent with the repetitive reconnection scenario and could explain the quasi-periodic nature of the brightening.
NASA Astrophysics Data System (ADS)
Samanta, Tanmoy; Tian, Hui; Banerjee, Dipankar
2016-07-01
Coronal bright points (BPs) are small-scale luminous features seen in the solar corona. Quasi-periodic brightenings are frequently observed in the BPs and are generally linked with underlying magnetic flux changes. We study the dynamics of a BP seen in the coronal hole using the Atmospheric Imaging Assembly images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory, and spectroscopic data from the newly launched Interface Region Imaging Spectrograph (IRIS). The detailed analysis shows that the BP evolves throughout our observing period along with changes in underlying photospheric magnetic flux and shows periodic brightenings in different EUV and far-UV images. With the highest possible spectral and spatial resolution of IRIS, we attempted to identify the sources of these oscillations. IRIS sit-and-stare observation provided a unique opportunity to study the time evolution of one footpoint of the BP as the slit position crossed it. We noticed enhanced line profile asymmetry, enhanced line width, intensity enhancements, and large deviation from the average Doppler shift in the line profiles at specific instances, which indicate the presence of sudden flows along the line-of-sight direction. We propose that transition region explosive events originating from small-scale reconnections and the reconnection outflows are affecting the line profiles. The correlation between all these parameters is consistent with the repetitive reconnection scenario and could explain the quasi-periodic nature of the brightening.
Peters, Eva M J; Müller, Yvonne; Snaga, Wenke; Fliege, Herbert; Reißhauer, Anett; Schmidt-Rose, Thomas; Max, Heiner; Schweiger, Dorothea; Rose, Matthias; Kruse, Johannes
2017-01-01
Mouse models show that experimental stress mimicking prolonged life-stress exposure enhances neurogenic inflammation, induces adaptive immunity cytokine-imbalance characterized by a shift to Type 1 T-helper cell cytokines and increases apoptosis of epithelial cells. This affects hair growth in otherwise healthy animals. In this study, we investigate whether a prolonged naturalistic life-stress exposure affects cytokine balance and hair parameters in healthy humans. 33 (18 exam, 15 comparison) female medical students with comparable sociobiological status were analyzed during a stressful final examination period, at three points in time (T) 12 weeks apart. T1 was before start of the learning period, T2 between the three-day written exam and an oral examination, and T3 after a 12 week rest and recovery from the stress of the examination period. Assessments included: self-reported distress and coping strategies (Perceived Stress Questionnaire [PSQ], Trier Inventory for the Assessment of Chronic Stress [TICS]), COPE), cytokines in supernatants of stimulated peripheral blood mononucleocytes (PBMCs), and trichogram (hair cycle and pigmentation analysis). Comparison between students participating in the final medical exam at T2 and non-exam students, revealed significantly higher stress perception in exam students. Time-wise comparison revealed that stress level, TH1/TH2 cytokine balance and hair parameters changed significantly from T1 to T2 in the exam group, but not the control. However, no group differences were found for cytokine balance or hair parameters at T2. The study concludes that in humans, naturalistic stress, as perceived during participation in a major medical exam, has the potential to shift the immune response to TH1 and transiently hamper hair growth, but these changes stay within a physiological range. Findings are instructive for patients suffering from hair loss in times of high stress. Replication in larger and more diverse sample populations is required, to assess suitability of trichogram analysis as biological outcome for stress studies.
Ambruosi, Barbara; Uranio, Manuel Filioli; Sardanelli, Anna Maria; Pocar, Paola; Martino, Nicola Antonio; Paternoster, Maria Stefania; Amati, Francesca; Dell'Aquila, Maria Elena
2011-01-01
Phthalates are ubiquitous environmental contaminants because of their use in plastics and other common consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate and it impairs fertility by acting as an endocrine disruptor. The aim of the present study was to analyze the effects of in vitro acute exposure to DEHP on oocyte maturation, energy and oxidative status in the horse, a large animal model. Cumulus cell (CC) apoptosis and oxidative status were also investigated. Cumulus-oocyte complexes from the ovaries of slaughtered mares were cultured in vitro in presence of 0.12, 12 and 1200 µM DEHP. After in vitro maturation (IVM), CCs were removed and evaluated for apoptosis (cytological assessment and TUNEL) and intracellular reactive oxygen species (ROS) levels. Oocytes were evaluated for nuclear chromatin configuration. Matured (Metaphase II stage; MII) oocytes were further evaluated for cytoplasmic energy and oxidative parameters. DEHP significantly inhibited oocyte maturation when added at low doses (0.12 µM; P<0.05). This effect was related to increased CC apoptosis (P<0.001) and reduced ROS levels (P<0.0001). At higher doses (12 and 1200 µM), DEHP induced apoptosis (P<0.0001) and ROS increase (P<0.0001) in CCs without affecting oocyte maturation. In DEHP-exposed MII oocytes, mitochondrial distribution patterns, apparent energy status (MitoTracker fluorescence intensity), intracellular ROS localization and levels, mt/ROS colocalization and total SOD activity did not vary, whereas increased ATP content (P<0.05), possibly of glycolytic origin, was found. Co-treatment with N-Acetyl-Cysteine reversed apoptosis and efficiently scavenged excessive ROS in DEHP-treated CCs without enhancing oocyte maturation. In conclusion, acute in vitro exposure to DEHP inhibits equine oocyte maturation without altering ooplasmic energy and oxidative stress parameters in matured oocytes which retain the potential to be fertilized and develop into embryos even though further studies are necessary to confirm this possibility.
Sardanelli, Anna Maria; Pocar, Paola; Martino, Nicola Antonio; Paternoster, Maria Stefania; Amati, Francesca; Dell'Aquila, Maria Elena
2011-01-01
Phthalates are ubiquitous environmental contaminants because of their use in plastics and other common consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate and it impairs fertility by acting as an endocrine disruptor. The aim of the present study was to analyze the effects of in vitro acute exposure to DEHP on oocyte maturation, energy and oxidative status in the horse, a large animal model. Cumulus cell (CC) apoptosis and oxidative status were also investigated. Cumulus-oocyte complexes from the ovaries of slaughtered mares were cultured in vitro in presence of 0.12, 12 and 1200 µM DEHP. After in vitro maturation (IVM), CCs were removed and evaluated for apoptosis (cytological assessment and TUNEL) and intracellular reactive oxygen species (ROS) levels. Oocytes were evaluated for nuclear chromatin configuration. Matured (Metaphase II stage; MII) oocytes were further evaluated for cytoplasmic energy and oxidative parameters. DEHP significantly inhibited oocyte maturation when added at low doses (0.12 µM; P<0.05). This effect was related to increased CC apoptosis (P<0.001) and reduced ROS levels (P<0.0001). At higher doses (12 and 1200 µM), DEHP induced apoptosis (P<0.0001) and ROS increase (P<0.0001) in CCs without affecting oocyte maturation. In DEHP-exposed MII oocytes, mitochondrial distribution patterns, apparent energy status (MitoTracker fluorescence intensity), intracellular ROS localization and levels, mt/ROS colocalization and total SOD activity did not vary, whereas increased ATP content (P<0.05), possibly of glycolytic origin, was found. Co-treatment with N-Acetyl-Cysteine reversed apoptosis and efficiently scavenged excessive ROS in DEHP-treated CCs without enhancing oocyte maturation. In conclusion, acute in vitro exposure to DEHP inhibits equine oocyte maturation without altering ooplasmic energy and oxidative stress parameters in matured oocytes which retain the potential to be fertilized and develop into embryos even though further studies are necessary to confirm this possibility. PMID:22076161
Kronenberg, Maria; Trably, Eric; Bernet, Nicolas; Patureau, Dominique
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) are hardly biodegradable carcinogenic organic compounds. Bioremediation is a commonly used method for treating PAH contaminated environments such as soils, sediment, water bodies and wastewater. However, bioremediation has various drawbacks including the low abundance, diversity and activity of indigenous hydrocarbon degrading bacteria, their slow growth rates and especially a limited bioavailability of PAHs in the aqueous phase. Addition of nutrients, electron acceptors or co-substrates to enhance indigenous microbial activity is costly and added chemicals often diffuse away from the target compound, thus pointing out an impasse for the bioremediation of PAHs. A promising solution is the adoption of bioelectrochemical systems. They guarantee a permanent electron supply and withdrawal for microorganisms, thereby circumventing the traditional shortcomings of bioremediation. These systems combine biological treatment with electrochemical oxidation/reduction by supplying an anode and a cathode that serve as an electron exchange facility for the biocatalyst. Here, recent achievements in polycyclic aromatic hydrocarbon removal using bioelectrochemical systems have been reviewed. This also concerns PAH precursors: total petroleum hydrocarbons and diesel. Removal performances of PAH biodegradation in bioelectrochemical systems are discussed, focussing on configurational parameters such as anode and cathode designs as well as environmental parameters like porosity, salinity, adsorption and conductivity of soil and sediment that affect PAH biodegradation in BESs. The still scarcely available information on microbiological aspects of bioelectrochemical PAH removal is summarised here. This comprehensive review offers a better understanding of the parameters that affect the removal of PAHs within bioelectrochemical systems. In addition, future experimental setups are proposed in order to study syntrophic relationships between PAH degraders and exoelectrogens. This synopsis can help as guide for researchers in their choices for future experimental designs aiming at increasing the power densities and PAH biodegradation rates using microbial bioelectrochemistry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peters, Eva M. J.; Müller, Yvonne; Snaga, Wenke; Fliege, Herbert; Reißhauer, Anett; Schmidt-Rose, Thomas; Max, Heiner; Schweiger, Dorothea; Rose, Matthias; Kruse, Johannes
2017-01-01
Mouse models show that experimental stress mimicking prolonged life-stress exposure enhances neurogenic inflammation, induces adaptive immunity cytokine-imbalance characterized by a shift to Type 1 T-helper cell cytokines and increases apoptosis of epithelial cells. This affects hair growth in otherwise healthy animals. In this study, we investigate whether a prolonged naturalistic life-stress exposure affects cytokine balance and hair parameters in healthy humans. 33 (18 exam, 15 comparison) female medical students with comparable sociobiological status were analyzed during a stressful final examination period, at three points in time (T) 12 weeks apart. T1 was before start of the learning period, T2 between the three-day written exam and an oral examination, and T3 after a 12 week rest and recovery from the stress of the examination period. Assessments included: self-reported distress and coping strategies (Perceived Stress Questionnaire [PSQ], Trier Inventory for the Assessment of Chronic Stress [TICS]), COPE), cytokines in supernatants of stimulated peripheral blood mononucleocytes (PBMCs), and trichogram (hair cycle and pigmentation analysis). Comparison between students participating in the final medical exam at T2 and non-exam students, revealed significantly higher stress perception in exam students. Time-wise comparison revealed that stress level, TH1/TH2 cytokine balance and hair parameters changed significantly from T1 to T2 in the exam group, but not the control. However, no group differences were found for cytokine balance or hair parameters at T2. The study concludes that in humans, naturalistic stress, as perceived during participation in a major medical exam, has the potential to shift the immune response to TH1 and transiently hamper hair growth, but these changes stay within a physiological range. Findings are instructive for patients suffering from hair loss in times of high stress. Replication in larger and more diverse sample populations is required, to assess suitability of trichogram analysis as biological outcome for stress studies. PMID:28423056
NASA Astrophysics Data System (ADS)
Mayotte, Jean-Marc; Grabs, Thomas; Sutliff-Johansson, Stacy; Bishop, Kevin
2017-06-01
This study examined how the inactivation of bacteriophage MS2 in water was affected by ionic strength (IS) and dissolved organic carbon (DOC) using static batch inactivation experiments at 4 °C conducted over a period of 2 months. Experimental conditions were characteristic of an operational managed aquifer recharge (MAR) scheme in Uppsala, Sweden. Experimental data were fit with constant and time-dependent inactivation models using two methods: (1) traditional linear and nonlinear least-squares techniques; and (2) a Monte-Carlo based parameter estimation technique called generalized likelihood uncertainty estimation (GLUE). The least-squares and GLUE methodologies gave very similar estimates of the model parameters and their uncertainty. This demonstrates that GLUE can be used as a viable alternative to traditional least-squares parameter estimation techniques for fitting of virus inactivation models. Results showed a slight increase in constant inactivation rates following an increase in the DOC concentrations, suggesting that the presence of organic carbon enhanced the inactivation of MS2. The experiment with a high IS and a low DOC was the only experiment which showed that MS2 inactivation may have been time-dependent. However, results from the GLUE methodology indicated that models of constant inactivation were able to describe all of the experiments. This suggested that inactivation time-series longer than 2 months were needed in order to provide concrete conclusions regarding the time-dependency of MS2 inactivation at 4 °C under these experimental conditions.
2016-01-01
Mangrove crabs influence ecosystem processes through bioturbation and/or litter feeding. In Brazilian mangroves, the abundant and commercially important crab Ucides cordatus is the main faunal modifier of microtopography establishing up to 2 m deep burrows. They process more than 70% of the leaf litter and propagule production, thus promoting microbial degradation of detritus and benefiting microbe-feeding fiddler crabs. The accelerated nutrient turn-over and increased sediment oxygenation mediated by U. cordatus may enhance mangrove tree growth. Such positive feed-back loop was tested in North Brazil through a one year crab removal experiment simulating increased harvesting rates in a mature Rhizophora mangle forest. Investigated response parameters were sediment salinity, organic matter content, CO2 efflux rates of the surface sediment, and reduction potential. We also determined stipule fall of the mangrove tree R. mangle as a proxy for tree growth. Three treatments were applied to twelve experimental plots (13 m × 13 m each): crab removal, disturbance control and control. Within one year, the number of U. cordatus burrows inside the four removal plots decreased on average to 52% of the initial number. Despite this distinct reduction in burrow density of this large bioturbator, none of the measured parameters differed between treatments. Instead, most parameters were clearly influenced by seasonal changes in precipitation. Hence, in the studied R. mangle forest, abiotic factors seem to be more important drivers of ecosystem processes than factors mediated by U. cordatus, at least within the studied timespan of one year. PMID:27907093
Pülmanns, Nathalie; Mehlig, Ulf; Nordhaus, Inga; Saint-Paul, Ulrich; Diele, Karen
2016-01-01
Mangrove crabs influence ecosystem processes through bioturbation and/or litter feeding. In Brazilian mangroves, the abundant and commercially important crab Ucides cordatus is the main faunal modifier of microtopography establishing up to 2 m deep burrows. They process more than 70% of the leaf litter and propagule production, thus promoting microbial degradation of detritus and benefiting microbe-feeding fiddler crabs. The accelerated nutrient turn-over and increased sediment oxygenation mediated by U. cordatus may enhance mangrove tree growth. Such positive feed-back loop was tested in North Brazil through a one year crab removal experiment simulating increased harvesting rates in a mature Rhizophora mangle forest. Investigated response parameters were sediment salinity, organic matter content, CO2 efflux rates of the surface sediment, and reduction potential. We also determined stipule fall of the mangrove tree R. mangle as a proxy for tree growth. Three treatments were applied to twelve experimental plots (13 m × 13 m each): crab removal, disturbance control and control. Within one year, the number of U. cordatus burrows inside the four removal plots decreased on average to 52% of the initial number. Despite this distinct reduction in burrow density of this large bioturbator, none of the measured parameters differed between treatments. Instead, most parameters were clearly influenced by seasonal changes in precipitation. Hence, in the studied R. mangle forest, abiotic factors seem to be more important drivers of ecosystem processes than factors mediated by U. cordatus, at least within the studied timespan of one year.
Affect intensity and processing fluency of deterrents.
Holman, Andrei
2013-01-01
The theory of emotional intensity (Brehm, 1999) suggests that the intensity of affective states depends on the magnitude of their current deterrents. Our study investigated the role that fluency--the subjective experience of ease of information processing--plays in the emotional intensity modulations as reactions to deterrents. Following an induction phase of good mood, we manipulated both the magnitude of deterrents (using sets of photographs with pre-tested potential to instigate an emotion incompatible with the pre-existent affective state--pity) and their processing fluency (normal vs. enhanced through subliminal priming). Current affective state and perception of deterrents were then measured. In the normal processing conditions, the results revealed the cubic effect predicted by the emotional intensity theory, with the initial affective state being replaced by the one appropriate to the deterrent only in participants exposed to the high magnitude deterrence. In the enhanced fluency conditions the emotional intensity pattern was drastically altered; also, the replacement of the initial affective state occurred at a lower level of deterrence magnitude (moderate instead of high), suggesting the strengthening of deterrence emotional impact by enhanced fluency.
Advances in parameter estimation techniques applied to flexible structures
NASA Technical Reports Server (NTRS)
Maben, Egbert; Zimmerman, David C.
1994-01-01
In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.
NASA Technical Reports Server (NTRS)
Kiang, R.; Adimi, F.; Nigro, J.
2007-01-01
Meteorological and environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. These parameters can most conveniently be obtained using remote sensing. Selected provinces and districts in Thailand and Indonesia are used to illustrate how remotely sensed meteorological and environmental parameters may enhance the capabilities for malaria surveillance and control. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records.
Differential regulation of metabolic parameters by energy deficit and hunger.
Kitka, Tamás; Tuza, Sebestyén; Varga, Balázs; Horváth, Csilla; Kovács, Péter
2015-10-01
Hypocaloric diet decreases both energy expenditure (EE) and respiratory exchange rate (RER), affecting the efficacy of dieting inversely. Energy deficit and hunger may be modulated separately both in human and animal studies by drug treatment or food restriction. Thus it is important to separate the effects of energy deficit and hunger on EE and RER. Three parallel and analogous experiments were performed using three pharmacologically distinct anorectic drugs: rimonabant, sibutramine and tramadol. Metabolic parameters of vehicle- and drug-treated and pair-fed diet-induced obese mice from the three experiments underwent common statistical analysis to identify effects independent of the mechanisms of action. Diet-induced obesity (DIO) test of tramadol was also performed to examine its anti-obesity efficacy. RER was decreased similarly by drug treatments and paired feeding throughout the experiment irrespective of the cause of reduced food intake. Contrarily, during the passive phase, EE was decreased more by paired feeding than by both vehicle and drug treatment irrespective of the drug used. In the active phase, EE was influenced by the pharmacological mechanisms of action. Tramadol decreased body weight in the DIO test. Our results suggest that RER is mainly affected by the actual state of energy balance; conversely, EE is rather influenced by hunger. Therefore, pharmacological medications that decrease hunger may enhance the efficacy of a hypocaloric diet by maintaining metabolic rate. Furthermore, our results yield the proposal that effects of anorectic drugs on EE and RER should be determined compared to vehicle and pair-fed groups, respectively, in animal models. Copyright © 2015 Elsevier Inc. All rights reserved.
Kuypers, Kim PC; Dolder, Patrick C; Ramaekers, Johannes G; Liechti, Matthias E
2017-01-01
Previous placebo-controlled experimental studies have shown that a single dose of MDMA can increase emotional empathy in the multifaceted empathy test (MET) without affecting cognitive empathy. Although sufficiently powered to detect main effects of MDMA, these studies were generally underpowered to also validly assess contributions of additional parameters, such as sex, drug use history, trait empathy and MDMA or oxytocin plasma concentrations. The present study examined the robustness of the MDMA effect on empathy and investigated the moderating role of these additional parameters. Participants (n = 118) from six placebo-controlled within-subject studies and two laboratories were included in the present pooled analysis. Empathy (MET), MDMA and oxytocin plasma concentrations were assessed after oral administration of MDMA (single dose, 75 or 125 mg). Trait empathy was assessed using the interpersonal reactivity index. We confirmed that MDMA increased emotional empathy at both doses without affecting cognitive empathy. This MDMA-related increase in empathy was most pronounced during presentation of positive emotions as compared with negative emotions. MDMA-induced empathy enhancement was positively related to MDMA blood concentrations measured before the test, but independent of sex, drug use history and trait empathy. Oxytocin concentrations increased after MDMA administration but were not associated with behavioral effects. The MDMA effects on emotional empathy were stable across laboratories and doses. Sex did not play a moderating role in this effect, and oxytocin levels, trait empathy and drug use history were also unrelated. Acute drug exposure was of significant relevance in the MDMA-induced emotional empathy elevation. PMID:28372480
Kuypers, Kim Pc; Dolder, Patrick C; Ramaekers, Johannes G; Liechti, Matthias E
2017-05-01
Previous placebo-controlled experimental studies have shown that a single dose of MDMA can increase emotional empathy in the multifaceted empathy test (MET) without affecting cognitive empathy. Although sufficiently powered to detect main effects of MDMA, these studies were generally underpowered to also validly assess contributions of additional parameters, such as sex, drug use history, trait empathy and MDMA or oxytocin plasma concentrations. The present study examined the robustness of the MDMA effect on empathy and investigated the moderating role of these additional parameters. Participants ( n = 118) from six placebo-controlled within-subject studies and two laboratories were included in the present pooled analysis. Empathy (MET), MDMA and oxytocin plasma concentrations were assessed after oral administration of MDMA (single dose, 75 or 125 mg). Trait empathy was assessed using the interpersonal reactivity index. We confirmed that MDMA increased emotional empathy at both doses without affecting cognitive empathy. This MDMA-related increase in empathy was most pronounced during presentation of positive emotions as compared with negative emotions. MDMA-induced empathy enhancement was positively related to MDMA blood concentrations measured before the test, but independent of sex, drug use history and trait empathy. Oxytocin concentrations increased after MDMA administration but were not associated with behavioral effects. The MDMA effects on emotional empathy were stable across laboratories and doses. Sex did not play a moderating role in this effect, and oxytocin levels, trait empathy and drug use history were also unrelated. Acute drug exposure was of significant relevance in the MDMA-induced emotional empathy elevation.
Helbling, Ignacio M; Busatto, Carlos A; Fioramonti, Silvana A; Pesoa, Juan I; Santiago, Liliana; Estenoz, Diana A; Luna, Julio A
2018-02-20
Planned reproduction in cattle involves regulation of estrous cycle and the use of artificial insemination. Cycle control includes the administration of exogenous progesterone during 5-8 days in a controlled manner allowing females to synchronize their ovulation. Several progesterone delivery systems are commercially available but they have several drawbacks. The aim of the present contribution was to evaluate chitosan microparticles entrapping progesterone as an alternative system. Microparticles were prepared by spray drying. The effect of formulation parameters and experimental conditions on particle features and delivery was studied. A mathematical model to predict progesterone plasma concentration in animals was developed and validated with experimental data. Microparticle size was not affected by formulation parameters but sphericity enhances as Tween 80 content increases and it impairs as TPP content rises. Z potential decreases as phosphate content rises. Particles remain stable in acidic solution but the addition of surfactant is required to stabilize dispersions in neutral medium. Encapsulation efficiencies was 69-75%. In vitro delivery studies showed burst and diffusion-controlled phases, being progesterone released faster at low pH. In addition, delivery extend in cows was affected mainly by particle size and hormone initial content, while the amount injected altered plasma concentration. Theoretical predictions with excellent accuracy were obtained. The mathematical model developed can help to find proper particle features to reach specific delivery rates in the animals. This not only save time, money and effort but also minimized experimentation with animals which is desired from an ethical point of view.
Nguyen, T B; Cron, G O; Perdrizet, K; Bezzina, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Sinclair, J; Thornhill, R E; Foottit, C; Zanette, B; Cameron, I G
2015-11-01
Dynamic contrast-enhanced MR imaging parameters can be biased by poor measurement of the vascular input function. We have compared the diagnostic accuracy of dynamic contrast-enhanced MR imaging by using a phase-derived vascular input function and "bookend" T1 measurements with DSC MR imaging for preoperative grading of astrocytomas. This prospective study included 48 patients with a new pathologic diagnosis of an astrocytoma. Preoperative MR imaging was performed at 3T, which included 2 injections of 5-mL gadobutrol for dynamic contrast-enhanced and DSC MR imaging. During dynamic contrast-enhanced MR imaging, both magnitude and phase images were acquired to estimate plasma volume obtained from phase-derived vascular input function (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function (K(trans)_Φ) as well as plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K(trans)_SI). From DSC MR imaging, corrected relative CBV was computed. Four ROIs were placed over the solid part of the tumor, and the highest value among the ROIs was recorded. A Mann-Whitney U test was used to test for difference between grades. Diagnostic accuracy was assessed by using receiver operating characteristic analysis. Vp_ Φ and K(trans)_Φ values were lower for grade II compared with grade III astrocytomas (P < .05). Vp_SI and K(trans)_SI were not significantly different between grade II and grade III astrocytomas (P = .08-0.15). Relative CBV and dynamic contrast-enhanced MR imaging parameters except for K(trans)_SI were lower for grade III compared with grade IV (P ≤ .05). In differentiating low- and high-grade astrocytomas, we found no statistically significant difference in diagnostic accuracy between relative CBV and dynamic contrast-enhanced MR imaging parameters. In the preoperative grading of astrocytomas, the diagnostic accuracy of dynamic contrast-enhanced MR imaging parameters is similar to that of relative CBV. © 2015 by American Journal of Neuroradiology.
Valence and arousal-based affective evaluations of foods.
Woodward, Halley E; Treat, Teresa A; Cameron, C Daryl; Yegorova, Vitaliya
2017-01-01
We investigated the nutrient-specific and individual-specific validity of dual-process models of valenced and arousal-based affective evaluations of foods across the disordered eating spectrum. 283 undergraduate women provided implicit and explicit valence and arousal-based evaluations of 120 food photos with known nutritional information on structurally similar indirect and direct affect misattribution procedures (AMP; Payne et al., 2005, 2008), and completed questionnaires assessing body mass index (BMI), hunger, restriction, and binge eating. Nomothetically, added fat and added sugar enhance evaluations of foods. Idiographically, hunger and binge eating enhance activation, whereas BMI and restriction enhance pleasantness. Added fat is salient for women who are heavier, hungrier, or who restrict; added sugar is influential for less hungry women. Restriction relates only to valence, whereas binge eating relates only to arousal. Findings are similar across implicit and explicit affective evaluations, albeit stronger for explicit, providing modest support for dual-process models of affective evaluation of foods. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nam, J G; Kang, K M; Choi, S H; Lim, W H; Yoo, R-E; Kim, J-H; Yun, T J; Sohn, C-H
2017-12-01
Glioblastoma is the most common primary brain malignancy and differentiation of true progression from pseudoprogression is clinically important. Our purpose was to compare the diagnostic performance of dynamic contrast-enhanced pharmacokinetic parameters using the fixed T1 and measured T1 on differentiating true from pseudoprogression of glioblastoma after chemoradiation with temozolomide. This retrospective study included 37 patients with histopathologically confirmed glioblastoma with new enhancing lesions after temozolomide chemoradiation defined as true progression ( n = 15) or pseudoprogression ( n = 22). Dynamic contrast-enhanced pharmacokinetic parameters, including the volume transfer constant, the rate transfer constant, the blood plasma volume per unit volume, and the extravascular extracellular space per unit volume, were calculated by using both the fixed T1 of 1000 ms and measured T1 by using the multiple flip-angle method. Intra- and interobserver reproducibility was assessed by using the intraclass correlation coefficient. Dynamic contrast-enhanced pharmacokinetic parameters were compared between the 2 groups by using univariate and multivariate analysis. The diagnostic performance was evaluated by receiver operating characteristic analysis and leave-one-out cross validation. The intraclass correlation coefficients of all the parameters from both T1 values were fair to excellent (0.689-0.999). The volume transfer constant and rate transfer constant from the fixed T1 were significantly higher in patients with true progression ( P = .048 and .010, respectively). Multivariate analysis revealed that the rate transfer constant from the fixed T1 was the only independent variable (OR, 1.77 × 10 5 ) and showed substantial diagnostic power on receiver operating characteristic analysis (area under the curve, 0.752; P = .002). The sensitivity and specificity on leave-one-out cross validation were 73.3% (11/15) and 59.1% (13/20), respectively. The dynamic contrast-enhanced parameter of rate transfer constant from the fixed T1 acted as a preferable marker to differentiate true progression from pseudoprogression. © 2017 by American Journal of Neuroradiology.
Hales, Claire A; Robinson, Emma S J; Houghton, Conor J
2016-01-01
Human decision making is modified by emotional state. Rodents exhibit similar biases during interpretation of ambiguous cues that can be altered by affective state manipulations. In this study, the impact of negative affective state on judgement bias in rats was measured using an ambiguous-cue interpretation task. Acute treatment with an anxiogenic drug (FG7142), and chronic restraint stress and social isolation both induced a bias towards more negative interpretation of the ambiguous cue. The diffusion model was fit to behavioural data to allow further analysis of the underlying decision making processes. To uncover the way in which parameters vary together in relation to affective state manipulations, independent component analysis was conducted on rate of information accumulation and distances to decision threshold parameters for control data. Results from this analysis were applied to parameters from negative affective state manipulations. These projected components were compared to control components to reveal the changes in decision making processes that are due to affective state manipulations. Negative affective bias in rodents induced by either FG7142 or chronic stress is due to a combination of more negative interpretation of the ambiguous cue, reduced anticipation of the high reward and increased anticipation of the low reward.
NASA Technical Reports Server (NTRS)
Grosveld, F.; Navaneethan, R.; Roskam, J.
1981-01-01
This paper presents results of a systematic experimental investigation of parameters which affect sound transmission through general aviation structures. Parameters studied include angle of sound incidence, panel curvature, panel stresses, and edge conditions for bare panels; pane thickness, spacing, inclination of window panes, and depressurization for dual pane windows; densities of hard foam and sound absorption materials, air gaps, and trim panel thickness for multilayered panels. Based on the study, some promising methods for reducing interior noise in general aviation airplanes are discussed.
A Study of Al-Mn Transition Edge Sensor Engineering for Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, E. M.; et al.
2013-11-10
The stability of Al-Mn transition edge sensor (TES) bolometers is studied as we vary the engineered TES transition, heat capacity, and/or coupling between the heat capacity and TES. We present thermal structure measurements of each of the 39 designs tested. The data is accurately fit by a two-body bolometer model, which allows us to extract the basic TES parameters that affect device stability. We conclude that parameters affecting device stability can be engineered for optimal device operation, and present the model parameters extracted for the different TES designs.
ERIC Educational Resources Information Center
Kim, Kyung Yong; Lee, Won-Chan
2017-01-01
This article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the…
Preliminary experience using dynamic MRI at 3.0 Tesla for evaluation of soft tissue tumors.
Park, Michael Yong; Jee, Won-Hee; Kim, Sun Ki; Lee, So-Yeon; Jung, Joon-Yong
2013-01-01
We aimed to evaluate the use of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) at 3.0 T for differentiating the benign from malignant soft tissue tumors. Also we aimed to assess whether the shorter length of DCE-MRI protocols are adequate, and to evaluate the effect of temporal resolution. Dynamic contrast-enhanced magnetic resonance imaging, at 3.0 T with a 1 second temporal resolution in 13 patients with pathologically confirmed soft tissue tumors, was analyzed. Visual assessment of time-signal curves, subtraction images, maximal relative enhancement at the first (maximal peak enhancement [Emax]/1) and second (Emax/2) minutes, Emax, steepest slope calculated by using various time intervals (5, 30, 60 seconds), and the start of dynamic enhancement were analyzed. The 13 tumors were comprised of seven benign and six malignant soft tissue neoplasms. Washout on time-signal curves was seen on three (50%) malignant tumors and one (14%) benign one. The most discriminating DCE-MRI parameter was the steepest slope calculated, by using at 5-second intervals, followed by Emax/1 and Emax/2. All of the steepest slope values occurred within 2 minutes of the dynamic study. Start of dynamic enhancement did not show a significant difference, but no malignant tumor rendered a value greater than 14 seconds. The steepest slope and early relative enhancement have the potential for differentiating benign from malignant soft tissue tumors. Short-length rather than long-length DCE-MRI protocol may be adequate for our purpose. The steepest slope parameters require a short temporal resolution, while maximal peak enhancement parameter may be more optimal for a longer temporal resolution.
Landau damping of the dust-acoustic surface waves in a Lorentzian dusty plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2016-01-15
Landau damping of a dust-acoustic surface wave propagating at the interfaces of generalized Lorentzian dusty plasma slab bounded by a vacuum is kinetically derived as the surface wave displays the symmetric and the anti-symmetric mode in a plasma slab. In the limiting case of small scaled wave number, we have found that Landau damping is enhanced as the slab thickness is increased. In particular, the damping of anti-symmetric mode is much stronger for a Lorentzian plasma than for a Maxwellian plasma. We have also found that the damping is more affected by superthermal particles in a Lorentzian plasma than bymore » a Maxwellian plasma for both of the symmetric and the anti-symmetric cases. The variations of Landau damping with various parameters are also discussed.« less
NASA Astrophysics Data System (ADS)
Sharma, Nikesh; Pareek, Smita; Chaturvedi, Nitin; Dahiya, Ratna
2018-03-01
Solar photovoltaic (SPV) systems are steadily rising and considered as the best alternatives to meet the rising demand of energy. In developing countries like India, SPV’s contribution being a clean energy is the most favourable. However, experiences have shown that produced power of these systems is usually affected due to day, night, seasonal variations, insolation, partial shading conditions etc. Among these parameters, partial shading causes a huge reduction in output power of PV systems. This results in lack of confidence for this technology among users. Thus, it is important and a major challenge in PV systems to minimize the effect of partial shading on their energy production. The work in this paper aims to propose solutions for reconfiguration of solar photovoltaic arrays in order to reduce partial shading losses and thus to enhance power generation.
Cosmological lepton asymmetry, primordial nucleosynthesis and sterile neutrinos
NASA Astrophysics Data System (ADS)
Abazajian, Kevork; Bell, Nicole F.; Fuller, George M.; Wong, Yvonne Y. Y.
2005-09-01
We study post weak decoupling coherent active-sterile and active-active matter-enhanced neutrino flavor transformation in the early Universe. We show that flavor conversion efficiency at Mikheyev-Smirnov-Wolfenstein resonances is likely to be high (adiabatic evolution) for relevant neutrino parameters and energies. However, we point out that these resonances cannot sweep smoothly and continuously with the expansion of the Universe. We show how neutrino flavor conversion in this way can leave both the active and sterile neutrinos with nonthermal energy spectra, and how, in turn, these distorted energy spectra can affect the neutron-to-proton ratio, primordial nucleosynthesis, and cosmological mass/closure constraints on sterile neutrinos. We demonstrate that the existence of a light sterile neutrino which mixes with active neutrinos can change fundamentally the relationship between the cosmological lepton numbers and the primordial nucleosynthesis He4 yield.
NASA Astrophysics Data System (ADS)
Cultrera, Matteo; Boaga, Jacopo; Di Sipio, Eloisa; Dalla Santa, Giorgia; De Seta, Massimiliano; Galgaro, Antonio
2018-05-01
Groundwater tracer tests are often used to improve aquifer characterization, but they present several disadvantages, such as the need to pour solutions or dyes into the aquifer system and alteration of the water's chemical properties. Thus, tracers can affect the groundwater flow mechanics and data interpretation becomes more complex, hindering effective study of ground heat pumps for low enthalpy geothermal systems. This paper presents a preliminary methodology based on a multidisciplinary application of heat as a tracer for defining the main parameters of shallow aquifers. The field monitoring techniques electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) are noninvasive and were applied to a shallow-aquifer test site in northeast Italy. The combination of these measurement techniques supports the definition of the main aquifer parameters and therefore the construction of a reliable conceptual model, which is then described through the numerical code FEFLOW. This model is calibrated with DTS and validated by ERT outcomes. The reliability of the numerical model in terms of fate and transport is thereby enhanced, leading to the potential for better environmental management and protection of groundwater resources through more cost-effective solutions.
Fonteyne, Margot; Wickström, Henrika; Peeters, Elisabeth; Vercruysse, Jurgen; Ehlers, Henrik; Peters, Björn-Hendrik; Remon, Jean Paul; Vervaet, Chris; Ketolainen, Jarkko; Sandler, Niklas; Rantanen, Jukka; Naelapää, Kaisa; De Beer, Thomas
2014-07-01
Continuous manufacturing gains more and more interest within the pharmaceutical industry. The International Conference of Harmonisation (ICH) states in its Q8 'Pharmaceutical Development' guideline that the manufacturer of pharmaceuticals should have an enhanced knowledge of the product performance over a range of raw material attributes, manufacturing process options and process parameters. This fits further into the Process Analytical Technology (PAT) and Quality by Design (QbD) framework. The present study evaluates the effect of variation in critical raw material properties on the critical quality attributes of granules and tablets, produced by a continuous from-powder-to-tablet wet granulation line. The granulation process parameters were kept constant to examine the differences in the end product quality caused by the variability of the raw materials properties only. Theophylline-Lactose-PVP (30-67.5-2.5%) was used as model formulation. Seven different grades of theophylline were granulated. Afterward, the obtained granules were tableted. Both the characteristics of granules and tablets were determined. The results show that differences in raw material properties both affect their processability and several critical quality attributes of the resulting granules and tablets. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Behera, Kishore Kumar; Pal, Snehanshu
2018-03-01
This paper describes a new approach towards optimum utilisation of ferrochrome added during stainless steel making in AOD converter. The objective of optimisation is to enhance end blow chromium content of steel and reduce the ferrochrome addition during refining. By developing a thermodynamic based mathematical model, a study has been conducted to compute the optimum trade-off between ferrochrome addition and end blow chromium content of stainless steel using a predator prey genetic algorithm through training of 100 dataset considering different input and output variables such as oxygen, argon, nitrogen blowing rate, duration of blowing, initial bath temperature, chromium and carbon content, weight of ferrochrome added during refining. Optimisation is performed within constrained imposed on the input parameters whose values fall within certain ranges. The analysis of pareto fronts is observed to generate a set of feasible optimal solution between the two conflicting objectives that provides an effective guideline for better ferrochrome utilisation. It is found out that after a certain critical range, further addition of ferrochrome does not affect the chromium percentage of steel. Single variable response analysis is performed to study the variation and interaction of all individual input parameters on output variables.
A holistic approach to ZigBee performance enhancement for home automation networks.
Betzler, August; Gomez, Carles; Demirkol, Ilker; Paradells, Josep
2014-08-14
Wireless home automation networks are gaining importance for smart homes. In this ambit, ZigBee networks play an important role. The ZigBee specification defines a default set of protocol stack parameters and mechanisms that is further refined by the ZigBee Home Automation application profile. In a holistic approach, we analyze how the network performance is affected with the tuning of parameters and mechanisms across multiple layers of the ZigBee protocol stack and investigate possible performance gains by implementing and testing alternative settings. The evaluations are carried out in a testbed of 57 TelosB motes. The results show that considerable performance improvements can be achieved by using alternative protocol stack configurations. From these results, we derive two improved protocol stack configurations for ZigBee wireless home automation networks that are validated in various network scenarios. In our experiments, these improved configurations yield a relative packet delivery ratio increase of up to 33.6%, a delay decrease of up to 66.6% and an improvement of the energy efficiency for battery powered devices of up to 48.7%, obtainable without incurring any overhead to the network.
Cordon, Gabriela; Iriel, Analia; Cirelli, Alicia Fernández; Lagorio, M Gabriela
2018-08-01
The presence of arsenic (As) in groundwater is a major problem in several parts of Latin America. In the present work, non-destructive approaches to monitor the effects of As on plants of Cichorium intybus, an herbaceous Asteraceae, were explored. In this sense, the effects of As at different levels of water and radiation were evaluated on these crops. Plants were grown in a greenhouse, watered daily with As solutions and exposed to different water and/or light conditions for four months, using a three-factor (As, water, radiation) and two-level resource (As vs non As, field capacity vs half-field capacity condition, light vs shade condition) factorial design. The parameters most affected by this treatment were the area under the first derivative of the reflectance spectrum in the blue region, chlorophyll concentration, the F red /F far-red fluorescence ratio and the quantum yield for the photophysical decay. These changes indicated the ability of this plant species to be a biomonitor for the presence of arsenic in irrigation water. Interestingly, it was further proved in this work that the biomonitoring capacity was enhanced in the presence of sunlight. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guettari, Moez; Aferni, Ahmed E. L.; Tajouri, Tahar
2017-12-01
The main aim of this paper is the analysis of micellar collisions and polymer confinement effects on the electrical conductivity percolative behavior of water/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles. Firstly, we have performed conductance measurements of the system for three AOT to isooctane volume ratio, φm = 0.1 , 0.15 and 0.2 to examine the influence of micellar collisions on the percolation parameters. All the measurements were carried out over the 298.15 K-333.15 K temperature range at a fixed water to AOT molar ratio, W0 = 45 . We have assessed that the rise of micellar collisions frequency enhances the conductance percolation. Secondly, the confinement effect of a water-soluble polymer, polyvinylpyrrolidone (PVP), on the reverse micelles conductance behavior was investigated. Temperature-induced percolation, Tp , have shown a dependence on the polymer concentration, CPVP . It was also observed that for various PVP concentrations, the activation energy of percolation decreases. Finally, the values of the critical exponents determined in the presence and absence of PVP prove that the polymer affects the dynamic of percolation.
A Holistic Approach to ZigBee Performance Enhancement for Home Automation Networks
Betzler, August; Gomez, Carles; Demirkol, Ilker; Paradells, Josep
2014-01-01
Wireless home automation networks are gaining importance for smart homes. In this ambit, ZigBee networks play an important role. The ZigBee specification defines a default set of protocol stack parameters and mechanisms that is further refined by the ZigBee Home Automation application profile. In a holistic approach, we analyze how the network performance is affected with the tuning of parameters and mechanisms across multiple layers of the ZigBee protocol stack and investigate possible performance gains by implementing and testing alternative settings. The evaluations are carried out in a testbed of 57 TelosB motes. The results show that considerable performance improvements can be achieved by using alternative protocol stack configurations. From these results, we derive two improved protocol stack configurations for ZigBee wireless home automation networks that are validated in various network scenarios. In our experiments, these improved configurations yield a relative packet delivery ratio increase of up to 33.6%, a delay decrease of up to 66.6% and an improvement of the energy efficiency for battery powered devices of up to 48.7%, obtainable without incurring any overhead to the network. PMID:25196004
Reduced-rank technique for joint channel estimation in TD-SCDMA systems
NASA Astrophysics Data System (ADS)
Kamil Marzook, Ali; Ismail, Alyani; Mohd Ali, Borhanuddin; Sali, Adawati; Khatun, Sabira
2013-02-01
In time division-synchronous code division multiple access systems, increasing the system capacity by exploiting the inserting of the largest number of users in one time slot (TS) requires adding more estimation processes to estimate the joint channel matrix for the whole system. The increase in the number of channel parameters due the increase in the number of users in one TS directly affects the precision of the estimator's performance. This article presents a novel channel estimation with low complexity, which relies on reducing the rank order of the total channel matrix H. The proposed method exploits the rank deficiency of H to reduce the number of parameters that characterise this matrix. The adopted reduced-rank technique is based on truncated singular value decomposition algorithm. The algorithms for reduced-rank joint channel estimation (JCE) are derived and compared against traditional full-rank JCEs: least squares (LS) or Steiner and enhanced (LS or MMSE) algorithms. Simulation results of the normalised mean square error showed the superiority of reduced-rank estimators. In addition, the channel impulse responses founded by reduced-rank estimator for all active users offers considerable performance improvement over the conventional estimator along the channel window length.
Structural optimization of the path length control mirror for ring laser gyro
NASA Astrophysics Data System (ADS)
Ma, Yanghua; Quan, Bingxin; Han, Zonghu; Wang, Jiliang
2017-02-01
The path length control mirror (PLCM) is essential for high precision ring laser gyro (RLG). In this paper the influence of the structural parameters of the PLCM on its length compensating efficiency (LCE) and the anti-transversedeformation capability(ATDC) is numerically investigated, with the aid of the finite element software ANSYS. The result shows that the inner and outer diameters as well as the thickness of the deformation slot of the PLCM have significant influences on both its LCE and ATDC, while the position of the deformation slot of the PLCM has little impact on its LCE and mainly affect its ATDC. According to the simulation, two types of PLCMs with the same parameters all but the position of deformation slot are fabricated and experimentally demonstrated, with the result showing great agreement with the simulation. That is to say, for a given overall dimension constraint, the dynamic stability of the RLG resonator can be dramatically enhanced by a proper design of the PLCM, without almost any negative impact on its LCE. This will be of great value for the optimization of the PLCM for RLG, especially for miniature RLG.
Dynamics of social contagions with memory of nonredundant information
NASA Astrophysics Data System (ADS)
Wang, Wei; Tang, Ming; Zhang, Hai-Feng; Lai, Ying-Cheng
2015-07-01
A key ingredient in social contagion dynamics is reinforcement, as adopting a certain social behavior requires verification of its credibility and legitimacy. Memory of nonredundant information plays an important role in reinforcement, which so far has eluded theoretical analysis. We first propose a general social contagion model with reinforcement derived from nonredundant information memory. Then, we develop a unified edge-based compartmental theory to analyze this model, and a remarkable agreement with numerics is obtained on some specific models. We use a spreading threshold model as a specific example to understand the memory effect, in which each individual adopts a social behavior only when the cumulative pieces of information that the individual received from his or her neighbors exceeds an adoption threshold. Through analysis and numerical simulations, we find that the memory characteristic markedly affects the dynamics as quantified by the final adoption size. Strikingly, we uncover a transition phenomenon in which the dependence of the final adoption size on some key parameters, such as the transmission probability, can change from being discontinuous to being continuous. The transition can be triggered by proper parameters and structural perturbations to the system, such as decreasing individuals' adoption threshold, increasing initial seed size, or enhancing the network heterogeneity.
NASA Astrophysics Data System (ADS)
Sulochana, C.; Ashwinkumar, G. P.; Sandeep, N.
2017-09-01
In the current study, we investigated the impact of thermophoresis and Brownian moment on the boundary layer 2D forced convection flow of a magnetohydrodynamic nanofluid along a persistently moving horizontal needle with frictional heating effect. The various pertinent parameters are taken into account in the present analysis, namely, the thermophoresis and Brownian moment, uneven heat source/sink, Joule heating and frictional heating effects. To check the variation in the boundary layer behavior, we considered two distinct nanoparticles namely Al50Cu50 (alloy with 50% alumina and 50% copper) and Cu with water as base liquid. Numerical solutions are derived for the reduced system of governing PDEs by employing the shooting process. Computational results of the flow, energy and mass transport are interpreted with the support of tables and graphical illustrations. The obtained results indicate that the increase in the needle size significantly reduces the flow and thermal fields. In particular, the velocity field of the Cu-water nanofluid is highly affected when compared with the Al50Cu50 -water nanofluid. Also, we showed that the thermophoresis and Brownian moment parameters are capable of enhancing the thermal conductivity to a great extent.
Moghri, Mehdi; Omidi, Mostafa; Farahnakian, Masoud
2014-01-01
During the past decade, polymer nanocomposites attracted considerable investment in research and development worldwide. One of the key factors that affect the quality of polymer nanocomposite products in machining is surface roughness. To obtain high quality products and reduce machining costs it is very important to determine the optimal machining conditions so as to achieve enhanced machining performance. The objective of this paper is to develop a predictive model using a combined design of experiments and artificial intelligence approach for optimization of surface roughness in milling of polyamide-6 (PA-6) nanocomposites. A surface roughness predictive model was developed in terms of milling parameters (spindle speed and feed rate) and nanoclay (NC) content using artificial neural network (ANN). As the present study deals with relatively small number of data obtained from full factorial design, application of genetic algorithm (GA) for ANN training is thought to be an appropriate approach for the purpose of developing accurate and robust ANN model. In the optimization phase, a GA is considered in conjunction with the explicit nonlinear function derived from the ANN to determine the optimal milling parameters for minimization of surface roughness for each PA-6 nanocomposite. PMID:24578636
A Quantitative Study of Oxygen as a Metabolic Regulator
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabera, Marco E.
2000-01-01
An acute reduction in oxygen delivery to a tissue is associated with metabolic changes aimed at maintaining ATP homeostasis. However, given the complexity of the human bio-energetic system, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). In particular, we are interested in determining mechanisms relating cellular oxygen concentration to observed metabolic responses at the cellular, tissue, organ, and whole body levels and in quantifying how changes in tissue oxygen availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study; we extend a previously developed mathematical model of human bioenergetics, to provide a physicochemical framework that permits quantitative understanding of oxygen as a metabolic regulator. Specifically, the enhancement - sensitivity analysis - permits studying the effects of variations in tissue oxygenation and parameters controlling cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The analysis can distinguish between parameters that must be determined accurately and those that require less precision, based on their effects on model predictions. This capability may prove to be important in optimizing experimental design, thus reducing use of animals.
Bio-based topical system for enhanced salicylic acid delivery: preparation and performance of gels.
Langasco, Rita; Spada, Gianpiera; Tanriverdi, Sakine Tuncay; Rassu, Giovanna; Giunchedi, Paolo; Özer, Özgen; Gavini, Elisabetta
2016-08-01
New salicylic acid (SA)-loaded gels were developed using excipients made from renewable materials, and our goal was to improve drug permeation in the topical treatment of acne vulgaris. We studied the preparation parameters to obtain suitable gel formulations. Only naturally occurring polymers were used as gelling agents. Two hydrogels and three lipogels were selected and characterized in terms of drug loading, pH, viability cells, rheology, mechanical properties and in vitro permeation; these hydrogels and lipogels were compared with the traditional ointment. We also evaluated skin parameters before and after gel application. The formulations that we studied are non-Newtonian fluids; they have high drug loading and suitable mechanical properties. Lipogels exhibit a slower and more linear in vitro permeation profile compared with hydrogels. The different vehicles that we used affected drug permeation and improve patient compliance. Cytotoxicity studies suggest that all of the formulations are non-toxic. Lipogels demonstrate appropriate technological features and improved performance compared with the traditional ointment with regard to their composition. Lipogels may represent a new bio-based topical system for SA delivery. The use of 'green' excipients leads to 'skin-friendly' formulations that are able to satisfy environmental safety. © 2016 Royal Pharmaceutical Society.
Taguchi optimization of bismuth-telluride based thermoelectric cooler
NASA Astrophysics Data System (ADS)
Anant Kishore, Ravi; Kumar, Prashant; Sanghadasa, Mohan; Priya, Shashank
2017-07-01
In the last few decades, considerable effort has been made to enhance the figure-of-merit (ZT) of thermoelectric (TE) materials. However, the performance of commercial TE devices still remains low due to the fact that the module figure-of-merit not only depends on the material ZT, but also on the operating conditions and configuration of TE modules. This study takes into account comprehensive set of parameters to conduct the numerical performance analysis of the thermoelectric cooler (TEC) using a Taguchi optimization method. The Taguchi method is a statistical tool that predicts the optimal performance with a far less number of experimental runs than the conventional experimental techniques. Taguchi results are also compared with the optimized parameters obtained by a full factorial optimization method, which reveals that the Taguchi method provides optimum or near-optimum TEC configuration using only 25 experiments against 3125 experiments needed by the conventional optimization method. This study also shows that the environmental factors such as ambient temperature and cooling coefficient do not significantly affect the optimum geometry and optimum operating temperature of TECs. The optimum TEC configuration for simultaneous optimization of cooling capacity and coefficient of performance is also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.
Regional cloud permitting model simulations of cloud populations observed during the 2011 ARM Madden Julian Oscillation Investigation Experiment/ Dynamics of Madden-Julian Experiment (AMIE/DYNAMO) field campaign are evaluated against radar and ship-based measurements. Sensitivity of model simulated surface rain rate statistics to parameters and parameterization of hydrometeor sizes in five commonly used WRF microphysics schemes are examined. It is shown that at 2 km grid spacing, the model generally overestimates rain rate from large and deep convective cores. Sensitivity runs involving variation of parameters that affect rain drop or ice particle size distribution (more aggressive break-up process etc) generally reduce themore » bias in rain-rate and boundary layer temperature statistics as the smaller particles become more vulnerable to evaporation. Furthermore significant improvement in the convective rain-rate statistics is observed when the horizontal grid-spacing is reduced to 1 km and 0.5 km, while it is worsened when run at 4 km grid spacing as increased turbulence enhances evaporation. The results suggest modulation of evaporation processes, through parameterization of turbulent mixing and break-up of hydrometeors may provide a potential avenue for correcting cloud statistics and associated boundary layer temperature biases in regional and global cloud permitting model simulations.« less
Dust Quantization and Effects on Agriculture Over Uttar Pradesh, India
NASA Astrophysics Data System (ADS)
Munshi, Pavel; Tiwari, Shubhansh
2017-01-01
Dust plays a very important role in the atmosphere and the biosphere. In this communication, the effect of atmospheric dust on the yields of certain crops grown in Uttar Pradesh, India is assessed. Coherent physical and thermodynamic fingerprints of dust parameters such as from Satellite data- KALPANA-1, MODIS, OMI, CALIPSO; Model data- DREAM, HYSPLIT, ECMWF; have been considered to run the APSIM model to derive the impacts. This paper assesses dust as a physical atmospheric phenomenon including its Long Range Transport (LRT) and dispersion along with considerable variations of Aerosol Optical Depths (AODs) over the subcontinent of India. While AODs significantly increase by more dust concentration, the local dispersion of pollutants is a major concern with deposition of atmospheric dust such as sulphates and other chemical constituents that affect agricultural land. An approach in atmospheric physics is also taken to parameterize the model outputs. This communication indicates dust to be a positive factor for the cultivation of certain crops such as wheat, maize in the experimental location. Initial results suggest that LRT dust is a viable counterpart to decrease the concentration of soil acidity and related parameters thus enhancing the vitality of crops.
Supper, Stephanie; Anton, Nicolas; Seidel, Nina; Riemenschnitter, Marc; Curdy, Catherine; Vandamme, Thierry
2014-02-01
Thermogelling chitosan (CS)/glycerophosphate (GP) solutions have been reported as a new type of parenteral in situ forming depot system. These free-flowing solutions at ambient temperature turn into semi-solid hydrogels after parenteral administration. Formulation parameters such as CS physico-chemical characteristics, CS/gelling agent ratio or pH of the system, were acknowledged as key parameters affecting the solution stability, the sol/gel transition behavior and/or the final hydrogel structure. We discuss also the use of the standard CS/GP thermogels for various biomedical applications, including drug delivery and tissue engineering. Furthermore, this manuscript reviews the different strategies implemented to improve the hydrogel characteristics such as combination with carrier particles, replacement of GP, addition of a second polymer and chemical modification of CS. The recent advances in the formulation of CS-based thermogelling systems already overcame several challenges faced by the standard CS/GP system. Dispersion of drug-loaded carrier particles into the thermogels allowed achieving prolonged release profiles for low molecular weight drugs; incorporation of an additional polymer enabled to strengthen the network, while the use of chemically modified CS led to enhanced pH sensitivity or biodegradability of the matrix.
Vibrational resonance in an inhomogeneous medium with periodic dissipation
NASA Astrophysics Data System (ADS)
Roy-Layinde, T. O.; Laoye, J. A.; Popoola, O. O.; Vincent, U. E.; McClintock, P. V. E.
2017-09-01
The role of nonlinear dissipation in vibrational resonance (VR) is investigated in an inhomogeneous system characterized by a symmetric and spatially periodic potential and subjected to nonuniform state-dependent damping and a biharmonic driving force. The contributions of the parameters of the high-frequency signal to the system's effective dissipation are examined theoretically in comparison to linearly damped systems, for which the parameter of interest is the effective stiffness in the equation of slow vibration. We show that the VR effect can be enhanced by varying the nonlinear dissipation parameters and that it can be induced by a parameter that is shared by the damping inhomogeneity and the system potential. Furthermore, we have apparently identified the origin of the nonlinear-dissipation-enhanced response: We provide evidence of its connection to a Hopf bifurcation, accompanied by monotonic attractor enlargement in the VR regime.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul
2016-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning retrospective predictions at the decadal (5-years), seasonal and sub-seasonal time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and sub-seasonal time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; van den Hurk, B.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2016-12-01
The European consortium earth system model (EC-Earth; http://www.ec-earth.org) has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-08-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
Di Minin, Enrico; Hunter, Luke T B; Balme, Guy A; Smith, Robert J; Goodman, Peter S; Slotow, Rob
2013-01-01
The ideal conservation planning approach would enable decision-makers to use population viability analysis to assess the effects of management strategies and threats on all species at the landscape level. However, the lack of high-quality data derived from long-term studies, and uncertainty in model parameters and/or structure, often limit the use of population models to only a few species of conservation concern. We used spatially explicit metapopulation models in conjunction with multi-criteria decision analysis to assess how species-specific threats and management interventions would affect the persistence of African wild dog, black rhino, cheetah, elephant, leopard and lion, under six reserve scenarios, thereby providing the basis for deciding on a best course of conservation action in the South African province of KwaZulu-Natal, which forms the central component of the Maputaland-Pondoland-Albany biodiversity hotspot. Overall, the results suggest that current strategies of managing populations within individual, small, fenced reserves are unlikely to enhance metapopulation persistence should catastrophic events affect populations in the future. Creating larger and better-connected protected areas would ensure that threats can be better mitigated in the future for both African wild dog and leopard, which can disperse naturally, and black rhino, cheetah, elephant, and lion, which are constrained by electric fences but can be managed using translocation. The importance of both size and connectivity should inform endangered megafauna conservation and management, especially in the context of restoration efforts in increasingly human-dominated landscapes.
Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge.
Kelada, Samir N P
2016-09-08
Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene-environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design in which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics. Copyright © 2016 Kelada.
Wieser, Gerhard; Grams, Thorsten E E; Matyssek, Rainer; Oberhuber, Walter; Gruber, Andreas
2015-03-01
This study quantified the effect of soil warming on sap flow density (Qs) of Pinus cembra L. at the treeline in the Central Tyrolean Alps. To enhance soil temperature we installed a transparent roof construction above the forest floor around six trees. Six other trees served as controls in the absence of any manipulation. Roofing enhanced growing season mean soil temperature by 1.6, 1.3 and 1.0 °C at 5, 10 and 20 cm soil depth, respectively, while soil water availability was not affected. Sap flow density (using Granier-type thermal dissipation probes) and environmental parameters were monitored throughout three growing seasons. During the first year of treatment, no warming effect was detected on Qs. However, soil warming caused Qs to increase significantly by 11 and 19% above levels in control trees during the second and third year, respectively. This effect appeared to result from warming-induced root production, a reduction in viscosity and perhaps an increase also in root hydraulic conductivity. Hardly affected were leaf-level net CO2 uptake rate and conductance for water vapour, so that water-use efficiency stayed unchanged as confirmed by needle δ(13)C analysis. We conclude that tree water loss will increase with soil warming, which may alter the water balance within the treeline ecotone of the Central Austrian Alps in a future warming environment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Di Minin, Enrico; Hunter, Luke T. B.; Balme, Guy A.; Smith, Robert J.; Goodman, Peter S.; Slotow, Rob
2013-01-01
The ideal conservation planning approach would enable decision-makers to use population viability analysis to assess the effects of management strategies and threats on all species at the landscape level. However, the lack of high-quality data derived from long-term studies, and uncertainty in model parameters and/or structure, often limit the use of population models to only a few species of conservation concern. We used spatially explicit metapopulation models in conjunction with multi-criteria decision analysis to assess how species-specific threats and management interventions would affect the persistence of African wild dog, black rhino, cheetah, elephant, leopard and lion, under six reserve scenarios, thereby providing the basis for deciding on a best course of conservation action in the South African province of KwaZulu-Natal, which forms the central component of the Maputaland-Pondoland-Albany biodiversity hotspot. Overall, the results suggest that current strategies of managing populations within individual, small, fenced reserves are unlikely to enhance metapopulation persistence should catastrophic events affect populations in the future. Creating larger and better-connected protected areas would ensure that threats can be better mitigated in the future for both African wild dog and leopard, which can disperse naturally, and black rhino, cheetah, elephant, and lion, which are constrained by electric fences but can be managed using translocation. The importance of both size and connectivity should inform endangered megafauna conservation and management, especially in the context of restoration efforts in increasingly human-dominated landscapes. PMID:23977144
Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge
Kelada, Samir N. P.
2016-07-22
Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene–environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design inmore » which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics.« less
Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelada, Samir N. P.
Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene–environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design inmore » which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics.« less
Comparison of reintroduction and enhancement effects on metapopulation viability
Halsey, Samniqueka J; Bell, Timothy J.; McEachern, A. Kathryn; Pavlovic, Noel B.
2015-01-01
Metapopulation viability depends upon a balance of extinction and colonization of local habitats by a species. Mechanisms that can affect this balance include physical characteristics related to natural processes (e.g. succession) as well as anthropogenic actions. Plant restorations can help to produce favorable metapopulation dynamics and consequently increase viability; however, to date no studies confirm this is true. Population viability analysis (PVA) allows for the use of empirical data to generate theoretical future projections in the form of median time to extinction and probability of extinction. In turn, PVAs can inform and aid the development of conservation, recovery, and management plans. Pitcher's thistle (Cirsium pitcheri) is a dune endemic that exhibited metapopulation dynamics. We projected viability of three natural and two restored populations with demographic data spanning 15–23 years to determine the degree the addition of reintroduced population affects metapopulation viability. The models were validated by comparing observed and projected abundances and adjusting parameters associated with demographic and environmental stochasticity to improve model performance. Our chosen model correctly predicted yearly population abundance for 60% of the population-years. Using that model, 50-year projections showed that the addition of reintroductions increases metapopulation viability. The reintroduction that simulated population performance in early-successional habitats had the maximum benefit. In situ enhancements of existing populations proved to be equally effective. This study shows that restorations can facilitate and improve metapopulation viability of species dependent on metapopulation dynamics for survival with long-term persistence of C. pitcheri in Indiana likely to depend on continued active management.
NASA Astrophysics Data System (ADS)
Ciompi, Luc
At variance with a purely cognitivistic approach, an affect-centered model of mental functioning called `fractal affect-logic' is presented on the basis of current emotional-psychological and neurobiological research. Functionally integrated feeling-thinking-behaving programs generated by action appear in this model as the basic `building blocks' of the psyche. Affects are understood as the essential source of energy that mobilises and organises both linear and nonlinear affective-cognitive dynamics, under the influence of appropriate control parameters and order parameters. Global patterns of affective-cognitive functioning form dissipative structures in the sense of Prigogine, with affect-specific attractors and repulsors, bifurcations, high sensitivity for initial conditions and a fractal overall structure that may be represented in a complex potential landscape of variable configuration. This concept opens new possibilities of understanding normal and pathological psychodynamics and sociodynamics, with numerous practical and theoretical implications.
ERIC Educational Resources Information Center
Kumari, Neeraj
2014-01-01
The objective of the study is to examine the students' perspective (age wise, gender wise and year wise) of parameters affecting the undergraduate engineering education system present in a private technical institution in NCR [National Capital Region], Haryana. It is a descriptive type of research in nature. The data has been collected with the…
NASA Astrophysics Data System (ADS)
Yashima, Kenta; Ito, Kana; Nakamura, Kazuyuki
2013-03-01
When an Infectious disease where to prevail throughout the population, epidemic parameters such as the basic reproduction ratio, initial point of infection etc. are estimated from the time series data of infected population. However, it is unclear how does the structure of host population affects this estimation accuracy. In other words, what kind of city is difficult to estimate its epidemic parameters? To answer this question, epidemic data are simulated by constructing a commuting network with different network structure and running the infection process over this network. From the given time series data for each network structure, we would like to analyzed estimation accuracy of epidemic parameters.
NASA Astrophysics Data System (ADS)
Atanasov, Victor
2017-07-01
We extend the superconductor's free energy to include an interaction of the order parameter with the curvature of space-time. This interaction leads to geometry dependent coherence length and Ginzburg-Landau parameter which suggests that the curvature of space-time can change the superconductor's type. The curvature of space-time doesn't affect the ideal diamagnetism of the superconductor but acts as chemical potential. In a particular circumstance, the geometric field becomes order-parameter dependent, therefore the superconductor's order parameter dynamics affects the curvature of space-time and electrical or internal quantum mechanical energy can be channelled into the curvature of space-time. Experimental consequences are discussed.
Xiang, Suyun; Wang, Wei; Xia, Jia; Xiang, Bingren; Ouyang, Pingkai
2009-09-01
The stochastic resonance algorithm is applied to the trace analysis of alkyl halides and alkyl benzenes in water samples. Compared to encountering a single signal when applying the algorithm, the optimization of system parameters for a multicomponent is more complex. In this article, the resolution of adjacent chromatographic peaks is first involved in the optimization of parameters. With the optimized parameters, the algorithm gave an ideal output with good resolution as well as enhanced signal-to-noise ratio. Applying the enhanced signals, the method extended the limit of detection and exhibited good linearity, which ensures accurate determination of the multicomponent.
Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers.
Matthews, Kristopher; Cruden, Brett A; Chen, Bin; Meyyappan, M; Delzeit, Lance
2002-10-01
Plasma-enhanced chemical vapor deposition is used to grow vertically aligned multiwalled carbon nanofibers (MWNFs). The graphite basal planes in these nanofibers are not parallel as in nanotubes; instead they exhibit a small angle resembling a stacked cone arrangement. A parametric study with varying process parameters such as growth temperature, feedstock composition, and substrate power has been conducted, and these parameters are found to influence the growth rate, diameter, and morphology. The well-aligned MWNFs are suitable for fabricating electrode systems in sensor and device development.
Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers
NASA Technical Reports Server (NTRS)
Matthews, Kristopher; Cruden, Brett A.; Chen, Bin; Meyyappan, M.; Delzeit, Lance
2002-01-01
Plasma-enhanced chemical vapor deposition is used to grow vertically aligned multiwalled carbon nanofibers (MWNFs). The graphite basal planes in these nanofibers are not parallel as in nanotubes; instead they exhibit a small angle resembling a stacked cone arrangement. A parametric study with varying process parameters such as growth temperature, feedstock composition, and substrate power has been conducted, and these parameters are found to influence the growth rate, diameter, and morphology. The well-aligned MWNFs are suitable for fabricating electrode systems in sensor and device development.
Antibody-mediated targeting of replication-competent retroviral vectors.
Tai, Chien-Kuo; Logg, Christopher R; Park, Jinha M; Anderson, W French; Press, Michael F; Kasahara, Noriyuki
2003-05-20
Replication-competent murine leukemia virus (MLV) vectors can be engineered to achieve high efficiency gene transfer to solid tumors in vivo and tumor-restricted replication, however their safety can be further enhanced by redirecting tropism of the virus envelope. We have therefore tested the targeting capability and replicative stability of ecotropic and amphotropic replication-competent retrovirus (RCR) vectors containing two tandem repeats from the immunoglobulin G-binding domain of Staphylococcal protein A inserted into the proline-rich "hinge" region of the envelope, which enables modular use of antibodies of various specificities for vector targeting. The modified envelopes were efficiently expressed and incorporated into virions, were capable of capturing monoclonal anti-HER2 antibodies, and mediated efficient binding of the virus-antibody complex to HER2-positive target cells. While infectivity was markedly reduced by pseudotyping with targeted envelopes alone, coexpression of wild-type envelope rescued efficient cellular entry. Both ecotropic and amphotropic RCR vector/anti-HER2 antibody complexes achieved significant enhancement of transduction on murine target cells overexpressing HER2, which could be competed by preincubation with excess free antibodies. Interestingly, HER2-expressing human breast cancer cells did not show enhancement of transduction despite efficient antibody-mediated cell surface binding, suggesting that target cell-specific parameters markedly affect the efficiency of post-binding entry processes. Serial replication of targeted vectors resulted in selection of Z domain deletion variants, but reduction of the overall size of the vector genome enhanced its stability. Application of antibody-mediated targeting to the initial localization of replication-competent virus vectors to tumor sites will thus require optimized target selection and vector design.
Amavizca, Edgar; Bashan, Yoav; Ryu, Choong-Min; Farag, Mohamed A.; Bebout, Brad M.; de-Bashan, Luz E.
2017-01-01
Remote effects (occurring without physical contact) of two plant growth-promoting bacteria (PGPB) Azospirillum brasilense Cd and Bacilus pumilus ES4 on growth of the green microalga Chlorella sorokiniana UTEX 2714 were studied. The two PGPB remotely enhanced the growth of the microalga, up to six-fold, and its cell volume by about three-fold. In addition to phenotypic changes, both bacteria remotely induced increases in the amounts of total lipids, total carbohydrates, and chlorophyll a in the cells of the microalga, indicating an alteration of the microalga’s physiology. The two bacteria produced large amounts of volatile compounds, including CO2, and the known plant growth-promoting volatile 2,3-butanediol and acetoin. Several other volatiles having biological functions in other organisms, as well as numerous volatile compounds with undefined biological roles, were detected. Together, these bacteria-derived volatiles can positively affect growth and metabolic parameters in green microalgae without physical attachment of the bacteria to the microalgae. This is a new paradigm on how PGPB promote growth of microalgae which may serve to improve performance of Chlorella spp. for biotechnological applications. PMID:28145473
No WIMP mini-spikes in dwarf spheroidal galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanders, Mark; Bertone, Gianfranco; Weniger, Christoph
The formation of black holes inevitably affects the distribution of dark and baryonic matter in their vicinity, leading to an enhancement of the dark matter density, called spike, and if dark matter is made of WIMPs, to a strong enhancement of the dark matter annihilation rate. Spikes at the center of galaxies like the Milky Way are efficiently disrupted by baryonic processes, but mini-spikes can form and survive undisturbed at the center of dwarf spheroidal galaxies. We show that Fermi LAT satellite data allow to set very stringent limits on the existence of mini-spikes in dwarf galaxies: for thermal WIMPsmore » with mass between 100 GeV and 1 TeV, we obtain a maximum black hole mass between 100 and 1000 M{sub ⊙}, ruling out black holes masses extrapolated from the M-σ relationship in a large region of the parameter space. We also performed Monte Carlo simulations of merger histories of black holes in dwarf spheroidals in a scenario where black holes form from the direct collapse of primordial gas in early halos, and found that this specific formation scenario is incompatible at the 84% CL with dark matter being in the form of thermal WIMPs.« less
Second Iteration of Photogrammetric Pipeline to Enhance the Accuracy of Image Pose Estimation
NASA Astrophysics Data System (ADS)
Nguyen, T. G.; Pierrot-Deseilligny, M.; Muller, J.-M.; Thom, C.
2017-05-01
In classical photogrammetric processing pipeline, the automatic tie point extraction plays a key role in the quality of achieved results. The image tie points are crucial to pose estimation and have a significant influence on the precision of calculated orientation parameters. Therefore, both relative and absolute orientations of the 3D model can be affected. By improving the precision of image tie point measurement, one can enhance the quality of image orientation. The quality of image tie points is under the influence of several factors such as the multiplicity, the measurement precision and the distribution in 2D images as well as in 3D scenes. In complex acquisition scenarios such as indoor applications and oblique aerial images, tie point extraction is limited while only image information can be exploited. Hence, we propose here a method which improves the precision of pose estimation in complex scenarios by adding a second iteration to the classical processing pipeline. The result of a first iteration is used as a priori information to guide the extraction of new tie points with better quality. Evaluated with multiple case studies, the proposed method shows its validity and its high potiential for precision improvement.
Wicaksana, F; Fan, A G; Chen, V
2005-01-01
Bubbling has been used to enhance various processes. In this paper we deal with the effect of bubbling on submerged hollow fibre membranes, where bubbling is applied to prevent severe membrane fouling. Previous work with submerged hollow fibres has observed that significant fibre movement can be induced by bubbling and that there is a qualitative relationship between fibre movement and filtration performance. Therefore, the aim of the present research has been to analyse the link between bubbling, fibre movement and critical flux, identified as the flux at which the transmembrane pressure (TMP) starts to rise. Tests were performed on vertical isolated fibres with a model feed of yeast suspension. The fibres were subject to steady bubbling from below. The parameters of interest were the fibre characteristics, such as tightness, diameter and length, as well as feed concentration. The results confirmed that the critical fluxes are affected by the fibre characteristics and feed concentration. Higher critical flux values can be achieved by using loose fibres, smaller diameters and longer fibres. The enhancement is partially linked to fibre movement and this is confirmed by improved performance when fibres are subject to mechanical movement in the absence of bubbling.
Kasim, Azhar; Yong Meng, Goh; Teck Chwen, Loh; Kamalidehghan, Behnam; Soleimani Farjam, Abdoreza
2013-01-01
This study was carried out to investigate the modulatory effects of dietary methionine and fish oil on immune response, plasma fatty acid profile, and blood parameters of infectious bursal disease (IBD) challenged broiler chickens. A total of 300 one-day-old male broiler chicks were assigned to one of six dietary treatment groups in a 3 × 2 factorial arrangement. There were three levels of fish oil (0, 2.5 and 5.5%), and two levels of methionine (NRC recommendation and twice NRC recommendation). The results showed that the birds fed with 5.5% fish oil had higher total protein, white blood cell count, and IL-2 concentration than those of other groups at 7 days after IBD challenge. Inclusion of fish oil in diet had no effect on IFN-γ concentration. However, supplementation of methionine twice the recommendation enhanced the serum IFN-γ and globulin concentration. Neither of fish oil nor methionine supplementation affected the liver enzymes concentration. It can be suggested that a balance of moderate level of fish oil (2.5%) and methionine level (twice NRC recommendation) might enhance immune response in IBD challenged broiler chickens. PMID:24198724
Di Corato, Riccardo; Aloisi, Alessandra; Rella, Simona; Greneche, Jean-Marc; Pugliese, Giammarino; Pellegrino, Teresa; Malitesta, Cosimino; Rinaldi, Rosaria
2018-05-10
In the field on nanomedicine, superparamagnetic nanoparticles are one of the most studied nanomaterials for theranostics. In this paper, a one-pot synthesis of magnetic nanoparticles is presented, with elevated control on particles size from 10 to 40 nm. The monitoring of vacuum level is here introduced as a crucial parameter for achieving a fine particle morphology. Magnetic properties of these nanoparticles are highly affected by disorders or mismatches in crystal structure. A prolonged oxidation step is applied to the obtained nanoparticles to transform the magnetic phases into a pure maghemite one, confirmed by a high resolution XPS analysis, by Mössbauer spectrometry and, indirectly, by increased performances in magnetization curves and in relaxation times. Afterward, the attained nanoparticles are transferred in water by a non-derivatized dextran coating. The thermogravimetric analysis confirms that the polysaccharide molecules replace the oleic acid on the surface by stabilizing the particles in aqueous phase and culture media. Preliminary in vitro test reveals as the dextran coated nanoparticles are not passively internalized from the cells. As proof of concept, a secondary layer of chitosan assures a positive charge to the nanoparticle surface, thus enhancing the cellular internalization.
The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.
Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie
2013-05-01
pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.
Yan, Wei-qiang; Zhang, Min; Huang, Lue-lue; Tang, Juming; Mujumdar, Arun S; Sun, Jin-cai
2010-06-01
In commercial deep-fat frying of potato chips, the oil content of the final products ranges from 35 to 45 g 100 g(-1) (wet basis). High-temperature frying may cause the formation of acrylamide, making the products unhealthy to the consumer. The aim of this research was to explore a new method, spouted bed microwave drying, to produce healthier puffed snack potato cubes as possible alternatives to oil-fried potato chips. The influence of drying conditions of the spouted bed microwave drying on puffing characteristics of potato cubes were studied and compared with the direct microwave and hot air drying method. Tandem combination drying of microwave-enhanced spouted bed drying (MWSB) could achieve a good expansion ratio, breaking force and rehydration ratio. The puffing characteristics of potato cubes were significantly affected (P < 0.05) by moisture content before starting microwave power in spouted bed microwave drying, by microwave (MW) power, and by the original size of potato cubes. The optimum processing parameters were the moisture content at the start of microwave power (60%), the size of potato cubes (10-12 mm), and microwave power (2-2.5 W g(-1)) Copyright (c) 2010 Society of Chemical Industry.
Flow Separation Control on A Full-Scale Vertical Tail Model Using Sweeping Jet Actuators
NASA Technical Reports Server (NTRS)
Andino, Marlyn Y.; Lin, John C.; Washburn, Anthony E.; Whalen, Edward A.; Graff, Emilio C.; Wygnanski, Israel J.
2015-01-01
This paper describes test results of a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jets AFC was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The flow separation control optimization was performed at 100 knots, a maximum rudder deflection of 30deg, and sideslip angles of 0deg and -7.5deg. Greater than 20% increments in side force were achieved at the two sideslip angles with a 31-actuator AFC configuration. Flow physics and flow separation control associated with the AFC are presented in detail. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. The momentum coefficient (C sub mu) is shown to be a useful parameter to use for scaling-up sweeping jet AFC from sub-scale tests to full-scale applications. Reducing the number of actuators at a constant total C(sub mu) of approximately 0.5% and tripling the actuator spacing did not significantly affect the flow separation control effectiveness.
Transport of bacteria in porous media; 1: An experimental investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, A.K.; Georgiou, G.; Sharma, M.M.
1994-08-05
The convective transport of concentrated suspensions of bacteria in porous media is of interest for several processes such as microbial enhanced oil recovery and in situ bioremediation. The parameters which affect the transport of the bacterium Bacillus licheniformis JF-2, a candidate microorganism for microbial enhanced oil recovery, were investigated experimentally in sandpacks. Bacteria retention and permeability reduction occurred primarily in the first few centimeters upon entering the porous medium. In downstream sections of the sandpack, the permeability reduction was low, even in cases in which high cell concentrations were detected in the effluent. The effects of (1) addition of amore » dispersant, (2) linear velocity of injection, (3) cell concentration, (4) salinity, (5) temperature, and (6) the presence of a residual oleic phase were determined experimentally. A lower reduction in permeability and a higher effluent bacterial concentration were obtained in the presence of dispersant, high injection velocities, low salinities, and at a higher temperature. Macroscopic measurements at different linear velocities and in the presence or absence of dispersants suggest that the formation of reversible microaggregates and multiparticle hydrodynamic exclusion may be the primary mechanisms for bacterial retention and permeability reduction.« less
ElAgouri, Ghada; ElAmrawy, Fatema; ElYazbi, Ahmed; Eshra, Ahmed; Nounou, Mohamed I
2015-08-15
The global market is invaded by male enhancement nutraceuticals claimed to be of natural origin sold with a major therapeutic claim. Most of these products have been reported by international systems like the Food and Drug Administration (FDA). We hypothesize that these products could represent a major threat to the health of the consumers. In this paper, pharmaceutical evaluation of some of these nutraceutical products sold in Egypt under the therapeutic claim of treating erectile dysfunction, are discussed along with pharmacological evaluation to investigate their safety and efficacy parameters. Samples were analyzed utterly using conventional methods, i.e.: HPLC, HPTLC, NIR, content uniformity and weight variation and friability. The SeDeM system was used for quality assessment. On the basis of the results of this research, the sampled products are adulterated and totally heterogeneous in their adulterant drug content and pharmaceutical quality. These products represent a major safety threat for the consumers in Egypt and the Middle East, especially; the target audience is mostly affected with heart and blood pressure problems seeking natural and safe alternatives to the well-established Phosphodiesterase 5 Inhibitors (PDE-5Is). Copyright © 2015 Elsevier B.V. All rights reserved.
Study on residual stresses in ultrasonic torsional vibration assisted micro-milling
NASA Astrophysics Data System (ADS)
Lu, Zesheng; Hu, Haijun; Sun, Yazhou; Sun, Qing
2010-10-01
It is well known that machining induced residual stresses can seriously affect the dimensional accuracy, corrosion and wear resistance, etc., and further influence the longevity and reliability of Micro-Optical Components (MOC). In Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM), cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank are the main factors which affect residual stresses. A 2D model of UTVAM was established with FE analysis software ABAQUS. Johnson-Cook's flow stress model and shear failure principle are used as the workpiece material model and failure principle, while friction between tool and workpiece uses modified Coulomb's law whose sliding friction area is combined with sticking friction. By means of FEA, the influence rules of cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank on residual stresses are obtained, which provides a basis for choosing optimal process parameters and improving the longevity and reliability of MOC.
Koenigkam-Santos, Marcel; Optazaite, Elzbieta; Sommer, Gregor; Safi, Seyer; Heussel, Claus Peter; Kauczor, Hans-Ulrich; Puderbach, Michael
2015-01-01
To propose a technique for evaluation of pulmonary lesions using contrast-enhanced MRI; to assess morphological patterns of enhancement and correlate quantitative analysis with histopathology. Thirty-six patients were prospectively studied. Volumetric-interpolated T1W images were obtained during consecutive breath holds after bolus triggered contrast injection. Volume coverage of first three acquisitions was limited (higher temporal resolution) and last acquisition obtained at 4th min. Two radiologists individually evaluated the patterns of enhancement. Region-of-interest-based signal intensity (SI)-time curves were created to assess quantitative parameters. Readers agreed moderately to substantially concerning lesions' enhancement pattern. SI-time curves could be created for all lesions. In comparison to benign, malignant lesions showed higher values of maximum enhancement, early peak, slope and 4th min enhancement. Early peak >15% showed 100% sensitivity to detect malignancy, maximum enhancement >40% showed 100% specificity. The proposed technique is robust, simple to perform and can be applied in clinical scenario. It allows visual evaluation of enhancement pattern/progression together with creation of SI-time curves and assessment of derived quantitative parameters. Perfusion analysis was highly sensitive to detect malignancy, in accordance to what is recommended by most recent guidelines on imaging evaluation of pulmonary lesions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Zhu, Ye-Hua; Wang, Xun; Zhang, Jin; Chen, Yong-Hui; Kong, Wen; Huang, Yi-Ran
2014-09-01
The purpose of this study was to assess the relation between tumor enhancement on multiphase contrast-enhanced CT images and Fuhrman grade of clear cell renal cell carcinoma. A single-institution retrospective review was conducted on the records of 255 patients who underwent radical or partial nephrectomy and received a histologic diagnosis of clear cell renal cell carcinoma. Two radiologists recorded the radiographic features of each patient, including the attenuation value of the lesion, lesion size, calcification within the lesion, cystic versus solid appearance, and margin regularity. Parameters representing the extent of tumor enhancement were defined and calculated. The association between tumor enhancement and Fuhrman grade was analyzed, and multivariate analysis was performed to find independent predictors of high tumor grade. Significant differences existed in tumor enhancement among different Fuhrman grades (p < 0.001). High-grade tumors had significantly lower enhancement (p < 0.001). The enhancement parameter had a sensitivity of 0.84 and specificity of 0.93 in prediction of high tumor grade. In the multivariate analysis, more advanced age, irregular margin, and low tumor enhancement were the three independent predictors of high tumor grade. Tumor enhancement of clear cell renal cell carcinoma on multiphase contrast-enhanced CT images is associated with Fuhrman grade. Low tumor enhancement in the corticomedullary phase is an independent predictor of high tumor grade. This system may be helpful in clinical decision making about the care of patients treated by nonsurgical approaches.
NASA Astrophysics Data System (ADS)
Fink, Herman J.; Haley, Stephen B.; Giuraniuc, Claudiu V.; Kozhevnikov, Vladimir F.; Indekeu, Joseph O.
2005-11-01
For various sample geometries (slabs, cylinders, spheres, hypercubes), de Gennes' boundary condition parameter b is used to study its effect upon the transition temperature Tc of a superconductor. For b > 0 the order parameter at the surface is decreased, and as a consequence Tc is reduced, while for b < 0 the order parameter at the surface is increased, thereby enhancing Tc of a specimen in zero magnetic field. Exact solutions, derived by Fink and Haley (Int. J. mod. Phys. B, 17, 2171 (2003)), of the order parameter of a slab of finite thickness as a function of temperature are presented, both for reduced and enhanced transition (nucleation) temperatures. At the nucleation temperature the order parameter approaches zero. This concise review closes with a link established between de Gennes' microscopic boundary condition and the Ginzburg-Landau phenomenological approach, and a discussion of some relevant experiments. For example, applying the boundary condition with b < 0 to tin whiskers elucidates the increase of Tc with strain.
State orthogonality, boson bunching parameter and bosonic enhancement factor
NASA Astrophysics Data System (ADS)
Marchewka, Avi; Granot, Er'el
2016-04-01
It is emphasized that the bunching parameter β ≡ p B / p D , i.e. the ratio between the probability to measure two bosons and two distinguishable particles at the same state, is a constant of motion and depends only on the overlap between the initial wavefunctions. This ratio is equal to β = 2 / (1 + I 2), where I is the overlap integral between the initial wavefunctions. That is, only when the initial wavefunctions are orthogonal this ratio is equal to 2, however, this bunching ratio can be reduced to 1, when the two wavefunctions are identical. This simple equation explains the experimental evidences of a beam splitter. A straightforward conclusion is that by measuring the local bunching parameter β (at any point in space and time) it is possible to evaluate a global parameter I (the overlap between the initial wavefunctions). The bunching parameter is then generalized to arbitrary number of particles, and in an analogy to the two-particles scenario, the well-known bosonic enhancement appears only when all states are orthogonal.
NASA Astrophysics Data System (ADS)
Valhondo, C.; Martinez-Landa, L.; Carrera, J.; Hidalgo, J. J.; Ayora, C.
2016-12-01
The reuse of lesser quality water such as effluents from wastewater treatment plants or effluent-receiving water bodies has been promoted due to the water shortages affecting many regions of the world. Artificial recharge through infiltration basins is known to improve several water quality parameters including the attenuation of emerging organic compounds (EOCs). Many of these contaminants exhibit redox dependent biotransformation because the redox state is one of the factors controlling microbial community development. Together with biotransformation, sorption also affects the behavior of EOCs in their passage through the soil. We studied EOCs attenuation in an infiltration system is located in Sant Vicenç dells Horts on the Llobregat delta (Barcelona, Spain), where the local water agency has an artificial recharge pilot project . The Llobregat river water used for the artificial recharge is affected by treatment plant effluents which contain EOCs. A reactive barrier consisting of vegetable compost, clay, and iron oxide was installed in the bottom of the infiltration basin to enhance biotransformation and sorption of EOCs. The barrier releases dissolved organic carbon, which favors the development of a broad range of redox environments, and supplies neutral, cationic, and anionic surfaces to favor sorption of different types of contaminants. Results were excellent, but quantitative evaluation of the EOCs attenuation requires knowledge of the residence time distribution of infiltrated water. A tracer test was performed by adding tracers to the infiltration water and interpreting the breakthrough curves at diverse monitoring points with a 2D multilayer numerical model. The calibrated model quantify degradation, as a first order law, and sorption through a linear distribution coefficient for ten selected EOCs. Results indicate higher degradation rates and sorption coefficients in the reactive barrier than in the rest of the aquifer for nine and eight of the ten studied EOCs, respectively, which demonstrates the efficiency of the reactive barrier to enhance the removal of EOCs.
NASA Astrophysics Data System (ADS)
Buldt, J.; Müller, M.; Klas, R.; Eidam, T.; Limpert, J.; Tünnermann, A.
2018-02-01
We present a novel approach for temporal contrast enhancement of energetic laser pulses by filtered SPM broadened spectra. A measured temporal contrast enhancement by at least 7 orders of magnitude in a simple setup has been achieved. This technique is applicable to a wide range of laser parameters and poses a highly efficient alternative to existing contrast-enhancement methods.
Kim, T Y; Park, D W; Lee, Y J; Lee, J Y; Lee, S H; Chung, J H; Lee, S
2015-12-01
Recently 4-hour delayed-enhanced 3D-FLAIR MR imaging has been used in pathophysiologic analysis of the inner ear in many auditory diseases, including sudden sensorineural hearing loss, but comparison among different time points is not clear in patients with unilateral inner ear symptoms. We compared the signal-intensity ratios of the inner ears in patients with unilateral inner ear symptoms on 10-minute delayed-enhanced and 4-hour delayed-enhanced 3D-FLAIR MR images after IV gadolinium injection. The 10-minute delayed-enhanced and 4-hour delayed-enhanced 3D-FLAIR MR images were retrospectively analyzed. Signal-intensity ratios between the cerebellum and inner ear structures, such as the cochleae, vestibules, and vestibulocochlear nerve were assessed. Multiple comparisons were performed. Signal-intensity ratios of the affected cochleae, vestibules, and vestibulocochlear nerve were higher than those of unaffected sides in both 10-minute delayed-enhanced and 4-hour delayed-enhanced images. At the affected side, signal-intensity ratios of the vestibulocochlear nerve were higher in patients with nonsudden sensorineural hearing loss than in those with sudden sensorineural hearing loss on both 10-minute delayed-enhanced and 4-hour delayed-enhanced images. The signal-intensity ratios of some affected inner ear structures were higher than those of the unaffected sides in a group of 30 patients with sudden sensorineural hearing loss and 20 patients with nonsudden sensorineural hearing loss on 10-minute delayed-enhanced and 4-hour delayed-enhanced images. Signal-intensity ratios of the inner ear show statistically significant increases in many diseases, especially neuritis, in 10-minute delayed-enhanced and 4-hour delayed-enhanced images. The 4-hour delayed-enhanced images may be superior in neural inflammatory-dominant conditions, while 10-minute delayed-enhanced images may be superior in neural noninflammatory-dominant conditions. © 2015 by American Journal of Neuroradiology.
Wilhelmy, Annika; Kleinmann, Martin; Melchers, Klaus G; Götz, Martin
2017-01-01
Prior research suggests that interviewers play an important role in representing their organization and in making the interview a pleasant experience for applicants. This study examined whether impression management used by interviewers (organization-enhancement and applicant-enhancement) is perceived by applicants, and how it influences applicants' attitudes, intentions, and emotions. Adopting a signaling perspective, this article argues that applicants' positive attitudes and intentions toward the organization increase if interviewers not only enhance the organization, but if the signals they sent (i.e., organization-enhancement) are actually received by the applicant. Similarly, applicants' positive emotions should increase if interviewers not only enhance the applicant, but if the signals they send (i.e., applicant-enhancement) are actually received by the applicant. A field study that involved video coding interviewers' impression management behavior during 153 selection interviews and pre- and post-interview applicant surveys showed that the signals sent by interviewers during the interview were received by applicants. In addition, applicants rated the organization's prestige and their own positive affect after the interview more positively when they perceived higher levels of organization-enhancement during the interview. Furthermore, applicants reported more positive affect and interview self-efficacy after the interview when they perceived higher levels of interviewer applicant-enhancement. We also found an indirect effect of interviewers' organization-enhancement on organizational prestige through applicants' perceptions of organization-enhancement as well as indirect effects of interviewers' applicant-enhancement on applicants' positive affect and interview self-efficacy through applicants' perceptions of applicant-enhancement. Our findings contribute to an integrated understanding of the effects of interviewer impression management and point out both risks and chances in selling and smooth-talking toward applicants.
Wilhelmy, Annika; Kleinmann, Martin; Melchers, Klaus G.; Götz, Martin
2017-01-01
Prior research suggests that interviewers play an important role in representing their organization and in making the interview a pleasant experience for applicants. This study examined whether impression management used by interviewers (organization-enhancement and applicant-enhancement) is perceived by applicants, and how it influences applicants' attitudes, intentions, and emotions. Adopting a signaling perspective, this article argues that applicants' positive attitudes and intentions toward the organization increase if interviewers not only enhance the organization, but if the signals they sent (i.e., organization-enhancement) are actually received by the applicant. Similarly, applicants' positive emotions should increase if interviewers not only enhance the applicant, but if the signals they send (i.e., applicant-enhancement) are actually received by the applicant. A field study that involved video coding interviewers' impression management behavior during 153 selection interviews and pre- and post-interview applicant surveys showed that the signals sent by interviewers during the interview were received by applicants. In addition, applicants rated the organization's prestige and their own positive affect after the interview more positively when they perceived higher levels of organization-enhancement during the interview. Furthermore, applicants reported more positive affect and interview self-efficacy after the interview when they perceived higher levels of interviewer applicant-enhancement. We also found an indirect effect of interviewers' organization-enhancement on organizational prestige through applicants' perceptions of organization-enhancement as well as indirect effects of interviewers' applicant-enhancement on applicants' positive affect and interview self-efficacy through applicants' perceptions of applicant-enhancement. Our findings contribute to an integrated understanding of the effects of interviewer impression management and point out both risks and chances in selling and smooth-talking toward applicants. PMID:28611696
Dijkhoff, Rebecca A P; Maas, Monique; Martens, Milou H; Papanikolaou, Nikolaos; Lambregts, Doenja M J; Beets, Geerard L; Beets-Tan, Regina G H
2017-05-01
The aim of this study was to assess correlation between quantitative and semiquantitative parameters in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal cancer patients, both in a primary staging and restaging setting. Nineteen patients were included with DCE-MRI before and/or after neoadjuvant therapy. DCE-MRI was performed with gadofosveset trisodium (Ablavar ® , Lantheus Medical Imaging, North Billerica, Massachusetts, USA). Regions of interest were placed in the tumor and quantitative parameters were extracted with Olea Sphere 2.2 software permeability module using the extended Tofts model. Semiquantitative parameters were calculated on a pixel-by-pixel basis. Spearman rank correlation tests were used for assessment of correlation between parameters. A p value ≤0.05 was considered statistically significant. Strong positive correlations were found between mean peak enhancement and mean K trans : 0.79 (all patients, p<0.0001), 0.83 (primary staging, p = 0.003), and 0.81 (restaging, p = 0.054). Mean wash-in correlated significantly with mean V p and K ep (0.79 and 0.58, respectively, p<0.0001 and p = 0.009) in all patients. Mean wash-in showed a significant correlation with mean K ep (0.67, p = 0.033) in the primary staging group. On the restaging MRI, mean wash-in only strongly correlated with mean V p (0.81, p = 0.054). This study shows a strong correlation between quantitative and semiquantitative parameters in DCE-MRI for rectal cancer. Peak enhancement correlates strongly with K trans and wash-in showed strong correlation with V p and K ep . These parameters have been reported to predict tumor aggressiveness and response in rectal cancer. Therefore, semiquantitative analyses might be a surrogate for quantitative analyses.
NASA Astrophysics Data System (ADS)
Chambon, J.; Lemming, G.; Manoli, G.; Broholm, M. M.; Bjerg, P.; Binning, P. J.
2011-12-01
Enhanced Reductive Dechlorination (ERD) has been successfully used in high permeability media, such as sand aquifers, and is considered to be a promising technology for low permeability settings. Pilot and full-scale applications of ERD at several sites in Denmark have shown that the main challenge is to get contact between the injected bacteria and electron donor and the contaminants trapped in the low-permeability matrix. Sampling of intact cores from the low-permeability matrix has shown that the bioactive zones (where degradation occurs) are limited in the matrix, due to the slow diffusion transport processes, and this affects the timeframes for the remediation. Due to the limited ERD applications and the complex transport and reactive processes occurring in low-permeability media, design guidelines are currently not available for ERD in such settings, and remediation performance assessments are limited. The objective of this study is to combine existing knowledge from several sites with numerical modeling to assess the effect of the injection interval, development of bioactive zones and reaction kinetics on the remediation efficiency for ERD in diffusion-dominated media. A numerical model is developed to simulate ERD at a contaminated site, where the source area (mainly TCE) is located in a clayey till with fractures and interbedded sand lenses. Such contaminated sites are common in North America and Europe. Hydro-geological characterization provided information on geological heterogeneities and hydraulic parameters, which are relevant for clay till sites in general. The numerical model couples flow and transport in the fracture network and low-permeability matrix. Sequential degradation of TCE to ethene is modeled using Monod kinetics, and the kinetic parameters are obtained from laboratory experiments. The influence of the reaction kinetics on remediation efficiency is assessed by varying the biomass concentration of the specific degraders. The injected reactants (donor and bacteria) are assumed to spread in horizontal injection zones of various widths, depending on the development of bioactive zones. These injection zones are spaced at various intervals over depth, corresponding to the injection interval chosen. The results from the numerical model show that remediation timeframes can be reduced significantly by using closely spaced injection intervals and by ensuring the efficient spreading of the reactants into the clay till matrix. In contrast the reaction kinetics affect mass removal only up to a point where diffusive transport becomes limiting. Based on these results, guidelines on when ERD can be an effective remediation strategy in practice are provided. These take the form of dimensionless groupings (such as the Damkohler number), which combine site specific (physical and biogeochemical) and design parameters, and graphs showing how the main parameters affect remediation timeframes. Finally it is shown how model results can be used as input to other decision making tools such as life cycle assessment to guide remedial choices.
Enhancing Mobile Working Memory Training by Using Affective Feedback
ERIC Educational Resources Information Center
Schaaff, Kristina
2013-01-01
The objective of this paper is to propose a novel approach to enhance working memory (WM) training for mobile devices by using information about the arousal level of a person. By the example of an adaptive n-back task, we combine methodologies from different disciplines to tackle this challenge: mobile learning, affective computing and cognitive…
NASA Astrophysics Data System (ADS)
Vallières, Martin; Laberge, Sébastien; Diamant, André; El Naqa, Issam
2017-11-01
Texture-based radiomic models constructed from medical images have the potential to support cancer treatment management via personalized assessment of tumour aggressiveness. While the identification of stable texture features under varying imaging settings is crucial for the translation of radiomics analysis into routine clinical practice, we hypothesize in this work that a complementary optimization of image acquisition parameters prior to texture feature extraction could enhance the predictive performance of texture-based radiomic models. As a proof of concept, we evaluated the possibility of enhancing a model constructed for the early prediction of lung metastases in soft-tissue sarcomas by optimizing PET and MR image acquisition protocols via computerized simulations of image acquisitions with varying parameters. Simulated PET images from 30 STS patients were acquired by varying the extent of axial data combined per slice (‘span’). Simulated T 1-weighted and T 2-weighted MR images were acquired by varying the repetition time and echo time in a spin-echo pulse sequence, respectively. We analyzed the impact of the variations of PET and MR image acquisition parameters on individual textures, and we investigated how these variations could enhance the global response and the predictive properties of a texture-based model. Our results suggest that it is feasible to identify an optimal set of image acquisition parameters to improve prediction performance. The model constructed with textures extracted from simulated images acquired with a standard clinical set of acquisition parameters reached an average AUC of 0.84 +/- 0.01 in bootstrap testing experiments. In comparison, the model performance significantly increased using an optimal set of image acquisition parameters (p = 0.04 ), with an average AUC of 0.89 +/- 0.01 . Ultimately, specific acquisition protocols optimized to generate superior radiomics measurements for a given clinical problem could be developed and standardized via dedicated computer simulations and thereafter validated using clinical scanners.
Model Parameter Variability for Enhanced Anaerobic Bioremediation of DNAPL Source Zones
NASA Astrophysics Data System (ADS)
Mao, X.; Gerhard, J. I.; Barry, D. A.
2005-12-01
The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethene source areas containing dense, non-aqueous phase liquids (DNAPL). This 4-year, 5.7 million dollars research effort focuses on a pilot-scale demonstration of enhanced bioremediation at a trichloroethene (TCE) DNAPL field site in the United Kingdom, and includes a significant program of laboratory and modelling studies. Prior to field implementation, a large-scale, multi-laboratory microcosm study was performed to determine the optimal system properties to support dehalogenation of TCE in site soil and groundwater. This statistically-based suite of experiments measured the influence of key variables (electron donor, nutrient addition, bioaugmentation, TCE concentration and sulphate concentration) in promoting the reductive dechlorination of TCE to ethene. As well, a comprehensive biogeochemical numerical model was developed for simulating the anaerobic dehalogenation of chlorinated ethenes. An appropriate (reduced) version of this model was combined with a parameter estimation method based on fitting of the experimental results. Each of over 150 individual microcosm calibrations involved matching predicted and observed time-varying concentrations of all chlorinated compounds. This study focuses on an analysis of this suite of fitted model parameter values. This includes determining the statistical correlation between parameters typically employed in standard Michaelis-Menten type rate descriptions (e.g., maximum dechlorination rates, half-saturation constants) and the key experimental variables. The analysis provides insight into the degree to which aqueous phase TCE and cis-DCE inhibit dechlorination of less-chlorinated compounds. Overall, this work provides a database of the numerical modelling parameters typically employed for simulating TCE dechlorination relevant for a range of system conditions (e.g, bioaugmented, high TCE concentrations, etc.). The significance of the obtained variability of parameters is illustrated with one-dimensional simulations of enhanced anaerobic bioremediation of residual TCE DNAPL.
Generalized image contrast enhancement technique based on Heinemann contrast discrimination model
NASA Astrophysics Data System (ADS)
Liu, Hong; Nodine, Calvin F.
1994-03-01
This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.
NASA Astrophysics Data System (ADS)
Kamae, Youichi; Kawana, Toshi; Oshiro, Megumi; Ueda, Hiroaki
2017-12-01
Instrumental and proxy records indicate remarkable global climate variability over the last millennium, influenced by solar irradiance, Earth's orbital parameters, volcanic eruptions and human activities. Numerical model simulations and proxy data suggest an enhanced Asian summer monsoon during the Medieval Warm Period (MWP) compared to the Little Ice Age (LIA). Using multiple climate model simulations, we show that anomalous seasonal insolation over the Northern Hemisphere due to a long cycle of orbital parameters results in a modulation of the Asian summer monsoon transition between the MWP and LIA. Ten climate model simulations prescribing historical radiative forcing that includes orbital parameters consistently reproduce an enhanced MWP Asian monsoon in late summer and a weakened monsoon in early summer. Weakened, then enhanced Northern Hemisphere insolation before and after June leads to a seasonally asymmetric temperature response over the Eurasian continent, resulting in a seasonal reversal of the signs of MWP-LIA anomalies in land-sea thermal contrast, atmospheric circulation, and rainfall from early to late summer. This seasonal asymmetry in monsoon response is consistently found among the different climate models and is reproduced by an idealized model simulation forced solely by orbital parameters. The results of this study indicate that slow variation in the Earth's orbital parameters contributes to centennial variability in the Asian monsoon transition.[Figure not available: see fulltext.
Hinkle, M.E.
1991-01-01
To increase understanding of natural variations in soil gas concentrations, CO2, He, O2 and N2 were measured in soil gases collected regularly for several months from four sites at the Roosevelt Hot Springs Known Geothermal Resource Area, Utah. Soil temperature, air temperature, per cent relative humidity, barometric pressure and amounts of rain and snowfall were also monitored to determine the effect of meteorological parameters on concentrations of the measured gases. Considerable seasonal variation existed in concentrations of CO2 and He. The parameters that most affected the soil-gas concentrations were soil and air temperatures. Moisture from rain and snow probably affected the soil-gas concentrations also. However, annual variations in meteorological parameters did not appear to affect measurements of anomalous concentrations in samples collected within a time period of a few days. Production from some of the geothermal wells probably affected the soil-gas concentrations. ?? 1990.
32 CFR 651.48 - Scoping process.
Code of Federal Regulations, 2010 CFR
2010-07-01
... significantly affecting the environment will go through scoping unless extenuating circumstances make it... associated environmental controversy. (4) Importance of the affected environmental parameters. (5... the affected Army organization or installation. Such integration is encouraged. (f) Scoping procedures...
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2008-01-01
In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.
Khaled, A.-R. A.
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572
Khaled, A-R A
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.
Temperature analysis with voltage-current time differential operation of electrochemical sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay
A method for temperature analysis of a gas stream. The method includes identifying a temperature parameter of an affected waveform signal. The method also includes calculating a change in the temperature parameter by comparing the affected waveform signal with an original waveform signal. The method also includes generating a value from the calculated change which corresponds to the temperature of the gas stream.
NASA Astrophysics Data System (ADS)
AL-Zoubi, Omar H.
Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we found that the optical properties of SiNW arrays are strongly affected by the radial diversity, the arrangement of SiNW in a lattice, and the configuration of such lattice. The proper selection of these parameters leads to broaden and enhance the light absorption of the SiNW arrays. Inspired by natural configurations, fractal geometry and diamond lattice structures, we introduced two lattice configurations: fractal-like array (FLA) that is inspired by fractal geometry, and diamond-like array (DLA) that is inspired by diamond crystal lattice structure. Optimization, using parametric analysis, of the introduced arrays parameters for the light absorption level and the amount of used material has been performed. Both of the introduced SiNW arrays show broadband, strong light absorption coupled with reduction of the amount of the used material. DLA in specific showed significantly enhanced absorption covering the entire solar spectrum of interest, where near-unity absorption spectrum could be achieved. We studied the optical properties of complete PVSC devices that are based on SiNW array. Moreover, the performance of PVSC device that is based on SiNW has been investigated by using numerical modeling. SILVACO software package is used for performing the numerical simulation of the PVSC device performance, which can simultaneously handle the different coupled physical mechanisms contributing to the photovoltaic effect. The effect of the geometry of PVSC device that is based on SiNW is investigated, which shows that the geometry of such PVSC has a role in enhancing its electrical properties. The outcome of this study introduces new SiNW array configurations that have enhanced optical properties using a low amount of material that can be utilized for producing higher efficiency thin film PVCS. The overall conclusion of this work is that a weak absorption indirect band gap material, silicon, in the form of properly designed SiNW and SiNC arrays has the potentials to achieve near-unity ideal absorption spectrum using reduced amount of material, which can lead to produce new generation of lower cost and enhanced efficiency thin film PVSC.