[Study on the automatic parameters identification of water pipe network model].
Jia, Hai-Feng; Zhao, Qi-Feng
2010-01-01
Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.
NASA Astrophysics Data System (ADS)
Kao, Meng-Chun; Ting, Chien-Kun; Kuo, Wen-Chuan
2018-02-01
Incorrect placement of the needle causes medical complications in the epidural block, such as dural puncture or spinal cord injury. This study proposes a system which combines an optical coherence tomography (OCT) imaging probe with an automatic identification (AI) system to objectively identify the position of the epidural needle tip. The automatic identification system uses three features as image parameters to distinguish the different tissue by three classifiers. Finally, we found that the support vector machine (SVM) classifier has highest accuracy, specificity, and sensitivity, which reached to 95%, 98%, and 92%, respectively.
Automatic limb identification and sleeping parameters assessment for pressure ulcer prevention.
Baran Pouyan, Maziyar; Birjandtalab, Javad; Nourani, Mehrdad; Matthew Pompeo, M D
2016-08-01
Pressure ulcers (PUs) are common among vulnerable patients such as elderly, bedridden and diabetic. PUs are very painful for patients and costly for hospitals and nursing homes. Assessment of sleeping parameters on at-risk limbs is critical for ulcer prevention. An effective assessment depends on automatic identification and tracking of at-risk limbs. An accurate limb identification can be used to analyze the pressure distribution and assess risk for each limb. In this paper, we propose a graph-based clustering approach to extract the body limbs from the pressure data collected by a commercial pressure map system. A robust signature-based technique is employed to automatically label each limb. Finally, an assessment technique is applied to evaluate the experienced stress by each limb over time. The experimental results indicate high performance and more than 94% average accuracy of the proposed approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parametric diagnosis of the adaptive gas path in the automatic control system of the aircraft engine
NASA Astrophysics Data System (ADS)
Kuznetsova, T. A.
2017-01-01
The paper dwells on the adaptive multimode mathematical model of the gas-turbine aircraft engine (GTE) embedded in the automatic control system (ACS). The mathematical model is based on the throttle performances, and is characterized by high accuracy of engine parameters identification in stationary and dynamic modes. The proposed on-board engine model is the state space linearized low-level simulation. The engine health is identified by the influence of the coefficient matrix. The influence coefficient is determined by the GTE high-level mathematical model based on measurements of gas-dynamic parameters. In the automatic control algorithm, the sum of squares of the deviation between the parameters of the mathematical model and real GTE is minimized. The proposed mathematical model is effectively used for gas path defects detecting in on-line GTE health monitoring. The accuracy of the on-board mathematical model embedded in ACS determines the quality of adaptive control and reliability of the engine. To improve the accuracy of identification solutions and sustainability provision, the numerical method of Monte Carlo was used. The parametric diagnostic algorithm based on the LPτ - sequence was developed and tested. Analysis of the results suggests that the application of the developed algorithms allows achieving higher identification accuracy and reliability than similar models used in practice.
Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Ferrigno, Giancarlo; Molteni, Franco; Pedrocchi, Alessandra
2014-01-01
Cycling induced by Functional Electrical Stimulation (FES) training currently requires a manual setting of different parameters, which is a time-consuming and scarcely repeatable procedure. We proposed an automatic procedure for setting session-specific parameters optimized for hemiparetic patients. This procedure consisted of the identification of the stimulation strategy as the angular ranges during which FES drove the motion, the comparison between the identified strategy and the physiological muscular activation strategy, and the setting of the pulse amplitude and duration of each stimulated muscle. Preliminary trials on 10 healthy volunteers helped define the procedure. Feasibility tests on 8 hemiparetic patients (5 stroke, 3 traumatic brain injury) were performed. The procedure maximized the motor output within the tolerance constraint, identified a biomimetic strategy in 6 patients, and always lasted less than 5 minutes. Its reasonable duration and automatic nature make the procedure usable at the beginning of every training session, potentially enhancing the performance of FES-cycling training.
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1984-01-01
A unified control synthesis methodology for complex and/or non-conventional flight vehicles are developed. Prediction techniques for the handling characteristics of such vehicles and pilot parameter identification from experimental data are addressed.
Automatic measurement of images on astrometric plates
NASA Astrophysics Data System (ADS)
Ortiz Gil, A.; Lopez Garcia, A.; Martinez Gonzalez, J. M.; Yershov, V.
1994-04-01
We present some results on the process of automatic detection and measurement of objects in overlapped fields of astrometric plates. The main steps of our algorithm are the following: determination of the Scale and Tilt between charge coupled devices (CCD) and microscope coordinate systems and estimation of signal-to-noise ratio in each field;--image identification and improvement of its position and size;--image final centering;--image selection and storage. Several parameters allow the use of variable criteria for image identification, characterization and selection. Problems related with faint images and crowded fields will be approached by special techniques (morphological filters, histogram properties and fitting models).
Study on feed forward neural network convex optimization for LiFePO4 battery parameters
NASA Astrophysics Data System (ADS)
Liu, Xuepeng; Zhao, Dongmei
2017-08-01
Based on the modern facility agriculture automatic walking equipment LiFePO4 Battery, the parameter identification of LiFePO4 Battery is analyzed. An improved method for the process model of li battery is proposed, and the on-line estimation algorithm is presented. The parameters of the battery are identified using feed forward network neural convex optimization algorithm.
An intelligent identification algorithm for the monoclonal picking instrument
NASA Astrophysics Data System (ADS)
Yan, Hua; Zhang, Rongfu; Yuan, Xujun; Wang, Qun
2017-11-01
The traditional colony selection is mainly operated by manual mode, which takes on low efficiency and strong subjectivity. Therefore, it is important to develop an automatic monoclonal-picking instrument. The critical stage of the automatic monoclonal-picking and intelligent optimal selection is intelligent identification algorithm. An auto-screening algorithm based on Support Vector Machine (SVM) is proposed in this paper, which uses the supervised learning method, which combined with the colony morphological characteristics to classify the colony accurately. Furthermore, through the basic morphological features of the colony, system can figure out a series of morphological parameters step by step. Through the establishment of maximal margin classifier, and based on the analysis of the growth trend of the colony, the selection of the monoclonal colony was carried out. The experimental results showed that the auto-screening algorithm could screen out the regular colony from the other, which meets the requirement of various parameters.
Automatic high-throughput screening of colloidal crystals using machine learning
NASA Astrophysics Data System (ADS)
Spellings, Matthew; Glotzer, Sharon C.
Recent improvements in hardware and software have united to pose an interesting problem for computational scientists studying self-assembly of particles into crystal structures: while studies covering large swathes of parameter space can be dispatched at once using modern supercomputers and parallel architectures, identifying the different regions of a phase diagram is often a serial task completed by hand. While analytic methods exist to distinguish some simple structures, they can be difficult to apply, and automatic identification of more complex structures is still lacking. In this talk we describe one method to create numerical ``fingerprints'' of local order and use them to analyze a study of complex ordered structures. We can use these methods as first steps toward automatic exploration of parameter space and, more broadly, the strategic design of new materials.
Identification and Comprehension of Symbolic Exit Signs for Small Transport-Category Airplanes
2014-02-01
8 Phase Two: Self -illuminated Exit Signs...11 Self -illuminated Exit Sign Comprehension ---------------------------------------------------------------------- 12 Automatic...other sign parameters such as stroke width to height, contrast ratios, and self -illumination, fall within those recommended by 14 CFR 25.812(b)(2
Automatic Adviser on stationary devices status identification and anticipated change
NASA Astrophysics Data System (ADS)
Shabelnikov, A. N.; Liabakh, N. N.; Gibner, Ya M.; Pushkarev, E. A.
2018-05-01
A task is defined to synthesize an Automatic Adviser to identify the automation systems stationary devices status using an autoregressive model of changing their key parameters. An applied model type was rationalized and the research objects monitoring process algorithm was developed. A complex of mobile objects status operation simulation and prediction results analysis was proposed. Research results are commented using a specific example of a hump yard compressor station. The work was supported by the Russian Fundamental Research Fund, project No. 17-20-01040.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.
1984-01-01
The techniques used initially for the identification of cultivated crops from Landsat imagery depended greatly on the iterpretation of film products by a human analyst. This approach was not very effective and objective. Since 1978, new methods for crop identification are being developed. Badhwar et al. (1982) showed that multitemporal-multispectral data could be reduced to a simple feature space of alpha and beta and that these features would separate corn and soybean very well. However, there are disadvantages related to the use of alpha and beta parameters. The present investigation is concerned with a suitable method for extracting the required features. Attention is given to a profile model for crop discrimination, corn-soybean separation using profile parameters, and an automatic labeling (target recognition) method. The developed technique is extended to obtain a procedure which makes it possible to estimate the crop proportion of corn and soybean from Landsat data early in the growing season.
Performance of wavelet analysis and neural networks for pathological voices identification
NASA Astrophysics Data System (ADS)
Salhi, Lotfi; Talbi, Mourad; Abid, Sabeur; Cherif, Adnane
2011-09-01
Within the medical environment, diverse techniques exist to assess the state of the voice of the patient. The inspection technique is inconvenient for a number of reasons, such as its high cost, the duration of the inspection, and above all, the fact that it is an invasive technique. This study focuses on a robust, rapid and accurate system for automatic identification of pathological voices. This system employs non-invasive, non-expensive and fully automated method based on hybrid approach: wavelet transform analysis and neural network classifier. First, we present the results obtained in our previous study while using classic feature parameters. These results allow visual identification of pathological voices. Second, quantified parameters drifting from the wavelet analysis are proposed to characterise the speech sample. On the other hand, a system of multilayer neural networks (MNNs) has been developed which carries out the automatic detection of pathological voices. The developed method was evaluated using voice database composed of recorded voice samples (continuous speech) from normophonic or dysphonic speakers. The dysphonic speakers were patients of a National Hospital 'RABTA' of Tunis Tunisia and a University Hospital in Brussels, Belgium. Experimental results indicate a success rate ranging between 75% and 98.61% for discrimination of normal and pathological voices using the proposed parameters and neural network classifier. We also compared the average classification rate based on the MNN, Gaussian mixture model and support vector machines.
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2010 CFR
2010-07-01
...' maritime Differential Global Positioning System radiobeacon services; or (7) The use of a temporary unit... Identification System. (a) Each of the following vessels must use an Automatic Identification System (AIS... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Automatic Identification System...
47 CFR 80.231 - Technical Requirements for Class B Automatic Identification System (AIS) equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Identification System (AIS) equipment. 80.231 Section 80.231 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.231 Technical Requirements for Class B Automatic Identification System (AIS) equipment. (a) Class B Automatic Identification System (AIS) equipment must meet the technical requirements of IEC 62287...
47 CFR 80.231 - Technical Requirements for Class B Automatic Identification System (AIS) equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Identification System (AIS) equipment. 80.231 Section 80.231 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.231 Technical Requirements for Class B Automatic Identification System (AIS) equipment. (a) Class B Automatic Identification System (AIS) equipment must meet the technical requirements of IEC 62287...
47 CFR 80.231 - Technical Requirements for Class B Automatic Identification System (AIS) equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Identification System (AIS) equipment. 80.231 Section 80.231 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.231 Technical Requirements for Class B Automatic Identification System (AIS) equipment. (a) Class B Automatic Identification System (AIS) equipment must meet the technical requirements of IEC 62287...
González-Vidal, Juan José; Pérez-Pueyo, Rosanna; Soneira, María José; Ruiz-Moreno, Sergio
2015-03-01
A new method has been developed to automatically identify Raman spectra, whether they correspond to single- or multicomponent spectra. The method requires no user input or judgment. There are thus no parameters to be tweaked. Furthermore, it provides a reliability factor on the resulting identification, with the aim of becoming a useful support tool for the analyst in the decision-making process. The method relies on the multivariate techniques of principal component analysis (PCA) and independent component analysis (ICA), and on some metrics. It has been developed for the application of automated spectral analysis, where the analyzed spectrum is provided by a spectrometer that has no previous knowledge of the analyzed sample, meaning that the number of components in the sample is unknown. We describe the details of this method and demonstrate its efficiency by identifying both simulated spectra and real spectra. The method has been applied to artistic pigment identification. The reliable and consistent results that were obtained make the methodology a helpful tool suitable for the identification of pigments in artwork or in paint in general.
33 CFR 164.03 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-07-01
... radiocommunication equipment and systems—Automatic identification systems (AIS)—part 2: Class A shipborne equipment of the universal automatic identification system (AIS)—Operational and performance requirements..., Recommendation on Performance Standards for a Universal Shipborne Automatic Identification System (AIS), adopted...
33 CFR 164.03 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-07-01
... radiocommunication equipment and systems—Automatic identification systems (AIS)—part 2: Class A shipborne equipment of the universal automatic identification system (AIS)—Operational and performance requirements..., Recommendation on Performance Standards for a Universal Shipborne Automatic Identification System (AIS), adopted...
33 CFR 164.03 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-07-01
... radiocommunication equipment and systems—Automatic identification systems (AIS)—part 2: Class A shipborne equipment of the universal automatic identification system (AIS)—Operational and performance requirements..., Recommendation on Performance Standards for a Universal Shipborne Automatic Identification System (AIS), adopted...
Dismount Threat Recognition through Automatic Pose Identification
2012-03-01
10 2.2.2 Enabling Technologies . . . . . . . . . . . . . . 11 2.2.3 Associative Memory Neural Networks . . . . . . 12 III. Methodology...20 3.2.3 Creating Separability . . . . . . . . . . . . . . . 23 3.3 Training the Associative Memory Neural Network... Effects of Parameter and Method Choices . . . . . . . . 30 4.3.1 Decimel versus Bipolar . . . . . . . . . . . . . . 30 4.3.2 Bipolar and Binary Values
Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin
2015-04-22
Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called "Octopus", which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust.
Evaluation of the automatic optical authentication technologies for control systems of objects
NASA Astrophysics Data System (ADS)
Averkin, Vladimir V.; Volegov, Peter L.; Podgornov, Vladimir A.
2000-03-01
The report considers the evaluation of the automatic optical authentication technologies for the automated integrated system of physical protection, control and accounting of nuclear materials at RFNC-VNIITF, and for providing of the nuclear materials nonproliferation regime. The report presents the nuclear object authentication objectives and strategies, the methodology of the automatic optical authentication and results of the development of pattern recognition techniques carried out under the ISTC project #772 with the purpose of identification of unique features of surface structure of a controlled object and effects of its random treatment. The current decision of following functional control tasks is described in the report: confirmation of the item authenticity (proof of the absence of its substitution by an item of similar shape), control over unforeseen change of item state, control over unauthorized access to the item. The most important distinctive feature of all techniques is not comprehensive description of some properties of controlled item, but unique identification of item using minimum necessary set of parameters, properly comprising identification attribute of the item. The main emphasis in the technical approach is made on the development of rather simple technological methods for the first time intended for use in the systems of physical protection, control and accounting of nuclear materials. The developed authentication devices and system are described.
Edmands, William M B; Barupal, Dinesh K; Scalbert, Augustin
2015-03-01
MetMSLine represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker-MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R). All source code and suggested parameters are available in an un-encapsulated layout on http://wmbedmands.github.io/MetMSLine/. Readme files and a synthetic dataset of both X-variables (simulated LC-MS data), Y-variables (simulated continuous variables) and metabolite theoretical masses are also available on our GitHub repository. © The Author 2014. Published by Oxford University Press.
Edmands, William M. B.; Barupal, Dinesh K.; Scalbert, Augustin
2015-01-01
Summary: MetMSLine represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker—MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R). Availability and implementation: All source code and suggested parameters are available in an un-encapsulated layout on http://wmbedmands.github.io/MetMSLine/. Readme files and a synthetic dataset of both X-variables (simulated LC–MS data), Y-variables (simulated continuous variables) and metabolite theoretical masses are also available on our GitHub repository. Contact: ScalbertA@iarc.fr PMID:25348215
33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Automatic Identification System Shipborne Equipment-Prince William Sound. 164.43 Section 164.43 Navigation and Navigable Waters COAST GUARD... Automatic Identification System Shipborne Equipment—Prince William Sound. (a) Until December 31, 2004, each...
33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Automatic Identification System Shipborne Equipment-Prince William Sound. 164.43 Section 164.43 Navigation and Navigable Waters COAST GUARD... Automatic Identification System Shipborne Equipment—Prince William Sound. (a) Until December 31, 2004, each...
33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Automatic Identification System Shipborne Equipment-Prince William Sound. 164.43 Section 164.43 Navigation and Navigable Waters COAST GUARD... Automatic Identification System Shipborne Equipment—Prince William Sound. (a) Until December 31, 2004, each...
Detection and identification of concealed weapons using matrix pencil
NASA Astrophysics Data System (ADS)
Adve, Raviraj S.; Thayaparan, Thayananthan
2011-06-01
The detection and identification of concealed weapons is an extremely hard problem due to the weak signature of the target buried within the much stronger signal from the human body. This paper furthers the automatic detection and identification of concealed weapons by proposing the use of an effective approach to obtain the resonant frequencies in a measurement. The technique, based on Matrix Pencil, a scheme for model based parameter estimation also provides amplitude information, hence providing a level of confidence in the results. Of specific interest is the fact that Matrix Pencil is based on a singular value decomposition, making the scheme robust against noise.
NASA Astrophysics Data System (ADS)
Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.
2003-08-01
An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.
Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin
2015-01-01
Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called “Octopus”, which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust. PMID:25912350
García-Betances, Rebeca I; Huerta, Mónica K
2012-01-01
A comparative review is presented of available technologies suitable for automatic reading of patient identification bracelet tags. Existing technologies' backgrounds, characteristics, advantages and disadvantages, are described in relation to their possible use by public health care centers with budgetary limitations. A comparative assessment is presented of suitable automatic identification systems based on graphic codes, both one- (1D) and two-dimensional (2D), printed on labels, as well as those based on radio frequency identification (RFID) tags. The analysis looks at the tradeoffs of these technologies to provide guidance to hospital administrator looking to deploy patient identification technology. The results suggest that affordable automatic patient identification systems can be easily and inexpensively implemented using 2D code printed on low cost bracelet labels, which can then be read and automatically decoded by ordinary mobile smart phones. Because of mobile smart phones' present versatility and ubiquity, the implantation and operation of 2D code, and especially Quick Response® (QR) Code, technology emerges as a very attractive alternative to automate the patients' identification processes in low-budget situations.
García-Betances, Rebeca I.; Huerta, Mónica K.
2012-01-01
A comparative review is presented of available technologies suitable for automatic reading of patient identification bracelet tags. Existing technologies’ backgrounds, characteristics, advantages and disadvantages, are described in relation to their possible use by public health care centers with budgetary limitations. A comparative assessment is presented of suitable automatic identification systems based on graphic codes, both one- (1D) and two-dimensional (2D), printed on labels, as well as those based on radio frequency identification (RFID) tags. The analysis looks at the tradeoffs of these technologies to provide guidance to hospital administrator looking to deploy patient identification technology. The results suggest that affordable automatic patient identification systems can be easily and inexpensively implemented using 2D code printed on low cost bracelet labels, which can then be read and automatically decoded by ordinary mobile smart phones. Because of mobile smart phones’ present versatility and ubiquity, the implantation and operation of 2D code, and especially Quick Response® (QR) Code, technology emerges as a very attractive alternative to automate the patients’ identification processes in low-budget situations. PMID:23569629
Tidal Analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data
2017-01-01
elevation at the time of vessel movement and calculating the tidal dependence (TD) parameter to 23 U.S. port areas for the years 2012– 2014. Tidal prediction...predictions, obtained from the National Oceanographic and Atmospheric Administration, are used to rank relative tidal dependence for arriving cargo and...sector traffic percentages and tidal dependence metric ............................. 11 Arrival process mining
NASA Astrophysics Data System (ADS)
Li, Jin; Zhang, Xian; Gong, Jinzhe; Tang, Jingtian; Ren, Zhengyong; Li, Guang; Deng, Yanli; Cai, Jin
A new technique is proposed for signal-noise identification and targeted de-noising of Magnetotelluric (MT) signals. This method is based on fractal-entropy and clustering algorithm, which automatically identifies signal sections corrupted by common interference (square, triangle and pulse waves), enabling targeted de-noising and preventing the loss of useful information in filtering. To implement the technique, four characteristic parameters — fractal box dimension (FBD), higuchi fractal dimension (HFD), fuzzy entropy (FuEn) and approximate entropy (ApEn) — are extracted from MT time-series. The fuzzy c-means (FCM) clustering technique is used to analyze the characteristic parameters and automatically distinguish signals with strong interference from the rest. The wavelet threshold (WT) de-noising method is used only to suppress the identified strong interference in selected signal sections. The technique is validated through signal samples with known interference, before being applied to a set of field measured MT/Audio Magnetotelluric (AMT) data. Compared with the conventional de-noising strategy that blindly applies the filter to the overall dataset, the proposed method can automatically identify and purposefully suppress the intermittent interference in the MT/AMT signal. The resulted apparent resistivity-phase curve is more continuous and smooth, and the slow-change trend in the low-frequency range is more precisely reserved. Moreover, the characteristic of the target-filtered MT/AMT signal is close to the essential characteristic of the natural field, and the result more accurately reflects the inherent electrical structure information of the measured site.
Research on gait-based human identification
NASA Astrophysics Data System (ADS)
Li, Youguo
Gait recognition refers to automatic identification of individual based on his/her style of walking. This paper proposes a gait recognition method based on Continuous Hidden Markov Model with Mixture of Gaussians(G-CHMM). First, we initialize a Gaussian mix model for training image sequence with K-means algorithm, then train the HMM parameters using a Baum-Welch algorithm. These gait feature sequences can be trained and obtain a Continuous HMM for every person, therefore, the 7 key frames and the obtained HMM can represent each person's gait sequence. Finally, the recognition is achieved by Front algorithm. The experiments made on CASIA gait databases obtain comparatively high correction identification ratio and comparatively strong robustness for variety of bodily angle.
Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie
2016-03-01
In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Visual exploration of parameter influence on phylogenetic trees.
Hess, Martin; Bremm, Sebastian; Weissgraeber, Stephanie; Hamacher, Kay; Goesele, Michael; Wiemeyer, Josef; von Landesberger, Tatiana
2014-01-01
Evolutionary relationships between organisms are frequently derived as phylogenetic trees inferred from multiple sequence alignments (MSAs). The MSA parameter space is exponentially large, so tens of thousands of potential trees can emerge for each dataset. A proposed visual-analytics approach can reveal the parameters' impact on the trees. Given input trees created with different parameter settings, it hierarchically clusters the trees according to their structural similarity. The most important clusters of similar trees are shown together with their parameters. This view offers interactive parameter exploration and automatic identification of relevant parameters. Biologists applied this approach to real data of 16S ribosomal RNA and protein sequences of ion channels. It revealed which parameters affected the tree structures. This led to a more reliable selection of the best trees.
NASA Astrophysics Data System (ADS)
Patel, Nimit R.; Chhaniwal, Vani K.; Javidi, Bahram; Anand, Arun
2015-07-01
Development of devices for automatic identification of diseases is desired especially in developing countries. In the case of malaria, even today the gold standard is the inspection of chemically treated blood smears through a microscope. This requires a trained technician/microscopist to identify the cells in the field of view, with which the labeling chemicals gets attached. Bright field microscopes provide only low contrast 2D images of red blood cells and cell thickness distribution cannot be obtained. Quantitative phase contrast microscopes can provide both intensity and phase profiles of the cells under study. The phase information can be used to determine thickness profile of the cell. Since cell morphology is available, many parameters pertaining to the 3D shape of the cell can be computed. These parameters in turn could be used to decide about the state of health of the cell leading to disease diagnosis. Here the investigations done on digital holographic microscope, which provides quantitative phase images, for comparison of parameters obtained from the 3D shape profile of objects leading to identification of diseased samples is described.
Wang, Jiang-Ning; Chen, Xiao-Lin; Hou, Xin-Wen; Zhou, Li-Bing; Zhu, Chao-Dong; Ji, Li-Qiang
2017-07-01
Many species of Tephritidae are damaging to fruit, which might negatively impact international fruit trade. Automatic or semi-automatic identification of fruit flies are greatly needed for diagnosing causes of damage and quarantine protocols for economically relevant insects. A fruit fly image identification system named AFIS1.0 has been developed using 74 species belonging to six genera, which include the majority of pests in the Tephritidae. The system combines automated image identification and manual verification, balancing operability and accuracy. AFIS1.0 integrates image analysis and expert system into a content-based image retrieval framework. In the the automatic identification module, AFIS1.0 gives candidate identification results. Afterwards users can do manual selection based on comparing unidentified images with a subset of images corresponding to the automatic identification result. The system uses Gabor surface features in automated identification and yielded an overall classification success rate of 87% to the species level by Independent Multi-part Image Automatic Identification Test. The system is useful for users with or without specific expertise on Tephritidae in the task of rapid and effective identification of fruit flies. It makes the application of computer vision technology to fruit fly recognition much closer to production level. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Goldman, Aaron
1999-01-01
The Langley-D.U. collaboration on the analysis of high resolution infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights. Studies toward identification and quantification of isotopic species, mostly oxygen and Sulfur isotopes. Search for new species on the available spectra. Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods. Study of trends of atmosphere trace constituents. Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.
Auto identification technology and its impact on patient safety in the Operating Room of the Future.
Egan, Marie T; Sandberg, Warren S
2007-03-01
Automatic identification technologies, such as bar coding and radio frequency identification, are ubiquitous in everyday life but virtually nonexistent in the operating room. User expectations, based on everyday experience with automatic identification technologies, have generated much anticipation that these systems will improve readiness, workflow, and safety in the operating room, with minimal training requirements. We report, in narrative form, a multi-year experience with various automatic identification technologies in the Operating Room of the Future Project at Massachusetts General Hospital. In each case, the additional human labor required to make these ;labor-saving' technologies function in the medical environment has proved to be their undoing. We conclude that while automatic identification technologies show promise, significant barriers to realizing their potential still exist. Nevertheless, overcoming these obstacles is necessary if the vision of an operating room of the future in which all processes are monitored, controlled, and optimized is to be achieved.
Tidal analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data
2017-01-01
files, organized by location. The data were processed using the Python programming language (van Rossum and Drake 2001), the Pandas data analysis...ER D C/ CH L TR -1 7- 2 Coastal Inlets Research Program Tidal Analysis and Arrival Process Mining Using Automatic Identification System...17-2 January 2017 Tidal Analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data Brandan M. Scully Coastal and
Khan, Faisal Nadeem; Zhong, Kangping; Zhou, Xian; Al-Arashi, Waled Hussein; Yu, Changyuan; Lu, Chao; Lau, Alan Pak Tao
2017-07-24
We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).
Combining Phase Identification and Statistic Modeling for Automated Parallel Benchmark Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ye; Ma, Xiaosong; Liu, Qing Gary
2015-01-01
Parallel application benchmarks are indispensable for evaluating/optimizing HPC software and hardware. However, it is very challenging and costly to obtain high-fidelity benchmarks reflecting the scale and complexity of state-of-the-art parallel applications. Hand-extracted synthetic benchmarks are time-and labor-intensive to create. Real applications themselves, while offering most accurate performance evaluation, are expensive to compile, port, reconfigure, and often plainly inaccessible due to security or ownership concerns. This work contributes APPRIME, a novel tool for trace-based automatic parallel benchmark generation. Taking as input standard communication-I/O traces of an application's execution, it couples accurate automatic phase identification with statistical regeneration of event parameters tomore » create compact, portable, and to some degree reconfigurable parallel application benchmarks. Experiments with four NAS Parallel Benchmarks (NPB) and three real scientific simulation codes confirm the fidelity of APPRIME benchmarks. They retain the original applications' performance characteristics, in particular the relative performance across platforms.« less
Identification of Velcro rales based on Hilbert-Huang transform
NASA Astrophysics Data System (ADS)
Chen, Xue; Shao, Jie; Long, Yingjiao; Que, Chengli; Zhang, Jue; Fang, Jing
2014-05-01
Velcro rales, as a kind of crackles, are relatively specific for lung fibrosis and usually the first clinical clue of interstitial lung disease (ILD). We proposed an automatic analytic tool based on Hilbert-Huang transform (HHT) for the computerized identification of Velcro rales. In particular, HHT was utilized to extract the energy weight in various frequency bands (EW) of crackles and to calculate the portion of crackles during late inspiration. Support vector machine (SVM) based on the HHT-derived measures was used to differentiate Velcro rales from other crackles. We found that there were significant differences in the extracted parameters between Velcro rales and other crackles, including EW, EW and the proportion of crackles that appeared during the late inspiration. The discrimination results obtained from SVM achieved a concordance rate up to 92.20%±1.80% as confirmed by the diagnosis from experienced physicians. For practical purpose, the proposed approach may have potential applications to improve the sensitivity and accuracy of auscultation and conduct automatic ILD diagnose system.
Automated feature detection and identification in digital point-ordered signals
Oppenlander, Jane E.; Loomis, Kent C.; Brudnoy, David M.; Levy, Arthur J.
1998-01-01
A computer-based automated method to detect and identify features in digital point-ordered signals. The method is used for processing of non-destructive test signals, such as eddy current signals obtained from calibration standards. The signals are first automatically processed to remove noise and to determine a baseline. Next, features are detected in the signals using mathematical morphology filters. Finally, verification of the features is made using an expert system of pattern recognition methods and geometric criteria. The method has the advantage that standard features can be, located without prior knowledge of the number or sequence of the features. Further advantages are that standard features can be differentiated from irrelevant signal features such as noise, and detected features are automatically verified by parameters extracted from the signals. The method proceeds fully automatically without initial operator set-up and without subjective operator feature judgement.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.
47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Compulsory Ships § 80.275 Technical Requirements for Class A Automatic Identification System (AIS) equipment. (a) Prior to submitting a certification application for a Class A AIS device, the following... Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...
47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Compulsory Ships § 80.275 Technical Requirements for Class A Automatic Identification System (AIS) equipment. (a) Prior to submitting a certification application for a Class A AIS device, the following... Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...
47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Compulsory Ships § 80.275 Technical Requirements for Class A Automatic Identification System (AIS) equipment. (a) Prior to submitting a certification application for a Class A AIS device, the following... Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...
47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Compulsory Ships § 80.275 Technical Requirements for Class A Automatic Identification System (AIS) equipment. (a) Prior to submitting a certification application for a Class A AIS device, the following... Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...
NASA Astrophysics Data System (ADS)
Facsko, Gabor; Sibeck, David; Balogh, Tamas; Kis, Arpad; Wesztergom, Viktor
2017-04-01
The bow shock and the outer rim of the outer radiation belt are detected automatically by our algorithm developed as a part of the Boundary Layer Identification Code Cluster Active Archive project. The radiation belt positions are determined from energized electron measurements working properly onboard all Cluster spacecraft. For bow shock identification we use magnetometer data and, when available, ion plasma instrument data. In addition, electrostatic wave instrument electron density, spacecraft potential measurements and wake indicator auxiliary data are also used so the events can be identified by all Cluster probes in highly redundant way, as the magnetometer and these instruments are still operational in all spacecraft. The capability and performance of the bow shock identification algorithm were tested using known bow shock crossing determined manually from January 29, 2002 to February 3,. The verification enabled 70% of the bow shock crossings to be identified automatically. The method shows high flexibility and it can be applied to observations from various spacecraft. Now these tools have been applied to Time History of Events and Macroscale Interactions during Substorms (THEMIS)/Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) magnetic field, plasma and spacecraft potential observations to identify bow shock crossings; and to Van Allen Probes supra-thermal electron observations to identify the edges of the radiation belt. The outcomes of the algorithms are checked manually and the parameters used to search for bow shock identification are refined.
Automatic identification of species with neural networks.
Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda
2014-01-01
A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.
Suspect/foil identification in actual crimes and in the laboratory: a reality monitoring analysis.
Behrman, Bruce W; Richards, Regina E
2005-06-01
Four reality monitoring variables were used to discriminate suspect from foil identifications in 183 actual criminal cases. Four hundred sixty-one identification attempts based on five and six-person lineups were analyzed. These identification attempts resulted in 238 suspect identifications and 68 foil identifications. Confidence, automatic processing, eliminative processing and feature use comprised the set of reality monitoring variables. Thirty-five verbal confidence phrases taken from police reports were assigned numerical values on a 10-point confidence scale. Automatic processing identifications were those that occurred "immediately" or "without hesitation." Eliminative processing identifications occurred when witnesses compared or eliminated persons in the lineups. Confidence, automatic processing and eliminative processing were significant predictors, but feature use was not. Confidence was the most effective discriminator. In cases that involved substantial evidence extrinsic to the identification 43% of the suspect identifications were made with high confidence, whereas only 10% of the foil identifications were made with high confidence. The results of a laboratory study using the same predictors generally paralleled the archival results. Forensic implications are discussed.
Automatic Car Identification - an Evaluation
DOT National Transportation Integrated Search
1972-03-01
In response to a Federal Railroad Administration request, the Transportation Systems Center evaluated the Automatic Car Identification System (ACI) used on the nation's railroads. The ACI scanner was found to be adequate for reliable data output whil...
NASA Technical Reports Server (NTRS)
Goldman, A.
2002-01-01
The Langley-D.U. collaboration on the analysis of high resolultion infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: 1) Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights; 2) Identification and preliminary quantification of several isotopic species, including oxygen and Sulfur isotopes; 3) Search for new species on the available spectra, including the use of selective coadding of ground-based spectra for high signal to noise; 4) Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods; 5) Study of trends and correlations of atmosphere trace constituents; and 6) Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.
Optical Automatic Car Identification (OACI) : Volume 1. Advanced System Specification.
DOT National Transportation Integrated Search
1978-12-01
A performance specification is provided in this report for an Optical Automatic Car Identification (OACI) scanner system which features 6% improved readability over existing industry scanner systems. It also includes the analysis and rationale which ...
Estimating spatial travel times using automatic vehicle identification data
DOT National Transportation Integrated Search
2001-01-01
Prepared ca. 2001. The paper describes an algorithm that was developed for estimating reliable and accurate average roadway link travel times using Automatic Vehicle Identification (AVI) data. The algorithm presented is unique in two aspects. First, ...
Sultan, Mohammad M; Kiss, Gert; Shukla, Diwakar; Pande, Vijay S
2014-12-09
Given the large number of crystal structures and NMR ensembles that have been solved to date, classical molecular dynamics (MD) simulations have become powerful tools in the atomistic study of the kinetics and thermodynamics of biomolecular systems on ever increasing time scales. By virtue of the high-dimensional conformational state space that is explored, the interpretation of large-scale simulations faces difficulties not unlike those in the big data community. We address this challenge by introducing a method called clustering based feature selection (CB-FS) that employs a posterior analysis approach. It combines supervised machine learning (SML) and feature selection with Markov state models to automatically identify the relevant degrees of freedom that separate conformational states. We highlight the utility of the method in the evaluation of large-scale simulations and show that it can be used for the rapid and automated identification of relevant order parameters involved in the functional transitions of two exemplary cell-signaling proteins central to human disease states.
Roadway system assessment using bluetooth-based automatic vehicle identification travel time data.
DOT National Transportation Integrated Search
2012-12-01
This monograph is an exposition of several practice-ready methodologies for automatic vehicle identification (AVI) data collection : systems. This includes considerations in the physical setup of the collection system as well as the interpretation of...
Wolters, Mark A; Dean, C B
2017-01-01
Remote sensing images from Earth-orbiting satellites are a potentially rich data source for monitoring and cataloguing atmospheric health hazards that cover large geographic regions. A method is proposed for classifying such images into hazard and nonhazard regions using the autologistic regression model, which may be viewed as a spatial extension of logistic regression. The method includes a novel and simple approach to parameter estimation that makes it well suited to handling the large and high-dimensional datasets arising from satellite-borne instruments. The methodology is demonstrated on both simulated images and a real application to the identification of forest fire smoke.
Automatic Publication of a MIS Product to GeoNetwork: Case of the AIS Indexer
2012-11-01
installation and configuration The following instructions are for installing and configuring the software packages Java 1.6 and MySQL 5.5 which are...An Automatic Identification System (AIS) reception indexer Java application was developed in the summer of 2011, based on the work of Lapinski and...release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT An Automatic Identification System (AIS) reception indexer Java application was
Associative priming in a masked perceptual identification task: evidence for automatic processes.
Pecher, Diane; Zeelenberg, René; Raaijmakers, Jeroen G W
2002-10-01
Two experiments investigated the influence of automatic and strategic processes on associative priming effects in a perceptual identification task in which prime-target pairs are briefly presented and masked. In this paradigm, priming is defined as a higher percentage of correctly identified targets for related pairs than for unrelated pairs. In Experiment 1, priming was obtained for mediated word pairs. This mediated priming effect was affected neither by the presence of direct associations nor by the presentation time of the primes, indicating that automatic priming effects play a role in perceptual identification. Experiment 2 showed that the priming effect was not affected by the proportion (.90 vs. .10) of related pairs if primes were presented briefly to prevent their identification. However, a large proportion effect was found when primes were presented for 1000 ms so that they were clearly visible. These results indicate that priming in a masked perceptual identification task is the result of automatic processes and is not affected by strategies. The present paradigm provides a valuable alternative to more commonly used tasks such as lexical decision.
Abbreviation definition identification based on automatic precision estimates.
Sohn, Sunghwan; Comeau, Donald C; Kim, Won; Wilbur, W John
2008-09-25
The rapid growth of biomedical literature presents challenges for automatic text processing, and one of the challenges is abbreviation identification. The presence of unrecognized abbreviations in text hinders indexing algorithms and adversely affects information retrieval and extraction. Automatic abbreviation definition identification can help resolve these issues. However, abbreviations and their definitions identified by an automatic process are of uncertain validity. Due to the size of databases such as MEDLINE only a small fraction of abbreviation-definition pairs can be examined manually. An automatic way to estimate the accuracy of abbreviation-definition pairs extracted from text is needed. In this paper we propose an abbreviation definition identification algorithm that employs a variety of strategies to identify the most probable abbreviation definition. In addition our algorithm produces an accuracy estimate, pseudo-precision, for each strategy without using a human-judged gold standard. The pseudo-precisions determine the order in which the algorithm applies the strategies in seeking to identify the definition of an abbreviation. On the Medstract corpus our algorithm produced 97% precision and 85% recall which is higher than previously reported results. We also annotated 1250 randomly selected MEDLINE records as a gold standard. On this set we achieved 96.5% precision and 83.2% recall. This compares favourably with the well known Schwartz and Hearst algorithm. We developed an algorithm for abbreviation identification that uses a variety of strategies to identify the most probable definition for an abbreviation and also produces an estimated accuracy of the result. This process is purely automatic.
Optical Automatic Car Identification (OACI) Field Test Program
DOT National Transportation Integrated Search
1976-05-01
The results of the Optical Automatic Car Identification (OACI) tests at Chicago conducted from August 16 to September 4, 1975 are presented. The main purpose of this test was to determine the suitability of optics as a principle of operation for an a...
DOT National Transportation Integrated Search
2002-11-01
This paper develops an algorithm for optimally locating surveillance technologies with an emphasis on Automatic Vehicle Identification tag readers by maximizing the benefit that would accrue from measuring travel times on a transportation network. Th...
47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).
Code of Federal Regulations, 2010 CFR
2010-10-01
... identified through the use of an automatic transmitter identification system as specified below. (a.... (3) The ATIS signal as a minimum shall consist of the following: (i) The FCC assigned earth station... (ATIS). 25.281 Section 25.281 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON...
47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).
Code of Federal Regulations, 2013 CFR
2013-10-01
... identified through the use of an automatic transmitter identification system as specified below. (a.... (3) The ATIS signal as a minimum shall consist of the following: (i) The FCC assigned earth station... (ATIS). 25.281 Section 25.281 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON...
47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).
Code of Federal Regulations, 2012 CFR
2012-10-01
... identified through the use of an automatic transmitter identification system as specified below. (a.... (3) The ATIS signal as a minimum shall consist of the following: (i) The FCC assigned earth station... (ATIS). 25.281 Section 25.281 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON...
47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).
Code of Federal Regulations, 2011 CFR
2011-10-01
... identified through the use of an automatic transmitter identification system as specified below. (a.... (3) The ATIS signal as a minimum shall consist of the following: (i) The FCC assigned earth station... (ATIS). 25.281 Section 25.281 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON...
Automatic P-S phase picking procedure based on Kurtosis: Vanuatu region case study
NASA Astrophysics Data System (ADS)
Baillard, C.; Crawford, W. C.; Ballu, V.; Hibert, C.
2012-12-01
Automatic P and S phase picking is indispensable for large seismological data sets. Robust algorithms, based on short term and long term average ratio comparison (Allen, 1982), are commonly used for event detection, but further improvements can be made in phase identification and picking. We present a picking scheme using consecutively Kurtosis-derived Characteristic Functions (CF) and Eigenvalue decompositions on 3-component seismic data to independently pick P and S arrivals. When computed over a sliding window of the signal, a sudden increase in the CF reveals a transition from a gaussian to a non-gaussian distribution, characterizing the phase onset (Saragiotis, 2002). One advantage of the method is that it requires much fewer adjustable parameters than competing methods. We modified the Kurtosis CF to improve pick precision, by computing the CF over several frequency bandwidths, window sizes and smoothing parameters. Once phases were picked, we determined the onset type (P or S) using polarization parameters (rectilinearity, azimuth and dip) calculated using Eigenvalue decompositions of the covariance matrix (Cichowicz, 1993). Finally, we removed bad picks using a clustering procedure and the signal-to-noise ratio (SNR). The pick quality index was also assigned based on the SNR value. Amplitude calculation is integrated into the procedure to enable automatic magnitude calculation. We applied this procedure to data from a network of 30 wideband seismometers (including 10 oceanic bottom seismometers) in Vanuatu that ran for 10 months from May 2008 to February 2009. We manually picked the first 172 events of June, whose local magnitudes range from 0.7 to 3.7. We made a total of 1601 picks, 1094 P and 507 S. We then applied our automatic picking to the same dataset. 70% of the manually picked onsets were picked automatically. For P-picks, the difference between manual and automatic picks is 0.01 ± 0.08 s overall; for the best quality picks (quality index 0: 64% of the P-picks) the difference is -0.01 ± 0.07 s. For S-picks, the difference is -0.09 ± 0.26 s overall and -0.06 ± 0.14 s for good quality picks (index 1: 26% of the S-picks). Residuals showed no dependence on the event magnitudes. The method independently picks S and P waves with good precision and only a few parameters to adjust for relatively small earthquakes (mostly ≤ 2 Ml). The automatic procedure was then applied to the whole dataset. Earthquake locations obtained by inverting onset arrivals revealed clustering and lineations that helped us to constrain the subduction plane. Those key parameters will be integrated to a 3D finite-difference modeling and compared to GPS data in order to better understand the complex geodynamics behavior of the Vanuatu region.
Automatically identifying health outcome information in MEDLINE records.
Demner-Fushman, Dina; Few, Barbara; Hauser, Susan E; Thoma, George
2006-01-01
Understanding the effect of a given intervention on the patient's health outcome is one of the key elements in providing optimal patient care. This study presents a methodology for automatic identification of outcomes-related information in medical text and evaluates its potential in satisfying clinical information needs related to health care outcomes. An annotation scheme based on an evidence-based medicine model for critical appraisal of evidence was developed and used to annotate 633 MEDLINE citations. Textual, structural, and meta-information features essential to outcome identification were learned from the created collection and used to develop an automatic system. Accuracy of automatic outcome identification was assessed in an intrinsic evaluation and in an extrinsic evaluation, in which ranking of MEDLINE search results obtained using PubMed Clinical Queries relied on identified outcome statements. The accuracy and positive predictive value of outcome identification were calculated. Effectiveness of the outcome-based ranking was measured using mean average precision and precision at rank 10. Automatic outcome identification achieved 88% to 93% accuracy. The positive predictive value of individual sentences identified as outcomes ranged from 30% to 37%. Outcome-based ranking improved retrieval accuracy, tripling mean average precision and achieving 389% improvement in precision at rank 10. Preliminary results in outcome-based document ranking show potential validity of the evidence-based medicine-model approach in timely delivery of information critical to clinical decision support at the point of service.
Motor signatures of emotional reactivity in frontotemporal dementia.
Marshall, Charles R; Hardy, Chris J D; Russell, Lucy L; Clark, Camilla N; Bond, Rebecca L; Dick, Katrina M; Brotherhood, Emilie V; Mummery, Cath J; Schott, Jonathan M; Rohrer, Jonathan D; Kilner, James M; Warren, Jason D
2018-01-18
Automatic motor mimicry is essential to the normal processing of perceived emotion, and disrupted automatic imitation might underpin socio-emotional deficits in neurodegenerative diseases, particularly the frontotemporal dementias. However, the pathophysiology of emotional reactivity in these diseases has not been elucidated. We studied facial electromyographic responses during emotion identification on viewing videos of dynamic facial expressions in 37 patients representing canonical frontotemporal dementia syndromes versus 21 healthy older individuals. Neuroanatomical associations of emotional expression identification accuracy and facial muscle reactivity were assessed using voxel-based morphometry. Controls showed characteristic profiles of automatic imitation, and this response predicted correct emotion identification. Automatic imitation was reduced in the behavioural and right temporal variant groups, while the normal coupling between imitation and correct identification was lost in the right temporal and semantic variant groups. Grey matter correlates of emotion identification and imitation were delineated within a distributed network including primary visual and motor, prefrontal, insular, anterior temporal and temporo-occipital junctional areas, with common involvement of supplementary motor cortex across syndromes. Impaired emotional mimesis may be a core mechanism of disordered emotional signal understanding and reactivity in frontotemporal dementia, with implications for the development of novel physiological biomarkers of socio-emotional dysfunction in these diseases.
Design and performance study of an orthopaedic surgery robotized module for automatic bone drilling.
Boiadjiev, George; Kastelov, Rumen; Boiadjiev, Tony; Kotev, Vladimir; Delchev, Kamen; Zagurski, Kazimir; Vitkov, Vladimir
2013-12-01
Many orthopaedic operations involve drilling and tapping before the insertion of screws into a bone. This drilling is usually performed manually, thus introducing many problems. These include attaining a specific drilling accuracy, preventing blood vessels from breaking, and minimizing drill oscillations that would widen the hole. Bone overheating is the most important problem. To avoid such problems and reduce the subjective factor, automated drilling is recommended. Because numerous parameters influence the drilling process, this study examined some experimental methods. These concerned the experimental identification of technical drilling parameters, including the bone resistance force and temperature in the drilling process. During the drilling process, the following parameters were monitored: time, linear velocity, angular velocity, resistance force, penetration depth, and temperature. Specific drilling effects were revealed during the experiments. The accuracy was improved at the starting point of the drilling, and the error for the entire process was less than 0.2 mm. The temperature deviations were kept within tolerable limits. The results of various experiments with different drilling velocities, drill bit diameters, and penetration depths are presented in tables, as well as the curves of the resistance force and temperature with respect to time. Real-time digital indications of the progress of the drilling process are shown. Automatic bone drilling could entirely solve the problems that usually arise during manual drilling. An experimental setup was designed to identify bone drilling parameters such as the resistance force arising from variable bone density, appropriate mechanical drilling torque, linear speed of the drill, and electromechanical characteristics of the motors, drives, and corresponding controllers. Automatic drilling guarantees greater safety for the patient. Moreover, the robot presented is user-friendly because it is simple to set robot tasks, and process data are collected in real time. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kamiński, K.; Dobrowolski, A. P.
2017-04-01
The paper presents the architecture and the results of optimization of selected elements of the Automatic Speaker Recognition (ASR) system that uses Gaussian Mixture Models (GMM) in the classification process. Optimization was performed on the process of selection of individual characteristics using the genetic algorithm and the parameters of Gaussian distributions used to describe individual voices. The system that was developed was tested in order to evaluate the impact of different compression methods used, among others, in landline, mobile, and VoIP telephony systems, on effectiveness of the speaker identification. Also, the results were presented of effectiveness of speaker identification at specific levels of noise with the speech signal and occurrence of other disturbances that could appear during phone calls, which made it possible to specify the spectrum of applications of the presented ASR system.
NASA Astrophysics Data System (ADS)
Zheng, Jing; Lu, Jiren; Peng, Suping; Jiang, Tianqi
2018-02-01
The conventional arrival pick-up algorithms cannot avoid the manual modification of the parameters for the simultaneous identification of multiple events under different signal-to-noise ratios (SNRs). Therefore, in order to automatically obtain the arrivals of multiple events with high precision under different SNRs, in this study an algorithm was proposed which had the ability to pick up the arrival of microseismic or acoustic emission events based on deep recurrent neural networks. The arrival identification was performed using two important steps, which included a training phase and a testing phase. The training process was mathematically modelled by deep recurrent neural networks using Long Short-Term Memory architecture. During the testing phase, the learned weights were utilized to identify the arrivals through the microseismic/acoustic emission data sets. The data sets were obtained by rock physics experiments of the acoustic emission. In order to obtain the data sets under different SNRs, this study added random noise to the raw experiments' data sets. The results showed that the outcome of the proposed method was able to attain an above 80 per cent hit-rate at SNR 0 dB, and an approximately 70 per cent hit-rate at SNR -5 dB, with an absolute error in 10 sampling points. These results indicated that the proposed method had high selection precision and robustness.
21 CFR 892.1900 - Automatic radiographic film processor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automatic radiographic film processor. 892.1900... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1900 Automatic radiographic film processor. (a) Identification. An automatic radiographic film processor is a device intended to be used to...
21 CFR 892.1900 - Automatic radiographic film processor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automatic radiographic film processor. 892.1900... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1900 Automatic radiographic film processor. (a) Identification. An automatic radiographic film processor is a device intended to be used to...
21 CFR 892.1900 - Automatic radiographic film processor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automatic radiographic film processor. 892.1900... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1900 Automatic radiographic film processor. (a) Identification. An automatic radiographic film processor is a device intended to be used to...
21 CFR 892.1900 - Automatic radiographic film processor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automatic radiographic film processor. 892.1900... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1900 Automatic radiographic film processor. (a) Identification. An automatic radiographic film processor is a device intended to be used to...
21 CFR 892.1900 - Automatic radiographic film processor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automatic radiographic film processor. 892.1900... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1900 Automatic radiographic film processor. (a) Identification. An automatic radiographic film processor is a device intended to be used to...
47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Technical Requirements for Class A Automatic Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Equipment Authorization for Compulsory Ships § 80.275...
RFID: A Revolution in Automatic Data Recognition
ERIC Educational Resources Information Center
Deal, Walter F., III
2004-01-01
Radio frequency identification, or RFID, is a generic term for technologies that use radio waves to automatically identify people or objects. There are several methods of identification, but the most common is to store a serial number that identifies a person or object, and perhaps other information, on a microchip that is attached to an antenna…
33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (AISSE) system consisting of a: (1) Twelve-channel all-in-view Differential Global Positioning System (d... to indicate to shipboard personnel that the U.S. Coast Guard dGPS system cannot provide the required... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Automatic Identification System...
Assessment of automatic ligand building in ARP/wARP.
Evrard, Guillaume X; Langer, Gerrit G; Perrakis, Anastassis; Lamzin, Victor S
2007-01-01
The efficiency of the ligand-building module of ARP/wARP version 6.1 has been assessed through extensive tests on a large variety of protein-ligand complexes from the PDB, as available from the Uppsala Electron Density Server. Ligand building in ARP/wARP involves two main steps: automatic identification of the location of the ligand and the actual construction of its atomic model. The first step is most successful for large ligands. The second step, ligand construction, is more powerful with X-ray data at high resolution and ligands of small to medium size. Both steps are successful for ligands with low to moderate atomic displacement parameters. The results highlight the strengths and weaknesses of both the method of ligand building and the large-scale validation procedure and help to identify means of further improvement.
Singh, Anushikha; Dutta, Malay Kishore; ParthaSarathi, M; Uher, Vaclav; Burget, Radim
2016-02-01
Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7% and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Automatic Channel Fault Detection on a Small Animal APD-Based Digital PET Scanner
NASA Astrophysics Data System (ADS)
Charest, Jonathan; Beaudoin, Jean-François; Cadorette, Jules; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean
2014-10-01
Avalanche photodiode (APD) based positron emission tomography (PET) scanners show enhanced imaging capabilities in terms of spatial resolution and contrast due to the one to one coupling and size of individual crystal-APD detectors. However, to ensure the maximal performance, these PET scanners require proper calibration by qualified scanner operators, which can become a cumbersome task because of the huge number of channels they are made of. An intelligent system (IS) intends to alleviate this workload by enabling a diagnosis of the observational errors of the scanner. The IS can be broken down into four hierarchical blocks: parameter extraction, channel fault detection, prioritization and diagnosis. One of the main activities of the IS consists in analyzing available channel data such as: normalization coincidence counts and single count rates, crystal identification classification data, energy histograms, APD bias and noise thresholds to establish the channel health status that will be used to detect channel faults. This paper focuses on the first two blocks of the IS: parameter extraction and channel fault detection. The purpose of the parameter extraction block is to process available data on individual channels into parameters that are subsequently used by the fault detection block to generate the channel health status. To ensure extensibility, the channel fault detection block is divided into indicators representing different aspects of PET scanner performance: sensitivity, timing, crystal identification and energy. Some experiments on a 8 cm axial length LabPET scanner located at the Sherbrooke Molecular Imaging Center demonstrated an erroneous channel fault detection rate of 10% (with a 95% confidence interval (CI) of [9, 11]) which is considered tolerable. Globally, the IS achieves a channel fault detection efficiency of 96% (CI: [95, 97]), which proves that many faults can be detected automatically. Increased fault detection efficiency would be advantageous but, the achieved results would already benefit scanner operators in their maintenance task.
Reactor protection system with automatic self-testing and diagnostic
Gaubatz, Donald C.
1996-01-01
A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically "identical" values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic.
Reactor protection system with automatic self-testing and diagnostic
Gaubatz, D.C.
1996-12-17
A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ``identical`` values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs.
System for critical infrastructure security based on multispectral observation-detection module
NASA Astrophysics Data System (ADS)
Trzaskawka, Piotr; Kastek, Mariusz; Życzkowski, Marek; Dulski, Rafał; Szustakowski, Mieczysław; Ciurapiński, Wiesław; Bareła, Jarosław
2013-10-01
Recent terrorist attacks and possibilities of such actions in future have forced to develop security systems for critical infrastructures that embrace sensors technologies and technical organization of systems. The used till now perimeter protection of stationary objects, based on construction of a ring with two-zone fencing, visual cameras with illumination are efficiently displaced by the systems of the multisensor technology that consists of: visible technology - day/night cameras registering optical contrast of a scene, thermal technology - cheap bolometric cameras recording thermal contrast of a scene and active ground radars - microwave and millimetre wavelengths that record and detect reflected radiation. Merging of these three different technologies into one system requires methodology for selection of technical conditions of installation and parameters of sensors. This procedure enables us to construct a system with correlated range, resolution, field of view and object identification. Important technical problem connected with the multispectral system is its software, which helps couple the radar with the cameras. This software can be used for automatic focusing of cameras, automatic guiding cameras to an object detected by the radar, tracking of the object and localization of the object on the digital map as well as target identification and alerting. Based on "plug and play" architecture, this system provides unmatched flexibility and simplistic integration of sensors and devices in TCP/IP networks. Using a graphical user interface it is possible to control sensors and monitor streaming video and other data over the network, visualize the results of data fusion process and obtain detailed information about detected intruders over a digital map. System provide high-level applications and operator workload reduction with features such as sensor to sensor cueing from detection devices, automatic e-mail notification and alarm triggering. The paper presents a structure and some elements of critical infrastructure protection solution which is based on a modular multisensor security system. System description is focused mainly on methodology of selection of sensors parameters. The results of the tests in real conditions are also presented.
NASA Astrophysics Data System (ADS)
Jemberie, A.; Dugda, M. T.; Reusch, D.; Nyblade, A.
2006-12-01
Neural networks are decision making mathematical/engineering tools, which if trained properly, can do jobs automatically (and objectively) that normally require particular expertise and/or tedious repetition. Here we explore two techniques from the field of artificial neural networks (ANNs) that seek to reduce the time requirements and increase the objectivity of quality control (QC) and Event Identification (EI) on seismic datasets. We explore to apply the multiplayer Feed Forward (FF) Artificial Neural Networks (ANN) and Self- Organizing Maps (SOM) in combination with Hk stacking of receiver functions in an attempt to test the extent of the usefulness of automatic classification of receiver functions for crustal parameter determination. Feed- forward ANNs (FFNNs) are a supervised classification tool while self-organizing maps (SOMs) are able to provide unsupervised classification of large, complex geophysical data sets into a fixed number of distinct generalized patterns or modes. Hk stacking is a methodology that is used to stack receiver functions based on the relative arrival times of P-to-S converted phase and next two reverberations to determine crustal thickness H and Vp-to-Vs ratio (k). We use receiver functions from teleseismic events recorded by the 2000- 2002 Ethiopia Broadband Seismic Experiment. Preliminary results of applying FFNN neural network and Hk stacking of receiver functions for automatic receiver functions classification as a step towards an effort of automatic crustal parameter determination look encouraging. After training a FFNN neural network, the network could classify the best receiver functions from bad ones with a success rate of about 75 to 95%. Applying H? stacking on the receiver functions classified by this FFNN as the best receiver functions, we could obtain crustal thickness and Vp/Vs ratio of 31±4 km and 1.75±0.05, respectively, for the crust beneath station ARBA in the Main Ethiopian Rift. To make comparison, we applied Hk stacking on the receiver functions which we ourselves classified as the best set and found that the crustal thickness and Vp/Vs ratio are 31±2 km and 1.75±0.02, respectively.
Sensitivity-based virtual fields for the non-linear virtual fields method
NASA Astrophysics Data System (ADS)
Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice
2017-09-01
The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.
A vibration-based health monitoring program for a large and seismically vulnerable masonry dome
NASA Astrophysics Data System (ADS)
Pecorelli, M. L.; Ceravolo, R.; De Lucia, G.; Epicoco, R.
2017-05-01
Vibration-based health monitoring of monumental structures must rely on efficient and, as far as possible, automatic modal analysis procedures. Relatively low excitation energy provided by traffic, wind and other sources is usually sufficient to detect structural changes, as those produced by earthquakes and extreme events. Above all, in-operation modal analysis is a non-invasive diagnostic technique that can support optimal strategies for the preservation of architectural heritage, especially if complemented by model-driven procedures. In this paper, the preliminary steps towards a fully automated vibration-based monitoring of the world’s largest masonry oval dome (internal axes of 37.23 by 24.89 m) are presented. More specifically, the paper reports on signal treatment operations conducted to set up the permanent dynamic monitoring system of the dome and to realise a robust automatic identification procedure. Preliminary considerations on the effects of temperature on dynamic parameters are finally reported.
Computer-assisted image processing to detect spores from the fungus Pandora neoaphidis.
Korsnes, Reinert; Westrum, Karin; Fløistad, Erling; Klingen, Ingeborg
2016-01-01
This contribution demonstrates an example of experimental automatic image analysis to detect spores prepared on microscope slides derived from trapping. The application is to monitor aerial spore counts of the entomopathogenic fungus Pandora neoaphidis which may serve as a biological control agent for aphids. Automatic detection of such spores can therefore play a role in plant protection. The present approach for such detection is a modification of traditional manual microscopy of prepared slides, where autonomous image recording precedes computerised image analysis. The purpose of the present image analysis is to support human visual inspection of imagery data - not to replace it. The workflow has three components:•Preparation of slides for microscopy.•Image recording.•Computerised image processing where the initial part is, as usual, segmentation depending on the actual data product. Then comes identification of blobs, calculation of principal axes of blobs, symmetry operations and projection on a three parameter egg shape space.
Tao, Qian; Milles, Julien; Zeppenfeld, Katja; Lamb, Hildo J; Bax, Jeroen J; Reiber, Johan H C; van der Geest, Rob J
2010-08-01
Accurate assessment of the size and distribution of a myocardial infarction (MI) from late gadolinium enhancement (LGE) MRI is of significant prognostic value for postinfarction patients. In this paper, an automatic MI identification method combining both intensity and spatial information is presented in a clear framework of (i) initialization, (ii) false acceptance removal, and (iii) false rejection removal. The method was validated on LGE MR images of 20 chronic postinfarction patients, using manually traced MI contours from two independent observers as reference. Good agreement was observed between automatic and manual MI identification. Validation results showed that the average Dice indices, which describe the percentage of overlap between two regions, were 0.83 +/- 0.07 and 0.79 +/- 0.08 between the automatic identification and the manual tracing from observer 1 and observer 2, and the errors in estimated infarct percentage were 0.0 +/- 1.9% and 3.8 +/- 4.7% compared with observer 1 and observer 2. The difference between the automatic method and manual tracing is in the order of interobserver variation. In conclusion, the developed automatic method is accurate and robust in MI delineation, providing an objective tool for quantitative assessment of MI in LGE MR imaging.
NASA Astrophysics Data System (ADS)
Akhtar, Taimoor; Shoemaker, Christine
2016-04-01
Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual analytics framework for decision support in selection of one parameter combination from the alternatives identified in Stage 2. HAMS is applied for calibration of flow parameters of a SWAT model, (Soil and Water Assessment Tool) designed to simulate flow in the Cannonsville watershed in upstate New York. Results from the application of HAMS to Cannonsville indicate that efficient multi-objective optimization and interactive visual and metric based analytics can bridge the gap between the effective use of both automatic and manual strategies for parameter estimation of computationally expensive watershed models.
NASA Astrophysics Data System (ADS)
Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long
2012-01-01
The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve the speed and orientation efficiency of target identification effectively, and validate the feasibility of this method primarily.
SmartPort: A Platform for Sensor Data Monitoring in a Seaport Based on FIWARE
Fernández, Pablo; Santana, José Miguel; Ortega, Sebastián; Trujillo, Agustín; Suárez, José Pablo; Domínguez, Conrado; Santana, Jaisiel; Sánchez, Alejandro
2016-01-01
Seaport monitoring and management is a significant research area, in which infrastructure automatically collects big data sets that lead the organization in its multiple activities. Thus, this problem is heavily related to the fields of data acquisition, transfer, storage, big data analysis and information visualization. Las Palmas de Gran Canaria port is a good example of how a seaport generates big data volumes through a network of sensors. They are placed on meteorological stations and maritime buoys, registering environmental parameters. Likewise, the Automatic Identification System (AIS) registers several dynamic parameters about the tracked vessels. However, such an amount of data is useless without a system that enables a meaningful visualization and helps make decisions. In this work, we present SmartPort, a platform that offers a distributed architecture for the collection of the port sensors’ data and a rich Internet application that allows the user to explore the geolocated data. The presented SmartPort tool is a representative, promising and inspiring approach to manage and develop a smart system. It covers a demanding need for big data analysis and visualization utilities for managing complex infrastructures, such as a seaport. PMID:27011192
[Wearable Automatic External Defibrillators].
Luo, Huajie; Luo, Zhangyuan; Jin, Xun; Zhang, Leilei; Wang, Changjin; Zhang, Wenzan; Tu, Quan
2015-11-01
Defibrillation is the most effective method of treating ventricular fibrillation(VF), this paper introduces wearable automatic external defibrillators based on embedded system which includes EGG measurements, bioelectrical impedance measurement, discharge defibrillation module, which can automatic identify VF signal, biphasic exponential waveform defibrillation discharge. After verified by animal tests, the device can realize EGG acquisition and automatic identification. After identifying the ventricular fibrillation signal, it can automatic defibrillate to abort ventricular fibrillation and to realize the cardiac electrical cardioversion.
Evolving Spiking Neural Networks for Recognition of Aged Voices.
Silva, Marco; Vellasco, Marley M B R; Cataldo, Edson
2017-01-01
The aging of the voice, known as presbyphonia, is a natural process that can cause great change in vocal quality of the individual. This is a relevant problem to those people who use their voices professionally, and its early identification can help determine a suitable treatment to avoid its progress or even to eliminate the problem. This work focuses on the development of a new model for the identification of aging voices (independently of their chronological age), using as input attributes parameters extracted from the voice and glottal signals. The proposed model, named Quantum binary-real evolving Spiking Neural Network (QbrSNN), is based on spiking neural networks (SNNs), with an unsupervised training algorithm, and a Quantum-Inspired Evolutionary Algorithm that automatically determines the most relevant attributes and the optimal parameters that configure the SNN. The QbrSNN model was evaluated in a database composed of 120 records, containing samples from three groups of speakers. The results obtained indicate that the proposed model provides better accuracy than other approaches, with fewer input attributes. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Automatic Clustering Using FSDE-Forced Strategy Differential Evolution
NASA Astrophysics Data System (ADS)
Yasid, A.
2018-01-01
Clustering analysis is important in datamining for unsupervised data, cause no adequate prior knowledge. One of the important tasks is defining the number of clusters without user involvement that is known as automatic clustering. This study intends on acquiring cluster number automatically utilizing forced strategy differential evolution (AC-FSDE). Two mutation parameters, namely: constant parameter and variable parameter are employed to boost differential evolution performance. Four well-known benchmark datasets were used to evaluate the algorithm. Moreover, the result is compared with other state of the art automatic clustering methods. The experiment results evidence that AC-FSDE is better or competitive with other existing automatic clustering algorithm.
System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator
2006-08-01
commanded torque to move away from these singularity points. The introduction of this error may not degrade the performance for large slew angle ...trajectory has been generated and quaternion feedback control has been implemented for reference trajectory tracking. The testbed was reasonably well...System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of
A new methodology for automatic detection of reference points in 3D cephalometry: A pilot study.
Ed-Dhahraouy, Mohammed; Riri, Hicham; Ezzahmouly, Manal; Bourzgui, Farid; El Moutaoukkil, Abdelmajid
2018-04-05
The aim of this study was to develop a new method for an automatic detection of reference points in 3D cephalometry to overcome the limits of 2D cephalometric analyses. A specific application was designed using the C++ language for automatic and manual identification of 21 (reference) points on the craniofacial structures. Our algorithm is based on the implementation of an anatomical and geometrical network adapted to the craniofacial structure. This network was constructed based on the anatomical knowledge of the 3D cephalometric (reference) points. The proposed algorithm was tested on five CBCT images. The proposed approach for the automatic 3D cephalometric identification was able to detect 21 points with a mean error of 2.32mm. In this pilot study, we propose an automated methodology for the identification of the 3D cephalometric (reference) points. A larger sample will be implemented in the future to assess the method validity and reliability. Copyright © 2018 CEO. Published by Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Leavens, Claudia; Vik, Torbjørn; Schulz, Heinrich; Allaire, Stéphane; Kim, John; Dawson, Laura; O'Sullivan, Brian; Breen, Stephen; Jaffray, David; Pekar, Vladimir
2008-03-01
Manual contouring of target volumes and organs at risk in radiation therapy is extremely time-consuming, in particular for treating the head-and-neck area, where a single patient treatment plan can take several hours to contour. As radiation treatment delivery moves towards adaptive treatment, the need for more efficient segmentation techniques will increase. We are developing a method for automatic model-based segmentation of the head and neck. This process can be broken down into three main steps: i) automatic landmark identification in the image dataset of interest, ii) automatic landmark-based initialization of deformable surface models to the patient image dataset, and iii) adaptation of the deformable models to the patient-specific anatomical boundaries of interest. In this paper, we focus on the validation of the first step of this method, quantifying the results of our automatic landmark identification method. We use an image atlas formed by applying thin-plate spline (TPS) interpolation to ten atlas datasets, using 27 manually identified landmarks in each atlas/training dataset. The principal variation modes returned by principal component analysis (PCA) of the landmark positions were used by an automatic registration algorithm, which sought the corresponding landmarks in the clinical dataset of interest using a controlled random search algorithm. Applying a run time of 60 seconds to the random search, a root mean square (rms) distance to the ground-truth landmark position of 9.5 +/- 0.6 mm was calculated for the identified landmarks. Automatic segmentation of the brain, mandible and brain stem, using the detected landmarks, is demonstrated.
NASA Astrophysics Data System (ADS)
Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco
2012-04-01
During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.
Aviation Careers Series: Airline Non-Flying Careers
DOT National Transportation Integrated Search
1996-01-01
TRAVLINK demonstrated the use of Automatic Vehicle Location (AVL), ComputerAided dispatch (CAD), and Automatic Vehicle Identification (AVI) systems on Metropolitan Council Transit Operations (MCTO) buses in Minneapolis, Minnesota and western suburbs,...
Jani, Shyam S; Low, Daniel A; Lamb, James M
2015-01-01
To develop an automated system that detects patient identification and positioning errors between 3-dimensional computed tomography (CT) and kilovoltage CT planning images. Planning kilovoltage CT images were collected for head and neck (H&N), pelvis, and spine treatments with corresponding 3-dimensional cone beam CT and megavoltage CT setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. For positioning errors, setup and planning images were misaligned by 1 to 5 cm in the 6 anatomical directions for H&N and pelvis patients. Spinal misalignments were simulated by misaligning to adjacent vertebral bodies. Image pairs were assessed using commonly used image similarity metrics as well as custom-designed metrics. Linear discriminant analysis classification models were trained and tested on the imaging datasets, and misclassification error (MCE), sensitivity, and specificity parameters were estimated using 10-fold cross-validation. For patient identification, our workflow produced MCE estimates of 0.66%, 1.67%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivity and specificity ranged from 97.5% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 95.4% and 97.7%. MCEs for 1-cm H&N/pelvis misalignments were 1.3%/5.1% and 9.1%/8.6% for TomoTherapy and TrueBeam images, respectively. Two-centimeter MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. MCEs for vertebral body misalignments were 4.8% and 3.6% for TomoTherapy and TrueBeam images, respectively. Patient identification and gross misalignment errors can be robustly and automatically detected using 3-dimensional setup images of different energies across 3 commonly treated anatomical sites. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Fast and automatic thermographic material identification for the recycling process
NASA Astrophysics Data System (ADS)
Haferkamp, Heinz; Burmester, Ingo
1998-03-01
Within the framework of the future closed loop recycling process the automatic and economical sorting of plastics is a decisive element. The at the present time available identification and sorting systems are not yet suitable for the sorting of technical plastics since essential demands, as the realization of high recognition reliability and identification rates considering the variety of technical plastics, can not be guaranteed. Therefore the Laser Zentrum Hannover e.V. in cooperation with the Hoerotron GmbH and the Preussag Noell GmbH has carried out investigations on a rapid thermographic and laser-supported material- identification-system for automatic material-sorting- systems. The automatic identification of different engineering plastics coming from electronic or automotive waste is possible. Identification rates up to 10 parts per second are allowed by the effort from fast IR line scanners. The procedure is based on the following principle: within a few milliseconds a spot on the relevant sample is heated by a CO2 laser. The samples different and specific chemical and physical material properties cause different temperature distributions on their surfaces that are measured by a fast IR-linescan system. This 'thermal impulse response' has to be analyzed by means of a computer system. Investigations have shown that it is possible to analyze more than 18 different sorts of plastics at a frequency of 10 Hz. Crucial for the development of such a system is the rapid processing of imaging data, the minimization of interferences caused by oscillating samples geometries, and a wide range of possible additives in plastics in question. One possible application area is sorting of plastics coming from car- and electronic waste recycling.
Hampicke, M; Schadow, B; Rossdeutscher, W; Fellbaum, K; Boenick, U
2002-11-01
Progress in microtechnology and radio transmission technology has enabled the development of highly reliable emergency-call systems. The present article describes systems that have been specially designed to improve the safety and independence of handicapped and elderly persons living at home. For such persons immediate help in an emergency situation is of crucial importance. The technical state of the art of emergency-call systems specially developed for use by the elderly, is briefly discussed, in particular the well-known radio emergency-call button, with the aid of which an alarm can be activated manually. This system, however, does not offer adequate safety in all emergency situations. Alternative or complementary systems designed to automatically trigger an alarm on the basis of the recording and evaluation of so-called vital parameters, are therefore proposed. In addition, in a smart-home environment with networked devices, further parameters--so-called environment parameters can be used. It is found that the identification of an emergency situation becomes more reliable as the number of parameters employed increases.
Automatic tracking of wake vortices using ground-wind sensor data
DOT National Transportation Integrated Search
1977-01-03
Algorithms for automatic tracking of wake vortices using ground-wind anemometer : data are developed. Methods of bad-data suppression, track initiation, and : track termination are included. An effective sensor-failure detection-and identification : ...
Crescent Evaluation : appendix D : crescent computer system components evaluation report
DOT National Transportation Integrated Search
1994-02-01
In 1990, Lockheed Integrated Systems Company (LISC) was awarded a contract, under the Crescent Demonstration Project, to demonstrate the integration of Weigh In Motion (WIM), Automatic Vehicle Classification (AVC) and Automatic Vehicle Identification...
Automatic Molar Extraction from Dental Panoramic Radiographs for Forensic Personal Identification
NASA Astrophysics Data System (ADS)
Samopa, Febriliyan; Asano, Akira; Taguchi, Akira
Measurement of an individual molar provides rich information for forensic personal identification. We propose a computer-based system for extracting an individual molar from dental panoramic radiographs. A molar is obtained by extracting the region-of-interest, separating the maxilla and mandible, and extracting the boundaries between teeth. The proposed system is almost fully automatic; all that the user has to do is clicking three points on the boundary between the maxilla and the mandible.
Automatic source camera identification using the intrinsic lens radial distortion
NASA Astrophysics Data System (ADS)
Choi, Kai San; Lam, Edmund Y.; Wong, Kenneth K. Y.
2006-11-01
Source camera identification refers to the task of matching digital images with the cameras that are responsible for producing these images. This is an important task in image forensics, which in turn is a critical procedure in law enforcement. Unfortunately, few digital cameras are equipped with the capability of producing watermarks for this purpose. In this paper, we demonstrate that it is possible to achieve a high rate of accuracy in the identification by noting the intrinsic lens radial distortion of each camera. To reduce manufacturing cost, the majority of digital cameras are equipped with lenses having rather spherical surfaces, whose inherent radial distortions serve as unique fingerprints in the images. We extract, for each image, parameters from aberration measurements, which are then used to train and test a support vector machine classifier. We conduct extensive experiments to evaluate the success rate of a source camera identification with five cameras. The results show that this is a viable approach with high accuracy. Additionally, we also present results on how the error rates may change with images captured using various optical zoom levels, as zooming is commonly available in digital cameras.
Stable modeling based control methods using a new RBF network.
Beyhan, Selami; Alci, Musa
2010-10-01
This paper presents a novel model with radial basis functions (RBFs), which is applied successively for online stable identification and control of nonlinear discrete-time systems. First, the proposed model is utilized for direct inverse modeling of the plant to generate the control input where it is assumed that inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode control input. Finally, the network is employed to tune PID (proportional + integrative + derivative) controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov stability approach, the boundedness of the tracking errors and the system parameters are shown both theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network and the new model with sigmoid activation functions. To see the real-time capability of the new model, the proposed network is employed for online identification and control of a cascaded parallel two-tank liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates a suitable control input to track the reference signal better than other methods in both simulations and real time. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Recognising discourse causality triggers in the biomedical domain.
Mihăilă, Claudiu; Ananiadou, Sophia
2013-12-01
Current domain-specific information extraction systems represent an important resource for biomedical researchers, who need to process vast amounts of knowledge in a short time. Automatic discourse causality recognition can further reduce their workload by suggesting possible causal connections and aiding in the curation of pathway models. We describe here an approach to the automatic identification of discourse causality triggers in the biomedical domain using machine learning. We create several baselines and experiment with and compare various parameter settings for three algorithms, i.e. Conditional Random Fields (CRF), Support Vector Machines (SVM) and Random Forests (RF). We also evaluate the impact of lexical, syntactic, and semantic features on each of the algorithms, showing that semantics improves the performance in all cases. We test our comprehensive feature set on two corpora containing gold standard annotations of causal relations, and demonstrate the need for more gold standard data. The best performance of 79.35% F-score is achieved by CRFs when using all three feature types.
Port-of-entry advanced sorting system (PASS) operational test
DOT National Transportation Integrated Search
1998-12-01
In 1992 the Oregon Department of Transportation undertook an operational test of the Port-of-Entry Advanced Sorting System (PASS), which uses a two-way communication automatic vehicle identification system, integrated with weigh-in-motion, automatic ...
NASA Astrophysics Data System (ADS)
Chiu, Y.; Nishikawa, T.
2013-12-01
With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.
Ertl, P
1998-02-01
Easy to use, interactive, and platform-independent WWW-based tools are ideal for development of chemical applications. By using the newly emerging Web technologies such as Java applets and sophisticated scripting, it is possible to deliver powerful molecular processing capabilities directly to the desk of synthetic organic chemists. In Novartis Crop Protection in Basel, a Web-based molecular modelling system has been in use since 1995. In this article two new modules of this system are presented: a program for interactive calculation of important hydrophobic, electronic, and steric properties of organic substituents, and a module for substituent similarity searches enabling the identification of bioisosteric functional groups. Various possible applications of calculated substituent parameters are also discussed, including automatic design of molecules with the desired properties and creation of targeted virtual combinatorial libraries.
Verlinden, Christopher M A; Sarkar, J; Cornuelle, B D; Kuperman, W A
2017-02-01
The waveguide invariant (WGI) is a property that can be used to localize acoustic radiators and extract information about the environment. Here the WGI is determined using ships as sources of opportunity, tracked using the Automatic Identification System (AIS). The relationship between range, acoustic intensity, and frequency for a ship in a known position is used to determine the WGI parameter β. These β values are interpolated and a map of β is generated. The method is demonstrated using data collected in a field experiment on a single hydrophone in a shallow water environment off the coast of Southern California.
DeRobertis, Christopher V.; Lu, Yantian T.
2010-02-23
A method, system, and program storage device for creating a new user account or user group with a unique identification number in a computing environment having multiple user registries is provided. In response to receiving a command to create a new user account or user group, an operating system of a clustered computing environment automatically checks multiple registries configured for the operating system to determine whether a candidate identification number for the new user account or user group has been assigned already to one or more existing user accounts or groups, respectively. The operating system automatically assigns the candidate identification number to the new user account or user group created in a target user registry if the checking indicates that the candidate identification number has not been assigned already to any of the existing user accounts or user groups, respectively.
Zeng, Xueqiang; Luo, Gang
2017-12-01
Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.
Improving automatic peptide mass fingerprint protein identification by combining many peak sets.
Rögnvaldsson, Thorsteinn; Häkkinen, Jari; Lindberg, Claes; Marko-Varga, György; Potthast, Frank; Samuelsson, Jim
2004-08-05
An automated peak picking strategy is presented where several peak sets with different signal-to-noise levels are combined to form a more reliable statement on the protein identity. The strategy is compared against both manual peak picking and industry standard automated peak picking on a set of mass spectra obtained after tryptic in gel digestion of 2D-gel samples from human fetal fibroblasts. The set of spectra contain samples ranging from strong to weak spectra, and the proposed multiple-scale method is shown to be much better on weak spectra than the industry standard method and a human operator, and equal in performance to these on strong and medium strong spectra. It is also demonstrated that peak sets selected by a human operator display a considerable variability and that it is impossible to speak of a single "true" peak set for a given spectrum. The described multiple-scale strategy both avoids time-consuming parameter tuning and exceeds the human operator in protein identification efficiency. The strategy therefore promises reliable automated user-independent protein identification using peptide mass fingerprints.
Speaker gender identification based on majority vote classifiers
NASA Astrophysics Data System (ADS)
Mezghani, Eya; Charfeddine, Maha; Nicolas, Henri; Ben Amar, Chokri
2017-03-01
Speaker gender identification is considered among the most important tools in several multimedia applications namely in automatic speech recognition, interactive voice response systems and audio browsing systems. Gender identification systems performance is closely linked to the selected feature set and the employed classification model. Typical techniques are based on selecting the best performing classification method or searching optimum tuning of one classifier parameters through experimentation. In this paper, we consider a relevant and rich set of features involving pitch, MFCCs as well as other temporal and frequency-domain descriptors. Five classification models including decision tree, discriminant analysis, nave Bayes, support vector machine and k-nearest neighbor was experimented. The three best perming classifiers among the five ones will contribute by majority voting between their scores. Experimentations were performed on three different datasets spoken in three languages: English, German and Arabic in order to validate language independency of the proposed scheme. Results confirm that the presented system has reached a satisfying accuracy rate and promising classification performance thanks to the discriminating abilities and diversity of the used features combined with mid-level statistics.
NASA Astrophysics Data System (ADS)
Pace, Paul W.; Sutherland, John
2001-10-01
This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.
The Crescent Project : an evaluation of an element of the HELP Program : executive summary
DOT National Transportation Integrated Search
1994-02-01
The HELP/Crescent Project on the West Coast evaluated the applicability of four technologies for screening transponder-equipped vehicles. The technologies included automatic vehicle identification, weigh-in-motion, automatic vehicle classification, a...
Port-of-entry Advanced Sorting System (PASS) operational test : final report
DOT National Transportation Integrated Search
1998-12-01
In 1992 the Oregon Department of Transportation undertook an operational test of the Port-of-Entry Advanced Sorting System (PASS), which uses a two-way communication automatic vehicle identification system, integrated with weigh-in-motion, automatic ...
Understanding ITS/CVO Technology Applications, Student Manual, Course 3
DOT National Transportation Integrated Search
1999-01-01
WEIGHT-IN-MOTION OR WIM, COMMERCIAL VEHICLE INFORMATION SYSTEMS AND NETWORK OR CVISN, AUTOMATIC VEHICLE IDENTIFICATION OR AVI, AUTOMATIC LOCATION OR AVL, ELECTRONIC DATA INTERCHANGE OR EDI, GLOBAL POSITIONING SYSTEM OR GPS, INTERNET OR WORLD WIDE WEB...
NASA Astrophysics Data System (ADS)
Škoda, Petr; Palička, Andrej; Koza, Jakub; Shakurova, Ksenia
2017-06-01
The current archives of LAMOST multi-object spectrograph contain millions of fully reduced spectra, from which the automatic pipelines have produced catalogues of many parameters of individual objects, including their approximate spectral classification. This is, however, mostly based on the global shape of the whole spectrum and on integral properties of spectra in given bandpasses, namely presence and equivalent width of prominent spectral lines, while for identification of some interesting object types (e.g. Be stars or quasars) the detailed shape of only a few lines is crucial. Here the machine learning is bringing a new methodology capable of improving the reliability of classification of such objects even in boundary cases. We present results of Spark-based semi-supervised machine learning of LAMOST spectra attempting to automatically identify the single and double-peak emission of Hα line typical for Be and B[e] stars. The labelled sample was obtained from archive of 2m Perek telescope at Ondřejov observatory. A simple physical model of spectrograph resolution was used in domain adaptation to LAMOST training domain. The resulting list of candidates contains dozens of Be stars (some are likely yet unknown), but also a bunch of interesting objects resembling spectra of quasars and even blazars, as well as many instrumental artefacts. The verification of a nature of interesting candidates benefited considerably from cross-matching and visualisation in the Virtual Observatory environment.
Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German
2017-01-01
We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897
Astrometrica: Astrometric data reduction of CCD images
NASA Astrophysics Data System (ADS)
Raab, Herbert
2012-03-01
Astrometrica is an interactive software tool for scientific grade astrometric data reduction of CCD images. The current version of the software is for the Windows 32bit operating system family. Astrometrica reads FITS (8, 16 and 32 bit integer files) and SBIG image files. The size of the images is limited only by available memory. It also offers automatic image calibration (Dark Frame and Flat Field correction), automatic reference star identification, automatic moving object detection and identification, and access to new-generation star catalogs (PPMXL, UCAC 3 and CMC-14), in addition to online help and other features. Astrometrica is shareware, available for use for a limited period of time (100 days) for free; special arrangements can be made for educational projects.
Automatic identification of bullet signatures based on consecutive matching striae (CMS) criteria.
Chu, Wei; Thompson, Robert M; Song, John; Vorburger, Theodore V
2013-09-10
The consecutive matching striae (CMS) numeric criteria for firearm and toolmark identifications have been widely accepted by forensic examiners, although there have been questions concerning its observer subjectivity and limited statistical support. In this paper, based on signal processing and extraction, a model for the automatic and objective counting of CMS is proposed. The position and shape information of the striae on the bullet land is represented by a feature profile, which is used for determining the CMS number automatically. Rapid counting of CMS number provides a basis for ballistics correlations with large databases and further statistical and probability analysis. Experimental results in this report using bullets fired from ten consecutively manufactured barrels support this developed model. Published by Elsevier Ireland Ltd.
Experiments in automatic word class and word sense identification for information retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauch, S.; Futrelle, R.P.
Automatic identification of related words and automatic detection of word senses are two long-standing goals of researchers in natural language processing. Word class information and word sense identification may enhance the performance of information retrieval system4ms. Large online corpora and increased computational capabilities make new techniques based on corpus linguisitics feasible. Corpus-based analysis is especially needed for corpora from specialized fields for which no electronic dictionaries or thesauri exist. The methods described here use a combination of mutual information and word context to establish word similarities. Then, unsupervised classification is done using clustering in the word space, identifying word classesmore » without pretagging. We also describe an extension of the method to handle the difficult problems of disambiguation and of determining part-of-speech and semantic information for low-frequency words. The method is powerful enough to produce high-quality results on a small corpus of 200,000 words from abstracts in a field of molecular biology.« less
Boschetti, Lucio; Ottavian, Matteo; Facco, Pierantonio; Barolo, Massimiliano; Serva, Lorenzo; Balzan, Stefania; Novelli, Enrico
2013-11-01
The use of near-infrared spectroscopy (NIRS) is proposed in this study for the characterization of the quality parameters of a smoked and dry-cured meat product known as Bauernspeck (originally from Northern Italy), as well as of some technological traits of the pork carcass used for its manufacturing. In particular, NIRS is shown to successfully estimate several key quality parameters (including water activity, moisture, dry matter, ash and protein content), suggesting its suitability for real time application in replacement of expensive and time consuming chemical analysis. Furthermore, a correlative approach based on canonical correlation analysis was used to investigate the spectral regions that are mostly correlated to the characteristics of interest. The identification of these regions, which can be linked to the absorbance of the main functional chemical groups, is intended to provide a better understanding of the chemical structure of the substrate under investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Meta-Learning Approach for Automatic Parameter Tuning: A Case Study with Educational Datasets
ERIC Educational Resources Information Center
Molina, M. M.; Luna, J. M.; Romero, C.; Ventura, S.
2012-01-01
This paper proposes to the use of a meta-learning approach for automatic parameter tuning of a well-known decision tree algorithm by using past information about algorithm executions. Fourteen educational datasets were analysed using various combinations of parameter values to examine the effects of the parameter values on accuracy classification.…
Preparing a collection of radiology examinations for distribution and retrieval.
Demner-Fushman, Dina; Kohli, Marc D; Rosenman, Marc B; Shooshan, Sonya E; Rodriguez, Laritza; Antani, Sameer; Thoma, George R; McDonald, Clement J
2016-03-01
Clinical documents made available for secondary use play an increasingly important role in discovery of clinical knowledge, development of research methods, and education. An important step in facilitating secondary use of clinical document collections is easy access to descriptions and samples that represent the content of the collections. This paper presents an approach to developing a collection of radiology examinations, including both the images and radiologist narrative reports, and making them publicly available in a searchable database. The authors collected 3996 radiology reports from the Indiana Network for Patient Care and 8121 associated images from the hospitals' picture archiving systems. The images and reports were de-identified automatically and then the automatic de-identification was manually verified. The authors coded the key findings of the reports and empirically assessed the benefits of manual coding on retrieval. The automatic de-identification of the narrative was aggressive and achieved 100% precision at the cost of rendering a few findings uninterpretable. Automatic de-identification of images was not quite as perfect. Images for two of 3996 patients (0.05%) showed protected health information. Manual encoding of findings improved retrieval precision. Stringent de-identification methods can remove all identifiers from text radiology reports. DICOM de-identification of images does not remove all identifying information and needs special attention to images scanned from film. Adding manual coding to the radiologist narrative reports significantly improved relevancy of the retrieved clinical documents. The de-identified Indiana chest X-ray collection is available for searching and downloading from the National Library of Medicine (http://openi.nlm.nih.gov/). Published by Oxford University Press on behalf of the American Medical Informatics Association 2015. This work is written by US Government employees and is in the public domain in the US.
Flow-cytometric identification of vinegars using a multi-parameter analysis optical detection module
NASA Astrophysics Data System (ADS)
Verschooten, T.; Ottevaere, H.; Vervaeke, M.; Van Erps, J.; Callewaert, M.; De Malsche, W.; Thienpont, H.
2015-09-01
We show a proof-of-concept demonstration of a multi-parameter analysis low-cost optical detection system for the flowcytometric identification of vinegars. This multi-parameter analysis system can simultaneously measure laser induced fluorescence, absorption and scattering excited by two time-multiplexed lasers of different wavelengths. To our knowledge no other polymer optofluidic chip based system offers more simultaneous measurements. The design of the optofluidic channels is aimed at countering the effects that viscous fingering, air bubbles, and emulsion samples can have on the correct operation of such a detection system. Unpredictable variations in viscosity and refractive index of the channel content can be turned into a source of information. The sample is excited by two laser diodes that are driven by custom made low-cost laser drivers. The optofluidic chip is built to be robust and easy to handle and is reproducible using hot embossing. We show a custom optomechanical holder for the optofluidic chip that ensures correct alignment and automatic connection to the external fluidic system. We show an experiment in which 92 samples of vinegar are measured. We are able to identify 9 different kinds of vinegar with an accuracy of 94%. Thus we show an alternative approach to the classic optical spectroscopy solution at a lowered. Furthermore, we have shown the possibility of predicting the viscosity and turbidity of vinegars with a goodness-of-fit R2 over 0.947.
Giri, Maria Grazia; Cavedon, Carlo; Mazzarotto, Renzo; Ferdeghini, Marco
2016-05-01
The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10-37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve was determined to automatically generate the optimal parameter from the variance of the ROI. This "calibration curve" was then applied to contour the whole data set. The accuracy (mean discrepancy between DPM model-based contours and reference contours) of volume estimation was below (1 ± 7)% on the whole data set (1 SD). The overlap between true and automatically segmented contours, measured by the Dice similarity coefficient, was 0.93 with a SD of 0.03. The proposed DPM model was able to accurately reproduce known volumes of FDG concentration, with high overlap between segmented and true volumes. For all the analyzed inserts of the IEC phantom, the algorithm proved to be robust to variations in radius and in TBR. The main advantage of this algorithm was that no setting of DPM parameters was required in advance, since the proper setting of the only parameter that could significantly influence the segmentation results was automatically related to the uptake variance of the chosen ROI. Furthermore, the algorithm did not need any preliminary choice of the optimum number of classes to describe the ROIs within PET images and no assumption about the shape of the lesion and the uptake heterogeneity of the tracer was required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giri, Maria Grazia, E-mail: mariagrazia.giri@ospedaleuniverona.it; Cavedon, Carlo; Mazzarotto, Renzo
Purpose: The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on {sup 18}F-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. Methods: The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracymore » was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10–37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Results: Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve was determined to automatically generate the optimal parameter from the variance of the ROI. This “calibration curve” was then applied to contour the whole data set. The accuracy (mean discrepancy between DPM model-based contours and reference contours) of volume estimation was below (1 ± 7)% on the whole data set (1 SD). The overlap between true and automatically segmented contours, measured by the Dice similarity coefficient, was 0.93 with a SD of 0.03. Conclusions: The proposed DPM model was able to accurately reproduce known volumes of FDG concentration, with high overlap between segmented and true volumes. For all the analyzed inserts of the IEC phantom, the algorithm proved to be robust to variations in radius and in TBR. The main advantage of this algorithm was that no setting of DPM parameters was required in advance, since the proper setting of the only parameter that could significantly influence the segmentation results was automatically related to the uptake variance of the chosen ROI. Furthermore, the algorithm did not need any preliminary choice of the optimum number of classes to describe the ROIs within PET images and no assumption about the shape of the lesion and the uptake heterogeneity of the tracer was required.« less
Human Activity Recognition in AAL Environments Using Random Projections.
Damaševičius, Robertas; Vasiljevas, Mindaugas; Šalkevičius, Justas; Woźniak, Marcin
2016-01-01
Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject's body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented.
Human Activity Recognition in AAL Environments Using Random Projections
Damaševičius, Robertas; Vasiljevas, Mindaugas; Šalkevičius, Justas; Woźniak, Marcin
2016-01-01
Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject's body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented. PMID:27413392
NASA Astrophysics Data System (ADS)
Marchetti, E.; Ripepe, M.; Ulivieri, G.; Kogelnig, A.
2015-11-01
Avalanche risk management is strongly related to the ability to identify and timely report the occurrence of snow avalanches. Infrasound has been applied to avalanche research and monitoring for the last 20 years but it never turned into an operational tool to identify clear signals related to avalanches. We present here a method based on the analysis of infrasound signals recorded by a small aperture array in Ischgl (Austria), which provides a significant improvement to overcome this limit. The method is based on array-derived wave parameters, such as back azimuth and apparent velocity. The method defines threshold criteria for automatic avalanche identification by considering avalanches as a moving source of infrasound. We validate the efficiency of the automatic infrasound detection with continuous observations with Doppler radar and we show how the velocity of a snow avalanche in any given path around the array can be efficiently derived. Our results indicate that a proper infrasound array analysis allows a robust, real-time, remote detection of snow avalanches that is able to provide the number and the time of occurrence of snow avalanches occurring all around the array, which represent key information for a proper validation of avalanche forecast models and risk management in a given area.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Mcruer, Duane T.; Magdeleno, Raymond E.
1987-01-01
Nap-Of-the-Earth (NOE) flight in a conventional helicopter is extremely taxing for two pilots under visual conditions. Developing a single pilot all-weather NOE capability will require a fully automatic NOE navigation and flight control capability for which innovative guidance and control concepts were examined. Constrained time-optimality provides a validated criterion for automatically controlled NOE maneuvers if the pilot is to have confidence in the automated maneuvering technique. A second focus was to organize the storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan. A method is presented for using pre-flight geodetic parameter identification to establish guidance commands for planned flight profiles and alternates. A method is then suggested for interpolating this guidance command information with the aid of forward and side looking sensors within the resolution of the stored data base, enriching the data content with real-time display, guidance, and control purposes. A third focus defined a class of automatic anticipative guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles and to address the effects of processing delays in digital guidance and control system candidates. The results of this three-fold research effort offer promising alternatives designed to gain pilot acceptance for automatic guidance and control of rotorcraft in NOE operations.
Ivezic, Nenad; Potok, Thomas E.
2003-09-30
A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.
ITOUGH2(UNIX). Inverse Modeling for TOUGH2 Family of Multiphase Flow Simulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, S.
1999-03-01
ITOUGH2 provides inverse modeling capabilities for the TOUGH2 family of numerical simulators for non-isothermal multiphase flows in fractured-porous media. The ITOUGH2 can be used for estimating parameters by automatic modeling calibration, for sensitivity analyses, and for uncertainity propagation analyses (linear and Monte Carlo simulations). Any input parameter to the TOUGH2 simulator can be estimated based on any type of observation for which a corresponding TOUGH2 output is calculated. ITOUGH2 solves a non-linear least-squares problem using direct or gradient-based minimization algorithms. A detailed residual and error analysis is performed, which includes the evaluation of model identification criteria. ITOUGH2 can also bemore » run in forward mode, solving subsurface flow problems related to nuclear waste isolation, oil, gas, and geothermal resevoir engineering, and vadose zone hydrology.« less
Eccles, B A; Klevecz, R R
1986-06-01
Mitotic frequency in a synchronous culture of mammalian cells was determined fully automatically and in real time using low-intensity phase-contrast microscopy and a newvicon video camera connected to an EyeCom III image processor. Image samples, at a frequency of one per minute for 50 hours, were analyzed by first extracting the high-frequency picture components, then thresholding and probing for annular objects indicative of putative mitotic cells. Both the extraction of high-frequency components and the recognition of rings of varying radii and discontinuities employed novel algorithms. Spatial and temporal relationships between annuli were examined to discern the occurrences of mitoses, and such events were recorded in a computer data file. At present, the automatic analysis is suited for random cell proliferation rate measurements or cell cycle studies. The automatic identification of mitotic cells as described here provides a measure of the average proliferative activity of the cell population as a whole and eliminates more than eight hours of manual review per time-lapse video recording.
NASA Astrophysics Data System (ADS)
Masson, Josiane; Soille, Pierre; Mueller, Rick
2004-10-01
In the context of the Common Agricultural Policy (CAP) there is a strong interest of the European Commission for counting and individually locating fruit trees. An automatic counting algorithm developed by the JRC (OLICOUNT) was used in the past for olive trees only, on 1m black and white orthophotos but with limits in case of young trees or irregular groves. This study investigates the improvement of fruit tree identification using VHR images on a large set of data in three test sites, one in Creta (Greece; one in the south-east of France with a majority of olive trees and associated fruit trees, and the last one in Florida on citrus trees. OLICOUNT was compared with two other automatic tree counting, applications, one using the CRISP software on citrus trees and the other completely automatic based on regional minima (morphological image analysis). Additional investigation was undertaken to refine the methods. This paper describes the automatic methods and presents the results derived from the tests.
Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.
Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo
2016-09-01
In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.
Research into automatic recognition of joints in human symmetrical movements
NASA Astrophysics Data System (ADS)
Fan, Yifang; Li, Zhiyu
2008-03-01
High speed photography is a major means of collecting data from human body movement. It enables the automatic identification of joints, which brings great significance to the research, treatment and recovery of injuries, the analysis to the diagnosis of sport techniques and the ergonomics. According to the features that when the adjacent joints of human body are in planetary motion, their distance remains the same, and according to the human body joint movement laws (such as the territory of the articular anatomy and the kinematic features), a new approach is introduced to process the image thresholding of joints filmed by the high speed camera, to automatically identify the joints and to automatically trace the joint points (by labeling markers at the joints). Based upon the closure of marking points, automatic identification can be achieved through thresholding treatment. Due to the screening frequency and the laws of human segment movement, when the marking points have been initialized, their automatic tracking can be achieved with the progressive sequential images.Then the testing results, the data from three-dimensional force platform and the characteristics that human body segment will only rotate around the closer ending segment when the segment has no boding force and only valid to the conservative force all tell that after being analyzed kinematically, the approach is approved to be valid.
NASA Astrophysics Data System (ADS)
Abdullah, Nurul Azma; Saidi, Md. Jamri; Rahman, Nurul Hidayah Ab; Wen, Chuah Chai; Hamid, Isredza Rahmi A.
2017-10-01
In practice, identification of criminal in Malaysia is done through thumbprint identification. However, this type of identification is constrained as most of criminal nowadays getting cleverer not to leave their thumbprint on the scene. With the advent of security technology, cameras especially CCTV have been installed in many public and private areas to provide surveillance activities. The footage of the CCTV can be used to identify suspects on scene. However, because of limited software developed to automatically detect the similarity between photo in the footage and recorded photo of criminals, the law enforce thumbprint identification. In this paper, an automated facial recognition system for criminal database was proposed using known Principal Component Analysis approach. This system will be able to detect face and recognize face automatically. This will help the law enforcements to detect or recognize suspect of the case if no thumbprint present on the scene. The results show that about 80% of input photo can be matched with the template data.
RFID applications in transportation operation and intelligent transportation systems (ITS).
DOT National Transportation Integrated Search
2009-06-01
Radio frequency identification (RFID) transmits the identity of an object or a person wirelessly. It is grouped under : the broad category of automatic identification technologies with corresponding standards and established protocols. : RFID is suit...
MAC, A System for Automatically IPR Identification, Collection and Distribution
NASA Astrophysics Data System (ADS)
Serrão, Carlos
Controlling Intellectual Property Rights (IPR) in the Digital World is a very hard challenge. The facility to create multiple bit-by-bit identical copies from original IPR works creates the opportunities for digital piracy. One of the most affected industries by this fact is the Music Industry. The Music Industry has supported huge losses during the last few years due to this fact. Moreover, this fact is also affecting the way that music rights collecting and distributing societies are operating to assure a correct music IPR identification, collection and distribution. In this article a system for automating this IPR identification, collection and distribution is presented and described. This system makes usage of advanced automatic audio identification system based on audio fingerprinting technology. This paper will present the details of the system and present a use-case scenario where this system is being used.
Near Real Time Applications for Maritime Situational Awareness
NASA Astrophysics Data System (ADS)
Schwarz, E.; Krause, D.; Berg, M.; Daedelow, H.; Maass, H.
2015-04-01
Applications to derive maritime value added products like oil spill and ship detection based on remote sensing SAR image data are being developed and integrated at the Ground Station Neustrelitz, part of the German Remote Sensing Data Center. Products of meteo-marine parameters like wind and wave will complement the product portfolio. Research and development aim at the implementation of highly automated services for operational use. SAR images are being used because of the possibility to provide maritime products with high spatial resolution over wide swaths and under all weather conditions. In combination with other information like Automatic Identification System (AIS) data fusion products are available to support the Maritime Situational Awareness.
Automated analysis of plethysmograms for functional studies of hemodynamics
NASA Astrophysics Data System (ADS)
Zatrudina, R. Sh.; Isupov, I. B.; Gribkov, V. Yu.
2018-04-01
The most promising method for the quantitative determination of cardiovascular tone indicators and of cerebral hemodynamics indicators is the method of impedance plethysmography. The accurate determination of these indicators requires the correct identification of the characteristic points in the thoracic impedance plethysmogram and the cranial impedance plethysmogram respectively. An algorithm for automatic analysis of these plethysmogram is presented. The algorithm is based on the hard temporal relationships between the phases of the cardiac cycle and the characteristic points of the plethysmogram. The proposed algorithm does not require estimation of initial data and selection of processing parameters. Use of the method on healthy subjects showed a very low detection error of characteristic points.
DOT National Transportation Integrated Search
2014-05-01
Thefederallymandatedmaterialsclearanceprocessrequiresstatetransportation : agenciestosubjectallconstructionfieldsamplestoqualitycontrol/assurancetestingin : ordertopassstandardizedstateinspections....
Soong, David T.; Over, Thomas M.
2015-01-01
Recalibration of the HSPF parameters to the updated inputs and land covers was completed on two representative watershed models selected from the nine by using a manual method (HSPEXP) and an automatic method (PEST). The objective of the recalibration was to develop a regional parameter set that improves the accuracy in runoff volume prediction for the nine study watersheds. Knowledge about flow and watershed characteristics plays a vital role for validating the calibration in both manual and automatic methods. The best performing parameter set was determined by the automatic calibration method on a two-watershed model. Applying this newly determined parameter set to the nine watersheds for runoff volume simulation resulted in “very good” ratings in five watersheds, an improvement as compared to “very good” ratings achieved for three watersheds by the North Branch parameter set.
An automatic system to detect and extract texts in medical images for de-identification
NASA Astrophysics Data System (ADS)
Zhu, Yingxuan; Singh, P. D.; Siddiqui, Khan; Gillam, Michael
2010-03-01
Recently, there is an increasing need to share medical images for research purpose. In order to respect and preserve patient privacy, most of the medical images are de-identified with protected health information (PHI) before research sharing. Since manual de-identification is time-consuming and tedious, so an automatic de-identification system is necessary and helpful for the doctors to remove text from medical images. A lot of papers have been written about algorithms of text detection and extraction, however, little has been applied to de-identification of medical images. Since the de-identification system is designed for end-users, it should be effective, accurate and fast. This paper proposes an automatic system to detect and extract text from medical images for de-identification purposes, while keeping the anatomic structures intact. First, considering the text have a remarkable contrast with the background, a region variance based algorithm is used to detect the text regions. In post processing, geometric constraints are applied to the detected text regions to eliminate over-segmentation, e.g., lines and anatomic structures. After that, a region based level set method is used to extract text from the detected text regions. A GUI for the prototype application of the text detection and extraction system is implemented, which shows that our method can detect most of the text in the images. Experimental results validate that our method can detect and extract text in medical images with a 99% recall rate. Future research of this system includes algorithm improvement, performance evaluation, and computation optimization.
A recurrent self-organizing neural fuzzy inference network.
Juang, C F; Lin, C T
1999-01-01
A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some feedback connections representing the memory elements to a feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has its own meaning and represents a special element in a fuzzy rule. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially in the RSONFIN. They are created on-line via concurrent structure identification (the construction of dynamic fuzzy if-then rules) and parameter identification (the tuning of the free parameters of membership functions). The structure learning together with the parameter learning forms a fast learning algorithm for building a small, yet powerful, dynamic neural fuzzy network. Two major characteristics of the RSONFIN can thus be seen: 1) the recurrent property of the RSONFIN makes it suitable for dealing with temporal problems and 2) no predetermination, like the number of hidden nodes, must be given, since the RSONFIN can find its optimal structure and parameters automatically and quickly. Moreover, to reduce the number of fuzzy rules generated, a flexible input partition method, the aligned clustering-based algorithm, is proposed. Various simulations on temporal problems are done and performance comparisons with some existing recurrent networks are also made. Efficiency of the RSONFIN is verified from these results.
Designing for Feel: Contrasts between Human and Automated Parametric Capture of Knob Physics.
Swindells, C; MacLean, K E; Booth, K S
2009-01-01
We examine a crucial aspect of a tool intended to support designing for feel: the ability of an objective physical-model identification method to capture perceptually relevant parameters, relative to human identification performance. The feel of manual controls, such as knobs, sliders, and buttons, becomes critical when these controls are used in certain settings. Appropriate feel enables designers to create consistent control behaviors that lead to improved usability and safety. For example, a heavy knob with stiff detents for a power plant boiler setting may afford better feedback and safer operations, whereas subtle detents in an automobile radio volume knob may afford improved ergonomics and driver attention to the road. To assess the quality of our identification method, we compared previously reported automated model captures for five real mechanical reference knobs with captures by novice and expert human participants who were asked to adjust four parameters of a rendered knob model to match the feel of each reference knob. Participants indicated their satisfaction with the matches their renderings produced. We observed similar relative inertia, friction, detent strength, and detent spacing parameterizations by human experts and our automatic estimation methods. Qualitative results provided insight on users' strategies and confidence. While experts (but not novices) were better able to ascertain an underlying model in the presence of unmodeled dynamics, the objective algorithm outperformed all humans when an appropriate physical model was used. Our studies demonstrate that automated model identification can capture knob dynamics as perceived by a human, and they also establish limits to that ability; they comprise a step towards pragmatic design guidelines for embedded physical interfaces in which methodological expedience is informed by human perceptual requirements.
The influence of the level formants on the perception of synthetic vowel sounds
NASA Astrophysics Data System (ADS)
Kubzdela, Henryk; Owsianny, Mariuz
A computer model of a generator of periodic complex sounds simulating consonants was developed. The system makes possible independent regulation of the level of each of the formants and instant generation of the sound. A trapezoid approximates the curve of the spectrum within the range of the formant. In using this model, each person in a group of six listeners experimentally selected synthesis parameters for six sounds that to him seemed optimal approximations of Polish consonants. From these, another six sounds were selected that were identified by a majority of the six persons and several additional listeners as being best qualified to serve as prototypes of Polish consonants. These prototypes were then used to randomly create sounds with various combinations at the level of the second and third formant and these were presented to seven listeners for identification. The results of the identifications are presented in table form in three variants and are described from the point of view of the requirements of automatic recognition of consonants in continuous speech.
NASA Astrophysics Data System (ADS)
Uzbaş, Betül; Arslan, Ahmet
2018-04-01
Gender is an important step for human computer interactive processes and identification. Human face image is one of the important sources to determine gender. In the present study, gender classification is performed automatically from facial images. In order to classify gender, we propose a combination of features that have been extracted face, eye and lip regions by using a hybrid method of Local Binary Pattern and Gray-Level Co-Occurrence Matrix. The features have been extracted from automatically obtained face, eye and lip regions. All of the extracted features have been combined and given as input parameters to classification methods (Support Vector Machine, Artificial Neural Networks, Naive Bayes and k-Nearest Neighbor methods) for gender classification. The Nottingham Scan face database that consists of the frontal face images of 100 people (50 male and 50 female) is used for this purpose. As the result of the experimental studies, the highest success rate has been achieved as 98% by using Support Vector Machine. The experimental results illustrate the efficacy of our proposed method.
Methods for Processing and Interpretation of AIS Signals Corrupted by Noise and Packet Collisions
NASA Astrophysics Data System (ADS)
Poļevskis, J.; Krastiņš, M.; Korāts, G.; Skorodumovs, A.; Trokšs, J.
2012-01-01
The authors deal with the operation of Automatic Identification System (AIS) used in the marine traffic monitoring to broadcast messages containing information about the vessel: id, payload, size, speed, destination etc., meant primarily for avoidance of ship collisions. To extend the radius of AIS operation, it is envisaged to dispose its receivers on satellites. However, in space, due to a large coverage area, interfering factors are especially pronounced - such as packet collision, Doppler's shift and noise impact on AIS message receiving, pre-processing and decoding. To assess the quality of an AIS receiver's operation, a test was carried out in which, varying automatically frequency, amplitude, noise, and other parameters, the data on the ability of the receiver's ability to decode AIS signals are collected. In the work, both hardware- and software-based AIS decoders were tested. As a result, quite satisfactory statistics has been gathered - both on the common and the differing features of such decoders when operating in space. To obtain reliable data on the software-defined radio AIS receivers, further research is envisaged.
Image simulation for automatic license plate recognition
NASA Astrophysics Data System (ADS)
Bala, Raja; Zhao, Yonghui; Burry, Aaron; Kozitsky, Vladimir; Fillion, Claude; Saunders, Craig; Rodríguez-Serrano, José
2012-01-01
Automatic license plate recognition (ALPR) is an important capability for traffic surveillance applications, including toll monitoring and detection of different types of traffic violations. ALPR is a multi-stage process comprising plate localization, character segmentation, optical character recognition (OCR), and identification of originating jurisdiction (i.e. state or province). Training of an ALPR system for a new jurisdiction typically involves gathering vast amounts of license plate images and associated ground truth data, followed by iterative tuning and optimization of the ALPR algorithms. The substantial time and effort required to train and optimize the ALPR system can result in excessive operational cost and overhead. In this paper we propose a framework to create an artificial set of license plate images for accelerated training and optimization of ALPR algorithms. The framework comprises two steps: the synthesis of license plate images according to the design and layout for a jurisdiction of interest; and the modeling of imaging transformations and distortions typically encountered in the image capture process. Distortion parameters are estimated by measurements of real plate images. The simulation methodology is successfully demonstrated for training of OCR.
Automatic building identification under bomb damage conditions
NASA Astrophysics Data System (ADS)
Woodley, Robert; Noll, Warren; Barker, Joseph; Wunsch, Donald C., II
2009-05-01
Given the vast amount of image intelligence utilized in support of planning and executing military operations, a passive automated image processing capability for target identification is urgently required. Furthermore, transmitting large image streams from remote locations would quickly use available band width (BW) precipitating the need for processing to occur at the sensor location. This paper addresses the problem of automatic target recognition for battle damage assessment (BDA). We utilize an Adaptive Resonance Theory approach to cluster templates of target buildings. The results show that the network successfully classifies targets from non-targets in a virtual test bed environment.
Parametric identification of the process of preparing ceramic mixture as an object of control
NASA Astrophysics Data System (ADS)
Galitskov, Stanislav; Nazarov, Maxim; Galitskov, Konstantin
2017-10-01
Manufacture of ceramic materials and products largely depends on the preparation of clay raw materials. The main process here is the process of mixing, which in industrial production is mostly done in cross-compound clay mixers of continuous operation with steam humidification. The authors identified features of dynamics of this technological stage, which in itself is a non-linear control object with distributed parameters. When solving practical tasks for automation of a certain class of ceramic materials production it is important to make parametric identification of moving clay. In this paper the task is solved with the use of computational models, approximated to a particular section of a clay mixer along its length. The research introduces a methodology of computational experiments as applied to the designed computational model. Parametric identification of dynamic links was carried out according to transient characteristics. The experiments showed that the control object in question is to a great extent a non-stationary one. The obtained results are problematically oriented on synthesizing a multidimensional automatic control system for preparation of ceramic mixture with specified values of humidity and temperature exposed to the technological process of major disturbances.
Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form
NASA Astrophysics Data System (ADS)
Denis, V.; Jossic, M.; Giraud-Audine, C.; Chomette, B.; Renault, A.; Thomas, O.
2018-06-01
In this article, we address the model identification of nonlinear vibratory systems, with a specific focus on systems modeled with distributed nonlinearities, such as geometrically nonlinear mechanical structures. The proposed strategy theoretically relies on the concept of nonlinear modes of the underlying conservative unforced system and the use of normal forms. Within this framework, it is shown that without internal resonance, a valid reduced order model for a nonlinear mode is a single Duffing oscillator. We then propose an efficient experimental strategy to measure the backbone curve of a particular nonlinear mode and we use it to identify the free parameters of the reduced order model. The experimental part relies on a Phase-Locked Loop (PLL) and enables a robust and automatic measurement of backbone curves as well as forced responses. It is theoretically and experimentally shown that the PLL is able to stabilize the unstable part of Duffing-like frequency responses, thus enabling its robust experimental measurement. Finally, the whole procedure is tested on three experimental systems: a circular plate, a chinese gong and a piezoelectric cantilever beam. It enable to validate the procedure by comparison to available theoretical models as well as to other experimental identification methods.
Adaptive pseudolinear compensators of dynamic characteristics of automatic control systems
NASA Astrophysics Data System (ADS)
Skorospeshkin, M. V.; Sukhodoev, M. S.; Timoshenko, E. A.; Lenskiy, F. V.
2016-04-01
Adaptive pseudolinear gain and phase compensators of dynamic characteristics of automatic control systems are suggested. The automatic control system performance with adaptive compensators has been explored. The efficiency of pseudolinear adaptive compensators in the automatic control systems with time-varying parameters has been demonstrated.
Automatic Determination of the Conic Coronal Mass Ejection Model Parameters
NASA Technical Reports Server (NTRS)
Pulkkinen, A.; Oates, T.; Taktakishvili, A.
2009-01-01
Characterization of the three-dimensional structure of solar transients using incomplete plane of sky data is a difficult problem whose solutions have potential for societal benefit in terms of space weather applications. In this paper transients are characterized in three dimensions by means of conic coronal mass ejection (CME) approximation. A novel method for the automatic determination of cone model parameters from observed halo CMEs is introduced. The method uses both standard image processing techniques to extract the CME mass from white-light coronagraph images and a novel inversion routine providing the final cone parameters. A bootstrap technique is used to provide model parameter distributions. When combined with heliospheric modeling, the cone model parameter distributions will provide direct means for ensemble predictions of transient propagation in the heliosphere. An initial validation of the automatic method is carried by comparison to manually determined cone model parameters. It is shown using 14 halo CME events that there is reasonable agreement, especially between the heliocentric locations of the cones derived with the two methods. It is argued that both the heliocentric locations and the opening half-angles of the automatically determined cones may be more realistic than those obtained from the manual analysis
Skeletonization of Gridded Potential-Field Images
NASA Astrophysics Data System (ADS)
Gao, L.; Morozov, I. B.
2012-12-01
A new approach to skeletonization was developed for gridded potential-field data. Generally, skeletonization is a pattern-recognition technique allowing automatic recognition of near-linear features in the images, measurement of their parameters, and analyzing them for similarities. Our approach decomposes the images into arbitrarily-oriented "wavelets" characterized by positive or negative amplitudes, orientation angles, spatial dimensions, polarities, and other attributes. Orientations of the wavelets are obtained by scanning the azimuths to detect the strike direction of each anomaly. The wavelets are connected according to the similarities of these attributes, which leads to a "skeleton" map of the potential-field data. In addition, 2-D filtering is conducted concurrently with the wavelet-identification process, which allows extracting parameters of background trends and reduces the adverse effects of low-frequency background (which is often strong in potential-field maps) on skeletonization.. By correlating the neighboring wavelets, linear anomalies are identified and characterized. The advantages of this algorithm are the generality and isotropy of feature detection, as well as being specifically designed for gridded data. With several options for background-trend extraction, the stability for identification of lineaments is improved and optimized. The algorithm is also integrated in a powerful processing system which allows combining it with numerous other tools, such as filtering, computation of analytical signal, empirical mode decomposition, and various types of plotting. The method is applied to potential-field data for the Western Canada Sedimentary Basin, in a study area which extends from southern Saskatchewan into southwestern Manitoba. The target is the structure of crystalline basement beneath Phanerozoic sediments. The examples illustrate that skeletonization aid in the interpretation of complex structures at different scale lengths. The results indicate that this method is useful for identifying structures in complex geophysical images and for automatic extraction of their attributes as well as for quantitative characterization and analysis of potential-field images. Skeletonized potential-field images should also be useful for inversion.
Investigation of an automatic trim algorithm for restructurable aircraft control
NASA Technical Reports Server (NTRS)
Weiss, J.; Eterno, J.; Grunberg, D.; Looze, D.; Ostroff, A.
1986-01-01
This paper develops and solves an automatic trim problem for restructurable aircraft control. The trim solution is applied as a feed-forward control to reject measurable disturbances following control element failures. Disturbance rejection and command following performances are recovered through the automatic feedback control redesign procedure described by Looze et al. (1985). For this project the existence of a failure detection mechanism is assumed, and methods to cope with potential detection and identification inaccuracies are addressed.
Automatically Generated Vegetation Density Maps with LiDAR Survey for Orienteering Purpose
NASA Astrophysics Data System (ADS)
Petrovič, Dušan
2018-05-01
The focus of our research was to automatically generate the most adequate vegetation density maps for orienteering purpose. Application Karttapullatuin was used for automated generation of vegetation density maps, which requires LiDAR data to process an automatically generated map. A part of the orienteering map in the area of Kazlje-Tomaj was used to compare the graphical display of vegetation density. With different settings of parameters in the Karttapullautin application we changed the way how vegetation density of automatically generated map was presented, and tried to match it as much as possible with the orienteering map of Kazlje-Tomaj. Comparing more created maps of vegetation density the most suitable parameter settings to automatically generate maps on other areas were proposed, too.
Automatic Identification and Organization of Index Terms for Interactive Browsing.
ERIC Educational Resources Information Center
Wacholder, Nina; Evans, David K.; Klavans, Judith L.
The potential of automatically generated indexes for information access has been recognized for several decades, but the quantity of text and the ambiguity of natural language processing have made progress at this task more difficult than was originally foreseen. Recently, a body of work on development of interactive systems to support phrase…
2014-01-01
Background Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. Results The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input–output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on average 15% of the mean values over the succeeding parameter sets. Conclusions Our results indicate that the presented approach is effective for comparing model alternatives and reducing models to the minimum complexity replicating measured data. We therefore believe that this approach has significant potential for reparameterising existing frameworks, for identification of redundant model components of large biophysical models and to increase their predictive capacity. PMID:24886522
Zhou, Yanli; Faber, Tracy L.; Patel, Zenic; Folks, Russell D.; Cheung, Alice A.; Garcia, Ernest V.; Soman, Prem; Li, Dianfu; Cao, Kejiang; Chen, Ji
2013-01-01
Objective Left ventricular (LV) function and dyssynchrony parameters measured from serial gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using blinded processing had a poorer repeatability than when manual side-by-side processing was used. The objective of this study was to validate whether an automatic alignment tool can reduce the variability of LV function and dyssynchrony parameters in serial gated SPECT MPI. Methods Thirty patients who had undergone serial gated SPECT MPI were prospectively enrolled in this study. Thirty minutes after the first acquisition, each patient was repositioned and a gated SPECT MPI image was reacquired. The two data sets were first processed blinded from each other by the same technologist in different weeks. These processed data were then realigned by the automatic tool, and manual side-by-side processing was carried out. All processing methods used standard iterative reconstruction and Butterworth filtering. The Emory Cardiac Toolbox was used to measure the LV function and dyssynchrony parameters. Results The automatic tool failed in one patient, who had a large, severe scar in the inferobasal wall. In the remaining 29 patients, the repeatability of the LV function and dyssynchrony parameters after automatic alignment was significantly improved from blinded processing and was comparable to manual side-by-side processing. Conclusion The automatic alignment tool can be an alternative method to manual side-by-side processing to improve the repeatability of LV function and dyssynchrony measurements by serial gated SPECT MPI. PMID:23211996
Heinrich, Andreas; Güttler, Felix; Wendt, Sebastian; Schenkl, Sebastian; Hubig, Michael; Wagner, Rebecca; Mall, Gita; Teichgräber, Ulf
2018-06-18
In forensic odontology the comparison between antemortem and postmortem panoramic radiographs (PRs) is a reliable method for person identification. The purpose of this study was to improve and automate identification of unknown people by comparison between antemortem and postmortem PR using computer vision. The study includes 43 467 PRs from 24 545 patients (46 % females/54 % males). All PRs were filtered and evaluated with Matlab R2014b including the toolboxes image processing and computer vision system. The matching process used the SURF feature to find the corresponding points between two PRs (unknown person and database entry) out of the whole database. From 40 randomly selected persons, 34 persons (85 %) could be reliably identified by corresponding PR matching points between an already existing scan in the database and the most recent PR. The systematic matching yielded a maximum of 259 points for a successful identification between two different PRs of the same person and a maximum of 12 corresponding matching points for other non-identical persons in the database. Hence 12 matching points are the threshold for reliable assignment. Operating with an automatic PR system and computer vision could be a successful and reliable tool for identification purposes. The applied method distinguishes itself by virtue of its fast and reliable identification of persons by PR. This Identification method is suitable even if dental characteristics were removed or added in the past. The system seems to be robust for large amounts of data. · Computer vision allows an automated antemortem and postmortem comparison of panoramic radiographs (PRs) for person identification.. · The present method is able to find identical matching partners among huge datasets (big data) in a short computing time.. · The identification method is suitable even if dental characteristics were removed or added.. · Heinrich A, Güttler F, Wendt S et al. Forensic Odontology: Automatic Identification of Persons Comparing Antemortem and Postmortem Panoramic Radiographs Using Computer Vision. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0632-4744. © Georg Thieme Verlag KG Stuttgart · New York.
Cohen, Aaron M
2008-01-01
We participated in the i2b2 smoking status classification challenge task. The purpose of this task was to evaluate the ability of systems to automatically identify patient smoking status from discharge summaries. Our submission included several techniques that we compared and studied, including hot-spot identification, zero-vector filtering, inverse class frequency weighting, error-correcting output codes, and post-processing rules. We evaluated our approaches using the same methods as the i2b2 task organizers, using micro- and macro-averaged F1 as the primary performance metric. Our best performing system achieved a micro-F1 of 0.9000 on the test collection, equivalent to the best performing system submitted to the i2b2 challenge. Hot-spot identification, zero-vector filtering, classifier weighting, and error correcting output coding contributed additively to increased performance, with hot-spot identification having by far the largest positive effect. High performance on automatic identification of patient smoking status from discharge summaries is achievable with the efficient and straightforward machine learning techniques studied here.
Natural language processing of spoken diet records (SDRs).
Lacson, Ronilda; Long, William
2006-01-01
Dietary assessment is a fundamental aspect of nutritional evaluation that is essential for management of obesity as well as for assessing dietary impact on chronic diseases. Various methods have been used for dietary assessment including written records, 24-hour recalls, and food frequency questionnaires. The use of mobile phones to provide real-time dietary records provides potential advantages for accessibility, ease of use and automated documentation. However, understanding even a perfect transcript of spoken dietary records (SDRs) is challenging for people. This work presents a first step towards automatic analysis of SDRs. Our approach consists of four steps - identification of food items, identification of food quantifiers, classification of food quantifiers and temporal annotation. Our method enables automatic extraction of dietary information from SDRs, which in turn allows automated mapping to a Diet History Questionnaire dietary database. Our model has an accuracy of 90%. This work demonstrates the feasibility of automatically processing SDRs.
Automatic identification of artifacts in electrodermal activity data.
Taylor, Sara; Jaques, Natasha; Chen, Weixuan; Fedor, Szymon; Sano, Akane; Picard, Rosalind
2015-01-01
Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method for detecting artifacts. This paper describes the development of a machine learning algorithm for automatically detecting EDA artifacts, and provides an empirical evaluation of classification performance. We have encoded our results into a freely available web-based tool for artifact and peak detection.
Management of natural resources through automatic cartographic inventory
NASA Technical Reports Server (NTRS)
Rey, P.; Gourinard, Y.; Cambou, F. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Significant results of the ARNICA program from August 1972 - January 1973 have been: (1) establishment of image to object correspondence codes for all types of soil use and forestry in northern Spain; (2) establishment of a transfer procedure between qualitative (remote identification and remote interpretation) and quantitative (numerization, storage, automatic statistical cartography) use of images; (3) organization of microdensitometric data processing and automatic cartography software; and (4) development of a system for measuring reflectance simultaneous with imagery.
Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon
2018-04-30
Cell types of erythrocytes should be identified because they are closely related to their functionality and viability. Conventional methods for classifying erythrocytes are time consuming and labor intensive. Therefore, an automatic and accurate erythrocyte classification system is indispensable in healthcare and biomedical fields. In this study, we proposed a new label-free sensor for automatic identification of erythrocyte cell types using a digital in-line holographic microscopy (DIHM) combined with machine learning algorithms. A total of 12 features, including information on intensity distributions, morphological descriptors, and optical focusing characteristics, is quantitatively obtained from numerically reconstructed holographic images. All individual features for discocytes, echinocytes, and spherocytes are statistically different. To improve the performance of cell type identification, we adopted several machine learning algorithms, such as decision tree model, support vector machine, linear discriminant classification, and k-nearest neighbor classification. With the aid of these machine learning algorithms, the extracted features are effectively utilized to distinguish erythrocytes. Among the four tested algorithms, the decision tree model exhibits the best identification performance for the training sets (n = 440, 98.18%) and test sets (n = 190, 97.37%). This proposed methodology, which smartly combined DIHM and machine learning, would be helpful for sensing abnormal erythrocytes and computer-aided diagnosis of hematological diseases in clinic. Copyright © 2017 Elsevier B.V. All rights reserved.
48 CFR 252.211-7003 - Item identification and valuation.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., used to retrieve data encoded on machine-readable media. Concatenated unique item identifier means— (1... (or controlling) authority for the enterprise identifier. Item means a single hardware article or a...-readable means an automatic identification technology media, such as bar codes, contact memory buttons...
48 CFR 252.211-7003 - Item identification and valuation.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., used to retrieve data encoded on machine-readable media. Concatenated unique item identifier means— (1... (or controlling) authority for the enterprise identifier. Item means a single hardware article or a...-readable means an automatic identification technology media, such as bar codes, contact memory buttons...
48 CFR 252.211-7003 - Item identification and valuation.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., used to retrieve data encoded on machine-readable media. Concatenated unique item identifier means— (1... (or controlling) authority for the enterprise identifier. Item means a single hardware article or a...-readable means an automatic identification technology media, such as bar codes, contact memory buttons...
ADMAP (automatic data manipulation program)
NASA Technical Reports Server (NTRS)
Mann, F. I.
1971-01-01
Instructions are presented on the use of ADMAP, (automatic data manipulation program) an aerospace data manipulation computer program. The program was developed to aid in processing, reducing, plotting, and publishing electric propulsion trajectory data generated by the low thrust optimization program, HILTOP. The program has the option of generating SC4020 electric plots, and therefore requires the SC4020 routines to be available at excution time (even if not used). Several general routines are present, including a cubic spline interpolation routine, electric plotter dash line drawing routine, and single parameter and double parameter sorting routines. Many routines are tailored for the manipulation and plotting of electric propulsion data, including an automatic scale selection routine, an automatic curve labelling routine, and an automatic graph titling routine. Data are accepted from either punched cards or magnetic tape.
Automatic Adviser on Mobile Objects Status Identification and Classification
NASA Astrophysics Data System (ADS)
Shabelnikov, A. N.; Liabakh, N. N.; Gibner, Ya M.; Saryan, A. S.
2018-05-01
A mobile object status identification task is defined within the image discrimination theory. It is proposed to classify objects into three classes: object operation status; its maintenance is required and object should be removed from the production process. Two methods were developed to construct the separating boundaries between the designated classes: a) using statistical information on the research objects executed movement, b) basing on regulatory documents and expert commentary. Automatic Adviser operation simulation and the operation results analysis complex were synthesized. Research results are commented using a specific example of cuts rolling from the hump yard. The work was supported by Russian Fundamental Research Fund, project No. 17-20-01040.
Automatic vasculature identification in coronary angiograms by adaptive geometrical tracking.
Xiao, Ruoxiu; Yang, Jian; Goyal, Mahima; Liu, Yue; Wang, Yongtian
2013-01-01
As the uneven distribution of contrast agents and the perspective projection principle of X-ray, the vasculatures in angiographic image are with low contrast and are generally superposed with other organic tissues; therefore, it is very difficult to identify the vasculature and quantitatively estimate the blood flow directly from angiographic images. In this paper, we propose a fully automatic algorithm named adaptive geometrical vessel tracking (AGVT) for coronary artery identification in X-ray angiograms. Initially, the ridge enhancement (RE) image is obtained utilizing multiscale Hessian information. Then, automatic initialization procedures including seed points detection, and initial directions determination are performed on the RE image. The extracted ridge points can be adjusted to the geometrical centerline points adaptively through diameter estimation. Bifurcations are identified by discriminating connecting relationship of the tracked ridge points. Finally, all the tracked centerlines are merged and smoothed by classifying the connecting components on the vascular structures. Synthetic angiographic images and clinical angiograms are used to evaluate the performance of the proposed algorithm. The proposed algorithm is compared with other two vascular tracking techniques in terms of the efficiency and accuracy, which demonstrate successful applications of the proposed segmentation and extraction scheme in vasculature identification.
NASA Astrophysics Data System (ADS)
Wang, Bei; Sugi, Takenao; Wang, Xingyu; Nakamura, Masatoshi
Data for human sleep study may be affected by internal and external influences. The recorded sleep data contains complex and stochastic factors, which increase the difficulties for the computerized sleep stage determination techniques to be applied for clinical practice. The aim of this study is to develop an automatic sleep stage determination system which is optimized for variable sleep data. The main methodology includes two modules: expert knowledge database construction and automatic sleep stage determination. Visual inspection by a qualified clinician is utilized to obtain the probability density function of parameters during the learning process of expert knowledge database construction. Parameter selection is introduced in order to make the algorithm flexible. Automatic sleep stage determination is manipulated based on conditional probability. The result showed close agreement comparing with the visual inspection by clinician. The developed system can meet the customized requirements in hospitals and institutions.
An algorithm for automatic parameter adjustment for brain extraction in BrainSuite
NASA Astrophysics Data System (ADS)
Rajagopal, Gautham; Joshi, Anand A.; Leahy, Richard M.
2017-02-01
Brain Extraction (classification of brain and non-brain tissue) of MRI brain images is a crucial pre-processing step necessary for imaging-based anatomical studies of the human brain. Several automated methods and software tools are available for performing this task, but differences in MR image parameters (pulse sequence, resolution) and instrumentand subject-dependent noise and artefacts affect the performance of these automated methods. We describe and evaluate a method that automatically adapts the default parameters of the Brain Surface Extraction (BSE) algorithm to optimize a cost function chosen to reflect accurate brain extraction. BSE uses a combination of anisotropic filtering, Marr-Hildreth edge detection, and binary morphology for brain extraction. Our algorithm automatically adapts four parameters associated with these steps to maximize the brain surface area to volume ratio. We evaluate the method on a total of 109 brain volumes with ground truth brain masks generated by an expert user. A quantitative evaluation of the performance of the proposed algorithm showed an improvement in the mean (s.d.) Dice coefficient from 0.8969 (0.0376) for default parameters to 0.9509 (0.0504) for the optimized case. These results indicate that automatic parameter optimization can result in significant improvements in definition of the brain mask.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF SPECIFIC MODELS OF AUTOMATIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) GENERAL SPECIFICATION DATA, (2) OPTIONS FOR VARIOUS APPLICATIONS, (3) ROAD TEST INSTRUCTIONS, (4) IDENTIFICATION AND SPECIFICATION DATA, (5) ALLISON…
Automatic Method of Pause Measurement for Normal and Dysarthric Speech
ERIC Educational Resources Information Center
Rosen, Kristin; Murdoch, Bruce; Folker, Joanne; Vogel, Adam; Cahill, Louise; Delatycki, Martin; Corben, Louise
2010-01-01
This study proposes an automatic method for the detection of pauses and identification of pause types in conversational speech for the purpose of measuring the effects of Friedreich's Ataxia (FRDA) on speech. Speech samples of [approximately] 3 minutes were recorded from 13 speakers with FRDA and 18 healthy controls. Pauses were measured from the…
FAMA: An automatic code for stellar parameter and abundance determination
NASA Astrophysics Data System (ADS)
Magrini, Laura; Randich, Sofia; Friel, Eileen; Spina, Lorenzo; Jacobson, Heather; Cantat-Gaudin, Tristan; Donati, Paolo; Baglioni, Roberto; Maiorca, Enrico; Bragaglia, Angela; Sordo, Rosanna; Vallenari, Antonella
2013-10-01
Context. The large amount of spectra obtained during the epoch of extensive spectroscopic surveys of Galactic stars needs the development of automatic procedures to derive their atmospheric parameters and individual element abundances. Aims: Starting from the widely-used code MOOG by C. Sneden, we have developed a new procedure to determine atmospheric parameters and abundances in a fully automatic way. The code FAMA (Fast Automatic MOOG Analysis) is presented describing its approach to derive atmospheric stellar parameters and element abundances. The code, freely distributed, is written in Perl and can be used on different platforms. Methods: The aim of FAMA is to render the computation of the atmospheric parameters and abundances of a large number of stars using measurements of equivalent widths (EWs) as automatic and as independent of any subjective approach as possible. It is based on the simultaneous search for three equilibria: excitation equilibrium, ionization balance, and the relationship between log n(Fe i) and the reduced EWs. FAMA also evaluates the statistical errors on individual element abundances and errors due to the uncertainties in the stellar parameters. The convergence criteria are not fixed "a priori" but are based on the quality of the spectra. Results: In this paper we present tests performed on the solar spectrum EWs that assess the method's dependency on the initial parameters and we analyze a sample of stars observed in Galactic open and globular clusters. The current version of FAMA is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A38
Code of Federal Regulations, 2010 CFR
2010-04-01
... reports with appropriate statistical methodology in accordance with § 820.100. (c) Each manufacturer who... chapter shall automatically consider the report a complaint and shall process it in accordance with the... device serviced; (2) Any device identification(s) and control number(s) used; (3) The date of service; (4...
48 CFR 252.211-7003 - Item unique identification and valuation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... reader or interrogator, used to retrieve data encoded on machine-readable media. Concatenated unique item... identifier. Item means a single hardware article or a single unit formed by a grouping of subassemblies... manufactured under identical conditions. Machine-readable means an automatic identification technology media...
Uav-Based Automatic Tree Growth Measurement for Biomass Estimation
NASA Astrophysics Data System (ADS)
Karpina, M.; Jarząbek-Rychard, M.; Tymków, P.; Borkowski, A.
2016-06-01
Manual in-situ measurements of geometric tree parameters for the biomass volume estimation are time-consuming and economically non-effective. Photogrammetric techniques can be deployed in order to automate the measurement procedure. The purpose of the presented work is an automatic tree growth estimation based on Unmanned Aircraft Vehicle (UAV) imagery. The experiment was conducted in an agriculture test field with scots pine canopies. The data was collected using a Leica Aibotix X6V2 platform equipped with a Nikon D800 camera. Reference geometric parameters of selected sample plants were measured manually each week. In situ measurements were correlated with the UAV data acquisition. The correlation aimed at the investigation of optimal conditions for a flight and parameter settings for image acquisition. The collected images are processed in a state of the art tool resulting in a generation of dense 3D point clouds. The algorithm is developed in order to estimate geometric tree parameters from 3D points. Stem positions and tree tops are identified automatically in a cross section, followed by the calculation of tree heights. The automatically derived height values are compared to the reference measurements performed manually. The comparison allows for the evaluation of automatic growth estimation process. The accuracy achieved using UAV photogrammetry for tree heights estimation is about 5cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod
Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less
SOMBI: Bayesian identification of parameter relations in unstructured cosmological data
NASA Astrophysics Data System (ADS)
Frank, Philipp; Jasche, Jens; Enßlin, Torsten A.
2016-11-01
This work describes the implementation and application of a correlation determination method based on self organizing maps and Bayesian inference (SOMBI). SOMBI aims to automatically identify relations between different observed parameters in unstructured cosmological or astrophysical surveys by automatically identifying data clusters in high-dimensional datasets via the self organizing map neural network algorithm. Parameter relations are then revealed by means of a Bayesian inference within respective identified data clusters. Specifically such relations are assumed to be parametrized as a polynomial of unknown order. The Bayesian approach results in a posterior probability distribution function for respective polynomial coefficients. To decide which polynomial order suffices to describe correlation structures in data, we include a method for model selection, the Bayesian information criterion, to the analysis. The performance of the SOMBI algorithm is tested with mock data. As illustration we also provide applications of our method to cosmological data. In particular, we present results of a correlation analysis between galaxy and active galactic nucleus (AGN) properties provided by the SDSS catalog with the cosmic large-scale-structure (LSS). The results indicate that the combined galaxy and LSS dataset indeed is clustered into several sub-samples of data with different average properties (for example different stellar masses or web-type classifications). The majority of data clusters appear to have a similar correlation structure between galaxy properties and the LSS. In particular we revealed a positive and linear dependency between the stellar mass, the absolute magnitude and the color of a galaxy with the corresponding cosmic density field. A remaining subset of data shows inverted correlations, which might be an artifact of non-linear redshift distortions.
Data dependent systems approach to modal analysis Part 1: Theory
NASA Astrophysics Data System (ADS)
Pandit, S. M.; Mehta, N. P.
1988-05-01
The concept of Data Dependent Systems (DDS) and its applicability in the context of modal vibration analysis is presented. The ability of the DDS difference equation models to provide a complete representation of a linear dynamic system from its sampled response data forms the basis of the approach. The models are decomposed into deterministic and stochastic components so that system characteristics are isolated from noise effects. The modelling strategy is outlined, and the method of analysis associated with modal parameter identification is described in detail. Advantages and special features of the DDS methodology are discussed. Since the correlated noise is appropriately and automatically modelled by the DDS, the modal parameters are shown to be estimated very accurately and hence no preprocessing of the data is needed. Complex mode shapes and non-classical damping are as easily analyzed as the classical normal mode analysis. These features are illustrated by using simulated data in this Part I and real data on a disc-brake rotor in Part II.
Array magnetics modal analysis for the DIII-D tokamak based on localized time-series modelling
Olofsson, K. Erik J.; Hanson, Jeremy M.; Shiraki, Daisuke; ...
2014-07-14
Here, time-series analysis of magnetics data in tokamaks is typically done using block-based fast Fourier transform methods. This work presents the development and deployment of a new set of algorithms for magnetic probe array analysis. The method is based on an estimation technique known as stochastic subspace identification (SSI). Compared with the standard coherence approach or the direct singular value decomposition approach, the new technique exhibits several beneficial properties. For example, the SSI method does not require that frequencies are orthogonal with respect to the timeframe used in the analysis. Frequencies are obtained directly as parameters of localized time-series models.more » The parameters are extracted by solving small-scale eigenvalue problems. Applications include maximum-likelihood regularized eigenmode pattern estimation, detection of neoclassical tearing modes, including locked mode precursors, and automatic clustering of modes, and magnetics-pattern characterization of sawtooth pre- and postcursors, edge harmonic oscillations and fishbones.« less
Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.
Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2010-11-01
Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.
Zu, Qin; Zhang, Shui-fa; Cao, Yang; Zhao, Hui-yi; Dang, Chang-qing
2015-02-01
Weeds automatic identification is the key technique and also the bottleneck for implementation of variable spraying and precision pesticide. Therefore, accurate, rapid and non-destructive automatic identification of weeds has become a very important research direction for precision agriculture. Hyperspectral imaging system was used to capture the hyperspectral images of cabbage seedlings and five kinds of weeds such as pigweed, barnyard grass, goosegrass, crabgrass and setaria with the wavelength ranging from 1000 to 2500 nm. In ENVI, by utilizing the MNF rotation to implement the noise reduction and de-correlation of hyperspectral data and reduce the band dimensions from 256 to 11, and extracting the region of interest to get the spectral library as standard spectra, finally, using the SAM taxonomy to identify cabbages and weeds, the classification effect was good when the spectral angle threshold was set as 0. 1 radians. In HSI Analyzer, after selecting the training pixels to obtain the standard spectrum, the SAM taxonomy was used to distinguish weeds from cabbages. Furthermore, in order to measure the recognition accuracy of weeds quantificationally, the statistical data of the weeds and non-weeds were obtained by comparing the SAM classification image with the best classification effects to the manual classification image. The experimental results demonstrated that, when the parameters were set as 5-point smoothing, 0-order derivative and 7-degree spectral angle, the best classification result was acquired and the recognition rate of weeds, non-weeds and overall samples was 80%, 97.3% and 96.8% respectively. The method that combined the spectral imaging technology and the SAM taxonomy together took full advantage of fusion information of spectrum and image. By applying the spatial classification algorithms to establishing training sets for spectral identification, checking the similarity among spectral vectors in the pixel level, integrating the advantages of spectra and images meanwhile considering their accuracy and rapidity and improving weeds detection range in the full range that could detect weeds between and within crop rows, the above method contributes relevant analysis tools and means to the application field requiring the accurate information of plants in agricultural precision management
Online automatic tuning and control for fed-batch cultivation
van Straten, Gerrit; van der Pol, Leo A.; van Boxtel, Anton J. B.
2007-01-01
Performance of controllers applied in biotechnological production is often below expectation. Online automatic tuning has the capability to improve control performance by adjusting control parameters. This work presents automatic tuning approaches for model reference specific growth rate control during fed-batch cultivation. The approaches are direct methods that use the error between observed specific growth rate and its set point; systematic perturbations of the cultivation are not necessary. Two automatic tuning methods proved to be efficient, in which the adaptation rate is based on a combination of the error, squared error and integral error. These methods are relatively simple and robust against disturbances, parameter uncertainties, and initialization errors. Application of the specific growth rate controller yields a stable system. The controller and automatic tuning methods are qualified by simulations and laboratory experiments with Bordetella pertussis. PMID:18157554
78 FR 63159 - Amendment to Certification of Nebraska's Central Filing System
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... system for Nebraska to permit the conversion of all debtor social security and taxpayer identification... automatically convert social security numbers and taxpayer identification numbers into ten number unique... certified central filing systems is available through the Internet on the GIPSA Web site ( http://www.gipsa...
Semi-automated identification of leopard frogs
Petrovska-Delacrétaz, Dijana; Edwards, Aaron; Chiasson, John; Chollet, Gérard; Pilliod, David S.
2014-01-01
Principal component analysis is used to implement a semi-automatic recognition system to identify recaptured northern leopard frogs (Lithobates pipiens). Results of both open set and closed set experiments are given. The presented algorithm is shown to provide accurate identification of 209 individual leopard frogs from a total set of 1386 images.
33 CFR 169.235 - What exemptions are there from reporting?
Code of Federal Regulations, 2012 CFR
2012-07-01
... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.235 What exemptions are there from reporting? A ship is exempt from this subpart if it is— (a) Fitted with an operating automatic identification system (AIS), under 33 CFR...
33 CFR 164.46 - Automatic Identification System (AIS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... (AIS). 164.46 Section 164.46 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Identification System (AIS). (a) The following vessels must have a properly installed, operational, type approved AIS as of the date specified: (1) Self-propelled vessels of 65 feet or more in length, other than...
33 CFR 169.235 - What exemptions are there from reporting?
Code of Federal Regulations, 2011 CFR
2011-07-01
... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.235 What exemptions are there from reporting? A ship is exempt from this subpart if it is— (a) Fitted with an operating automatic identification system (AIS), under 33 CFR...
33 CFR 164.46 - Automatic Identification System (AIS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... (AIS). 164.46 Section 164.46 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Identification System (AIS). (a) The following vessels must have a properly installed, operational, type approved AIS as of the date specified: (1) Self-propelled vessels of 65 feet or more in length, other than...
33 CFR 164.46 - Automatic Identification System (AIS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... (AIS). 164.46 Section 164.46 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Identification System (AIS). (a) The following vessels must have a properly installed, operational, type approved AIS as of the date specified: (1) Self-propelled vessels of 65 feet or more in length, other than...
33 CFR 169.235 - What exemptions are there from reporting?
Code of Federal Regulations, 2013 CFR
2013-07-01
... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.235 What exemptions are there from reporting? A ship is exempt from this subpart if it is— (a) Fitted with an operating automatic identification system (AIS), under 33 CFR...
33 CFR 164.46 - Automatic Identification System (AIS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... (AIS). 164.46 Section 164.46 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Identification System (AIS). (a) The following vessels must have a properly installed, operational, type approved AIS as of the date specified: (1) Self-propelled vessels of 65 feet or more in length, other than...
33 CFR 169.235 - What exemptions are there from reporting?
Code of Federal Regulations, 2014 CFR
2014-07-01
... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.235 What exemptions are there from reporting? A ship is exempt from this subpart if it is— (a) Fitted with an operating automatic identification system (AIS), under 33 CFR...
33 CFR 164.46 - Automatic Identification System (AIS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... (AIS). 164.46 Section 164.46 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Identification System (AIS). (a) The following vessels must have a properly installed, operational, type approved AIS as of the date specified: (1) Self-propelled vessels of 65 feet or more in length, other than...
Report: Unsupervised identification of malaria parasites using computer vision.
Khan, Najeed Ahmed; Pervaz, Hassan; Latif, Arsalan; Musharaff, Ayesha
2017-01-01
Malaria in human is a serious and fatal tropical disease. This disease results from Anopheles mosquitoes that are infected by Plasmodium species. The clinical diagnosis of malaria based on the history, symptoms and clinical findings must always be confirmed by laboratory diagnosis. Laboratory diagnosis of malaria involves identification of malaria parasite or its antigen / products in the blood of the patient. Manual diagnosis of malaria parasite by the pathologists has proven to become cumbersome. Therefore, there is a need of automatic, efficient and accurate identification of malaria parasite. In this paper, we proposed a computer vision based approach to identify the malaria parasite from light microscopy images. This research deals with the challenges involved in the automatic detection of malaria parasite tissues. Our proposed method is based on the pixel-based approach. We used K-means clustering (unsupervised approach) for the segmentation to identify malaria parasite tissues.
Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich
2005-10-01
We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.
NASA Astrophysics Data System (ADS)
Lasaponara, Rosa; Masini, Nicola
2018-06-01
The identification and quantification of disturbance of archaeological sites has been generally approached by visual inspection of optical aerial or satellite pictures. In this paper, we briefly summarize the state of the art of the traditionally satellite-based approaches for looting identification and propose a new automatic method for archaeological looting feature extraction approach (ALFEA). It is based on three steps: the enhancement using spatial autocorrelation, unsupervised classification, and segmentation. ALFEA has been applied to Google Earth images of two test areas, selected in desert environs in Syria (Dura Europos), and in Peru (Cahuachi-Nasca). The reliability of ALFEA was assessed through field surveys in Peru and visual inspection for the Syrian case study. Results from the evaluation procedure showed satisfactory performance from both of the two analysed test cases with a rate of success higher than 90%.
FAMA: Fast Automatic MOOG Analysis
NASA Astrophysics Data System (ADS)
Magrini, Laura; Randich, Sofia; Friel, Eileen; Spina, Lorenzo; Jacobson, Heather; Cantat-Gaudin, Tristan; Donati, Paolo; Baglioni, Roberto; Maiorca, Enrico; Bragaglia, Angela; Sordo, Rosanna; Vallenari, Antonella
2014-02-01
FAMA (Fast Automatic MOOG Analysis), written in Perl, computes the atmospheric parameters and abundances of a large number of stars using measurements of equivalent widths (EWs) automatically and independently of any subjective approach. Based on the widely-used MOOG code, it simultaneously searches for three equilibria, excitation equilibrium, ionization balance, and the relationship between logn(FeI) and the reduced EWs. FAMA also evaluates the statistical errors on individual element abundances and errors due to the uncertainties in the stellar parameters. Convergence criteria are not fixed "a priori" but instead are based on the quality of the spectra.
Automatic photointerpretation for plant species and stress identification (ERTS-A1)
NASA Technical Reports Server (NTRS)
Swanlund, G. D. (Principal Investigator); Kirvida, L.; Johnson, G. R.
1973-01-01
The author has identified the following significant results. Automatic stratification of forested land from ERTS-1 data provides a valuable tool for resource management. The results are useful for wood product yield estimates, recreation and wildlife management, forest inventory, and forest condition monitoring. Automatic procedures based on both multispectral and spatial features are evaluated. With five classes, training and testing on the same samples, classification accuracy of 74 percent was achieved using the MSS multispectral features. When adding texture computed from 8 x 8 arrays, classification accuracy of 90 percent was obtained.
NASA Astrophysics Data System (ADS)
Broersen, Tom; Peters, Ravi; Ledoux, Hugo
2017-09-01
Drainage networks play a crucial role in protecting land against floods. It is therefore important to have an accurate map of the watercourses that form the drainage network. Previous work on the automatic identification of watercourses was typically based on grids, focused on natural landscapes, and used mostly the slope and curvature of the terrain. We focus in this paper on areas that are characterised by low-lying, flat, and engineered landscapes; these are characteristic to the Netherlands for instance. We propose a new methodology to identify watercourses automatically from elevation data, it uses solely a raw classified LiDAR point cloud as input. We show that by computing twice a skeleton of the point cloud-once in 2D and once in 3D-and that by using the properties of the skeletons we can identify most of the watercourses. We have implemented our methodology and tested it for three different soil types around Utrecht, the Netherlands. We were able to detect 98% of the watercourses for one soil type, and around 75% for the worst case, when we compared to a reference dataset that was obtained semi-automatically.
Robust uncertainty evaluation for system identification on distributed wireless platforms
NASA Astrophysics Data System (ADS)
Crinière, Antoine; Döhler, Michael; Le Cam, Vincent; Mevel, Laurent
2016-04-01
Health monitoring of civil structures by system identification procedures from automatic control is now accepted as a valid approach. These methods provide frequencies and modeshapes from the structure over time. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. The underlying algorithms are usually running under Matlab under the assumption of large memory pool and considerable computational power. Even under these premises, computational and memory usage are heavy and not realistic for being embedded in on-site sensor platforms such as the PEGASE platform. Moreover, the current push for distributed wireless systems calls for algorithmic adaptation for lowering data exchanges and maximizing local processing. Finally, the recent breakthrough in system identification allows us to process both frequency information and its related uncertainty together from one and only one data sequence, at the expense of computational and memory explosion that require even more careful attention than before. The current approach will focus on presenting a system identification procedure called multi-setup subspace identification that allows to process both frequencies and their related variances from a set of interconnected wireless systems with all computation running locally within the limited memory pool of each system before being merged on a host supervisor. Careful attention will be given to data exchanges and I/O satisfying OGC standards, as well as minimizing memory footprints and maximizing computational efficiency. Those systems are built in a way of autonomous operations on field and could be later included in a wide distributed architecture such as the Cloud2SM project. The usefulness of these strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References [1] E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. [2] M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. [3] M.Döhler, L. Mevel. Modular subspace-based system identification from multi-setup measurements. IEEE Transactions on Automatic Control, 57(11):2951-2956, 2012. [4] M. Döhler, X.-B. Lam, and L. Mevel. Uncertainty quantification for modal parameters from stochastic subspace identification on multi-setup measurements. MechanicalSystems and Signal Processing, 36(2):562-581, 2013. [5] A Crinière, J Dumoulin, L Mevel, G Andrade-Barosso, M Simonin. The Cloud2SM Project.European Geosciences Union General Assembly (EGU2015), Apr 2015, Vienne, Austria. 2015.
Automatic contact in DYNA3D for vehicle crashworthiness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whirley, R.G.; Engelmann, B.E.
1993-07-15
This paper presents a new formulation for the automatic definition and treatment of mechanical contact in explicit nonlinear finite element analysis. Automatic contact offers the benefits of significantly reduced model construction time and fewer opportunities for user error, but faces significant challenges in reliability and computational costs. This paper discusses in detail a new four-step automatic contact algorithm. Key aspects of the proposed method include automatic identification of adjacent and opposite surfaces in the global search phase, and the use of a smoothly varying surface normal which allows a consistent treatment of shell intersection and corner contact conditions without ad-hocmore » rules. The paper concludes with three examples which illustrate the performance of the newly proposed algorithm in the public DYNA3D code.« less
Zhang, Shufang; Sun, Xiaowen
2018-01-01
This paper investigates the Additional Secondary Phase Factor (ASF) characteristics of Automatic Identification System (AIS) signals spreading over a rough sea surface. According to the change of the ASFs for AIS signals in different signal form, the influences of the different propagation conditions on the ASFs are analyzed. The expression, numerical calculation, and simulation analysis of the ASFs of AIS signal are performed in the rough sea surface. The results contribute to the high-accuracy propagation delay measurement of AIS signals spreading over the rough sea surface as, well as providing a reference for reliable communication link design in marine engineering for Very High Frequency (VHF) signals. PMID:29462995
NASA Astrophysics Data System (ADS)
Rulaningtyas, Riries; Suksmono, Andriyan B.; Mengko, Tati L. R.; Saptawati, Putri
2015-04-01
Sputum smear observation has an important role in tuberculosis (TB) disease diagnosis, because it needs accurate identification to avoid high errors diagnosis. In development countries, sputum smear slide observation is commonly done with conventional light microscope from Ziehl-Neelsen stained tissue and it doesn't need high cost to maintain the microscope. The clinicians do manual screening process for sputum smear slide which is time consuming and needs highly training to detect the presence of TB bacilli (mycobacterium tuberculosis) accurately, especially for negative slide and slide with less number of TB bacilli. For helping the clinicians, we propose automatic scanning microscope with automatic identification of TB bacilli. The designed system modified the field movement of light microscope with stepper motor which was controlled by microcontroller. Every sputum smear field was captured by camera. After that some image processing techniques were done for the sputum smear images. The color threshold was used for background subtraction with hue canal in HSV color space. Sobel edge detection algorithm was used for TB bacilli image segmentation. We used feature extraction based on shape for bacilli analyzing and then neural network classified TB bacilli or not. The results indicated identification of TB bacilli that we have done worked well and detected TB bacilli accurately in sputum smear slide with normal staining, but not worked well in over staining and less staining tissue slide. However, overall the designed system can help the clinicians in sputum smear observation becomes more easily.
eFurniture for home-based frailty detection using artificial neural networks and wireless sensors.
Chang, Yu-Chuan; Lin, Chung-Chih; Lin, Pei-Hsin; Chen, Chun-Chang; Lee, Ren-Guey; Huang, Jing-Siang; Tsai, Tsai-Hsuan
2013-02-01
The purpose of this study is to integrate wireless sensor technologies and artificial neural networks to develop a system to manage personal frailty information automatically. The system consists of five parts: (1) an eScale to measure the subject's reaction time; (2) an eChair to detect slowness in movement, weakness and weight loss; (3) an ePad to measure the subject's balancing ability; (4) an eReach to measure body extension; and (5) a Home-based Information Gateway, which collects all the data and predicts the subject's frailty. Using a furniture-based measuring device to provide home-based measurement means that health checks are not confined to health institutions. We designed two experiments to obtain optimum frailty prediction model and test overall system performance: (1) We developed a three-step process to adjust different parameters to obtain an optimized neural identification network whose parameters include initialization, L.R. dec and L.R. inc. The post-process identification rate increased from 77.85% to 83.22%. (2) We used 149 cases to evaluate the sensitivity and specificity of our frailty prediction algorithm. The sensitivity and specificity of this system are 79.71% and 86.25% respectively. These results show that our system is a high specificity prediction tool that can be used to assess frailty. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Automatic poisson peak harvesting for high throughput protein identification.
Breen, E J; Hopwood, F G; Williams, K L; Wilkins, M R
2000-06-01
High throughput identification of proteins by peptide mass fingerprinting requires an efficient means of picking peaks from mass spectra. Here, we report the development of a peak harvester to automatically pick monoisotopic peaks from spectra generated on matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) mass spectrometers. The peak harvester uses advanced mathematical morphology and watershed algorithms to first process spectra to stick representations. Subsequently, Poisson modelling is applied to determine which peak in an isotopically resolved group represents the monoisotopic mass of a peptide. We illustrate the features of the peak harvester with mass spectra of standard peptides, digests of gel-separated bovine serum albumin, and with Escherictia coli proteins prepared by two-dimensional polyacrylamide gel electrophoresis. In all cases, the peak harvester proved effective in its ability to pick similar monoisotopic peaks as an experienced human operator, and also proved effective in the identification of monoisotopic masses in cases where isotopic distributions of peptides were overlapping. The peak harvester can be operated in an interactive mode, or can be completely automated and linked through to peptide mass fingerprinting protein identification tools to achieve high throughput automated protein identification.
Höink, Anna Janina; Schülke, Christoph; Koch, Raphael; Löhnert, Annika; Kammerer, Sara; Fortkamp, Rasmus; Heindel, Walter; Buerke, Boris
2017-11-01
Purpose To compare measurement precision and interobserver variability in the evaluation of hepatocellular carcinoma (HCC) and liver metastases in MSCT before and after transarterial local ablative therapies. Materials and Methods Retrospective study of 72 patients with malignant liver lesions (42 metastases; 30 HCCs) before and after therapy (43 SIRT procedures; 29 TACE procedures). Established (LAD; SAD; WHO) and vitality-based parameters (mRECIST; mLAD; mSAD; EASL) were assessed manually and semi-automatically by two readers. The relative interobserver difference (RID) and intraclass correlation coefficient (ICC) were calculated. Results The median RID for vitality-based parameters was lower from semi-automatic than from manual measurement of mLAD (manual 12.5 %; semi-automatic 3.4 %), mSAD (manual 12.7 %; semi-automatic 5.7 %) and EASL (manual 10.4 %; semi-automatic 1.8 %). The difference in established parameters was not statistically noticeable (p > 0.05). The ICCs of LAD (manual 0.984; semi-automatic 0.982), SAD (manual 0.975; semi-automatic 0.958) and WHO (manual 0.984; semi-automatic 0.978) are high, both in manual and semi-automatic measurements. The ICCs of manual measurements of mLAD (0.897), mSAD (0.844) and EASL (0.875) are lower. This decrease cannot be found in semi-automatic measurements of mLAD (0.997), mSAD (0.992) and EASL (0.998). Conclusion Vitality-based tumor measurements of HCC and metastases after transarterial local therapies should be performed semi-automatically due to greater measurement precision, thus increasing the reproducibility and in turn the reliability of therapeutic decisions. Key points · Liver lesion measurements according to EASL and mRECIST are more precise when performed semi-automatically.. · The higher reproducibility may facilitate a more reliable classification of therapy response.. · Measurements according to RECIST and WHO offer equivalent precision semi-automatically and manually.. Citation Format · Höink AJ, Schülke C, Koch R et al. Response Evaluation of Malignant Liver Lesions After TACE/SIRT: Comparison of Manual and Semi-Automatic Measurement of Different Response Criteria in Multislice CT. Fortschr Röntgenstr 2017; 189: 1067 - 1075. © Georg Thieme Verlag KG Stuttgart · New York.
An automatic method to detect and track the glottal gap from high speed videoendoscopic images.
Andrade-Miranda, Gustavo; Godino-Llorente, Juan I; Moro-Velázquez, Laureano; Gómez-García, Jorge Andrés
2015-10-29
The image-based analysis of the vocal folds vibration plays an important role in the diagnosis of voice disorders. The analysis is based not only on the direct observation of the video sequences, but also in an objective characterization of the phonation process by means of features extracted from the recorded images. However, such analysis is based on a previous accurate identification of the glottal gap, which is the most challenging step for a further automatic assessment of the vocal folds vibration. In this work, a complete framework to automatically segment and track the glottal area (or glottal gap) is proposed. The algorithm identifies a region of interest that is adapted along time, and combine active contours and watershed transform for the final delineation of the glottis and also an automatic procedure for synthesize different videokymograms is proposed. Thanks to the ROI implementation, our technique is robust to the camera shifting and also the objective test proved the effectiveness and performance of the approach in the most challenging scenarios that it is when exist an inappropriate closure of the vocal folds. The novelties of the proposed algorithm relies on the used of temporal information for identify an adaptive ROI and the use of watershed merging combined with active contours for the glottis delimitation. Additionally, an automatic procedure for synthesize multiline VKG by the identification of the glottal main axis is developed.
Hajimani, Elmira; Ruano, M G; Ruano, A E
2017-07-01
This paper presents a Radial Basis Functions Neural Network (RBFNN) based detection system, for automatic identification of Cerebral Vascular Accidents (CVA) through analysis of Computed Tomographic (CT) images. For the design of a neural network classifier, a Multi Objective Genetic Algorithm (MOGA) framework is used to determine the architecture of the classifier, its corresponding parameters and input features by maximizing the classification precision, while ensuring generalization. This approach considers a large number of input features, comprising first and second order pixel intensity statistics, as well as symmetry/asymmetry information with respect to the ideal mid-sagittal line. Values of specificity of 98% and sensitivity of 98% were obtained, at pixel level, by an ensemble of non-dominated models generated by MOGA, in a set of 150 CT slices (1,867,602pixels), marked by a NeuroRadiologist. This approach also compares favorably at a lesion level with three other published solutions, in terms of specificity (86% compared with 84%), degree of coincidence of marked lesions (89% compared with 77%) and classification accuracy rate (96% compared with 88%). Copyright © 2017. Published by Elsevier B.V.
Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis
NASA Astrophysics Data System (ADS)
Liu, Chanjuan; van Netten, Jaap J.; van Baal, Jeff G.; Bus, Sicco A.; van der Heijden, Ferdi
2015-02-01
Early identification of diabetic foot complications and their precursors is essential in preventing their devastating consequences, such as foot infection and amputation. Frequent, automatic risk assessment by an intelligent telemedicine system might be feasible and cost effective. Infrared thermography is a promising modality for such a system. The temperature differences between corresponding areas on contralateral feet are the clinically significant parameters. This asymmetric analysis is hindered by (1) foot segmentation errors, especially when the foot temperature and the ambient temperature are comparable, and by (2) different shapes and sizes between contralateral feet due to deformities or minor amputations. To circumvent the first problem, we used a color image and a thermal image acquired synchronously. Foot regions, detected in the color image, were rigidly registered to the thermal image. This resulted in 97.8%±1.1% sensitivity and 98.4%±0.5% specificity over 76 high-risk diabetic patients with manual annotation as a reference. Nonrigid landmark-based registration with B-splines solved the second problem. Corresponding points in the two feet could be found regardless of the shapes and sizes of the feet. With that, the temperature difference of the left and right feet could be obtained.
Velupillai, Sumithra; Dalianis, Hercules; Hassel, Martin; Nilsson, Gunnar H
2009-12-01
Electronic patient records (EPRs) contain a large amount of information written in free text. This information is considered very valuable for research but is also very sensitive since the free text parts may contain information that could reveal the identity of a patient. Therefore, methods for de-identifying EPRs are needed. The work presented here aims to perform a manual and automatic Protected Health Information (PHI)-annotation trial for EPRs written in Swedish. This study consists of two main parts: the initial creation of a manually PHI-annotated gold standard, and the porting and evaluation of an existing de-identification software written for American English to Swedish in a preliminary automatic de-identification trial. Results are measured with precision, recall and F-measure. This study reports fairly high Inter-Annotator Agreement (IAA) results on the manually created gold standard, especially for specific tags such as names. The average IAA over all tags was 0.65 F-measure (0.84 F-measure highest pairwise agreement). For name tags the average IAA was 0.80 F-measure (0.91 F-measure highest pairwise agreement). Porting a de-identification software written for American English to Swedish directly was unfortunately non-trivial, yielding poor results. Developing gold standard sets as well as automatic systems for de-identification tasks in Swedish is feasible. However, discussions and definitions on identifiable information is needed, as well as further developments both on the tag sets and the annotation guidelines, in order to get a reliable gold standard. A completely new de-identification software needs to be developed.
NASA Astrophysics Data System (ADS)
Gao, M.; Li, J.
2018-04-01
Geometric correction is an important preprocessing process in the application of GF4 PMS image. The method of geometric correction that is based on the manual selection of geometric control points is time-consuming and laborious. The more common method, based on a reference image, is automatic image registration. This method involves several steps and parameters. For the multi-spectral sensor GF4 PMS, it is necessary for us to identify the best combination of parameters and steps. This study mainly focuses on the following issues: necessity of Rational Polynomial Coefficients (RPC) correction before automatic registration, base band in the automatic registration and configuration of GF4 PMS spatial resolution.
Expert Knowledge-Based Automatic Sleep Stage Determination by Multi-Valued Decision Making Method
NASA Astrophysics Data System (ADS)
Wang, Bei; Sugi, Takenao; Kawana, Fusae; Wang, Xingyu; Nakamura, Masatoshi
In this study, an expert knowledge-based automatic sleep stage determination system working on a multi-valued decision making method is developed. Visual inspection by a qualified clinician is adopted to obtain the expert knowledge database. The expert knowledge database consists of probability density functions of parameters for various sleep stages. Sleep stages are determined automatically according to the conditional probability. Totally, four subjects were participated. The automatic sleep stage determination results showed close agreements with the visual inspection on sleep stages of awake, REM (rapid eye movement), light sleep and deep sleep. The constructed expert knowledge database reflects the distributions of characteristic parameters which can be adaptive to variable sleep data in hospitals. The developed automatic determination technique based on expert knowledge of visual inspection can be an assistant tool enabling further inspection of sleep disorder cases for clinical practice.
Automatic topics segmentation for TV news video
NASA Astrophysics Data System (ADS)
Hmayda, Mounira; Ejbali, Ridha; Zaied, Mourad
2017-03-01
Automatic identification of television programs in the TV stream is an important task for operating archives. This article proposes a new spatio-temporal approach to identify the programs in TV stream into two main steps: First, a reference catalogue for video features visual jingles built. We operate the features that characterize the instances of the same program type to identify the different types of programs in the flow of television. The role of video features is to represent the visual invariants for each visual jingle using appropriate automatic descriptors for each television program. On the other hand, programs in television streams are identified by examining the similarity of the video signal for visual grammars in the catalogue. The main idea of the identification process is to compare the visual similarity of the video signal features in the flow of television to the catalogue. After presenting the proposed approach, the paper overviews encouraging experimental results on several streams extracted from different channels and compounds of several programs.
CTG Analyzer: A graphical user interface for cardiotocography.
Sbrollini, Agnese; Agostinelli, Angela; Burattini, Luca; Morettini, Micaela; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura
2017-07-01
Cardiotocography (CTG) is the most commonly used test for establishing the good health of the fetus during pregnancy and labor. CTG consists in the recording of fetal heart rate (FHR; bpm) and maternal uterine contractions (UC; mmHg). FHR is characterized by baseline, baseline variability, tachycardia, bradycardia, acceleration and decelerations. Instead, UC signal is characterized by presence of contractions and contractions period. Such parameters are usually evaluated by visual inspection. However, visual analysis of CTG recordings has a well-demonstrated poor reproducibility, due to the complexity of physiological phenomena affecting fetal heart rhythm and being related to clinician's experience. Computerized tools in support of clinicians represents a possible solution for improving correctness in CTG interpretation. This paper proposes CTG Analyzer as a graphical tool for automatic and objective analysis of CTG tracings. CTG Analyzer was developed under MATLAB®; it is a very intuitive and user friendly graphical user interface. FHR time series and UC signal are represented one under the other, on a grid with reference lines, as usually done for CTG reports printed on paper. Colors help identification of FHR and UC features. Automatic analysis is based on some unchangeable features definitions provided by the FIGO guidelines, and other arbitrary settings whose default values can be changed by the user. Eventually, CTG Analyzer provides a report file listing all the quantitative results of the analysis. Thus, CTG Analyzer represents a potentially useful graphical tool for automatic and objective analysis of CTG tracings.
NASA Astrophysics Data System (ADS)
Ometto, Giovanni; Calivá, Francesco; Al-Diri, Bashir; Bek, Toke; Hunter, Andrew
2016-03-01
Automatic, quick and reliable identification of retinal landmarks from fundus photography is key for measurements used in research, diagnosis, screening and treating of common diseases affecting the eyes. This study presents a fast method for the detection of the centre of mass of the vascular arcades, optic nerve head (ONH) and fovea, used in the definition of five clinically relevant areas in use for screening programmes for diabetic retinopathy (DR). Thirty-eight fundus photographs showing 7203 DR lesions were analysed to find the landmarks manually by two retina-experts and automatically by the proposed method. The automatic identification of the ONH and fovea were performed using template matching based on normalised cross correlation. The centre of mass of the arcades was obtained by fitting an ellipse on sample coordinates of the main vessels. The coordinates were obtained by processing the image with hessian filtering followed by shape analyses and finally sampling the results. The regions obtained manually and automatically were used to count the retinal lesions falling within, and to evaluate the method. 92.7% of the lesions were falling within the same regions based on the landmarks selected by the two experts. 91.7% and 89.0% were counted in the same areas identified by the method and the first and second expert respectively. The inter-repeatability of the proposed method and the experts is comparable, while the 100% intra-repeatability makes the algorithm a valuable tool in tasks like analyses in real-time, of large datasets and of intra-patient variability.
6 CFR 37.19 - Machine readable technology on the driver's license or identification card.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., States must use the ISO/IEC 15438:2006(E) Information Technology—Automatic identification and data... 6 Domestic Security 1 2011-01-01 2011-01-01 false Machine readable technology on the driver's..., Verification, and Card Issuance Requirements § 37.19 Machine readable technology on the driver's license or...
6 CFR 37.19 - Machine readable technology on the driver's license or identification card.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., States must use the ISO/IEC 15438:2006(E) Information Technology—Automatic identification and data... 6 Domestic Security 1 2010-01-01 2010-01-01 false Machine readable technology on the driver's..., Verification, and Card Issuance Requirements § 37.19 Machine readable technology on the driver's license or...
Caller I.D. and ANI: The Technology and the Controversy.
ERIC Educational Resources Information Center
Bertot, John C.
1992-01-01
Examines telephone caller identification (caller-I.D.) and Automatic Number Identification (ANI) technology and discusses policy and privacy issues at the state and federal levels of government. A comparative analysis of state caller-I.D. adoption policies is presented, caller-I.D. blocking is discussed, costs are reported, and legal aspects of…
Vieira, Manuel; Fonseca, Paulo J; Amorim, M Clara P; Teixeira, Carlos J C
2015-12-01
The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types.
Automated Dispersion and Orientation Analysis for Carbon Nanotube Reinforced Polymer Composites
Gao, Yi; Li, Zhuo; Lin, Ziyin; Zhu, Liangjia; Tannenbaum, Allen; Bouix, Sylvain; Wong, C.P.
2012-01-01
The properties of carbon nanotube (CNT)/polymer composites are strongly dependent on the dispersion and orientation of CNTs in the host matrix. Quantification of the dispersion and orientation of CNTs by microstructure observation and image analysis has been demonstrated as a useful way to understand the structure-property relationship of CNT/polymer composites. However, due to the various morphologies and large amount of CNTs in one image, automatic and accurate identification of CNTs has become the bottleneck for dispersion/orientation analysis. To solve this problem, shape identification is performed for each pixel in the filler identification step, so that individual CNT can be exacted from images automatically. The improved filler identification enables more accurate analysis of CNT dispersion and orientation. The obtained dispersion index and orientation index of both synthetic and real images from model compounds correspond well with the observations. Moreover, these indices help to explain the electrical properties of CNT/Silicone composite, which is used as a model compound. This method can also be extended to other polymer composites with high aspect ratio fillers. PMID:23060008
Hybrid neuro-fuzzy approach for automatic vehicle license plate recognition
NASA Astrophysics Data System (ADS)
Lee, Hsi-Chieh; Jong, Chung-Shi
1998-03-01
Most currently available vehicle identification systems use techniques such as R.F., microwave, or infrared to help identifying the vehicle. Transponders are usually installed in the vehicle in order to transmit the corresponding information to the sensory system. It is considered expensive to install a transponder in each vehicle and the malfunction of the transponder will result in the failure of the vehicle identification system. In this study, novel hybrid approach is proposed for automatic vehicle license plate recognition. A system prototype is built which can be used independently or cooperating with current vehicle identification system in identifying a vehicle. The prototype consists of four major modules including the module for license plate region identification, the module for character extraction from the license plate, the module for character recognition, and the module for the SimNet neuro-fuzzy system. To test the performance of the proposed system, three hundred and eighty vehicle image samples are taken by a digital camera. The license plate recognition success rate of the prototype is approximately 91% while the character recognition success rate of the prototype is approximately 97%.
Caboche, Ségolène; Audebert, Christophe; Hot, David
2014-01-01
The recent progresses of high-throughput sequencing (HTS) technologies enable easy and cost-reduced access to whole genome sequencing (WGS) or re-sequencing. HTS associated with adapted, automatic and fast bioinformatics solutions for sequencing applications promises an accurate and timely identification and characterization of pathogenic agents. Many studies have demonstrated that data obtained from HTS analysis have allowed genome-based diagnosis, which has been consistent with phenotypic observations. These proofs of concept are probably the first steps toward the future of clinical microbiology. From concept to routine use, many parameters need to be considered to promote HTS as a powerful tool to help physicians and clinicians in microbiological investigations. This review highlights the milestones to be completed toward this purpose. PMID:25437800
Orion Burn Management, Nominal and Response to Failures
NASA Technical Reports Server (NTRS)
Odegard, Ryan; Goodman, John L.; Barrett, Charles P.; Pohlkamp, Kara; Robinson, Shane
2016-01-01
An approach for managing Orion on-orbit burn execution is described for nominal and failure response scenarios. The burn management strategy for Orion takes into account per-burn variations in targeting, timing, and execution; crew and ground operator intervention and overrides; defined burn failure triggers and responses; and corresponding on-board software sequencing functionality. Burn-to- burn variations are managed through the identification of specific parameters that may be updated for each progressive burn. Failure triggers and automatic responses during the burn timeframe are defined to provide safety for the crew in the case of vehicle failures, along with override capabilities to ensure operational control of the vehicle. On-board sequencing software provides the timeline coordination for performing the required activities related to targeting, burn execution, and responding to burn failures.
NASA Astrophysics Data System (ADS)
Patanè, Domenico; Ferrari, Ferruccio; Giampiccolo, Elisabetta; Gresta, Stefano
Few automated data acquisition and processing systems operate on mainframes, some run on UNIX-based workstations and others on personal computers, equipped with either DOS/WINDOWS or UNIX-derived operating systems. Several large and complex software packages for automatic and interactive analysis of seismic data have been developed in recent years (mainly for UNIX-based systems). Some of these programs use a variety of artificial intelligence techniques. The first operational version of a new software package, named PC-Seism, for analyzing seismic data from a local network is presented in Patanè et al. (1999). This package, composed of three separate modules, provides an example of a new generation of visual object-oriented programs for interactive and automatic seismic data-processing running on a personal computer. In this work, we mainly discuss the automatic procedures implemented in the ASDP (Automatic Seismic Data-Processing) module and real time application to data acquired by a seismic network running in eastern Sicily. This software uses a multi-algorithm approach and a new procedure MSA (multi-station-analysis) for signal detection, phase grouping and event identification and location. It is designed for an efficient and accurate processing of local earthquake records provided by single-site and array stations. Results from ASDP processing of two different data sets recorded at Mt. Etna volcano by a regional network are analyzed to evaluate its performance. By comparing the ASDP pickings with those revised manually, the detection and subsequently the location capabilities of this software are assessed. The first data set is composed of 330 local earthquakes recorded in the Mt. Etna erea during 1997 by the telemetry analog seismic network. The second data set comprises about 970 automatic locations of more than 2600 local events recorded at Mt. Etna during the last eruption (July 2001) at the present network. For the former data set, a comparison of the automatic results with the manual picks indicates that the ASDP module can accurately pick 80% of the P-waves and 65% of S-waves. The on-line application on the latter data set shows that automatic locations are affected by larger errors, due to the preliminary setting of the configuration parameters in the program. However, both automatic ASDP and manual hypocenter locations are comparable within the estimated error bounds. New improvements of the PC-Seism software for on-line analysis are also discussed.
Schiavazzi, Daniele E.; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L.
2017-01-01
Summary Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. PMID:27155892
Automatic identification of inertial sensor placement on human body segments during walking
2013-01-01
Background Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided. We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Methods Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). Results and conclusions After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method. PMID:23517757
Automatic identification of inertial sensor placement on human body segments during walking.
Weenk, Dirk; van Beijnum, Bert-Jan F; Baten, Chris T M; Hermens, Hermie J; Veltink, Peter H
2013-03-21
Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided.We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method.
Automatic Item Generation of Probability Word Problems
ERIC Educational Resources Information Center
Holling, Heinz; Bertling, Jonas P.; Zeuch, Nina
2009-01-01
Mathematical word problems represent a common item format for assessing student competencies. Automatic item generation (AIG) is an effective way of constructing many items with predictable difficulties, based on a set of predefined task parameters. The current study presents a framework for the automatic generation of probability word problems…
Transient Oscilliations in Mechanical Systems of Automatic Control with Random Parameters
NASA Astrophysics Data System (ADS)
Royev, B.; Vinokur, A.; Kulikov, G.
2018-04-01
Transient oscillations in mechanical systems of automatic control with random parameters is a relevant but insufficiently studied issue. In this paper, a modified spectral method was applied to investigate the problem. The nature of dynamic processes and the phase portraits are analyzed depending on the amplitude and frequency of external influence. It is evident from the obtained results, that the dynamic phenomena occurring in the systems with random parameters under external influence are complex, and their study requires further investigation.
Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks
2015-12-31
AFRL-RQ-WP-TP-2016-0079 FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING NEURAL NETWORKS (POSTPRINT) Abdeel J...Journal Article Postprint 01 October 2013 – 22 June 2015 4. TITLE AND SUBTITLE FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING...networks were used to automatically identify two-phase flow patterns for refrigerant R-134a flowing in a horizontal tube. In laboratory experiments
Baca, A
1996-04-01
A method has been developed for the precise determination of anthropometric dimensions from the video images of four different body configurations. High precision is achieved by incorporating techniques for finding the location of object boundaries with sub-pixel accuracy, the implementation of calibration algorithms, and by taking into account the varying distances of the body segments from the recording camera. The system allows automatic segment boundary identification from the video image, if the boundaries are marked on the subject by black ribbons. In connection with the mathematical finite-mass-element segment model of Hatze, body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers etc.) can be computed by using the anthropometric data determined videometrically as input data. Compared to other, recently published video-based systems for the estimation of the inertial properties of body segments, the present algorithms reduce errors originating from optical distortions, inaccurate edge-detection procedures, and user-specified upper and lower segment boundaries or threshold levels for the edge-detection. The video-based estimation of human body segment parameters is especially useful in situations where ease of application and rapid availability of comparatively precise parameter values are of importance.
Global optimization framework for solar building design
NASA Astrophysics Data System (ADS)
Silva, N.; Alves, N.; Pascoal-Faria, P.
2017-07-01
The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.
Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua
2015-06-01
Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.
NASA Astrophysics Data System (ADS)
Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua
2015-06-01
Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.
[The maintenance of automatic analysers and associated documentation].
Adjidé, V; Fournier, P; Vassault, A
2010-12-01
The maintenance of automatic analysers and associated documentation taking part in the requirements of the ISO 15189 Standard and the French regulation as well have to be defined in the laboratory policy. The management of the periodic maintenance and documentation shall be implemented and fulfilled. The organisation of corrective maintenance has to be managed to avoid interruption of the task of the laboratory. The different recommendations concern the identification of materials including automatic analysers, the environmental conditions to take into account, the documentation provided by the manufacturer and documents prepared by the laboratory including procedures for maintenance.
Automatic integration of data from dissimilar sensors
NASA Astrophysics Data System (ADS)
Citrin, W. I.; Proue, R. W.; Thomas, J. W.
The present investigation is concerned with the automatic integration of radar and electronic support measures (ESM) sensor data, and with the development of a method for the automatical integration of identification friend or foe (IFF) and radar sensor data. On the basis of the two considered proojects, significant advances have been made in the areas of sensor data integration. It is pointed out that the log likelihood approach in sensor data correlation is appropriate for both similar and dissimilar sensor data. Attention is given to the real time integration of radar and ESM sensor data, and a radar ESM correlation simulation program.
Zhang, Yang; Jiang, Ping; Zhang, Hongyan; Cheng, Peng
2018-01-23
Thermal infrared remote sensing has become one of the main technology methods used for urban heat island research. When applying urban land surface temperature inversion of the thermal infrared band, problems with intensity level division arise because the method is subjective. However, this method is one of the few that performs heat island intensity level identification. This paper will build an intensity level identifier for an urban heat island, by using weak supervision and thought-based learning in an improved, restricted Boltzmann machine (RBM) model. The identifier automatically initializes the annotation and optimizes the model parameters sequentially until the target identifier is completed. The algorithm needs very little information about the weak labeling of the target training sample and generates an urban heat island intensity spatial distribution map. This study can provide reliable decision-making support for urban ecological planning and effective protection of urban ecological security. The experimental results showed the following: (1) The heat island effect in Wuhan is existent and intense. Heat island areas are widely distributed. The largest heat island area is in Wuhan, followed by the sub-green island. The total area encompassed by heat island and strong island levels accounts for 54.16% of the land in Wuhan. (2) Partially based on improved RBM identification, this method meets the research demands of determining the spatial distribution characteristics of the internal heat island effect; its identification accuracy is superior to that of comparable methods.
Jiang, Ping; Zhang, Hongyan; Cheng, Peng
2018-01-01
Thermal infrared remote sensing has become one of the main technology methods used for urban heat island research. When applying urban land surface temperature inversion of the thermal infrared band, problems with intensity level division arise because the method is subjective. However, this method is one of the few that performs heat island intensity level identification. This paper will build an intensity level identifier for an urban heat island, by using weak supervision and thought-based learning in an improved, restricted Boltzmann machine (RBM) model. The identifier automatically initializes the annotation and optimizes the model parameters sequentially until the target identifier is completed. The algorithm needs very little information about the weak labeling of the target training sample and generates an urban heat island intensity spatial distribution map. This study can provide reliable decision-making support for urban ecological planning and effective protection of urban ecological security. The experimental results showed the following: (1) The heat island effect in Wuhan is existent and intense. Heat island areas are widely distributed. The largest heat island area is in Wuhan, followed by the sub-green island. The total area encompassed by heat island and strong island levels accounts for 54.16% of the land in Wuhan. (2) Partially based on improved RBM identification, this method meets the research demands of determining the spatial distribution characteristics of the internal heat island effect; its identification accuracy is superior to that of comparable methods. PMID:29360786
Song, Dandan; Li, Ning; Liao, Lejian
2015-01-01
Due to the generation of enormous amounts of data at both lower costs as well as in shorter times, whole-exome sequencing technologies provide dramatic opportunities for identifying disease genes implicated in Mendelian disorders. Since upwards of thousands genomic variants can be sequenced in each exome, it is challenging to filter pathogenic variants in protein coding regions and reduce the number of missing true variants. Therefore, an automatic and efficient pipeline for finding disease variants in Mendelian disorders is designed by exploiting a combination of variants filtering steps to analyze the family-based exome sequencing approach. Recent studies on the Freeman-Sheldon disease are revisited and show that the proposed method outperforms other existing candidate gene identification methods.
On the problem of modeling for parameter identification in distributed structures
NASA Technical Reports Server (NTRS)
Norris, Mark A.; Meirovitch, Leonard
1988-01-01
Structures are often characterized by parameters, such as mass and stiffness, that are spatially distributed. Parameter identification of distributed structures is subject to many of the difficulties involved in the modeling problem, and the choice of the model can greatly affect the results of the parameter identification process. Analogously to control spillover in the control of distributed-parameter systems, identification spillover is shown to exist as well and its effect is to degrade the parameter estimates. Moreover, as in modeling by the Rayleigh-Ritz method, it is shown that, for a Rayleigh-Ritz type identification algorithm, an inclusion principle exists in the identification of distributed-parameter systems as well, so that the identified natural frequencies approach the actual natural frequencies monotonically from above.
Automatic user customization for improving the performance of a self-paced brain interface system.
Fatourechi, Mehrdad; Bashashati, Ali; Birch, Gary E; Ward, Rabab K
2006-12-01
Customizing the parameter values of brain interface (BI) systems by a human expert has the advantage of being fast and computationally efficient. However, as the number of users and EEG channels grows, this process becomes increasingly time consuming and exhausting. Manual customization also introduces inaccuracies in the estimation of the parameter values. In this paper, the performance of a self-paced BI system whose design parameter values were automatically user customized using a genetic algorithm (GA) is studied. The GA automatically estimates the shapes of movement-related potentials (MRPs), whose features are then extracted to drive the BI. Offline analysis of the data of eight subjects revealed that automatic user customization improved the true positive (TP) rate of the system by an average of 6.68% over that whose customization was carried out by a human expert, i.e., by visually inspecting the MRP templates. On average, the best improvement in the TP rate (an average of 9.82%) was achieved for four individuals with spinal cord injury. In this case, the visual estimation of the parameter values of the MRP templates was very difficult because of the highly noisy nature of the EEG signals. For four able-bodied subjects, for which the MRP templates were less noisy, the automatic user customization led to an average improvement of 3.58% in the TP rate. The results also show that the inter-subject variability of the TP rate is also reduced compared to the case when user customization is carried out by a human expert. These findings provide some primary evidence that automatic user customization leads to beneficial results in the design of a self-paced BI for individuals with spinal cord injury.
NASA Astrophysics Data System (ADS)
Enell, Carl-Fredrik; Kozlovsky, Alexander; Turunen, Tauno; Ulich, Thomas; Välitalo, Sirkku; Scotto, Carlo; Pezzopane, Michael
2016-03-01
This paper presents a comparison between standard ionospheric parameters manually and automatically scaled from ionograms recorded at the high-latitude Sodankylä Geophysical Observatory (SGO, ionosonde SO166, 64.1° geomagnetic latitude), located in the vicinity of the auroral oval. The study is based on 2610 ionograms recorded during the period June-December 2013. The automatic scaling was made by means of the Autoscala software. A few typical examples are shown to outline the method, and statistics are presented regarding the differences between manually and automatically scaled values of F2, F1, E and sporadic E (Es) layer parameters. We draw the conclusions that: 1. The F2 parameters scaled by Autoscala, foF2 and M(3000)F2, are reliable. 2. F1 is identified by Autoscala in significantly fewer cases (about 50 %) than in the manual routine, but if identified the values of foF1 are reliable. 3. Autoscala frequently (30 % of the cases) detects an E layer when the manual scaling process does not. When identified by both methods, the Autoscala E-layer parameters are close to those manually scaled, foE agreeing to within 0.4 MHz. 4. Es and parameters of Es identified by Autoscala are in many cases different from those of the manual scaling. Scaling of Es at auroral latitudes is often a difficult task.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and 3.358-3.6 GHz. (a) Operation under the provisions of this section is limited to automatic vehicle identification systems (AVIS) which use swept frequency techniques for the purpose of automatically identifying transportation vehicles. (b) The field strength anywhere within the frequency range swept by the signal shall not...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and 3.358-3.6 GHz. (a) Operation under the provisions of this section is limited to automatic vehicle identification systems (AVIS) which use swept frequency techniques for the purpose of automatically identifying transportation vehicles. (b) The field strength anywhere within the frequency range swept by the signal shall not...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and 3.358-3.6 GHz. (a) Operation under the provisions of this section is limited to automatic vehicle identification systems (AVIS) which use swept frequency techniques for the purpose of automatically identifying transportation vehicles. (b) The field strength anywhere within the frequency range swept by the signal shall not...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., and 3.358-3.6 GHz. (a) Operation under the provisions of this section is limited to automatic vehicle identification systems (AVIS) which use swept frequency techniques for the purpose of automatically identifying transportation vehicles. (b) The field strength anywhere within the frequency range swept by the signal shall not...
Director, Operational Test and Evaluation FY 2004 Annual Report
2004-01-01
HIGH) Space Based Radar (SBR) Sensor Fuzed Weapon (SFW) P3I (CBU-97/B) Small Diameter Bomb (SDB) Secure Mobile Anti-Jam Reliable Tactical Terminal...detection, identification, and sampling capability for both fixed-site and mobile operations. The system must automatically detect and identify up to ten...staffing within the Services. SYSTEM DESCRIPTION AND MISSION The Services envision JCAD as a hand-held device that automatically detects, identifies, and
Ferrández, Oscar; South, Brett R; Shen, Shuying; Friedlin, F Jeffrey; Samore, Matthew H; Meystre, Stéphane M
2012-07-27
The increased use and adoption of Electronic Health Records (EHR) causes a tremendous growth in digital information useful for clinicians, researchers and many other operational purposes. However, this information is rich in Protected Health Information (PHI), which severely restricts its access and possible uses. A number of investigators have developed methods for automatically de-identifying EHR documents by removing PHI, as specified in the Health Insurance Portability and Accountability Act "Safe Harbor" method.This study focuses on the evaluation of existing automated text de-identification methods and tools, as applied to Veterans Health Administration (VHA) clinical documents, to assess which methods perform better with each category of PHI found in our clinical notes; and when new methods are needed to improve performance. We installed and evaluated five text de-identification systems "out-of-the-box" using a corpus of VHA clinical documents. The systems based on machine learning methods were trained with the 2006 i2b2 de-identification corpora and evaluated with our VHA corpus, and also evaluated with a ten-fold cross-validation experiment using our VHA corpus. We counted exact, partial, and fully contained matches with reference annotations, considering each PHI type separately, or only one unique 'PHI' category. Performance of the systems was assessed using recall (equivalent to sensitivity) and precision (equivalent to positive predictive value) metrics, as well as the F(2)-measure. Overall, systems based on rules and pattern matching achieved better recall, and precision was always better with systems based on machine learning approaches. The highest "out-of-the-box" F(2)-measure was 67% for partial matches; the best precision and recall were 95% and 78%, respectively. Finally, the ten-fold cross validation experiment allowed for an increase of the F(2)-measure to 79% with partial matches. The "out-of-the-box" evaluation of text de-identification systems provided us with compelling insight about the best methods for de-identification of VHA clinical documents. The errors analysis demonstrated an important need for customization to PHI formats specific to VHA documents. This study informed the planning and development of a "best-of-breed" automatic de-identification application for VHA clinical text.
NASA Astrophysics Data System (ADS)
Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng
2016-09-01
It was an untouchable dream for remote sensing experts to realize total automatic image classification without inputting any parameter values. Experts usually spend hours and hours on tuning the input parameters of classification algorithms in order to obtain the best results. With the rapid development of knowledge engineering and cyberinfrastructure, a lot of data processing and knowledge reasoning capabilities become online accessible, shareable and interoperable. Based on these recent improvements, this paper presents an idea of parameterless automatic classification which only requires an image and automatically outputs a labeled vector. No parameters and operations are needed from endpoint consumers. An approach is proposed to realize the idea. It adopts an ontology database to store the experiences of tuning values for classifiers. A sample database is used to record training samples of image segments. Geoprocessing Web services are used as functionality blocks to finish basic classification steps. Workflow technology is involved to turn the overall image classification into a total automatic process. A Web-based prototypical system named PACS (Parameterless Automatic Classification System) is implemented. A number of images are fed into the system for evaluation purposes. The results show that the approach could automatically classify remote sensing images and have a fairly good average accuracy. It is indicated that the classified results will be more accurate if the two databases have higher quality. Once the experiences and samples in the databases are accumulated as many as an expert has, the approach should be able to get the results with similar quality to that a human expert can get. Since the approach is total automatic and parameterless, it can not only relieve remote sensing workers from the heavy and time-consuming parameter tuning work, but also significantly shorten the waiting time for consumers and facilitate them to engage in image classification activities. Currently, the approach is used only on high resolution optical three-band remote sensing imagery. The feasibility using the approach on other kinds of remote sensing images or involving additional bands in classification will be studied in future.
Wang, Hong-ping; Chen, Chang; Liu, Yan; Yang, Hong-Jun; Wu, Hong-Wei; Xiao, Hong-Bin
2015-11-01
The incomplete identification of the chemical components of traditional Chinese medicinal formula has been one of the bottlenecks in the modernization of traditional Chinese medicine. Tandem mass spectrometry has been widely used for the identification of chemical substances. Current automatic tandem mass spectrometry acquisition, where precursor ions were selected according to their signal intensity, encounters a drawback in chemical substances identification when samples contain many overlapping signals. Compounds in minor or trace amounts could not be identified because most tandem mass spectrometry information was lost. Herein, a molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation method for complex Chinese medicine chemical constituent analysis was developed. The precursor ions were selected according to their two-dimensional characteristics of retention times and mass-to-charge ratio ranges from herbal compounds, so that all precursor ions from herbal compounds were included and more minor chemical constituents in Chinese medicine were identified. Compared to the conventional automatic tandem mass spectrometry setups, the approach is novel and can overcome the drawback for chemical substances identification. As an example, 276 compounds from the Chinese Medicine of Yi-Xin-Shu capsule were identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Aiello, Martina; Gianinetto, Marco
2017-10-01
Marine routes represent a huge portion of commercial and human trades, therefore surveillance, security and environmental protection themes are gaining increasing importance. Being able to overcome the limits imposed by terrestrial means of monitoring, ship detection from satellite has recently prompted a renewed interest for a continuous monitoring of illegal activities. This paper describes an automatic Object Based Image Analysis (OBIA) approach to detect vessels made of different materials in various sea environments. The combined use of multispectral and SAR images allows for a regular observation unrestricted by lighting and atmospheric conditions and complementarity in terms of geographic coverage and geometric detail. The method developed adopts a region growing algorithm to segment the image in homogeneous objects, which are then classified through a decision tree algorithm based on spectral and geometrical properties. Then, a spatial analysis retrieves the vessels' position, length and heading parameters and a speed range is associated. Optimization of the image processing chain is performed by selecting image tiles through a statistical index. Vessel candidates are detected over amplitude SAR images using an adaptive threshold Constant False Alarm Rate (CFAR) algorithm prior the object based analysis. Validation is carried out by comparing the retrieved parameters with the information provided by the Automatic Identification System (AIS), when available, or with manual measurement when AIS data are not available. The estimation of length shows R2=0.85 and estimation of heading R2=0.92, computed as the average of R2 values obtained for both optical and radar images.
Using cystoscopy to segment bladder tumors with a multivariate approach in different color spaces.
Freitas, Nuno R; Vieira, Pedro M; Lima, Estevao; Lima, Carlos S
2017-07-01
Nowadays the diagnosis of bladder lesions relies upon cystoscopy examination and depends on the interpreter's experience. State of the art of bladder tumor identification are based on 3D reconstruction, using CT images (Virtual Cystoscopy) or images where the structures are exalted with the use of pigmentation, but none uses white light cystoscopy images. An initial attempt to automatically identify tumoral tissue was already developed by the authors and this paper will develop this idea. Traditional cystoscopy images processing has a huge potential to improve early tumor detection and allows a more effective treatment. In this paper is described a multivariate approach to do segmentation of bladder cystoscopy images, that will be used to automatically detect and improve physician diagnose. Each region can be assumed as a normal distribution with specific parameters, leading to the assumption that the distribution of intensities is a Gaussian Mixture Model (GMM). Region of high grade and low grade tumors, usually appears with higher intensity than normal regions. This paper proposes a Maximum a Posteriori (MAP) approach based on pixel intensities read simultaneously in different color channels from RGB, HSV and CIELab color spaces. The Expectation-Maximization (EM) algorithm is used to estimate the best multivariate GMM parameters. Experimental results show that the proposed method does bladder tumor segmentation into two classes in a more efficient way in RGB even in cases where the tumor shape is not well defined. Results also show that the elimination of component L from CIELab color space does not allow definition of the tumor shape.
Asteroid (21) Lutetia: Semi-Automatic Impact Craters Detection and Classification
NASA Astrophysics Data System (ADS)
Jenerowicz, M.; Banaszkiewicz, M.
2018-05-01
The need to develop an automated method, independent of lighting and surface conditions, for the identification and measurement of impact craters, as well as the creation of a reliable and efficient tool, has become a justification of our studies. This paper presents a methodology for the detection of impact craters based on their spectral and spatial features. The analysis aims at evaluation of the algorithm capabilities to determinate the spatial parameters of impact craters presented in a time series. In this way, time-consuming visual interpretation of images would be reduced to the special cases. The developed algorithm is tested on a set of OSIRIS high resolution images of asteroid Lutetia surface which is characterized by varied landforms and the abundance of craters created by collisions with smaller bodies of the solar system.The proposed methodology consists of three main steps: characterisation of objects of interest on limited set of data, semi-automatic extraction of impact craters performed for total set of data by applying the Mathematical Morphology image processing (Serra, 1988, Soille, 2003), and finally, creating libraries of spatial and spectral parameters for extracted impact craters, i.e. the coordinates of the crater center, semi-major and semi-minor axis, shadow length and cross-section. The overall accuracy of the proposed method is 98 %, the Kappa coefficient is 0.84, the correlation coefficient is ∼ 0.80, the omission error 24.11 %, the commission error 3.45 %. The obtained results show that methods based on Mathematical Morphology operators are effective also with a limited number of data and low-contrast images.
Automatic emotional expression analysis from eye area
NASA Astrophysics Data System (ADS)
Akkoç, Betül; Arslan, Ahmet
2015-02-01
Eyes play an important role in expressing emotions in nonverbal communication. In the present study, emotional expression classification was performed based on the features that were automatically extracted from the eye area. Fırst, the face area and the eye area were automatically extracted from the captured image. Afterwards, the parameters to be used for the analysis through discrete wavelet transformation were obtained from the eye area. Using these parameters, emotional expression analysis was performed through artificial intelligence techniques. As the result of the experimental studies, 6 universal emotions consisting of expressions of happiness, sadness, surprise, disgust, anger and fear were classified at a success rate of 84% using artificial neural networks.
Valderrama, Joaquin T; de la Torre, Angel; Alvarez, Isaac; Segura, Jose Carlos; Thornton, A Roger D; Sainz, Manuel; Vargas, Jose Luis
2014-05-01
The recording of the auditory brainstem response (ABR) is used worldwide for hearing screening purposes. In this process, a precise estimation of the most relevant components is essential for an accurate interpretation of these signals. This evaluation is usually carried out subjectively by an audiologist. However, the use of automatic methods for this purpose is being encouraged nowadays in order to reduce human evaluation biases and ensure uniformity among test conditions, patients, and screening personnel. This article describes a new method that performs automatic quality assessment and identification of the peaks, the fitted parametric peaks (FPP). This method is based on the use of synthesized peaks that are adjusted to the ABR response. The FPP is validated, on one hand, by an analysis of amplitudes and latencies measured manually by an audiologist and automatically by the FPP method in ABR signals recorded at different stimulation rates; and on the other hand, contrasting the performance of the FPP method with the automatic evaluation techniques based on the correlation coefficient, FSP, and cross correlation with a predefined template waveform by comparing the automatic evaluations of the quality of these methods with subjective evaluations provided by five experienced evaluators on a set of ABR signals of different quality. The results of this study suggest (a) that the FPP method can be used to provide an accurate parameterization of the peaks in terms of amplitude, latency, and width, and (b) that the FPP remains as the method that best approaches the averaged subjective quality evaluation, as well as provides the best results in terms of sensitivity and specificity in ABR signals validation. The significance of these findings and the clinical value of the FPP method are highlighted on this paper. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Automatic picker of P & S first arrivals and robust event locator
NASA Astrophysics Data System (ADS)
Pinsky, V.; Polozov, A.; Hofstetter, A.
2003-12-01
We report on further development of automatic all distances location procedure designed for a regional network. The procedure generalizes the previous "loca l" (R < 500 km) and "regional" (500 < R < 2000 km) routines and comprises: a) preliminary data processing (filtering and de-spiking), b) phase identificatio n, c) P, S first arrival picking, d) preliminary location and e) robust grid-search optimization procedure. Innovations concern phase identification, automa tic picking and teleseismic location. A platform free flexible Java interface was recently created, allowing easy parameter tuning and on/off switching to t he full-scale manual picking mode. Identification of the regional P and S phase is provided by choosing between the two largest peaks in the envelope curve. For automatic on-time estimation we utilize now ratio of two STAs, calculated in two consecutive and equal time windows (instead of previously used Akike Information Criterion). "Teleseismic " location is split in two stages: preliminary and final one. The preliminary part estimates azimuth and apparent velocity by fitting a plane wave to the P automatic pickings. The apparent velocity criterion is used to decide about strategy of the following computations: teleseismic or regional. The preliminary estimates of azimuth and apparent velocity provide starting value for the final teleseismic and regional location. Apparent velocity is used to get first a pproximation distance to the source on the basis of the P, Pn, Pg travel-timetables. The distance estimate together with the preliminary azimuth estimate provides first approximations of the source latitude and longitude via sine and cosine theorems formulated for the spherical triangle. Final location is based on robust grid-search optimization procedure, weighting the number of pickings that simultaneously fit the model travel times. The grid covers initial location and becomes finer while approaching true hypocenter. The target function is a sum of the bell-shaped characteristic functions, used to emphasize true pickings and eliminate outliers. The final solution is a grid point that provides maximum to the target function. The procedure was applied to a list of ML > 4 earthquakes recorded by the Israel Seismic Network (ISN) in the 1999-2002 time period. Most of them are badly constrained relative the network. However, the results of location with average normalized error relative bulletin solutions e=dr/R of 5% were obtained, in each of the distance ranges. The first version of the procedure was incorporated in the national Early Warning System in 2001. Recently, we started to send automatic Early Warn ing reports, to the EMSC Real Time Bulletin. Initially reported some teleseismic location discrepancies have been eliminated by introduction of station corrections.
Crop Identification Technolgy Assessment for Remote Sensing (CITARS). Volume 1: Task design plan
NASA Technical Reports Server (NTRS)
Hall, F. G.; Bizzell, R. M.
1975-01-01
A plan for quantifying the crop identification performances resulting from the remote identification of corn, soybeans, and wheat is described. Steps for the conversion of multispectral data tapes to classification results are specified. The crop identification performances resulting from the use of several basic types of automatic data processing techniques are compared and examined for significant differences. The techniques are evaluated also for changes in geographic location, time of the year, management practices, and other physical factors. The results of the Crop Identification Technology Assessment for Remote Sensing task will be applied extensively in the Large Area Crop Inventory Experiment.
A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines.
Khan, Arif Ul Maula; Mikut, Ralf; Reischl, Markus
2016-01-01
The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts.
A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines
Mikut, Ralf; Reischl, Markus
2016-01-01
The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts. PMID:27764213
Automatic Cataract Hardness Classification Ex Vivo by Ultrasound Techniques.
Caixinha, Miguel; Santos, Mário; Santos, Jaime
2016-04-01
To demonstrate the feasibility of a new methodology for cataract hardness characterization and automatic classification using ultrasound techniques, different cataract degrees were induced in 210 porcine lenses. A 25-MHz ultrasound transducer was used to obtain acoustical parameters (velocity and attenuation) and backscattering signals. B-Scan and parametric Nakagami images were constructed. Ninety-seven parameters were extracted and subjected to a Principal Component Analysis. Bayes, K-Nearest-Neighbours, Fisher Linear Discriminant and Support Vector Machine (SVM) classifiers were used to automatically classify the different cataract severities. Statistically significant increases with cataract formation were found for velocity, attenuation, mean brightness intensity of the B-Scan images and mean Nakagami m parameter (p < 0.01). The four classifiers showed a good performance for healthy versus cataractous lenses (F-measure ≥ 92.68%), while for initial versus severe cataracts the SVM classifier showed the higher performance (90.62%). The results showed that ultrasound techniques can be used for non-invasive cataract hardness characterization and automatic classification. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Lu, Yingjie
2013-01-01
To facilitate patient involvement in online health community and obtain informative support and emotional support they need, a topic identification approach was proposed in this paper for identifying automatically topics of the health-related messages in online health community, thus assisting patients in reaching the most relevant messages for their queries efficiently. Feature-based classification framework was presented for automatic topic identification in our study. We first collected the messages related to some predefined topics in a online health community. Then we combined three different types of features, n-gram-based features, domain-specific features and sentiment features to build four feature sets for health-related text representation. Finally, three different text classification techniques, C4.5, Naïve Bayes and SVM were adopted to evaluate our topic classification model. By comparing different feature sets and different classification techniques, we found that n-gram-based features, domain-specific features and sentiment features were all considered to be effective in distinguishing different types of health-related topics. In addition, feature reduction technique based on information gain was also effective to improve the topic classification performance. In terms of classification techniques, SVM outperformed C4.5 and Naïve Bayes significantly. The experimental results demonstrated that the proposed approach could identify the topics of online health-related messages efficiently.
Shaheen, E; Mowafy, B; Politis, C; Jacobs, R
2017-12-01
Previous research proposed the use of the mandibular midline neurovascular canal structures as a forensic finger print. In their observer study, an average correct identification of 95% was reached which triggered this study. To present a semi-automatic computer recognition approach to replace the observers and to validate the accuracy of this newly proposed method. Imaging data from Computer Tomography (CT) and Cone Beam Computer Tomography (CBCT) of mandibles scanned at two different moments were collected to simulate an AM and PM situation where the first scan presented AM and the second scan was used to simulate PM. Ten cases with 20 scans were used to build a classifier which relies on voxel based matching and results with classification into one of two groups: "Unmatched" and "Matched". This protocol was then tested using five other scans out of the database. Unpaired t-testing was applied and accuracy of the computerized approach was determined. A significant difference was found between the "Unmatched" and "Matched" classes with means of 0.41 and 0.86 respectively. Furthermore, the testing phase showed an accuracy of 100%. The validation of this method pushes this protocol further to a fully automatic identification procedure for victim identification based on the mandibular midline canals structures only in cases with available AM and PM CBCT/CT data.
NASA Astrophysics Data System (ADS)
Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.
2015-12-01
The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.
Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.
2013-01-08
Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.
ERIC Educational Resources Information Center
Boger, Zvi; Kuflik, Tsvi; Shoval, Peretz; Shapira, Bracha
2001-01-01
Discussion of information filtering (IF) and information retrieval focuses on the use of an artificial neural network (ANN) as an alternative method for both IF and term selection and compares its effectiveness to that of traditional methods. Results show that the ANN relevance prediction out-performs the prediction of an IF system. (Author/LRW)
Automatic Processing and the Unitization of Two Features.
1980-02-01
experiment, LaBerge (1973) showed that with practice two features could be automatically unitized to form a novel character. We wish to address a...different from a search for a target which requires identification of one of the features alone. Page 2 Indeed, LaBerge (1973) used a similar implicit...perception? Journal of Experimental Child Psychology, 1978, 26, 498-507. LaBerge , D. Attention and the measurement of perceptual learning. Memory and
Horré, R; Schaal, K P; Marklein, G; de Hoog, G S; Reiffert, S-M
2011-10-01
During the last few decades, Pseudallescheria and Scedosporium infections in humans are noted with increasing frequency. Multi-drug resistance commonly occurring in this species complex interferes with adequate therapy. Rapid and correct identification of clinical isolates is of paramount significance for optimal treatment in the early stages of infection, while strain typing is necessary for epidemiological purposes. In view of the development of physiological diagnostic parameters, 570 physiological reactions were evaluated using the Taxa Profile Micronaut system, a semi-automatic, computer-assisted, 384-well microtitre platform. Thirty two strains of the Pseudallescheria and Scedosporium complex were analysed after molecular verification of correct species attribution. Of the compounds tested, 254 proved to be polymorphic. Cluster analysis was performed with the Micronaut profile software, which is linked to the ntsypc® program. The systemic opportunist S. prolificans was unambiguously separated from the remaining species. Within the P. boydii/P. apiosperma complex differentiation was noted at the level of individual strains, but no unambiguous parameters for species recognition were revealed. © 2011 Blackwell Verlag GmbH.
Wolterink, Jelmer M; Leiner, Tim; de Vos, Bob D; Coatrieux, Jean-Louis; Kelm, B Michael; Kondo, Satoshi; Salgado, Rodrigo A; Shahzad, Rahil; Shu, Huazhong; Snoeren, Miranda; Takx, Richard A P; van Vliet, Lucas J; van Walsum, Theo; Willems, Tineke P; Yang, Guanyu; Zheng, Yefeng; Viergever, Max A; Išgum, Ivana
2016-05-01
The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular disease (CVD) events. In clinical practice, CAC is manually identified and automatically quantified in cardiac CT using commercially available software. This is a tedious and time-consuming process in large-scale studies. Therefore, a number of automatic methods that require no interaction and semiautomatic methods that require very limited interaction for the identification of CAC in cardiac CT have been proposed. Thus far, a comparison of their performance has been lacking. The objective of this study was to perform an independent evaluation of (semi)automatic methods for CAC scoring in cardiac CT using a publicly available standardized framework. Cardiac CT exams of 72 patients distributed over four CVD risk categories were provided for (semi)automatic CAC scoring. Each exam consisted of a noncontrast-enhanced calcium scoring CT (CSCT) and a corresponding coronary CT angiography (CCTA) scan. The exams were acquired in four different hospitals using state-of-the-art equipment from four major CT scanner vendors. The data were divided into 32 training exams and 40 test exams. A reference standard for CAC in CSCT was defined by consensus of two experts following a clinical protocol. The framework organizers evaluated the performance of (semi)automatic methods on test CSCT scans, per lesion, artery, and patient. Five (semi)automatic methods were evaluated. Four methods used both CSCT and CCTA to identify CAC, and one method used only CSCT. The evaluated methods correctly detected between 52% and 94% of CAC lesions with positive predictive values between 65% and 96%. Lesions in distal coronary arteries were most commonly missed and aortic calcifications close to the coronary ostia were the most common false positive errors. The majority (between 88% and 98%) of correctly identified CAC lesions were assigned to the correct artery. Linearly weighted Cohen's kappa for patient CVD risk categorization by the evaluated methods ranged from 0.80 to 1.00. A publicly available standardized framework for the evaluation of (semi)automatic methods for CAC identification in cardiac CT is described. An evaluation of five (semi)automatic methods within this framework shows that automatic per patient CVD risk categorization is feasible. CAC lesions at ambiguous locations such as the coronary ostia remain challenging, but their detection had limited impact on CVD risk determination.
NASA Astrophysics Data System (ADS)
Sa, Qila; Wang, Zhihui
2018-03-01
At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.
NASA Astrophysics Data System (ADS)
Csorba, Robert
2002-09-01
The Government Accounting Office found that the Navy, between 1996 and 1998, lost 3 billion in materiel in-transit. This thesis explores the benefits and cost of automatic identification and serial number tracking technologies under consideration by the Naval Supply Systems Command and the Naval Air Systems Command. Detailed cost-savings estimates are made for each aircraft type in the Navy inventory. Project and item managers of repairable components using Serial Number Tracking were surveyed as to the value of this system. It concludes that two thirds of the in-transit losses can be avoided with implementation of effective information technology-based logistics and maintenance tracking systems. Recommendations are made for specific steps and components of such an implementation. Suggestions are made for further research.
NASA Astrophysics Data System (ADS)
Irshad, Mehreen; Muhammad, Nazeer; Sharif, Muhammad; Yasmeen, Mussarat
2018-04-01
Conventionally, cardiac MR image analysis is done manually. Automatic examination for analyzing images can replace the monotonous tasks of massive amounts of data to analyze the global and regional functions of the cardiac left ventricle (LV). This task is performed using MR images to calculate the analytic cardiac parameter like end-systolic volume, end-diastolic volume, ejection fraction, and myocardial mass, respectively. These analytic parameters depend upon genuine delineation of epicardial, endocardial, papillary muscle, and trabeculations contours. In this paper, we propose an automatic segmentation method using the sum of absolute differences technique to localize the left ventricle. Blind morphological operations are proposed to segment and detect the LV contours of the epicardium and endocardium, automatically. We test the benchmark Sunny Brook dataset for evaluation of the proposed work. Contours of epicardium and endocardium are compared quantitatively to determine contour's accuracy and observe high matching values. Similarity or overlapping of an automatic examination to the given ground truth analysis by an expert are observed with high accuracy as with an index value of 91.30% . The proposed method for automatic segmentation gives better performance relative to existing techniques in terms of accuracy.
77 FR 28923 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
... new symbols for Automatic Identification System (AIS) aids to navigation --Casualty analysis..., parking in the vicinity of the building is extremely limited. Additional information regarding this and...
Dynamic parameter identification of robot arms with servo-controlled electrical motors
NASA Astrophysics Data System (ADS)
Jiang, Zhao-Hui; Senda, Hiroshi
2005-12-01
This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.
PRESBYOPIA OPTOMETRY METHOD BASED ON DIOPTER REGULATION AND CHARGE COUPLE DEVICE IMAGING TECHNOLOGY.
Zhao, Q; Wu, X X; Zhou, J; Wang, X; Liu, R F; Gao, J
2015-01-01
With the development of photoelectric technology and single-chip microcomputer technology, objective optometry, also known as automatic optometry, is becoming precise. This paper proposed a presbyopia optometry method based on diopter regulation and Charge Couple Device (CCD) imaging technology and, in the meantime, designed a light path that could measure the system. This method projects a test figure to the eye ground and then the reflected image from the eye ground is detected by CCD. The image is then automatically identified by computer and the far point and near point diopters are determined to calculate lens parameter. This is a fully automatic objective optometry method which eliminates subjective factors of the tested subject. Furthermore, it can acquire the lens parameter of presbyopia accurately and quickly and can be used to measure the lens parameter of hyperopia, myopia and astigmatism.
Automated detection of breast cancer in resected specimens with fluorescence lifetime imaging
NASA Astrophysics Data System (ADS)
Phipps, Jennifer E.; Gorpas, Dimitris; Unger, Jakob; Darrow, Morgan; Bold, Richard J.; Marcu, Laura
2018-01-01
Re-excision rates for breast cancer lumpectomy procedures are currently nearly 25% due to surgeons relying on inaccurate or incomplete methods of evaluating specimen margins. The objective of this study was to determine if cancer could be automatically detected in breast specimens from mastectomy and lumpectomy procedures by a classification algorithm that incorporated parameters derived from fluorescence lifetime imaging (FLIm). This study generated a database of co-registered histologic sections and FLIm data from breast cancer specimens (N = 20) and a support vector machine (SVM) classification algorithm able to automatically detect cancerous, fibrous, and adipose breast tissue. Classification accuracies were greater than 97% for automated detection of cancerous, fibrous, and adipose tissue from breast cancer specimens. The classification worked equally well for specimens scanned by hand or with a mechanical stage, demonstrating that the system could be used during surgery or on excised specimens. The ability of this technique to simply discriminate between cancerous and normal breast tissue, in particular to distinguish fibrous breast tissue from tumor, which is notoriously challenging for optical techniques, leads to the conclusion that FLIm has great potential to assess breast cancer margins. Identification of positive margins before waiting for complete histologic analysis could significantly reduce breast cancer re-excision rates.
Automatic Identification of Systolic Time Intervals in Seismocardiogram
Shafiq, Ghufran; Tatinati, Sivanagaraja; Ang, Wei Tech; Veluvolu, Kalyana C.
2016-01-01
Continuous and non-invasive monitoring of hemodynamic parameters through unobtrusive wearable sensors can potentially aid in early detection of cardiac abnormalities, and provides a viable solution for long-term follow-up of patients with chronic cardiovascular diseases without disrupting the daily life activities. Electrocardiogram (ECG) and siesmocardiogram (SCG) signals can be readily acquired from light-weight electrodes and accelerometers respectively, which can be employed to derive systolic time intervals (STI). For this purpose, automated and accurate annotation of the relevant peaks in these signals is required, which is challenging due to the inter-subject morphological variability and noise prone nature of SCG signal. In this paper, an approach is proposed to automatically annotate the desired peaks in SCG signal that are related to STI by utilizing the information of peak detected in the sliding template to narrow-down the search for the desired peak in actual SCG signal. Experimental validation of this approach performed in conventional/controlled supine and realistic/challenging seated conditions, containing over 5600 heart beat cycles shows good performance and robustness of the proposed approach in noisy conditions. Automated measurement of STI in wearable configuration can provide a quantified cardiac health index for long-term monitoring of patients, elderly people at risk and health-enthusiasts. PMID:27874050
Automatic Identification of Systolic Time Intervals in Seismocardiogram
NASA Astrophysics Data System (ADS)
Shafiq, Ghufran; Tatinati, Sivanagaraja; Ang, Wei Tech; Veluvolu, Kalyana C.
2016-11-01
Continuous and non-invasive monitoring of hemodynamic parameters through unobtrusive wearable sensors can potentially aid in early detection of cardiac abnormalities, and provides a viable solution for long-term follow-up of patients with chronic cardiovascular diseases without disrupting the daily life activities. Electrocardiogram (ECG) and siesmocardiogram (SCG) signals can be readily acquired from light-weight electrodes and accelerometers respectively, which can be employed to derive systolic time intervals (STI). For this purpose, automated and accurate annotation of the relevant peaks in these signals is required, which is challenging due to the inter-subject morphological variability and noise prone nature of SCG signal. In this paper, an approach is proposed to automatically annotate the desired peaks in SCG signal that are related to STI by utilizing the information of peak detected in the sliding template to narrow-down the search for the desired peak in actual SCG signal. Experimental validation of this approach performed in conventional/controlled supine and realistic/challenging seated conditions, containing over 5600 heart beat cycles shows good performance and robustness of the proposed approach in noisy conditions. Automated measurement of STI in wearable configuration can provide a quantified cardiac health index for long-term monitoring of patients, elderly people at risk and health-enthusiasts.
Liu, Chanjuan; van Netten, Jaap J; van Baal, Jeff G; Bus, Sicco A; van der Heijden, Ferdi
2015-02-01
Early identification of diabetic foot complications and their precursors is essential in preventing their devastating consequences, such as foot infection and amputation. Frequent, automatic risk assessment by an intelligent telemedicine system might be feasible and cost effective. Infrared thermography is a promising modality for such a system. The temperature differences between corresponding areas on contralateral feet are the clinically significant parameters. This asymmetric analysis is hindered by (1) foot segmentation errors, especially when the foot temperature and the ambient temperature are comparable, and by (2) different shapes and sizes between contralateral feet due to deformities or minor amputations. To circumvent the first problem, we used a color image and a thermal image acquired synchronously. Foot regions, detected in the color image, were rigidly registered to the thermal image. This resulted in 97.8% ± 1.1% sensitivity and 98.4% ± 0.5% specificity over 76 high-risk diabetic patients with manual annotation as a reference. Nonrigid landmark-based registration with B-splines solved the second problem. Corresponding points in the two feet could be found regardless of the shapes and sizes of the feet. With that, the temperature difference of the left and right feet could be obtained. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
Automatic identification of alpine mass movements based on seismic and infrasound signals
NASA Astrophysics Data System (ADS)
Schimmel, Andreas; Hübl, Johannes
2017-04-01
The automatic detection and identification of alpine mass movements like debris flows, debris floods or landslides gets increasing importance for mitigation measures in the densely populated and intensively used alpine regions. Since this mass movement processes emits characteristically seismic and acoustic waves in the low frequency range this events can be detected and identified based on this signals. So already several approaches for detection and warning systems based on seismic or infrasound signals has been developed. But a combination of both methods, which can increase detection probability and reduce false alarms is currently used very rarely and can serve as a promising method for developing an automatic detection and identification system. So this work presents an approach for a detection and identification system based on a combination of seismic and infrasound sensors, which can detect sediment related mass movements from a remote location unaffected by the process. The system is based on one infrasound sensor and one geophone which are placed co-located and a microcontroller where a specially designed detection algorithm is executed which can detect mass movements in real time directly at the sensor site. Further this work tries to get out more information from the seismic and infrasound spectrum produced by different sediment related mass movements to identify the process type and estimate the magnitude of the event. The system is currently installed and tested on five test sites in Austria, two in Italy and one in Switzerland as well as one in Germany. This high number of test sites is used to get a large database of very different events which will be the basis for a new identification method for alpine mass movements. These tests shows promising results and so this system provides an easy to install and inexpensive approach for a detection and warning system.
Identification of Cichlid Fishes from Lake Malawi Using Computer Vision
Joo, Deokjin; Kwan, Ye-seul; Song, Jongwoo; Pinho, Catarina; Hey, Jody; Won, Yong-Jin
2013-01-01
Background The explosively radiating evolution of cichlid fishes of Lake Malawi has yielded an amazing number of haplochromine species estimated as many as 500 to 800 with a surprising degree of diversity not only in color and stripe pattern but also in the shape of jaw and body among them. As these morphological diversities have been a central subject of adaptive speciation and taxonomic classification, such high diversity could serve as a foundation for automation of species identification of cichlids. Methodology/Principal Finding Here we demonstrate a method for automatic classification of the Lake Malawi cichlids based on computer vision and geometric morphometrics. For this end we developed a pipeline that integrates multiple image processing tools to automatically extract informative features of color and stripe patterns from a large set of photographic images of wild cichlids. The extracted information was evaluated by statistical classifiers Support Vector Machine and Random Forests. Both classifiers performed better when body shape information was added to the feature of color and stripe. Besides the coloration and stripe pattern, body shape variables boosted the accuracy of classification by about 10%. The programs were able to classify 594 live cichlid individuals belonging to 12 different classes (species and sexes) with an average accuracy of 78%, contrasting to a mere 42% success rate by human eyes. The variables that contributed most to the accuracy were body height and the hue of the most frequent color. Conclusions Computer vision showed a notable performance in extracting information from the color and stripe patterns of Lake Malawi cichlids although the information was not enough for errorless species identification. Our results indicate that there appears an unavoidable difficulty in automatic species identification of cichlid fishes, which may arise from short divergence times and gene flow between closely related species. PMID:24204918
Automatic Identification of Subtechniques in Skating-Style Roller Skiing Using Inertial Sensors
Sakurai, Yoshihisa; Fujita, Zenya; Ishige, Yusuke
2016-01-01
This study aims to develop and validate an automated system for identifying skating-style cross-country subtechniques using inertial sensors. In the first experiment, the performance of a male cross-country skier was used to develop an automated identification system. In the second, eight male and seven female college cross-country skiers participated to validate the developed identification system. Each subject wore inertial sensors on both wrists and both roller skis, and a small video camera on a backpack. All subjects skied through a 3450 m roller ski course using a skating style at their maximum speed. The adopted subtechniques were identified by the automated method based on the data obtained from the sensors, as well as by visual observations from a video recording of the same ski run. The system correctly identified 6418 subtechniques from a total of 6768 cycles, which indicates an accuracy of 94.8%. The precisions of the automatic system for identifying the V1R, V1L, V2R, V2L, V2AR, and V2AL subtechniques were 87.6%, 87.0%, 97.5%, 97.8%, 92.1%, and 92.0%, respectively. Most incorrect identification cases occurred during a subtechnique identification that included a transition and turn event. Identification accuracy can be improved by separately identifying transition and turn events. This system could be used to evaluate each skier’s subtechniques in course conditions. PMID:27049388
Transmit: An Advanced Traffic Management System
DOT National Transportation Integrated Search
1995-11-27
TRANSCOM'S SYSTEM FOR MANAGING INCIDENTS AND TRAFFIC, KNOWN AS TRANSMIT, WAS INITIATED TO ESTABLISH THE FEASIBILITY OF USING AUTOMATIC VEHICLE IDENTIFICATION (AVI) EQUIPMENT FOR TRAFFIC MANAGEMENT AND SURVEILLANCE APPLICATIONS. AVI TECHNOLOGY SYSTEMS...
Tsugawa, Hiroshi; Ohta, Erika; Izumi, Yoshihiro; Ogiwara, Atsushi; Yukihira, Daichi; Bamba, Takeshi; Fukusaki, Eiichiro; Arita, Masanori
2014-01-01
Based on theoretically calculated comprehensive lipid libraries, in lipidomics as many as 1000 multiple reaction monitoring (MRM) transitions can be monitored for each single run. On the other hand, lipid analysis from each MRM chromatogram requires tremendous manual efforts to identify and quantify lipid species. Isotopic peaks differing by up to a few atomic masses further complicate analysis. To accelerate the identification and quantification process we developed novel software, MRM-DIFF, for the differential analysis of large-scale MRM assays. It supports a correlation optimized warping (COW) algorithm to align MRM chromatograms and utilizes quality control (QC) sample datasets to automatically adjust the alignment parameters. Moreover, user-defined reference libraries that include the molecular formula, retention time, and MRM transition can be used to identify target lipids and to correct peak abundances by considering isotopic peaks. Here, we demonstrate the software pipeline and introduce key points for MRM-based lipidomics research to reduce the mis-identification and overestimation of lipid profiles. The MRM-DIFF program, example data set and the tutorials are downloadable at the "Standalone software" section of the PRIMe (Platform for RIKEN Metabolomics, http://prime.psc.riken.jp/) database website.
Tsugawa, Hiroshi; Ohta, Erika; Izumi, Yoshihiro; Ogiwara, Atsushi; Yukihira, Daichi; Bamba, Takeshi; Fukusaki, Eiichiro; Arita, Masanori
2015-01-01
Based on theoretically calculated comprehensive lipid libraries, in lipidomics as many as 1000 multiple reaction monitoring (MRM) transitions can be monitored for each single run. On the other hand, lipid analysis from each MRM chromatogram requires tremendous manual efforts to identify and quantify lipid species. Isotopic peaks differing by up to a few atomic masses further complicate analysis. To accelerate the identification and quantification process we developed novel software, MRM-DIFF, for the differential analysis of large-scale MRM assays. It supports a correlation optimized warping (COW) algorithm to align MRM chromatograms and utilizes quality control (QC) sample datasets to automatically adjust the alignment parameters. Moreover, user-defined reference libraries that include the molecular formula, retention time, and MRM transition can be used to identify target lipids and to correct peak abundances by considering isotopic peaks. Here, we demonstrate the software pipeline and introduce key points for MRM-based lipidomics research to reduce the mis-identification and overestimation of lipid profiles. The MRM-DIFF program, example data set and the tutorials are downloadable at the “Standalone software” section of the PRIMe (Platform for RIKEN Metabolomics, http://prime.psc.riken.jp/) database website. PMID:25688256
NASA Astrophysics Data System (ADS)
Pérez Rosas, Osvaldo G.; Rivera Martínez, José L.; Maldonado Cano, Luis A.; López Rodríguez, Mario; Amaya Reyes, Laura M.; Cano Martínez, Elizabeth; García Vázquez, Mireya S.; Ramírez Acosta, Alejandro A.
2017-09-01
The automatic identification and classification of musical genres based on the sound similarities to form musical textures, it is a very active investigation area. In this context it has been created recognition systems of musical genres, formed by time-frequency characteristics extraction methods and by classification methods. The selection of this methods are important for a good development in the recognition systems. In this article they are proposed the Mel-Frequency Cepstral Coefficients (MFCC) methods as a characteristic extractor and Support Vector Machines (SVM) as a classifier for our system. The stablished parameters of the MFCC method in the system by our time-frequency analysis, represents the gamma of Mexican culture musical genres in this article. For the precision of a classification system of musical genres it is necessary that the descriptors represent the correct spectrum of each gender; to achieve this we must realize a correct parametrization of the MFCC like the one we present in this article. With the system developed we get satisfactory detection results, where the least identification percentage of musical genres was 66.67% and the one with the most precision was 100%.
Monitoring of patients treated with lithium for bipolar disorder: an international survey.
Nederlof, M; Heerdink, E R; Egberts, A C G; Wilting, I; Stoker, L J; Hoekstra, R; Kupka, R W
2018-04-14
Adequate monitoring of patients using lithium is needed for optimal dosing and for early identification of patients with (potential) ADEs. The objective was to internationally assess how health care professionals monitor patients treated with lithium for bipolar disorder. Using networks of various professional organizations, an anonymous online survey was conducted among health care professionals prescribing lithium. Target lithium serum levels and frequency of monitoring was assessed together with monitoring of physical and laboratory parameters. Reasons to and not to monitor and use of guidelines and institutional protocols, and local monitoring systems were investigated. The survey was completed by 117 health care professionals incorporating responses from twenty-four countries. All prescribers reported to monitor lithium serum levels on a regular basis, with varying target ranges. Almost all (> 97%) monitored thyroid and renal function before start and during maintenance treatment. Reported monitoring of other laboratory and physical parameters was variable. The majority of respondents (74%) used guidelines or institutional protocols for monitoring. In general, the prescriber was responsible for monitoring, had to request every monitoring parameter separately and only a minority of patients was automatically invited. Lithium serum levels, renal and thyroid function were monitored by (almost) all physicians. However, there was considerable variation in other monitoring parameters. Our results help to understand why prescribers of lithium monitor patients and what their main reasons are not to monitor patients using lithium.
Investigations into the Properties, Conditions, and Effects of the Ionosphere
1990-01-15
ionogram database to be used in testing trace-identification algorithms; d. Development of automatic trace-identification algorithms and autoscaling ...Scaler ( ARTIST ) and improvement of the ARTIST software; g. Maintenance and upgrade of the digital ionosondes at Argentia, Newfoundland, and Goose Bay...provided by the contractor; j. Upgrade of the ARTIST computer at the Danish Meteorological Institute/GL Qaanaaq site to provide digisonde tape-playback
Automatic identification and location technology of glass insulator self-shattering
NASA Astrophysics Data System (ADS)
Huang, Xinbo; Zhang, Huiying; Zhang, Ye
2017-11-01
The insulator of transmission lines is one of the most important infrastructures, which is vital to ensure the safe operation of transmission lines under complex and harsh operating conditions. The glass insulator often self-shatters but the available identification methods are inefficient and unreliable. Then, an automatic identification and localization technology of self-shattered glass insulators is proposed, which consists of the cameras installed on the tower video monitoring devices or the unmanned aerial vehicles, the 4G/OPGW network, and the monitoring center, where the identification and localization algorithm is embedded into the expert software. First, the images of insulators are captured by cameras, which are processed to identify the region of insulator string by the presented identification algorithm of insulator string. Second, according to the characteristics of the insulator string image, a mathematical model of the insulator string is established to estimate the direction and the length of the sliding blocks. Third, local binary pattern histograms of the template and the sliding block are extracted, by which the self-shattered insulator can be recognized and located. Finally, a series of experiments is fulfilled to verify the effectiveness of the algorithm. For single insulator images, Ac, Pr, and Rc of the algorithm are 94.5%, 92.38%, and 96.78%, respectively. For double insulator images, Ac, Pr, and Rc are 90.00%, 86.36%, and 93.23%, respectively.
NASA Astrophysics Data System (ADS)
Mlynarczuk, Mariusz; Skiba, Marta
2017-06-01
The correct and consistent identification of the petrographic properties of coal is an important issue for researchers in the fields of mining and geology. As part of the study described in this paper, investigations concerning the application of artificial intelligence methods for the identification of the aforementioned characteristics were carried out. The methods in question were used to identify the maceral groups of coal, i.e. vitrinite, inertinite, and liptinite. Additionally, an attempt was made to identify some non-organic minerals. The analyses were performed using pattern recognition techniques (NN, kNN), as well as artificial neural network techniques (a multilayer perceptron - MLP). The classification process was carried out using microscopy images of polished sections of coals. A multidimensional feature space was defined, which made it possible to classify the discussed structures automatically, based on the methods of pattern recognition and algorithms of the artificial neural networks. Also, from the study we assessed the impact of the parameters for which the applied methods proved effective upon the final outcome of the classification procedure. The result of the analyses was a high percentage (over 97%) of correct classifications of maceral groups and mineral components. The paper discusses also an attempt to analyze particular macerals of the inertinite group. It was demonstrated that using artificial neural networks to this end makes it possible to classify the macerals properly in over 91% of cases. Thus, it was proved that artificial intelligence methods can be successfully applied for the identification of selected petrographic features of coal.
NASA Astrophysics Data System (ADS)
Zhao, Hui; Zheng, Mingwen; Li, Shudong; Wang, Weiping
2018-03-01
Some existing papers focused on finite-time parameter identification and synchronization, but provided incomplete theoretical analyses. Such works incorporated conflicting constraints for parameter identification, therefore, the practical significance could not be fully demonstrated. To overcome such limitations, the underlying paper presents new results of parameter identification and synchronization for uncertain complex dynamical networks with impulsive effect and stochastic perturbation based on finite-time stability theory. Novel results of parameter identification and synchronization control criteria are obtained in a finite time by utilizing Lyapunov function and linear matrix inequality respectively. Finally, numerical examples are presented to illustrate the effectiveness of our theoretical results.
78 FR 32699 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
...)) --Revision of the Guidelines for the onboard operational use of shipborne automatic identification systems... transportation is not generally available). However, parking in the vicinity of the building is limited...
Does the use of automated fetal biometry improve clinical work flow efficiency?
Espinoza, Jimmy; Good, Sara; Russell, Evie; Lee, Wesley
2013-05-01
This study was designed to compare the work flow efficiency of manual measurements of 5 fetal parameters with a novel technique that automatically measures these parameters from 2-dimensional sonograms. This prospective study included 200 singleton pregnancies between 15 and 40 weeks' gestation. Patients were randomly allocated to either manual (n = 100) or automatic (n = 100) fetal biometry. The automatic measurement was performed using a commercially available software application. A digital video recorder captured all on-screen activity associated with the sonographic examination. The examination time and number of steps required to obtain fetal measurements were compared between manual and automatic methods. The mean time required to obtain the biometric measurements was significantly shorter using the automated technique than the manual approach (P < .001 for all comparisons). Similarly, the mean number of steps required to perform these measurements was significantly fewer with automatic measurements compared to the manual technique (P < .001). In summary, automated biometry reduced the examination time required for standard fetal measurements. This approach may improve work flow efficiency in busy obstetric sonography practices.
Automatic physical inference with information maximizing neural networks
NASA Astrophysics Data System (ADS)
Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.
2018-04-01
Compressing large data sets to a manageable number of summaries that are informative about the underlying parameters vastly simplifies both frequentist and Bayesian inference. When only simulations are available, these summaries are typically chosen heuristically, so they may inadvertently miss important information. We introduce a simulation-based machine learning technique that trains artificial neural networks to find nonlinear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). In test cases where the posterior can be derived exactly, likelihood-free inference based on automatically derived IMNN summaries produces nearly exact posteriors, showing that these summaries are good approximations to sufficient statistics. In a series of numerical examples of increasing complexity and astrophysical relevance we show that IMNNs are robustly capable of automatically finding optimal, nonlinear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima. We anticipate that the automatic physical inference method described in this paper will be essential to obtain both accurate and precise cosmological parameter estimates from complex and large astronomical data sets, including those from LSST and Euclid.
Automatic approach to deriving fuzzy slope positions
NASA Astrophysics Data System (ADS)
Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi
2018-03-01
Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.
Search-based model identification of smart-structure damage
NASA Technical Reports Server (NTRS)
Glass, B. J.; Macalou, A.
1991-01-01
This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.
Wolf, M; Miller, L; Donnelly, K
2000-01-01
The most important implication of the double-deficit hypothesis (Wolf & Bowers, in this issue) concerns a new emphasis on fluency and automaticity in intervention for children with developmental reading disabilities. The RAVE-O (Retrieval, Automaticity, Vocabulary Elaboration, Orthography) program is an experimental, fluency-based approach to reading intervention that is designed to accompany a phonological analysis program. In an effort to address multiple possible sources of dysfluency in readers with disabilities, the program involves comprehensive emphases both on fluency in word attack, word identification, and comprehension and on automaticity in underlying componential processes (e.g., phonological, orthographic, semantic, and lexical retrieval skills). The goals, theoretical principles, and applied activities of the RAVE-O curriculum are described with particular stress on facilitating the development of rapid orthographic pattern recognition and on changing children's attitudes toward language.
76 FR 19176 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... (SOLAS) regulation V/22 --Development of policy and new symbols for Automatic Identification System (AIS... transportation is not generally available). However, parking in the vicinity of the building is extremely limited...
Better service, greater efficiency : transit management for demand response systems
DOT National Transportation Integrated Search
1999-01-01
This brochure briefly describes different technologies which can enhance demand response transit systems. It covers automated scheduling and dispatching, mobile data terminals, electronic identification cards, automatic vehicle location, and geograph...
Nikolic, Dejan; Stojkovic, Nikola; Lekic, Nikola
2018-04-09
To obtain the complete operational picture of the maritime situation in the Exclusive Economic Zone (EEZ) which lies over the horizon (OTH) requires the integration of data obtained from various sensors. These sensors include: high frequency surface-wave-radar (HFSWR), satellite automatic identification system (SAIS) and land automatic identification system (LAIS). The algorithm proposed in this paper utilizes radar tracks obtained from the network of HFSWRs, which are already processed by a multi-target tracking algorithm and associates SAIS and LAIS data to the corresponding radar tracks, thus forming an integrated data pair. During the integration process, all HFSWR targets in the vicinity of AIS data are evaluated and the one which has the highest matching factor is used for data association. On the other hand, if there is multiple AIS data in the vicinity of a single HFSWR track, the algorithm still makes only one data pair which consists of AIS and HFSWR data with the highest mutual matching factor. During the design and testing, special attention is given to the latency of AIS data, which could be very high in the EEZs of developing countries. The algorithm is designed, implemented and tested in a real working environment. The testing environment is located in the Gulf of Guinea and includes a network of HFSWRs consisting of two HFSWRs, several coastal sites with LAIS receivers and SAIS data provided by provider of SAIS data.
Oßmann, Barbara E; Sarau, George; Schmitt, Sebastian W; Holtmannspötter, Heinrich; Christiansen, Silke H; Dicke, Wilhelm
2017-06-01
When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 μm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 μm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified. Graphical abstract A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics.
Automated Drug Identification for Urban Hospitals
NASA Technical Reports Server (NTRS)
Shirley, Donna L.
1971-01-01
Many urban hospitals are becoming overloaded with drug abuse cases requiring chemical analysis for identification of drugs. In this paper, the requirements for chemical analysis of body fluids for drugs are determined and a system model for automated drug analysis is selected. The system as modeled, would perform chemical preparation of samples, gas-liquid chromatographic separation of drugs in the chemically prepared samples, infrared spectrophotometric analysis of the drugs, and would utilize automatic data processing and control for drug identification. Requirements of cost, maintainability, reliability, flexibility, and operability are considered.
An AI-based approach to structural damage identification by modal analysis
NASA Technical Reports Server (NTRS)
Glass, B. J.; Hanagud, S.
1990-01-01
Flexible-structure damage is presently addressed by a combined model- and parameter-identification approach which employs the AI methodologies of classification, heuristic search, and object-oriented model knowledge representation. The conditions for model-space search convergence to the best model are discussed in terms of search-tree organization and initial model parameter error. In the illustrative example of a truss structure presented, the use of both model and parameter identification is shown to lead to smaller parameter corrections than would be required by parameter identification alone.
NASA Astrophysics Data System (ADS)
Chen, Jianbo; Guo, Baolin; Yan, Rui; Sun, Suqin; Zhou, Qun
2017-07-01
With the utilization of the hand-held equipment, Fourier transform infrared (FT-IR) spectroscopy is a promising analytical technique to minimize the time cost for the chemical identification of herbal materials. This research examines the feasibility of the hand-held FT-IR spectrometer for the on-site testing of herbal materials, using Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) as examples. Correlation-based linear discriminant models for LJF and LF are established based on the benchtop and hand-held FT-IR instruments. The benchtop FT-IR models can exactly recognize all articles of LJF and LF. Although a few LF articles are misjudged at the sub-class level, the hand-held FT-IR models are able to exactly discriminate LJF and LF. As a direct and label-free analytical technique, FT-IR spectroscopy has great potential in the rapid and automatic chemical identification of herbal materials either in laboratories or in fields. This is helpful to prevent the spread and use of adulterated herbal materials in time.
Spunt, Robert P; Lieberman, Matthew D
2013-01-01
Much social-cognitive processing is believed to occur automatically; however, the relative automaticity of the brain systems underlying social cognition remains largely undetermined. We used functional MRI to test for automaticity in the functioning of two brain systems that research has indicated are important for understanding other people's behavior: the mirror neuron system and the mentalizing system. Participants remembered either easy phone numbers (low cognitive load) or difficult phone numbers (high cognitive load) while observing actions after adopting one of four comprehension goals. For all four goals, mirror neuron system activation showed relatively little evidence of modulation by load; in contrast, the association of mentalizing system activation with the goal of inferring the actor's mental state was extinguished by increased cognitive load. These results support a dual-process model of the brain systems underlying action understanding and social cognition; the mirror neuron system supports automatic behavior identification, and the mentalizing system supports controlled social causal attribution.
A Bayesian framework for extracting human gait using strong prior knowledge.
Zhou, Ziheng; Prügel-Bennett, Adam; Damper, Robert I
2006-11-01
Extracting full-body motion of walking people from monocular video sequences in complex, real-world environments is an important and difficult problem, going beyond simple tracking, whose satisfactory solution demands an appropriate balance between use of prior knowledge and learning from data. We propose a consistent Bayesian framework for introducing strong prior knowledge into a system for extracting human gait. In this work, the strong prior is built from a simple articulated model having both time-invariant (static) and time-variant (dynamic) parameters. The model is easily modified to cater to situations such as walkers wearing clothing that obscures the limbs. The statistics of the parameters are learned from high-quality (indoor laboratory) data and the Bayesian framework then allows us to "bootstrap" to accurate gait extraction on the noisy images typical of cluttered, outdoor scenes. To achieve automatic fitting, we use a hidden Markov model to detect the phases of images in a walking cycle. We demonstrate our approach on silhouettes extracted from fronto-parallel ("sideways on") sequences of walkers under both high-quality indoor and noisy outdoor conditions. As well as high-quality data with synthetic noise and occlusions added, we also test walkers with rucksacks, skirts, and trench coats. Results are quantified in terms of chamfer distance and average pixel error between automatically extracted body points and corresponding hand-labeled points. No one part of the system is novel in itself, but the overall framework makes it feasible to extract gait from very much poorer quality image sequences than hitherto. This is confirmed by comparing person identification by gait using our method and a well-established baseline recognition algorithm.
Orlandi, Silvia; Reyes Garcia, Carlos Alberto; Bandini, Andrea; Donzelli, Gianpaolo; Manfredi, Claudia
2016-11-01
Scientific and clinical advances in perinatology and neonatology have enhanced the chances of survival of preterm and very low weight neonates. Infant cry analysis is a suitable noninvasive complementary tool to assess the neurologic state of infants particularly important in the case of preterm neonates. This article aims at exploiting differences between full-term and preterm infant cry with robust automatic acoustical analysis and data mining techniques. Twenty-two acoustical parameters are estimated in more than 3000 cry units from cry recordings of 28 full-term and 10 preterm newborns. Feature extraction is performed through the BioVoice dedicated software tool, developed at the Biomedical Engineering Lab, University of Firenze, Italy. Classification and pattern recognition is based on genetic algorithms for the selection of the best attributes. Training is performed comparing four classifiers: Logistic Curve, Multilayer Perceptron, Support Vector Machine, and Random Forest and three different testing options: full training set, 10-fold cross-validation, and 66% split. Results show that the best feature set is made up by 10 parameters capable to assess differences between preterm and full-term newborns with about 87% of accuracy. Best results are obtained with the Random Forest method (receiver operating characteristic area, 0.94). These 10 cry features might convey important additional information to assist the clinical specialist in the diagnosis and follow-up of possible delays or disorders in the neurologic development due to premature birth in this extremely vulnerable population of patients. The proposed approach is a first step toward an automatic infant cry recognition system for fast and proper identification of risk in preterm babies. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
FlowerMorphology: fully automatic flower morphometry software.
Rozov, Sergey M; Deineko, Elena V; Deyneko, Igor V
2018-05-01
The software FlowerMorphology is designed for automatic morphometry of actinomorphic flowers. The novel complex parameters of flowers calculated by FlowerMorphology allowed us to quantitatively characterize a polyploid series of tobacco. Morphological differences of plants representing closely related lineages or mutants are mostly quantitative. Very often, there are only very fine variations in plant morphology. Therefore, accurate and high-throughput methods are needed for their quantification. In addition, new characteristics are necessary for reliable detection of subtle changes in morphology. FlowerMorphology is an all-in-one software package to automatically image and analyze five-petal actinomorphic flowers of the dicotyledonous plants. Sixteen directly measured parameters and ten calculated complex parameters of a flower allow us to characterize variations with high accuracy. The program was developed for the needs of automatic characterization of Nicotiana tabacum flowers, but is applicable to many other plants with five-petal actinomorphic flowers and can be adopted for flowers of other merosity. A genetically similar polyploid series of N. tabacum plants was used to investigate differences in flower morphology. For the first time, we could quantify the dependence between ploidy and size and form of the tobacco flowers. We found that the radius of inner petal incisions shows a persistent positive correlation with the chromosome number. In contrast, a commonly used parameter-radius of outer corolla-does not discriminate 2n and 4n plants. Other parameters show that polyploidy leads to significant aberrations in flower symmetry and are also positively correlated with chromosome number. Executables of FlowerMorphology, source code, documentation, and examples are available at the program website: https://github.com/Deyneko/FlowerMorphology .
Suba, Eric J; Pfeifer, John D; Raab, Stephen S
2007-10-01
Patient identification errors in surgical pathology often involve switches of prostate or breast needle core biopsy specimens among patients. We assessed strategies for decreasing the occurrence of these uncommon and yet potentially catastrophic events. Root cause analyses were performed following 3 cases of patient identification error involving prostate needle core biopsy specimens. Patient identification errors in surgical pathology result from slips and lapses of automatic human action that may occur at numerous steps during pre-laboratory, laboratory and post-laboratory work flow processes. Patient identification errors among prostate needle biopsies may be difficult to entirely prevent through the optimization of work flow processes. A DNA time-out, whereby DNA polymorphic microsatellite analysis is used to confirm patient identification before radiation therapy or radical surgery, may eliminate patient identification errors among needle biopsies.
Neural Network Design on the SRC-6 Reconfigurable Computer
2006-12-01
fingerprint identification. In this field, automatic identification methods are used to save time, especially for the purpose of fingerprint matching in...grid widths and lengths and therefore was useful in producing an accurate canvas with which to create sample training images. The added benefit of...tools available free of charge and readily accessible on the computer, it was simple to design bitmap data files visually on a canvas and then
Hydrogen maser frequency standard computer model for automatic cavity tuning servo simulations
NASA Technical Reports Server (NTRS)
Potter, P. D.; Finnie, C.
1978-01-01
A computer model of the JPL hydrogen maser frequency standard was developed. This model allows frequency stability data to be generated, as a function of various maser parameters, many orders of magnitude faster than these data can be obtained by experimental test. In particular, the maser performance as a function of the various automatic tuning servo parameters may be readily determined. Areas of discussion include noise sources, first-order autotuner loop, second-order autotuner loop, and a comparison of the loops.
Flight Control Development for the ARH-70 Armed Reconnaissance Helicopter Program
NASA Technical Reports Server (NTRS)
Christensen, Kevin T.; Campbell, Kip G.; Griffith, Carl D.; Ivler, Christina M.; Tischler, Mark B.; Harding, Jeffrey W.
2008-01-01
In July 2005, Bell Helicopter won the U.S. Army's Armed Reconnaissance Helicopter competition to produce a replacement for the OH-58 Kiowa Warrior capable of performing the armed reconnaissance mission. To meet the U.S. Army requirement that the ARH-70A have Level 1 handling qualities for the scout rotorcraft mission task elements defined by ADS-33E-PRF, Bell equipped the aircraft with their generic automatic flight control system (AFCS). Under the constraints of the tight ARH-70A schedule, the development team used modem parameter identification and control law optimization techniques to optimize the AFCS gains to simultaneously meet multiple handling qualities design criteria. This paper will show how linear modeling, control law optimization, and simulation have been used to produce a Level 1 scout rotorcraft for the U.S. Army, while minimizing the amount of flight testing required for AFCS development and handling qualities evaluation of the ARH-70A.
Comparative study of predicted and experimentally detected interplanetary shocks
NASA Astrophysics Data System (ADS)
Kartalev, M. D.; Grigorov, K. G.; Smith, Z.; Dryer, M.; Fry, C. D.; Sun, Wei; Deehr, C. S.
2002-03-01
We compare the real time space weather prediction shock arrival times at 1 AU made by the USAF/NOAA Shock Time of Arrival (STOA) and Interplanetary Shock Propagation Model (ISPM) models, and the Exploration Physics International/University of Alaska Hakamada-Akasofu-Fry Solar Wind Model (HAF-v2) to a real time analysis analysis of plasma and field ACE data. The comparison is made using an algorithm that was developed on the basis of wavelet data analysis and MHD identification procedure. The shock parameters are estimated for selected "candidate events". An appropriate automatically performing Web-based interface periodically utilizes solar wind observations made by the ACE at L1. Near real time results as well an archive of the registered interesting events are available on a specially developed web site. A number of events are considered. These studies are essential for the validation of real time space weather forecasts made from solar data.
NASA Astrophysics Data System (ADS)
Kwon, Sung-il; Lynch, M.; Prokop, M.
2005-02-01
This paper addresses the system identification and the decoupling PI controller design for a normal conducting RF cavity. Based on the open-loop measurement data of an SNS DTL cavity, the open-loop system's bandwidths and loop time delays are estimated by using batched least square. With the identified system, a PI controller is designed in such a way that it suppresses the time varying klystron droop and decouples the In-phase and Quadrature of the cavity field. The Levenberg-Marquardt algorithm is applied for nonlinear least squares to obtain the optimal PI controller parameters. The tuned PI controller gains are downloaded to the low-level RF system by using channel access. The experiment of the closed-loop system is performed and the performance is investigated. The proposed tuning method is running automatically in real time interface between a host computer with controller hardware through ActiveX Channel Access.
Reference equations of motion for automatic rendezvous and capture
NASA Technical Reports Server (NTRS)
Henderson, David M.
1992-01-01
The analysis presented in this paper defines the reference coordinate frames, equations of motion, and control parameters necessary to model the relative motion and attitude of spacecraft in close proximity with another space system during the Automatic Rendezvous and Capture phase of an on-orbit operation. The relative docking port target position vector and the attitude control matrix are defined based upon an arbitrary spacecraft design. These translation and rotation control parameters could be used to drive the error signal input to the vehicle flight control system. Measurements for these control parameters would become the bases for an autopilot or feedback control system (FCS) design for a specific spacecraft.
Estimation of Stability and Control Derivatives of an F-15
NASA Technical Reports Server (NTRS)
Smith, Mark; Moes, Tim
2006-01-01
A technique for real-time estimation of stability and control derivatives (derivatives of moment coefficients with respect to control-surface deflection angles) was used to support a flight demonstration of a concept of an indirect-adaptive intelligent flight control system (IFCS). Traditionally, parameter identification, including estimation of stability and control derivatives, is done post-flight. However, for the indirect-adaptive IFCS concept, parameter identification is required during flight so that the system can modify control laws for a damaged aircraft. The flight demonstration was carried out on a highly modified F-15 airplane (see Figure 1). The main objective was to estimate the stability and control derivatives of the airplane in nearly real time. A secondary goal was to develop a system to automatically assess the quality of the results, so as to be able to tell a learning neural network which data to use. Parameter estimation was performed by use of Fourier-transform regression (FTR) a technique developed at NASA Langley Research Center. FTR is an equation- error technique that operates in the frequency domain. Data are put into the frequency domain by use of a recursive Fourier transform for a discrete frequency set. This calculation simplifies many subsequent calculations, removes biases, and automatically filters out data beyond the chosen frequency range. FTR as applied here was tailored to work with pilot inputs, which produce correlated surface positions that prevent accurate parameter estimates, by replacing half the derivatives with predicted values. FTR was also set up to work only on a recent window of data, to accommodate changes in flight condition. A system of confidence measures was developed to identify quality-parameter estimates that a learning neural network could use. This system judged the estimates primarily on the basis of their estimated variances and of the level of aircraft response. The resulting FTR system was implemented in the Simulink software system and auto-coded in the C programming language for use on the Airborne Research Test System (ARTS II) computer installed in the F-15 airplane. The Simulink model was also used in a control room that utilizes the Ring Buffered Network Bus hardware and software, making it possible to evaluate test points during flights. In-flight parameter estimation was done for piloted and automated maneuvers, primarily at three test conditions. Figure 2 shows results for pitching moment due to symmetric stabilator actuations for a series of three pitch doublet maneuvers (in a doublet maneuver, a command to change attitude in a given direction by a given amount is followed immediately by a command to change attitude in the opposite direction by the same amount). A time window of 5 seconds was used. The portions of the curves shown in red are those that passed the confidence tests. The technique showed good convergence for most derivatives for both kinds of maneuvers - typically within a few seconds. The confidence tests were marginally successful, and it would be necessary to refine them for use in an IFCS.
Automatic design of optical systems by digital computer
NASA Technical Reports Server (NTRS)
Casad, T. A.; Schmidt, L. F.
1967-01-01
Computer program uses geometrical optical techniques and a least squares optimization method employing computing equipment for the automatic design of optical systems. It evaluates changes in various optical parameters, provides comprehensive ray-tracing, and generally determines the acceptability of the optical system characteristics.
MASGOMAS PROJECT, New automatic-tool for cluster search on IR photometric surveys
NASA Astrophysics Data System (ADS)
Rübke, K.; Herrero, A.; Borissova, J.; Ramirez-Alegria, S.; García, M.; Marin-Franch, A.
2015-05-01
The Milky Way is expected to contain a large number of young massive (few x 1000 solar masses) stellar clusters, borne in dense cores of gas and dust. Yet, their known number remains small. We have started a programme to search for such clusters, MASGOMAS (MAssive Stars in Galactic Obscured MAssive clusterS). Initially, we selected promising candidates by means of visual inspection of infrared images. In a second phase of the project we have presented a semi-automatic method to search for obscured massive clusters that resulted in the identification of new massive clusters, like MASGOMAS-1 (with more than 10,000 solar masses) and MASGOMAS-4 (a double-cored association of about 3,000 solar masses). We have now developped a new automatic tool for MASGOMAS that allows the identification of a large number of massive cluster candidates from the 2MASS and VVV catalogues. Cluster candidates fulfilling criteria appropriated for massive OB stars are thus selected in an efficient and objective way. We present the results from this tool and the observations of the first selected cluster, and discuss the implications for the Milky Way structure.
An automatic and effective parameter optimization method for model tuning
NASA Astrophysics Data System (ADS)
Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.
2015-05-01
Physical parameterizations in General Circulation Models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determines parameter sensitivity and the other chooses the optimum initial value of sensitive parameters, are introduced before the downhill simplex method to reduce the computational cost and improve the tuning performance. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9%. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameters tuning during the model development stage.
49 CFR 599.303 - Agency disposition of dealer application for reimbursement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... correct a non-conforming submission. (d) Electronic rejection. An application is automatically rejected... transaction, or identifies the vehicle identification number of a new or trade-in vehicle that was involved in...
Benoussaad, Mourad; Poignet, Philippe; Hayashibe, Mitsuhiro; Azevedo-Coste, Christine; Fattal, Charles; Guiraud, David
2013-06-01
We investigated the parameter identification of a multi-scale physiological model of skeletal muscle, based on Huxley's formulation. We focused particularly on the knee joint controlled by quadriceps muscles under electrical stimulation (ES) in subjects with a complete spinal cord injury. A noninvasive and in vivo identification protocol was thus applied through surface stimulation in nine subjects and through neural stimulation in one ES-implanted subject. The identification protocol included initial identification steps, which are adaptations of existing identification techniques to estimate most of the parameters of our model. Then we applied an original and safer identification protocol in dynamic conditions, which required resolution of a nonlinear programming (NLP) problem to identify the serial element stiffness of quadriceps. Each identification step and cross validation of the estimated model in dynamic condition were evaluated through a quadratic error criterion. The results highlighted good accuracy, the efficiency of the identification protocol and the ability of the estimated model to predict the subject-specific behavior of the musculoskeletal system. From the comparison of parameter values between subjects, we discussed and explored the inter-subject variability of parameters in order to select parameters that have to be identified in each patient.
Critical Assessment of Small Molecule Identification 2016: automated methods.
Schymanski, Emma L; Ruttkies, Christoph; Krauss, Martin; Brouard, Céline; Kind, Tobias; Dührkop, Kai; Allen, Felicity; Vaniya, Arpana; Verdegem, Dries; Böcker, Sebastian; Rousu, Juho; Shen, Huibin; Tsugawa, Hiroshi; Sajed, Tanvir; Fiehn, Oliver; Ghesquière, Bart; Neumann, Steffen
2017-03-27
The fourth round of the Critical Assessment of Small Molecule Identification (CASMI) Contest ( www.casmi-contest.org ) was held in 2016, with two new categories for automated methods. This article covers the 208 challenges in Categories 2 and 3, without and with metadata, from organization, participation, results and post-contest evaluation of CASMI 2016 through to perspectives for future contests and small molecule annotation/identification. The Input Output Kernel Regression (CSI:IOKR) machine learning approach performed best in "Category 2: Best Automatic Structural Identification-In Silico Fragmentation Only", won by Team Brouard with 41% challenge wins. The winner of "Category 3: Best Automatic Structural Identification-Full Information" was Team Kind (MS-FINDER), with 76% challenge wins. The best methods were able to achieve over 30% Top 1 ranks in Category 2, with all methods ranking the correct candidate in the Top 10 in around 50% of challenges. This success rate rose to 70% Top 1 ranks in Category 3, with candidates in the Top 10 in over 80% of the challenges. The machine learning and chemistry-based approaches are shown to perform in complementary ways. The improvement in (semi-)automated fragmentation methods for small molecule identification has been substantial. The achieved high rates of correct candidates in the Top 1 and Top 10, despite large candidate numbers, open up great possibilities for high-throughput annotation of untargeted analysis for "known unknowns". As more high quality training data becomes available, the improvements in machine learning methods will likely continue, but the alternative approaches still provide valuable complementary information. Improved integration of experimental context will also improve identification success further for "real life" annotations. The true "unknown unknowns" remain to be evaluated in future CASMI contests. Graphical abstract .
Mathematical correlation of modal-parameter-identification methods via system-realization theory
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1987-01-01
A unified approach is introduced using system-realization theory to derive and correlate modal-parameter-identification methods for flexible structures. Several different time-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal-parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research toward the unification of the many possible approaches for modal-parameter identification.
Vignally, P; Fondi, G; Taggi, F; Pitidis, A
2011-03-31
In Italy the European Union Injury Database reports the involvement of chemical products in 0.9% of home and leisure accidents. The Emergency Department registry on domestic accidents in Italy and the Poison Control Centres record that 90% of cases of exposure to toxic substances occur in the home. It is not rare for the effects of chemical agents to be observed in hospitals, with a high potential risk of damage - the rate of this cause of hospital admission is double the domestic injury average. The aim of this study was to monitor the effects of injuries caused by caustic agents in Italy using automatic free-text recognition in Emergency Department medical databases. We created a Stata software program to automatically identify caustic or corrosive injury cases using an agent-specific list of keywords. We focused attention on the procedure's sensitivity and specificity. Ten hospitals in six regions of Italy participated in the study. The program identified 112 cases of injury by caustic or corrosive agents. Checking the cases by quality controls (based on manual reading of ED reports), we assessed 99 cases as true positive, i.e. 88.4% of the patients were automatically recognized by the software as being affected by caustic substances (99% CI: 80.6%- 96.2%), that is to say 0.59% (99% CI: 0.45%-0.76%) of the whole sample of home injuries, a value almost three times as high as that expected (p < 0.0001) from European codified information. False positives were 11.6% of the recognized cases (99% CI: 5.1%- 21.5%). Our automatic procedure for caustic agent identification proved to have excellent product recognition capacity with an acceptable level of excess sensitivity. Contrary to our a priori hypothesis, the automatic recognition system provided a level of identification of agents possessing caustic effects that was significantly much greater than was predictable on the basis of the values from current codifications reported in the European Database.
NASA Astrophysics Data System (ADS)
Takemine, S.; Rikimaru, A.; Takahashi, K.
The rice is one of the staple foods in the world High quality rice production requires periodically collecting rice growth data to control the growth of rice The height of plant the number of stem the color of leaf is well known parameters to indicate rice growth Rice growth diagnosis method based on these parameters is used operationally in Japan although collecting these parameters by field survey needs a lot of labor and time Recently a laborsaving method for rice growth diagnosis is proposed which is based on vegetation cover rate of rice Vegetation cover rate of rice is calculated based on discriminating rice plant areas in a digital camera image which is photographed in nadir direction Discrimination of rice plant areas in the image was done by the automatic binarization processing However in the case of vegetation cover rate calculation method depending on the automatic binarization process there is a possibility to decrease vegetation cover rate against growth of rice In this paper a calculation method of vegetation cover rate was proposed which based on the automatic binarization process and referred to the growth hysteresis information For several images obtained by field survey during rice growing season vegetation cover rate was calculated by the conventional automatic binarization processing and the proposed method respectively And vegetation cover rate of both methods was compared with reference value obtained by visual interpretation As a result of comparison the accuracy of discriminating rice plant areas was increased by the proposed
NASA Astrophysics Data System (ADS)
White, Jonathan; Panda, Brajendra
A major concern for computer system security is the threat from malicious insiders who target and abuse critical data items in the system. In this paper, we propose a solution to enable automatic identification of critical data items in a database by way of data dependency relationships. This identification of critical data items is necessary because insider threats often target mission critical data in order to accomplish malicious tasks. Unfortunately, currently available systems fail to address this problem in a comprehensive manner. It is more difficult for non-experts to identify these critical data items because of their lack of familiarity and due to the fact that data systems are constantly changing. By identifying the critical data items automatically, security engineers will be better prepared to protect what is critical to the mission of the organization and also have the ability to focus their security efforts on these critical data items. We have developed an algorithm that scans the database logs and forms a directed graph showing which items influence a large number of other items and at what frequency this influence occurs. This graph is traversed to reveal the data items which have a large influence throughout the database system by using a novel metric based formula. These items are critical to the system because if they are maliciously altered or stolen, the malicious alterations will spread throughout the system, delaying recovery and causing a much more malignant effect. As these items have significant influence, they are deemed to be critical and worthy of extra security measures. Our proposal is not intended to replace existing intrusion detection systems, but rather is intended to complement current and future technologies. Our proposal has never been performed before, and our experimental results have shown that it is very effective in revealing critical data items automatically.
Automatic energy calibration algorithm for an RBS setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Tiago F.; Moro, Marcos V.; Added, Nemitala
2013-05-06
This work describes a computer algorithm for automatic extraction of the energy calibration parameters from a Rutherford Back-Scattering Spectroscopy (RBS) spectrum. Parameters like the electronic gain, electronic offset and detection resolution (FWHM) of a RBS setup are usually determined using a standard sample. In our case, the standard sample comprises of a multi-elemental thin film made of a mixture of Ti-Al-Ta that is analyzed at the beginning of each run at defined beam energy. A computer program has been developed to extract automatically the calibration parameters from the spectrum of the standard sample. The code evaluates the first derivative ofmore » the energy spectrum, locates the trailing edges of the Al, Ti and Ta peaks and fits a first order polynomial for the energy-channel relation. The detection resolution is determined fitting the convolution of a pre-calculated theoretical spectrum. To test the code, data of two years have been analyzed and the results compared with the manual calculations done previously, obtaining good agreement.« less
Automatic control design procedures for restructurable aircraft control
NASA Technical Reports Server (NTRS)
Looze, D. P.; Krolewski, S.; Weiss, J.; Barrett, N.; Eterno, J.
1985-01-01
A simple, reliable automatic redesign procedure for restructurable control is discussed. This procedure is based on Linear Quadratic (LQ) design methodologies. It employs a robust control system design for the unfailed aircraft to minimize the effects of failed surfaces and to extend the time available for restructuring the Flight Control System. The procedure uses the LQ design parameters for the unfailed system as a basis for choosing the design parameters of the failed system. This philosophy alloys the engineering trade-offs that were present in the nominal design to the inherited by the restructurable design. In particular, it alloys bandwidth limitations and performance trade-offs to be incorporated in the redesigned system. The procedure also has several other desirable features. It effectively redistributes authority among the available control effectors to maximize the system performance subject to actuator limitations and constraints. It provides a graceful performance degradation as the amount of control authority lessens. When given the parameters of the unfailed aircraft, the automatic redesign procedure reproduces the nominal control system design.
Robust automatic measurement of 3D scanned models for the human body fat estimation.
Giachetti, Andrea; Lovato, Christian; Piscitelli, Francesco; Milanese, Chiara; Zancanaro, Carlo
2015-03-01
In this paper, we present an automatic tool for estimating geometrical parameters from 3-D human scans independent on pose and robustly against the topological noise. It is based on an automatic segmentation of body parts exploiting curve skeleton processing and ad hoc heuristics able to remove problems due to different acquisition poses and body types. The software is able to locate body trunk and limbs, detect their directions, and compute parameters like volumes, areas, girths, and lengths. Experimental results demonstrate that measurements provided by our system on 3-D body scans of normal and overweight subjects acquired in different poses are highly correlated with the body fat estimates obtained on the same subjects with dual-energy X-rays absorptiometry (DXA) scanning. In particular, maximal lengths and girths, not requiring precise localization of anatomical landmarks, demonstrate a good correlation (up to 96%) with the body fat and trunk fat. Regression models based on our automatic measurements can be used to predict body fat values reasonably well.
Dairy farmers with larger herd sizes adopt more precision dairy technologies.
Gargiulo, J I; Eastwood, C R; Garcia, S C; Lyons, N A
2018-06-01
An increase in the average herd size on Australian dairy farms has also increased the labor and animal management pressure on farmers, thus potentially encouraging the adoption of precision technologies for enhanced management control. A survey was undertaken in 2015 in Australia to identify the relationship between herd size, current precision technology adoption, and perception of the future of precision technologies. Additionally, differences between farmers and service providers in relation to perception of future precision technology adoption were also investigated. Responses from 199 dairy farmers, and 102 service providers, were collected between May and August 2015 via an anonymous Internet-based questionnaire. Of the 199 dairy farmer responses, 10.4% corresponded to farms that had fewer than 150 cows, 37.7% had 151 to 300 cows, 35.5% had 301 to 500 cows; 6.0% had 501 to 700 cows, and 10.4% had more than 701 cows. The results showed that farmers with more than 500 cows adopted between 2 and 5 times more specific precision technologies, such as automatic cup removers, automatic milk plant wash systems, electronic cow identification systems and herd management software, when compared with smaller farms. Only minor differences were detected in perception of the future of precision technologies between either herd size or farmers and service providers. In particular, service providers expected a higher adoption of automatic milking and walk over weighing systems than farmers. Currently, the adoption of precision technology has mostly been of the type that reduces labor needs; however, respondents indicated that by 2025 adoption of data capturing technology for monitoring farm system parameters would be increased. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bezati, F; Froelich, D; Massardier, V; Maris, E
2010-04-01
This study focused on the detection of rare earth oxides, used as tracers for the identification of polymer materials, using XRF (X-ray fluorescence) spectrometry. The tests were carried out in a test system device which allows the collection of static measurements of the samples' spectrum through the use of energy dispersive X-ray fluorescence technology. A sorting process based on tracers added into the polymer matrix is proposed in order to increase sorting selectivity of polypropylene during end-of-life recycling. Tracers consist of systems formed by one or by several substances dispersed into a material, to add a selective property to it, with the aim of improving the efficiency of sorting and high speed identification. Several samples containing rare earth oxides (Y(2)O(3), CeO(2), Nd(2)O(3), Gd(2)O(3), Dy(2)O(3), Er(2)O(3) and Yb(2)O(3)) in different concentrations were prepared in order to analyse some of the parameters which can influence the detection, such as the concentration of tracers, the acquisition time and the possible overlapping among the tracers. This work shows that by using the XRF test system device, it was possible to detect 5 of the 7 tracers tested for 1min exposure time and at a concentration level of 1000ppm. These two parameters will play an important role in the development of an industrial device, which indicates the necessity of further works that needs to be conducted in order to reduce them. Copyright 2009 Elsevier Ltd. All rights reserved.
Automatic estimation of elasticity parameters in breast tissue
NASA Astrophysics Data System (ADS)
Skerl, Katrin; Cochran, Sandy; Evans, Andrew
2014-03-01
Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.
On Markov parameters in system identification
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.
Gas Reservoir Identification Basing on Deep Learning of Seismic-print Characteristics
NASA Astrophysics Data System (ADS)
Cao, J.; Wu, S.; He, X.
2016-12-01
Reservoir identification based on seismic data analysis is the core task in oil and gas geophysical exploration. The essence of reservoir identification is to identify the properties of rock pore fluid. We developed a novel gas reservoir identification method named seismic-print analysis by imitation of the vocal-print analysis techniques in speaker identification. The term "seismic-print" is referred to the characteristics of the seismic waveform which can identify determinedly the property of the geological objectives, for instance, a nature gas reservoir. Seismic-print can be characterized by one or a few parameters named as seismic-print parameters. It has been proven that gas reservoirs are of characteristics of negative 1-order cepstrum coefficient anomaly and Positive 2-order cepstrum coefficient anomaly, concurrently. The method is valid for sandstone gas reservoir, carbonate reservoir and shale gas reservoirs, and the accuracy rate may reach up to 90%. There are two main problems to deal with in the application of seismic-print analysis method. One is to identify the "ripple" of a reservoir on the seismogram, and another is to construct the mapping relationship between the seismic-print and the gas reservoirs. Deep learning developed in recent years is of the ability to reveal the complex non-linear relationship between the attribute and the data, and of ability to extract automatically the features of the objective from the data. Thus, deep learning could been used to deal with these two problems. There are lots of algorithms to carry out deep learning. The algorithms can be roughly divided into two categories: Belief Networks Network (DBNs) and Convolutional Neural Network (CNN). DBNs is a probabilistic generative model, which can establish a joint distribution of the observed data and tags. CNN is a feedforward neural network, which can be used to extract the 2D structure feature of the input data. Both DBNs and CNN can be used to deal with seismic data. We use an improved DBNs to identify carbonate rocks from log data, the accuracy rate can reach up to 83%. DBNs is used to deal with seismic waveform data, more information is obtained. The work was supported by NSFC under grant No. 41430323 and No. 41274128, and State Key Lab. of Oil and Gas Reservoir Geology and Exploration.
Analysis of automated quantification of motor activity in REM sleep behaviour disorder.
Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle; Kempfner, Lykke; Jennum, Poul
2015-10-01
Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients. © 2015 European Sleep Research Society.
Zare, Marzieh; Rezvani, Zahra; Benasich, April A
2016-07-01
This study assesses the ability of a novel, "automatic classification" approach to facilitate identification of infants at highest familial risk for language-learning disorders (LLD) and to provide converging assessments to enable earlier detection of developmental disorders that disrupt language acquisition. Network connectivity measures derived from 62-channel electroencephalogram (EEG) recording were used to identify selected features within two infant groups who differed on LLD risk: infants with a family history of LLD (FH+) and typically-developing infants without such a history (FH-). A support vector machine was deployed; global efficiency and global and local clustering coefficients were computed. A novel minimum spanning tree (MST) approach was also applied. Cross-validation was employed to assess the resultant classification. Infants were classified with about 80% accuracy into FH+ and FH- groups with 89% specificity and precision of 92%. Clustering patterns differed by risk group and MST network analysis suggests that FH+ infants' EEG complexity patterns were significantly different from FH- infants. The automatic classification techniques used here were shown to be both robust and reliable and should provide valuable information when applied to early identification of risk or clinical groups. The ability to identify infants at highest risk for LLD using "automatic classification" strategies is a novel convergent approach that may facilitate earlier diagnosis and remediation. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Travtek Evaluation Task C3: Camera Car Study
DOT National Transportation Integrated Search
1998-11-01
A "biometric" technology is an automatic method for the identification, or identity verification, of an individual based on physiological or behavioral characteristics. The primary objective of the study summarized in this tech brief was to make reco...
Superville, Pierre-Jean; Pižeta, Ivanka; Omanović, Dario; Billon, Gabriel
2013-08-15
Based on automatic on-line measurements on the Deûle River that showed daily variation of a peak around -0.56V (vs Ag|AgCl 3M), identification of Reduced Sulphur Species (RSS) in oxic waters was performed applying cathodic stripping voltammetry (CSV) with the hanging mercury drop electrode (HMDE). Pseudopolarographic studies accompanied with increasing concentrations of copper revealed the presence of elemental sulphur S(0), thioacetamide (TA) and reduced glutathione (GSH) as the main sulphur compounds in the Deûle River. In order to resolve these three species, a simple procedure was developed and integrated in an automatic on-line monitoring system. During one week monitoring with hourly measurements, GSH and S(0) exhibited daily cycles whereas no consequential pattern was observed for TA. Copyright © 2013 Elsevier B.V. All rights reserved.
Use of AFIS for linking scenes of crime.
Hefetz, Ido; Liptz, Yakir; Vaturi, Shaul; Attias, David
2016-05-01
Forensic intelligence can provide critical information in criminal investigations - the linkage of crime scenes. The Automatic Fingerprint Identification System (AFIS) is an example of a technological improvement that has advanced the entire forensic identification field to strive for new goals and achievements. In one example using AFIS, a series of burglaries into private apartments enabled a fingerprint examiner to search latent prints from different burglary scenes against an unsolved latent print database. Latent finger and palm prints coming from the same source were associated with over than 20 cases. Then, by forensic intelligence and profile analysis the offender's behavior could be anticipated. He was caught, identified, and arrested. It is recommended to perform an AFIS search of LT/UL prints against current crimes automatically as part of laboratory protocol and not by an examiner's discretion. This approach may link different crime scenes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Automatic identification and normalization of dosage forms in drug monographs
2012-01-01
Background Each day, millions of health consumers seek drug-related information on the Web. Despite some efforts in linking related resources, drug information is largely scattered in a wide variety of websites of different quality and credibility. Methods As a step toward providing users with integrated access to multiple trustworthy drug resources, we aim to develop a method capable of identifying drug's dosage form information in addition to drug name recognition. We developed rules and patterns for identifying dosage forms from different sections of full-text drug monographs, and subsequently normalized them to standardized RxNorm dosage forms. Results Our method represents a significant improvement compared with a baseline lookup approach, achieving overall macro-averaged Precision of 80%, Recall of 98%, and F-Measure of 85%. Conclusions We successfully developed an automatic approach for drug dosage form identification, which is critical for building links between different drug-related resources. PMID:22336431
On the identification of sleep stages in mouse electroencephalography time-series.
Lampert, Thomas; Plano, Andrea; Austin, Jim; Platt, Bettina
2015-05-15
The automatic identification of sleep stages in electroencephalography (EEG) time-series is a long desired goal for researchers concerned with the study of sleep disorders. This paper presents advances towards achieving this goal, with particular application to EEG time-series recorded from mice. Approaches in the literature apply supervised learning classifiers, however, these do not reach the performance levels required for use within a laboratory. In this paper, detection reliability is increased, most notably in the case of REM stage identification, by naturally decomposing the problem and applying a support vector machine (SVM) based classifier to each of the EEG channels. Their outputs are integrated within a multiple classifier system. Furthermore, there exists no general consensus on the ideal choice of parameter values in such systems. Therefore, an investigation into the effects upon the classification performance is presented by varying parameters such as the epoch length; features size; number of training samples; and the method for calculating the power spectral density estimate. Finally, the results of these investigations are brought together to demonstrate the performance of the proposed classification algorithm in two cases: intra-animal classification and inter-animal classification. It is shown that, within a dataset of 10 EEG recordings, and using less than 1% of an EEG as training data, a mean classification errors of Awake 6.45%, NREM 5.82%, and REM 6.65% (with standard deviations less than 0.6%) are achieved in intra-animal analysis and, when using the equivalent of 7% of one EEG as training data, Awake 10.19%, NREM 7.75%, and REM 17.43% are achieved in inter-animal analysis (with mean standard deviations of 6.42%, 2.89%, and 9.69% respectively). A software package implementing the proposed approach will be made available through Cybula Ltd. Copyright © 2015 Elsevier B.V. All rights reserved.
Automatic extraction of road features in urban environments using dense ALS data
NASA Astrophysics Data System (ADS)
Soilán, Mario; Truong-Hong, Linh; Riveiro, Belén; Laefer, Debra
2018-02-01
This paper describes a methodology that automatically extracts semantic information from urban ALS data for urban parameterization and road network definition. First, building façades are segmented from the ground surface by combining knowledge-based information with both voxel and raster data. Next, heuristic rules and unsupervised learning are applied to the ground surface data to distinguish sidewalk and pavement points as a means for curb detection. Then radiometric information was employed for road marking extraction. Using high-density ALS data from Dublin, Ireland, this fully automatic workflow was able to generate a F-score close to 95% for pavement and sidewalk identification with a resolution of 20 cm and better than 80% for road marking detection.
Gradient Evolution-based Support Vector Machine Algorithm for Classification
NASA Astrophysics Data System (ADS)
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
Multiple layer identification label using stacked identification symbols
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor)
2005-01-01
An automatic identification system and method are provided which employ a machine readable multiple layer label. The label has a plurality of machine readable marking layers stacked one upon another. Each of the marking layers encodes an identification symbol detectable using one or more sensing technologies. The various marking layers may comprise the same marking material or each marking layer may comprise a different medium having characteristics detectable by a different sensing technology. These sensing technologies include x-ray, radar, capacitance, thermal, magnetic and ultrasonic. A complete symbol may be encoded within each marking layer or a symbol may be segmented into fragments which are then divided within a single marking layer or encoded across multiple marking layers.
Mathematical correlation of modal parameter identification methods via system realization theory
NASA Technical Reports Server (NTRS)
Juang, J. N.
1986-01-01
A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification.
Automatic identification of individual killer whales.
Brown, Judith C; Smaragdis, Paris; Nousek-McGregor, Anna
2010-09-01
Following the successful use of HMM and GMM models for classification of a set of 75 calls of northern resident killer whales into call types [Brown, J. C., and Smaragdis, P., J. Acoust. Soc. Am. 125, 221-224 (2009)], the use of these same methods has been explored for the identification of vocalizations from the same call type N2 of four individual killer whales. With an average of 20 vocalizations from each of the individuals the pairwise comparisons have an extremely high success rate of 80 to 100% and the identifications within the entire group yield around 78%.
An automatic and effective parameter optimization method for model tuning
NASA Astrophysics Data System (ADS)
Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.
2015-11-01
Physical parameterizations in general circulation models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time-consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determining the model's sensitivity to the parameters and the other choosing the optimum initial value for those sensitive parameters, are introduced before the downhill simplex method. This new method reduces the number of parameters to be tuned and accelerates the convergence of the downhill simplex method. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.
Zou, Yuan; Nathan, Viswam; Jafari, Roozbeh
2016-01-01
Electroencephalography (EEG) is the recording of electrical activity produced by the firing of neurons within the brain. These activities can be decoded by signal processing techniques. However, EEG recordings are always contaminated with artifacts which hinder the decoding process. Therefore, identifying and removing artifacts is an important step. Researchers often clean EEG recordings with assistance from independent component analysis (ICA), since it can decompose EEG recordings into a number of artifact-related and event-related potential (ERP)-related independent components. However, existing ICA-based artifact identification strategies mostly restrict themselves to a subset of artifacts, e.g., identifying eye movement artifacts only, and have not been shown to reliably identify artifacts caused by nonbiological origins like high-impedance electrodes. In this paper, we propose an automatic algorithm for the identification of general artifacts. The proposed algorithm consists of two parts: 1) an event-related feature-based clustering algorithm used to identify artifacts which have physiological origins; and 2) the electrode-scalp impedance information employed for identifying nonbiological artifacts. The results on EEG data collected from ten subjects show that our algorithm can effectively detect, separate, and remove both physiological and nonbiological artifacts. Qualitative evaluation of the reconstructed EEG signals demonstrates that our proposed method can effectively enhance the signal quality, especially the quality of ERPs, even for those that barely display ERPs in the raw EEG. The performance results also show that our proposed method can effectively identify artifacts and subsequently enhance the classification accuracies compared to four commonly used automatic artifact removal methods.
Zou, Yuan; Nathan, Viswam; Jafari, Roozbeh
2017-01-01
Electroencephalography (EEG) is the recording of electrical activity produced by the firing of neurons within the brain. These activities can be decoded by signal processing techniques. However, EEG recordings are always contaminated with artifacts which hinder the decoding process. Therefore, identifying and removing artifacts is an important step. Researchers often clean EEG recordings with assistance from Independent Component Analysis (ICA), since it can decompose EEG recordings into a number of artifact-related and event related potential (ERP)-related independent components (ICs). However, existing ICA-based artifact identification strategies mostly restrict themselves to a subset of artifacts, e.g. identifying eye movement artifacts only, and have not been shown to reliably identify artifacts caused by non-biological origins like high-impedance electrodes. In this paper, we propose an automatic algorithm for the identification of general artifacts. The proposed algorithm consists of two parts: 1) an event-related feature based clustering algorithm used to identify artifacts which have physiological origins and 2) the electrode-scalp impedance information employed for identifying non-biological artifacts. The results on EEG data collected from 10 subjects show that our algorithm can effectively detect, separate, and remove both physiological and non-biological artifacts. Qualitative evaluation of the reconstructed EEG signals demonstrates that our proposed method can effectively enhance the signal quality, especially the quality of ERPs, even for those that barely display ERPs in the raw EEG. The performance results also show that our proposed method can effectively identify artifacts and subsequently enhance the classification accuracies compared to four commonly used automatic artifact removal methods. PMID:25415992
First tests of a multi-wavelength mini-DIAL system for the automatic detection of greenhouse gases
NASA Astrophysics Data System (ADS)
Parracino, S.; Gelfusa, M.; Lungaroni, M.; Murari, A.; Peluso, E.; Ciparisse, J. F.; Malizia, A.; Rossi, R.; Ventura, P.; Gaudio, P.
2017-10-01
Considering the increase of atmospheric pollution levels in our cities, due to emissions from vehicles and domestic heating, and the growing threat of terrorism, it is necessary to develop instrumentation and gather know-how for the automatic detection and measurement of dangerous substances as quickly and far away as possible. The Multi- Wavelength DIAL, an extension of the conventional DIAL technique, is one of the most powerful remote sensing methods for the identification of multiple substances and seems to be a promising solution compared to existing alternatives. In this paper, first in-field tests of a smart and fully automated Multi-Wavelength mini-DIAL will be presented and discussed in details. The recently developed system, based on a long-wavelength infrared (IR-C) CO2 laser source, has the potential of giving an early warning, whenever something strange is found in the atmosphere, followed by identification and simultaneous concentration measurements of many chemical species, ranging from the most important Greenhouse Gases (GHG) to other harmful Volatile Organic Compounds (VOCs). Preliminary studies, regarding the fingerprint of the investigated substances, have been carried out by cross-referencing database of infrared (IR) spectra, obtained using in-cell measurements, and typical Mixing Ratios in the examined region, extrapolated from the literature. First experiments in atmosphere have been performed into a suburban and moderately-busy area of Rome. Moreover, to optimize the automatic identification of the harmful species to be recognized on the basis of in cell measurements of the absorption coefficient spectra, an advanced multivariate statistical method for classification has been developed and tested.
Fu, Yili; Gao, Wenpeng; Chen, Xiaoguang; Zhu, Minwei; Shen, Weigao; Wang, Shuguo
2010-01-01
The reference system based on the fourth ventricular landmarks (including the fastigial point and ventricular floor plane) is used in medical image analysis of the brain stem. The objective of this study was to develop a rapid, robust, and accurate method for the automatic identification of this reference system on T1-weighted magnetic resonance images. The fully automated method developed in this study consisted of four stages: preprocessing of the data set, expectation-maximization algorithm-based extraction of the fourth ventricle in the region of interest, a coarse-to-fine strategy for identifying the fastigial point, and localization of the base point. The method was evaluated on 27 Brain Web data sets qualitatively and 18 Internet Brain Segmentation Repository data sets and 30 clinical scans quantitatively. The results of qualitative evaluation indicated that the method was robust to rotation, landmark variation, noise, and inhomogeneity. The results of quantitative evaluation indicated that the method was able to identify the reference system with an accuracy of 0.7 +/- 0.2 mm for the fastigial point and 1.1 +/- 0.3 mm for the base point. It took <6 seconds for the method to identify the related landmarks on a personal computer with an Intel Core 2 6300 processor and 2 GB of random-access memory. The proposed method for the automatic identification of the reference system based on the fourth ventricular landmarks was shown to be rapid, robust, and accurate. The method has potentially utility in image registration and computer-aided surgery.
Diaz-Varela, R A; Zarco-Tejada, P J; Angileri, V; Loudjani, P
2014-02-15
Agricultural terraces are features that provide a number of ecosystem services. As a result, their maintenance is supported by measures established by the European Common Agricultural Policy (CAP). In the framework of CAP implementation and monitoring, there is a current and future need for the development of robust, repeatable and cost-effective methodologies for the automatic identification and monitoring of these features at farm scale. This is a complex task, particularly when terraces are associated to complex vegetation cover patterns, as happens with permanent crops (e.g. olive trees). In this study we present a novel methodology for automatic and cost-efficient identification of terraces using only imagery from commercial off-the-shelf (COTS) cameras on board unmanned aerial vehicles (UAVs). Using state-of-the-art computer vision techniques, we generated orthoimagery and digital surface models (DSMs) at 11 cm spatial resolution with low user intervention. In a second stage, these data were used to identify terraces using a multi-scale object-oriented classification method. Results show the potential of this method even in highly complex agricultural areas, both regarding DSM reconstruction and image classification. The UAV-derived DSM had a root mean square error (RMSE) lower than 0.5 m when the height of the terraces was assessed against field GPS data. The subsequent automated terrace classification yielded an overall accuracy of 90% based exclusively on spectral and elevation data derived from the UAV imagery. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Parker, R. J.; Nahm, A. H.; Loewenthal, S. H.
1982-01-01
Rolling-element fatigue tests were run in standard and high-speed rolling-contact rigs at bar speeds from 5000 to 50,000 rpm to determine the effects of speed and lubricant film parameter on rolling-element fatigue life. AISI 52100 test bars were tested at a maximum Hertz stress of 4.83 GPa (700,000 psi) with three traction fluids and an automatic transmission fluid. Rolling-element fatigue life increased with speed, with the greatest increases occurring from 10,000 to 50,000 rpm. The life data tended to follow published life-versus-lubricant-film-parameter data up to a film parameter of approximately 3.
[Automatic adjustment control system for DC glow discharge plasma source].
Wan, Zhen-zhen; Wang, Yong-qing; Li, Xiao-jia; Wang, Hai-zhou; Shi, Ning
2011-03-01
There are three important parameters in the DC glow discharge process, the discharge current, discharge voltage and argon pressure in discharge source. These parameters influence each other during glow discharge process. This paper presents an automatic control system for DC glow discharge plasma source. This system collects and controls discharge voltage automatically by adjusting discharge source pressure while the discharge current is constant in the glow discharge process. The design concept, circuit principle and control program of this automatic control system are described. The accuracy is improved by this automatic control system with the method of reducing the complex operations and manual control errors. This system enhances the control accuracy of glow discharge voltage, and reduces the time to reach discharge voltage stability. The glow discharge voltage stability test results with automatic control system are provided as well, the accuracy with automatic control system is better than 1% FS which is improved from 4% FS by manual control. Time to reach discharge voltage stability has been shortened to within 30 s by automatic control from more than 90 s by manual control. Standard samples like middle-low alloy steel and tin bronze have been tested by this automatic control system. The concentration analysis precision has been significantly improved. The RSDs of all the test result are better than 3.5%. In middle-low alloy steel standard sample, the RSD range of concentration test result of Ti, Co and Mn elements is reduced from 3.0%-4.3% by manual control to 1.7%-2.4% by automatic control, and that for S and Mo is also reduced from 5.2%-5.9% to 3.3%-3.5%. In tin bronze standard sample, the RSD range of Sn, Zn and Al elements is reduced from 2.6%-4.4% to 1.0%-2.4%, and that for Si, Ni and Fe is reduced from 6.6%-13.9% to 2.6%-3.5%. The test data is also shown in this paper.
Active learning of cortical connectivity from two-photon imaging data.
Bertrán, Martín A; Martínez, Natalia L; Wang, Ye; Dunson, David; Sapiro, Guillermo; Ringach, Dario
2018-01-01
Understanding how groups of neurons interact within a network is a fundamental question in system neuroscience. Instead of passively observing the ongoing activity of a network, we can typically perturb its activity, either by external sensory stimulation or directly via techniques such as two-photon optogenetics. A natural question is how to use such perturbations to identify the connectivity of the network efficiently. Here we introduce a method to infer sparse connectivity graphs from in-vivo, two-photon imaging of population activity in response to external stimuli. A novel aspect of the work is the introduction of a recommended distribution, incrementally learned from the data, to optimally refine the inferred network. Unlike existing system identification techniques, this "active learning" method automatically focuses its attention on key undiscovered areas of the network, instead of targeting global uncertainty indicators like parameter variance. We show how active learning leads to faster inference while, at the same time, provides confidence intervals for the network parameters. We present simulations on artificial small-world networks to validate the methods and apply the method to real data. Analysis of frequency of motifs recovered show that cortical networks are consistent with a small-world topology model.
Active learning of cortical connectivity from two-photon imaging data
Wang, Ye; Dunson, David; Sapiro, Guillermo; Ringach, Dario
2018-01-01
Understanding how groups of neurons interact within a network is a fundamental question in system neuroscience. Instead of passively observing the ongoing activity of a network, we can typically perturb its activity, either by external sensory stimulation or directly via techniques such as two-photon optogenetics. A natural question is how to use such perturbations to identify the connectivity of the network efficiently. Here we introduce a method to infer sparse connectivity graphs from in-vivo, two-photon imaging of population activity in response to external stimuli. A novel aspect of the work is the introduction of a recommended distribution, incrementally learned from the data, to optimally refine the inferred network. Unlike existing system identification techniques, this “active learning” method automatically focuses its attention on key undiscovered areas of the network, instead of targeting global uncertainty indicators like parameter variance. We show how active learning leads to faster inference while, at the same time, provides confidence intervals for the network parameters. We present simulations on artificial small-world networks to validate the methods and apply the method to real data. Analysis of frequency of motifs recovered show that cortical networks are consistent with a small-world topology model. PMID:29718955
Intercomparison of mid latitude storm diagnostics (IMILAST) - synthesis of project results
NASA Astrophysics Data System (ADS)
Neu, Urs
2017-04-01
The analysis of the occurrence of mid-latitude storms is of great socio-economical interest due to their vast and destructive impacts. However, a unique definition of cyclones is missing, and therefore the definition of what a cyclone is as well as quantifying its strength contains subjective choices. Existing automatic cyclone identification and tracking algorithms are based on different definitions and use diverse characteristics, e.g. data transformation, metrics used for cyclone identification, cyclone identification procedures or tracking methods. The project IMILAST systematically compares different cyclone detection and tracking methods, with the aim to comprehensively assess the influence of different algorithms on cyclone climatologies, temporal trends of frequency, strength or other characteristics of cyclones and thus quantify systematic uncertainties in mid-latitudinal storm identification and tracking. The three main intercomparison experiments used the ERA-interim reanalysis as a common input data set and focused on differences between the methods with respect to number, track density, life cycle characteristics, and trend patterns on the one hand and potential differences of the long-term climate change signal of cyclonic activity between the methods on the other hand. For the third experiment, the intercomparison period has been extended to a 30 year period from 1979 to 2009 and focuses on more specific aspects, such as parameter sensitivities, the comparison of automated to manual tracking sets, regional analysis (regional trends, Arctic and Antarctic cyclones, cyclones in the Mediterranean) or specific phenomena like splitting and merging of cyclones. In addition, the representation of storms and their characteristics in reanalysis data sets is examined to further enhance the knowledge on uncertainties related to storm occurrence. This poster presents a synthesis of the main results from the intercomparison activities within IMILAST.
PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons.
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei
2016-09-02
Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.
PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei
2016-01-01
Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance. PMID:27598160
Zdravevski, Eftim; Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger
2017-01-01
Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations.
Computer automation of ultrasonic testing. [inspection of ultrasonic welding
NASA Technical Reports Server (NTRS)
Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.
1974-01-01
Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.
Developing an Active Traffic Management System for I-70 in Colorado
DOT National Transportation Integrated Search
2012-09-01
The Colorado DOT is at the forefront of developing an Active Traffic Management (ATM) system that not only : considers operation aspects, but also integrates safety measures. In this research, data collected from Automatic : Vehicle Identification (A...
Electrical continuity scanner facilitates identification of wires for soldering to connectors
NASA Technical Reports Server (NTRS)
Boulton, H. C.; Diclemente, R. A.
1966-01-01
Electrical continuity scanner automatically scans 50 wires in 2 seconds to correlate all wires in a circuit with their respective known ends. Modifications made to the basic plan provide circuitry for scanning up to 250 wires.
Automated determination of dust particles trajectories in the coma of comet 67P
NASA Astrophysics Data System (ADS)
Marín-Yaseli de la Parra, J.; Küppers, M.; Perez Lopez, F.; Besse, S.; Moissl, R.
2017-09-01
During more than two years Rosetta spent at comet 67P, it took thousands of images that contain individual dust particles. To arrive at a statistics of the dust properties, automatic image analysis is required. We present a new methodology for fast-dust identification using a star mask reference system for matching a set of images automatically. The main goal is to derive particle size distributions and to determine if traces of the size distribution of primordial pebbles are still present in today's cometary dust [1].
Automatic cytometric device using multiple wavelength excitations
NASA Astrophysics Data System (ADS)
Rongeat, Nelly; Ledroit, Sylvain; Chauvet, Laurence; Cremien, Didier; Urankar, Alexandra; Couderc, Vincent; Nérin, Philippe
2011-05-01
Precise identification of eosinophils, basophils, and specific subpopulations of blood cells (B lymphocytes) in an unconventional automatic hematology analyzer is demonstrated. Our specific apparatus mixes two excitation radiations by means of an acousto-optics tunable filter to properly control fluorescence emission of phycoerythrin cyanin 5 (PC5) conjugated to antibodies (anti-CD20 or anti-CRTH2) and Thiazole Orange. This way our analyzer combining techniques of hematology analysis and flow cytometry based on multiple fluorescence detection, drastically improves the signal to noise ratio and decreases the spectral overlaps impact coming from multiple fluorescence emissions.
Automatic retinal interest evaluation system (ARIES).
Yin, Fengshou; Wong, Damon Wing Kee; Yow, Ai Ping; Lee, Beng Hai; Quan, Ying; Zhang, Zhuo; Gopalakrishnan, Kavitha; Li, Ruoying; Liu, Jiang
2014-01-01
In recent years, there has been increasing interest in the use of automatic computer-based systems for the detection of eye diseases such as glaucoma, age-related macular degeneration and diabetic retinopathy. However, in practice, retinal image quality is a big concern as automatic systems without consideration of degraded image quality will likely generate unreliable results. In this paper, an automatic retinal image quality assessment system (ARIES) is introduced to assess both image quality of the whole image and focal regions of interest. ARIES achieves 99.54% accuracy in distinguishing fundus images from other types of images through a retinal image identification step in a dataset of 35342 images. The system employs high level image quality measures (HIQM) to perform image quality assessment, and achieves areas under curve (AUCs) of 0.958 and 0.987 for whole image and optic disk region respectively in a testing dataset of 370 images. ARIES acts as a form of automatic quality control which ensures good quality images are used for processing, and can also be used to alert operators of poor quality images at the time of acquisition.
NASA Astrophysics Data System (ADS)
Fink, Wolfgang; Brooks, Alexander J.-W.; Tarbell, Mark A.; Dohm, James M.
2017-05-01
Autonomous reconnaissance missions are called for in extreme environments, as well as in potentially hazardous (e.g., the theatre, disaster-stricken areas, etc.) or inaccessible operational areas (e.g., planetary surfaces, space). Such future missions will require increasing degrees of operational autonomy, especially when following up on transient events. Operational autonomy encompasses: (1) Automatic characterization of operational areas from different vantages (i.e., spaceborne, airborne, surface, subsurface); (2) automatic sensor deployment and data gathering; (3) automatic feature extraction including anomaly detection and region-of-interest identification; (4) automatic target prediction and prioritization; (5) and subsequent automatic (re-)deployment and navigation of robotic agents. This paper reports on progress towards several aspects of autonomous C4ISR systems, including: Caltech-patented and NASA award-winning multi-tiered mission paradigm, robotic platform development (air, ground, water-based), robotic behavior motifs as the building blocks for autonomous tele-commanding, and autonomous decision making based on a Caltech-patented framework comprising sensor-data-fusion (feature-vectors), anomaly detection (clustering and principal component analysis), and target prioritization (hypothetical probing).
Drechsler, Axel; Helling, Tobias; Steinfartz, Sebastian
2015-01-01
Capture–mark–recapture (CMR) approaches are the backbone of many studies in population ecology to gain insight on the life cycle, migration, habitat use, and demography of target species. The reliable and repeatable recognition of an individual throughout its lifetime is the basic requirement of a CMR study. Although invasive techniques are available to mark individuals permanently, noninvasive methods for individual recognition mainly rest on photographic identification of external body markings, which are unique at the individual level. The re-identification of an individual based on comparing shape patterns of photographs by eye is commonly used. Automated processes for photographic re-identification have been recently established, but their performance in large datasets (i.e., > 1000 individuals) has rarely been tested thoroughly. Here, we evaluated the performance of the program AMPHIDENT, an automatic algorithm to identify individuals on the basis of ventral spot patterns in the great crested newt (Triturus cristatus) versus the genotypic fingerprint of individuals based on highly polymorphic microsatellite loci using GENECAP. Between 2008 and 2010, we captured, sampled and photographed adult newts and calculated for 1648 samples/photographs recapture rates for both approaches. Recapture rates differed slightly with 8.34% for GENECAP and 9.83% for AMPHIDENT. With an estimated rate of 2% false rejections (FRR) and 0.00% false acceptances (FAR), AMPHIDENT proved to be a highly reliable algorithm for CMR studies of large datasets. We conclude that the application of automatic recognition software of individual photographs can be a rather powerful and reliable tool in noninvasive CMR studies for a large number of individuals. Because the cross-correlation of standardized shape patterns is generally applicable to any pattern that provides enough information, this algorithm is capable of becoming a single application with broad use in CMR studies for many species. PMID:25628871
Applying face identification to detecting hijacking of airplane
NASA Astrophysics Data System (ADS)
Luo, Xuanwen; Cheng, Qiang
2004-09-01
That terrorists hijacked the airplanes and crashed the World Trade Center is disaster to civilization. To avoid the happening of hijack is critical to homeland security. To report the hijacking in time, limit the terrorist to operate the plane if happened and land the plane to the nearest airport could be an efficient way to avoid the misery. Image processing technique in human face recognition or identification could be used for this task. Before the plane take off, the face images of pilots are input into a face identification system installed in the airplane. The camera in front of pilot seat keeps taking the pilot face image during the flight and comparing it with pre-input pilot face images. If a different face is detected, a warning signal is sent to ground automatically. At the same time, the automatic cruise system is started or the plane is controlled by the ground. The terrorists will have no control over the plane. The plane will be landed to a nearest or appropriate airport under the control of the ground or cruise system. This technique could also be used in automobile industry as an image key to avoid car stealth.
A Modified MinMax k-Means Algorithm Based on PSO.
Wang, Xiaoyan; Bai, Yanping
The MinMax k -means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k -means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k -means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k -means algorithm and the original MinMax k -means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically.
A De-Identification Pipeline for Ultrasound Medical Images in DICOM Format.
Monteiro, Eriksson; Costa, Carlos; Oliveira, José Luís
2017-05-01
Clinical data sharing between healthcare institutions, and between practitioners is often hindered by privacy protection requirements. This problem is critical in collaborative scenarios where data sharing is fundamental for establishing a workflow among parties. The anonymization of patient information burned in DICOM images requires elaborate processes somewhat more complex than simple de-identification of textual information. Usually, before sharing, there is a need for manual removal of specific areas containing sensitive information in the images. In this paper, we present a pipeline for ultrasound medical image de-identification, provided as a free anonymization REST service for medical image applications, and a Software-as-a-Service to streamline automatic de-identification of medical images, which is freely available for end-users. The proposed approach applies image processing functions and machine-learning models to bring about an automatic system to anonymize medical images. To perform character recognition, we evaluated several machine-learning models, being Convolutional Neural Networks (CNN) selected as the best approach. For accessing the system quality, 500 processed images were manually inspected showing an anonymization rate of 89.2%. The tool can be accessed at https://bioinformatics.ua.pt/dicom/anonymizer and it is available with the most recent version of Google Chrome, Mozilla Firefox and Safari. A Docker image containing the proposed service is also publicly available for the community.
Pitfalls of Establishing DNA Barcoding Systems in Protists: The Cryptophyceae as a Test Case
Hoef-Emden, Kerstin
2012-01-01
A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5′-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene). In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC), have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed. PMID:22970104
Pitfalls of establishing DNA barcoding systems in protists: the cryptophyceae as a test case.
Hoef-Emden, Kerstin
2012-01-01
A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5'-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene). In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC), have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed.
NASA Astrophysics Data System (ADS)
Wei, Qingyang; Ma, Tianyu; Xu, Tianpeng; Zeng, Ming; Gu, Yu; Dai, Tiantian; Liu, Yaqiang
2018-01-01
Modern positron emission tomography (PET) detectors are made from pixelated scintillation crystal arrays and readout by Anger logic. The interaction position of the gamma-ray should be assigned to a crystal using a crystal position map or look-up table. Crystal identification is a critical procedure for pixelated PET systems. In this paper, we propose a novel crystal identification method for a dual-layer-offset LYSO based animal PET system via Lu-176 background radiation and mean shift algorithm. Single photon event data of the Lu-176 background radiation are acquired in list-mode for 3 h to generate a single photon flood map (SPFM). Coincidence events are obtained from the same data using time information to generate a coincidence flood map (CFM). The CFM is used to identify the peaks of the inner layer using the mean shift algorithm. The response of the inner layer is deducted from the SPFM by subtracting CFM. Then, the peaks of the outer layer are also identified using the mean shift algorithm. The automatically identified peaks are manually inspected by a graphical user interface program. Finally, a crystal position map is generated using a distance criterion based on these peaks. The proposed method is verified on the animal PET system with 48 detector blocks on a laptop with an Intel i7-5500U processor. The total runtime for whole system peak identification is 67.9 s. Results show that the automatic crystal identification has 99.98% and 99.09% accuracy for the peaks of the inner and outer layers of the whole system respectively. In conclusion, the proposed method is suitable for the dual-layer-offset lutetium based PET system to perform crystal identification instead of external radiation sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, S; Wu, Y; Chang, X
Purpose: A novel computer software system, namely APDV (Automatic Pre-Delivery Verification), has been developed for verifying patient treatment plan parameters right prior to treatment deliveries in order to automatically detect and prevent catastrophic errors. Methods: APDV is designed to continuously monitor new DICOM plan files on the TMS computer at the treatment console. When new plans to be delivered are detected, APDV checks the consistencies of plan parameters and high-level plan statistics using underlying rules and statistical properties based on given treatment site, technique and modality. These rules were quantitatively derived by retrospectively analyzing all the EBRT treatment plans ofmore » the past 8 years at authors’ institution. Therapists and physicists will be notified with a warning message displayed on the TMS computer if any critical errors are detected, and check results, confirmation, together with dismissal actions will be saved into database for further review. Results: APDV was implemented as a stand-alone program using C# to ensure required real time performance. Mean values and standard deviations were quantitatively derived for various plan parameters including MLC usage, MU/cGy radio, beam SSD, beam weighting, and the beam gantry angles (only for lateral targets) per treatment site, technique and modality. 2D-based rules of combined MU/cGy ratio and averaged SSD values were also derived using joint probabilities of confidence error ellipses. The statistics of these major treatment plan parameters quantitatively evaluate the consistency of any treatment plans which facilitates automatic APDV checking procedures. Conclusion: APDV could be useful in detecting and preventing catastrophic errors immediately before treatment deliveries. Future plan including automatic patient identify and patient setup checks after patient daily images are acquired by the machine and become available on the TMS computer. This project is supported by the Agency for Healthcare Research and Quality (AHRQ) under award 1R01HS0222888. The senior author received research grants from ViewRay Inc. and Varian Medical System.« less
Multilevel Analysis in Analyzing Speech Data
ERIC Educational Resources Information Center
Guddattu, Vasudeva; Krishna, Y.
2011-01-01
The speech produced by human vocal tract is a complex acoustic signal, with diverse applications in phonetics, speech synthesis, automatic speech recognition, speaker identification, communication aids, speech pathology, speech perception, machine translation, hearing research, rehabilitation and assessment of communication disorders and many…
DOT National Transportation Integrated Search
1993-01-01
ELECTRONIC TOLL COLLECTION OR ETC AND TRAFFIC MANAGEMENT OR ETTM, AUTOMATIC VEHICLE IDENTIFICATION OR AVI : ELECTRONIC TOLL COLLECTION AND TRAFFIC MANAGEMENT (ETTM) SYSTEMS ARE NOT A FUTURISTIC DREAM, THEY ARE OPERATING OR ARE BEING TESTED TODAY I...
Automatic vehicle identification technology applications to toll collection services
DOT National Transportation Integrated Search
1997-01-01
Intelligent transportation systems technologies are being developed and applied through transportation systems in the United States. An example of this type of innovation can be seen on toll roads where a driver is required to deposit a toll in order...
DOT National Transportation Integrated Search
2010-02-01
It is important for many applications, such as intersection delay estimation and adaptive signal : control, to obtain vehicle turning movement information at signalized intersections. However, : vehicle turning movement information is very time consu...
Development of a parameter optimization technique for the design of automatic control systems
NASA Technical Reports Server (NTRS)
Whitaker, P. H.
1977-01-01
Parameter optimization techniques for the design of linear automatic control systems that are applicable to both continuous and digital systems are described. The model performance index is used as the optimization criterion because of the physical insight that can be attached to it. The design emphasis is to start with the simplest system configuration that experience indicates would be practical. Design parameters are specified, and a digital computer program is used to select that set of parameter values which minimizes the performance index. The resulting design is examined, and complexity, through the use of more complex information processing or more feedback paths, is added only if performance fails to meet operational specifications. System performance specifications are assumed to be such that the desired step function time response of the system can be inferred.
Automatic management system for dose parameters in interventional radiology and cardiology.
Ten, J I; Fernandez, J M; Vaño, E
2011-09-01
The purpose of this work was to develop an automatic management system to archive and analyse the major study parameters and patient doses for fluoroscopy guided procedures performed in cardiology and interventional radiology systems. The X-ray systems used for this trial have the capability to export at the end of the procedure and via e-mail the technical parameters of the study and the patient dose values. An application was developed to query and retrieve from a mail server, all study reports sent by the imaging modality and store them on a Microsoft SQL Server data base. The results from 3538 interventional study reports generated by 7 interventional systems were processed. In the case of some technical parameters and patient doses, alarms were added to receive malfunction alerts so as to immediately take appropriate corrective actions.
Intelligent system for automatic feature detection and selection or identification
Sun, Chuen-Tsai; Jang, Jyh-Shing; Fu, Chi-Yung
1997-01-01
A neural network uses a fuzzy membership function, the parameters of which are adaptive during the training process, to parameterize the interconnection weights between an (n-1)'th layer and an n'th layer of the network. Each j'th node in each k'th layer of the network except the input layer produces its output value y.sub.k,j according to the function ##EQU1## where N.sub.k-1 is the number of nodes in layer k-1, i indexes the nodes of layer k-1 and all the w.sub.k,i,j are interconnection weights. The interconnection weights to all nodes j in the n'th layer are given by w.sub.n,i,j =w.sub.n,j (i, p.sub.n,j,1, . . . , p.sub.n,j,p.sbsb.n). The apparatus is trained by setting values for at least one of the parameters p.sub.n,j,1, . . . , p.sub.n,j,Pn. Preferably the number of parameters P.sub.n is less than the number of nodes N.sub.n-1 in layer n-1. w.sub.n,j (i,p.sub.n,j,1, . . . , p.sub.n,j,Pn) can be convex in i, and it can be bell-shaped. Sample functions for w.sub.n,j (i, p.sub.n,j,1, . . . , p.sub.n,j,Pn) include ##EQU2##
Manual editing of automatically recorded data in an anesthesia information management system.
Wax, David B; Beilin, Yaakov; Hossain, Sabera; Lin, Hung-Mo; Reich, David L
2008-11-01
Anesthesia information management systems allow automatic recording of physiologic and anesthetic data. The authors investigated the prevalence of such data modification in an academic medical center. The authors queried their anesthesia information management system database of anesthetics performed in 2006 and tabulated the counts of data points for automatically recorded physiologic and anesthetic parameters as well as the subset of those data that were manually invalidated by clinicians (both with and without alternate values manually appended). Patient, practitioner, data source, and timing characteristics of recorded values were also extracted to determine their associations with editing of various parameters in the anesthesia information management system record. A total of 29,491 cases were analyzed, 19% of which had one or more data points manually invalidated. Among 58 attending anesthesiologists, each invalidated data in a median of 7% of their cases when working as a sole practitioner. A minority of invalidated values were manually appended with alternate values. Pulse rate, blood pressure, and pulse oximetry were the most commonly invalidated parameters. Data invalidation usually resulted in a decrease in parameter variance. Factors independently associated with invalidation included extreme physiologic values, American Society of Anesthesiologists physical status classification, emergency status, timing (phase of the procedure/anesthetic), presence of an intraarterial catheter, resident or certified registered nurse anesthetist involvement, and procedure duration. Editing of physiologic data automatically recorded in an anesthesia information management system is a common practice and results in decreased variability of intraoperative data. Further investigation may clarify the reasons for and consequences of this behavior.
Morphometric Atlas Selection for Automatic Brachial Plexus Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van de Velde, Joris, E-mail: joris.vandevelde@ugent.be; Department of Radiotherapy, Ghent University, Ghent; Wouters, Johan
Purpose: The purpose of this study was to determine the effects of atlas selection based on different morphometric parameters, on the accuracy of automatic brachial plexus (BP) segmentation for radiation therapy planning. The segmentation accuracy was measured by comparing all of the generated automatic segmentations with anatomically validated gold standard atlases developed using cadavers. Methods and Materials: Twelve cadaver computed tomography (CT) atlases (3 males, 9 females; mean age: 73 years) were included in the study. One atlas was selected to serve as a patient, and the other 11 atlases were registered separately onto this “patient” using deformable image registration. Thismore » procedure was repeated for every atlas as a patient. Next, the Dice and Jaccard similarity indices and inclusion index were calculated for every registered BP with the original gold standard BP. In parallel, differences in several morphometric parameters that may influence the BP segmentation accuracy were measured for the different atlases. Specific brachial plexus-related CT-visible bony points were used to define the morphometric parameters. Subsequently, correlations between the similarity indices and morphometric parameters were calculated. Results: A clear negative correlation between difference in protraction-retraction distance and the similarity indices was observed (mean Pearson correlation coefficient = −0.546). All of the other investigated Pearson correlation coefficients were weak. Conclusions: Differences in the shoulder protraction-retraction position between the atlas and the patient during planning CT influence the BP autosegmentation accuracy. A greater difference in the protraction-retraction distance between the atlas and the patient reduces the accuracy of the BP automatic segmentation result.« less
Identification of forensic samples by using an infrared-based automatic DNA sequencer.
Ricci, Ugo; Sani, Ilaria; Klintschar, Michael; Cerri, Nicoletta; De Ferrari, Francesco; Giovannucci Uzielli, Maria Luisa
2003-06-01
We have recently introduced a new protocol for analyzing all core loci of the Federal Bureau of Investigation's (FBI) Combined DNA Index System (CODIS) with an infrared (IR) automatic DNA sequencer (LI-COR 4200). The amplicons were labeled with forward oligonucleotide primers, covalently linked to a new infrared fluorescent molecule (IRDye 800). The alleles were displayed as familiar autoradiogram-like images with real-time detection. This protocol was employed for paternity testing, population studies, and identification of degraded forensic samples. We extensively analyzed some simulated forensic samples and mixed stains (blood, semen, saliva, bones, and fixed archival embedded tissues), comparing the results with donor samples. Sensitivity studies were also performed for the four multiplex systems. Our results show the efficiency, reliability, and accuracy of the IR system for the analysis of forensic samples. We also compared the efficiency of the multiplex protocol with ultraviolet (UV) technology. Paternity tests, undegraded DNA samples, and real forensic samples were analyzed with this approach based on IR technology and with UV-based automatic sequencers in combination with commercially-available kits. The comparability of the results with the widespread UV methods suggests that it is possible to exchange data between laboratories using the same core group of markers but different primer sets and detection methods.
Ramkumar, Barathram; Sabarimalai Manikandan, M.
2017-01-01
Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal. PMID:28529758
Multi-stage robust scheme for citrus identification from high resolution airborne images
NASA Astrophysics Data System (ADS)
Amorós-López, Julia; Izquierdo Verdiguier, Emma; Gómez-Chova, Luis; Muñoz-Marí, Jordi; Zoilo Rodríguez-Barreiro, Jorge; Camps-Valls, Gustavo; Calpe-Maravilla, Javier
2008-10-01
Identification of land cover types is one of the most critical activities in remote sensing. Nowadays, managing land resources by using remote sensing techniques is becoming a common procedure to speed up the process while reducing costs. However, data analysis procedures should satisfy the accuracy figures demanded by institutions and governments for further administrative actions. This paper presents a methodological scheme to update the citrus Geographical Information Systems (GIS) of the Comunidad Valenciana autonomous region, Spain). The proposed approach introduces a multi-stage automatic scheme to reduce visual photointerpretation and ground validation tasks. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution (VHR) images (0.5m) acquired in the visible and near infrared. Next, several automatic classifiers (decision trees, multilayer perceptron, and support vector machines) are trained and combined to improve the final accuracy of the results. The proposed strategy fulfills the high accuracy demanded by policy makers by means of combining automatic classification methods with visual photointerpretation available resources. A level of confidence based on the agreement between classifiers allows us an effective management by fixing the quantity of parcels to be reviewed. The proposed methodology can be applied to similar problems and applications.
Satija, Udit; Ramkumar, Barathram; Sabarimalai Manikandan, M
2017-02-01
Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal.
Automatic measurement of skin textures of the dorsal hand in evaluating skin aging.
Gao, Qian; Yu, Jiaming; Wang, Fang; Ge, Tiantian; Hu, Liwen; Liu, Yang
2013-05-01
Changes in skin textures have been used to evaluate skin aging in many studies. In our previous study, we built some skin texture parameters, which can be used to evaluate skin aging of human dorsal hand. However, it will take too much time and need to work arduously to get the information from digital skin image by manual work. So, we want to build a simple and effective method to automatically count some of those skin texture parameters by using digital image-processing technology. A total of 100 subjects aged 30 years and above were involved. Sun exposure history and demographic information were collected by using a questionnaire. The skin image of subjects' dorsal hand was obtained by using a portable skin detector. The number of grids, which is one of skin texture parameters built in our previous study, was measured manually and automatically. Automated image analysis program was developed by using Matlab 7.1 software. The number of grids counted automatically (NGA) was significantly correlated with the number of grids counted manually (NGM) (r = 0.9287, P < 0.0001). And in each age group, there were no significant differences between NGA and NGM. The NGA was negatively correlated with age and lifetime sun exposure, and decreased with increasing Beagley-Gibson score from 3 to 6. In addition, even after adjusting for NGA, the standard deviation of grid areas for each image was positively correlated with age, sun exposure, and Bealey-Gibson score. The method introduced in present study can be used to measure some skin aging parameters automatically and objectively. And it will save much time, reduce labor, and avoid measurement errors of deferent investigators when evaluating a great deal of skin images in a short time. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas
2013-01-01
Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.
Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas
2013-01-01
Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum. PMID:23766941
Metamodel-based inverse method for parameter identification: elastic-plastic damage model
NASA Astrophysics Data System (ADS)
Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb
2017-04-01
This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.
Full-envelope aerodynamic modeling of the Harrier aircraft
NASA Technical Reports Server (NTRS)
Mcnally, B. David
1986-01-01
A project to identify a full-envelope model of the YAV-8B Harrier using flight-test and parameter identification techniques is described. As part of the research in advanced control and display concepts for V/STOL aircraft, a full-envelope aerodynamic model of the Harrier is identified, using mathematical model structures and parameter identification methods. A global-polynomial model structure is also used as a basis for the identification of the YAV-8B aerodynamic model. State estimation methods are used to ensure flight data consistency prior to parameter identification.Equation-error methods are used to identify model parameters. A fixed-base simulator is used extensively to develop flight test procedures and to validate parameter identification software. Using simple flight maneuvers, a simulated data set was created covering the YAV-8B flight envelope from about 0.3 to 0.7 Mach and about -5 to 15 deg angle of attack. A singular value decomposition implementation of the equation-error approach produced good parameter estimates based on this simulated data set.
NASA Astrophysics Data System (ADS)
Fujiwara, Yukihiro; Yoshii, Masakazu; Arai, Yasuhito; Adachi, Shuichi
Advanced safety vehicle(ASV)assists drivers’ manipulation to avoid trafic accidents. A variety of researches on automatic driving systems are necessary as an element of ASV. Among them, we focus on visual feedback approach in which the automatic driving system is realized by recognizing road trajectory using image information. The purpose of this paper is to examine the validity of this approach by experiments using a radio-controlled car. First, a practical image processing algorithm to recognize white lines on the road is proposed. Second, a model of the radio-controlled car is built by system identication experiments. Third, an automatic steering control system is designed based on H∞ control theory. Finally, the effectiveness of the designed control system is examined via traveling experiments.
SVM-based automatic diagnosis method for keratoconus
NASA Astrophysics Data System (ADS)
Gao, Yuhong; Wu, Qiang; Li, Jing; Sun, Jiande; Wan, Wenbo
2017-06-01
Keratoconus is a progressive cornea disease that can lead to serious myopia and astigmatism, or even to corneal transplantation, if it becomes worse. The early detection of keratoconus is extremely important to know and control its condition. In this paper, we propose an automatic diagnosis algorithm for keratoconus to discriminate the normal eyes and keratoconus ones. We select the parameters obtained by Oculyzer as the feature of cornea, which characterize the cornea both directly and indirectly. In our experiment, 289 normal cases and 128 keratoconus cases are divided into training and test sets respectively. Far better than other kernels, the linear kernel of SVM has sensitivity of 94.94% and specificity of 97.87% with all the parameters training in the model. In single parameter experiment of linear kernel, elevation with 92.03% sensitivity and 98.61% specificity and thickness with 97.28% sensitivity and 97.82% specificity showed their good classification abilities. Combining elevation and thickness of the cornea, the proposed method can reach 97.43% sensitivity and 99.19% specificity. The experiments demonstrate that the proposed automatic diagnosis method is feasible and reliable.
Thapaliya, Kiran; Pyun, Jae-Young; Park, Chun-Su; Kwon, Goo-Rak
2013-01-01
The level set approach is a powerful tool for segmenting images. This paper proposes a method for segmenting brain tumor images from MR images. A new signed pressure function (SPF) that can efficiently stop the contours at weak or blurred edges is introduced. The local statistics of the different objects present in the MR images were calculated. Using local statistics, the tumor objects were identified among different objects. In this level set method, the calculation of the parameters is a challenging task. The calculations of different parameters for different types of images were automatic. The basic thresholding value was updated and adjusted automatically for different MR images. This thresholding value was used to calculate the different parameters in the proposed algorithm. The proposed algorithm was tested on the magnetic resonance images of the brain for tumor segmentation and its performance was evaluated visually and quantitatively. Numerical experiments on some brain tumor images highlighted the efficiency and robustness of this method. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Breaking the Cost Barrier in Automatic Classification.
ERIC Educational Resources Information Center
Doyle, L. B.
A low-cost automatic classification method is reported that uses computer time in proportion to NlogN, where N is the number of information items and the base is a parameter, some barriers besides cost are treated briefly in the opening section, including types of intellectual resistance to the idea of doing classification by content-word…
Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...
Parameter identification for structural dynamics based on interval analysis algorithm
NASA Astrophysics Data System (ADS)
Yang, Chen; Lu, Zixing; Yang, Zhenyu; Liang, Ke
2018-04-01
A parameter identification method using interval analysis algorithm for structural dynamics is presented in this paper. The proposed uncertain identification method is investigated by using central difference method and ARMA system. With the help of the fixed memory least square method and matrix inverse lemma, a set-membership identification technology is applied to obtain the best estimation of the identified parameters in a tight and accurate region. To overcome the lack of insufficient statistical description of the uncertain parameters, this paper treats uncertainties as non-probabilistic intervals. As long as we know the bounds of uncertainties, this algorithm can obtain not only the center estimations of parameters, but also the bounds of errors. To improve the efficiency of the proposed method, a time-saving algorithm is presented by recursive formula. At last, to verify the accuracy of the proposed method, two numerical examples are applied and evaluated by three identification criteria respectively.
Learning Efficient Spatial-Temporal Gait Features with Deep Learning for Human Identification.
Liu, Wu; Zhang, Cheng; Ma, Huadong; Li, Shuangqun
2018-02-06
The integration of the latest breakthroughs in bioinformatics technology from one side and artificial intelligence from another side, enables remarkable advances in the fields of intelligent security guard computational biology, healthcare, and so on. Among them, biometrics based automatic human identification is one of the most fundamental and significant research topic. Human gait, which is a biometric features with the unique capability, has gained significant attentions as the remarkable characteristics of remote accessed, robust and security in the biometrics based human identification. However, the existed methods cannot well handle the indistinctive inter-class differences and large intra-class variations of human gait in real-world situation. In this paper, we have developed an efficient spatial-temporal gait features with deep learning for human identification. First of all, we proposed a gait energy image (GEI) based Siamese neural network to automatically extract robust and discriminative spatial gait features for human identification. Furthermore, we exploit the deep 3-dimensional convolutional networks to learn the human gait convolutional 3D (C3D) as the temporal gait features. Finally, the GEI and C3D gait features are embedded into the null space by the Null Foley-Sammon Transform (NFST). In the new space, the spatial-temporal features are sufficiently combined with distance metric learning to drive the similarity metric to be small for pairs of gait from the same person, and large for pairs from different persons. Consequently, the experiments on the world's largest gait database show our framework impressively outperforms state-of-the-art methods.
Two-dimensional PCA-based human gait identification
NASA Astrophysics Data System (ADS)
Chen, Jinyan; Wu, Rongteng
2012-11-01
It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.
NASA Astrophysics Data System (ADS)
Frances, F.; Orozco, I.
2010-12-01
This work presents the assessment of the TETIS distributed hydrological model in mountain basins of the American and Carson rivers in Sierra Nevada (USA) at hourly time discretization, as part of the DMIP2 Project. In TETIS each cell of the spatial grid conceptualizes the water cycle using six tanks connected among them. The relationship between tanks depends on the case, although at the end in most situations, simple linear reservoirs and flow thresholds schemes are used with exceptional results (Vélez et al., 1999; Francés et al., 2002). In particular, within the snow tank, snow melting is based in this work on the simple degree-day method with spatial constant parameters. The TETIS model includes an automatic calibration module, based on the SCE-UA algorithm (Duan et al., 1992; Duan et al., 1994) and the model effective parameters are organized following a split structure, as presented by Francés and Benito (1995) and Francés et al. (2007). In this way, the calibration involves in TETIS up to 9 correction factors (CFs), which correct globally the different parameter maps instead of each parameter cell value, thus reducing drastically the number of variables to be calibrated. This strategy allows for a fast and agile modification in different hydrological processes preserving the spatial structure of each parameter map. With the snowmelt submodel, automatic model calibration was carried out in three steps, separating the calibration of rainfall-runoff and snowmelt parameters. In the first step, the automatic calibration of the CFs during the period 05/20/1990 to 07/31/1990 in the American River (without snow influence), gave a Nash-Sutcliffe Efficiency (NSE) index of 0.92. The calibration of the three degree-day parameters was done using all the SNOTEL stations in the American and Carson rivers. Finally, using previous calibrations as initial values, the complete calibration done in the Carson River for the period 10/01/1992 to 07/31/1993 gave a NSE index of 0.86. The temporal and spatial validation using five periods must be considered in both rivers excellent for discharges (NSEs higher than 0.76) and good for snow distribution (daily spatial coverage errors ranging from -10 to 27%). In conclusion, this work demonstrates: 1.- The viability of automatic calibration of distributed models, with the corresponding personal time saving and maximum exploitation of the available information. 2.- The good performance of the degree-day snowmelt formulation even at hourly time discretization, in spite of its simplicity.
DOT National Transportation Integrated Search
2000-04-01
The Coast Guard funded the National Telecommunications and Information Administration : (NTIA) to perform electromagnetic compatibility (EMC) tests between an ITU-R M. 825-3 : (Characteristics Of a Transponder System Using Digital Selective Calling T...
21 CFR 886.1760 - Ophthalmic refractometer.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1760 Ophthalmic refractometer. (a) Identification. An ophthalmic refractometer is an automatic AC-powered device that consists of a fixation system... of the eye by measuring light reflexes from the retina. (b) Classification. Class I (general controls...
Results from the Crop Identification Technology Assessment for Remote Sensing (CITARS) project
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Davis, B. J.; Bizzell, R. M.; Hall, F. G.; Feiveson, A. H.; Malila, W. A.; Rice, D. P.
1976-01-01
The author has identified the following significant results. It was found that several factors had a significant effect on crop identification performance: (1) crop maturity and site characteristics, (2) which of several different single date automatic data processing procedures was used for local recognition, (3) nonlocal recognition, both with and without preprocessing for the extension of recognition signatures, and (4) use of multidate data. It also was found that classification accuracy for field center pixels was not a reliable indicator of proportion estimation performance for whole areas, that bias was present in proportion estimates, and that training data and procedures strongly influenced crop identification performance.
NASA Astrophysics Data System (ADS)
Wang, Zian; Li, Shiguang; Yu, Ting
2015-12-01
This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.
2015-12-01
IPSFRP search request. The candidate list will contain the agency’s requested number (minimum of2) of candidates or a default number of 20 candidates if...INTERSTATE IDENTIFICATION SYSTEM FOR WANTED SUBJECTS 5. FUNDING NUMBERS 6. AUTHOR(S) Michael J. Thomas 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND
Motion estimation of subcellular structures from fluorescence microscopy images.
Vallmitjana, A; Civera-Tregon, A; Hoenicka, J; Palau, F; Benitez, R
2017-07-01
We present an automatic image processing framework to study moving intracellular structures from live cell fluorescence microscopy. The system includes the identification of static and dynamic structures from time-lapse images using data clustering as well as the identification of the trajectory of moving objects with a probabilistic tracking algorithm. The method has been successfully applied to study mitochondrial movement in neurons. The approach provides excellent performance under different experimental conditions and is robust to common sources of noise including experimental, molecular and biological fluctuations.
Gurulingappa, Harsha; Toldo, Luca; Rajput, Abdul Mateen; Kors, Jan A; Taweel, Adel; Tayrouz, Yorki
2013-11-01
The aim of this study was to assess the impact of automatically detected adverse event signals from text and open-source data on the prediction of drug label changes. Open-source adverse effect data were collected from FAERS, Yellow Cards and SIDER databases. A shallow linguistic relation extraction system (JSRE) was applied for extraction of adverse effects from MEDLINE case reports. Statistical approach was applied on the extracted datasets for signal detection and subsequent prediction of label changes issued for 29 drugs by the UK Regulatory Authority in 2009. 76% of drug label changes were automatically predicted. Out of these, 6% of drug label changes were detected only by text mining. JSRE enabled precise identification of four adverse drug events from MEDLINE that were undetectable otherwise. Changes in drug labels can be predicted automatically using data and text mining techniques. Text mining technology is mature and well-placed to support the pharmacovigilance tasks. Copyright © 2013 John Wiley & Sons, Ltd.
Neural networks: Alternatives to conventional techniques for automatic docking
NASA Technical Reports Server (NTRS)
Vinz, Bradley L.
1994-01-01
Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.
NASA Astrophysics Data System (ADS)
Mosca, Pietro; Mounier, Claude
2016-03-01
The automatic construction of evolution chains recently implemented in GALILEE system is based on the analysis of several ENDF files : the multigroup production cross sections present in the GENDF files processed by NJOY from the ENDF evaluation, the decay file and the fission product yields (FPY) file. In this context, this paper highlights the importance of the nucleus identification to properly interconnect the data mentioned above. The first part of the paper describes the present status of the nucleus identification among the several ENDF files focusing, in particular, on the use of the excited state number and of the isomeric state number. The second part reviews the problems encountered during the automatic construction of the depletion chains using recent ENDF data. The processing of the JEFF-3.1.1, ENDF/B-VII.0 (decay and FPY) and the JEFF-3.2 (production cross section) points out problems about the compliance or not of the nucleus identifiers with the ENDF-6 format and sometimes the inconsistencies among the various ENDF files. In addition, the analysis of EAF-2003 and EAF-2010 shows some incoherence between the ZA product identifier and the reaction identifier MT for the reactions (n, pα) and (n, 2np). As a main result of this work, our suggestion is to change the ENDF format using systematically the isomeric state number to identify the nuclei. This proposal is already compliant to a huge amount ENDF data that are not in agreement with the present ENDF format. This choice is the most convenient because, ultimately, it allows one to give human readable names to the nuclei of the depletion chains.
Accuracy of Automatic Cephalometric Software on Landmark Identification
NASA Astrophysics Data System (ADS)
Anuwongnukroh, N.; Dechkunakorn, S.; Damrongsri, S.; Nilwarat, C.; Pudpong, N.; Radomsutthisarn, W.; Kangern, S.
2017-11-01
This study was to assess the accuracy of an automatic cephalometric analysis software in the identification of cephalometric landmarks. Thirty randomly selected digital lateral cephalograms of patients undergoing orthodontic treatment were used in this study. Thirteen landmarks (S, N, Or, A-point, U1T, U1A, B-point, Gn, Pog, Me, Go, L1T, and L1A) were identified on the digital image by an automatic cephalometric software and on cephalometric tracing by manual method. Superimposition of printed image and manual tracing was done by registration at the soft tissue profiles. The accuracy of landmarks located by the automatic method was compared with that of the manually identified landmarks by measuring the mean differences of distances of each landmark on the Cartesian plane where X and Y coordination axes passed through the center of ear rod. One-Sample T test was used to evaluate the mean differences. Statistically significant mean differences (p<0.05) were found in 5 landmarks (Or, A-point, Me, L1T, and L1A) in horizontal direction and 7 landmarks (Or, A-point, U1T, U1A, B-point, Me, and L1A) in vertical direction. Four landmarks (Or, A-point, Me, and L1A) showed significant (p<0.05) mean differences in both horizontal and vertical directions. Small mean differences (<0.5mm) were found for S, N, B-point, Gn, and Pog in horizontal direction and N, Gn, Me, and L1T in vertical direction. Large mean differences were found for A-point (3.0 < 3.5mm) in horizontal direction and L1A (>4mm) in vertical direction. Only 5 of 13 landmarks (38.46%; S, N, Gn, Pog, and Go) showed no significant mean difference between the automatic and manual landmarking methods. It is concluded that if this automatic cephalometric analysis software is used for orthodontic diagnosis, the orthodontist must correct or modify the position of landmarks in order to increase the accuracy of cephalometric analysis.
NASA Technical Reports Server (NTRS)
Carrier, Alain C.; Aubrun, Jean-Noel
1993-01-01
New frequency response measurement procedures, on-line modal tuning techniques, and off-line modal identification algorithms are developed and applied to the modal identification of the Advanced Structures/Controls Integrated Experiment (ASCIE), a generic segmented optics telescope test-bed representative of future complex space structures. The frequency response measurement procedure uses all the actuators simultaneously to excite the structure and all the sensors to measure the structural response so that all the transfer functions are measured simultaneously. Structural responses to sinusoidal excitations are measured and analyzed to calculate spectral responses. The spectral responses in turn are analyzed as the spectral data become available and, which is new, the results are used to maintain high quality measurements. Data acquisition, processing, and checking procedures are fully automated. As the acquisition of the frequency response progresses, an on-line algorithm keeps track of the actuator force distribution that maximizes the structural response to automatically tune to a structural mode when approaching a resonant frequency. This tuning is insensitive to delays, ill-conditioning, and nonproportional damping. Experimental results show that is useful for modal surveys even in high modal density regions. For thorough modeling, a constructive procedure is proposed to identify the dynamics of a complex system from its frequency response with the minimization of a least-squares cost function as a desirable objective. This procedure relies on off-line modal separation algorithms to extract modal information and on least-squares parameter subset optimization to combine the modal results and globally fit the modal parameters to the measured data. The modal separation algorithms resolved modal density of 5 modes/Hz in the ASCIE experiment. They promise to be useful in many challenging applications.
Automatic macroscopic characterization of diesel sprays by means of a new image processing algorithm
NASA Astrophysics Data System (ADS)
Rubio-Gómez, Guillermo; Martínez-Martínez, S.; Rua-Mojica, Luis F.; Gómez-Gordo, Pablo; de la Garza, Oscar A.
2018-05-01
A novel algorithm is proposed for the automatic segmentation of diesel spray images and the calculation of their macroscopic parameters. The algorithm automatically detects each spray present in an image, and therefore it is able to work with diesel injectors with a different number of nozzle holes without any modification. The main characteristic of the algorithm is that it splits each spray into three different regions and then segments each one with an individually calculated binarization threshold. Each threshold level is calculated from the analysis of a representative luminosity profile of each region. This approach makes it robust to irregular light distribution along a single spray and between different sprays of an image. Once the sprays are segmented, the macroscopic parameters of each one are calculated. The algorithm is tested with two sets of diesel spray images taken under normal and irregular illumination setups.
Analysis and application of minimum variance discrete time system identification
NASA Technical Reports Server (NTRS)
Kaufman, H.; Kotob, S.
1975-01-01
An on-line minimum variance parameter identifier is developed which embodies both accuracy and computational efficiency. The formulation results in a linear estimation problem with both additive and multiplicative noise. The resulting filter which utilizes both the covariance of the parameter vector itself and the covariance of the error in identification is proven to be mean square convergent and mean square consistent. The MV parameter identification scheme is then used to construct a stable state and parameter estimation algorithm.
Identification and stochastic control of helicopter dynamic modes
NASA Technical Reports Server (NTRS)
Molusis, J. A.; Bar-Shalom, Y.
1983-01-01
A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.
Automatic diagnosis of malaria based on complete circle-ellipse fitting search algorithm.
Sheikhhosseini, M; Rabbani, H; Zekri, M; Talebi, A
2013-12-01
Diagnosis of malaria parasitemia from blood smears is a subjective and time-consuming task for pathologists. The automatic diagnostic process will reduce the diagnostic time. Also, it can be worked as a second opinion for pathologists and may be useful in malaria screening. This study presents an automatic method for malaria diagnosis from thin blood smears. According to this fact that malaria life cycle is started by forming a ring around the parasite nucleus, the proposed approach is mainly based on curve fitting to detect parasite ring in the blood smear. The method is composed of six main phases: stain object extraction step, which extracts candidate objects that may be infected by malaria parasites. This phase includes stained pixel extraction step based on intensity and colour, and stained object segmentation by defining stained circle matching. Second step is preprocessing phase which makes use of nonlinear diffusion filtering. The process continues with detection of parasite nucleus from resulted image of previous step according to image intensity. Fourth step introduces a complete search process in which the circle search step identifies the direction and initial points for direct least-square ellipse fitting algorithm. Furthermore in the ellipse searching process, although parasite shape is completed undesired regions with high error value are removed and ellipse parameters are modified. Features are extracted from the parasite candidate region instead of whole candidate object in the fifth step. By employing this special feature extraction way, which is provided by special searching process, the necessity of employing clump splitting methods is removed. Also, defining stained circle matching process in the first step speeds up the whole procedure. Finally, a series of decision rules are applied on the extracted features to decide on the positivity or negativity of malaria parasite presence. The algorithm is applied on 26 digital images which are provided from thin blood smear films. The images are contained 1274 objects which may be infected by parasite or healthy. Applying the automatic identification of malaria on provided database showed a sensitivity of 82.28% and specificity of 98.02%. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Suppa, Antonio; Kita, Ardian; Leodori, Giorgio; Zampogna, Alessandro; Nicolini, Ettore; Lorenzi, Paolo; Rao, Rosario; Irrera, Fernanda
2017-01-01
Freezing of gait (FOG) is a leading cause of falls and fractures in Parkinson’s disease (PD). The episodic and rather unpredictable occurrence of FOG, coupled with the variable response to l-DOPA of this gait disorder, makes the objective evaluation of FOG severity a major clinical challenge in the therapeutic management of patients with PD. The aim of this study was to examine and compare gait, clinically and objectively, in patients with PD, with and without FOG, by means of a new wearable system. We also assessed the effect of l-DOPA on FOG severity and specific spatiotemporal gait parameters in patients with and without FOG. To this purpose, we recruited 28 patients with FOG, 16 patients without FOG, and 16 healthy subjects. In all participants, gait was evaluated clinically by video recordings and objectively by means of the wearable wireless system, during a modified 3-m Timed Up and Go (TUG) test. All patients performed the modified TUG test under and not under dopaminergic therapy (ON and OFF therapy). By comparing instrumental data with the clinical identification of FOG based on offline video-recordings, we also assessed the performance of the wearable system to detect FOG automatically in terms of sensitivity, specificity, positive and negative predictive values, and finally accuracy. TUG duration was longer in patients than in controls, and the amount of gait abnormalities was prominent in patients with FOG compared with those without FOG. l-DOPA improved gait significantly in patients with PD and particularly in patients with FOG mainly by reducing FOG duration and increasing specific spatiotemporal gait parameters. Finally, the overall wireless system performance in automatic FOG detection was characterized by excellent sensitivity (93.41%), specificity (98.51%), positive predictive value (89.55%), negative predictive value (97.31%), and finally accuracy (98.51%). Our study overall provides new information on the beneficial effect of l-DOPA on FOG severity and specific spatiotemporal gait parameters as objectively measured by a wearable sensory system. The algorithm here reported potentially opens to objective long-time sensing of FOG episodes in patients with PD. PMID:28855889
Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam; Noraziah, A
2017-01-01
In this paper, an attempt is made to apply the African Buffalo Optimization (ABO) to tune the parameters of a PID controller for an effective Automatic Voltage Regulator (AVR). Existing metaheuristic tuning methods have been proven to be quite successful but there were observable areas that need improvements especially in terms of the system's gain overshoot and steady steady state errors. Using the ABO algorithm where each buffalo location in the herd is a candidate solution to the Proportional-Integral-Derivative parameters was very helpful in addressing these two areas of concern. The encouraging results obtained from the simulation of the PID Controller parameters-tuning using the ABO when compared with the performance of Genetic Algorithm PID (GA-PID), Particle-Swarm Optimization PID (PSO-PID), Ant Colony Optimization PID (ACO-PID), PID, Bacteria-Foraging Optimization PID (BFO-PID) etc makes ABO-PID a good addition to solving PID Controller tuning problems using metaheuristics.
Wang, Bei; Wang, Xingyu; Ikeda, Akio; Nagamine, Takashi; Shibasaki, Hiroshi; Nakamura, Masatoshi
2014-01-01
EEG (Electroencephalograph) interpretation is important for the diagnosis of neurological disorders. The proper adjustment of the montage can highlight the EEG rhythm of interest and avoid false interpretation. The aim of this study was to develop an automatic reference selection method to identify a suitable reference. The results may contribute to the accurate inspection of the distribution of EEG rhythms for quantitative EEG interpretation. The method includes two pre-judgements and one iterative detection module. The diffuse case is initially identified by pre-judgement 1 when intermittent rhythmic waveforms occur over large areas along the scalp. The earlobe reference or averaged reference is adopted for the diffuse case due to the effect of the earlobe reference depending on pre-judgement 2. An iterative detection algorithm is developed for the localised case when the signal is distributed in a small area of the brain. The suitable averaged reference is finally determined based on the detected focal and distributed electrodes. The presented technique was applied to the pathological EEG recordings of nine patients. One example of the diffuse case is introduced by illustrating the results of the pre-judgements. The diffusely intermittent rhythmic slow wave is identified. The effect of active earlobe reference is analysed. Two examples of the localised case are presented, indicating the results of the iterative detection module. The focal and distributed electrodes are detected automatically during the repeating algorithm. The identification of diffuse and localised activity was satisfactory compared with the visual inspection. The EEG rhythm of interest can be highlighted using a suitable selected reference. The implementation of an automatic reference selection method is helpful to detect the distribution of an EEG rhythm, which can improve the accuracy of EEG interpretation during both visual inspection and automatic interpretation. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bohn, J. G.; Jones, J. E.
1978-01-01
The development and use of a digital computer simulation of the proposed wind tunnel facility is described. The feasibility of automatic control of wind tunnel airspeed and other parameters was examined. Specifications and implementation recommendations for a computer based automatic control and monitoring system are presented.
Lower Mississippi River Ports and Waterways Safety System (PAWSS) RF coverage test results
DOT National Transportation Integrated Search
1999-11-01
The Coast Guard plans to operate an Automatic Identification System (AID) Digital Selective Calling (DSC) based transponder system as part of the Ports and Waterways Safety System (PAWSS) in the lower Mississippi River. the AIS uses two duplex channe...
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1983-01-01
Development of a unified control synthesis methodology for complex and/or non-conventional flight vehicles, and prediction techniques for the handling characteristics of such vehicles are reported. Identification of pilot dynamics and objectives, using time domain and frequency domain methods is proposed.
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Recommendation M.1371-1: 2000, Technical Characteristics For A Universal Shipborne AIS Using Time Division... power receptacle accessible for the pilot's laptop computer; and (5) The Minimum Keyboard Display (MKD... AIS position reports using differential GPS corrections from the U.S. and Canadian Coast Guards...
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Recommendation M.1371-1: 2000, Technical Characteristics For A Universal Shipborne AIS Using Time Division... power receptacle accessible for the pilot's laptop computer; and (5) The Minimum Keyboard Display (MKD... AIS position reports using differential GPS corrections from the U.S. and Canadian Coast Guards...
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Recommendation M.1371-1: 2000, Technical Characteristics For A Universal Shipborne AIS Using Time Division... power receptacle accessible for the pilot's laptop computer; and (5) The Minimum Keyboard Display (MKD... AIS position reports using differential GPS corrections from the U.S. and Canadian Coast Guards...
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Recommendation M.1371-1: 2000, Technical Characteristics For A Universal Shipborne AIS Using Time Division... power receptacle accessible for the pilot's laptop computer; and (5) The Minimum Keyboard Display (MKD... AIS position reports using differential GPS corrections from the U.S. and Canadian Coast Guards...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dise, J; Liang, X; Lin, L
Purpose: To evaluate an automatic interstitial catheter digitization algorithm that reduces treatment planning time and provide means for adaptive re-planning in HDR Brachytherapy of Gynecologic Cancers. Methods: The semi-automatic catheter digitization tool utilizes a region growing algorithm in conjunction with a spline model of the catheters. The CT images were first pre-processed to enhance the contrast between the catheters and soft tissue. Several seed locations were selected in each catheter for the region growing algorithm. The spline model of the catheters assisted in the region growing by preventing inter-catheter cross-over caused by air or metal artifacts. Source dwell positions frommore » day one CT scans were applied to subsequent CTs and forward calculated using the automatically digitized catheter positions. This method was applied to 10 patients who had received HDR interstitial brachytherapy on an IRB approved image-guided radiation therapy protocol. The prescribed dose was 18.75 or 20 Gy delivered in 5 fractions, twice daily, over 3 consecutive days. Dosimetric comparisons were made between automatic and manual digitization on day two CTs. Results: The region growing algorithm, assisted by the spline model of the catheters, was able to digitize all catheters. The difference between automatic and manually digitized positions was 0.8±0.3 mm. The digitization time ranged from 34 minutes to 43 minutes with a mean digitization time of 37 minutes. The bulk of the time was spent on manual selection of initial seed positions and spline parameter adjustments. There was no significance difference in dosimetric parameters between the automatic and manually digitized plans. D90% to the CTV was 91.5±4.4% for the manual digitization versus 91.4±4.4% for the automatic digitization (p=0.56). Conclusion: A region growing algorithm was developed to semi-automatically digitize interstitial catheters in HDR brachytherapy using the Syed-Neblett template. This automatic digitization tool was shown to be accurate compared to manual digitization.« less
NASA Astrophysics Data System (ADS)
Chupina, K. V.; Kataev, E. V.; Khannanov, A. M.; Korshunov, V. N.; Sennikov, I. A.
2018-05-01
The paper is devoted to a problem of synthesis of the robust control system for a distributed parameters plant. The vessel descent-rise device has a heave compensation function for stabilization of the towed underwater vehicle on a set depth. A sea state code, parameters of the underwater vehicle and cable vary during underwater operations, the vessel heave is a stochastic process. It means that the plant and external disturbances have uncertainty. That is why it is necessary to use the robust theory for synthesis of an automatic control system, but without use of traditional methods of optimization, because this cable has distributed parameters. The offered technique has allowed one to design an effective control system for stabilization of immersion depth of the towed underwater vehicle for various degrees of sea roughness and to provide its robustness to deviations of parameters of the vehicle and cable’s length.
Classification of hepatocellular carcinoma stages from free-text clinical and radiology reports
Yim, Wen-wai; Kwan, Sharon W; Johnson, Guy; Yetisgen, Meliha
2017-01-01
Cancer stage information is important for clinical research. However, they are not always explicitly noted in electronic medical records. In this paper, we present our work on automatic classification of hepatocellular carcinoma (HCC) stages from free-text clinical and radiology notes. To accomplish this, we defined 11 stage parameters used in the three HCC staging systems, American Joint Committee on Cancer (AJCC), Barcelona Clinic Liver Cancer (BCLC), and Cancer of the Liver Italian Program (CLIP). After aggregating stage parameters to the patient-level, the final stage classifications were achieved using an expert-created decision logic. Each stage parameter relevant for staging was extracted using several classification methods, e.g. sentence classification and automatic information structuring, to identify and normalize text as cancer stage parameter values. Stage parameter extraction for the test set performed at 0.81 F1. Cancer stage prediction for AJCC, BCLC, and CLIP stage classifications were 0.55, 0.50, and 0.43 F1.
Automatic Ammunition Identification Technology Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weil, B.
1993-01-01
The Automatic Ammunition Identification Technology (AAIT) Project is an activity of the Robotics Process Systems Division at the Oak Ridge National Laboratory (ORNL) for the US Army's Project Manager-Ammunition Logistics (PM-AMMOLOG) at the Picatinny Arsenal in Picatinny, New Jersey. The project objective is to evaluate new two-dimensional bar code symbologies for potential use in ammunition logistics systems and automated reloading equipment. These new symbologies are a significant improvement over typical linear bar codes since machine-readable alphanumeric messages up to 2000 characters long are achievable. These compressed data symbologies are expected to significantly improve logistics and inventory management tasks and permitmore » automated feeding and handling of ammunition to weapon systems. The results will be increased throughout capability, better inventory control, reduction of human error, lower operation and support costs, and a more timely re-supply of various weapon systems. This paper will describe the capabilities of existing compressed data symbologies and the symbol testing activities being conducted at ORNL for the AAIT Project.« less
Automatic Ammunition Identification Technology Project. Ammunition Logistics Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weil, B.
1993-03-01
The Automatic Ammunition Identification Technology (AAIT) Project is an activity of the Robotics & Process Systems Division at the Oak Ridge National Laboratory (ORNL) for the US Army`s Project Manager-Ammunition Logistics (PM-AMMOLOG) at the Picatinny Arsenal in Picatinny, New Jersey. The project objective is to evaluate new two-dimensional bar code symbologies for potential use in ammunition logistics systems and automated reloading equipment. These new symbologies are a significant improvement over typical linear bar codes since machine-readable alphanumeric messages up to 2000 characters long are achievable. These compressed data symbologies are expected to significantly improve logistics and inventory management tasks andmore » permit automated feeding and handling of ammunition to weapon systems. The results will be increased throughout capability, better inventory control, reduction of human error, lower operation and support costs, and a more timely re-supply of various weapon systems. This paper will describe the capabilities of existing compressed data symbologies and the symbol testing activities being conducted at ORNL for the AAIT Project.« less
The ALICE-HMPID Detector Control System: Its evolution towards an expert and adaptive system
NASA Astrophysics Data System (ADS)
De Cataldo, G.; Franco, A.; Pastore, C.; Sgura, I.; Volpe, G.
2011-05-01
The High Momentum Particle IDentification (HMPID) detector is a proximity focusing Ring Imaging Cherenkov (RICH) for charged hadron identification. The HMPID is based on liquid C 6F 14 as the radiator medium and on a 10 m 2 CsI coated, pad segmented photocathode of MWPCs for UV Cherenkov photon detection. To ensure full remote control, the HMPID is equipped with a detector control system (DCS) responding to industrial standards for robustness and reliability. It has been implemented using PVSS as Slow Control And Data Acquisition (SCADA) environment, Programmable Logic Controller as control devices and Finite State Machines for modular and automatic command execution. In the perspective of reducing human presence at the experiment site, this paper focuses on DCS evolution towards an expert and adaptive control system, providing, respectively, automatic error recovery and stable detector performance. HAL9000, the first prototype of the HMPID expert system, is then presented. Finally an analysis of the possible application of the adaptive features is provided.
Analysis and automatic identification of sleep stages using higher order spectra.
Acharya, U Rajendra; Chua, Eric Chern-Pin; Chua, Kuang Chua; Min, Lim Choo; Tamura, Toshiyo
2010-12-01
Electroencephalogram (EEG) signals are widely used to study the activity of the brain, such as to determine sleep stages. These EEG signals are nonlinear and non-stationary in nature. It is difficult to perform sleep staging by visual interpretation and linear techniques. Thus, we use a nonlinear technique, higher order spectra (HOS), to extract hidden information in the sleep EEG signal. In this study, unique bispectrum and bicoherence plots for various sleep stages were proposed. These can be used as visual aid for various diagnostics application. A number of HOS based features were extracted from these plots during the various sleep stages (Wakefulness, Rapid Eye Movement (REM), Stage 1-4 Non-REM) and they were found to be statistically significant with p-value lower than 0.001 using ANOVA test. These features were fed to a Gaussian mixture model (GMM) classifier for automatic identification. Our results indicate that the proposed system is able to identify sleep stages with an accuracy of 88.7%.
Merchant, Nathan D; Witt, Matthew J; Blondel, Philippe; Godley, Brendan J; Smith, George H
2012-07-01
Underwater noise from shipping is a growing presence throughout the world's oceans, and may be subjecting marine fauna to chronic noise exposure with potentially severe long-term consequences. The coincidence of dense shipping activity and sensitive marine ecosystems in coastal environments is of particular concern, and noise assessment methodologies which describe the high temporal variability of sound exposure in these areas are needed. We present a method of characterising sound exposure from shipping using continuous passive acoustic monitoring combined with Automatic Identification System (AIS) shipping data. The method is applied to data recorded in Falmouth Bay, UK. Absolute and relative levels of intermittent ship noise contributions to the 24-h sound exposure level are determined using an adaptive threshold, and the spatial distribution of potential ship sources is then analysed using AIS data. This technique can be used to prioritize shipping noise mitigation strategies in coastal marine environments. Copyright © 2012 Elsevier Ltd. All rights reserved.
Longépé, Nicolas; Hajduch, Guillaume; Ardianto, Romy; Joux, Romain de; Nhunfat, Béatrice; Marzuki, Marza I; Fablet, Ronan; Hermawan, Indra; Germain, Olivier; Subki, Berny A; Farhan, Riza; Muttaqin, Ahmad Deni; Gaspar, Philippe
2017-10-26
The Indonesian fisheries management system is now equipped with the state-of-the-art technologies to deter and combat Illegal, Unreported and Unregulated (IUU) fishing. Since October 2014, non-cooperative fishing vessels can be detected from spaceborne Vessel Detection System (VDS) based on high resolution radar imagery, which directly benefits to coordinated patrol vessels in operation context. This study attempts to monitor the amount of illegal fishing in the Arafura Sea based on this new source of information. It is analyzed together with Vessel Monitoring System (VMS) and satellite-based Automatic Identification System (Sat-AIS) data, taking into account their own particularities. From October 2014 to March 2015, i.e. just after the establishment of a new moratorium by the Indonesian authorities, the estimated share of fishing vessels not carrying VMS, thus being illegal, ranges from 42 to 47%. One year later in January 2016, this proportion decreases and ranges from 32 to 42%. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Krey, Mike; Schlatter, Ueli
The tasks and objectives of automatic identification (Auto-ID) are to provide information on goods and products. It has already been established for years in the areas of logistics and trading and can no longer be ignored by the German healthcare sector. Some German hospitals have already discovered the capabilities of Auto-ID. Improvements in quality, safety and reductions in risk, cost and time are aspects and areas where improvements are achievable. Privacy protection, legal restraints, and the personal rights of patients and staff members are just a few aspects which make the heath care sector a sensible field for the implementation of Auto-ID. Auto-ID in this context contains the different technologies, methods and products for the registration, provision and storage of relevant data. With the help of a quantifiable and science-based evaluation, an answer is sought as to which Auto-ID has the highest capability to be implemented in healthcare business.
Gas chromatography - mass spectrometry data processing made easy.
Johnsen, Lea G; Skou, Peter B; Khakimov, Bekzod; Bro, Rasmus
2017-06-23
Evaluation of GC-MS data may be challenging due to the high complexity of data including overlapped, embedded, retention time shifted and low S/N ratio peaks. In this work, we demonstrate a new approach, PARAFAC2 based Deconvolution and Identification System (PARADISe), for processing raw GC-MS data. PARADISe is a computer platform independent freely available software incorporating a number of newly developed algorithms in a coherent framework. It offers a solution for analysts dealing with complex chromatographic data. It allows extraction of chemical/metabolite information directly from the raw data. Using PARADISe requires only few inputs from the analyst to process GC-MS data and subsequently converts raw netCDF data files into a compiled peak table. Furthermore, the method is generally robust towards minor variations in the input parameters. The method automatically performs peak identification based on deconvoluted mass spectra using integrated NIST search engine and generates an identification report. In this paper, we compare PARADISe with AMDIS and ChromaTOF in terms of peak quantification and show that PARADISe is more robust to user-defined settings and that these are easier (and much fewer) to set. PARADISe is based on non-proprietary scientifically evaluated approaches and we here show that PARADISe can handle more overlapping signals, lower signal-to-noise peaks and do so in a manner that requires only about an hours worth of work regardless of the number of samples. We also show that there are no non-detects in PARADISe, meaning that all compounds are detected in all samples. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Automatic analysis of the micronucleus test in primary human lymphocytes using image analysis.
Frieauff, W; Martus, H J; Suter, W; Elhajouji, A
2013-01-01
The in vitro micronucleus test (MNT) is a well-established test for early screening of new chemical entities in industrial toxicology. For assessing the clastogenic or aneugenic potential of a test compound, micronucleus induction in cells has been shown repeatedly to be a sensitive and a specific parameter. Various automated systems to replace the tedious and time-consuming visual slide analysis procedure as well as flow cytometric approaches have been discussed. The ROBIAS (Robotic Image Analysis System) for both automatic cytotoxicity assessment and micronucleus detection in human lymphocytes was developed at Novartis where the assay has been used to validate positive results obtained in the MNT in TK6 cells, which serves as the primary screening system for genotoxicity profiling in early drug development. In addition, the in vitro MNT has become an accepted alternative to support clinical studies and will be used for regulatory purposes as well. The comparison of visual with automatic analysis results showed a high degree of concordance for 25 independent experiments conducted for the profiling of 12 compounds. For concentration series of cyclophosphamide and carbendazim, a very good correlation between automatic and visual analysis by two examiners could be established, both for the relative division index used as cytotoxicity parameter, as well as for micronuclei scoring in mono- and binucleated cells. Generally, false-positive micronucleus decisions could be controlled by fast and simple relocation of the automatically detected patterns. The possibility to analyse 24 slides within 65h by automatic analysis over the weekend and the high reproducibility of the results make automatic image processing a powerful tool for the micronucleus analysis in primary human lymphocytes. The automated slide analysis for the MNT in human lymphocytes complements the portfolio of image analysis applications on ROBIAS which is supporting various assays at Novartis.
A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.
Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa
2015-12-01
Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction. Copyright © 2015 Elsevier Inc. All rights reserved.
Methods for automatically analyzing humpback song units.
Rickwood, Peter; Taylor, Andrew
2008-03-01
This paper presents mathematical techniques for automatically extracting and analyzing bioacoustic signals. Automatic techniques are described for isolation of target signals from background noise, extraction of features from target signals and unsupervised classification (clustering) of the target signals based on these features. The only user-provided inputs, other than raw sound, is an initial set of signal processing and control parameters. Of particular note is that the number of signal categories is determined automatically. The techniques, applied to hydrophone recordings of humpback whales (Megaptera novaeangliae), produce promising initial results, suggesting that they may be of use in automated analysis of not only humpbacks, but possibly also in other bioacoustic settings where automated analysis is desirable.
Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.
Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen
2014-08-01
A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.
Review of automatic detection of pig behaviours by using image analysis
NASA Astrophysics Data System (ADS)
Han, Shuqing; Zhang, Jianhua; Zhu, Mengshuai; Wu, Jianzhai; Kong, Fantao
2017-06-01
Automatic detection of lying, moving, feeding, drinking, and aggressive behaviours of pigs by means of image analysis can save observation input by staff. It would help staff make early detection of diseases or injuries of pigs during breeding and improve management efficiency of swine industry. This study describes the progress of pig behaviour detection based on image analysis and advancement in image segmentation of pig body, segmentation of pig adhesion and extraction of pig behaviour characteristic parameters. Challenges for achieving automatic detection of pig behaviours were summarized.
Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing
2017-01-01
Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405
A Modified MinMax k-Means Algorithm Based on PSO
2016-01-01
The MinMax k-means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k-means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k-means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k-means algorithm and the original MinMax k-means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically. PMID:27656201
Sandberg, Warren S; Häkkinen, Matti; Egan, Marie; Curran, Paige K; Fairbrother, Pamela; Choquette, Ken; Daily, Bethany; Sarkka, Jukka-Pekka; Rattner, David
2005-09-01
When procedures and processes to assure patient location based on human performance do not work as expected, patients are brought incrementally closer to a possible "wrong patient-wrong procedure'' error. We developed a system for automated patient location monitoring and management. Real-time data from an active infrared/radio frequency identification tracking system provides patient location data that are robust and can be compared with an "expected process'' model to automatically flag wrong-location events as soon as they occur. The system also generates messages that are automatically sent to process managers via the hospital paging system, thus creating an active alerting function to annunciate errors. We deployed the system to detect and annunciate "patient-in-wrong-OR'' events. The system detected all "wrong-operating room (OR)'' events, and all "wrong-OR'' locations were correctly assigned within 0.50+/-0.28 minutes (mean+/-SD). This corresponded to the measured latency of the tracking system. All wrong-OR events were correctly annunciated via the paging function. This experiment demonstrates that current technology can automatically collect sufficient data to remotely monitor patient flow through a hospital, provide decision support based on predefined rules, and automatically notify stakeholders of errors.
Understanding overlay signatures using machine learning on non-lithography context information
NASA Astrophysics Data System (ADS)
Overcast, Marshall; Mellegaard, Corey; Daniel, David; Habets, Boris; Erley, Georg; Guhlemann, Steffen; Thrun, Xaver; Buhl, Stefan; Tottewitz, Steven
2018-03-01
Overlay errors between two layers can be caused by non-lithography processes. While these errors can be compensated by the run-to-run system, such process and tool signatures are not always stable. In order to monitor the impact of non-lithography context on overlay at regular intervals, a systematic approach is needed. Using various machine learning techniques, significant context parameters that relate to deviating overlay signatures are automatically identified. Once the most influential context parameters are found, a run-to-run simulation is performed to see how much improvement can be obtained. The resulting analysis shows good potential for reducing the influence of hidden context parameters on overlay performance. Non-lithographic contexts are significant contributors, and their automatic detection and classification will enable the overlay roadmap, given the corresponding control capabilities.
NASA Astrophysics Data System (ADS)
Pérez-Cabré, Elisabet; Millán, María S.; Javidi, Bahram
2006-09-01
Verification of a piece of information and/or authentication of a given object or person are common operations carried out by automatic security systems that can be applied, for instance, to control the entrance to restricted areas, access to public buildings, identification of cardholders, etc. Vulnerability of such security systems may depend on the ease of counterfeiting the information used as a piece of identification for verification and authentication. To protect data against tampering, the signature that identifies an object is usually encrypted to avoid an easy recognition at human sight and an easy reproduction using conventional devices for imaging or scanning. To make counterfeiting even more difficult, we propose to combine data from visible and near infrared (NIR) spectral bands. By doing this, neither the visible content nor the NIR data by theirselves are sufficient to allow the signature recognition and thus, the identification of a given object. Only the appropriate combination of both signals permits a satisfactory authentication. In addition, the resulting signature is encrypted following a fully-phase encryption technique and the obtained complex-amplitude distribution is encoded on an ID tag. Spatial multiplexing of the encrypted signature allows us to build a distortion-invariant ID tag, so that remote authentication can be achieved even if the tag is captured under rotation or at different distances. We also explore the possibility of using partial information of the encrypted signature to simplify the ID tag design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Z; Vijayan, S; Rana, V
2015-06-15
Purpose: A system was developed that automatically calculates the organ and effective dose for individual fluoroscopically-guided procedures using a log of the clinical exposure parameters. Methods: We have previously developed a dose tracking system (DTS) to provide a real-time color-coded 3D- mapping of skin dose. This software produces a log file of all geometry and exposure parameters for every x-ray pulse during a procedure. The data in the log files is input into PCXMC, a Monte Carlo program that calculates organ and effective dose for projections and exposure parameters set by the user. We developed a MATLAB program to readmore » data from the log files produced by the DTS and to automatically generate the definition files in the format used by PCXMC. The processing is done at the end of a procedure after all exposures are completed. Since there are thousands of exposure pulses with various parameters for fluoroscopy, DA and DSA and at various projections, the data for exposures with similar parameters is grouped prior to entry into PCXMC to reduce the number of Monte Carlo calculations that need to be performed. Results: The software developed automatically transfers data from the DTS log file to PCXMC and runs the program for each grouping of exposure pulses. When the dose from all exposure events are calculated, the doses for each organ and all effective doses are summed to obtain procedure totals. For a complicated interventional procedure, the calculations can be completed on a PC without manual intervention in less than 30 minutes depending on the level of data grouping. Conclusion: This system allows organ dose to be calculated for individual procedures for every patient without tedious calculations or data entry so that estimates of stochastic risk can be obtained in addition to the deterministic risk estimate provided by the DTS. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corp.« less
NASA Astrophysics Data System (ADS)
Horton, Pascal; Jaboyedoff, Michel; Obled, Charles
2018-01-01
Analogue methods provide a statistical precipitation prediction based on synoptic predictors supplied by general circulation models or numerical weather prediction models. The method samples a selection of days in the archives that are similar to the target day to be predicted, and consider their set of corresponding observed precipitation (the predictand) as the conditional distribution for the target day. The relationship between the predictors and predictands relies on some parameters that characterize how and where the similarity between two atmospheric situations is defined. This relationship is usually established by a semi-automatic sequential procedure that has strong limitations: (i) it cannot automatically choose the pressure levels and temporal windows (hour of the day) for a given meteorological variable, (ii) it cannot handle dependencies between parameters, and (iii) it cannot easily handle new degrees of freedom. In this work, a global optimization approach relying on genetic algorithms could optimize all parameters jointly and automatically. The global optimization was applied to some variants of the analogue method for the Rhône catchment in the Swiss Alps. The performance scores increased compared to reference methods, especially for days with high precipitation totals. The resulting parameters were found to be relevant and coherent between the different subregions of the catchment. Moreover, they were obtained automatically and objectively, which reduces the effort that needs to be invested in exploration attempts when adapting the method to a new region or for a new predictand. For example, it obviates the need to assess a large number of combinations of pressure levels and temporal windows of predictor variables that were manually selected beforehand. The optimization could also take into account parameter inter-dependencies. In addition, the approach allowed for new degrees of freedom, such as a possible weighting between pressure levels, and non-overlapping spatial windows.
Shin, Kwang Cheol; Park, Seung Bo; Jo, Geun Sik
2009-01-01
In the fields of production, manufacturing and supply chain management, Radio Frequency Identification (RFID) is regarded as one of the most important technologies. Nowadays, Mobile RFID, which is often installed in carts or forklift trucks, is increasingly being applied to the search for and checkout of items in warehouses, supermarkets, libraries and other industrial fields. In using Mobile RFID, since the readers are continuously moving, they can interfere with each other when they attempt to read the tags. In this study, we suggest a Time Division Multiple Access (TDMA) based anti-collision algorithm for Mobile RFID readers. Our algorithm automatically adjusts the frame size of each reader without using manual parameters by adopting the dynamic frame size adjustment strategy when collisions occur at a reader. Through experiments on a simulated environment for Mobile RFID readers, we show that the proposed method improves the number of successful transmissions by about 228% on average, compared with Colorwave, a representative TDMA based anti-collision algorithm. PMID:22399942
Shin, Kwang Cheol; Park, Seung Bo; Jo, Geun Sik
2009-01-01
In the fields of production, manufacturing and supply chain management, Radio Frequency Identification (RFID) is regarded as one of the most important technologies. Nowadays, Mobile RFID, which is often installed in carts or forklift trucks, is increasingly being applied to the search for and checkout of items in warehouses, supermarkets, libraries and other industrial fields. In using Mobile RFID, since the readers are continuously moving, they can interfere with each other when they attempt to read the tags. In this study, we suggest a Time Division Multiple Access (TDMA) based anti-collision algorithm for Mobile RFID readers. Our algorithm automatically adjusts the frame size of each reader without using manual parameters by adopting the dynamic frame size adjustment strategy when collisions occur at a reader. Through experiments on a simulated environment for Mobile RFID readers, we show that the proposed method improves the number of successful transmissions by about 228% on average, compared with Colorwave, a representative TDMA based anti-collision algorithm.
An efficient approach to ARMA modeling of biological systems with multiple inputs and delays
NASA Technical Reports Server (NTRS)
Perrott, M. H.; Cohen, R. J.
1996-01-01
This paper presents a new approach to AutoRegressive Moving Average (ARMA or ARX) modeling which automatically seeks the best model order to represent investigated linear, time invariant systems using their input/output data. The algorithm seeks the ARMA parameterization which accounts for variability in the output of the system due to input activity and contains the fewest number of parameters required to do so. The unique characteristics of the proposed system identification algorithm are its simplicity and efficiency in handling systems with delays and multiple inputs. We present results of applying the algorithm to simulated data and experimental biological data In addition, a technique for assessing the error associated with the impulse responses calculated from estimated ARMA parameterizations is presented. The mapping from ARMA coefficients to impulse response estimates is nonlinear, which complicates any effort to construct confidence bounds for the obtained impulse responses. Here a method for obtaining a linearization of this mapping is derived, which leads to a simple procedure to approximate the confidence bounds.
Interactive Multi-Instrument Database of Solar Flares
NASA Technical Reports Server (NTRS)
Ranjan, Shubha S.; Spaulding, Ryan; Deardorff, Donald G.
2018-01-01
The fundamental motivation of the project is that the scientific output of solar research can be greatly enhanced by better exploitation of the existing solar/heliosphere space-data products jointly with ground-based observations. Our primary focus is on developing a specific innovative methodology based on recent advances in "big data" intelligent databases applied to the growing amount of high-spatial and multi-wavelength resolution, high-cadence data from NASA's missions and supporting ground-based observatories. Our flare database is not simply a manually searchable time-based catalog of events or list of web links pointing to data. It is a preprocessed metadata repository enabling fast search and automatic identification of all recorded flares sharing a specifiable set of characteristics, features, and parameters. The result is a new and unique database of solar flares and data search and classification tools for the Heliophysics community, enabling multi-instrument/multi-wavelength investigations of flare physics and supporting further development of flare-prediction methodologies.
Detection and identification of benthic communities and shoreline features in Biscayne Bay
NASA Technical Reports Server (NTRS)
Kolipinski, M. C.; Higer, A. L.
1970-01-01
Progress made in the development of a technique for identifying and delinating benthic and shoreline communities using multispectral imagery is described. Images were collected with a multispectral scanner system mounted in a C-47 aircraft. Concurrent with the overflight, ecological ground- and sea-truth information was collected at 19 sites in the bay and on the shore. Preliminary processing of the scanner imagery with a CDC 1604 digital computer provided the optimum channels for discernment among different underwater and coastal objects. Automatic mapping of the benthic plants by multiband imagery and the mapping of isotherms and hydrodynamic parameters by digital model can become an effective predictive ecological tool when coupled together. Using the two systems, it appears possible to predict conditions that could adversely affect the benthic communities. With the advent of the ERTS satellites and space platforms, imagery data could be obtained which, when used in conjunction with water-level and meteorological data, would provide for continuous ecological monitoring.
NASA Astrophysics Data System (ADS)
Prathabrao, M.; Nawawi, Azli; Sidek, Noor Azizah
2017-04-01
Radio Frequency Identification (RFID) system has multiple benefits which can improve the operational efficiency of the organization. The advantages are the ability to record data systematically and quickly, reducing human errors and system errors, update the database automatically and efficiently. It is often more readers (reader) is needed for the installation purposes in RFID system. Thus, it makes the system more complex. As a result, RFID network planning process is needed to ensure the RFID system works perfectly. The planning process is also considered as an optimization process and power adjustment because the coordinates of each RFID reader to be determined. Therefore, algorithms inspired by the environment (Algorithm Inspired by Nature) is often used. In the study, PSO algorithm is used because it has few number of parameters, the simulation time is fast, easy to use and also very practical. However, PSO parameters must be adjusted correctly, for robust and efficient usage of PSO. Failure to do so may result in disruption of performance and results of PSO optimization of the system will be less good. To ensure the efficiency of PSO, this study will examine the effects of two parameters on the performance of PSO Algorithm in RFID tag coverage optimization. The parameters to be studied are the swarm size and iteration number. In addition to that, the study will also recommend the most optimal adjustment for both parameters that is, 200 for the no. iterations and 800 for the no. of swarms. Finally, the results of this study will enable PSO to operate more efficiently in order to optimize RFID network planning system.
NASA Astrophysics Data System (ADS)
Wang, Dong
2016-03-01
Gears are the most commonly used components in mechanical transmission systems. Their failures may cause transmission system breakdown and result in economic loss. Identification of different gear crack levels is important to prevent any unexpected gear failure because gear cracks lead to gear tooth breakage. Signal processing based methods mainly require expertize to explain gear fault signatures which is usually not easy to be achieved by ordinary users. In order to automatically identify different gear crack levels, intelligent gear crack identification methods should be developed. The previous case studies experimentally proved that K-nearest neighbors based methods exhibit high prediction accuracies for identification of 3 different gear crack levels under different motor speeds and loads. In this short communication, to further enhance prediction accuracies of existing K-nearest neighbors based methods and extend identification of 3 different gear crack levels to identification of 5 different gear crack levels, redundant statistical features are constructed by using Daubechies 44 (db44) binary wavelet packet transform at different wavelet decomposition levels, prior to the use of a K-nearest neighbors method. The dimensionality of redundant statistical features is 620, which provides richer gear fault signatures. Since many of these statistical features are redundant and highly correlated with each other, dimensionality reduction of redundant statistical features is conducted to obtain new significant statistical features. At last, the K-nearest neighbors method is used to identify 5 different gear crack levels under different motor speeds and loads. A case study including 3 experiments is investigated to demonstrate that the developed method provides higher prediction accuracies than the existing K-nearest neighbors based methods for recognizing different gear crack levels under different motor speeds and loads. Based on the new significant statistical features, some other popular statistical models including linear discriminant analysis, quadratic discriminant analysis, classification and regression tree and naive Bayes classifier, are compared with the developed method. The results show that the developed method has the highest prediction accuracies among these statistical models. Additionally, selection of the number of new significant features and parameter selection of K-nearest neighbors are thoroughly investigated.
Herrera Lara, Susana; Fernández-Fabrellas, Estrella; Juan Samper, Gustavo; Marco Buades, Josefa; Andreu Lapiedra, Rafael; Pinilla Moreno, Amparo; Morales Suárez-Varela, María
2017-10-01
The usefulness of clinical, radiological and pleural fluid analytical parameters for diagnosing malignant and paramalignant pleural effusion is not clearly stated. Hence this study aimed to identify possible predictor variables of diagnosing malignancy in pleural effusion of unknown aetiology. Clinical, radiological and pleural fluid analytical parameters were obtained from consecutive patients who had suffered pleural effusion of unknown aetiology. They were classified into three groups according to their final diagnosis: malignant, paramalignant and benign pleural effusion. The CHAID (Chi-square automatic interaction detector) methodology was used to estimate the implication of the clinical, radiological and analytical variables in daily practice through decision trees. Of 71 patients, malignant (n = 31), paramalignant (n = 15) and benign (n = 25), smoking habit, dyspnoea, weight loss, radiological characteristics (mass, node, adenopathies and pleural thickening) and pleural fluid analytical parameters (pH and glucose) distinguished malignant and paramalignant pleural effusions (all with a p < 0.05). Decision tree 1 classified 77.8% of malignant and paramalignant pleural effusions in step 2. Decision tree 2 classified 83.3% of malignant pleural effusions in step 2, 73.3% of paramalignant pleural effusions and 91.7% of benign ones. The data herein suggest that the identified predictor values applied to tree diagrams, which required no extraordinary measures, have a higher rate of correct identification of malignant, paramalignant and benign effusions when compared to techniques available today and proved most useful for usual clinical practice. Future studies are still needed to further improve the classification of patients.
Fundamental parameters of exoplanets and their host stars
NASA Astrophysics Data System (ADS)
Coughlin, Jeffrey Langer
For much of human history we have wondered how our solar system formed, and whether there are any other planets like ours around other stars. Only in the last 20 years have we had direct evidence for the existence of exoplanets, with the number of known exoplanets dramatically increasing in recent years, especially with the success of the Kepler mission. Observations of these systems are becoming increasingly more precise and numerous, thus allowing for detailed studies of their masses, radii, densities, temperatures, and atmospheric compositions. However, one cannot accurately study exoplanets without examining their host stars in equal detail, and understanding what assumptions must be made to calculate planetary parameters from the directly derived observational parameters. In this thesis, I present observations and models of the primary transits and secondary eclipses of transiting exoplanets from both the ground and Kepler in order to better study their physical characteristics and search for additional exoplanets. I then identify, observe, and model new eclipsing binaries to better understand the stellar mass-radius relationship and stellar limb-darkening, compare these observations to the predictions of stellar models, and attempt to define to what extent these fundamental stellar characteristics can impact derived planetary parameters. I also present novel techniques for the direct determination of exoplanet masses and stellar inclinations via multi-wavelength astrometry, the ground-based photometric observation of stars at sub-millimagnitude precision, the reduction of Kepler photometry from pixel-level data, the extraction of radial velocities from spectroscopic observations, and the automatic identification, period analysis, and modeling of eclipsing binaries and transiting planets in large datasets.
Automatic Identification of Alpine Mass Movements by a Combination of Seismic and Infrasound Sensors
Hübl, Johannes; McArdell, Brian W.; Walter, Fabian
2018-01-01
The automatic detection and identification of alpine mass movements such as debris flows, debris floods, or landslides have been of increasing importance for devising mitigation measures in densely populated and intensively used alpine regions. Since these mass movements emit characteristic seismic and acoustic waves in the low-frequency range (<30 Hz), several approaches have already been developed for detection and warning systems based on these signals. However, a combination of the two methods, for improving detection probability and reducing false alarms, is still applied rarely. This paper presents an update and extension of a previously published approach for a detection and identification system based on a combination of seismic and infrasound sensors. Furthermore, this work evaluates the possible early warning times at several test sites and aims to analyze the seismic and infrasound spectral signature produced by different sediment-related mass movements to identify the process type and estimate the magnitude of the event. Thus, this study presents an initial method for estimating the peak discharge and total volume of debris flows based on infrasound data. Tests on several catchments show that this system can detect and identify mass movements in real time directly at the sensor site with high accuracy and a low false alarm ratio. PMID:29789449
Fiber sensors for molecular detection
NASA Astrophysics Data System (ADS)
Gu, Claire; Yang, Xuan; Zhang, Jin; Newhouse, Rebecca; Cao, Liangcai
2010-11-01
The demand on sensors for detecting chemical and biological agents is greater than ever before, including medical, environmental, food safety, military, and security applications. At present, most detection or sensing techniques tend to be either non-molecular specific, bulky, expensive, relatively inaccurate, or unable to provide real time data. Clearly, alternative sensing technologies are urgently needed. Recently, we have been working to develop a compact fiber optic surface enhanced Raman scattering (SERS) sensor system that integrates various novel ideas to achieve compactness, high sensitivity and consistency, molecular specificity, and automatic preliminary identification capabilities. The unique sensor architecture is expected to bring SERS sensors to practical applications due to a combination of 1) novel SERS substrates that provide the high sensitivity and consistency, molecular specificity, and applicability to a wide range of compounds; 2) a unique hollow core optical fiber probe with double SERS substrate structure that provides the compactness, reliability, low cost, and ease of sampling; and 3) an innovative matched spectral filter set that provides automatic preliminary molecule identification. In this paper, we will review the principle of operation and some of the important milestones of fiber SERS sensor development with emphasis on our recent work to integrate photonic crystal fiber SERS probes with a portable Raman spectrometer and to demonstrate a matched spectral filter for molecule identification.
Laser-aided material identification for the waste sorting process
NASA Astrophysics Data System (ADS)
Haferkamp, Heinz; Burmester, Ingo; Engel, Kai
1994-03-01
The LZH has carried out investigations in the field of rapid laser-supported material- identification systems for automatic material-sorting systems. The aim of this research is the fast identification of different sorts of plastics coming from recycled rubbish or electronic waste. Within a few milliseconds a spot on the sample which has to be identified is heated with a CO2 laser. The different and specific chemical and physical material properties of the examined sample cause a different temperature distribution on the surface which is measured with an IR thermographic system. This `thermal impulse response' has to be analyzed by means of a computer system. The results of previous investigations have shown that material identification of different sorts of plastics can possibly be done at a frequency of 30 Hz. Due to economic efficiency, a high velocity identification process is necessary to sort huge waste currents.
Rivolo, Simone; Nagel, Eike; Smith, Nicolas P; Lee, Jack
2014-01-01
Coronary Wave Intensity Analysis (cWIA) is a technique capable of separating the effects of proximal arterial haemodynamics from cardiac mechanics. The cWIA ability to establish a mechanistic link between coronary haemodynamics measurements and the underlying pathophysiology has been widely demonstrated. Moreover, the prognostic value of a cWIA-derived metric has been recently proved. However, the clinical application of cWIA has been hindered due to the strong dependence on the practitioners, mainly ascribable to the cWIA-derived indices sensitivity to the pre-processing parameters. Specifically, as recently demonstrated, the cWIA-derived metrics are strongly sensitive to the Savitzky-Golay (S-G) filter, typically used to smooth the acquired traces. This is mainly due to the inability of the S-G filter to deal with the different timescale features present in the measured waveforms. Therefore, we propose to apply an adaptive S-G algorithm that automatically selects pointwise the optimal filter parameters. The newly proposed algorithm accuracy is assessed against a cWIA gold standard, provided by a newly developed in-silico cWIA modelling framework, when physiological noise is added to the simulated traces. The adaptive S-G algorithm, when used to automatically select the polynomial degree of the S-G filter, provides satisfactory results with ≤ 10% error for all the metrics through all the levels of noise tested. Therefore, the newly proposed method makes cWIA fully automatic and independent from the practitioners, opening the possibility to multi-centre trials.
Hautvast, Gilion L T F; Salton, Carol J; Chuang, Michael L; Breeuwer, Marcel; O'Donnell, Christopher J; Manning, Warren J
2012-05-01
Quantitative analysis of short-axis functional cardiac magnetic resonance images can be performed using automatic contour detection methods. The resulting myocardial contours must be reviewed and possibly corrected, which can be time-consuming, particularly when performed across all cardiac phases. We quantified the impact of manual contour corrections on both analysis time and quantitative measurements obtained from left ventricular short-axis cine images acquired from 1555 participants of the Framingham Heart Study Offspring cohort using computer-aided contour detection methods. The total analysis time for a single case was 7.6 ± 1.7 min for an average of 221 ± 36 myocardial contours per participant. This included 4.8 ± 1.6 min for manual contour correction of 2% of all automatically detected endocardial contours and 8% of all automatically detected epicardial contours. However, the impact of these corrections on global left ventricular parameters was limited, introducing differences of 0.4 ± 4.1 mL for end-diastolic volume, -0.3 ± 2.9 mL for end-systolic volume, 0.7 ± 3.1 mL for stroke volume, and 0.3 ± 1.8% for ejection fraction. We conclude that left ventricular functional parameters can be obtained under 5 min from short-axis functional cardiac magnetic resonance images using automatic contour detection methods. Manual correction more than doubles analysis time, with minimal impact on left ventricular volumes and ejection fraction. Copyright © 2011 Wiley Periodicals, Inc.
Battery management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2016-02-23
A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.
Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger
2017-01-01
Background Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. Methods The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. Results The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Conclusions Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations. PMID:28880923
NASA Astrophysics Data System (ADS)
Matsumoto, Monica M. S.; Beig, Niha G.; Udupa, Jayaram K.; Archer, Steven; Torigian, Drew A.
2014-03-01
Lung cancer is associated with the highest cancer mortality rates among men and women in the United States. The accurate and precise identification of the lymph node stations on computed tomography (CT) images is important for staging disease and potentially for prognosticating outcome in patients with lung cancer, as well as for pretreatment planning and response assessment purposes. To facilitate a standard means of referring to lymph nodes, the International Association for the Study of Lung Cancer (IASLC) has recently proposed a definition of the different lymph node stations and zones in the thorax. However, nodal station identification is typically performed manually by visual assessment in clinical radiology. This approach leaves room for error due to the subjective and potentially ambiguous nature of visual interpretation, and is labor intensive. We present a method of automatically recognizing the mediastinal IASLC-defined lymph node stations by modifying a hierarchical fuzzy modeling approach previously developed for body-wide automatic anatomy recognition (AAR) in medical imagery. Our AAR-lymph node (AAR-LN) system follows the AAR methodology and consists of two steps. In the first step, the various lymph node stations are manually delineated on a set of CT images following the IASLC definitions. These delineations are then used to build a fuzzy hierarchical model of the nodal stations which are considered as 3D objects. In the second step, the stations are automatically located on any given CT image of the thorax by using the hierarchical fuzzy model and object recognition algorithms. Based on 23 data sets used for model building, 22 independent data sets for testing, and 10 lymph node stations, a mean localization accuracy of within 1-6 voxels has been achieved by the AAR-LN system.
Stöggl, Thomas; Holst, Anders; Jonasson, Arndt; Andersson, Erik; Wunsch, Tobias; Norström, Christer; Holmberg, Hans-Christer
2014-10-31
The purpose of the current study was to develop and validate an automatic algorithm for classification of cross-country (XC) ski-skating gears (G) using Smartphone accelerometer data. Eleven XC skiers (seven men, four women) with regional-to-international levels of performance carried out roller skiing trials on a treadmill using fixed gears (G2left, G2right, G3, G4left, G4right) and a 950-m trial using different speeds and inclines, applying gears and sides as they normally would. Gear classification by the Smartphone (on the chest) and based on video recordings were compared. Formachine-learning, a collective database was compared to individual data. The Smartphone application identified the trials with fixed gears correctly in all cases. In the 950-m trial, participants executed 140 ± 22 cycles as assessed by video analysis, with the automatic Smartphone application giving a similar value. Based on collective data, gears were identified correctly 86.0% ± 8.9% of the time, a value that rose to 90.3% ± 4.1% (P < 0.01) with machine learning from individual data. Classification was most often incorrect during transition between gears, especially to or from G3. Identification was most often correct for skiers who made relatively few transitions between gears. The accuracy of the automatic procedure for identifying G2left, G2right, G3, G4left and G4right was 96%, 90%, 81%, 88% and 94%, respectively. The algorithm identified gears correctly 100% of the time when a single gear was used and 90% of the time when different gears were employed during a variable protocol. This algorithm could be improved with respect to identification of transitions between gears or the side employed within a given gear.
Bastian, Thomas; Maire, Aurélia; Dugas, Julien; Ataya, Abbas; Villars, Clément; Gris, Florence; Perrin, Emilie; Caritu, Yanis; Doron, Maeva; Blanc, Stéphane; Jallon, Pierre; Simon, Chantal
2015-03-15
"Objective" methods to monitor physical activity and sedentary patterns in free-living conditions are necessary to further our understanding of their impacts on health. In recent years, many software solutions capable of automatically identifying activity types from portable accelerometry data have been developed, with promising results in controlled conditions, but virtually no reports on field tests. An automatic classification algorithm initially developed using laboratory-acquired data (59 subjects engaging in a set of 24 standardized activities) to discriminate between 8 activity classes (lying, slouching, sitting, standing, walking, running, and cycling) was applied to data collected in the field. Twenty volunteers equipped with a hip-worn triaxial accelerometer performed at their own pace an activity set that included, among others, activities such as walking the streets, running, cycling, and taking the bus. Performances of the laboratory-calibrated classification algorithm were compared with those of an alternative version of the same model including field-collected data in the learning set. Despite good results in laboratory conditions, the performances of the laboratory-calibrated algorithm (assessed by confusion matrices) decreased for several activities when applied to free-living data. Recalibrating the algorithm with data closer to real-life conditions and from an independent group of subjects proved useful, especially for the detection of sedentary behaviors while in transports, thereby improving the detection of overall sitting (sensitivity: laboratory model = 24.9%; recalibrated model = 95.7%). Automatic identification methods should be developed using data acquired in free-living conditions rather than data from standardized laboratory activity sets only, and their limits carefully tested before they are used in field studies. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens
2011-03-01
Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.
Multi-scale curvature for automated identification of glaciated mountain landscapes
NASA Astrophysics Data System (ADS)
Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David R.; Schrott, Lothar
2014-03-01
Erosion by glacial and fluvial processes shapes mountain landscapes in a long-recognized and characteristic way. Upland valleys incised by fluvial processes typically have a V-shaped cross-section with uniform and moderately steep slopes, whereas glacial valleys tend to have a U-shaped profile with a changing slope gradient. We present a novel regional approach to automatically differentiate between fluvial and glacial mountain landscapes based on the relation of multi-scale curvature and drainage area. Sample catchments are delineated and multiple moving window sizes are used to calculate per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. Single-scale curvature can take similar values for glaciated and non-glaciated catchments but a comparison of multi-scale curvature leads to different results according to the typical cross-sectional shapes. To adapt these differences for automated classification of mountain landscapes into areas with V- and U-shaped valleys, curvature values are correlated with drainage area and a new and simple morphometric parameter, the Difference of Minimum Curvature (DMC), is developed. At three study sites in the western United States the DMC thresholds determined from catchment analysis are used to automatically identify 5 × 5 km quadrats of glaciated and non-glaciated landscapes and the distinctions are validated by field-based geological and geomorphological maps. Our results demonstrate that DMC is a good predictor of glacial imprint, allowing automated delineation of glacially and fluvially incised mountain landscapes.
Yang, Huanjia; Chew, David A S; Wu, Weiwei; Zhou, Zhipeng; Li, Qiming
2012-09-01
Identifying accident precursors using real-time identity information has great potential to improve safety performance in construction industry, which is still suffering from day to day records of accident fatality and injury. Based on the requirements analysis for identifying precursor and the discussion of enabling technology solutions for acquiring and sharing real-time automatic identification information on construction site, this paper proposes an identification system design for proactive accident prevention to improve construction site safety. Firstly, a case study is conducted to analyze the automatic identification requirements for identifying accident precursors in construction site. Results show that it mainly consists of three aspects, namely access control, training and inspection information and operation authority. The system is then designed to fulfill these requirements based on ZigBee enabled wireless sensor network (WSN), radio frequency identification (RFID) technology and an integrated ZigBee RFID sensor network structure. At the same time, an information database is also designed and implemented, which includes 15 tables, 54 queries and several reports and forms. In the end, a demonstration system based on the proposed system design is developed as a proof of concept prototype. The contributions of this study include the requirement analysis and technical design of a real-time identity information tracking solution for proactive accident prevention on construction sites. The technical solution proposed in this paper has a significant importance in improving safety performance on construction sites. Moreover, this study can serve as a reference design for future system integrations where more functions, such as environment monitoring and location tracking, can be added. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Davis, Robert P.; Underwood, Ian M.
1987-01-01
The use of database management systems (DBMS) and AI to minimize human involvement in the planning of optical navigation pictures for interplanetary space probes is discussed, with application to the Galileo mission. Parameters characterizing the desirability of candidate pictures, and the program generating them, are described. How these parameters automatically build picture records in a database, and the definition of the database structure, are then discussed. The various rules, priorities, and constraints used in selecting pictures are also described. An example is provided of an expert system, written in Prolog, for automatically performing the selection process.
Method and apparatus for automatically generating airfoil performance tables
NASA Technical Reports Server (NTRS)
van Dam, Cornelis P. (Inventor); Mayda, Edward A. (Inventor); Strawn, Roger Clayton (Inventor)
2006-01-01
One embodiment of the present invention provides a system that facilitates automatically generating a performance table for an object, wherein the object is subject to fluid flow. The system operates by first receiving a description of the object and testing parameters for the object. The system executes a flow solver using the testing parameters and the description of the object to produce an output. Next, the system determines if the output of the flow solver indicates negative density or pressure. If not, the system analyzes the output to determine if the output is converging. If converging, the system writes the output to the performance table for the object.
Payload accommodation and development planning tools - A Desktop Resource Leveling Model (DRLM)
NASA Technical Reports Server (NTRS)
Hilchey, John D.; Ledbetter, Bobby; Williams, Richard C.
1989-01-01
The Desktop Resource Leveling Model (DRLM) has been developed as a tool to rapidly structure and manipulate accommodation, schedule, and funding profiles for any kind of experiments, payloads, facilities, and flight systems or other project hardware. The model creates detailed databases describing 'end item' parameters, such as mass, volume, power requirements or costs and schedules for payload, subsystem, or flight system elements. It automatically spreads costs by calendar quarters and sums costs or accommodation parameters by total project, payload, facility, payload launch, or program phase. Final results can be saved or printed out, automatically documenting all assumptions, inputs, and defaults.
Metaphor Identification in Large Texts Corpora
Neuman, Yair; Assaf, Dan; Cohen, Yohai; Last, Mark; Argamon, Shlomo; Howard, Newton; Frieder, Ophir
2013-01-01
Identifying metaphorical language-use (e.g., sweet child) is one of the challenges facing natural language processing. This paper describes three novel algorithms for automatic metaphor identification. The algorithms are variations of the same core algorithm. We evaluate the algorithms on two corpora of Reuters and the New York Times articles. The paper presents the most comprehensive study of metaphor identification in terms of scope of metaphorical phrases and annotated corpora size. Algorithms’ performance in identifying linguistic phrases as metaphorical or literal has been compared to human judgment. Overall, the algorithms outperform the state-of-the-art algorithm with 71% precision and 27% averaged improvement in prediction over the base-rate of metaphors in the corpus. PMID:23658625
High-speed holographic correlation system for video identification on the internet
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Ikeda, Kanami; Kodate, Kashiko
2013-12-01
Automatic video identification is important for indexing, search purposes, and removing illegal material on the Internet. By combining a high-speed correlation engine and web-scanning technology, we developed the Fast Recognition Correlation system (FReCs), a video identification system for the Internet. FReCs is an application thatsearches through a number of websites with user-generated content (UGC) and detects video content that violates copyright law. In this paper, we describe the FReCs configuration and an approach to investigating UGC websites using FReCs. The paper also illustrates the combination of FReCs with an optical correlation system, which is capable of easily replacing a digital authorization sever in FReCs with optical correlation.
Docherty, Paul D; Schranz, Christoph; Chase, J Geoffrey; Chiew, Yeong Shiong; Möller, Knut
2014-05-01
Accurate model parameter identification relies on accurate forward model simulations to guide convergence. However, some forward simulation methodologies lack the precision required to properly define the local objective surface and can cause failed parameter identification. The role of objective surface smoothness in identification of a pulmonary mechanics model was assessed using forward simulation from a novel error-stepping method and a proprietary Runge-Kutta method. The objective surfaces were compared via the identified parameter discrepancy generated in a Monte Carlo simulation and the local smoothness of the objective surfaces they generate. The error-stepping method generated significantly smoother error surfaces in each of the cases tested (p<0.0001) and more accurate model parameter estimates than the Runge-Kutta method in three of the four cases tested (p<0.0001) despite a 75% reduction in computational cost. Of note, parameter discrepancy in most cases was limited to a particular oblique plane, indicating a non-intuitive multi-parameter trade-off was occurring. The error-stepping method consistently improved or equalled the outcomes of the Runge-Kutta time-integration method for forward simulations of the pulmonary mechanics model. This study indicates that accurate parameter identification relies on accurate definition of the local objective function, and that parameter trade-off can occur on oblique planes resulting prematurely halted parameter convergence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds
NASA Astrophysics Data System (ADS)
Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.
2016-04-01
A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and principal vector similarity criteria. Poles to points are assigned to individual discontinuity objects using easy custom vector clustering and Jaccard distance approaches, and each object is segmented into planar clusters using an improved version of the DBSCAN algorithm. Modal set orientations are then recomputed by cluster-based orientation statistics to avoid the effects of biases related to cluster size and density heterogeneity of the point cloud. Finally, spacing values are measured between individual discontinuity clusters along scanlines parallel to modal pole vectors, whereas individual feature size (persistence) is measured using 3D convex hull bounding boxes. Spacing and size are provided both as raw population data and as summary statistics. The tool is optimized for parallel computing on 64bit systems, and a Graphic User Interface (GUI) has been developed to manage data processing, provide several outputs, including reclassified point clouds, tables, plots, derived fracture intensity parameters, and export to modelling software tools. We present test applications performed both on synthetic 3D data (simple 3D solids) and real case studies, validating the results with existing geomechanical datasets.
Nandola, Naresh N.; Rivera, Daniel E.
2011-01-01
This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087